WO2020241500A1 - スポット溶接継手、及びスポット溶接継手の製造方法 - Google Patents

スポット溶接継手、及びスポット溶接継手の製造方法 Download PDF

Info

Publication number
WO2020241500A1
WO2020241500A1 PCT/JP2020/020309 JP2020020309W WO2020241500A1 WO 2020241500 A1 WO2020241500 A1 WO 2020241500A1 JP 2020020309 W JP2020020309 W JP 2020020309W WO 2020241500 A1 WO2020241500 A1 WO 2020241500A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel plate
region
spot
vickers hardness
hvbase
Prior art date
Application number
PCT/JP2020/020309
Other languages
English (en)
French (fr)
Inventor
佑 銭谷
智史 広瀬
敦雄 古賀
幸一 ▲濱▼田
泰山 正則
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to KR1020217037230A priority Critical patent/KR102556695B1/ko
Priority to CN202080038325.2A priority patent/CN114007796B/zh
Priority to JP2020571724A priority patent/JP6885523B2/ja
Publication of WO2020241500A1 publication Critical patent/WO2020241500A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/10Spot welding; Stitch welding
    • B23K11/11Spot welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/36Auxiliary equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/18Sheet panels

Definitions

  • the present disclosure relates to a spot welded joint and a method for manufacturing a spot welded joint.
  • the present application claims priority based on Japanese Patent Application No. 2019-09703 filed in Japan on May 24, 2019, the contents of which are incorporated herein by reference.
  • Patent Document 1 describes an energy absorbing member in which a hat material and a closing plate are joined to each other by spot welding.
  • high-strength steel sheets with a tensile strength of 980 MPa or more are widely used as high-strength steel sheets for automobiles.
  • high-strength steel sheets having a tensile strength of 1100 MPa or more have begun to be applied.
  • a high-strength steel sheet having a tensile strength of 1100 MPa or more generally contains a hardened structure in order to obtain high strength.
  • a nugget spot weld metal
  • HAZ heat-affected zone
  • the structural members (layer welded members) constituting the automobile body such as the A pillar, the B pillar, the roof rail, and the side sill need to have high strength.
  • a structural member constituting an automobile body is manufactured by superimposing a plurality of steel plate members and joining flanges (overlapping portions) by resistance spot welding to form a tubular closed cross section.
  • methods such as increasing the strength of the material (base material) and increasing the number of welding (spot) hit points are taken.
  • In-plane tensile stress may be applied to a part of the flange of the member to be spot-welded by resistance in the event of an automobile collision.
  • a region with low hardness such as a HAZ softened portion, the collision resistance performance of the member deteriorates.
  • Such a HAZ softened portion has little influence on the evaluation results of the tensile shear test and the cross tensile test (JIS Z3137) used for the joint evaluation of resistance spot welding.
  • strain may be locally concentrated on the HAZ softened portion and fracture may occur in the HAZ softened portion.
  • Patent Document 2 describes a welded joint in which the characteristics of the spot welded portion are improved by heat-treating the spot welded portion at 100 to 400 ° C. to improve the strength of the L-shaped tensile joint.
  • Patent Document 3 describes a method of post-energizing the spot welded portion to improve the strength of the cross tension joint.
  • Patent Document 4 describes the ratio of TSS to material strength and CTS by heating the spot welded portion and the molten portion by high frequency induction heating immediately after welding with a coil wound around the spot weld electrode. A welding method for improving the joint strength evaluated from the product with the material strength is described.
  • Patent Document 5 describes that the energy absorption capacity is enhanced by having a region called a soft zone having a strength of less than 1100 MPa in a part or all of the flange portion used for spot welding. Pillars are listed.
  • Japanese Patent Application Laid-Open No. 2006-142905 Japanese Patent Application Laid-Open No. 2010-509451 Japanese Patent Application Laid-Open No. 2015-093282 Japanese Patent No. 5459750 Japanese Patent No. 5894081
  • the present disclosure has been made in view of the above problems, and is a spot welded joint and a spot welded joint that can suppress breakage from a region sandwiched between spot weld metals even when an in-plane tensile stress is applied. It is an object to provide a manufacturing method of.
  • the present inventors analyzed the strain distribution when an in-plane tensile stress was generated in a part in which a HAZ softened portion was formed. As a result, the strength of the parts is increased by quenching the vicinity of the surface (opposite the overlapping surface) between the welded metals of the high-strength steel plate that has been laminated-welded, and at the same time, tempering the vicinity of the overlapping surface. It has been found that it is possible to prevent strain from being locally concentrated on the HAZ softened portion and causing breakage in the HAZ softened portion even when an in-plane tensile stress is applied while suppressing the decrease to the minimum.
  • the spot welded joint includes a first steel plate containing hard maltensite having an average Vickers hardness HVbase of 350 HV or more, and a second steel plate overlaid on the first steel plate.
  • the first steel plate in the plate thickness direction, including the two spot-welded metals joining the first steel plate and the second steel plate, and including the two spot-welded metals.
  • the first region formed in the range of 0.1 mm between the two spot-welded metals and from the surface on the second steel plate side in the plate thickness direction of the first steel plate.
  • the metal structure of the first region contains 50 area% or more of tempered martensite, and the average Vickers hardness HV1 of the first region and the average Vickers hardness HVbase of the first steel plate are expressed by the following formula (1).
  • the metal structure of the second region contains 50 area% or more of hard martensite, and the average Vickers hardness HV2 of the second region and the average Vickers hardness HVbase of the first steel plate are as follows. (2) is satisfied.
  • the difference between the maximum value and the minimum value of Vickers hardness in the first region may be 80 HV or less.
  • the spot welded joint according to [1] or [2] even if the thickness of the first region in the plate thickness direction is 30 to 70% of the plate thickness of the first steel plate. Good.
  • a first steel plate containing hard martensite having an average Vickers hardness HVbase of 350 HV or more and a second steel plate are superposed.
  • Two spot-welded metals that join the first steel plate and the second steel plate that are overlapped are formed, and by laser irradiation, the first steel plate is placed between the two spot-welded metals and the second.
  • quenching is performed in a range of 0.1 mm from the surface on the steel plate side of the above, and at the same time, quenching is performed in a range of 0.1 mm between the two spot weld metals and from the surface opposite to the surface on the second steel plate side. ..
  • a spot welded joint capable of suppressing fracture from a region sandwiched between spot weld metals and a method for manufacturing a spot welded joint can be obtained even when an in-plane tensile stress is applied.
  • the spot welded joint 1 includes a first steel plate 11, a second steel plate 12 stacked on the first steel plate, and a first steel plate 11 and a second steel plate. It is provided with two spot welded metals 2 for joining the twelve.
  • the spot weld metal 2 is a nugget formed by resistance spot welding.
  • Such a spot welded joint can be obtained by superimposing the first steel plate 11 and the second steel plate 12 and performing resistance spot welding.
  • the first steel plate 11 to be used for resistance spot welding is a steel plate having an average Vickers hardness (HVbase) of 350 HV or more in consideration of application to automobile frame parts such as B pillars. Further, the first steel sheet has a structure including a hardened structure such as hard martensite. On the other hand, the second steel plate 12 is not limited.
  • the average Vickers hardness of the first steel plate 11 (sometimes simply referred to as hardness) means the average Vickers hardness of the first steel plate 11 to be welded before welding. When measured after spot welding, it means the average Vickers hardness measured at a position not affected by welding heat.
  • the first steel plate 11 in all the cross sections of the first steel plate 11 including the two spot weld metals 2 and 2 in the plate thickness direction, the first steel plate 11 is the two spot weld metals. Between the first region 51 formed between 2 and 2 and within a range of 0.1 mm from the surface (that is, the overlapped surface) on the side of the second steel plate 12 and between the two spot weld metals 2 and 2. It has a second region 52 formed in a range of 0.1 mm from a surface opposite to the surface on the second steel plate 12 side (that is, the surface of the joint).
  • the metal structure of the first region 51 contains 50 area% or more of tempered martensite, and the average Vickers hardness HV1 of the first region 51 and the first steel plate.
  • the average Vickers hardness HVbase satisfies the following equation (1).
  • the metal structure of the second region 52 contains 50 area% or more of hard martensite, and the average Vickers hardness HV2 of the second region 52 and the first region 52.
  • the average Vickers hardness HVbase of the steel sheet of the above satisfies the following equation (2).
  • a metal structure satisfying the same conditions of the area% of tempered martensite and the average Vickers hardness as in the first region 51 may extend to the outside of the first region 51. Further, a metal structure satisfying the same conditions of the area% of hard martensite and the average Vickers hardness as in the second region 52 may extend to the outside of the second region 52. The reasons for limiting each configuration will be described below.
  • a high-strength steel plate having an average Vickers hardness of 350 HV or more has a structure containing a hardened structure such as hard martensite (for example, 50 area% or more). Often have.
  • a structure is obtained by a manufacturing method including a quenching step.
  • hard martensite changes to a soft structure such as tempered martensite in HAZ formed around the weld metal due to the heat of welding. That is, a region (HAZ softened portion) having a hardness lower than that of the base material is formed.
  • this HAZ softened portion may be the starting point of fracture.
  • the region including the HAZ softened portion between the spot weld metals 2 is tempered so that the hardness around the HAZ softened portion is set to the same level as the hardness of the HAZ softened portion. It is possible to reduce it. However, in this case, although the breakage from the HAZ softened portion can be suppressed, the softened portion becomes large as a whole, so that there is a concern that the collision resistance performance (bending performance) of the part may deteriorate.
  • the spot welded metal 2 according to the present embodiment is the spot weld metal 2 of the first steel plate 11 which has been lap welded in order to prevent cracking at the HAZ softened portion while minimizing a decrease in joint strength.
  • the metal structure contains 50 area% or more of tempered martensite, and the average Vickers hardness HV1 in the first region and the average Vickers hardness HVbase of the first steel sheet are HVbase ⁇ 0.33 + 150 ⁇ HV1 ⁇ HVbase ⁇ 0. Satisfy 33 + 230]
  • the hardness of the HAZ softened portion Vickers hardness caused by the heat effect of welding.
  • the first region between the spot weld metals 2 and 2 including the HAZ softened portion is tempered to have a tempered martensite structure of 50 area% or more, and its Vickers hardness. Is controlled so as to satisfy the following equation (1).
  • HV1 average Vickers hardness
  • the difference between the maximum value and the minimum value of the Vickers hardness in the region is 80 HV or less.
  • the concentration of strain can be further relaxed.
  • the difference between the maximum value and the minimum value of Vickers hardness is 50 HV or less.
  • the first region 51 is formed in the thickness cross section of the first steel plate 11 between the two spot weld metals 2 and 2 and in a range (thickness) of 0.1 mm from the surface on the second steel plate 12 side. Has been done. If the thickness of the region having the above hardness in the plate thickness direction is less than 0.1 mm, the HAZ softened portion, which is a locally reduced strength portion, may remain, and a sufficient effect may not be obtained.
  • the region satisfying the hardness and structure of the first region 51 may extend to the outside of the first region 51.
  • the region satisfying the hardness and structure of the first region 51 preferably extends from the surface on the second steel plate side to a range of 30% or more of the plate thickness of the first steel plate.
  • the region satisfying the hardness and structure of the first region 51 extends from the surface on the second steel plate side to a range of more than 90% of the plate thickness of the first steel plate, the entire joint portion It is not preferable because there is a concern that the average hardness will decrease and the bending strength will decrease.
  • ⁇ Second area> [The metal structure contains 50 area% or more of hard martensite, and the average Vickers hardness HV2 in the second region and the average Vickers hardness HVbase of the first steel sheet satisfy HVbase-30 ⁇ HV2 ⁇ HVbase +30].
  • a local strength reducing portion such as a HAZ softened portion is formed between the two spot weld metals 2 and 2. If so, the strain is concentrated, but as a result of the examination by the present inventors, the strain is likely to be concentrated especially when the strength reduction portion exists near the surface of the first steel plate 11 (the surface opposite to the overlapped surface). I found out.
  • the vicinity of the surface of the first steel plate 11 between the two spot weld metals 2 and 2 including the HAZ softened portion is hardened to reduce the hardness of the hardened region.
  • the average Vickers hardness HV2 of the second region 52 and the average Vickers hardness HVbase of the first steel plate 11 satisfy the following formula (2).
  • the average Vickers hardness (HV2) of the second region 52 is larger than the average Vickers hardness (HV1).
  • the second region 52 is a range (thickness) of 0.1 mm (thickness) between the two spot weld metals 2 and 2 in the thickness cross section of the first steel plate 11 and from the surface opposite to the surface on the second steel plate side. It is formed in. If the thickness of the region having the above hardness in the plate thickness direction is less than 0.1 mm, the HAZ softened portion, which is a local strength reducing portion, may remain and a sufficient effect may not be obtained. A region satisfying the hardness and structure of the second region 52 may extend to the outside of the second region 52.
  • the region satisfying the hardness and structure of the second region 52 is formed in a range of 10% or more of the plate thickness of the first steel plate from the surface opposite to the surface on the second steel plate 12 side. It is preferable to have. However, if the region satisfying the hardness and structure of the second region 52 extends from the surface on the second steel plate 12 side to a range of more than 70% of the first steel plate 11, the second region side bends. It is not preferable because there is a concern that the breaking elongation may decrease when an external tensile bending load is applied.
  • the first region 51 and the second region 52 are formed in all cross sections of the first steel plate containing the two spot weld metals in the plate thickness direction. .. That is, when the cross-sections in the thickness direction of the first steel sheet are observed so as to include two weld metals, the above-mentioned first region 51 and second region 52 are observed in all the cross-sections.
  • the diameter of the superposed surface 3 of the spot weld metal 2 is D
  • the direction perpendicular to the thickness direction cross section of the first steel plate 11 in the first region 51 and the second region 52 (FIG. 1).
  • a metal structure satisfying the same conditions of the area% of tempered martensite and the average Vickers hardness as in the first region 51 may extend to the outside in the width direction of the first region 51.
  • a metal structure satisfying the same conditions of the area% of hard martensite and the average Vickers hardness as in the second region 52 may extend to the outside in the width direction of the second region 52.
  • the widths of the first region 51 and the second region 52 are 1.0 ⁇ D, the direction in which the in-plane tensile stress is applied is a constant angle with respect to the direction connecting the spot weld metals 2 and 2 ( Even when stress is applied in the oblique direction), strain concentration on the HAZ softened portion where strain can be concentrated is suppressed. As a result, breakage at the HAZ softened portion is further suppressed.
  • the widths of the first region 51 and the second region 52 are less than 1.0 ⁇ D, the direction of the in-plane tensile stress is a constant angle with respect to the direction connecting the spot weld metals 2 and 2. (Stress is applied in the diagonal direction), there is a concern that a sufficient effect cannot be obtained.
  • the average hardness of the first steel plate 11 is measured using a Vickers hardness tester having a load of 1.0 kgf.
  • the hardness of the portion affected by welding heat is lower than the hardness before welding. Therefore, for the hardness of the first steel plate 11, the hardness at a position not affected by heat due to welding of the first steel plate 11 is measured, and the average value thereof is used.
  • the hardness at a position 15 mm or more away from the spot weld metal 2 in a direction free of other weld metals may be measured.
  • the thickness of the first steel plate 11 in the first region 51 and the second region 52 from the surface and their average Vickers hardness a Vickers hardness tester with a load of 100 gf was used to determine the thickness of the first steel plate. Polishing and Vickers hardness measurement are repeated with respect to the cross section in the plate thickness direction to obtain a Vickers hardness distribution in the range sandwiched between the spot weld metals 2 and 2. Based on this distribution, the thickness of the first region 51 and the second region 52 and their average Vickers hardness are calculated. Specifically, the distribution of Vickers hardness is measured by the following method. First, a sample is taken so that the cross section in the thickness direction (cross section AA shown in FIG.
  • polishing and Vickers hardness are measured until the cross section does not contain the spot weld metal 2, and the Vickers hardness distribution of the first steel plate 11 between the spot weld metals 2 and 2 is obtained. Since the hardness is considered to be the same for the cross section on the opposite side, it is sufficient to measure the half cross section as described above.
  • the first steel plate 11 to be welded contains hard martensite is determined by the position of 1/8 of the plate thickness and the position of 3/8 from the surface of the position not affected by the heat due to the welding of the first steel plate 11.
  • Samples taken from each of the 5 positions of 5/8 and 7/8 are etched with a repera corrosive solution, and a 100 ⁇ m square field is observed with an optical microscope at a magnification of 1000 times to make a judgment. Just do it. Martensite that looks white to reddish brown in the observation field is martensite. Of the martensite, martensite containing carbide is hard martensite, and martensite not containing carbide is tempered martensite. Judge.
  • the area ratio of the tempered martensite in the first region 51 and the area ratio of the hard martensite in the second region 52 are the target regions (first region) on the same surface as the above-mentioned Vickers hardness measurement surface. If it is a region, the region that satisfies the formula (1), if it is the second region, the region that satisfies the formula (2)), the samples collected from five locations are etched with a repera corrosive liquid, and then an optical microscope A 100 ⁇ m square field is observed at a magnification of 1000 times, and the area ratio of martensite is measured assuming that martensite appears to be white to reddish brown in the observation field.
  • the martensite area ratios of the first region 51 and the second region 52 can be obtained. Then, using the same sample, etching treatment with picral, observing a 100 ⁇ m square field with an optical microscope at a magnification of 1000 times, and within the observation field, martensite containing charcoal was hard martensite, Assuming that martensite containing no charcoal is tempered martensite, the ratios of tempered martensite and hard martensite among the martensite are determined.
  • spot welding in which a weld metal is formed by spot welding is targeted.
  • Spot welding also called spot welding, is welding in which two stacked steel plates are connected by dots.
  • the spot welding means include arc spot welding, resistance spot welding, and laser spot welding.
  • welding performed linearly is called continuous welding.
  • the means of continuous welding include arc welding, laser welding, seam welding and the like. Compared to continuous welding, spot welding has a smaller welding area, so the construction time is shorter and power is saved. That is, spot welding is excellent in productivity.
  • the spot weld joint 1 is not limited to the resistance spot weld joint in which the spot weld metal 2 is a nugget for resistance spot welding. ..
  • the spot weld metal 2 may be formed by laser spot welding, or the spot weld metal 2 may be formed by arc spot welding.
  • the first steel plate 11 is a hat member
  • the second steel plate 12 is a closing plate
  • the two spot welded metals 2 are the flange portion of the hat member and the closing. It is preferably formed in the overlapped portion with the plate. With such a configuration, it is particularly effective in improving the strength and collision resistance of the structural member.
  • the spot welded joint 1 has two spot welded metals 2 and the region between the two spot welded metals 2 and 2 satisfies the above relationship, the effect is effective. can get.
  • a plurality of (two or more) spot weld metals are formed. Even when more than two spot weld metals are formed, if the region between the two spot weld metals of interest has the above relationship, the effect can be obtained for that region.
  • the fracture at the HAZ softened portion is suppressed regardless of the direction and location in the plane of the high-strength steel plate. It is more preferable because it can be used.
  • the spot welded joint 1 can be applied to an A pillar, a side sill, a B pillar, or the like.
  • the flange portion of the hat member is joined to the closing plate by a spot weld metal. If the above relationship is satisfied between the spot-welded metals of the B-pillar, even if an in-plane tensile stress is applied to the flange portion at the time of an automobile collision, fracture at the portion that was the HAZ softened portion is suppressed. it can.
  • the first steel plate 11 and / or the second steel plate 12 may be a plated steel plate.
  • corrosion resistance is improved.
  • the plated steel sheet include hot-dip galvanized steel sheets, alloyed hot-dip galvanized steel sheets, electrogalvanized steel sheets, and aluminum-plated steel sheets.
  • the spot welded joint according to the present embodiment can be manufactured by a manufacturing method including the following steps. That is, the method for manufacturing a spot welded joint according to this embodiment is (I) The first steel plate containing hard martensite and the second steel plate having an average Vickers hardness HVbase of 350 HV or more are superposed. (II) A plurality of spot-welded metals for joining the first steel plate and the second steel plate that are overlapped with each other are formed. (III) The first steel plate is tempered between the two spot-welded metals and within a range of 0.1 mm from the surface on the second steel plate side, and at the same time, between the two spot-welded metals and above. It has a step of quenching in a range of 0.1 mm from the surface opposite to the surface on the second steel plate side.
  • first steel plate 11 containing hard martensite and the second steel plate 12 having an average Vickers hardness HVbase of 350 HV or more known steel plates can be used. These steel plates are overlapped and spot welded to form a spot weld metal to form a welded joint.
  • the spot welding conditions are not limited and may be normal conditions.
  • a part of the first steel sheet is hardened and a part is tempered by laser irradiation to form a first region and a second region.
  • the temperature of the quenching region is too high, the region that needs to be tempered will also become the quenching region due to heat conduction. Therefore, it is necessary to control the heat input according to the plate thickness.
  • tempering it is necessary to heat the temperature of the target region to a temperature of less than Ac 1 ° C. As shown in FIG.
  • the heated region becomes tempered martensite, and the hardness decreases as the temperature rises up to Ac1 ° C.
  • the heating temperature exceeds Ac 1 ° C.
  • the tissue is transformed into austenite. Since this austenite transforms into hard martensite again when cooled, it exhibits high hardness at the site heated to Ac 1 ° C. or higher.
  • laser irradiation is performed from the surface side of the first steel sheet (the surface opposite to the second steel sheet), and the temperature near the surface of the first steel sheet is heated to exceed Ac 1 ° C. By heating the temperature near the opposite surface to Ac 1 ° C. or lower, a predetermined first region and second region can be formed.
  • heating in order to give a hardness distribution in the plate thickness direction, it is necessary to heat only the polar surface layer and heat in the depth direction by heat conduction. Further, if the material is heated to the outside of the target area, the heat removal in the target area may be insufficient and the tempered structure may not be obtained. For example, in high-frequency induction heating, heat is input to a certain depth, so that a preferable hardness distribution cannot be obtained. Further, in gas heating or arc heating, it is difficult to heat only a specific region. Therefore, in the method for manufacturing a spot welded joint according to the present embodiment, heating is performed by irradiating a laser beam.
  • the laser irradiation conditions are not particularly limited and may be determined depending on the thickness of the first steel plate, the thickness of the first region or the second region to be obtained, and the like. For example, the following conditions are exemplified. Examples of conditions ⁇ Oscillator type: Semiconductor laser ⁇ Output: 500-3000W -Beam shape: Rectangle with width direction: 4 to 10 mm and traveling direction: 0.5 to 3 mm on the irradiation surface-Laser moving speed: 50 to 500 cm / min
  • quenching is performed between the two spot weld metals of the first steel sheet and within a range of 0.1 mm from the surface on the second steel plate side, and at the same time, between the two spot weld metals. Moreover, quenching can be performed in a range of 0.1 mm from the surface opposite to the surface on the second steel plate side.
  • a steel sheet having a thickness of 2.0 mm was held in a furnace at 950 ° C. for 5 minutes, and then quenched by hot stamping with a water-cooled die. After quenching, the oxide scale on the surface of the steel sheet was removed by shot blasting. The Vickers hardness of the used steel sheet after quenching was as shown in Table 1. In addition, this steel sheet had a structure containing hard martensite.
  • a tensile test piece having a distance between reference points of 50 mm and a parallel portion width of 25 mm as shown in FIG. 4 was collected from the steel plate.
  • a 25 mm square tab plate was collected from the same steel plate.
  • Electrode DR type electrode (tip ⁇ 6 mm R40) Pressurized pressure: 400 kgf Energizing time: 24 cyc
  • t thickness (mm) of the tensile test piece
  • the test piece (joints Nos. 1 to 5, 11 and 12) after spot welding is irradiated with a laser from one side of the tensile test piece, and the central part in the width direction of the parallel part coincides with the center of the beam in the longitudinal direction.
  • the entire parallel portion was heat-treated.
  • Joint No. Laser irradiation was not performed on 6 to 10.
  • Joint No. The laser irradiation conditions for 1 to 5 were as follows. ⁇ Oscillator type: Semiconductor laser ⁇ Output: 1200W -Beam shape: Rectangle with width direction: 8 mm and traveling direction: 1 mm on the irradiation surface-Laser moving speed: 250 cm / min
  • the laser irradiation conditions for No. 11 were as follows.
  • ⁇ Oscillator type Semiconductor laser ⁇ Output: 700W -Beam shape: Rectangle with width direction: 8 mm and traveling direction: 1 mm on the irradiation surface-Laser moving speed: 130 cm / min
  • the laser irradiation conditions for 12 were as follows.
  • ⁇ Oscillator type Semiconductor laser ⁇ Output: 750W -Beam shape: Rectangle with width direction: 8 mm and traveling direction: 1 mm on the irradiation surface-Laser moving speed: 80 cm / min
  • the measurement surface was a cross section in the thickness direction at the center of the width direction of the test piece.
  • a tensile test was carried out on each test piece (in-plane tensile stress was applied) to investigate the fracture position.
  • the tensile speed during the tensile test was 10 mm / min. The results are shown in Table 1.
  • Joint No. In 1 to 5 (example of the present invention), a range of 0.1 mm (first region) from the overlapped surface is tempered to satisfy the formula (1), and a range of 0.1 mm from the surface (first region) is satisfied. Region 2) was hardened to satisfy equation (2). As a result, no crack was observed in the HAZ softened portion.
  • the joint No. In 6 to 10 (comparative example), laser irradiation was not performed, so that the joint No. Equations (1) and (2) were not satisfied in the range corresponding to the first region or the second region of 1 to 5. As a result, in the tensile test, cracks occurred in the HAZ softened portion. Joint No. Laser irradiation was performed in Nos.
  • Comparative Example 11 Comparative Examples
  • Comparative Example 12 also had insufficient heat input, and although the second region was quenched so as to satisfy the formula (2), the tempering was insufficient in the first region, and the formula (1) was expressed in the first region. It was not satisfied, and the difference between the maximum value and the minimum value of Vickers hardness in the first region was 80 or more. As a result, in the tensile test, cracks occurred in the HAZ softened portion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Resistance Welding (AREA)
  • Laser Beam Processing (AREA)

Abstract

このスポット溶接継手は、第1の鋼板と前記第1の鋼板に重ねられた第2の鋼板と前記第1の鋼板と前記第2の鋼板とを接合している2つのスポット溶接金属とを含み、前記2つのスポット溶接金属を含む断面において、前記第1の鋼板が、前記2つのスポット溶接金属の間、かつ前記第2の鋼板側の面から第1の鋼板の板厚方向に0.1mmの範囲に形成された第1の領域と、前記2つのスポット溶接金属の間、かつ前記第2の鋼板側の面とは反対の面から前記板厚方向に0.1mmの範囲に形成された第2の領域とを有し、前記第1の領域の平均ビッカース硬さHV1と前記第1の鋼板の平均ビッカース硬さHVbaseとが、HVbase×0.33+150≦HV1≦HVbase×0.33+230を満たし、前記第2の領域の平均ビッカース硬さHV2と前記第1の鋼板の平均ビッカース硬さHVbaseとが、HVbase-30≦HV2≦HVbase+30を満たす。

Description

スポット溶接継手、及びスポット溶接継手の製造方法
 本開示は、スポット溶接継手、及びスポット溶接継手の製造方法に関する。
 本願は、2019年05月24日に、日本に出願された特願2019-097703号に基づき優先権を主張し、その内容をここに援用する。
 複数の鋼板部材を重ねて構成される構造物では、鋼板部材同士を重ね合わせた重ね合わせ部に対して、抵抗スポット溶接による接合が広く行われている。
 例えば、特許文献1では、ハット材とクロージングプレートとがスポット溶接により互いに接合されるエネルギー吸収部材が記載されている。
 現在、自動車用の高強度鋼板として、引張強さが980MPa以上の高強度鋼板が広く用いられている。近年では引張強さが1100MPa以上の高強度鋼板も適用されはじめている。引張強さが1100MPa以上の高強度鋼板は、一般に高い強度を得るために焼入れ組織を含む。抵抗スポット溶接を行うと、鋼板を溶接するナゲット(スポット溶接金属)が形成され、ナゲットの周囲に熱影響部(heat affected zone)(以下、HAZという)が生じる。一般にHAZは焼き入れ組織を含む。但し、焼入れ組織を有する高強度鋼板に、抵抗スポット溶接を行った場合、焼き入れ組織である母材より硬さが低い領域(HAZ軟化部)が形成される。母材の焼き入れ組織が抵抗スポット溶接の熱により焼き戻されるからである。
 自動車が衝突した際には、キャビン内の乗客を保護する必要がある。このため、Aピラー、Bピラー、ルーフレール、サイドシルといった自動車車体を構成する構造部材(重ね溶接部材)は、高い強度を備える必要がある。一般に自動車車体を構成する構造部材は、複数の鋼板部材を重ね合わせてフランジ(重ね合わせ部)を抵抗スポット溶接により接合して筒状の閉断面を形成して製造される。衝突時の変形抵抗を向上させ、少ない変形量でより多くの衝突エネルギーを吸収させるには、素材(母材)の高強度化や溶接(スポット)打点の増加といった手法がとられる。
 抵抗スポット溶接される上記部材のフランジの一部には、自動車の衝突時に面内引張応力が負荷されることがある。一般に、HAZ軟化部のような硬さが低い領域があると部材の耐衝突性能が低下する。このようなHAZ軟化部は、抵抗スポット溶接の継手評価に用いられる引張せん断試験、及び十字引張試験(JIS Z3137)の評価結果への影響は小さい。しかしながら、面内引張応力が負荷された場合には、HAZ軟化部に局所的にひずみが集中してHAZ軟化部に破断を生じる場合がある。そのため、母材を高強度化し、スポット打点を増加しても、前述のHAZ軟化部が生じると、母材の強度と部品の形状とから想定される耐衝突性能を得られない場合がある。
 従って、高強度鋼板からなる鋼板部材を自動車車体の構造部材に適用する場合には、ナゲットの周辺領域が破断の起点となるのを抑制することが求められる。
 従来、抵抗スポット溶接によって形成された溶接部材の特性を改善するための検討がなされてきた。例えば、特許文献2には、スポット溶接部の特性を改善した溶接継手として、スポット溶接部を100~400℃で熱処理し、L字引張継手強度を向上させた溶接継手が記載されている。また、特許文献3には、スポット溶接部に後通電を行い、十字引張継手強度を改善させる方法が記載されている。特許文献4には、スポット溶接電極の周囲をコイルで巻いたもので溶接後速やかに高周波誘導加熱してスポット溶接部及び溶融部を焼き戻すことで、TSSと材料強度との比及び、CTSと材料強度との積から評価される接合強度を改善する溶接方法が記載されている。
 しかしながら、これらの特許文献2~4に開示された技術によれば、TSSやCTSの向上には一定の効果が得られるものの、これらの特許文献2~4では、鋼板に面内引張応力が負荷された際のHAZ軟化部での破断について考慮されていない。
 このような課題に対し、特許文献5には、スポット溶接に供されるフランジ部の一部または全部にソフトゾーンと呼ばれる1100MPa未満の強度を有する領域を有することで、エネルギー吸収能力を高めたBピラーが記載されている。
 しかしながら、特許文献5に開示されたBピラーでは、サイドフランジを軟化させる必要があるので、部材の耐衝突性能である曲げ性能が低下するおそれがある。また、特許文献5では溶接の前に部品内で軟化領域を設けるので、部品の形状精度が低下するという課題もある。部品の形状精度が低下すると、溶接時に部品間に隙間が生じることになり、溶接が難化する。
日本国特開2006-142905号公報 日本国特開2010-059451号公報 日本国特開2015-093282号公報 日本国特許第5459750号公報 日本国特許第5894081号公報
 本開示は、上記の課題に鑑みてなされたものであり、面内引張応力が負荷された場合でも、スポット溶接金属の間に挟まれる領域からの破断を抑制できるスポット溶接継手、及びスポット溶接継手の製造方法を提供することを課題とする。
 本発明者らは、HAZ軟化部が形成された部品に面内引張応力が生じた際のひずみ分布を解析した。その結果、重ね合わせ溶接を行った高強度鋼板の、溶接金属同士の間の表面(重ね合わせ面とは反対側)付近を焼入れると同時に、重ね合わせ面付近を焼き戻すことで、部品強度の低下を最低限に抑えつつ、面内引張応力が負荷された場合であっても、HAZ軟化部に局所的にひずみが集中してHAZ軟化部に破断を生じることを回避できることを見出した。
 本開示は、上記の知見に基づいてなされた。本開示の要旨は以下の通りである。
[1]本開示の一態様に係るスポット溶接継手は、平均ビッカース硬さHVbaseが350HV以上の、硬質マルテンサイトを含む第1の鋼板と、前記第1の鋼板に重ねられた第2の鋼板と、前記第1の鋼板と前記第2の鋼板とを接合している2つのスポット溶接金属と、を含み、前記2つのスポット溶接金属を含む前記第1の鋼板の板厚方向の全ての断面において、前記第1の鋼板が、前記2つのスポット溶接金属の間、かつ前記第2の鋼板側の面から前記第1の鋼板の板厚方向に0.1mmの範囲に形成された第1の領域と、前記2つのスポット溶接金属の間、かつ前記第2の鋼板側の面とは反対の面から前記板厚方向に0.1mmの範囲に形成された第2の領域と、を有し、前記第1の領域の金属組織が焼戻しマルテンサイトを50面積%以上含み、前記第1の領域の平均ビッカース硬さHV1と前記第1の鋼板の平均ビッカース硬さHVbaseとが、下記式(1)を満たし、前記第2の領域の金属組織が硬質マルテンサイトを50面積%以上含み、前記第2の領域の平均ビッカース硬さHV2と前記第1の鋼板の平均ビッカース硬さHVbaseとが、下記式(2)を満たす。
HVbase×0.33+150≦HV1≦HVbase×0.33+230 式(1)
HVbase-30≦HV2≦HVbase+30 式(2)
[2][1]に記載のスポット溶接継手では、前記第1の領域におけるビッカース硬さの最大値と最小値との差が80HV以下であってもよい。
[3][1]または[2]に記載のスポット溶接継手では、前記第1の領域の、前記板厚方向の厚みが、前記第1の鋼板の板厚の30~70%であってもよい。
[4]本開示の別の態様に係るスポット溶接継手の製造方法は、平均ビッカース硬さHVbaseが350HV以上の、硬質マルテンサイトを含む第1の鋼板と、第2の鋼板と、を重ね合わせ、重ね合わされた前記第1の鋼板と前記第2の鋼板とを接合する2つのスポット溶接金属を形成し、レーザー照射によって、前記第1の鋼板の、前記2つのスポット溶接金属同士の間かつ第2の鋼板側の面から0.1mmの範囲に焼戻しを行うと同時に、前記2つのスポット溶接金属の間かつ前記第2の鋼板側の面とは反対の面から0.1mmの範囲に焼入れを行う。
 本開示の上記態様によれば、面内引張応力が負荷された場合でも、スポット溶接金属の間に挟まれる領域からの破断を抑制できるスポット溶接継手、及びスポット溶接継手の製造方法が得られる。
本実施形態に係るスポット溶接継手の板厚方向断面図である。 本実施形態に係るスポット溶接継手を第1の鋼板側から上面視した場合の図である。 本実施形態に係るスポット溶接継手にレーザー照射を行った場合の、到達温度とビッカース硬さの測定との関係を示す模式図である。 実施例で用いた試験片を示す模式図である。
 本開示の一実施形態に係るスポット溶接継手(本実施形態に係るスポット溶接継手)、及び本実施形態に係るスポット溶接継手の製造方法について、図面を参照して説明する。
 図1に示すように、本実施形態に係るスポット溶接継手1は、第1の鋼板11と、第1の鋼板に重ねられた第2の鋼板12と、第1の鋼板11と第2の鋼板12とを接合する2つのスポット溶接金属2とを備える。図1、図2においては、スポット溶接金属2は抵抗スポット溶接によって形成されたナゲットである。このようなスポット溶接継手は、第1の鋼板11と第2の鋼板12とを重ね合わせて抵抗スポット溶接を行うことによって得られる。
 抵抗スポット溶接に供する第1の鋼板11は、Bピラー等の自動車骨格部品への適用を考慮し、平均ビッカース硬さ(HVbase)が350HV以上である鋼板である。また、第1の鋼板は、硬質マルテンサイトのような焼入れ組織を含む組織からなる。一方、第2の鋼板12については、限定されない。
 第1の鋼板11の平均ビッカース硬さ(単純に硬度という場合がある)は、溶接に供される第1の鋼板11の溶接前の平均ビッカース硬さを意味する。スポット溶接後に測定する場合には、溶接熱影響を受けていない位置で測定された平均ビッカース硬さを意味する。
 また、本実施形態に係るスポット溶接継手1では、2つのスポット溶接金属2,2を含む第1の鋼板11の板厚方向の全ての断面において、第1の鋼板11が、2つのスポット溶接金属2,2の間、かつ第2の鋼板12側の面(すなわち重ね合わせ面)から0.1mmの範囲に形成された第1の領域51と、2つのスポット溶接金属2,2の間、かつ第2の鋼板12側の面とは反対の面(すなわち継手の表面)から0.1mmの範囲に形成された第2の領域52と、を有する。
 また、本実施形態に係るスポット溶接継手1では、第1の領域51の金属組織が、焼戻しマルテンサイトを50面積%以上含み、第1の領域51の平均ビッカース硬さHV1と第1の鋼板の平均ビッカース硬さHVbaseとが、下記式(1)を満たす。
HVbase×0.33+150≦HV1≦HVbase×0.33+230 式(1)
 さらに、本実施形態に係るスポット溶接継手1では、前記第2の領域52の金属組織が、硬質マルテンサイトを50面積%以上含み、前記第2の領域52の平均ビッカース硬さHV2と前記第1の鋼板の平均ビッカース硬さHVbaseとが、下記式(2)を満たす。
HVbase-30≦HV2≦HVbase+30 式(2)
 第1の領域51の外側にまで第1の領域51と同様の焼き戻しマルテンサイトの面積%及び平均ビッカース硬さの条件を満たす金属組織が広がっていてもよい。また、第2の領域52の外側にまで第2の領域52と同様の硬質マルテンサイトの面積%及び平均ビッカース硬さの条件を満たす金属組織が広がっていてもよい。
 以下、各構成の限定理由について説明する。
 上述したように、平均ビッカース硬さが350HV以上(引張強さに換算すると約1100MPa以上)の高強度鋼板は、硬質マルテンサイトのような焼入れ組織を含む(例えば50面積%以上である)組織を有していることが多い。このような組織は、焼入れ工程を含む製造方法によって得られる。
 焼入れ組織を含む鋼板に溶接を行った場合、溶接の熱により溶接金属の周囲に形成されるHAZにおいて、硬質マルテンサイトが焼戻しマルテンサイト等の軟質な組織に変化する。すなわち、母材より硬さが低い領域(HAZ軟化部)が形成される。溶接部を有する板の面内に引張応力が生じた際、このHAZ軟化部が破断の起点となる場合がある。
 本発明者らの検討の結果、(i)面内引張応力がかかる2つの溶接金属の間において、局所的な強度低下部が生じないようにすること、(ii)強度が劣位な部位や伸びやすい部位をHAZ軟化部の他に設ける形状にすること、(iii)HAZ軟化部を含む熱影響部のある領域の、破断までの伸び量が大きくなるように当該領域の組織を改質すること、によって、HAZ軟化部であった箇所への歪の集中を緩和できることが分かった。
 局所的な強度低下部が生じないようにする場合、例えばスポット溶接金属2の間のHAZ軟化部を含む領域を焼戻して、HAZ軟化部の周辺の硬度を、HAZ軟化部の硬度と同程度まで低下させることが考えられる。しかしながら、この場合、HAZ軟化部からの破断は抑制できるものの、部品全体としては軟化部が大きくなることから、部品の耐衝突性能(曲げ性能)が低下することが懸念される。
 本実施形態に係るスポット溶接継手1は、継手強度の低下を最低限に抑えつつHAZ軟化部での割れを防止するため、重ね合わせ溶接を行った第1の鋼板11の、スポット溶接金属2,2同士の間の、重ね合わせ面3付近を焼き戻すとともに、スポット溶接金属2,2同士の間の第1の鋼板の表面(重ね合わせ面3とは反対側)付近を焼入れることによって、所望の金属組織と平均ビッカース硬さとを備えた第1の領域と第2の領域とを形成する。
<第1の領域>
[金属組織が焼戻しマルテンサイトを50面積%以上含み、第1の領域の平均ビッカース硬さHV1と第1の鋼板の平均ビッカース硬さHVbaseとが、HVbase×0.33+150≦HV1≦HVbase×0.33+230を満たす]
 本発明者らの検討の結果、平均ビッカース硬さHVbaseが350HV以上の硬質マルテンサイトを含む第1の鋼板11にスポットを行った際、溶接の熱影響によって生じるHAZ軟化部の硬度(ビッカース硬さ)は、(溶接前の第1の鋼板11の硬度×0.33+150)~(溶接前の第1の鋼板11の硬度×0.33+230)程度になる。そのため、本実施形態に係るスポット溶接継手では、HAZ軟化部を含むスポット溶接金属2,2間の第1の領域を焼戻して焼戻しマルテンサイトが50面積%以上の組織とし、また、そのビッカース硬さが、下記式(1)を満たすように制御する。
 第1の領域51の平均ビッカース硬さ(HV1)が式(1)を満たすことで、HAZ軟化部とその周囲との硬度差が80HV以下になる。この場合、HAZ軟化部への歪の集中を緩和できる。
HVbase×0.33+150≦HV1≦HVbase×0.33+230 式(1)
 第1の領域51は、平均ビッカース硬さが式(1)を満たすことに加えて、領域内におけるビッカース硬さの最大値と最小値との差が80HV以下であることが好ましい。第1の領域51における硬度の最大値と最小値との差を小さくすることで、歪の集中をさらに緩和することができる。換言すると、第1の領域51内の硬度分布が均質であると、局所的な歪の集中を避けることができる。より好ましくは、ビッカース硬さの最大値と最小値との差が50HV以下である。
[2つのスポット溶接金属の間、かつ第2の鋼板側の面から0.1mmの範囲に形成されている]
 第1の領域51は、第1の鋼板11の板厚断面の、2つのスポット溶接金属2,2の間、かつ第2の鋼板12側の面から0.1mmの範囲(厚さ)に形成されている。上記の硬度を有する領域の板厚方向の厚さが0.1mm未満であると、局所的な強度低下部であるHAZ軟化部が残存し、十分な効果が得られない可能性がある。上記の第1の領域51の硬度及び組織の条件を満たす領域が第1の領域51の外側にまで広がっていてもよい。その場合、上記の第1の領域51の硬度と組織を満たす領域は、第2の鋼板側の面から第1の鋼板の板厚の30%以上の範囲に広がっていることが好ましい。但し、上記の第1の領域51の硬度と組織を満たす領域が、第2の鋼板側の面から第1の鋼板の板厚の90%超の範囲にまで広がっていると、継手部全体の平均硬度が低下し、曲げ耐力が低下することが懸念されるので好ましくない。
<第2の領域>
[金属組織が硬質マルテンサイトを50面積%以上含み、第2の領域の平均ビッカース硬さHV2と第1の鋼板の平均ビッカース硬さHVbaseとが、HVbase-30≦HV2≦HVbase+30を満たす]
 第1の本実施形態に係るスポット溶接継手1に対し面内引張応力が付与された場合、2つのスポット溶接金属2,2間にHAZ軟化部のような局所的な強度低下部が形成されていると歪が集中するが、本発明者らの検討の結果、特に第1の鋼板11の表面(重ね合わせ面とは反対の面)付近に強度低下部が存在すると、歪が集中しやすいことが分かった。
 そのため、本実施形態に係るスポット溶接継手1では、HAZ軟化部を含む2つのスポット溶接金属2,2間の第1の鋼板11の表面付近に対し、焼入れを行い、焼入れした領域の硬さを、溶接熱影響を受けていない第1の鋼板11の平均ビッカース硬さと同等にする。
 具体的には、第2の領域52の平均ビッカース硬さHV2と第1の鋼板11の平均ビッカース硬さHVbaseとが、下記式(2)を満たすようにする。
HVbase-30≦HV2≦HVbase+30 式(2)
 第2の領域52の平均ビッカース硬さと、第1の鋼板11の平均ビッカース硬さとの差が30超であると、面内引張応力負荷時の歪の集中を十分に抑制することができない。
 第1の領域51が焼戻しマルテンサイトを50面積%以上含む焼き戻し組織であって、第2の領域が硬質マルテンサイトを50面積%以上含む焼き入れ組織であることから、第1の領域51の平均ビッカース硬さ(HV1)より第2の領域52の平均ビッカース硬さ(HV2)は大きい。
[2つのスポット溶接金属の間、かつ第2の鋼板側の面とは反対の面から0.1mmの範囲に形成されている]
 第2の領域52は、第1の鋼板11の板厚断面の、2つのスポット溶接金属2,2の間、かつ第2の鋼板側の面とは反対の面から0.1mmの範囲(厚さ)に形成されている。上記の硬度を有する領域の板厚方向の厚さが0.1mm未満であると、局所的な強度低下部であるHAZ軟化部が残存し、十分な効果が得られない可能性がある。上記の第2の領域52の硬度と組織の条件を満たす領域が第2の領域52の外側にまで広がっていてもよい。その場合、上記の第2の領域52の硬度と組織を満たす領域は、第2の鋼板12側の面とは反対の面から第1の鋼板の板厚の10%以上の範囲に形成されていることが好ましい。但し上記の第2の領域52の硬度と組織を満たす領域が、第2の鋼板12側の面から第1の鋼板11の70%超の範囲にまでひろがっていると、第2の領域側が曲げ外になる引張曲げ荷重が負荷された際に、破断伸びが低下することが懸念されるので好ましくない。
 本実施形態に係るスポット溶接継手1では、上記第1の領域51及び第2の領域52は、2つのスポット溶接金属を含む第1の鋼板の板厚方向の全ての断面において、形成されている。すなわち、第1の鋼板について、2つの溶接金属が含まれるように板厚方向断面を観察した場合、全ての断面において、上述した第1の領域51及び第2の領域52が観察される。
 言い換えれば、スポット溶接金属2の重ね合わせ面3における径をDとしたとき、第1の領域51及び第2の領域52の第1の鋼板11の板厚方向断面に垂直な方向(図1の紙面に垂直な方向、図2の紙面上の上下方向)の幅は、1.0×Dである。第1の領域51の幅方向外側にまで第1の領域51と同様の焼き戻しマルテンサイトの面積%及び平均ビッカース硬さの条件を満たす金属組織が広がっていてもよい。第2の領域52の幅方向外側にまで第2の領域52と同様の硬質マルテンサイトの面積%及び平均ビッカース硬さの条件を満たす金属組織が広がっていてもよい。
 自動車の衝突が生じた場合、面内引張応力の方向は、スポット溶接金属2,2間を結ぶ方向(スポット溶接金属2,2の中心同士を結ぶ方向)に対して必ずしも平行ではない。すなわち、一定の角度を有する(斜め方向に応力がかかる)場合がある。第1の領域51及び第2の領域52の幅が1.0×Dあれば、面内引張応力の付加方向がスポット溶接金属2,2間を結ぶ方向に対し一定の角度となった場合(斜め方向に応力がかかった場合)であっても、歪が集中しうるHAZ軟化部のへの歪集中が抑制される。その結果、HAZ軟化部での破断がさらに抑制される。
 一方、第1の領域51、第2の領域52の幅が1.0×D未満であると、面内引張応力の方向が、スポット溶接金属2,2間を結ぶ方向に対して一定の角度を有する(斜め方向に応力がかかる)場合には、十分な効果が得られないことが懸念される。
 第1の鋼板11の平均硬度は、荷重を1.0kgfとしたビッカース硬さ計を用いて測定する。
 硬質マルテンサイト組織を含む鋼板では、溶接熱影響を受けた部分の硬度は、溶接前の硬度より低くなる。このため、第1の鋼板11の硬度は、第1の鋼板11の溶接による熱影響を受けていない位置の硬度を測定し、その平均値を用いる。溶接による熱影響を受けていない位置として、例えば、スポット溶接金属2から、他の溶接金属のない方向へ15mm以上離れた位置の硬度を測定すればよい。
 具体的には、ビッカース硬さ計を用いて、荷重を1.0kgfとして、溶接による熱影響を受けていない10ヶ所の、第1の鋼板11の表面から板厚の1/8の位置、3/8の位置、5/8の位置、7/8の位置の硬度を測定し、その平均値を用いる。
 第1の領域51及び第2の領域52の第1の鋼板11の表面からの厚さ及びそれらの平均ビッカース硬さについては、荷重100gfとしたビッカース硬さ計を用いて、第1の鋼板の板厚方向断面に対して、研磨とビッカース硬さの測定を繰り返して、スポット溶接金属2,2に挟まれる範囲のビッカース硬さの分布を得る。この分布に基づき、第1の領域51及び第2の領域52の厚さ及びそれらの平均ビッカース硬さを算出する。
 ビッカース硬さの分布は、具体的には、以下の方法で測定する。
 まず、2つのスポット溶接金属の中心を通る第1の鋼板11の板厚方向断面(図2に示すA-A断面)が測定面となるようにサンプルを採取する。
 この測定面に対し、第1の鋼板11の板厚方向には、第1の鋼板11の表面及び重ね合わせ面からそれぞれ0.1mmの位置、及びその間を5等分した位置に対してビッカース硬さの測定を行う。この測定を、幅方向(スポット溶接金属2ともう一方のスポット溶接金属2とを結ぶ方向)に0.5mm間隔で繰り返して行う。
 その後、サンプルを0.5mm研磨し、現出した断面(図2に示すB-B断面)に対し、上記と同様のビッカース硬さ測定を行う。
 さらに、断面にスポット溶接金属2が含まれなくなるまで研磨及びビッカース硬さの測定を行い、スポット溶接金属2,2間における第1の鋼板11のビッカース硬さ分布を得る。硬度は反対側の断面も同等であると考えられるため、上記の通り半分の断面について測定を行えばよい。
 溶接に供する第1の鋼板11が硬質マルテンサイトを含むかどうかは、第1の鋼板11の溶接による熱影響を受けていない位置の表面から板厚の1/8の位置、3/8の位置、5/8の位置、7/8の位置の各5ヶ所から採取したサンプルについて、レペラ腐食液を用いてエッチング処理し、光学顕微鏡により1000倍の倍率で100μm四方の視野を観察して判断すればよい。観察視野内で、白色~赤褐色に見えるものがマルテンサイトであり、マルテンサイトのうち、炭化物が含まれているマルテンサイトを硬質マルテンサイト、炭化物が含まれていないマルテンサイトを焼き戻しマルテンサイトであると判断する。
 また、第1の領域51の焼戻しマルテンサイトの面積率及び第2の領域52の硬質マルテンサイトの面積率は、上述したビッカース硬さの測定面と同じ面において、対象となる領域(第1の領域であれば式(1)を満たす領域、第2の領域であれば式(2)を満たす領域)に対し、5ヶ所から採取したサンプルについて、レペラ腐食液を用いてエッチング処理し、光学顕微鏡により1000倍の倍率で100μm四方の視野を観察し、観察視野内で、白色~赤褐色に見えるものがマルテンサイトであるとしてマルテンサイトの面積率を測定する。観察した視野のマルテンサイトの面積率を平均することで、第1の領域51及び第2の領域52のマルテンサイト面積率が得られる。その後、同じサンプルを用いて、ピクラールを用いてエッチング処理し、光学顕微鏡により1000倍の倍率で100μm四方の視野を観察し、観察視野内で、炭化物が含まれているマルテンサイトを硬質マルテンサイト、炭化物が含まれていないマルテンサイトを焼き戻しマルテンサイトであるとして、マルテンサイトのうちの焼戻しマルテンサイト及び硬質マルテンサイトのそれぞれの割合を求める。
 本実施形態では、スポット溶接によって溶接金属が形成されたスポット溶接継手を対象としている。スポット溶接は、点溶接とも呼ばれ、重ね合わされた二枚の鋼板を点でつなぐ溶接のことである。スポット溶接の手段としては、アークスポット溶接、抵抗スポット溶接、レーザースポット溶接が挙げられる。これに対し、線状に行われる溶接を連続溶接という。連続溶接の手段としては、アーク溶接、レーザー溶接、シーム溶接等が挙げられる。点溶接は、連続溶接に比べ、溶接面積が少ないため、施工時間が短時間であり、また省電力である。すなわち、点溶接は生産性に優れる。
 上記では、スポット溶接金属2が抵抗スポット溶接のナゲットである場合について説明したが、本実施形態に係るスポット溶接継手1はスポット溶接金属2が抵抗スポット溶接のナゲットである抵抗スポット溶接継手に限定されない。例えば、スポット溶接金属2がレーザースポット溶接によって形成されてもよく、スポット溶接金属2がアークスポット溶接によって形成されてもよい。
 本実施形態に係るスポット溶接継手1では、例えば、第1の鋼板11がハット部材であり、第2の鋼板12がクロージングプレートであり、2つのスポット溶接金属2は、ハット部材のフランジ部とクロージングプレートとの重ね合わせ部に形成されていることが好ましい。このような構成であれば、構造部材としての強度及び耐衝突性能の向上に特に有効に作用する。
 また、本実施形態に係るスポット溶接継手1は、2つのスポット溶接金属2を有し、2つのスポット溶接金属2,2同士の間の領域が上記の関係を満足していれば、その効果は得られる。自動車骨格部品等へ適用される場合、複数の(2またはそれ以上の)スポット溶接金属が形成される。2を超えるスポット溶接金属が形成される場合でも、対象とする2つのスポット溶接金属の間の領域が上記の関係を有していれば、その領域については効果が得られる。2を超えるスポット溶接金属を有する場合には、特に面内引張応力がかかることが想定される部位において、2つのスポット溶接金属2同志の間が上記の関係を満足するように制御することが好ましい。全てのスポット溶接金属2間において、上記のような硬さの関係を満足すれば、高強度鋼板の面内のいずれの方向と場所に引張応力が負荷されてもHAZ軟化部での破断を抑制することができるのでより好ましい。
 本実施形態に係るスポット溶接継手1は、Aピラーやサイドシル、またはBピラー等に適用することができる。例えばBピラーでは、ハット部材のフランジ部において、クロージングプレートと、スポット溶接金属によって接合される。Bピラーのスポット溶接金属間において、上記の関係を満足すれば、自動車の衝突時にフランジ部に面内引張応力が負荷された場合であっても、HAZ軟化部であった部位での破断を抑制できる。
 第1の鋼板11及び/または第2の鋼板12は、めっき鋼板であってもよい。この場合耐食性が向上する。めっき鋼板としては、例えば溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板、電気亜鉛めっき鋼板、アルミめっき鋼板等が例示される。
 次に、本実施形態に係るスポット溶接継手の製造方法について説明する。
 本実施形態に係るスポット溶接継手は、以下の工程を含む製造方法によって製造できる。すなわち、本実施形態に係るスポット溶接継手の製造方法は、
(I)平均ビッカース硬さHVbaseが350HV以上の、硬質マルテンサイトを含む第1の鋼板と、第2の鋼板と、を重ね合わせ、
(II)重ね合わされた前記第1の鋼板と前記第2の鋼板とを接合する複数のスポット溶接金属を形成し、
(III)前記第1の鋼板の、前記2つのスポット溶接金属同士の間かつ第2の鋼板側の面から0.1mmの範囲に焼戻しを行うと同時に、前記2つのスポット溶接金属の間かつ前記第2の鋼板側の面とは反対の面から0.1mmの範囲に焼入れを行う
工程を有する。
 平均ビッカース硬さHVbaseが350HV以上の、硬質マルテンサイトを含む第1の鋼板11と、第2の鋼板12とは、それぞれ公知の鋼板を用いることができる。
 これらの鋼板を重ね合わせてスポット溶接を行い、スポット溶接金属を形成して溶接継手とする。スポット溶接条件は限定されず、通常の条件とすればよい。
 スポット溶接後、レーザー照射によって第1の鋼板の一部に焼入れを行うとともに一部に焼戻しを行い、第1の領域及び第2の領域を形成する。
 焼入れを行う場合には、対象とする領域の温度をAc1℃超に高める必要がある。好ましくはAc1+30℃以上である。ただし、焼き入れ領域の温度を高くし過ぎると、熱伝導によって、焼戻しを行う必要のある領域もまた焼き入れ領域となってしまう。そのため、板厚に応じた入熱コントロールが必要である。
 一方、焼戻しを行う場合には、対象とする領域の温度をAc1℃未満の温度に加熱する必要がある。図3に示すように、加熱された領域は、焼戻しマルテンサイトとなり、Ac1℃までは温度上昇につれて硬度が減少する。一方、加熱温度がAc1℃を超えると、組織がオーステナイトに変態する。このオーステナイトは、冷却時に再度硬質マルテンサイトに変態するので、Ac1℃超に加熱された部位では、高い硬度を示す。
 このことを利用して、第1の鋼板の表面(第2の鋼板とは反対の面)側からレーザー照射を行い、第1の鋼板の表面付近の温度をAc1℃超になるように加熱し、その反対の面付近の温度をAc1℃以下となるように加熱すれば、所定の第1の領域及び第2の領域を形成することができる。
 上記のような加熱を行う場合、板厚方向へ硬さ分布を与えるためには、極表層へのみ入熱させ、深さ方向には熱伝導によって熱を与える必要がある。また、狙いの領域外まで加熱すると狙いの領域での抜熱が不十分となり焼き戻し組織が得られない場合がある。
 例えば、高周波誘導加熱では、一定の深さまで入熱されてしまうので、好ましい硬さ分布が得られない。また、ガス加熱やアーク加熱では、特定の領域だけを狙って加熱することが困難である。
 そのため、本実施形態に係るスポット溶接継手の製造方法では、レーザービームの照射によって加熱を行う。溶接金属間全体を加熱するため、溶接金属径以上のビーム幅を有するレーザービームを一定の速度で移動させながら加熱することが好ましい。
 レーザーの照射条件は、特に限定されず、第1の鋼板の板厚、得たい第1の領域または第2の領域の厚さ等によって決定すればよいが、例えば以下の条件が例示される。
例示される条件
・発振器の種類:半導体レーザー
・出力:500~3000W
・ビーム形状:照射面において、幅方向:4~10mm、進行方向:0.5~3mmの矩形
・レーザー移動速度:50~500cm/min
 このようなレーザー照射によって、第1の鋼板の、2つのスポット溶接金属同士の間かつ第2の鋼板側の面から0.1mmの範囲に焼戻しを行うと同時に、前記2つのスポット溶接金属の間かつ前記第2の鋼板側の面とは反対の面から0.1mmの範囲に焼入れを行うことができる。
 以下に、本開示を図及び表を参照して実施例により具体的に説明する。これらの実施例は、本開示の効果を確認するための一例であり、本開示を限定するものではない。
 まず、板厚2.0mmの鋼板を950℃の炉に5分保持した後、水冷金型にてホットスタンプすることで焼き入れ処理をした。焼き入れ後には、ショットブラストを用いて鋼板表面の酸化スケールを除去した。用いた鋼板の焼き入れ後のビッカース硬さは表1に示す通りであった。また、この鋼板は、硬質マルテンサイトを含む組織を有していた。
 次に、前記鋼板から、図4に示すような標点間距離が50mm、平行部幅25mmである引張試験片を採取した。また、同鋼板から25mm角のタブ板を採取した。
 図4に示すように、採取した引張試験片の平行部にタブ板を乗せ、各タブ板中央部に対し、単相交流スポット溶接機を用いて、以下に示す条件で抵抗スポット溶接を行った。
 電極:DR型電極(先端φ6mm R40)
 加圧力:400kgf
 通電時間:24cyc
 抵抗スポット溶接により、引張試験片とタブ板との間には、ナゲット径が4×√t(t:引張試験片の板厚(mm))である溶接金属が二か所形成された。
 スポット溶接後の試験体(継手No.1~5、11、12)に対し、引張試験片側からレーザーを照射し、平行部の幅方向中央部がビームの中心と一致するように長手方向に対しては平行部全体に亘って熱処理を施した。継手No.6~10に対してはレーザー照射を行わなかった。
 継手No.1~5へのレーザー照射条件は以下の通りとした。
・発振器の種類:半導体レーザー
・出力:1200W
・ビーム形状:照射面において、幅方向:8mm、進行方向:1mmの矩形
・レーザー移動速度:250cm/min
 また、継手No.11へのレーザー照射条件は以下の通りとした。
・発振器の種類:半導体レーザー
・出力:700W
・ビーム形状:照射面において、幅方向:8mm、進行方向:1mmの矩形
・レーザー移動速度:130cm/min
 また、継手No.12へのレーザー照射条件は以下の通りとした。
・発振器の種類:半導体レーザー
・出力:750W
・ビーム形状:照射面において、幅方向:8mm、進行方向:1mmの矩形
・レーザー移動速度:80cm/min
 その後、所定の大きさの第1の領域及び第2の領域が形成されていたかどうか、形成されていた場合には第1の領域及び第2の領域の平均ビッカース硬さ及び、焼戻しマルテンサイトまたは硬質マルテンサイトの面積率を上述の方法で調査した。測定面は、試験体の幅方向中央の厚さ方向断面とした。
 また、各試験体に対して引張試験を実施し(面内引張応力を負荷し)、破断位置を調査した。引張試験時の引張速度は10mm/minとした。
 結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 継手No.1~5(本発明例)では、重ね合わせ面から0.1mmの範囲(第1の領域)が焼き戻され、式(1)を満たしており、また、表面から0.1mmの範囲(第2の領域)は焼き入れされ、式(2)を満たしていた。その結果、HAZ軟化部での割れが見られなかった。
 一方、継手No.6~10(比較例)はレーザー照射を行わなかったことで、継手No.1~5の第1の領域または第2の領域に相当する範囲において、式(1)、式(2)を満たさなかった。その結果、引張試験において、HAZ軟化部での割れとなった。
 継手No.11~12(比較例)はレーザー照射を行ったが、レーザー照射条件が好ましくなかった。その結果、比較例11は入熱不足により第一の領域でHAZ軟化部が明瞭に残存しており、HAZ軟化部での破断となった。比較例12もまた入熱不足であり、第2の領域は式(2)を満たすように焼き入れされたものの、第1の領域では焼き戻し不足となり、第1の領域において式(1)を満たさず、また前記第1の領域におけるビッカース硬さの最大値と最小値との差が80以上となった。その結果、引張試験において、HAZ軟化部での割れとなった。
 1 スポット溶接継手
 2 スポット溶接金属
 3 重ね合わせ面
 11 第1の鋼板
 12 第2の鋼板
 51 第1の領域
 52 第2の領域

Claims (4)

  1.  平均ビッカース硬さHVbaseが350HV以上の、硬質マルテンサイトを含む第1の鋼板と、
     前記第1の鋼板に重ねられた第2の鋼板と、
     前記第1の鋼板と前記第2の鋼板とを接合している2つのスポット溶接金属と、
    を含み、
     前記2つのスポット溶接金属を含む前記第1の鋼板の板厚方向の全ての断面において、
     前記第1の鋼板が、
      前記2つのスポット溶接金属の間、かつ前記第2の鋼板側の面から前記第1の鋼板の板厚方向に0.1mmの範囲に形成された第1の領域と、
      前記2つのスポット溶接金属の間、かつ前記第2の鋼板側の面とは反対の面から前記板厚方向に0.1mmの範囲に形成された第2の領域と、を有し、
     前記第1の領域の金属組織が焼戻しマルテンサイトを50面積%以上含み、前記第1の領域の平均ビッカース硬さHV1と前記第1の鋼板の平均ビッカース硬さHVbaseとが、下記式(1)を満たし、
     前記第2の領域の金属組織が硬質マルテンサイトを50面積%以上含み、前記第2の領域の平均ビッカース硬さHV2と前記第1の鋼板の平均ビッカース硬さHVbaseとが、下記式(2)を満たす、
    ことを特徴とするスポット溶接継手。
    HVbase×0.33+150≦HV1≦HVbase×0.33+230 式(1)
    HVbase-30≦HV2≦HVbase+30 式(2)
  2.  前記第1の領域におけるビッカース硬さの最大値と最小値との差が80HV以下であることを特徴とする請求項1に記載のスポット溶接継手。
  3.  前記第1の領域の、前記板厚方向の厚みが、前記第1の鋼板の板厚の30~70%である、
    ことを特徴とする請求項1または2に記載のスポット溶接継手。
  4.  平均ビッカース硬さHVbaseが350HV以上の、硬質マルテンサイトを含む第1の鋼板と、第2の鋼板と、を重ね合わせ、
     重ね合わされた前記第1の鋼板と前記第2の鋼板とを接合する2つのスポット溶接金属を形成し、
     レーザー照射によって、前記第1の鋼板の、前記2つのスポット溶接金属同士の間かつ第2の鋼板側の面から0.1mmの範囲に焼戻しを行うと同時に、前記2つのスポット溶接金属の間かつ前記第2の鋼板側の面とは反対の面から0.1mmの範囲に焼入れを行う、
    ことを特徴とするスポット溶接継手の製造方法。
PCT/JP2020/020309 2019-05-24 2020-05-22 スポット溶接継手、及びスポット溶接継手の製造方法 WO2020241500A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020217037230A KR102556695B1 (ko) 2019-05-24 2020-05-22 스폿 용접 조인트, 및 스폿 용접 조인트의 제조 방법
CN202080038325.2A CN114007796B (zh) 2019-05-24 2020-05-22 点焊接头以及点焊接头的制造方法
JP2020571724A JP6885523B2 (ja) 2019-05-24 2020-05-22 スポット溶接継手、及びスポット溶接継手の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-097703 2019-05-24
JP2019097703 2019-05-24

Publications (1)

Publication Number Publication Date
WO2020241500A1 true WO2020241500A1 (ja) 2020-12-03

Family

ID=73552220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/020309 WO2020241500A1 (ja) 2019-05-24 2020-05-22 スポット溶接継手、及びスポット溶接継手の製造方法

Country Status (4)

Country Link
JP (1) JP6885523B2 (ja)
KR (1) KR102556695B1 (ja)
CN (1) CN114007796B (ja)
WO (1) WO2020241500A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023063097A1 (ja) * 2021-10-12 2023-04-20 Jfeスチール株式会社 抵抗スポット溶接継手およびその抵抗スポット溶接方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014025063A1 (ja) * 2012-08-10 2014-02-13 新日鐵住金株式会社 重ね合せ溶接部材、自動車用部品、重ね合せ部の溶接方法、及び、重ね合せ溶接部材の製造方法
JP2015003552A (ja) * 2013-06-19 2015-01-08 新日鐵住金株式会社 高強度鋼板の重ね溶接部材およびその製造方法
JP2015033706A (ja) * 2013-08-08 2015-02-19 株式会社神戸製鋼所 スポット・レーザ複合溶接継手
JP2016032834A (ja) * 2014-07-31 2016-03-10 新日鐵住金株式会社 重ね溶接部材、重ね溶接部材の重ね抵抗シーム溶接方法及び重ね溶接部を備える自動車用重ね溶接部材
WO2019087310A1 (ja) * 2017-10-31 2019-05-09 日本製鉄株式会社 構造材

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4854920B2 (ja) * 2003-08-29 2012-01-18 豊田鉄工株式会社 スポット溶接方法およびスポット溶接された鋼板部材
JP4519508B2 (ja) * 2004-04-21 2010-08-04 株式会社神戸製鋼所 鋼材とアルミニウム材との異材接合体
JP2006142905A (ja) 2004-11-17 2006-06-08 Nissan Motor Co Ltd エネルギー吸収部材及びその製造方法
JP5459750B2 (ja) 2007-11-28 2014-04-02 日産自動車株式会社 溶接方法
JP2010059451A (ja) 2008-09-02 2010-03-18 Sumitomo Metal Ind Ltd 溶接継手およびその製造方法
SE533528C2 (sv) 2009-12-13 2010-10-19 Gestamp Hardtech Ab B-stolpe för fordon
JP4977879B2 (ja) * 2010-02-26 2012-07-18 Jfeスチール株式会社 曲げ性に優れた超高強度冷延鋼板
JP6194765B2 (ja) 2013-11-08 2017-09-13 新日鐵住金株式会社 高強度鋼板のスポット溶接方法
EP3147065B1 (en) * 2015-09-23 2019-07-24 Neturen Co., Ltd. Welding method
US11408045B2 (en) * 2017-02-20 2022-08-09 Nippon Steel Corporation Steel sheet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014025063A1 (ja) * 2012-08-10 2014-02-13 新日鐵住金株式会社 重ね合せ溶接部材、自動車用部品、重ね合せ部の溶接方法、及び、重ね合せ溶接部材の製造方法
JP2015003552A (ja) * 2013-06-19 2015-01-08 新日鐵住金株式会社 高強度鋼板の重ね溶接部材およびその製造方法
JP2015033706A (ja) * 2013-08-08 2015-02-19 株式会社神戸製鋼所 スポット・レーザ複合溶接継手
JP2016032834A (ja) * 2014-07-31 2016-03-10 新日鐵住金株式会社 重ね溶接部材、重ね溶接部材の重ね抵抗シーム溶接方法及び重ね溶接部を備える自動車用重ね溶接部材
WO2019087310A1 (ja) * 2017-10-31 2019-05-09 日本製鉄株式会社 構造材

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023063097A1 (ja) * 2021-10-12 2023-04-20 Jfeスチール株式会社 抵抗スポット溶接継手およびその抵抗スポット溶接方法
JP7508025B2 (ja) 2021-10-12 2024-07-01 Jfeスチール株式会社 抵抗スポット溶接継手およびその抵抗スポット溶接方法

Also Published As

Publication number Publication date
KR102556695B1 (ko) 2023-07-18
KR20210150563A (ko) 2021-12-10
JP6885523B2 (ja) 2021-06-16
CN114007796A (zh) 2022-02-01
CN114007796B (zh) 2023-03-31
JPWO2020241500A1 (ja) 2021-09-13

Similar Documents

Publication Publication Date Title
JP7299956B2 (ja) プレス焼入れのための鋼板を製造する方法及びプレス焼入れのためのレーザ溶接ブランクを製造する方法
CA3065037C (en) Steel sheet for manufacturing press hardened parts, press hardened part having a combination of high strength and crash ductility, and manufacturing methods thereof
RU2746702C1 (ru) Способ изготовления горячештампованной стальной детали, с использованием лазерной сварки, и горячештампованная стальная деталь, сваренная лазерной сваркой
Choi et al. Evaluation of weldability for resistance spot welded single-lap joint between GA780DP and hot-stamped 22MnB5 steel sheets
TWI523953B (zh) A method and a test apparatus for evaluating a growth performance of a brittle crack propagation in a thick steel sheet having a thickness of 50 mm or more and a method for manufacturing the same,
JP2010059451A (ja) 溶接継手およびその製造方法
JP6379819B2 (ja) 重ね溶接部材、重ね溶接部材の重ね抵抗シーム溶接方法及び重ね溶接部を備える自動車用重ね溶接部材
JP6885523B2 (ja) スポット溶接継手、及びスポット溶接継手の製造方法
JP2006021216A (ja) テーラードブランクプレス成形部品の製造方法
CN112203793B (zh) 点焊接头、具备点焊接头的车辆骨架部件、点焊接头的制造方法
JP2009291797A (ja) 溶接継手およびその製造方法
KR102603852B1 (ko) 겹침 레이저 용접 이음매와 그 제조 방법 및 자동차 차체용 구조 부재
JP7151762B2 (ja) スポット溶接継手、スポット溶接継手を備える自動車骨格部品、及びスポット溶接継手の製造方法
US12030131B2 (en) Spot welded joint, vehicle framework component provided with spot welded joint, and method of manufacturing spot welded joint
JP7473009B2 (ja) 抵抗スポット溶接継手およびその抵抗スポット溶接方法
US11638969B2 (en) Laser-welded lap joint, method for producing laser-welded lap joint, and automobile frame component
KR20240063932A (ko) 고강도 프레스 경화 강 부품 및 그 제조 방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020571724

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20814686

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217037230

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20814686

Country of ref document: EP

Kind code of ref document: A1