WO2020241000A1 - 電子回路および双安定回路 - Google Patents

電子回路および双安定回路 Download PDF

Info

Publication number
WO2020241000A1
WO2020241000A1 PCT/JP2020/012099 JP2020012099W WO2020241000A1 WO 2020241000 A1 WO2020241000 A1 WO 2020241000A1 JP 2020012099 W JP2020012099 W JP 2020012099W WO 2020241000 A1 WO2020241000 A1 WO 2020241000A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
voltage
blocks
power supply
fet
Prior art date
Application number
PCT/JP2020/012099
Other languages
English (en)
French (fr)
Inventor
菅原聡
北形大樹
山本修一郎
Original Assignee
国立研究開発法人科学技術振興機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人科学技術振興機構 filed Critical 国立研究開発法人科学技術振興機構
Priority to JP2021522653A priority Critical patent/JP7430407B2/ja
Priority to EP20812785.2A priority patent/EP3979499A4/en
Priority to CN202080040101.5A priority patent/CN113892232A/zh
Publication of WO2020241000A1 publication Critical patent/WO2020241000A1/ja
Priority to US17/536,493 priority patent/US20220084583A1/en
Priority to JP2024008654A priority patent/JP2024038472A/ja

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C14/00Digital stores characterised by arrangements of cells having volatile and non-volatile storage properties for back-up when the power is down
    • G11C14/0054Digital stores characterised by arrangements of cells having volatile and non-volatile storage properties for back-up when the power is down in which the volatile element is a SRAM cell
    • G11C14/0081Digital stores characterised by arrangements of cells having volatile and non-volatile storage properties for back-up when the power is down in which the volatile element is a SRAM cell and the nonvolatile element is a magnetic RAM [MRAM] element or ferromagnetic cell
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/41Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger
    • G11C11/412Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger using field-effect transistors only
    • G11C11/4125Cells incorporating circuit means for protecting against loss of information
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/41Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger
    • G11C11/413Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing, timing or power reduction
    • G11C11/417Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing, timing or power reduction for memory cells of the field-effect type
    • G11C11/418Address circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/56Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C14/00Digital stores characterised by arrangements of cells having volatile and non-volatile storage properties for back-up when the power is down
    • G11C14/0054Digital stores characterised by arrangements of cells having volatile and non-volatile storage properties for back-up when the power is down in which the volatile element is a SRAM cell
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/353Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of field-effect transistors with internal or external positive feedback
    • H03K3/356Bistable circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/41Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger
    • G11C11/412Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger using field-effect transistors only
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/41Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger
    • G11C11/413Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing, timing or power reduction
    • G11C11/417Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing, timing or power reduction for memory cells of the field-effect type
    • G11C11/419Read-write [R-W] circuits

Definitions

  • the present invention relates to an electronic circuit and a bistable circuit, for example, a bistable circuit and an electronic circuit including a plurality of memory cells having the bistable circuit.
  • VNR-SRAM pseudo-nonvolatile SRAM
  • CMOS Complementary Metal Oxide Semiconductor
  • Patent Document 1 a dual mode inverter that can switch between Schmitt trigger (ST) mode that enables ultra-low voltage (ULV) retention and boosted inverter (BI) mode that can achieve circuit performance equivalent to SRAM at normal voltage. Is used. This ULV retention can be used for power gating (PG).
  • ST Schmitt trigger
  • BI boosted inverter
  • a storage circuit using a memory cell (NV-SRAM) having a bistable circuit and a non-volatile element is known (for example, Patent Document 2).
  • NV-SRAM a memory cell having a bistable circuit and a non-volatile element
  • NV-SRAM Static Random Access Memory
  • SRAM Static Random Access Memory
  • PG power gating
  • a storage circuit that controls to skip the store (store-free operation) when the data stored in the bistable circuit and the data stored in the non-volatile element match (for example, Patent Document 4) is known. .. It is known that the cell array is divided into a plurality of blocks and the power supply of the block whose store operation is completed is cut off (for example, Patent Document 5).
  • the standby power can be reduced without losing the stored contents of the cell by retaining the ULV. As a result, power consumption can be suppressed.
  • VNR-SRAM since unnecessary data is also ULV retained after PG, the reduction rate of energy consumption due to the leakage current during PG is restricted. Also, during PG, the ST mode and BI mode are switched for all cells. For this reason, time (latency) and energy overhead for mode switching occur. These leak currents and energy consumption for mode switching lead to an increase in break-even time (BET).
  • the present invention has been made in view of the above problems, and an object of the present invention is to suppress power consumption and energy consumption.
  • the present invention comprises a first inverter circuit and a second inverter circuit in which each memory cell switches between a first mode having substantially no hysteresis in transmission characteristics and a second mode having hysteresis in transmission characteristics.
  • the output node and the input node of the first inverter circuit are a cell array having a plurality of memory cells having a bistable circuit connected to the input node and the output node of the second inverter circuit, respectively, and data among the plurality of memory cells. After powering off one or more first memory cells that do not need to hold the above, the bistable circuit in the remaining one or more second memory cells among the plurality of memory cells is set to the second mode.
  • the second is lower than the first power supply voltage supplied to the bistable circuit when reading and / or writing data to the bistable circuit in the one or more second memory cells while maintaining the second mode. It is an electronic circuit including a control circuit for supplying a second power supply voltage capable of holding data in a two-mode bistable circuit.
  • the cell array is divided into a plurality of blocks, each block containing at least two memory cells, and the control circuit does not have to hold data from the plurality of blocks.
  • the bistable circuit in the remaining one or more second blocks of the plurality of blocks is set as the second mode, and the second mode is set.
  • the second power supply voltage can be supplied to the bistable circuit in the one or more second blocks while maintaining the above.
  • control circuit is placed in the one or more second blocks at a lower voltage than the first power supply voltage before the bistable circuit in the one or more second blocks is put into the second mode.
  • the bistable circuit of the first mode may be configured to supply a third power supply voltage higher than the second power supply voltage and capable of holding data.
  • control circuit connects the bistable circuit in the one or more second blocks to the bistable circuit in the one or more second blocks while supplying the third power supply voltage to the bistable circuit in the one or more second blocks. It can be configured as a mode.
  • the one or more second blocks are a plurality of second blocks
  • the control circuit is connected to the bistable circuit of one or more third blocks of the plurality of second blocks with the third power supply.
  • the bistable circuit in the one or more third blocks is set to the second mode
  • the bistable circuit in the one or more third blocks is set to the second mode.
  • a state in which the second power supply voltage is supplied, and then the third power supply voltage is supplied to the bistable circuit of one or more fourth blocks different from the one or more third blocks of the plurality of second blocks.
  • the second power supply voltage is supplied in a state where the bistable circuit in the one or more fourth blocks is set to the second mode and the bistable circuit in the one or more fourth blocks is set to the second mode. It can be configured to be.
  • the one or more second blocks are a plurality of second blocks
  • the control circuit is a plurality of the control circuits in a state where the third power supply voltage is supplied to the bistable circuits in the plurality of second blocks.
  • the bistable circuit in the second block is set to the second mode
  • the bistable circuit in the plurality of second blocks is set to the second mode and the second power supply voltage is supplied. Can be done.
  • control circuit includes a storage circuit provided outside the cell array and storing information indicating a block that does not need to hold the data received from the external circuit, and the control circuit is based on the information. Can be configured to extract the one or more first blocks that do not have to hold.
  • the first inverter circuit and the second inverter circuit are of the first conductive type channel in which the source is connected to the first power supply line, the drain is connected to the output node, and the gate is connected to the input node.
  • a third FET and a fourth FET in which one of the source and the drain is connected to the intermediate node and the other of the source and the drain is connected to the control node are provided, respectively, and the gate of the fourth FET of the first inverter circuit is
  • the gate of the fourth FET of the second inverter circuit is connected to any one of the input node and the output node of the first inverter circuit and the input node and the output node of the second inverter circuit, and the gate of the fourth FET of the second inverter circuit is the second inverter circuit.
  • the fourth FET of the first inverter circuit has a gate at the output node of the first inverter circuit or the output node.
  • the FET of the second conductive type channel When connected to the input node of the second inverter circuit, it is the FET of the second conductive type channel, and when the gate is connected to the input node of the first inverter circuit or the output node of the second inverter circuit, the second It is a 1 conductive type channel FET, and the 4th FET of the 2nd inverter circuit is of the 2nd conductive type when the gate is connected to the output node of the 2nd inverter circuit or the input node of the 1st inverter circuit. It is a channel FET, and can be configured to be a first conductive channel FET when the gate is connected to the input node of the second inverter circuit or the output node of the first inverter circuit.
  • a constant bias is applied to the control nodes of the first inverter circuit and the second inverter circuit, and the first inverter circuit and the second inverter circuit are said to be described when the first power supply voltage is supplied.
  • the first mode can be set, and the second mode can be set when the second power supply voltage is supplied.
  • the source is connected to the first power supply line, the drain is connected to the output node, and the gate is connected to the input node.
  • the first FET of the first conductive type channel and the source are the first power supply line.
  • the source is connected to the intermediate node, the drain is connected to the output node, the gate is connected to the input node, and the third FET of the second conductive type channel, and one of the source and drain is connected to the intermediate node.
  • a first inverter circuit and a second inverter circuit each including a fourth FET of a first conductive type channel connected and the other of the source and the drain are connected to a control node, and an output node of the first inverter circuit.
  • a first storage node to which the input node of the second inverter circuit is connected, and a second storage node to which the input node of the first inverter circuit and the output node of the second inverter circuit are connected are provided.
  • the gate of the 4th FET of the 1st inverter circuit is connected to the input node of the 1st inverter circuit or the output node of the 2nd inverter circuit, and the gate of the 4th FET of the 2nd inverter circuit is the input of the 2nd inverter circuit. It is a bistable circuit connected to a node or an output node of the first inverter circuit.
  • the bistable circuit the power supply voltage, the first voltage at which the bistable circuit can write and read data, and the second voltage at which the bistable circuit can hold data lower than the first voltage. It is an electronic circuit including a voltage and a power supply circuit that switches to and supplies a voltage.
  • the constant bias can be a bias between the voltage of the first power supply line and the voltage of the second power supply line when the first voltage is supplied.
  • the constant bias has a configuration closer to the voltage of the second power supply line than between the voltage of the first power supply line and the voltage of the second power supply line when the first voltage is supplied. be able to.
  • the fourth FET when the fourth FET is a P-channel FET, when the power supply circuit supplies the first voltage and the second voltage, the control node is supplied with a low level and a high level higher than the low level, respectively.
  • the fourth FET is an N-channel FET, the power supply circuit is provided with a control circuit that supplies a high level and a low level lower than the high level to the control node when supplying the first voltage and the second voltage, respectively. be able to.
  • the source is connected to the first power supply line, the drain is connected to the output node, and the gate is connected to the input node.
  • the first FET of the first conductive type channel and the source are the first power supply line.
  • the source is connected to the intermediate node, the drain is connected to the output node, the gate is connected to the input node, and the third FET of the second conductive type channel, and one of the source and drain is connected to the intermediate node.
  • a first inverter circuit and a second inverter circuit each comprising a fourth FET connected to which the source and the other of the drain are connected to a control node, and an output node of the first inverter circuit and the second inverter circuit.
  • a first storage node to which an input node is connected, a second storage node to which an input node of the first inverter circuit and an output node of the second inverter circuit are connected, and a fourth FET of the first inverter circuit are provided.
  • the gate is connected to any one of the input node and the output node of the first inverter circuit, and the input node and the output node of the second inverter circuit, and the gate of the fourth FET of the second inverter circuit is the gate.
  • the bistable circuit connected to any one of the input node and the output node of the second inverter circuit, the input node and the output node of the first inverter circuit, the power supply voltage, and the bistable circuit write data.
  • the power supply circuit comprises a first voltage that can be read and a second voltage that is lower than the first voltage and the bistable circuit can hold data, and the power supply circuit supplies the bistable circuit.
  • This is an electronic circuit in which a constant bias is supplied to the control node when either the first voltage or the second voltage is supplied to the control node.
  • the power supply circuit when the power supply circuit switches the power supply voltage between the first voltage and the second voltage, the power supply circuit supplies a constant third voltage to the second power supply line and supplies the first power supply line to the first power supply line.
  • the voltage to be supplied can be switched between the fourth voltage and the fifth voltage, respectively.
  • the constant bias can be a bias between the third voltage and the fourth voltage.
  • the fourth FET of the first inverter circuit is an FET of the second conductive type channel when the gate is connected to the output node of the first inverter circuit or the input node of the second inverter circuit.
  • the gate When the gate is connected to the input node of the first inverter circuit or the output node of the second inverter circuit, it is the FET of the first conductive type channel, and in the fourth FET of the second inverter circuit, the gate is the first. 2
  • the gate When connected to the output node of the inverter circuit or the input node of the first inverter circuit, it is the FET of the second conductive type channel, and the gate is the input node of the second inverter circuit or the output of the first inverter circuit.
  • it When connected to a node, it can be configured to be a first conductive channel FET.
  • each memory cell non-volatilely stores a bistable circuit that volatilely stores data and the data stored in the bistable circuit, and the non-volatile stored data is stored in the bistable circuit.
  • a cell array having a plurality of memory cells including a non-volatile element to be restored to, and a non-volatile store of the plurality of memory cells regardless of whether or not they are volatilely rewritten when the power is cut off. After powering off one or more first memory cells and powering off the first memory cell, the remaining one or more second memory cells among the plurality of memory cells become a bistable circuit.
  • It is an electronic circuit including a control circuit that performs a store operation of storing volatilely stored data in the non-volatile element and then shuts off the power supply of the second memory cell.
  • the cell array is divided into a plurality of blocks, each block containing at least two memory cells, and the control circuit is used to control the memory cells in the blocks from the plurality of blocks when the power supply is cut off. Extracts one or more first blocks that do not need to be stored non-volatilely whether or not they are volatilely rewritten, power off the one or more first blocks, and power off the one or more first blocks. After the power is cut off from the first block, a store operation is performed in the memory cells in the remaining one or a plurality of the second blocks among the plurality of blocks, and the power is cut off from the second block after the store operation is completed. it can.
  • control circuit may be configured to perform a store operation in the memory cells in the one or a plurality of second blocks after the power is cut off from all the one or a plurality of first blocks.
  • control circuit includes a storage circuit provided outside the cell array and storing information indicating the one or more first blocks received from an external circuit, and the control circuit is based on the information.
  • the first block of the above can be extracted.
  • control circuit is a block that does not need to be stored non-volatilely from the plurality of blocks regardless of whether the memory cells in the block are volatilely rewritten or not, or a memory in the block.
  • Blocks in which the cells were not volatilely rewritten were extracted as the one or more first blocks, the one or more first blocks were powered off, and the one or more first blocks were powered off.
  • the store operation may be performed in the memory cells in the remaining one or a plurality of the second blocks among the plurality of blocks, and the power supply of the second block after the store operation is completed may be cut off.
  • FIG. 1 is a circuit diagram of a memory cell according to the first embodiment.
  • 2 (a) and 2 (b) are diagrams showing the voltage applied to each state in the first embodiment.
  • FIG. 3 is a diagram showing power consumption in each period in the first embodiment.
  • FIG. 4 is a block diagram showing an electronic circuit according to the first embodiment.
  • FIG. 5 is a block diagram of the sub-array according to the first embodiment.
  • FIG. 6 is a flowchart showing the operation in the first embodiment.
  • FIG. 7A is a flowchart showing the read / write operation in the first embodiment
  • FIG. 7B is a flowchart showing the UDF setting in the first embodiment.
  • FIG. 8 is a flowchart showing the store operation in the first embodiment.
  • FIG. 9 (a) to 9 (d) are schematic views showing the cell array and the block in the first embodiment.
  • 10 (a) to 10 (c) are schematic views showing blocks in the first embodiment.
  • 11 (a) and 11 (b) are diagrams showing examples of the size and word address of the cell array in Example 1, respectively.
  • FIG. 12 is a block diagram showing an example of the control circuit according to the first embodiment.
  • 13 (a) to 13 (e) are diagrams showing the operation of each signal and the power switch in the first embodiment.
  • FIG. 14 is a timing chart of the control signal in the first embodiment.
  • FIG. 15 is a block diagram of another example of the control circuit 28 in the first embodiment.
  • FIG. 16 (a) to 16 (c) show the BET with respect to the SFBF store-free ratio in Example 1, Comparative Examples 1-1 and 1-2, and FIGS. 16 (d) to 16 (f) are shown. It is a figure which shows the stray latency with respect to the SFBF store-free ratio.
  • FIG. 17 is a circuit diagram of a memory cell according to the second embodiment. 18 (a) and 18 (b) are diagrams showing the voltage applied to each state in the second embodiment. 19 (a) and 19 (b) are diagrams showing the voltages applied to the retention and shutdown in the second embodiment.
  • FIG. 20 is a diagram showing power consumption in each period in the second embodiment. 21 (a) and 21 (b) are another example of the memory cell in the second embodiment.
  • FIG. 22 is a block diagram showing an electronic circuit according to the second embodiment.
  • FIG. 23 is a block diagram of the subarray in the second embodiment.
  • FIG. 24 is a flowchart showing the operation in the second embodiment.
  • FIG. 25 is a flowchart showing the type A of the retention operation in the second embodiment.
  • 26 (a) to 26 (e) are schematic views showing a cell array of type A retention operation in the second embodiment.
  • 27 (a) to 27 (e) are schematic views showing a cell array and a block in type A of retention operation in the second embodiment.
  • FIG. 28 is a flowchart showing the type B of the retention operation in the second embodiment.
  • 29 (a) to 29 (e) are schematic views showing a cell array of type B retention operation in the second embodiment.
  • FIG. 30 (a) to 30 (e) are schematic views showing a cell array and a block in type B of retention operation in the second embodiment.
  • FIG. 31 is a flowchart showing the type C of the retention operation in the second embodiment.
  • 32 (a) to 32 (e) are schematic views showing a cell array of type C retention operation.
  • 33 (a) to 33 (e) are schematic views showing cell arrays and blocks of type C retention operation.
  • FIG. 34 is a block diagram showing an example of a control circuit in type B retention operation.
  • 35 (a) to 35 (e) are diagrams showing the operation of each signal and the power switch in the retention operation type B.
  • FIG. 36 is a timing chart of the control signal in the retention operation type B.
  • FIG. 37 is a block diagram showing an example of a control circuit in type C retention operation.
  • FIG. 38 is a timing chart of the control signal in the retention operation type C.
  • 39 (a) to 39 (c) show the BET for the UD ratio in types A to C and Comparative Example 2, and
  • FIGS. 39 (d) to 39 (f) show the latency for the UD ratio.
  • Is. 40 (a) to 40 (c) are diagrams showing standby power with respect to the UD ratio in Type C, Comparative Examples 2-1 and 2-2.
  • FIG. 41 is a circuit diagram of a header PS / PDFB / type 1 memory cell according to the third embodiment.
  • FIG. 42 is a circuit diagram of a header PS / PDFB / type 2 memory cell according to the third embodiment.
  • FIG. 43 (a) is a diagram showing the transmission characteristics of the inverter circuit in the retention state
  • FIG. 43 (b) is a diagram showing the SNM in the BI mode
  • 44 (a) is a diagram showing the SNM in the retention state
  • FIG. 44 (b) is a diagram showing the leak power in the BI mode
  • FIGS. 44 (c) and 44 (d) are the leak power in the ST mode. It is a figure which shows.
  • FIG. 45 is a circuit diagram of a footer PS / PDFB / type 2 memory cell according to the third embodiment
  • FIG. 46 is a circuit diagram of a footer PS / PUFB / type 1 memory cell according to the third embodiment.
  • FIG. 45 is a circuit diagram of a footer PS / PDFB / type 2 memory cell according to the third embodiment
  • FIG. 46 is a circuit diagram of a footer PS / PUFB / type 1 memory cell according to the third embodiment.
  • FIG. 47 is a circuit diagram of a header PS / PUFB / type 2 memory cell according to the third embodiment.
  • FIG. 48 is a circuit diagram of the memory cells of the header PS / PUPDFB in the third embodiment.
  • FIG. 49 is a circuit diagram of the memory cell of the footer PS / PUPDFB in the third embodiment.
  • 50 (a) to 50 (f) are diagrams showing the arrangement of power switches connected to cells.
  • 51 (a) to 51 (d) are diagrams showing the arrangement of drivers connected to cells.
  • 52 (a) to 52 (c) are diagrams showing the arrangement of drivers connected to cells.
  • 53 (a) and 53 (b) are diagrams showing the respective voltages of the header PS / PDFB / type 1 and the footer PS / PUFB / type 1 respectively.
  • FIG. 54 is a circuit diagram of a header PS / PDFB / type 1 type memory cell according to the fourth embodiment.
  • FIG. 55 is a circuit diagram of a footer PS / PUFB / type 1 type memory cell according to the fourth embodiment.
  • FIG. 56 is a circuit diagram of the header PS / PUPDFB / PD side type 1 type in the fourth embodiment.
  • FIG. 57 is a circuit diagram of the footer PS / PUPDFB / PU side type 1 type in the fourth embodiment.
  • FIG. 58 is a circuit diagram of an electronic circuit according to a first modification of the fourth embodiment.
  • 59 (a) and 59 (b) are diagrams showing the butterfly curve of the flip-flop circuit.
  • FIG. 60 (a) is a diagram showing SNM
  • FIG. 60 (b) is a diagram showing standby power.
  • FIG. 61 (a) is a conceptual diagram of the simulated logic system
  • FIG. 61 (b) is a diagram showing the standardized
  • the store operation is performed only on the memory cell rewritten during the normal SRAM operation (that is, read / write operation).
  • the power consumption due to the leakage current in the memory cell waiting for the store operation increases. Therefore, it is conceivable to shut down the unrewritten memory cells first, and then perform the store operation on the rewritten memory cells. However, even if the rewritten memory cell data is unnecessary data after restoration, the store operation is performed. This increases power consumption and latency.
  • Example 1 aims to reduce power consumption and energy consumption. Specifically, the purpose is to reduce power consumption and energy consumption during PG (power gating) (when power is cut off), transition to PG and return from PG, and reduction of BET related to PG.
  • PG power gating
  • BET BET related to PG
  • the memory cells of data that do not need to be stored regardless of whether they are rewritten or not are shut down first, and then the storage operation is performed on the remaining memory cells. As a result, power consumption and latency can be suppressed.
  • the cell array is divided into multiple blocks.
  • Judge store-free for each block in the hierarchy above the storage hierarchy. At this time, if the data is unnecessary even if it is rewritten in the normal SRAM operation, it is set as a store-free block.
  • the upper hierarchy generates a UDF (Useless Data Flag) that specifies a block in which unnecessary data exists after restoration.
  • UDF Unknown Data Flag
  • shutdown and store operations are performed for each block based on UDF. As a result, power consumption can be efficiently suppressed.
  • FIG. 1 is a circuit diagram of a memory cell according to the first embodiment.
  • the memory cell 10 mainly includes inverter circuits 14 and 16, spin transfer torque magnetic tunnel junction elements (STT-MTJ: hereinafter simply referred to as ferromagnetic tunnel junction elements) MTJ1 and MTJ2. ..
  • STT-MTJ spin transfer torque magnetic tunnel junction elements
  • Inverter circuits 14 and 16 are connected in a loop to form a bistable circuit 12.
  • the inverter circuit 14 includes FETs (Field Effect Transistors) m1 and m2.
  • the inverter circuit 16 includes FETs m3 and m4.
  • FETs m1 and m3 are P-channel MOSFETs
  • FETs m2 and m4 are N-channel MOSFETs.
  • the sources of the FETs m1 and m3 are connected to the power supply line 15a to which the virtual power supply voltage V VDD is applied
  • the sources of the FETs m2 and m4 are connected to the ground line 15b to which the ground voltage VGND is applied.
  • the power supply voltage V VDD-VGND
  • the nodes to which the inverter circuits 14 and 16 are connected are the nodes Q and QB, respectively.
  • Node Q and node QB are complementary nodes to each other.
  • the bistable circuit 12 is put into a stable state when node Q and node QB are at high level and low level, respectively, or node Q and node QB are at low level and high level, respectively.
  • the bistable circuit 12 can store data when it is in a stable state.
  • Nodes Q and QB are connected to bit lines BL and BLB via N-channel FETs m5 and m6, respectively.
  • the gates of FETs m5 and m6 are connected to the word line WL.
  • a 6-transistor (FET) type SRAM is formed by FETs m1 to m6.
  • the FET m7 and the ferromagnetic tunnel junction element MTJ1 are connected between the node Q and the control line CTRL, and the FET m8 and the ferromagnetic tunnel junction element MTJ2 are connected between the node QB and the control line CTRL.
  • One of the source and drain of the FETs m7 and m8 is connected to the nodes Q and QB, and the other of the source and drain is connected to the ferromagnetic tunnel junction elements MTJ1 and MTJ2, respectively.
  • the gates of FETs m7 and m8 are connected to the switch line SR.
  • the FETs m7 and m8 may be connected between the ferromagnetic tunnel junction elements MTJ1 and MTJ2 and the control line CTRL, respectively. Further, the FETs m7 and m8 may not be provided.
  • the ferromagnetic tunnel junction elements MTJ1 and MTJ2 have a free layer 17, a tunnel insulating film 18, and a pin layer 19, respectively.
  • the free layer 17 and the pin layer 19 are made of a ferromagnet.
  • the resistance values of MTJ1 and MTJ2 are low.
  • the resistance values of MTJ1 and MTJ2 are higher than in the parallel state.
  • MTJ1 and MTJ2 store data according to the resistance values of MTJ1 and MTJ2.
  • the free layer 17 is connected to the control line CTRL, and in the virtual grounding method, the pin layer 19 is connected to the control line CTRL.
  • the FETs m7 and m8 are N-channel FETs, and in the virtual ground system, the FETs m7 and m8 are P-channel FETs.
  • the power switch 30 is connected between the power supply line 15a and the power supply 15c.
  • the power switch 30 includes power switches PS1 and PS2 connected in parallel between the power supply line 15a and the power supply 15c.
  • the power switches PS1 and PS2 are, for example, P-channel FETs and N-channel FETs, respectively.
  • PS control signals VPG1 and VPG2 are applied to the gates of the power switches PS1 and PS2, respectively.
  • the power switch 30 may be provided between the ground wire 15b and the ground 15d. In this case, the voltage VDD of the power supply is applied to the power supply line 15a, and the virtual ground voltage VVGND equal to or higher than the ground voltage VGND is applied to the ground line 15b. This is called the virtual grounding method.
  • the power switch 30 may be provided both between the power supply line 15a and the power supply 15c and between the ground line 15b and the ground 15d.
  • FIG. 2A and 2 (b) are diagrams showing the voltage applied to each state in the first embodiment.
  • VPG1 and VPG2 have a low level L in the read / write state.
  • the power switches PS1 and PS2 are turned on and off, respectively.
  • the power supply voltage V VDD-VGND supplied between the power supply line 15a and the ground line 15b becomes the voltage V2.
  • the voltage V2 is, for example, 1.2V.
  • VPG1 and VPG2 are at high level H.
  • the power switches PS1 and PS2 are turned off and on, respectively.
  • the power supply voltage V VDD-VGND becomes a voltage V1 lower than the voltage V2.
  • the voltage V1 is, for example, 0.8V.
  • VPG1 and VPG2 are high level H and low level L, respectively.
  • the power switches PS1 and PS2 are turned off. No power supply voltage is applied to the power supply line 15a.
  • the power supply voltage V VDD-VGND becomes a voltage V0 lower than the voltage V1.
  • the voltage V0 is, for example, approximately 0V.
  • the read / write state period is a period in which the data of the bistable circuit 12 is rewritten as a normal SRAM and the data is volatilely retained (this is referred to as "volatile rewriting of the data").
  • Writing and reading of data to the bistable circuit 12 is performed in the same manner as in SRAM. That is, the data of the bit lines BL and BLB are written in the bistable circuit 12 by setting the word line WL to a high level and making the FETs m5 and m6 conductive.
  • the data of the bistable circuit 12 can be read out to the bit lines BL and BLB by setting the bit lines BL and BLB in an equipotential floating state, setting the word line WL at a high level, and making the FETs m5 and m6 in a conductive state.
  • the power supply voltage V VDD-VGND is a voltage V2 at which the bi-stable circuit 12 can rewrite the data and can hold the data.
  • the sleep state period is the period in which the memory cell 10 is in the sleep mode. In the sleep state, the bistable circuit 12 only holds the data and does not rewrite the data.
  • the power supply voltage V VDD-VGND is a voltage V1 in which the bistable circuit 12 cannot rewrite the data but can hold the data. Since the voltage V1 is lower than the voltage V2, power consumption can be suppressed.
  • the control signals VCTRL and VSR in the control line CTRL and the switch line SR are at low level, and the FETs m7 and m8 are off.
  • the switch line SR is set to a low level and the FETs m7 and m8 are turned off.
  • the store period is the period during which the store operation is performed, and the data stored in the bistable circuit 12 is stored in the ferromagnetic tunnel junction elements MTJ1 and MTJ2, which is non-volatile.
  • the period of retention (this is referred to as "nonvolatile storage").
  • the power supply voltage V VDD-VGND is the same voltage V2 as in the read / store state.
  • the control signal VSR is set to a high level.
  • the control signal VCTRL is set to a low level.
  • the MTJ corresponding to the high-level node among the nodes Q and QB has a high resistance.
  • the control signal VCTRL is set to a high level.
  • MTJ1 and MTJ2 corresponding to the low-level node among the nodes Q and QB have low resistance.
  • the order of the H store period and the L store period may be reversed. In this way, the data of the bistable circuit 12 is stored in the ferromagnetic tunnel junction elements MTJ1 and MTJ2.
  • the shutdown state period is the period during which the memory cell 10 is shut down.
  • the power supply voltage V VDD-VGND is set to a voltage V0 which is approximately 0V. At this time, since almost no current flows through the memory cell 10, power consumption can be suppressed.
  • the restoration period is performed by raising the power supply voltage V VDD-VGND from voltage V0 to voltage V2 with the control signal VCTRL at the low level and the control signal VSR at the high level.
  • the nodes Q and QB corresponding to the high resistance ferromagnetic tunnel junction elements MTJ1 and MTJ2 are at a high level.
  • the nodes Q and QB corresponding to the low resistance MTJ1 and MTJ2 are at low level. In this way, the data stored in the ferromagnetic tunnel junction elements MTJ1 and MTJ2 and held non-volatilely (this is referred to as "nonvolatileally stored data" is restored to the bistable circuit 12.
  • the high level of the control signals VCTRL and VSR is, for example, VDD or V VDD, and the low level is, for example, VGND.
  • the high level in the control signal VCTRL may be higher than the low level, and the high level in the control signal VSR may be a voltage higher than the low level.
  • FIG. 3 is a diagram showing the power consumption in each period in the first embodiment.
  • the solid line shows the power consumption (power) of the storage circuit having the memory cell 10 (NV-SRAM) shown in FIG.
  • the solid line power consumption includes the leakage current and the power used for store and restore, and does not include the read and write power during the read / write period.
  • the dotted line shows the power consumption of the storage circuit using the 6-transistor SRAM (6T-SRAM) cell without the FET m7, FET m8, MTJ1 and MTJ2.
  • the broken line indicates the power consumption during the read / write period of the storage circuit using the 6T-RAM cell.
  • Dashed and dotted line power consumption includes leak current and does not include read and write power during the read / write period.
  • the operating period of the memory cell 10 includes a sleep period (sleep state period), a read / write period (read / write state period), a store period, a shutdown period (shutdown state period), and There is a restore period.
  • ⁇ NL be the length of the sleep period and the read / write period.
  • the lengths of the store period, shutdown period, and restore period be ⁇ Store , ⁇ Shutdown, and ⁇ Restore , respectively.
  • the power consumption of the NV-RAM during the sleep period and the read / write period is P Sleep and P NL , respectively.
  • the P Sleep and P NL of the NV- RAM are ⁇ P NL larger than the power consumption of the sleep period and the read / write period of the 6T-RAM. This is because the leakage current flows through the FETs m7 and m8 in the NV-SRAM.
  • power ⁇ P Store for the store is generated during the store period.
  • Power consumption P Shutdown occurs during the shutdown period.
  • the power consumption P Shutdown is due to the leakage current.
  • Power ⁇ P Restore for restore occurs in the restoration period.
  • the period corresponding to the store period, the shutdown period, and the restore period in the NV-RAM is set as the sleep period. Therefore, the power consumption of the 6T-SRAM during these periods is P Sleep- ⁇ P NL .
  • the difference in power consumption between NV-SRAM and 6T-SRAM during the shutdown period is ⁇ P Shutdown .
  • FIG. 4 is a block diagram showing an electronic circuit according to the first embodiment.
  • the electronic circuit 100 includes a cell array 20 and a control circuit 28.
  • the cell array 20 is divided into a plurality of subarrays 22.
  • the storage capacity of the subarray 22 is, for example, 8 kbytes.
  • a plurality of memory cells 10 are provided in a matrix in the sub-array 22.
  • the sub-array 22 is connected to the bus 25. The number of sub-arrays 22 can be appropriately designed.
  • the sub-array 22 is provided with a power switch 30 and a peripheral circuit 38.
  • the power switch 30 sets the power supply voltage for each sub-array 22.
  • the peripheral circuit 38 performs store-free control for each sub-array 22.
  • the control circuit 28 includes an SFBF (Store Free Block Flag) register 41 and a UDF (Useless Data Flag) register 40.
  • the control circuit 28 generates SFBF for each block based on the address and stores it in the register 41.
  • the UDF for each block received from the external circuit by the control circuit 28 is stored in the register 40.
  • the control circuit 28 controls the power of each sub-array 22 by controlling the power switch 30 of each sub-array 22 using the PS control signal. In this way, the control circuit 28 functions as a power management unit.
  • the control circuit 28 controls the store-free operation for each sub-array 22 by controlling the peripheral circuits 38 of each sub-array 22 using the store control signal. In this way, the control circuit 28 functions as a store-free management unit.
  • control circuit 28 inputs / outputs data to / from the sub-array 22 via the bus 25. At least a part of the functions of the control circuit 28 may be performed by an external processor circuit such as a CPU (Central Processing Unit) in cooperation with software.
  • an external processor circuit such as a CPU (Central Processing Unit) in cooperation with software.
  • FIG. 5 is a block diagram of the sub-array according to the first embodiment.
  • the sub-array 22 is divided into a plurality of blocks 24 (for example, eight) having memory cells 10.
  • the storage capacity of the block 24 is, for example, 1 kbyte.
  • the number of blocks 24 can be appropriately designed.
  • a plurality of memory cells 10 are arranged in a matrix in the sub-array 22.
  • the word line WL and the switch line SR are extended in the row direction
  • the bit line BL (corresponding to the bit line BL and BLB in FIG. 1) and the control line CTRL are extended in the column direction.
  • a word line WL, a switch line SR, a bit line BL, a control line CTRL, a power supply line 15a, and a ground line 15b are connected to each memory cell 10.
  • a power switch 30 and peripheral circuits 38 are provided corresponding to each sub-array 22.
  • the control circuit 28 controls the power switch 30 and the peripheral circuit 38.
  • the power switch 30 can set the power supply voltage V VDD-VGND to the voltages V2, V1 and V0 for each block 24.
  • the peripheral circuit 38 includes a WL decoder 31, column decoders 32 and 36, a precharge circuit 33, a read / write circuit 34, and an SR decoder 35.
  • the WL decoder 31 selects the word line WL based on the row address.
  • the column decoder 32 selects the bit line BL based on the column address.
  • the precharge circuit 33 precharges the bit line BL.
  • the read / write circuit 34 writes data to the bistable circuit 12 of the memory cell 10 selected by the WL decoder 31 and the column decoder 32, or reads data from the bistable circuit 12 and outputs the data to the bus 25.
  • the SR decoder 35 selects the switch line SR based on the row address.
  • the column decoder 36 selects the control line CTRL based on the column address.
  • the data of the bistable circuit 12 is non-volatilely stored in the ferromagnetic tunnel junction elements MTJ1 and MTJ2.
  • FIG. 6 is a flowchart showing the operation in the first embodiment.
  • the control circuit 28 turns on the power of the cell array 20 by a command from the external circuit (step S10).
  • the control circuit 28 turns on the FETs m7 and m8 and turns on the power switch PS1 and turns off PS2 by setting the control signal VSR to a high level in all the blocks 24.
  • the control signal VSR to a high level in all the blocks 24.
  • the control circuit 28 performs read and write operations (step S12). The control circuit 28 determines whether or not an instruction to shut down the cell array 20 has been received from the external circuit (step S14). If No, the process returns to step S12. When Yes, the control circuit 28 performs store operation and shutdown (step S16). After that, the process ends and the process returns to step S10.
  • FIG. 7A is a flowchart showing the read / write operation in the first embodiment.
  • the control circuit 28 resets the SFBFs corresponding to all the blocks 24 of the register 41 (step S20). For example, the control circuit 28 sets the SFBF corresponding to all the blocks 24 to the high level H.
  • a write address is input to the control circuit 28 (step S22).
  • the control circuit 28 selects the block 24 to write (that is, the block 24 including the memory cell 10 to write) (step S24).
  • the control circuit 28 sets the SFBF in the register 41 corresponding to the selected block 24 using the WL decoder 31 and the column decoder 32 (step S26). For example, the control circuit 28 sets the corresponding SFBF to low level L.
  • the control circuit 28 writes data to the memory cell 10 in the selected block 24 using the read / write circuit 34 (step S28).
  • the control circuit 28 determines whether to end the operation (step S30). If No, the process returns to step S22. If Yes, it ends.
  • FIG. 7B is a flowchart showing the UDF setting in the first embodiment.
  • the control circuit 28 resets the UDFs corresponding to all the blocks 24 of the register 40 (step S32).
  • the control circuit 28 sets the UDF corresponding to all blocks to low level L.
  • the UDF is input to the control circuit 28 from an external circuit (step S34).
  • the UDF is input, for example, when writing data to block 24. Alternatively, it is entered regularly or irregularly, regardless of whether the data is read or written.
  • the control circuit 28 sets the UDF in the register 40 corresponding to the block 24 designated by the UDF (step S36). For example, the control circuit 28 sets the corresponding UDF to high level H.
  • the control circuit 28 determines whether to end the operation (step S38). If No, the process returns to step S34. If Yes, it ends.
  • the UDF is generated by software such as an OS (Operating System) or a program in the CPU of an external circuit, for example.
  • a dedicated hardware circuit may perform part of the UDF generation.
  • An algorithm for generating a UDF may be implemented on the compiler, and the compiler may automatically generate the UDF.
  • the user may specify the data to be UDF programmatically.
  • the UDF may be generated by learning the data to be the UDF by machine learning or the like. A plurality of methods for generating these UDFs may be combined.
  • the electronic circuit 100 is a cache memory
  • the data that does not need to be stored includes, for example, data that has not been used for a long period of time, data that is rarely used, or data that has an old write time.
  • FIG. 8 is a flowchart showing the store operation in the first embodiment.
  • FIGS. 9A to 9D are schematic views showing the cell array and the block in the first embodiment.
  • the subarrays 22 in the cell array 20 will be described as 9 pieces of 3 ⁇ 3, and the blocks 24 in one subarray 22 will be described as 8 pieces of 4 ⁇ 2.
  • “Sleep” indicates a block 24 in a sleep state (that is, all memory cells 10 in the block 24 are in a sleep mode).
  • “Store” indicates a block 24 in which the store is in operation.
  • SFBF shutdown indicates block 24 in the shutdown state by SFBF (that is, all memory cells 10 are in the shutdown state)
  • UDF shutdown indicates block 24 in the shutdown state by UDF
  • shutdown after store indicates after store operation. Shows block 24 in the shutdown state of.
  • FIGS. 10 (a) to 10 (c) are schematic views showing the blocks in the first embodiment.
  • a plurality of rows 23 are provided in the block 24a.
  • "Standby” is line 23 in a state of waiting for the store.
  • “Store” indicates line 23 during store operation. Rows 23a to 23c indicate a specific row among the plurality of rows 23.
  • the control circuit 28 when the control circuit 28 starts the store operation in step S16 of FIG. 6, the control circuit 28 reads the UDF and SFBF corresponding to each block 24 from the registers 40 and 41, respectively (step S40). The control circuit 28 extracts the block 24 in which at least one of the UDF and the SFBF is set (for example, high level H) as a store-free block. The store-free blocks are shut down all at once (step S42). For example, the control circuit 28 causes the power switch 30 to set the power supply voltage V VDD-VGND of the store-free block to V0.
  • the 19 blocks 24 in which the UDF is set and the total of 36 blocks 24 are shut down at once. The remaining 36 blocks 24 are put to sleep.
  • the control circuit 28 selects the first block 24a to execute the store operation (step S44). As shown in FIG. 9B, the control circuit 28 selects the block 24a of the subarray 22a and starts the store operation.
  • control circuit 28 stores the selected block 24a row by row (step S46).
  • the control circuit 28 stores the first row 23a.
  • the other line 23 is set as standby.
  • the control circuit 28 turns on the FETs m7 and m8 in row 23a and turns off the FETs m7 and m8 in row 23 in the standby state.
  • the control circuit 28 applies a voltage for the store to the control line CTRL extending in the row direction.
  • the data of the bistable circuit 12 is non-volatilely stored in the ferromagnetic tunnel junction elements MTJ1 and MTJ2.
  • a voltage may be applied to the control line CTRL one by one, or a voltage may be applied to a plurality of rows at the same time.
  • control circuit 28 stores the next line 23b. As shown in FIG. 10 (c), the control circuit 28 stores rows 23 in order and stores the last row 23c. When the store of all rows 23 is finished, the store operation of block 24a is finished.
  • the control circuit 28 shuts down the block 24a (step S48).
  • the control circuit 28 determines whether the store operation of the last block in the selected subarray 22 has been completed (step S50). When No, the process proceeds to the next block 24b (step S52), and the process returns to step S44.
  • control circuit 28 selects the block 24b in step S44, and stores the block 24b in step S46.
  • step S48 the control circuit 28 shuts down block 24b. After that, steps S44 to S52 are sequentially repeated.
  • step S50 the store operation of the last block 24 is completed, and all the blocks 24 are shut down.
  • the control circuit 28 determines Yes in step S50, and ends the store operation.
  • Example of control circuit] 11 (a) and 11 (b) are diagrams showing examples of the size and word address of the cell array in Example 1, respectively.
  • the size of the cell array 20 is, for example, 32 kbytes, 256 kbytes, and 2 Mbytes.
  • the number NSA of the subarray 22 is 4, 32, and 256, respectively.
  • the number of bits X of the address of the subarray 22 is 2 bits, 5 bits, and 8 bits, respectively.
  • the number of bits Y of the address of the block 24 is 3 bits.
  • the word address is a subarray address X bit, a block address Y bit, and a row address in the block (for example, 7 bits when 1 kbyte is used) from the upper order.
  • FIG. 12 is a block diagram showing an example of the control circuit in the first embodiment.
  • the control circuit 28 includes a decoder 42, registers 40, 41, a control circuit 43, and a PS control circuit 44.
  • the number of bits in registers 40 and 41 is equal to or greater than the number of blocks 24, NSA ⁇ Nblock, respectively. Of the NSA ⁇ Nblock blocks 24, blocks 24A to 24C will be described.
  • the UDF storage units 40A to 40C are 1-bit latch circuits corresponding to blocks 24A to 24C, respectively. In step S32 of FIG. 7B, all the storage units 40A to 40C are reset to the low level L. When the UDF is input to the control circuit 28 in step S34, the storage units 40A to 40C of the corresponding blocks 24A to 24C are set to the high level H in step S36.
  • the SFBF storage units 41A to 41C are 1-bit latch circuits corresponding to blocks A to C, respectively.
  • step S20 of FIG. 7A all the storage units 41A to 41C are reset to the high level H.
  • step S22 the write address signal is input to the decoder 42.
  • step S24 the corresponding block 24 is selected from the subarray address X and the block address Y.
  • step S26 the storage units 40A to 40C of the corresponding blocks 24A to C are set to the low level L.
  • the control circuit 43 outputs the store control signals a and b and the store control signal.
  • the PS control circuit 44 controls PS1C to PS1C and PS2C to PS2C from the power switches PS1A to 24C of each block 24A to 24C based on the UDF and SFBF held in the registers 40 and 41.
  • the PS control circuit 44 includes an AND circuit 50, a NAND circuit 51, an OR circuit 52, a NOR circuit 53, an AND circuit 54, an AND circuit 55, an OR circuit 56, an OR circuit 57, an OR circuit 58, and a number of blocks 24A to 24C, respectively. It includes an AND circuit 59.
  • the control signals a, b, ENNLB and ENSLP input to the PS control circuit 44 are control signals common to the blocks 24A to 24C, respectively, and the control signals VCTRL and VSR are independent signals for each block 24A to 24C, respectively. ..
  • the output signal of the UDF storage unit 40A to 40C and the control signal ENNLB are input to the AND circuit 50.
  • the output signals and control signals ENNLB of UDF storage units 40A to 40C are input to the NAND circuit 51.
  • the output signals and control signals a of the SFBF storage units 41A to 41C are input to the OR circuit 52.
  • the output signals and control signals b of the SFBF storage units 41A to 41C are input to the NOR circuit 53.
  • the output signal of the OR circuit 52 and the control signal ENNLB are input to the AND circuit 54.
  • the output signal of the NOR circuit 53 and the control signal ENNLB are input to the AND circuit 55.
  • the output signal of the AND circuit 54 and the control signal ENSLP are input to the OR circuit 56.
  • the output signal of the AND circuit 55 and the control signal ENSLP are input to the OR circuit 57.
  • VPG1C is output from the PS control signal VPG1A from the OR circuit 58.
  • the PS control signals VPG1A to VPG1C are input to the gates of the power switches PS1A to PS1C of the blocks 24A to 24C, respectively.
  • VPG2C is output from the PS control signal VPG2A from the AND circuit 59.
  • the PS control signals VPG2A to VPG2C are input to the gates of the power switches PS2A to PS2C of the blocks 24A to 24C, respectively.
  • 13 (a) to 13 (e) are diagrams showing the operation of each signal and the power switch in the first embodiment.
  • the control signals a, b, ENNLB and ENSLP are all L.
  • the UDFs of blocks 24A to 24C are L, L, and H, respectively.
  • the SFBFs of blocks 24A to 24C are L, H and L, respectively.
  • VPG1A to VPG1C are L, and the power switches PS1A to PS1C are ON.
  • VPG2A to VPG2C are L and power switches PS2A to PS2C are off.
  • the power switches PS1A to PS1C are on and the power switches PS2A to PS2C are off regardless of the UDF and SFBF. Therefore, the read / write voltage V2 is applied to all the blocks 24A to 24C as the power supply voltage V VDD-VGND.
  • the control signal ENSLP is H, and the control signals a, b and ENNLB are L during the sleep period.
  • VPG1A to VPG1C are H and power switches PS1A to PS1C are off.
  • VPG2A to VPG2C are H and power switches PS2A to PS2C are on.
  • the sleep voltage V1 is applied to all the blocks 24A to 24C as the power supply voltage V VDD-VGND.
  • step S42 of FIG. 8 the store-free blocks 24B and 24C are collectively shut down from the read / write state.
  • the control signals a and ENNLB change from L to H as compared with FIG. 13 (a).
  • the control signal b and ENSLP maintain L.
  • VPG1A to VPG1C change from L to H, and power switches PS1A to PS1C change from on to off.
  • VPG2A changes from L to H, and VPG2B and VPG2C maintain L.
  • the power switch PS2A is turned on from off, and the power switches PS2B and PS2C are kept off.
  • the power supply voltage V VDD-VGND of the blocks 24B and 24C in which at least one of the UDF and the SFBF is H becomes V0, and the blocks 24B and 24C are shut down.
  • the power supply voltage V VDD-VGND voltage of the block 24A in which both the UDF and the SFBF are L becomes V1, and the block 24A goes into a sleep state.
  • step S42 in FIG. 8 this period is T1
  • the selected block 24A operates in the store in step S46.
  • the control signal a changes from H to L
  • the control signal b changes from L to H.
  • the control signals ENNLB and ENSLP maintain H and L, respectively.
  • VPG1A changes from H to L
  • PS1A changes from off to on
  • VPG2A changes from H to L
  • PS2A changes from on to off.
  • PS1B, PS1C, PS2B and PS2C remain off.
  • the power supply voltage V VDD-VGND of the block 24A becomes the standby voltage V2
  • the power supply voltage V VDD-VGND of the blocks 24B and 24C becomes V0.
  • the block 24A is in the standby state for store operation, and the blocks 24B and C are kept in the shutdown state.
  • the control signals VCTRL and VSR are applied to the block 24A according to the store control signal output from the control circuit 43.
  • the store operation of the target block 24A is executed. This period is T2.
  • step S48 of FIG. 8 when the store of the block 24A is completed, the control signal a changes from L to H.
  • the control signals b, ENNLB and ENSLP maintain H, H and L, respectively.
  • VPG1A changes from L to H
  • PS1A changes from on to off.
  • the power supply voltage V VDD-VGND of the block 24A changes from the voltage V2 to the voltage V0, and the block 24A is shut down.
  • This period is T3.
  • the control signals (a, b) are sequentially changed to (H, L) ⁇ (L, H) ⁇ (H, H) for the block 24 to be stored. ..
  • the blocks 24 to be stored are sequentially stored.
  • the control signals a, b, ENNLB and ENSLP are H, H, H and L, respectively.
  • PS1A to PS1C and PS2A to PS2C are turned off regardless of UDF and SFBF.
  • the power supply voltage V VDD-VGND of all the blocks 24 is V0, and all the blocks 24 are shut down.
  • FIG. 14 is a timing chart of the control signal in the first embodiment.
  • the control signals a1 to an are control signals a corresponding to the blocks 241 to 24n
  • the control signals b1 to bn are control signals b corresponding to the blocks 241 to 24n.
  • Blocks 241 to 24k are blocks to be operated by the store, and blocks 24k + 1 to 24n are store-free blocks.
  • the control signals ENNLB and a1 to an become H at time t13 (step S42 in FIG. 8).
  • the blocks 241 to 24k to be operated by the store are put into the sleep state of the period T1, and the store free blocks 24k + 1 to 24n are put into the shutdown state.
  • This state is period T1.
  • the control signals a1 and b1 corresponding to the block 241 to be stored are L and H, respectively.
  • the period between times t14 and t15 is the period T2 of block 241 and block 241 is in store operation.
  • the control signal a1 becomes H and b1 maintains H.
  • the period after the time t15 is the period T3 of the block 241 and the block 241 is in the shutdown state.
  • the control signals a2 and b2 corresponding to the block 242 become L and H, respectively.
  • the period between the times t15 and t16 is the period T2 of the block 242, and the block 242 is stored.
  • the control signal a2 becomes H and b2 maintains H.
  • the period after the time t16 is the period T3 of the block 242, and the block 242 is in the shutdown state.
  • Steps S46 and S48 are sequentially performed for the blocks 241 to 24k to be operated in the store.
  • the store operation is completed for all the blocks 241 to 24k to be operated at the store at time t17, all the blocks 241 to 24n are shut down.
  • the control signals a1 to an, b1 to bn, ENNLB, and ENSLP become L, the read / write period is set.
  • blocks 241 to 24k are collectively put into a sleep state (period T1), and blocks 24k + 1 to 24n are collectively put into a shutdown state. After that, blocks 241 to 24k are sequentially stored (period T2). The blocks that have finished the store are sequentially shut down (period T3).
  • FIG. 15 is a block diagram of another example of the control circuit 28 in the first embodiment. As shown in FIG. 15, by setting the control signal ENSLP as a signal for each block 24A to 24C, it is possible to put the sleep state into each block 24A to 24C. Other configurations are the same as those in FIG. 12, and the description thereof will be omitted.
  • the simulation conditions are as follows.
  • the voltage V2, which is the power supply voltage V VDD-VGND during the read / write period, the store period, and the restore period, was set to 1.2 V.
  • the voltage V1 which is the power supply voltage V VDD-VGND and the voltage of the control line CTRL during the sleep period were set to 0.8 V and 0 V, respectively.
  • the voltage of the switch line SR during the store period was set to 0.75V.
  • the high-level and low-level voltages of the control line CTRL during the store period were set to 0.45V and 0V, respectively.
  • the storage capacities of the subarray 22 and the block 24 were set to 8 kbytes and 1 kbyte, respectively.
  • the ratio of the number of store-free memory cells by SFBF to the total number of memory cells in the cell array 20 was defined as the SFBF store-free ratio (proportion).
  • the ratio of the number of store-free memory cells by UDF to the total number of memory cells in the cell array 20 was defined as the UD ratio (proportion).
  • FIGS. 16 (d) to 16 (f) show the BET with respect to the SFBF store-free ratio in Example 1, Comparative Examples 1-1 and 1-2, and FIGS. 16 (d) to 16 (f) are shown. It is a figure which shows the stray latency with respect to the SFBF store-free ratio. As shown in FIG. 16A, in Comparative Example 1-1, when the store-free ratio is large at 32 kbytes, the BET becomes short.
  • the BET does not decrease even if the SFBF store-free ratio increases. This is for the following reasons. That is, as the storage capacity increases, the block 24 waiting for the store operation increases. Leakage current flows through the memory cell 10 even while waiting for the store operation. Therefore, the leakage current in the entire cell array 20 is large, and the BET does not decrease even if the store-free ratio increases.
  • Example 1 the BET becomes shorter as the UD ratio becomes larger than that in Comparative Example 1-1.
  • FIGS. 16 (d) to 16 (f) in the first embodiment, the stray latency becomes shorter as the UD ratio becomes larger than that in the comparative example 1-1.
  • each memory cell 10 non-volatilely stores the bistable circuit 12 that volatilely stores the data and the data stored in the bistable circuit 12. It has a non-volatile element that restores the stored data to the bistable circuit 12.
  • step S42 of FIG. 8 when the cell array 20 is shut down (power cutoff), the control circuit 28 does not store non-volatilely regardless of whether or not the plurality of memory cells 10 are volatilely rewritten.
  • Shut down one or more first memory cells which may be.
  • steps S44 and S46 after shutting down the first memory cell, the data volatilely stored in the bistable circuit 12 in the remaining one or more second memory cells among the plurality of memory cells is stored in the non-volatile element. Performs store operation to store in.
  • step S48 the control circuit 28 then shuts down the second memory cell.
  • each block 24 of the cell array 20 is divided into a plurality of blocks 24 including at least two memory cells 10.
  • the control circuit 28 is volatile whether or not the memory cells 10 in the blocks 24 are rewritten from the plurality of blocks 24. , Extract one or more first blocks (ie, blocks in which UDFs are set) that do not need to be stored non-volatilely.
  • the control circuit 28 shuts down the first block.
  • control circuit 28 after shutting down the first block, the control circuit 28 is paired in the memory cells 10 in the remaining one or a plurality of the second blocks of the plurality of blocks 24.
  • a store operation is performed in which the data stored in the stabilizing circuit 12 is stored in the non-volatile element.
  • the control circuit 28 shuts down the second block at which the store operation has ended.
  • the power consumption for operating the store operation of the first block can be suppressed.
  • the stray latency can be reduced.
  • the power consumption due to the leakage current when waiting for the store operation can be reduced.
  • the control circuit 28 shuts down all the extracted first blocks, and then, as shown in FIGS. 9 (b) to 9 (d), the memory cells in the remaining second blocks.
  • the store operation is performed at 10. As a result, the power consumption when the first block in which the UDF is set waits for shutdown can be reduced.
  • the register 40 (storage circuit) is provided outside the cell array 20 and stores UDF (information indicating the first block that does not need to be stored non-volatilely) received from the external circuit.
  • the control circuit 28 extracts the first block based on the UDF.
  • step S40 of FIG. 8 in the control circuit 28, from the plurality of blocks 24, the block in which the UDF is set and the block 24 in which the SFBF is set (that is, any memory cell 10 in the block 24 is volatile. The unrewritten block) and is extracted as the first block. As a result, the block in which the UDF is set and the block in which the SFBF is set are shut down first, so that the power consumption due to the leakage current when waiting for the store operation can be reduced. In addition, the stray latency can be reduced.
  • the register 41 (storage circuit) is provided outside the cell array 20.
  • the register 41 storage circuit
  • the memory cell may have the bistable circuit 12 and the non-volatile element.
  • MTJ has been described as an example of a non-volatile element, but as a non-volatile element, a giant magnetoresistive (GMR) element, a variable resistance element such as that used for ReRAM (Resistance Random Access Memory), or a PRAM (Phase change RAM) can be used.
  • the phase change element used can be used.
  • Patent Document 5 When Patent Document 5 is applied to a cell array, ULV retention of VNR-SRAM is performed by lowering the power supply voltage after switching the mode from BI (boosted inverter) mode to ST (Schmitt trigger) mode. As the size of the cell array increases, the power consumption due to the leakage current in the memory cell waiting for mode switching increases. In addition, the latency increases depending on the waiting period. In addition, retention is performed even if the data in the memory cell is unnecessary data. This increases power consumption and latency.
  • BI boosted inverter
  • ST Schot trigger
  • Example 2 aims to reduce power consumption and energy consumption. Specifically, the purpose is to reduce power consumption and energy consumption during PG (retention), transition to PG and return from PG, and reduction of BET related to PG.
  • the memory cells containing unnecessary data after the power is restored are shut down, and the remaining memory cells are retained. As a result, it is not necessary to switch the mode of the memory cell that does not require retention, so that power consumption and latency can be suppressed.
  • the cell array is divided into multiple blocks. Generates a UDF that specifies a block that has a memory cell that contains data that is no longer needed after the power is restored. At the time of retention, the block that does not need retention is shut down based on the UDF. After that, retention is performed in other blocks. As a result, it is not necessary to switch the mode of the block that does not require retention, so that power consumption and latency can be suppressed. In addition, power consumption can be further reduced because blocks that do not require retention are shut down.
  • FIG. 17 is a circuit diagram of a memory cell according to the second embodiment. As shown in FIG. 17, the memory cell 10 mainly includes inverter circuits 14 and 16.
  • Inverter circuits 14 and 16 are connected in a loop to form a bistable circuit 12.
  • the inverter circuit 14 includes FETs m1, m2a, m2b and m9.
  • the inverter circuit 16 includes FETs m3, m4a, m4b and m10.
  • FETs m1 and m3 are P-channel MOSFETs
  • FETs m2a, m2b, m4a, m4b, m9 and m10 are N-channel MOSFETs.
  • the sources of the FETs m1 and m3 are connected to the power supply line 15a to which the virtual power supply voltage V VDD is applied, and the drain is connected to the nodes Q and QB.
  • the FETs m2a and m2b are connected in series between the node Q and the ground wire 15b to which the ground voltage VGND is applied, the source of the FET m2b is connected to the ground wire 15b, and the drain of the FET m2a is connected to the node Q.
  • FETs m4a and m4b are also connected between the node QB and the ground wire 15b.
  • the input node of the inverter circuit 14 is the node N1 to which the FETs m1, m2a and m2b are commonly connected, and the output node of the inverter circuit 14 is the node Q.
  • the input node of the inverter circuit 16 is the node N3 to which the FETs m3, m4a and m4b are commonly connected, and the output node of the inverter circuit 16 is the node QB.
  • the input node and the output node of the inverter circuit 14 are connected to the output node and the input node of the inverter circuit 16, respectively.
  • One of the source and drain of the FET m9 is connected to the node N2 between the FETs m2a and m2b, the other is connected to the control line CTRL, and the gate is connected to the node Q.
  • One of the source and drain of the FET m10 is connected to the node N4 between the FETs m4a and m4b, the other is connected to the control line CTRL, and the gate is connected to the node QB.
  • the inverter 26a is a driver 26 for the control line CTRL, inverts the control signal VCTRL, and outputs a control signal of a high level voltage VSCTRL and a low level voltage voltage VLCTRL.
  • the control signal VCTRL is at a high level
  • the control line CTRL is VLCTRL
  • the inverter circuits 14 and 16 are in BI mode.
  • the control signal VCTRL is at a low level
  • the control line CTRL is VSCTRL, and the inverter circuits 14 and 16 are in ST mode.
  • Nodes Q and QB are connected to bit lines BL and BLB via MOSFETs m5 and m6, respectively.
  • the gates of MOSFETs m5 and m6 are connected to the word line WL.
  • the BI mode is a mode in which the transmission characteristics of the inverter circuits 14 and 16 have substantially no hysteresis and can be operated at high speed.
  • the ST mode is a mode in which the transmission characteristics of the inverter circuits 14 and 16 have hysteresis and the operation is slow. It should be noted that substantially no hysteresis means that there is no intentional hysteresis as in the ST mode, and it is allowed to have an unintended hysteresis.
  • the memory cell 10 functions as a normal SRAM cell.
  • the data of the bistable circuit 12 is retained even if the power supply voltage (V VDD-VGND) is set to 0.2 V, for example, and an ultralow voltage (ULV).
  • the power switch 30 includes power switches PS1, PS2 and PS3.
  • the power switches PS1 and PS2 are connected in parallel between the high-voltage power supply 15ch and the power supply line 15a.
  • the power switches PS1 and PS2 are, for example, P-channel FETs and N-channel FETs, respectively.
  • PS control signals VPG1 and VPG2 are applied to the gates of the power switches PS1 and PS2, respectively.
  • the substrate biases of the power switches PS1 and PS2 are, for example, VDDH and VGND, respectively.
  • the power switch PS3 and FETm11 are connected in series between the low-voltage power supply 15cl and the power supply line 15a.
  • the power switches PS3 and FETm11 are P-channel FETs and N-channel FETs, respectively. FETm11 functions as a load.
  • the PS control signal VPG3 is applied to the gate of the power switch PS3.
  • the substrate biases of the power switches PS3 and FETm11 are, for example, VDDL and VDDH, respectively.
  • the power switch 30 may be provided between the ground wire 15b and the ground 15d.
  • the power switch 30 may be provided both between the power supply line 15a and at least one of the power supply 15ch and 15cl, and between the ground line 15b and the ground 15d.
  • FIG. 18A and 18 (b) are diagrams showing the voltage applied to each state in the second embodiment.
  • VPG1, VPG2, and VPG3 are low level L, low level L, and high level H, respectively.
  • the power switches PS1, PS2 and PS3 are turned on, off and off, respectively.
  • the power supply voltage V VDD-VGND becomes the voltage V3.
  • the voltage V3 is, for example, 1.2V.
  • VPG1, VPG2 and VPG3 are H, H and H, respectively.
  • the power switches PS1, PS2 and PS3 are turned off, on and off, respectively.
  • the power supply voltage V VDD-VGND becomes a voltage V2 lower than the voltage V3.
  • the voltage V2 is, for example, 0.8V.
  • VPG1, VPG2 and VPG3 are H, L and L, respectively.
  • the power switches PS1, PS2 and PS3 are turned off, off and on, respectively.
  • the power supply voltage V VDD-VGND becomes a voltage V1 lower than the voltage V2.
  • the voltage V1 is, for example, 0.2V.
  • VPG1, VPG2 and VPG3 are H, L and H, respectively.
  • the power switches PS1, PS2 and PS3 are turned off, off and off, respectively.
  • the power supply voltage V VDD-VGND becomes a voltage V0 lower than the voltage V1.
  • the voltage V0 is almost 0V.
  • the power supply voltage V VDD-VGND is the voltage V3.
  • the control signal VCTRL may be L or H.
  • VCTRL is H
  • the memory cell 10 is in BI mode
  • VCTRL is L
  • the standby (BI) state is the same as the read / write state of the first embodiment, and the data of the bistable circuit 12 can be rewritten as a normal SRAM.
  • the power supply voltage V VDD-VGND is a voltage V3 at which the bi-stable circuit 12 can rewrite the data and can hold the data.
  • the power supply voltage V VDD-VGND is a voltage V2 lower than the voltage V3.
  • the control signal VCTRL may be L or H.
  • VCTRL When VCTRL is H, the memory cell 10 is in BI mode, and when VCTRL is L, memory cell 10 is in ST mode.
  • the power supply voltage V VDD-VGND is a voltage V2 in which the bi-stable circuit 12 cannot rewrite the data but can hold the data. Since the voltage V2 is lower than the voltage V3, power consumption can be suppressed.
  • the power supply voltage V VDD-VGND is a voltage V1 lower than the voltage V2.
  • the control signal VCTRL is L and the memory cell 10 is in ST mode.
  • the power supply voltage V VDD-VGND is a voltage V1 in which the bistable circuit 12 cannot hold data in the BI mode but can hold the data in the ST mode.
  • the memory cell 10 is in a pseudo-nonvolatile state, and the voltage V1 can be made lower than the voltage V2, so that the power consumption can be greatly suppressed.
  • the power supply voltage V VDD-VGND is a voltage V0 lower than the voltage V1.
  • the control signal VCTRL is H and the memory cell 10 is in BI mode. In the shut down state, the power consumption of the memory cell 10 is almost zero.
  • FIG. 19 (a) and 19 (b) are diagrams showing the voltages applied to the retention and shutdown in the second embodiment.
  • the power supply voltage V VDD-VGND in the standby state, the power supply voltage V VDD-VGND is the voltage V3, the control signal VCTRL is H, and the BI mode is used.
  • VCTRL is first set to L.
  • the ST mode is set.
  • the power supply voltage V VDD-VGND is set to the voltage V1.
  • VCTRL is set to the voltage V3.
  • VCTRL be H. This returns to the standby state. In this way, the mode is switched before and after the retention state is set.
  • FIG. 20 is a diagram showing power consumption in each period in Example 2.
  • the solid line shows the power consumption (power) of the storage circuit having the memory cell 10 (VNR-SRAM) shown in FIG.
  • the dotted line shows the power consumption of the storage circuit using the 6-transistor SRAM (6T-RAM) cell.
  • the operation period of the memory cell 10 includes a standby period, a mode switching period, and a retention period.
  • ⁇ EXT be the length of the mode switching period before the retention period.
  • Let ⁇ ENT be the length of the mode switching period after the retention period.
  • the power consumption of the VNR-SRAM during the standby period is larger than the power consumption of the 6T-SRAM by PLKG . This is due to the leakage current of FETs m9 and m10.
  • power consumption for mode switching is required during the mode switching period.
  • the retention period, the power consumption of the VNR-SRAM is P'Save, power consumption than 6T-SRAM in VNR-SRAM can P Save reduced.
  • Increase in energy for 6T-SRAM cell of VNR-SRAM cell is the sum of the energy increasing E EXT and E ENT energy increasing E LKG, mode switching period by P LKG in the standby period.
  • the energy that the VNR-SRAM cell can save by retention is the energy reduction E Save due to P Save during the retention period.
  • E LKG + E EXT + E ENT P Save x BET.
  • the inverter circuit 14 includes FETs m1a, m1b, m2 and m9a
  • the inverter circuit 16 includes FETs m3a, m3b, m4 and m10a.
  • FETs m1a, m1b, m3a, m3b, m9a and m10a are P-channel FETs
  • FETs m2 and m4 are N-channel FETs.
  • One of the source and drain of the FET m9a is connected to the node N2a between the FETs m1a and m1b, and one of the source and drain of the FET m10a is connected to the node N4a between the FETs m3a and m3b.
  • the driver 26 is provided with an inverter 26c in front of the inverter 26a.
  • VCTRL is L
  • the inverter 26c outputs VDD
  • the inverter 26a outputs VLCTRL as CTRL
  • the inverter circuits 14 and 16 are in BI mode.
  • VCTRL is H
  • the inverter 26c outputs VGND
  • the inverter 26a outputs VSCTRL as CTRL
  • the inverter circuits 14 and 16 are in ST mode.
  • Other configurations are the same as those in FIG. 17, and the description thereof will be omitted.
  • the power supply voltage and the ground voltage of the inverter 26c are VDD and VGND
  • the power supply voltage and the ground voltage may be VSCTRL and VLCTRL as in the inverter 26a.
  • the driver 26 may be configured by using only the inverter 26a instead of the inverters 26a and 26c.
  • the inverter circuit 14 includes FETs m1a, m1b, m2a, m2b, m9 and m9a
  • the inverter circuit 16 includes FETs m3a, m3b, m4a, m4b, m10 and m10a.
  • FETs m1a, m1b, m3a, m3b, m9a and m10a are P-channel FETs
  • FETs m2a, m2b, m4a and m4b, m9 and m10 are N-channel FETs.
  • the other of the FET m9a and FET m10a source and drain is connected to the control line CTRLP, and the other of the FET m9 and FET m10 source and drain is connected to the control line CTRLN.
  • the driver 26 includes inverters 26a and 26b.
  • the inverter 26a outputs to the control line CTRLN.
  • the inverter 26b inverts the output of the inverter 26a and outputs it to the control line CTRLP.
  • Other configurations are the same as those in FIGS. 17 and 21 (a), and the description thereof will be omitted.
  • At least one of the P-channel FETs m1a and m3a and the N-channel FETs m2 and m4 may be connected in series in the inverter circuits 14 and 16. At least one of the P-channel FETs m9a and m10a and the N-channel FETs m9 and m10 may be provided.
  • FIG. 22 is a block diagram showing an electronic circuit according to the second embodiment.
  • the electronic circuit 102 includes a cell array 20 and a control circuit 28.
  • the cell array 20 is divided into a plurality of subarrays 22.
  • the storage capacity of the subarray 22 is, for example, 8 kbytes.
  • a plurality of memory cells 10 are provided in a matrix in the sub-array 22.
  • the sub-array 22 is connected to the bus 25. The number of sub-arrays 22 can be appropriately designed.
  • the sub-array 22 is provided with a power switch 30 and a peripheral circuit 38.
  • the power switch 30 sets the power supply voltage for each sub-array 22.
  • the peripheral circuit 38 controls the mode of each memory cell 10 based on the mode control signal.
  • the control circuit 28 includes a register 40.
  • the UDF for each block received from the external circuit by the control circuit 28 is stored in the register 40.
  • the control circuit 28 controls the power switch 30 of each sub-array 22 using the PS control signal.
  • the control circuit 28 inputs / outputs data to / from the subarray 22 via the bus 25. At least a part of the functions of the control circuit 28 may be performed by a processor circuit such as an external CPU in cooperation with software.
  • FIG. 23 is a block diagram of the subarray in the second embodiment.
  • the sub-array 22 is divided into a plurality of blocks 24 (for example, eight) having memory cells 10.
  • the storage capacity of the block 24 is, for example, 1 kbyte.
  • the number of blocks 24 can be appropriately designed.
  • a plurality of memory cells 10 are arranged in a matrix in the sub-array 22.
  • the word line WL and the control line CTRL are extended in the row direction
  • the bit line BL is extended in the column direction.
  • a word line WL, a bit line BL, a control line CTRL, a power supply line 15a, and a ground line 15b are connected to each memory cell 10.
  • a power switch 30 and peripheral circuits 38 are provided corresponding to each sub-array 22.
  • the control circuit 28 controls the power switch 30 and the peripheral circuit 38.
  • the power switch 30 can set the power supply voltage V VDD-VGND to the voltages V3, V2, V1 and V0 for each block 24.
  • the peripheral circuit 38 includes a WL decoder 31, a column decoder 32, a precharge circuit 33, and a read / write circuit 34.
  • the WL decoder 31 selects the word line WL based on the row address.
  • the column decoder 32 selects the bit line BL based on the column address.
  • the precharge circuit 33 precharges the bit line BL.
  • the read / write circuit 34 writes data to the bistable circuit 12 of the memory cell 10 selected by the WL decoder 31 and the column decoder 32, or reads data from the bistable circuit 12 and outputs the data to the bus 25.
  • control circuit 28 sets one or a plurality of memory cells 10 in ST mode, and V VDD is set to voltage V1. As a result, the memory cell 10 is put into the retention state.
  • FIG. 24 is a flowchart showing the operation in the second embodiment.
  • the control circuit 28 turns on the power of the cell array 20 by a command from the external circuit (step S10).
  • the control circuit 28 sets the memory cells 10 of all the blocks 24 to the BI mode, turns on the power switch PS1, and turns off the power switches PS2 and PS3.
  • all the blocks 24 are put into the standby state.
  • the control circuit 28 performs read and write operations in the standby state (step S12).
  • the control circuit 28 determines whether or not an instruction to shut down the cell array 20 has been received from the external circuit (step S14). If No, the process returns to step S12. When Yes, the control circuit 28 performs retention operation and shutdown (step S17). After that, the process ends and the process returns to step S10.
  • FIG. 25 is a flowchart showing the type A of the retention operation in the second embodiment.
  • 26 (a) to 26 (e) are schematic views showing a cell array of type A retention operation in the second embodiment.
  • 27 (a) to 27 (e) are schematic views showing a cell array and a block in type A of retention operation in the second embodiment.
  • 26 (a) to 26 (e) are examples of performing a retention operation for each sub-array 22
  • FIGS. 27 (a) to 27 (e) are examples of performing a retention operation for each block 24.
  • the basic operation is the same whether the retention operation is performed for each sub-array 22 or for each block 24. The same applies to the retention operation types B and C.
  • step S17 of FIG. 24 the control circuit 28 starts the retention operation.
  • each block 24 (or subarray 22) is in the standby (BI) state (step S54).
  • the power supply voltage V VDD-VGND of all the blocks 24 (subarray 22) is set to the voltage V3, and the control signal VCTRL is set to H.
  • the control signal VCTRL is set to H.
  • FIG. 26A all the sub-arrays 22 are in the standby (BI) state.
  • FIG. 27A all blocks 24 are in the standby (BI) state.
  • the control circuit 28 reads the UDF corresponding to the block 24 (or the sub-array 22) from the register 40 (step S56).
  • the control circuit 28 extracts the block 24 (subarray 22) in which the UDF is set (for example, high level H) and shuts down all at once (step S58).
  • the control circuit 28 sets the power supply voltage V VDD-VGND of the corresponding block 24 (sub-array 22) to the voltage V0.
  • the control circuit 28 collectively shuts down four sub-arrays 22 out of the nine sub-arrays 22.
  • the control circuit 28 puts 28 blocks 24 out of 72 blocks 24 into a shutdown state at once.
  • the control circuit 28 selects the first block 24a (subarray 22a) in which the UDF is not set (that is, the retention target) (step S60).
  • the control circuit 28 sets the first block 24a (sub-array 22a) as a standby (ST) (step S62).
  • the control signal VCTRL is set to L in a state where the power supply voltage V VDD-VGND of the block 24a (sub array 22a) is set to the voltage V3.
  • the sub-array 22a is in the standby (ST) state.
  • the block 24a is in the standby (ST) state.
  • the control circuit 28 determines whether it is the last block 24 (sub-array 22) (step S64). When No, the process proceeds to the next block 24 (subarray 22) (step S66), and the process returns to step S60.
  • the blocks 24 (subarray 22) to be retained are sequentially put into the standby (ST) state. As shown in FIG. 26D, all the retention target subarrays 22 are in the standby (ST) state. As shown in FIG. 27 (d), all the retention target blocks 24 are in the standby (ST) state.
  • step S64 the control circuit 28 puts all the retention target blocks 24 (sub-array 22) into the retention state collectively or for each of the plurality of block 24 (sub-array 22) (step S68). As shown in FIG. 26E, all the retention target subarrays 22 are in the retention state. As shown in FIG. 27 (e), all the retention target blocks 24 are in the retention state. Then it ends.
  • FIG. 28 is a flowchart showing the type B of the retention operation in the second embodiment.
  • 29 (a) to 29 (e) are schematic views showing a cell array of type B retention operation in the second embodiment.
  • 30 (a) to 30 (e) are schematic views showing a cell array and a block in type B of retention operation in the second embodiment.
  • the control circuit 28 puts each block 24 (or sub-array 22) into a sleep (BI) state (step S70).
  • the power supply voltage V VDD-VGND of all the blocks 24 (subarray 22) is set to voltage V2, and the control signal VCTRL is set to H.
  • the control signal VCTRL is set to H.
  • FIG. 29 (a) all the sub-arrays 22 are in the sleep (BI) state.
  • FIG. 30A all blocks 24 are in the sleep (BI) state.
  • the control circuit 28 extracts the block 24 (subarray 22) in which the UDF read in step S56 is set (for example, high level H) and shuts down all at once (step S58). As shown in FIG. 29B, the control circuit 28 puts the four subarrays 22 into a shutdown state at once. As shown in FIG. 30B, the control circuit 28 puts 28 blocks 24 into a shutdown state at once.
  • the control circuit 28 puts the first block 24a (subarray 22a) selected in step S60 into a sleep (ST) state (step S72).
  • the power supply voltage V VDD-VGND of the block 24a (sub-array 22a) is set to the voltage V2, and the control signal VCTRL is set to L.
  • the sub-array 22a goes into a sleep (ST) state.
  • the block 24a goes into a sleep (ST) state.
  • step S64 steps S60 and S72 are performed for the next block 24 (subarray 22). As shown in FIG. 29 (d), all the retention target subarrays 22 go into the sleep (ST) state. As shown in FIG. 30D, all the retention target blocks 24 are put into the sleep (ST) state.
  • step S64 the control circuit 28 collectively puts all the retention target blocks 24 (subarray 22) into the retention state (step S68). As shown in FIG. 29 (e), all the retention target subarrays 22 are in the retention state. As shown in FIG. 30E, all the retention target blocks 24 are in the retention state. Then it ends. Other operations are the same as type A of retention operation.
  • FIG. 31 is a flowchart showing the type C of the retention operation in the second embodiment.
  • 32 (a) to 32 (e) are schematic views showing a cell array of type C retention operation.
  • 33 (a) to 33 (e) are schematic views showing cell arrays and blocks of type C retention operation.
  • steps S70, S56, S58, S60, S72 are the same as retention type B, FIGS. 32 (a) to 32 (c) and 33 (a) to 33 (c). 29 (a) to 29 (c) and 30 (a) to 30 (c), respectively.
  • step S72 the control circuit 28 puts the first block 24a (or sub-array 22a) to be retained into the sleep (ST) state, and then puts the block 24a (or sub-array 22a) into the retention state (step S74).
  • the sub-array 22a is in the retention state.
  • the block 24a is in the retention state.
  • step S72 the blocks 24 (subarray 22) to be retained are sequentially put into the sleep (ST) state (step S72), and then put into the retention state (step S74).
  • step S64 all the retention target subarrays 22 are in the retention state as shown in FIG. 32 (e).
  • FIG. 33 (e) all the retention target blocks 24 are in the retention state. Then it ends.
  • Other operations are the same as type B of retention operation.
  • FIG. 34 is a block diagram showing an example of a control circuit in type B retention operation.
  • the control circuit 28B includes a register 40, a mode control circuit 45, and a PS control circuit 44.
  • the number of bits in the register 40 is NSA ⁇ Nblock or more, which is the number of blocks 24, respectively. Of the NSA ⁇ Nblock blocks 24, blocks 24A to 24B will be described.
  • step S34 the storage units 40A to 40B of the corresponding blocks 24A to 24B are set to the high level H in step S36.
  • the mode control circuit 45 outputs the mode control signal VCTRL.
  • the PS control circuit 44 controls the power switches PS1A to PS1B, PS2A to PS2B, and PS3A to PS3B of each block 24A to 24B based on the UDF held in the register 40.
  • the PS control circuit 44 includes OR circuits 60, AND circuits 61, OR circuits 62, OR circuits 63, NAND circuits 64, AND circuits 65, AND circuits 66, OR circuits 67, and OR circuits 68, each of which has a number of blocks 24A to 24B. It includes an OR circuit 69, an AND circuit 70, an AND circuit 71, an OR circuit 72, and an OR circuit 73.
  • the output signal of 40B and the control signal ENNLB are input from the UDF storage unit 40A to the OR circuit 60.
  • the output signal of the OR circuit 60 and the control signal ENNLB are input to the AND circuit 61.
  • the output signal of the AND circuit 61 and the control signal ENSLP are input to the OR circuit 62.
  • VPG1B is output from the PS control signal VPG1A from the OR circuit 62.
  • the PS control signals VPG1A to VPG1B are input to the gates of the power switches PS1A to PS1B of the blocks 24A to 24B, respectively.
  • the output signal of 40B and the control signal ENRB are input from the UDF storage unit 40A to the OR circuit 63.
  • the output signal and control signal ENNLB of 40B from the UDF storage unit 40A are input to the NAND circuit 64.
  • the output signal of the OR circuit 63 and the output signal of the NAND circuit 64 are input to the AND circuit 65.
  • the output signal of the AND circuit 65 and the control signal ENNLB are input to the AND circuit 66.
  • the output signal of the AND circuit 65 and the control signal ENSLP are input to the OR circuit 67.
  • VPG2B is output from the PS control signal VPG2A from the OR circuit 67.
  • the PS control signals VPG2A to VPG2B are input to the gates of the power switches PS2A to PS2B of the blocks 24A to 24B, respectively.
  • the output signal of 40B and the control signal ENRB are input from the UDF storage unit 40A to the OR circuit 68.
  • the output signal of 40B and the control signal ENNLB are input from the UDF storage unit 40A to the OR circuit 69.
  • the output signal of the OR circuit 68 and the output signal of the OR circuit 69 are input to the AND circuit 70.
  • the output signal of the AND circuit 70 and the control signal ENNLB are input to the AND circuit 71.
  • the output signal of the AND circuit 71 and the control signal ENSLP are input to the OR circuit 72.
  • the output signal of the OR circuit 72 and the control signal ENRB are input to the OR circuit 73.
  • VPG3B is output from the PS control signal VPG3A from the OR circuit 73.
  • the PS control signals VPG3A to VPG3B are input to the gates of the power switches PS3A to PS3B of the blocks 24A to 24B, respectively.
  • 35 (a) to 35 (e) are diagrams showing the operation of each signal and the power switch in the retention operation type B.
  • the control signals ENRB, ENNLB, ENSLP and VCTRL are H, L, L and H, respectively.
  • the UDFs of blocks 24A and 24B be L and H, respectively.
  • VPG1A to VPG1B are L, and the power switches PS1A to PS1B are ON.
  • VPG2A to VPG2B are L, and power switches PS2A to PS2B are off.
  • VPG3A to VPG3B are H, and power switches PS3A to PS3B are off.
  • the power switches PS1A to PS1B are on and the power switches PS2A to PS2B and PS3A to PS3B are off regardless of the UDF. Therefore, the power supply voltage V VDD-VGND of all the blocks 24A to 24B is the voltage V3.
  • the control signals ENRB, ENNLB, ENSLP and VCTRL are H, L, H and H, respectively.
  • VPG1A to VPG1B are H, and power switches PS1A to PS1B are off.
  • VPG2A to VPG2B are H and power switches PS2A to PS2B are ON.
  • VPG3A to VPG3B are H, and power switches PS3A to PS3B are off.
  • the power switches PS1A to PS1B and PS3A to PS3B are off and the power switches PS2A to PS2B are on regardless of the UDF. Therefore, the power supply voltage V VDD-VGND of all blocks 24A to 24B becomes the voltage V2 and goes to sleep (BI).
  • step S70 of FIG. 28 all the blocks are put into the sleep (BI) state as shown in FIG. 35 (b).
  • steps S70, S56 and S58 of FIG. 28 the block 24 in which the UDF is H is put into the sleep (BI) state, and the blocks in which the UDF is L are collectively blocked.
  • the control signal ENNLB changes from L to H from the standby (BI) state of FIG. 35 (a).
  • VPG1A to VPG1B change from L to H, and VPG2A changes from L to H.
  • the power switch PS2A is turned from off to on.
  • the power switches PS1A and PS1B turn from on to off.
  • the power switches PS2B, PS3A and PS3B remain off.
  • the power supply voltage V VDD-VGND of the block 24A to be retained changes from the voltage V3 to V2, and the block 24A goes into a sleep (BI) state.
  • the power supply voltage V VDD-VGND of the block 24B in which the UDF is set becomes the voltage V0, and the block 24B is shut down.
  • step S72 of FIG. 28 the block 24A is switched from sleep (BI) to sleep (ST).
  • the control signals ENRB, ENNLB and ENSLP maintain the state of FIG. 35 (c).
  • the state of each power switch does not change, and the power supply voltages V VDD-VGND of the blocks 24A and 24B are maintained at voltages V2 and V0, respectively.
  • the control signal VCTRL changes from H to L.
  • the mode of the target block 24A is switched from the BI mode to the ST mode.
  • the block 24A goes into a sleep (ST) state.
  • the sleep (BI) state is switched to the sleep (ST) state for all the retention target blocks 24.
  • step S68 of FIG. 28 all the retention target blocks 24A are changed from the sleep (ST) state to the retention state.
  • the control signals ENNLB, ENSLP and VCTRL maintain the state shown in FIG. 35 (d), and the control signals ENRB are changed from H to L.
  • VPG2A and VPG3A change from H to L
  • the power switch PS2A changes from on to off
  • the power switch PS3A changes from off to on.
  • the power supply voltage V VDD-VGND of the retention target block 24A changes from the voltage V2 to the voltage V1
  • all the retention target blocks 24A are in the retention state.
  • the power supply voltage V VDD-VGND of the block 24B is maintained at a voltage V0.
  • FIG. 36 is a timing chart of the control signal in the retention operation type B.
  • the control signals VCTRL1 to VCTRLn are control signals VCTRL corresponding to each block 241 to 24n.
  • Blocks 241 to 24k are blocks to be retained, and blocks 24k + 1 to 24n are blocks to be shut down.
  • BI standby
  • ENNLB and ENSLP are L
  • ENRB and VCTRL1 to VCTRLn are H
  • the sleep (BI) period is between the times t21 and t22
  • the control signal ENSLP is H.
  • step S58 in FIG. 28 the control signal ENNLB becomes H.
  • the retention target blocks 241 to 24k maintain the sleep (BI) state, and the UDF blocks 24k + 1 to 24n are shut down. This state is period T1.
  • the control signal VCTRL1 of the first block 241 to be retained becomes L.
  • the mode of the block 241 is switched from BI to ST, and the block 241 goes into the sleep (ST) state.
  • the period after the time t24 is the period T2 of the block 241 and the block 241 is the period of the ST mode.
  • the control signal VCTRL2 is L for the second block 242 to be retained. Block 242 goes into a sleep (ST) state and enters a period T2.
  • step S68 is sequentially performed for all the retention target blocks 241 to 24k.
  • the BI mode is switched to the ST mode for all the retention target blocks 241 to 24k.
  • the control signal ENRB becomes L.
  • all the retention target blocks 241 to 24n are in the retention state.
  • the control signal ENRB becomes H.
  • the blocks 241 to 24k to be retained are put into the sleep (ST) state.
  • the control signals VCTRL1 to VCTRLk are sequentially set to H.
  • Blocks 241 to 24k are sequentially put into a sleep (BI) state.
  • the mode switching from the ST mode to the BI mode ends.
  • FIG. 37 is a block diagram showing an example of a control circuit in type C retention operation.
  • the OR circuit 63, the NAND circuit 64 and the AND circuit 65 are replaced by the NAND circuit 74, and the OR circuits 68 and 69 and the AND circuit 70 are replaced by the OR circuit 75 with respect to the control circuit 28B of FIG. 34.
  • the mode control circuit 45 outputs a control signal ENRB from the blocks 24A to every 24B.
  • the output signal and control signal ENNLB of 40B from the UDF storage unit 40A are input to the NAND circuit 74.
  • the output signal of the NAND circuit 74 and the control signal ENRB for each 24B to 24B are input to the AND circuit 65.
  • the output signals of the UDF storage units 40A to 40B and the control signals ENRB for each block 24A to 24B are input to the OR circuit 75.
  • the output signal of the OR circuit 75 is input to the AND circuit 71.
  • Other configurations are the same as those of the control circuit 28B of FIG. 34, and the description thereof will be omitted. In the control circuit 28C, retention can be performed every 24B to 24B.
  • each signal and the power switch is the same as in FIGS. 35 (a) to 35 (e), and the description thereof will be omitted.
  • FIG. 38 is a timing chart of the control signal in the retention operation type C.
  • the control signals ENRB1 to ENRBn are control signals ENRB corresponding to each block 241 to 24n.
  • control signals ENRB1 to ENRBn are H between the times t20 and t23. Others are the same as in FIG.
  • the control signal VCTRL1 becomes L for the first block 241 to be retained.
  • the mode of the block 241 is switched from the BI mode to the ST mode, and the block 241 goes into the sleep (ST) state.
  • the control signal ENRB1 becomes L for block 241.
  • the block 241 is in the retention state.
  • the control signal VCTRL2 is L for the second block 242 to be retained. Block 242 goes into sleep (ST) state.
  • steps S72 and S74 are sequentially performed for all the retention target blocks 241 to 24k.
  • all the retention target blocks 241 to 24n are in the retention state at time t26.
  • control signals ENRB1 to ENRBk and the control signals VCTRL1 to VCTRLk become H in sequence for each block 241 to 24k.
  • Blocks 241 to 24k are sequentially put into sleep (BI).
  • the mode switching from the ST mode to the BI mode ends.
  • VDDH, VDDL, VGND, VSCTRL, VLCTRL and WL were set to 1.2V, 0.2V, 0V, 0.3V, 0.1V and 0V, respectively.
  • H and L of VPG1 were set to 1.4V and 0V, respectively.
  • H and L of VPG2 were set to 1.2V and ⁇ 0.2V, respectively.
  • H and L of VPG3 were set to 1.4V and 0V, respectively.
  • H and L of VCTRL were set to 1.2V and 0V, respectively.
  • the bit lines BL and BLB were set to 1.2 V in the standby state and the sleep state, and set to 0 V in the retention state and the shutdown state.
  • the time for charging the driver 26 at the time of mode switching was set to 15 ns for each subarray 22.
  • the storage capacities of the subarray 22 and the block 24 were set to 8 kbytes and 1 kbyte, respectively.
  • the ratio of the number of memory cells in which the UDF was set to the number of all memory cells in the cell array 20 was defined as the UD ratio.
  • the storage capacity of the cell array 20 was simulated for 32 kbytes, 256 kbytes, and 2 Mbytes.
  • FIGS. 39 (a) to 39 (c) show the BET for the UD ratio in types A to C and Comparative Example 2
  • FIGS. 39 (d) to 39 (f) show the latency for the UD ratio. Is.
  • the BET is constant regardless of the UD ratio.
  • type A when the UD ratio is 0%, it is the same as the BET of Comparative Example 2.
  • the larger the UD ratio the shorter the BET.
  • type B when the UD ratio is 0%, the BET is smaller than that in Comparative Example 2.
  • type B since all the blocks are put into the sleep (BI) state at once before the retention, the power consumption due to the leakage current of the blocks waiting for the retention can be suppressed.
  • type C when the UD ratio is 0%, the BET is smaller than in type B. This is because the sleep (BI) state is sequentially switched from the sleep (ST) state to the retention for each target block, so that the standby time in the sleep (ST) state can be shortened and the power consumption can be suppressed.
  • the latency can be reduced when the UD ratio is larger than that in Comparative Example 2. Latency is the same between types A to C.
  • type A has a long BET, but it is easy to control because it is not necessary to set the sleep state.
  • BET is between types A and C. Control of type B is more complicated than type A because it sets a sleep state, but it is easier than type C because retention is performed collectively.
  • type C the BET is short, but the control is complicated because the retention is sequentially performed.
  • FIGS. 40 (a) to 40 (c) are diagrams comparing the VNR-SRAM and the 6T-SRAM in the second embodiment.
  • the standby power of the 6T-SRAM in the standby state and the sleep state is compared with the standby power of the type C VNR-SRAM.
  • the standby power can be reduced by about 30% when the standby state is changed to the sleep state.
  • the standby voltage can be reduced by 90% even if the UD ratio is 0%.
  • the standby power can be reduced by 99%.
  • the memory cell 10 transmits the BI mode (first mode) which has substantially no hysteresis in the transmission characteristics. It has a bistable circuit 12 including an inverter circuit 14 (first inverter circuit) and an inverter circuit 16 (second inverter circuit) for switching from an ST mode (second mode) having hysteresis in characteristics.
  • the bistable circuit 12 the output node and the input node of the inverter circuit 14 are connected to the input node and the output node of the inverter circuit 16, respectively.
  • the control circuit 28 shuts down (power shuts down) one or more first memory cells of the plurality of memory cells 10 that do not need to hold data. ).
  • the control circuit 28 sets the bistable circuit 12 in the remaining one or more second memory cells of the plurality of memory cells 10 to ST mode, and as in steps S68 and S74, ST.
  • the voltage V1 (second power supply voltage) is supplied to the bistable circuit 12 in the second memory cell while maintaining the mode.
  • the voltage V1 is lower than the voltage V3 (first power supply voltage) supplied to the bistable circuit 12 when reading and / or writing data, and is a voltage at which the bistable circuit 12 in ST mode can hold the data.
  • each block 24 of the cell array 20 is divided into a plurality of blocks 24 including at least two memory cells 10.
  • the control circuit 28 extracts one or more first blocks from the plurality of blocks 24 that do not have to hold data.
  • the control circuit 28 shuts down (power off) the first block.
  • the control circuit 28 sets the bistable circuit in the remaining one or a plurality of second blocks of the plurality of blocks 24 into the ST mode.
  • the control circuit 28 supplies the voltage V1 to the bistable circuit 12 in the second block while maintaining the ST mode.
  • the first block in which the UDF is set is shut down in block units, it is possible to suppress the power consumption for switching the mode of the first block and maintaining the retention state. In addition, latency can be reduced. Further, since the first block in which the UDF is set is shut down first, the power consumption due to the leakage current when waiting for the mode switching operation can be reduced.
  • the control circuit 28 sets the retention target block as a power supply voltage in the retention target second block as in step S70 of FIGS. 28 and 31 before setting the retention target block in ST mode.
  • the voltage V2 (third power supply voltage) is supplied (that is, put into a sleep state).
  • the voltage V2 is a power supply voltage that is lower than the voltage V3 and higher than the voltage V1 so that the bi-stable circuit 12 in the BI mode can hold data. As a result, the power consumption during the period of waiting for shutdown and retention can be suppressed.
  • step S72 the control circuit 28 sets the bistable circuit 12 in the second block to ST mode in a state where the voltage V2 is supplied to the bistable circuit 12 in the second block. As a result, the power consumption during the period of waiting for retention can be suppressed.
  • the control circuit 28 is a twin in the block 241 in a state where the voltage V2 is supplied to the bistable circuit of the block 241 (third block) in the plurality of second blocks.
  • the stabilizing circuit 12 is set to ST mode (step S72 in FIG. 31, period T2), and the voltage V1 is supplied while the bistable circuit 12 in the block 241 is set to ST mode (step S74, period T3).
  • the control circuit 28 supplies the voltage V1 to the bistable circuit 12 of the block 242 (fourth block) different from the block 241 of the plurality of second blocks, and the bistable circuit 12 in the block 242. Is set to ST mode, and the voltage V1 is supplied in a state where the bistable circuit 12 in the block 242 is set to ST mode.
  • the period of waiting for retention can be shortened, and power consumption can be suppressed.
  • the control circuit 28 sets the bistable circuit 12 in the second block to ST mode with the voltage V2 supplied to the bistable circuit 12 in the second block, and then sets the bistable circuit 12 in the ST mode.
  • the voltage V1 is supplied with the bistable circuit 12 in the second block in the ST mode (step S74 in FIG. 28, time t26 in FIG. 36).
  • control can be simplified as compared with type C.
  • the control circuit 28 may collectively supply the voltage V2 with the bistable circuits 12 in the plurality of second blocks in the ST mode. Further, the control circuit 28 may divide the plurality of second blocks into a plurality of groups including one or the plurality of second blocks, and sequentially supply the voltage V2 to each of the divided groups.
  • the register 40 (storage circuit) is provided outside the cell array 20 and stores UDF (information indicating a block that does not need to hold data) received from the external circuit.
  • the control circuit 28 extracts a block that does not need to hold data based on the UDF (step S56).
  • the inverter circuits 14 and 16 include FETs m1 and m3 (first FET), FETs m2b and m4b (second FET), FETs m2a and m4a (third FET), and FETs m9 and m10 (fourth FET).
  • FETs m1 and m3 are P-channel (first conductive type channel) FETs, the source is connected to the power supply line 15a (first power supply line), the drain is connected to the output nodes Q and QB, and the gate is the input node N1. And is connected to N3.
  • FETs m2b and m4b are N-channel (second conductive type channel opposite to the first conductive type) FET, the source is connected to the ground line 15b (second power line), and the drain is connected to the intermediate nodes N2 and N4. And the gate is connected to the input nodes N1 and N3.
  • FETs m2a and m4a are N-channel FETs, the source is connected to the intermediate nodes N2 and N4, the drain is connected to the output nodes Q and QB, and the gate is connected to the input nodes N1 and N3.
  • FETs m9 and m10 are N-channel FETs, one of the source and drain is connected to the intermediate nodes N2 and N4, the other of the source and drain is connected to the control line CTRL (control node), and the gate outputs. It is connected to nodes Q and QB. Thereby, the BI mode and the ST mode can be switched by the voltage of the control line CTRL.
  • the first FET may be FETs m2 and m4
  • the second FET may be FETs m1a and m3a
  • the third FET may be FETs m1b and m3b
  • the fourth FET may be FETs m9a and m10a.
  • the first conductive type channel is an N channel
  • the second conductive type channel is a P channel.
  • the first FET may be provided with FETs m1a and m1b and m3a and m3b connected in series between the power supply line 15a and the output nodes Q and QB.
  • the feedback transistors FBTr on the pull-down side FETs m9 and m10, are N-channel FETs.
  • the FETs m9a and m10a, which are feedback transistors FBTr on the pull-up side, are P-channel FETs.
  • the type provided with FETs m9 and m10 is called a pull-down feedback PDFB.
  • the type provided with the FETs m9a and m10a is called a pull-up type feedback PUFB.
  • the type provided with the FETs m9, m9a, m10 and m10a is called a pull-up / pull-down type feedback PUPDFB.
  • a type in which a power switch 30 is provided between the power supply line 15a and the power supply 15c is called a header PS.
  • a type in which a power switch 30 is provided between the ground wire 15b and the ground 15d is called a footer PS.
  • the memory cell in FIG. 17 is a header PS / PDFB.
  • the memory cell in FIG. 21A is a header PS / PUFB.
  • the memory cell in FIG. 21B is a header PS / PUPDFB.
  • V VDD V VDDH
  • CTRL voltage VFNL Retention state ST mode
  • V VDD V VDDL
  • VFNL ⁇ VFNH V VDDL ⁇ V VDDH
  • VFNL ⁇ VFNH V VDDL, V VDDH, VGND
  • VFNL and VFNH are, for example, 0.2V, 1.2V, 0.0V, 0.0V and 0.2V, respectively.
  • the FET m9 when the node Q is at a high level, the FET m9 is turned on, and the node N2 is charged from the control line CTRL whose voltage is VFNH.
  • the FET m9 since the FET m9 is an N channel and the threshold voltage Vth of the FET m9 is positive, the charging potential from the control line CTRL is substantially VFNH-Vth.
  • the feedback effect of the FET m9 which is an FBTr, may decrease, and the operational stability (for example, noise margin) of the bistable circuit in the retention state may decrease.
  • FIG. 41 is a circuit diagram of the header PS / PDFB / type 1 memory cell in the third embodiment
  • FIG. 42 is a circuit diagram of the header PS / PDFB / type 2 memory cell in the third embodiment.
  • Type 1 is a type in which a driver 26 is not provided
  • type 2 is a type in which a driver 26 is provided.
  • the FBTr FETs m9 and m10 are P-channel FETs. The gates of FETs m9 and m10 are connected to nodes QB and Q, respectively.
  • the power switch 30 applies a virtual power supply voltage V VDD to the power supply line 15a.
  • the driver 26 is not provided, and a constant voltage VFN is applied to the control line CTRL.
  • a driver 26 is provided in type 2 of FIG. 42.
  • the driver 26 is an inverter 26a, which supplies a voltage VFNL to the control line CTRL when the control signal VCTRL is at a high level, and supplies a voltage VFNH to the control line CTRL when the control signal VCTRL is at a low level.
  • Other configurations are the same as those in FIG. 17 of the second embodiment, and the description thereof will be omitted.
  • V VDD V VDDH
  • CTRL voltage VFN Retention state ST mode
  • V VDD V VDDL
  • VFN V VDDL ⁇ V VDDH V VDDL ⁇ VFN ⁇ V VDDH, or VFN ⁇ V VDDL ⁇ V VDDH (in this relationship, nodes N3 and N4 are not preferable because they are difficult to charge from the control line CTRL).
  • V VDDL, V VDDH, VGND and VFN are, for example, 0.2V, 1.2V, 0.0V and 0.2V, respectively.
  • V VDD and CTRL in the standby state and the retention state in the header PS PDFB type 2 shown in FIG. 42 are the same as the voltages illustrated in FIG.
  • the FET m9 is turned on because the node QB is at a low level, and the voltage of the node N2 is VFN (FIG. 41) or VFNH (FIG. 41). It is charged from the control line CTRL which is 42). Since the FET m9 is a P channel and a sufficiently low voltage is applied to the source and drain at the gate of the FET m9, the node N2 can be pulled up to VFN (FIG. 41) or VFNH (FIG. 42). As a result, the feedback effect of FETm9 is sufficiently generated. Therefore, the operational stability of the bistable circuit in the retention state can be improved.
  • type 1 shown in FIG. 41 by making the VFN sufficiently smaller than that of the V VDDH, it is possible to switch between the ST mode and the BI mode even when the VFN is a constant voltage. For example, when the node Q is at a high level, the voltage of the node N2 is sufficiently lower than V VDDH even if the FET m9 is turned on. Therefore, the bistable circuit 12 functions as a BI mode. As a result, the driver 26 for the control line CTRL in FIG. 17 becomes unnecessary, and the chip area can be reduced. Further, by making the VFN sufficiently lower than the V VDDH, the leakage current in the standby state and the retention state can be suppressed.
  • type 1 when V VDDH is close to VFN, the transition to BI mode may be insufficient.
  • type 2 the voltage of the CTRL is VFNH in the ST mode, and the voltage of the CTRL is VFNL in the BI mode. As a result, it is possible to shift to a sufficient BI mode.
  • the channel width W / length L of each FET is as follows.
  • V VDDH 1.2V
  • FIG. 43A is a diagram showing the transmission characteristics of the inverter circuit in the retention state. Comparative Example 3 shows the characteristics of the 6T-SRAM in the normal state. As shown in FIG. 43A, in the second embodiment, the opening of the butterfly characteristic is larger and the noise margin is larger than that of the third comparative example. The noise margins of types 1 and 2 of the third embodiment are larger than those of the second embodiment.
  • FIG. 43 (b) is a diagram showing SNM (Static Noise Margin) in the standby state.
  • V VDD 1.2V, which is the BI mode.
  • Retention indicates a state in which the FETs m5 and m6 are turned off and data is retained, not in the ULV retention state.
  • the lead shows a state in which the FETs m5 and m6 are turned on and the bit lines BL and BLB are set to 1.2 V.
  • the light shows a state in which the FETs m5 and m6 are turned on, one of the bit lines BL and BLB is 1.2V, and the other is 0V.
  • the SNM of Example 3 is slightly larger than that of Comparative Example 3 and Example 2. This is because in Example 3, the potentials of the nodes N3 and N4 are slightly higher than in Example 2 because the FETs m9 and m10 are P channels. Therefore, a little feedback by FETs m9 and m10 is applied in the BI mode. This is because the SNM increases a little.
  • FIG. 44A is a diagram showing an SNM in a retention state.
  • the SNM in Comparative Example 3 is about 50 mV, whereas in the second embodiment, the SNM can be increased to about 80 mV.
  • the SNM is about 100 mV, and the SNM can be increased by about 20 mV from Example 2 and the SNM by about 50 mV from Comparative Example 3.
  • the SNMs of Type 1 and Type 2 of Example 3 are almost the same.
  • the SNM can be almost doubled as compared with Comparative Example 2.
  • the SNM in the retention state can be made larger than that in the second embodiment, and the operation stability is improved.
  • V VDDL can be made lower than that in Example 2.
  • power consumption can be suppressed.
  • Type 1 of Example 3 has a SNM of about 6 mV larger than that of Type 2. This is because the driver 26 is not provided in the type 1, so that the control line CTRL is effectively biased.
  • the PUPDFB described later can have a larger noise margin than the PUFB and the PDFB.
  • FIG. 44 (b) is a diagram showing the leak power in the BI mode.
  • the leakage power in the standby state (BI mode) of the second embodiment, can be reduced by 25% as compared with the third comparative example.
  • the leakage power can be reduced by 70% in Type 2 and 81% in Type 1 as compared with Comparative Example 3.
  • the leakage power in the standby state can be suppressed as compared with the second embodiment.
  • FIGS. 44 (c) and 44 (d) are diagrams showing the leakage power in the ST mode.
  • Comparative Example 3 of FIG. 44 (c) is the leakage power of the 6T-RAM in the standby state.
  • the leakage power can be reduced by 92% as compared with the standby state of Comparative Example 3.
  • Types 1 and 2 of Example 3 can reduce leakage power by 95% and 94%, respectively, as compared with Comparative Example 3.
  • the leakage power can be reduced by 40% and 20%, respectively, as compared with the second embodiment.
  • FIG. 45 is a circuit diagram of a footer PS / PDFB / type 2 memory cell according to the third embodiment. As shown in FIG. 45, VDD is supplied to the power supply line 15a, and a power switch 30 is provided between the ground line 15b and the ground. The ground wire 15b is a virtual ground voltage VVGND.
  • VVGND VVGNDL
  • CTRL voltage VFNL Retention state ST mode
  • VVGND VVGNDH
  • CTRL voltage VFNH Each voltage has the following relationship, for example.
  • indicates a neighborhood.
  • VVGNDL, VVGNDH, VDD, VFNL and VFNH are, for example, 0.0V, 1.0V, 1.2V, 0.0V and 1.2V, respectively.
  • PDFB In PDFB, as shown in FIG. 41, when the header PS is used, when V VDDH-VGND is large, for example, 0.5 V or more, for example, when VFN-VGND ⁇ (V VDDH-VGND) / 2, type 1 is used. Can be done. When V VDDH-VGND is small, for example, 0.5 V or less, the transition to BI mode may be insufficient in Type 1. Therefore, by using type 2, it is possible to transition to a sufficient BI mode. In the footer / PDFB, it is type 2 as shown in FIG. 45.
  • FIG. 46 is a circuit diagram of a footer PS / PUFB / type 1 memory cell according to the third embodiment.
  • FETs m9a and m10a are N-channel FETs. The gates of FETs m9a and m10a are connected to nodes QB and Q, respectively.
  • VDD is supplied to the power line 15a, and a power switch 30 is provided between the ground line 15b and the ground 15d.
  • the ground wire 15b is a virtual ground voltage VVGND.
  • a constant voltage VFP is applied to the control line CTRL.
  • Other configurations are the same as those in FIG. 21A of the second embodiment, and the description thereof will be omitted.
  • VVGND VVGNDL
  • CTRL VFP Retention state
  • VVGND VVGNDH
  • CTRL voltage VFP Each voltage has the following relationship, for example.
  • VVGNDL ⁇ VFP VVGNDH VVGNDL ⁇ VFP ⁇ VVGNDH, or VVGNDL ⁇ VVGNDH ⁇ VFP (in this relationship, nodes N2a and N4a are not preferable because they are difficult to discharge from the control line CTRL).
  • VVGNDL, VVGNDH, VDD and VFP are, for example, 0.0V, 1.0V, 1.2V and 1.0V, respectively.
  • FIG. 47 is a circuit diagram of a header PS / PUFB / type 2 memory cell according to the third embodiment.
  • a driver 26 is provided with respect to FIG.
  • the driver 26 is an inverter 26a, and outputs a voltage VFPH to the control line CTRL when the control signal VCTRL output by the control circuit 28 is at a low level, and outputs a voltage VFPL to the control line CTRL when the VCTRL is at a high level.
  • V VDD V VDDH
  • CTRL voltage VFPH Retention state ST mode
  • V VDD V VDDL
  • PUFB In PUFB, as shown in FIG. 46, in the case of footer PS, when VDD-VVGNDL is large, for example, 0.5 V or more, for example, VDD-VFP ⁇ ( VDD-VVGNDL) / 2, type 1 is used. Can be done. When VDD-VVGNDL is small, for example, 0.5 V or less, the transition to BI mode may be insufficient in Type 1. Therefore, by using type 2, it is possible to transition to a sufficient BI mode.
  • the header / PUFB is of type 2 as shown in FIG. 47.
  • FIG. 48 is a circuit diagram of the memory cells of the header PS / PUPDFB in the third embodiment.
  • FETs m9 and m10 are P-channel FETs, and FETs m9a and m10a are N-channel FETs.
  • the gates of FETs m9 and m9a are connected to node QB, and the gates of FETs m10 and m10a are connected to node Q.
  • a power switch 30 is provided between the power supply line 15a and the power supply 15c, and the ground voltage VGND is supplied to the ground line 15b.
  • a constant voltage VFN is supplied to the control lines CTRLN of the FETs m9 and m10.
  • a voltage is applied from the driver 26 to the control line CTRLP of the FETs m9a and m10a.
  • the driver 26 is an inverter 26a, and outputs a voltage VFPH to the control line CTRLP when the control signal VCTRL output by the control circuit 28 is low level, and outputs a voltage VFPL to the control line CTRLP when the VCTRL is high level.
  • Other configurations are the same as those in FIG. 21B of the second embodiment, and the description thereof will be omitted.
  • the operating conditions of the header PS / PUPDFB memory cells shown in FIG. 48 are the operating conditions of the header PS / PDFB / type 1 memory cells shown in FIG. 41 and the header PS / PUFB / type 2 memory cells shown in FIG. 47. It is a combination of operating conditions.
  • FIG. 49 is a circuit diagram of the memory cell of the footer PS / PUPDFB in the third embodiment.
  • a power supply voltage VDD is supplied to the power supply line 15a, and a power switch 30 is provided between the ground line 15b and the ground 15d.
  • a constant voltage VFP is supplied to the control lines CTRLP of the FETs m9a and m10a.
  • a voltage is applied from the driver 26 to the control lines CTRLN of the FETs m9 and m10.
  • the driver 26 is an inverter 26a, and outputs a voltage VFNH to the control line CTRLN when the control signal VCTRL output by the control circuit 28 is low level, and outputs a voltage VFNL to the control line CTRLN when the VCTRL is high level.
  • Other configurations are the same as those in FIG. 48, and description thereof will be omitted.
  • the operating conditions of the footer PS / PUPDFB memory cell shown in FIG. 49 are the operating conditions of the footer PS / PDFB / type 2 memory cell shown in FIG. 45 and the operating conditions of the footer PS / PUFB / type 1 memory cell shown in FIG. It is a combination of operating conditions.
  • V VDD in the standby state may be V VDDHS slightly lower than V VDDH in the normal operating state.
  • VVGND in the standby state may be VVGNDLS slightly higher than VVGNDL in the normal operating state.
  • the header PS may use V VDDM such that V VDDL ⁇ V VDDM ⁇ V VDDH
  • the footer PS may use VVGNDM such that VVGNDL ⁇ VVGNDM ⁇ VVGNDL.
  • the P-channel FETs m1 and m3 (first FET of the first conductive type channel)
  • the source is connected to the power line 15a (first power line)
  • the drain is connected to the nodes Q and QB (output node)
  • the gate is connected to the nodes N1 and N3 (input node).
  • the N-channel FETs m2b and m4b (second conductive type channel second FET)
  • the source is connected to the ground wire 15b (second power supply line) to which the power supply voltage V VDD-VGND is supplied between the source and the power supply line 15a, and drains.
  • N2 and N4 intermediate nodes
  • gates are connected to nodes N1 and N3.
  • the source is connected to the nodes N2 and N4
  • the drain is connected to the nodes Q and QB
  • the gate is connected to the nodes N1 and N3.
  • one of the source and drain is connected to the nodes N2 and N4, the other of the source and drain is connected to the control line CTRL (control node), and the gate. Is connected to nodes N1 and N3.
  • the output node of the inverter circuit 14 and the input nodes N1 and N3 of the inverter circuit 16 are connected to the node Q (first storage node), and the input nodes N1 and N3 of the inverter circuit 14 and the output node of the inverter circuit 16 are the node QB (first storage node). It is connected to 2 storage nodes).
  • the operation stability in the ST mode can be improved by appropriately setting the power supply voltage V VDD-VGND and the voltage of the control line CTRL.
  • the gate of FET m9 of the inverter circuit 14 may be connected to the output node of the inverter circuit 16, and the gate of FET m10 of the inverter circuit 16 may be connected to the output node of the inverter circuit 14.
  • N-channel FETs m2 and m4 correspond to the first FET
  • P-channel FETs m1a and m3a correspond to the second FET
  • P-channel FETs m1b and m3b correspond to the third FET
  • N-channel FETs m9a and m10a correspond to the fourth FET.
  • the ground line 15b and the power supply line 15a correspond to the first power supply line and the second power supply line, respectively.
  • the power switch 30 switches the power supply voltage V VDD-VGND to the voltage V VDDH-VGND (first voltage) and the voltage VVDDL-VGND (second voltage) lower than the voltage V VDDH-VGND.
  • the voltage V VDDH-VGND is a voltage at which the bistable circuit 12 can write and read data
  • the voltage V VDDL-VGND is lower than the voltage V VDDH-VGND, and the bistable circuit 12 cannot write and read data and can hold the data. Voltage. As a result, power consumption can be suppressed when holding data.
  • the power supply circuit may generate a first voltage and a second voltage from one power supply using a transistor such as a power switch and supply them to the bistable circuit. Further, in the control circuit, a power switch may be connected to each of the two power supplies, and the first voltage and the second voltage may be supplied to the bistable circuit by controlling the power switch.
  • the voltages VDD-VVGNDL and VDD-VVGNDH correspond to the first voltage and the second voltage, respectively.
  • the control line CTRL has a constant bias (VFN in the case of PDFB, VFP in the case of PUFB). Be supplied. As a result, the driver 26 becomes unnecessary, and the chip size can be reduced.
  • the constant bias (VFN) is the voltage V VDDH of the power supply line 15a (first power supply line) and the ground line 15b (ground line 15b) when V VDDH-VGND (first voltage) is supplied as the power supply voltage. It may be a bias between the voltage of the second power supply line) and the voltage VGND.
  • the constant bias (VFP) is the voltage VVGNDL of the ground line 15b (first power supply line) and the power supply line 15a (when VDD-VVGNDL (first voltage) is supplied as the power supply voltage. It may be a bias with the voltage VDD of the second power line).
  • the constant bias (VFN) is the voltage V VDDH of the power supply line 15a (first power supply line) and the ground line 15b (ground line 15b) when V VDDH-VGND (first voltage) is supplied as the power supply voltage. It is closer to the voltage VGND of the ground line 15b than the middle (V VDDH-VGND) / 2 with the voltage VGND of the second power supply line).
  • the constant bias (VFP) is the voltage VVGNDL of the ground line 15b (first power supply line) and the power supply line 15a (when the VDD-VVGNDL (first voltage) is supplied as the power supply voltage.
  • the VFN is preferably closer to VGND than (V VDDH-VGND) / 3, and in the footer PS / PUFB, the VFN is preferably closer to VDD than 2 (VDD-VVGNDL) / 3.
  • the control circuit 28 supplies the control line CTRL with a low level and a higher level higher than the low level, respectively, when the power switch 30 supplies V VDDH-VGND and V VDDL-VGND in PDFB.
  • the control circuit 28 is PUFB
  • the control circuit 28 supplies the control line CTRL with a high level and a low level lower than the high level, respectively.
  • the high level may have a voltage higher than the low level.
  • a constant bias is applied to the control line CTRL of the inverter circuits 14 and 16, and the inverter circuits 14 and 16 are supplied with the voltage V3 as the power supply voltage.
  • the ST mode is set when the voltage V1 is supplied. This eliminates the need for the control signal VCTRL.
  • 50 (a) to 50 (f) are diagrams showing the arrangement of power switches connected to cells.
  • the voltage of the power supply 15c is VDD and the voltage of the ground 15d is VGND.
  • the power switch 30 is connected between the power supply line 15a and the power supply 15c of the memory cell 10.
  • the power switch 30 switches the virtual power supply voltage V VDD of the power supply line 15a between V VDDH and V VDDL. Even if the virtual power supply voltage V VDD is switched to V VDDH and VVDDL, the voltage VVGND of the ground wire 15b is constant at the ground voltage VGND.
  • the power supply voltage in the standby state (BI mode) is V VDDH-VGND
  • the power supply voltage in the low voltage (ULV) retention state (ST mode) is VVDDL-VGND.
  • the power switch 30 is connected between the ground wire 15b and the ground 15d of the memory cell 10.
  • the power switch 30 switches the virtual ground voltage VVGND of the ground wire 15b between VVGNDH and VVGNDL. Even if the virtual ground voltage VVGND is switched to VVGNDH and VVGNDL, the voltage V VDD of the power supply line 15a is constant at the power supply voltage VDD.
  • the power supply voltage in the standby state (BI mode) is VDD-VVGNDL
  • the power supply voltage in the low voltage retention state (ST mode) is VDD-VVGNDH.
  • the power switch 30 is connected to both the power supply line 15a and the power supply 15c and the ground line 15b and the ground 15d.
  • the power switch 30 switches the virtual power supply voltage V VDD of the power supply line 15a to V VDDH and V VDDL, and switches the virtual ground voltage VVGND of the ground line 15b to VVGNDH and VVGNDL.
  • the power supply voltage in the standby state (BI mode) is V VDDH-VVGNDL
  • the power supply voltage in the low voltage retention state (ST mode) is V VDDL-VVGNDH.
  • the power switch 30 includes a PFET 30a connected between the power supply VDD1 and the power supply line 15a, a PFET 30b connected between the power supply VDD2 and the power supply line 15a, and the PFET 30b. May be provided.
  • the FET 30a When the FET 30a is turned on and the FET 30b is turned off, the virtual power supply voltage V VDD becomes VDD1
  • the FET 30a When the FET 30a is turned off and the FET 30b is turned on, the V VDD becomes VDD2.
  • the FETs 30a and 30b are turned off, the power supply is cut off.
  • the power switch 30 includes an NFET 30c connected between the VGND1 and the ground wire 15b, and an NFET 30d connected between the VGND2 and the ground wire 15b. You may. When the FET 30c is turned on and the FET 30d is turned off, the virtual ground voltage VVGND becomes VGND1, and when the FET 30c is turned off and the FET 30d is turned on, the VVGND becomes VGND2. When the FETs 30c and 30d are turned off, the power supply is cut off.
  • the power switch 30 includes a PFET 30a connected between VDD1 and the power supply line 15a, a PFET30b connected between VDD2 and the power supply line 15a, and a VGND1. It includes an NFET 30c connected between the ground wire 15b and an NFET 30d connected between the VGND2 and the ground wire 15b.
  • the FET m9a is fed back between the P-channel FETs m1a and m1b of the inverter circuit 14, and the FET m10a is fed back between the P-channel FETs m3a and m3b of the inverter circuit 16.
  • PUFB pulse-up type feedback
  • the PUPDFB (pull-up / pull-down type feedback) is a type in which both the PDFB FETs m9 and m10 and the PUFB FETs m9a and m10a are provided as shown in FIGS. 48 and 49.
  • FIG. 51 (a) to 52 (c) are diagrams showing the arrangement of drivers connected to cells.
  • the PUFB type 2 type is provided with a driver 26.
  • the driver 26 switches the voltage VFP between the voltage VFPH and the voltage VFPL based on the control signal VCTRL output by the control circuit 28.
  • the inverter circuits 14 and 16 are in BI mode, and when the voltage VFP is VFPL (low level), they are in ST mode.
  • the PUFB type 1 type does not have the driver 26.
  • the VFP has a constant bias, but when the power supply voltage is switched, the inverter circuits 14 and 16 switch between the BI mode and the ST mode.
  • the driver 26 is provided in the PDFB type 2 type.
  • the driver 26 switches the voltage VFN between the voltage VFNH and the voltage VFNL based on the control signal VCTRL output by the control circuit 28.
  • the inverter circuits 14 and 16 are in BI mode, and when the voltage VFN is VFNH (high level), they are in ST mode.
  • the driver 26 is not provided in the PDFB type 1 type.
  • the VFN has a constant bias, but when the power supply voltage is switched, the inverter circuits 14 and 16 switch between the BI mode and the ST mode.
  • both the VFP and VFN of PUPDFB are of the type 2 type, and the driver 26 is provided for both the voltage VFP and the VFN.
  • the inverter circuits 14 and 16 are in BI mode, and when the voltage VFP is VFPL and the voltage VFN is VFNH, they are in ST mode.
  • VFP of PUPDFB is type 2 and the VFN is type 1
  • a driver 26 is provided in the voltage VFP
  • the VFN has a constant bias.
  • the inverter circuits 14 and 16 are in BI mode, and when the voltage VFP is VFPL, they are in ST mode.
  • the VFP of PUPDFB is type 1 and the VFN is type 2
  • the voltage VFP is a constant bias
  • the driver 26 is provided in the VFN.
  • the inverter circuits 14 and 16 are in BI mode, and when the voltage VFN is VFNH, they are in ST mode.
  • FIGS. 53 (a) and 53 (b) are diagrams showing the voltages of the header PS / PDFB / type 1 and the footer PS / PUFB / type 1, respectively.
  • V VDDH and V VDDL with respect to VGND are shown in the vertical direction
  • VVGNDL and VVGNDH with respect to VDD are shown in the vertical direction.
  • V VDDH is supplied to the power supply line 15a and VGND is supplied to the ground line 15b in the standby state.
  • the VFN has a constant bias of about V VDDL
  • the VFN is sufficiently lower than the V VDDH, so that the inverter circuits 14 and 16 are in the BI mode.
  • V VDDL is supplied to the power supply line 15a and VGND is supplied to the ground line 15b.
  • the VFN is set to about VVDDL, the inverter circuits 14 and 16 are in the ST mode because the VFN is higher than the VGND.
  • the constant voltage VFN should be smaller than V VDDH and larger than VGND. If the constant voltage VFN is too close to V VDDH, the inverter circuits 14 and 16 are unlikely to be in BI mode when the virtual power supply voltage V VDD is set to V VDDH. Therefore, the constant voltage VFN is preferably equal to or less than the midpoint voltage between V VDDH and VGND (that is, (V VDDH-VGND) / 2 or less), and is equal to or less than the voltage obtained by adding the voltage of the difference between VVDDL and VGND to V VDDL (that is, V VDDL + (V VDDL) -VGND) / 2 or less) is more preferable.
  • the constant voltage VFN is preferably equal to or higher than the midpoint voltage between V VDDL and VGND (that is, (V VDDL-VGND) / 2 or higher).
  • the BI mode is set when the VFP is at a high level, and the ST mode is set when the VFP is at a low level. Therefore, if the header PS / PUFB / type 1 type is used, the BI and ST modes cannot be switched.
  • VVGNDL is supplied to the ground line 15b and VDD is supplied to the power line 15a in the standby state.
  • the inverter circuits 14 and 16 are in the BI mode because the VFP is sufficiently higher than the VVGNDL.
  • VVGNDH is supplied to the ground wire 15b and VDD is supplied to the power supply line 15a.
  • the inverter circuits 14 and 16 are in the ST mode because the VFP is lower than the VDD.
  • the constant voltage VFP should be larger than VVGNDL and smaller than VDD. If the constant voltage VFP is too close to VVGNDL, the inverter circuits 14 and 16 are unlikely to be in BI mode when the virtual ground voltage VVGND is set to VVGNDL. Therefore, the constant voltage VFP is preferably equal to or higher than the midpoint voltage between VDD and VVGNDL (that is, (VDD-VVGNDL) / 2 or higher), and is equal to or higher than the voltage obtained by subtracting the voltage difference between VDD and VVGNDH from VVGNDH (that is, VVGNDH-(that is, VVGNDH-). VDD-VVGNDH) / 2 or more) is more preferable.
  • the constant voltage VFP is preferably equal to or lower than the voltage at the midpoint between VDD and VVGNDH (that is, (VDD-VVGNDH) / 2 or less).
  • Footer PS / PDFB BI mode is set when VFN is low level, and ST mode is set when VFN is high level. Therefore, if the footer PS / PDFB / type 1 type is used, the BI and ST modes cannot be switched.
  • Table 1 is a table summarizing whether or not constant bias is possible.
  • PUFB constant bias is possible in the footer PS.
  • a constant bias is not possible in the header PS and the dual PS, and the driver 26 is used.
  • PUPDFB in the header PS, a constant bias is possible only on the PD (that is, VFN) side.
  • PD that is, VFN
  • PU that is, VFP
  • dual PS constant bias is not possible.
  • the gate of the feedback FET m9 and / or m9a is connected to the input node of the inverter circuit 14 or the output node of the inverter circuit 16, and the gate of the feedback FET m10 and / or m10a is connected to the input node of the inverter circuit 16 or the inverter circuit 14 It is connected to the output node of.
  • Example 3 the header PS / PDFB / type 1 type in Table 1 is shown in FIG. 41, the footer PS / PUFB / type 1 type is shown in FIG. 46, and the header PS / PUPDFB / PD side type 1 is shown in FIG. 48. , Footer PS / PUPDFB / PU side type 1 is shown in FIG. 49.
  • the gate of the feedback FET m9 and / or m9a may be connected to the output node of the inverter circuit 14, and the gate of the feedback FET m10 and / or m10a may be connected to the output node of the inverter circuit 16.
  • Example 2 This case is referred to as Example 2.
  • Table 1 also holds for the second embodiment.
  • FIG. 54 is a circuit diagram of a header PS / PDFB / type 1 type memory cell according to the fourth embodiment.
  • the FET m9 (and m10) is an N-channel FET, and the gate is connected to the output node of the inverter circuit 14 (and 16).
  • Other configurations are the same as those in FIG. 41 of the third embodiment, and the description thereof will be omitted.
  • FIG. 55 is a circuit diagram of a footer PS / PUFB / type 1 type memory cell according to the fourth embodiment.
  • the FET m9a (and m10a) is a P-channel FET, and the gate is connected to the output node of the inverter circuit 14 (and 16).
  • Other configurations are the same as those in FIG. 46 of the third embodiment, and the description thereof will be omitted.
  • FIG. 56 is a circuit diagram of the header PS / PUPDFB / PD side type 1 type in the fourth embodiment.
  • the FET m9 (and m10) is an N-channel FET
  • the FET m9a (and m10a) is a P-channel FET
  • the gate is connected to the output node of the inverter circuit 14 (and 16).
  • Other configurations are the same as those in FIG. 48 of the third embodiment, and the description thereof will be omitted.
  • FIG. 57 is a circuit diagram of the footer PS / PUPDFB / PU side type 1 type in the fourth embodiment.
  • the FET m9 (and m10) is an N-channel FET
  • the FET m9a (and m10a) is a P-channel FET
  • the gate is connected to the output node of the inverter circuit 14 (and 16).
  • Other configurations are the same as those in FIG. 49 of the third embodiment, and the description thereof will be omitted.
  • Modification 1 of the fourth embodiment is an example of a master-slave type flip-flop circuit.
  • FIG. 58 is a circuit diagram of an electronic circuit according to a first modification of the fourth embodiment. As shown in FIG. 58, latch circuits (D latch circuits) 76 and 77 are provided. Latch circuits 76 and 77 are master-side and slave-side latch circuits, respectively.
  • the latch circuit 76 includes a bistable circuit 80 having inverters 80a and 80b and an inverter 78a. The inverter 78a operates when the clock signal C is at a high level, and the inverter 80b operates when the clock signal C is at a low level.
  • the latch circuit 77 includes a bistable circuit 12 and a pass gate 79a.
  • a pass gate 79b is provided in the loop of the bistable circuit 12.
  • the pass gate 79a operates when the clock signal C is at a low level
  • the pass gate 79b operates when the clock signal C is at a high level.
  • the node QB is output as a Q signal via the inverter 78b.
  • the clock generation circuit 81 operates when the enable signal VEN is at a high level, and does not operate when the enable signal VEN is at a low level.
  • the clock generation circuit 81 outputs a high level as a clock signal C when a low level is input as a clock signal VCLK, outputs a low level as a clock signal CB, and outputs a low level as a clock signal C when a high level is input as a clock signal VCLK. Output high level as CB.
  • the virtual power supply voltage V VDD is supplied from the power switch 30 to the power supply line 15a, and the ground voltage VGND is supplied to the ground line 15b, which is a header PS type.
  • the feedback FETs of the inverter circuits 14 and 16 are P-channel FETs m9 and m10, which are of the PDFB type.
  • the voltage VFN is a constant voltage and is a type 1 type.
  • the gate of the FET m9 (and m10) is connected to the output node of the inverter circuit 16 (and 14), which is the third embodiment.
  • the modification 1 of FIG. 58 is a header PS / PDFB / type 1 type / embodiment 3 type.
  • the master-slave type flip-flop circuit may be a footer PS / PUPFB / type 1 type, a header PS / PUPDFB / PD side type 1 type, or a footer PS / PUPDFB / PU side type 1 type.
  • the bistable circuit 12 may be of the third embodiment or the second embodiment. The bistable circuit 12 may be used for the master side latch circuit.
  • Circuit A Normal delay flip-flop circuit
  • Circuit B Header PS / PDFB / Type 2 type / Example 2 type
  • Circuit C Header PS / PDFB / Type 1 type / Example 3 type (circuit shown in FIG. 58)
  • Circuit A The channel width W / length L of each of the constituent transistors was determined with reference to the standard cell.
  • Circuit B The channel width W / length L of each FET in the latch circuit 77 is as follows.
  • FET m1 and m1a 180nm / 60nm FETs m2a, m2b, m4a and m4b: 385nm / 60nm FET m9 and m10: 150nm / 60nm
  • the circuit B is provided with the inverter 26a as in FIG. 17 of the second embodiment, and the channel width W / length L is as follows.
  • FIGS. 59 (a) and 59 (b) are diagrams showing the butterfly curve of the flip-flop circuit.
  • (Vin, Vout) has (L, H) as a storage node
  • (H, L) is a storage node.
  • V VDD 0.2V
  • the TT of the SNM is the SNM when the threshold voltage of the FET is Typical.
  • FF, SS, FS and SF indicate the SNM when the threshold voltage varies by 3 ⁇ from the Typical value to the Fast (F) side or the Slow (S) side due to the process fluctuation.
  • the butterfly curve is substantially symmetrical, the opening is small, and the noise margin is small.
  • V VDD 0.2V
  • the bistable circuit 12 enters the ST mode, and the hysteresis of the transmission characteristic becomes large. As a result, the opening on the storage node side becomes large and the noise margin becomes large.
  • FIG. 60 (a) is a diagram showing SNM
  • FIG. 60 (b) is a diagram showing standby power.
  • FIG. 60A shows SNMs of TT, FF, SS, FS, and SF for (L, H) and (H, L).
  • V VDD 0.2V
  • V VDDL 0.2V
  • the SNM is about 60 mV.
  • the SNM is slightly higher than that in circuit A and is about 70 mV to 80 mV.
  • the SNM becomes 90 mV to 100 mV, and a sufficient SNM can be obtained. If the SNM is 80 mV in the circuit C, the V VDDL can be made lower than 0.2 V, and the power consumption can be further reduced.
  • SB1.2 is a standby state in which V VDD is 1.2V
  • circuit B has about 14% more standby power than circuit A.
  • the power in the standby state can be made equal to that in the circuit A.
  • standby power can be reduced by 98% as compared with circuit A.
  • Table 2 is a table showing the power reduction effect, chip area, delay, BET, process cost and number of control steps for circuit A, balloon FF, NVFF and circuit C.
  • the balloon FF is a balloon type FF circuit
  • the NVFF is an FF circuit using a non-volatile memory element as in the first embodiment.
  • the power reduction effect shows the reduction rate from the circuit A in the low voltage retention state.
  • NVFF and circuit C can reduce power by 99% and 98%, respectively, as compared with circuit A.
  • the area of the circuit A is 1.
  • the area of the balloon FF is 1.7 times the area of the circuit A.
  • the area of NVFF is 1.5 times the area of circuit A.
  • the area of circuit C is 1.2 times the area of circuit A.
  • the delay is compared for each of CLK-QH and CLK-QL with reference to circuit A, and circuit A is set to 1.
  • the delay of balloon FF and NVFF is 1.1 to 1.2 as compared with circuit A.
  • the delay of the circuit C is 1.6 in CLK-QL as compared with the circuit A.
  • the BET of the balloon FF is 100 ns, while the BET of the NVFF is as long as 8 ⁇ s.
  • the BET of the circuit C is 160 ns, which is about the balloon FF.
  • the process cost of NV-FF is high because the process cost of the non-volatile element is high.
  • the process cost of the circuit C is as low as that of the circuit A and the balloon FF.
  • the number of control steps is the number of pulses required for control that does not include control of the power switch.
  • the number of control steps of the balloon FF and NVFF is 3, whereas the number of control steps of the circuit C is 0, which is the same as the number of control steps of the circuit A.
  • the circuit C has the same power reduction effect and chip area as the NVFF, the BET is the same as the balloon FF, and the process cost and the control step can be the same as the circuit A.
  • FIG. 61A is a conceptual diagram of the simulated logic system.
  • the area of 50% of the system 82 was designated as LLC (Last-level Cache) 84.
  • the remaining 50% of the system 82 is said to have a plurality of cores 83. 20% of the area of each core 83 was FF (flip-flop) 83a, and 10% was FLC (First-level Cache) 83b.
  • the simulated systems are the following systems A and C.
  • System A Cache using 6T-SRAM and flip-flop
  • System C Cache using header PS / PDFB / Type 1 of Example 3 and flip-flop circuit shown in FIG.
  • FIG. 61 (b) is a diagram showing the standardized standby power of the systems A and C.
  • the standardized standby power of A2 is about 0.6 of A1
  • the standardized standby power of A3 is about 0.5 of A1.
  • the standardized standby power of C2 is 0.2 or less of A1
  • the standardized standby power of C3 is about 0.05 of C1.
  • the standby power can be made very small by putting the FF83a, FLC83b and LLC84 in the low voltage retention state.
  • the gates of the FETs m9 and m9a (fourth FET) of the inverter circuit 14 are the output nodes of the inverter circuit 14 or the inverter circuit 16. It is connected to an input node, and the gates of FETs m10 and m10a of the inverter circuit 16 (second inverter circuit) are connected to the input node of the inverter circuit 14 or the output node of the inverter circuit 16.
  • the conductive type of the channel of FET m9 and m10 is the same as that of FET m2, m2a, m2b, m4, m4a and m4b, and the conductive type of the channel of FET m9a and m10a is the same as that of FET m1, m1a, m1b, m3, m3a and m3b. Is.
  • the gates of the feedback FETs m9 and m9a of the inverter circuit 14 are connected to the output node of the inverter circuit 16 or the input node of the inverter circuit 14, and the gates of the FETs m10 and m10a of the inverter circuit 16 are connected to the inverter circuit 16. It is connected to an input node or an output node of the inverter circuit 14.
  • the conductive types of the channels of FETs m9 and m10 are the same as those of FETs m1, m1a, m1b, m3, m3a and m3b, and the conductive types of the channels of FETs m9a and m10a are the same as those of FETs m2, m2a, m2b, m4, m4a and m4b. Is.
  • the power switch 30 (power supply circuit) has a power supply voltage V VDD-VVGND, a first voltage at which the bistable circuit 12 can write and read data, and a first voltage.
  • the lower bistable circuit 12 switches to and supplies a second voltage capable of holding data.
  • the power switch 30 supplies either the first voltage or the second voltage to the bistable circuit 12
  • a constant bias is supplied to the control nodes VFN and VFP.
  • the driver 26 becomes unnecessary, and the electronic circuit can be miniaturized. Moreover, power consumption can be suppressed.
  • VDD third voltage
  • VVGNDL fourth voltage
  • VVGNDH sixth voltage
  • Memory cell 12 Bistable circuit 14, 16 Inverter circuit 20 Cellular array 22, 22a-22d Subarray 24, 24a, 24b, 24A-24C, 241-24n block 28 Control circuit 30 Power switch 40, 41 Register

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Static Random-Access Memory (AREA)

Abstract

各々のメモリセルが、伝達特性にヒステリシスを実質的に有さない第1モードと伝達特性にヒステリシスを有する第2モードとが切り替わる第1インバータ回路および第2インバータ回路を各々備え、第1インバータ回路の出力ノードおよび入力ノードは第2インバータ回路のそれぞれ入力ノードおよび出力ノードに接続された双安定回路を備える複数のメモリセルを有するセルアレイと、複数のメモリセルのうちデータを保持しなくてもよい1または複数の第1メモリセルを電源遮断した後、複数のメモリセルのうち残りの1または複数の第2メモリセル内の双安定回路を前記第2モードとし、第2モードを維持した状態で1または複数の第2メモリセル内の双安定回路に、データをリードおよび/またはライトするときに双安定回路に供給される第1電源電圧より低く第2モードの双安定回路がデータを保持できる第2電源電圧を供給する制御回路と、を備える電子回路。

Description

電子回路および双安定回路
 本発明は、電子回路および双安定回路に関し、例えば双安定回路およびその双安定回路を有する複数のメモリセルを備えた電子回路に関する。
 不揮発性素子を用いず、CMOS(Complementary Metal Oxide Semiconductor)のみから構成されたインバータを用い、擬似不揮発性SRAM(VNR-SRAM)を構成できることが知られている(例えば特許文献1)。VNR-SRAMでは、超低電圧(ULV)リテンションが可能なシュミットトリガ(ST)モードと通常の電圧でSRAMと同等の回路性能を実現できるブーステッドインバータ(BI)モードとを切り替え可能なデュアルモードインバータを用いる。このULVリテンションをパワーゲーティング(PG)に用いることができる。
 双安定回路と不揮発性素子を有するメモリセル(NV-SRAM)を用いた記憶回路が知られている(例えば特許文献2)。NV-SRAMでは双安定回路のデータを不揮発性素子にストアし、不揮発性素子のデータを双安定回路にリストアする。
 NV-SRAMにおいて、通常のSRAMのように双安定回路にデータをライト(書き込み)およびリード(読み出し)するSRAM(Static Random Access Memory)動作、電源電圧を低くしてデータを保持するスリープ動作、双安定回路のデータを不揮発性素子にストアするストア動作、メモリセルの電源を遮断するシャットダウン動作および不揮発記憶素子にストアされたデータを双安定回路に書き戻すリストア動作を行なう記憶回路が知られている(例えば特許文献3)。ストア、シャットダウンおよびリストア動作を用いることでセルの記憶内容を失うことなく、電源遮断によるパワーゲーティング(PG)が可能になる。
 双安定回路に記憶されているデータと、不揮発性素子にストアされているデータが一致する場合、ストアをスキップする制御(ストアフリー動作)を行なう記憶回路が知られている(例えば特許文献4)。セルアレイを複数のブロックに分割し、ストア動作が終了したブロックの電源を遮断することが知られている(例えば特許文献5)。
国際公開第2016/158691号 国際公開第2009/028298号 国際公開第2013/172066号 国際公開第2013/172065号 国際公開第2016/024527号
 特許文献1のVNR-SRAMでは、ULVリテンションすることで、セルの記憶内容を失うことなく、待機時電力を削減することができる。これにより、消費電力を抑制できる。しかし、VNR-SRAMでは、PG後に不要なデータについてもULVリテンションするため、PG時のリーク電流によるエネルギー消費の削減率が制約される。また、PG時にすべてのセルについてSTモードとBIモードの切り替えを行う。このため、モード切り替えのための時間(レイテンシ)やエネルギーオーバーヘッドが生じる。これらリーク電流、モード切り替えのためのエネルギー消費は損益分岐時間(BET:Break-even time)の増大を招く。
 また、特許文献4および5のNV-SRAMでは、ストアフリー動作を行うことで,ストア不要なデータのストアを回避できる。しかし、セルアレイの記憶容量が大きくなると、ストア動作を待機するブロックに生じるリーク電流による消費電力によって、ストアフリーの効果は抑制される。また、ストアフリー動作では、PGに不要なデータであっても通常動作時に書き換えのあったデータに対してはストア動作を行ってしまう。このため、不要なエネルギーオーバーヘッドやストアに要するレイテンシのオーバヘッドを生じてしまう。
 本発明は、上記課題に鑑みなされたものであり、消費電力および消費エネルギーを抑制することを目的とする。
 本発明は、各々のメモリセルが、伝達特性にヒステリシスを実質的に有さない第1モードと伝達特性にヒステリシスを有する第2モードとが切り替わる第1インバータ回路および第2インバータ回路を各々備え、前記第1インバータ回路の出力ノードおよび入力ノードは前記第2インバータ回路のそれぞれ入力ノードおよび出力ノードに接続された双安定回路を備える複数のメモリセルを有するセルアレイと、前記複数のメモリセルのうちデータを保持しなくてもよい1または複数の第1メモリセルを電源遮断した後、前記複数のメモリセルのうち残りの1または複数の第2メモリセル内の双安定回路を前記第2モードとし、前記第2モードを維持した状態で前記1または複数の第2メモリセル内の双安定回路に、データをリードおよび/またはライトするときに双安定回路に供給される第1電源電圧より低く前記第2モードの双安定回路がデータを保持できる第2電源電圧を供給する制御回路と、を備える電子回路である。
 上記構成において、前記セルアレイは、各々のブロックが少なくとも2つのメモリセルを含む複数のブロックに分割され、前記制御回路は、前記複数のブロックからデータを保持しなくてもよい1または複数の第1ブロックを抽出し、前記1または複数の第1ブロックを電源遮断した後、前記複数のブロックのうち残りの1または複数の第2ブロック内の双安定回路を前記第2モードとし、前記第2モードを維持した状態で前記1または複数の第2ブロック内の双安定回路に前記第2電源電圧を供給する構成とすることができる。
 上記構成において、前記制御回路は、前記1または複数の第2ブロック内の双安定回路を前記第2モードとする前に、前記1または複数の第2ブロックに、前記第1電源電圧より低くかつ前記第2電源電圧より高く前記第1モードの双安定回路がデータを保持できる第3電源電圧を供給する構成とすることができる。
 上記構成において、前記制御回路は、前記1または複数の第2ブロック内の双安定回路に前記第3電源電圧を供給した状態で前記1または複数の第2ブロック内の双安定回路を前記第2モードとする構成とすることができる。
 上記構成において、前記1または複数の第2ブロックは複数の第2ブロックであり、前記制御回路は、前記複数の第2ブロックのうち1または複数の第3ブロックの双安定回路に前記第3電源電圧を供給した状態で前記1または複数の第3ブロック内の双安定回路を前記第2モードとし、前記1または複数の第3ブロック内の双安定回路を前記第2モードとした状態で前記第2電源電圧を供給し、その後、前記複数の第2ブロックのうち前記1または複数の第3ブロックとは別の1または複数の第4ブロックの双安定回路に前記第3電源電圧を供給した状態で前記1または複数の第4ブロック内の双安定回路を前記第2モードとし、前記1または複数の第4ブロック内の双安定回路を前記第2モードとした状態で前記第2電源電圧を供給する構成とすることができる。
 上記構成において、前記1または複数の第2ブロックは複数の第2ブロックであり、前記制御回路は、前記複数の第2ブロック内の双安定回路に前記第3電源電圧を供給した状態で前記複数の第2ブロック内の双安定回路を前記第2モードとした後、前記複数の第2ブロック内の双安定回路を前記第2モードとした状態で前記第2電源電圧を供給する構成とすることができる。
 上記構成において、前記セルアレイの外に設けられ、外部回路から受信した前記データを保持しなくてもよいブロックを示す情報を記憶する記憶回路を備え、前記制御回路は、前記情報に基づき、前記データを保持しなくてもよい前記1または複数の第1ブロックを抽出する構成とすることができる。
 上記構成において、前記第1インバータ回路および前記第2インバータ回路は、ソースが第1電源線に接続され、ドレインが出力ノードに接続され、ゲートが入力ノードに接続された第1導電型のチャネルの第1FETと、ソースが前記第1電源線との間に電源電圧が供給される第2電源線に接続され、ドレインが中間ノードに接続され、ゲートが前記入力ノードに接続された前記第1導電型と反対の第2導電型のチャネルの第2FETと、ソースが前記中間ノードに接続され、ドレインが前記出力ノードに接続され、ゲートが前記入力ノードに接続された第2導電型のチャネルの第3FETと、ソースおよびドレインの一方が前記中間ノードに接続され、前記ソースおよび前記ドレインの他方が制御ノードに接続された第4FETと、を各々備え、前記第1インバータ回路の第4FETのゲートは、前記第1インバータ回路の入力ノード、出力ノード、前記第2インバータ回路の入力ノードおよび出力ノードのいずれか1つのノードに接続され、前記第2インバータ回路の第4FETのゲートは、前記第2インバータ回路の入力ノード、出力ノード、前記第1インバータ回路の入力ノードおよび出力ノードのいずれか1つのノードに接続され、前記第1インバータ回路の第4FETは、ゲートが前記第1インバータ回路の出力ノードまたは前記第2インバータ回路の入力ノードに接続されているとき第2導電型のチャネルのFETであり、ゲートが前記第1インバータ回路の入力ノードまたは前記第2インバータ回路の出力ノードに接続されているとき第1導電型のチャネルのFETであり、前記第2インバータ回路の第4FETは、ゲートが前記第2インバータ回路の出力ノードまたは前記第1インバータ回路の入力ノードに接続されているとき第2導電型のチャネルのFETであり、ゲートが前記第2インバータ回路の入力ノードまたは前記第1インバータ回路の出力ノードに接続されているとき第1導電型のチャネルのFETである構成とすることができる。
 上記構成において、前記第1インバータ回路および前記第2インバータ回路の制御ノードには定バイアスが印加され、前記第1インバータ回路および前記第2インバータ回路は、前記第1電源電圧が供給されるとき前記第1モードとなり、前記第2電源電圧が供給されるとき前記第2モードとなる構成とすることができる。
 本発明は、ソースが第1電源線に接続され、ドレインが出力ノードに接続され、ゲートが入力ノードに接続された第1導電型のチャネルの第1FETと、ソースが前記第1電源線との間に電源電圧が供給される第2電源線に接続され、ドレインが中間ノードに接続され、ゲートが前記入力ノードに接続された前記第1導電型と反対の第2導電型のチャネルの第2FETと、ソースが前記中間ノードに接続され、ドレインが前記出力ノードに接続され、ゲートが前記入力ノードに接続された第2導電型のチャネルの第3FETと、ソースおよびドレインの一方が前記中間ノードに接続され、前記ソースおよび前記ドレインの他方が制御ノードに接続された第1導電型のチャネルの第4FETと、を各々備える第1インバータ回路および第2インバータ回路と、前記第1インバータ回路の出力ノードおよび前記第2インバータ回路の入力ノードが接続された第1記憶ノードと、前記第1インバータ回路の入力ノードおよび前記第2インバータ回路の出力ノードが接続された第2記憶ノードと、を備え、前記第1インバータ回路の第4FETのゲートは、前記第1インバータ回路の入力ノードまたは前記第2インバータ回路の出力ノードに接続され、前記第2インバータ回路の第4FETのゲートは前記第2インバータ回路の入力ノードまたは前記第1インバータ回路の出力ノードに接続された双安定回路である。
 本発明は、上記双安定回路と、前記電源電圧を、前記双安定回路がデータをライトおよびリード可能な第1電圧と、前記第1電圧より低く前記双安定回路がデータを保持可能な第2電圧と、に切り替えて供給する電源回路と、を備える電子回路である。
 上記構成において、前記電源回路が前記双安定回路に前記第1電圧および前記第2電圧のいずれを供給するときにも、前記制御ノードには定バイアスが供給される構成とすることができる。
 上記構成において、前記定バイアスは、前記第1電圧が供給されるときの前記第1電源線の電圧と前記第2電源線の電圧との間のバイアスである構成とすることができる。
 上記構成において、前記定バイアスは、前記第1電圧が供給されるときの前記第1電源線の電圧と前記第2電源線の電圧との中間より前記第2電源線の電圧に近い構成とすることができる。
 上記構成において、前記第4FETがPチャネルFETのとき、前記電源回路が前記第1電圧および第2電圧を供給するとき前記制御ノードにそれぞれローレベルおよび前記ローレベルより高いハイレベルを供給し、前記第4FETがNチャネルFETのとき、前記電源回路が前記第1電圧および第2電圧を供給するとき前記制御ノードにそれぞれハイレベルおよび前記ハイレベルより低いローレベルを供給する制御回路を備える構成とすることができる。
 本発明は、ソースが第1電源線に接続され、ドレインが出力ノードに接続され、ゲートが入力ノードに接続された第1導電型のチャネルの第1FETと、ソースが前記第1電源線との間に電源電圧が供給される第2電源線に接続され、ドレインが中間ノードに接続され、ゲートが前記入力ノードに接続された前記第1導電型と反対の第2導電型のチャネルの第2FETと、ソースが前記中間ノードに接続され、ドレインが前記出力ノードに接続され、ゲートが前記入力ノードに接続された第2導電型のチャネルの第3FETと、ソースおよびドレインの一方が前記中間ノードに接続され、前記ソースおよび前記ドレインの他方が制御ノードに接続された第4FETと、を各々備える第1インバータ回路および第2インバータ回路と、前記第1インバータ回路の出力ノードおよび前記第2インバータ回路の入力ノードが接続された第1記憶ノードと、前記第1インバータ回路の入力ノードおよび前記第2インバータ回路の出力ノードが接続された第2記憶ノードと、を備え、前記第1インバータ回路の第4FETのゲートは、前記第1インバータ回路の入力ノード、出力ノード、前記第2インバータ回路の入力ノードおよび出力ノードのいずれか1つのノードに接続され、前記第2インバータ回路の第4FETのゲートは、前記第2インバータ回路の入力ノード、出力ノード、前記第1インバータ回路の入力ノードおよび出力ノードのいずれか1つのノードに接続された双安定回路と、前記電源電圧を、前記双安定回路がデータをライトおよびリード可能な第1電圧と、前記第1電圧より低く前記双安定回路がデータを保持可能な第2電圧と、に切り替えて供給する電源回路と、を備え、前記電源回路が前記双安定回路に前記第1電圧および前記第2電圧のいずれを供給するときにも、前記制御ノードには定バイアスが供給される電子回路である。
 上記構成において、前記電源回路は、前記電源電圧を前記第1電圧と前記第2電圧とに切り替えるときに、前記第2電源線には一定の第3電圧を供給し、前記第1電源線に供給する電圧をそれぞれ第4電圧と第5電圧とに切り替える構成とすることができる。
 上記構成において、前記定バイアスは、前記第3電圧と前記第4電圧との間のバイアスである構成とすることができる。
 上記構成において、前記第1インバータ回路の第4FETは、ゲートが前記第1インバータ回路の出力ノードまたは前記第2インバータ回路の入力ノードに接続されているとき第2導電型のチャネルのFETであり、ゲートが前記第1インバータ回路の入力ノードまたは前記第2インバータ回路の出力ノードに接続されているとき第1導電型のチャネルのFETであり、前記第2インバータ回路の第4FETは、ゲートが前記第2インバータ回路の出力ノードまたは前記第1インバータ回路の入力ノードに接続されているとき第2導電型のチャネルのFETであり、ゲートが前記第2インバータ回路の入力ノードまたは前記第1インバータ回路の出力ノードに接続されているとき第1導電型のチャネルのFETである構成とすることができる。
 本発明は、各々のメモリセルが、データを揮発的に記憶する双安定回路と、前記双安定回路に記憶されたデータを不揮発的にストアし、不揮発的にストアされたデータを前記双安定回路にリストアする不揮発性素子と、を備える複数のメモリセルを有するセルアレイと、前記セルアレイを電源遮断するときに、前記複数のメモリセルのうち揮発的に書き換えられているかいないかにかわらず不揮発的にストアしなくてもよい1または複数の第1メモリセルを電源遮断し、前記第1メモリセルを電源遮断した後前記複数のメモリセルのうち残りの1または複数の第2メモリセルにおいて双安定回路に揮発的に記憶されたデータを前記不揮発性素子にストアするストア動作を行い、その後前記第2メモリセルを電源遮断する制御回路と、を備える電子回路である。
 上記構成において、前記セルアレイは、各々のブロックが少なくとも2つのメモリセルを含む複数のブロックに分割され、前記制御回路は、前記セルアレイを電源遮断するときに、前記複数のブロックからブロック内のメモリセルが揮発的に書き換えられているかいないかにかわらず不揮発的にストアしなくてもよい1または複数の第1ブロックを抽出し、前記1または複数の第1ブロックを電源遮断し、前記1または複数の第1ブロックを電源遮断した後前記複数のブロックのうち残りの1または複数の第2ブロック内のメモリセルにおいてストア動作を行い、ストア動作の終了した第2ブロックを電源遮断する構成とすることができる。
 上記構成において、前記制御回路は、前記1または複数の第1ブロックを全て電源遮断した後、前記1または複数の第2ブロック内のメモリセルにおいてストア動作を行う構成とすることができる。
 上記構成において、前記セルアレイの外に設けられ、外部回路から受信した前記1または複数の第1ブロックを示す情報を記憶する記憶回路を備え、前記制御回路は、前記情報に基づき、前記1または複数の第1ブロックを抽出する構成とすることができる。
 上記構成において、前記制御回路は、前記複数のブロックから、ブロック内のメモリセルが揮発的に書き換えられているかいないかにかわらず不揮発的にストアしなくてもよいブロックと、ブロック内のいずれのメモリセルも揮発的に書き換えられていないブロックと、を前記1または複数の第1ブロックとして抽出し、前記1または複数の第1ブロックを電源遮断し、前記1または複数の第1ブロックを電源遮断した後前記複数のブロックのうち残りの1または複数の第2ブロック内のメモリセルにおいてストア動作を行い、ストア動作の終了した第2ブロックを電源遮断する構成とすることができる。
 本発明によれば、消費電力および消費エネルギーを抑制することができる。
図1は、実施例1におけるメモリセルの回路図である。 図2(a)および図2(b)は、実施例1における各状態に印加される電圧を示す図である。 図3は、実施例1における各期間の消費電力を示す図である。 図4は、実施例1における電子回路を示すブロック図である。 図5は、実施例1におけるサブアレイのブロック図である。 図6は、実施例1における動作を示すフローチャートである。 図7(a)は、実施例1におけるリード/ライト動作を示すフローチャート、図7(b)は、実施例1におけるUDFの設定を示すフローチャートである。 図8は、実施例1におけるストア動作を示すフローチャートである。 図9(a)から図9(d)は、実施例1におけるセルアレイおよびブロックを示す模式図である。 図10(a)から図10(c)は、実施例1におけるブロックを示す模式図である。 図11(a)および図11(b)は、実施例1におけるそれぞれセルアレイのサイズおよびワードアドレスの例を示す図である。 図12は、実施例1における制御回路の例を示すブロック図である。 図13(a)から図13(e)は、実施例1における各信号とパワースイッチの動作を示す図である。 図14は、実施例1における制御信号のタイミングチャートである。 図15は、実施例1における制御回路28の別の例のブロック図である。 図16(a)から図16(c)は、実施例1、比較例1-1および1-2におけるSFBFストアフリー割合に対するBETを示す図、図16(d)から図16(f)は、SFBFストアフリー割合に対するストアレイテンシを示す図である。 図17は、実施例2におけるメモリセルの回路図である。 図18(a)および図18(b)は、実施例2における各状態に印加される電圧を示す図である。 図19(a)および図19(b)は、実施例2におけるリテンションおよびシャットダウンに印加される電圧を示す図である。 図20は、実施例2における各期間の消費電力を示す図である。 図21(a)および図21(b)は、実施例2におけるメモリセルの別の例である。 図22は、実施例2における電子回路を示すブロック図である。 図23は、実施例2におけるサブアレイのブロック図である。 図24は、実施例2における動作を示すフローチャートである。 図25は、実施例2におけるリテンション動作のタイプAを示すフローチャートである。 図26(a)から図26(e)は、実施例2におけるリテンション動作のタイプAにおけるセルアレイを示す模式図である。 図27(a)から図27(e)は、実施例2におけるリテンション動作のタイプAにおけるセルアレイおよびブロックを示す模式図である。 図28は、実施例2におけるリテンション動作のタイプBを示すフローチャートである。 図29(a)から図29(e)は、実施例2におけるリテンション動作のタイプBにおけるセルアレイを示す模式図である。 図30(a)から図30(e)は、実施例2におけるリテンション動作のタイプBにおけるセルアレイおよびブロックを示す模式図である。 図31は、実施例2におけるリテンション動作のタイプCを示すフローチャートである。 図32(a)から図32(e)は、リテンション動作のタイプCにおけるセルアレイを示す模式図である。 図33(a)から図33(e)は、リテンション動作のタイプCにおけるセルアレイおよびブロックを示す模式図である。 図34は、リテンション動作のタイプBにおける制御回路の例を示すブロック図である。 図35(a)から図35(e)は、リテンション動作のタイプBにおける各信号とパワースイッチの動作を示す図である。 図36は、リテンション動作のタイプBにおける制御信号のタイミングチャートである。 図37は、リテンション動作のタイプCにおける制御回路の例を示すブロック図である。 図38は、リテンション動作のタイプCにおける制御信号のタイミングチャートである。 図39(a)から図39(c)は、タイプAからCおよび比較例2におけるUD割合に対するBETを示す図、図39(d)から図39(f)は、UD割合に対するレイテンシを示す図である。 図40(a)から図40(c)は、タイプC、比較例2-1および2-2におけるUD割合に対するスタンバイパワーを示す図である。 図41は、実施例3におけるヘッダPS・PDFB・タイプ1のメモリセルの回路図である。 図42は、実施例3におけるヘッダPS・PDFB・タイプ2のメモリセルの回路図である。 図43(a)は、リテンション状態におけるインバータ回路の伝達特性を示す図、図43(b)は、BIモードにおけるSNMを示す図である。 図44(a)は、リテンション状態のSNMを示す図、図44(b)は、BIモードのリーク電力を示す図、図44(c)および図44(d)は、STモードのリーク電力を示す図である。 図45は、実施例3におけるフッタPS・PDFB・タイプ2のメモリセルの回路図である。 図46は、実施例3におけるフッタPS・PUFB・タイプ1のメモリセルの回路図である。 図47は、実施例3におけるヘッダPS・PUFB・タイプ2のメモリセルの回路図である。 図48は、実施例3におけるヘッダPS・PUPDFBのメモリセルの回路図である。 図49は、実施例3におけるフッタPS・PUPDFBのメモリセルの回路図である。 図50(a)から図50(f)は、セルに接続されるパワースイッチの配置を示す図である。 図51(a)から図51(d)は、セルに接続されるドライバの配置を示す図である。 図52(a)から図52(c)は、セルに接続されるドライバの配置を示す図である。 図53(a)および図53(b)は、それぞれヘッダPS・PDFB・タイプ1型およびフッタPS・PUFB・タイプ1型の各電圧を示す図である。 図54は、実施例4におけるヘッダPS・PDFB・タイプ1型のメモリセルの回路図である。 図55は、実施例4におけるフッタPS・PUFB・タイプ1型のメモリセルの回路図である。 図56は、実施例4におけるヘッダPS・PUPDFB・PD側タイプ1型の回路図である。 図57は、実施例4におけるフッタPS・PUPDFB・PU側タイプ1型の回路図である。 図58は、実施例4の変形例1に係る電子回路の回路図である。 図59(a)および図59(b)は、フリップフロップ回路のバタフライカーブを示す図である。 図60(a)は、SNMを示す図、図60(b)は、スタンバイパワーを示す図である。 図61(a)は、シミュレーションしたロジックシステムの概念図、図61(b)は、システムAおよびCの規格化スタンバイパワーを示す図である。
 以下、図面を参照し実施例について説明する。
 特許文献3のように、通常のSRAM動作(すなわちリード/ライト動作)のときに書き換えられたメモリセルのみにストア動作を行う。この方法では、セルアレイのサイズが大きくなると、ストア動作を待機するメモリセルにおけるリーク電流に起因する消費電力が大きくなる。そこで、書き換えられていないメモリセルをはじめにシャットダウンし、その後、書き換えられたメモリセルにストア動作を行うことが考えられる。しかし、書き換えられたメモリセルのデータがリストア後に不要なデータであってもストア動作を行ってしまう。これにより、消費電力およびレイテンシが増大する。
 実施例1は、消費電力および消費エネルギーを抑制することを目的とする。具体的には、PG(パワーゲーティング)時(電源遮断時)、PGへの移行およびPGからの復帰における消費電力および消費エネルギーを削減すること、およびPGに関するBETを削減することを目的とする。
 実施例1では、書き換えられているかいないかにかかわらずストアしなくてもよいデータのメモリセルをはじめにシャットダウンし、その後、残りのメモリセルにストア動作を行う。これにより、消費電力およびレイテンシを抑制できる。
 より具体的に、セルアレイを複数のブロックに分割する。記憶階層より上位の階層においてブロック毎のストアフリーを判断する。このとき、通常のSRAM動作において書き換えがあっても不要なデータであれば、ストアフリーブロックとする。上位の階層はリストア後に不要なデータの存在するブロックを指定するUDF(Useless Data Flag)を生成する。記憶階層ではUDFに基づき、ブロック毎にシャットダウンおよびストア動作を行う。これにより、効率的に消費電力を抑制できる。
 以下、実施例1の詳細な例について説明する。
[メモリセルの説明]
 図1は、実施例1におけるメモリセルの回路図である。図1に示すように、メモリセル10は、インバータ回路14および16、スピントランスファートルク磁気トンネル接合素子(STT-MTJ:以下では単に強磁性トンネル接合素子と呼ぶ)MTJ1およびMTJ2を主に備えている。
 インバータ回路14および16はループ状に接続され双安定回路12を構成している。インバータ回路14は、FET(Field Effect Transistor)m1およびm2を備えている。インバータ回路16はFETm3およびm4を備えている。FETm1およびm3はPチャネルMOSFETであり、FETm2およびm4はNチャネルMOSFETである。FETm1およびm3のソースは仮想電源電圧VVDDが印加された電源線15aに接続され、FETm2およびm4のソースはグランド電圧VGNDが印加されたグランド線15bに接続されている。これにより、双安定回路12には電源電圧(VVDD-VGND)が供給される。
 インバータ回路14と16が接続されたノードがそれぞれノードQ、QBである。ノードQとノードQBとは互いに相補ノードである。双安定回路12は、ノードQおよびノードQBがそれぞれハイレベルおよびローレベル、または、ノードQおよびノードQBがそれぞれローレベルおよびハイレベルとなることにより安定状態となる。双安定回路12は、安定状態となることにより、データを記憶することができる。
 ノードQおよびQBは、それぞれNチャネルFETm5およびm6を介しビット線BLおよびBLBに接続されている。FETm5およびm6のゲートはワード線WLに接続されている。FETm1からm6により6トランジスタ(FET)型のSRAMが形成される。
 ノードQと制御線CTRLとの間にFETm7と強磁性トンネル接合素子MTJ1とが接続され、ノードQBと制御線CTRLとの間にFETm8と強磁性トンネル接合素子MTJ2とが接続されている。FETm7およびm8のソースおよびドレインの一方は、ノードQおよびQBに、ソースおよびドレインの他方は強磁性トンネル接合素子MTJ1およびMTJ2にそれぞれ接続されている。FETm7およびm8のゲートはスイッチ線SRに接続されている。なお、FETm7およびm8は、それぞれ、強磁性トンネル接合素子MTJ1およびMTJ2と制御線CTRLとの間に接続されていてもよい。また、FETm7およびm8は、設けられていなくてもよい。
 強磁性トンネル接合素子MTJ1およびMTJ2は、それぞれフリー層17、トンネル絶縁膜18およびピン層19を有している。フリー層17およびピン層19は強磁性体からなる。フリー層17とピン層19との磁化方向が平行な状態(平行状態)では、MTJ1およびMTJ2の抵抗値が低くなる。フリー層17とピン層19との磁化方向が反平行な状態(反平行状態)では、MTJ1およびMTJ2の抵抗値が平行状態より高くなる。MTJ1およびMTJ2は、MTJ1およびMTJ2の抵抗値によりデータをストアする。後述する仮想電源方式では、フリー層17が制御線CTRLに接続され、仮想接地方式では、ピン層19が制御線CTRLに接続される。仮想電源方式では、FETm7およびm8はNチャネルFETであり、仮想接地方式では、FETm7およびm8はPチャネルFETである。
 電源線15aと電源15cとの間にパワースイッチ30が接続されている。パワースイッチ30は電源線15aと電源15cとの間に並列に接続されたパワースイッチPS1およびPS2を含む。パワースイッチPS1およびPS2は例えばそれぞれPチャネルFETおよびNチャネルFETである。パワースイッチPS1およびPS2のゲートにそれぞれPS制御信号VPG1およびVPG2が印加される。パワースイッチ30は、グランド線15bとグランド15dとの間に設けられていてもよい。この場合、電源線15aには電源の電圧VDDが印加され、グランド線15bにはグランド電圧VGND以上の仮想グランド電圧VVGNDが印加される。これを仮想接地方式という。パワースイッチ30は、電源線15aと電源15cとの間と、グランド線15bとグランド15dとの間と、の両方に設けられていてもよい。
[各状態の説明]
 図2(a)および図2(b)は、実施例1における各状態に印加される電圧を示す図である。図2(a)のように、リード/ライト状態ではVPG1およびVPG2はローレベルLである。パワースイッチPS1およびPS2はそれぞれオンおよびオフとなる。これにより、電源線15aとグランド線15bとの間に供給される電源電圧VVDD-VGNDは電圧V2となる。電圧V2は例えば1.2Vである。
 スリープ状態ではVPG1およびVPG2はハイレベルHである。パワースイッチPS1およびPS2はそれぞれオフおよびオンとなる。これにより、電源電圧VVDD-VGNDは電圧V2より低い電圧V1となる。電圧V1は例えば0.8Vである。
 シャットダウン状態ではVPG1およびVPG2はそれぞれハイレベルHおよびローレベルLである。パワースイッチPS1およびPS2はオフとなる。電源線15aに電源電圧が印加されない。これにより、電源電圧VVDD-VGNDは電圧V1より低い電圧V0となる。電圧V0は例えばほぼ0Vである。
 リード/ライト状態の期間は、通常のSRAMとして双安定回路12のデータを書き換え、揮発的にデータを保持する(これを、「データを揮発的に書き換える」という)期間である。双安定回路12へのデータの書き込みおよび読み出しがSRAMと同じように行われる。すなわち、ワード線WLをハイレベルとしFETm5およびm6を導通状態とすることにより、双安定回路12にビット線BLおよびBLBのデータが書き込まれる。また、ビット線BLおよびBLBを等電位の浮遊状態としワード線WLをハイレベルとしFETm5およびm6を導通状態とすることにより、双安定回路12のデータをビット線BLおよびBLBに読み出すことができる。電源電圧VVDD-VGNDは、双安定回路12がデータの書き換えが可能でかつデータが保持できる電圧V2である。
 スリープ状態の期間は、メモリセル10がスリープモードの期間である。スリープ状態では、双安定回路12はデータを保持するのみであり、データの書き換えを行なわない。電源電圧VVDD-VGNDは、双安定回路12がデータの書き換えはできないがデータが保持できる電圧V1である。電圧V1は電圧V2より低いため、消費電力を抑制できる。
 リード/ライト状態およびスリープ状態では、制御線CTRLおよびスイッチ線SRにおける制御信号VCTRLおよびVSRはローレベルであり、FETm7およびm8はオフしている。FETm5およびm6をオフとすることにより、双安定回路12のデータが保持される。なお、双安定回路12へのデータの書き込み、読み出し、および保持のとき、スイッチ線SRをローレベルとし、FETm7およびm8をオフとすることが好ましい。これにより、ノードQおよびQBと制御線CTRL間の電流をほぼ遮断し、安定動作を実現し、さらに、消費電力の増大を抑制することができる。
 図2(b)に示すように、ストア期間は、ストア動作が行なわれる期間であり、双安定回路12に記憶されたデータを強磁性トンネル接合素子MTJ1およびMTJ2にストアし、これを不揮発的に保持する(これを、「不揮発的にストアする」という)期間である。ストア期間では電源電圧VVDD-VGNDはリード/ストア状態と同じ電圧V2である。制御信号VSRをハイレベルとする。
 Hストア期間において、制御信号VCTRLをローレベルとする。これにより、ノードQおよびQBのうちハイレベルのノードに対応するMTJが高抵抗となる。Lストア期間において、制御信号VCTRLをハイレベルとする。これにより、ノードQおよびQBのうちローレベルのノードに対応するMTJ1およびMTJ2が低抵抗となる。Hストア期間とLストア期間の順番は逆でもよい。このように、双安定回路12のデータが強磁性トンネル接合素子MTJ1およびMTJ2にストアされる。
 シャットダウン状態の期間は、メモリセル10をシャットダウンとする期間である。シャットダウン状態においては、電源電圧VVDD-VGNDをほぼ0Vである電圧V0とする。このとき、メモリセル10にほとんど電流が流れないため、消費電力を抑制することができる。
 リストア期間においては、制御信号VCTRLをローレベルとし制御信号VSRをハイレベルとした状態で電源電圧VVDD-VGNDを電圧V0から電圧V2に立ち上げることにより行なわれる。高抵抗の強磁性トンネル接合素子MTJ1およびMTJ2に対応するノードQおよびQBがハイレベルとなる。低抵抗のMTJ1およびMTJ2に対応するノードQおよびQBがローレベルとなる。このように、強磁性トンネル接合素子MTJ1およびMTJ2にストアされ不揮発的に保持されたデータ(これを、「不揮発的にストアされたデータ」という)が双安定回路12にリストアされる。
 制御信号VCTRLおよびVSRのハイレベルは例えばVDDまたはVVDD、ローレベルは例えばVGNDである。制御信号VCTRLにおけるハイレベルはローレベルより高く、制御信号VSRにおけるハイレベルはローレベルより高い電圧であればよい。
 図3は、実施例1における各期間の消費電力を示す図である。実線は図1に示したメモリセル10(NV-SRAM)を有する記憶回路の消費電力(パワー)を示す。実線の消費電力は、リーク電流とストアおよびリストアに用いる電力を含み、リード/ライト期間におけるリードおよびライトの電力は含んでいない。点線は、FETm7、FETm8、MTJ1およびMTJ2を設けない6トランジスタSRAM(6T-SRAM)セルを用いた記憶回路の消費電力を示している。破線は、6T-SRAMセルを用いた記憶回路のリード/ライト期間の消費電力を示している。破線および点線の消費電力は、リーク電流を含み、リード/ライト期間におけるリードおよびライトの電力は含んでいない。
 図3に示すように、メモリセル10の動作期間には、スリープ期間(スリープ状態の期間)、リード/ライト期間(リード/ライト状態の期間)、ストア期間、シャットダウン期間(シャットダウン状態の期間)およびリストア期間がある。スリープ期間およびリード/ライト期間の長さをτNLとする。ストア期間、シャットダウン期間およびリストア期間の長さをそれぞれτStore、τShutdownおよびτRestoreとする。
 NV-SRAMのスリープ期間およびリード/ライト期間の消費電力はそれぞれPSleepおよびPNLである。NV-SRAMのPSleepおよびPNLは6T-SRAMのスリープ期間およびリード/ライト期間の消費電力よりΔPNL大きい。これは、NV-SRAMではFETm7およびm8にリーク電流が流れるためである。
 NV-SRAMでは、ストア期間にストアのための電力ΔPStoreが生じる。シャットダウン期間に消費電力PShutdownが生じる。消費電力PShutdownはリーク電流に起因する。リストア期間にリストアのための電力ΔPRestoreが生じる。6T-SRAMでは、NV-SRAMにおけるストア期間、シャットダウン期間およびリストア期間に相当する期間を、スリープ期間とする。よって、これらの期間の6T-SRAMの消費電力はPSleep-ΔPNLとなる。シャットダウン期間のNV-SRAMと6T-SRAMの消費電力の差はΔPShutdownである。
 NV-SRAMセルの6T-SRAMセルに対するエネルギーの増加は、スリープ期間およびリード/ライト期間におけるΔPNLによるエネルギー増加ΔENL、ストア期間のΔPStoreによるエネルギー増加ΔEStore、およびリストア期間のΔPRestoreによるエネルギー増加ΔERestoreの合計である。NV-SRAMセルがシャットダウンにより節約できるエネルギーは、シャットダウン期間におけるΔPShutdownによるエネルギー減少ΔESaveである。ΔENL+ΔEStore+ΔERestoreがΔESaveと等しくなるτShutdownがBET(Break-even time)である。双安定回路12にデータのリード/ライトが行われない待機期間がBET以上のときはシャットダウン状態とし、BET以下のときはスリープ状態とする。これにより、極めて高効率にエネルギーを削減できる。
[電子回路の説明]
 図4は、実施例1における電子回路を示すブロック図である。図4に示すように、電子回路100は、セルアレイ20、制御回路28を備えている。セルアレイ20は、複数のサブアレイ22に分割されている。サブアレイ22の記憶容量は例えば8kバイトである。サブアレイ22には複数のメモリセル10がマトリックス状に設けられている。サブアレイ22はバス25に接続されている。サブアレイ22の個数は適宜設計可能である。
 サブアレイ22にはパワースイッチ30および周辺回路38が設けられている。パワースイッチ30はサブアレイ22毎に電源電圧を設定する。周辺回路38はサブアレイ22毎にストアフリー制御を行う。
 制御回路28はSFBF(Store Free Block Flag)レジスタ41およびUDF(Useless Data Flag)レジスタ40を備えている。制御回路28はアドレスに基づきブロックごとにSFBFを生成しレジスタ41に格納する。制御回路28が外部回路から受信したブロック毎のUDFをレジスタ40に格納する。制御回路28は、PS制御信号を用い各サブアレイ22のパワースイッチ30を制御することでサブアレイ22毎にパワーを制御する。このように制御回路28はパワーマネージメントユニットとして機能する。また、制御回路28は、ストア制御信号を用い各サブアレイ22の周辺回路38を制御することで、サブアレイ22毎にストアフリー動作を制御する。このように制御回路28はストアフリーマネージメントユニットとして機能する。さらに、制御回路28はバス25を介しサブアレイ22へのデータの入出力を行う。制御回路28の少なくとも一部の機能は外部のCPU(Central Processing Unit)等のプロセッサ回路がソフトウエアと協働で行ってもよい。
[サブアレイの説明]
 図5は、実施例1におけるサブアレイのブロック図である。図5に示すように、サブアレイ22は、メモリセル10を有する複数のブロック24(例えば8個)に分割されている。ブロック24の記憶容量は例えば1kバイトである。ブロック24の個数は適宜設計可能である。サブアレイ22内には複数のメモリセル10がマトリックス状に配置されている。サブアレイ22内には、行方向にワード線WLおよびスイッチ線SRが延伸し、列方向にビット線BL(図1のビット線BLおよびBLBに相当する)および制御線CTRLが延伸している。各メモリセル10には、ワード線WL、スイッチ線SR、ビット線BL、制御線CTRL、電源線15aおよびグランド線15bが接続されている。
 各サブアレイ22に対応し、パワースイッチ30および周辺回路38が設けられている。制御回路28は、パワースイッチ30および周辺回路38を制御する。パワースイッチ30は、ブロック24毎に電源電圧VVDD-VGNDを電圧V2、V1およびV0にできる。周辺回路38は、WLデコーダ31、列デコーダ32、36、プリチャージ回路33、読出書込回路34およびSRデコーダ35を備えている。
 リード/ライト期間において、WLデコーダ31は行アドレスに基づきワード線WLを選択する。列デコーダ32は列アドレスに基づきビット線BLを選択する。プリチャージ回路33はビット線BLをプリチャージする。読出書込回路34は、WLデコーダ31および列デコーダ32に選択されたメモリセル10の双安定回路12にデータを書き込みまたは双安定回路12からデータを読み出しバス25に出力する。
 ストア期間において、SRデコーダ35は行アドレスに基づきスイッチ線SRを選択する。列デコーダ36は列アドレスに基づき制御線CTRLを選択する。WLデコーダ31および列デコーダ32に選択されたメモリセル10において双安定回路12のデータが強磁性トンネル接合素子MTJ1およびMTJ2に不揮発的にストアされる。
[動作の説明]
 図6は、実施例1における動作を示すフローチャートである。図6に示すように、制御回路28は、外部回路からの指令によりセルアレイ20の電源を投入する(ステップS10)。例えば、制御回路28は全てのブロック24において、制御信号VSRをハイレベルとすることでFETm7およびm8をオンし、かつパワースイッチPS1をオンしPS2をオフする。これにより、各セルアレイ20内のメモリセル10において、強磁性トンネル接合素子MTJ1およびMTJ2内のデータが双安定回路12にリストアされる。
 制御回路28は、リードおよびライト動作を行う(ステップS12)。制御回路28は、外部回路からセルアレイ20をシャットダウンする指示を受けたか否か判定する(ステップS14)。NoのときステップS12に戻る。Yesのとき、制御回路28は、ストア動作およびシャットダウンを行う(ステップS16)。その後終了しステップS10に戻る。
[リード/ライト動作の説明]
 図6のステップS12における動作について説明する。図7(a)は、実施例1におけるリード/ライト動作を示すフローチャートである。図7(a)に示すように、制御回路28はレジスタ41の全てのブロック24に対応するSFBFをリセットする(ステップS20)。例えば制御回路28は全てのブロック24に対応するSFBFをハイレベルHとする。制御回路28にライトアドレスが入力される(ステップS22)。制御回路28は、ライトを行うブロック24(すなわち書き込みを行うメモリセル10を含むブロック24)を選択する(ステップS24)。制御回路28は、WLデコーダ31および列デコーダ32を用い選択されたブロック24に対応するレジスタ41にSFBFをセットする(ステップS26)。例えば制御回路28は対応するSFBFをローレベルLとする。制御回路28は、読出書込回路34を用い選択されたブロック24内のメモリセル10にデータを書き込む(ステップS28)。制御回路28は、動作を終了するか判定する(ステップS30)。NoのときステップS22に戻る。Yesのとき終了する。
[UDF設定の説明]
 UDFを設定する動作について説明する。UDFは、ブロック24のデータがストアしなくてもよいデータ(すなわち、シャットダウン後にリストアされなくてもよいデータ)であることを示す情報である。図7(b)は、実施例1におけるUDFの設定を示すフローチャートである。図7(b)に示すように、制御回路28はレジスタ40の全てのブロック24に対応するUDFをリセットする(ステップS32)。例えば制御回路28は全てのブロックに対応するUDFをローレベルLとする。制御回路28に外部回路からUDFが入力される(ステップS34)。UDFは、例えばブロック24にデータをライトするときに入力される。または、データのリードまたはライトに関係なく、定期的または不定期に入力される。制御回路28はUDFが指定するブロック24に対応するレジスタ40にUDFをセットする(ステップS36)。例えば制御回路28は対応するUDFをハイレベルHとする。制御回路28は、動作を終了するか判定する(ステップS38)。NoのときステップS34に戻る。Yesのとき終了する。
 UDFは、例えば、外部回路のCPUにおけるOS(Operating System)またはプログラム等のソフトウエアにより生成される。また、UDFの生成の一部は専用のハードウェア回路が行ってもよい。UDFを生成するアルゴリズムをコンパイラ上に実装しておき、コンパイラによりUDFを自動的に生成してもよい。ユーザがUDFとなるデータをプログラム上で指定してもよい。UDFとなるデータを機械学習等により学習させて、UDFを生成してもよい。これらのUDFの生成の方法を複数組み合わせてもよい。電子回路100がキャッシュメモリのとき、ストアしなくてもよいデータとは、例えば長期間使われなかったデータ、使用頻度の少ないデータ、またはライト時期が古いデータなどである。
[ストア動作の説明]
 図6のステップS16の動作について説明する。図8は、実施例1におけるストア動作を示すフローチャートである。
 図9(a)から図9(d)は、実施例1におけるセルアレイおよびブロックを示す模式図である。図9(a)から図9(d)において、セルアレイ20内のサブアレイ22を3×3の9個、1つのサブアレイ22内のブロック24を4×2の8個として説明する。「スリープ」はスリープ状態(すなわちブロック24内の全てのメモリセル10がスリープモードの状態)のブロック24を示す。「ストア」はストア動作中のブロック24を示す。「SFBFシャットダウン」はSFBFによるシャットダウン状態(すなわち全てのメモリセル10がシャットダウン状態)のブロック24を示し、「UDFシャットダウン」はUDFによるシャットダウン状態のブロック24を示し、「ストア後シャットダウン」はストア動作後のシャットダウン状態のブロック24を示す。
 図10(a)から図10(c)は、実施例1におけるブロックを示す模式図である。図10(a)から図10(c)において、ブロック24a内には複数の行23が設けられている。「スタンバイ」はストアを待機している状態の行23である。「ストア」はストア動作中の行23を示す。行23aから23cは複数の行23のうちの特定の行を示す。
 図8に示すように、図6のステップS16において制御回路28がストア動作を開始すると、制御回路28は、各ブロック24に対応するUDFおよびSFBFをレジスタ40および41からそれぞれ読み出す(ステップS40)。制御回路28は、UDFおよびSFBFの少なくとも一方がセットされた(例えばハイレベルH)ブロック24をストアフリーブロックとして抽出する。ストアフリーブロックを一括してシャットダウンする(ステップS42)。例えば制御回路28は、パワースイッチ30にストアフリーブロックの電源電圧VVDD-VGNDをV0とさせる。
 図9(a)に示すように、制御回路28は9個のサブアレイ22の各8個のブロック24である9×8=72個のうち、SFBFがセットされている17個のブロック24と、UDFがセットされている19個のブロック24と、の合計が36個のブロック24を一括してシャットダウンする。残りの36個のブロック24をスリープ状態とする。
 制御回路28は、ストア動作を実行する最初のブロック24aを選択する(ステップS44)。図9(b)に示すように、制御回路28はサブアレイ22aのブロック24aを選択し、ストア動作を開始する。
 選択されたブロック24aのストア動作として、制御回路28は、選択されたブロック24a内を行ごとにストア動作する(ステップS46)。
 図10(a)に示すように、制御回路28は最初の行23aをストアする。他の行23をスタンバイとする。例えば、制御回路28は行23aのFETm7およびm8をオンし、スタンバイ状態の行23のFETm7およびm8をオフする。制御回路28は、列方向に延伸する制御線CTRLにストアのための電圧を印加する。これにより、FETm7およびm8がオンかつ制御線CTRLに電圧を印加したメモリセル10において、双安定回路12のデータが強磁性トンネル接合素子MTJ1およびMTJ2に不揮発的にストアされる。制御線CTRLには、1列ずつ電圧を印加してもよいし複数列同時に電圧を印加してもよい。行23a内の全てのメモリセル10のストアが終了すると行23aのストア動作が終了する。
 図10(b)に示すように、制御回路28は次の行23bをストアする。図10(c)に示すように、制御回路28は、順に行23をストアし、最後の行23cをストアする。全ての行23のストアが終了すると、ブロック24aのストア動作が終了する。
 制御回路28は、ブロック24aをシャットダウンする(ステップS48)。制御回路28は、選択されたサブアレイ22内の最後のブロックのストア動作が終了したか判断する(ステップS50)。Noのとき、次のブロック24bに進み(ステップS52)、ステップS44に戻る。
 図9(c)に示すように、ステップS44において制御回路28はブロック24bを選択し、ステップS46においてブロック24bのストア動作を行なう。ステップS48において制御回路28はブロック24bをシャットダウンする。その後、順次ステップS44からS52を繰り返す。
 図9(d)に示すように、最後のブロック24のストア動作が終了し、全てのブロック24がシャットダウン状態となる。制御回路28はステップS50においてYesと判定し、ストア動作を終了する。
[制御回路の例]
 図11(a)および図11(b)は、実施例1におけるそれぞれセルアレイのサイズおよびワードアドレスの例を示す図である。図11(a)に示すように、セルアレイ20のサイズとして、例えば32kバイト、256kバイトおよび2Mバイトとする。1個のブロック24のサイズを1kバイトとし、1個のサブアレイ22内のブロック24の個数Nblockを8とすると、サブアレイ22の個数NSAはそれぞれ4個、32個、256個となる。サブアレイ22のアドレスのビット数Xはそれぞれ2ビット、5ビットおよび8ビットとなる。ブロック24のアドレスのビット数Yは3ビットである。
 図11(b)に示すように、ワードアドレスは、上位からサブアレイアドレスXビット、ブロックアドレスYビットおよび、ブロック内の行アドレス(例えば1kバイトのとき7ビット)である。
 図12は、実施例1における制御回路の例を示すブロック図である。制御回路28は、デコーダ42、レジスタ40、41、制御回路43およびPS制御回路44を備えている。レジスタ40および41のビット数は各々ブロック24の個数のNSA×Nblock以上である。NSA×Nblock個のブロック24のうちブロック24Aから24Cについて説明する。
 UDF記憶部40Aから40Cはそれぞれブロック24Aから24Cに対応する1ビットのラッチ回路である。図7(b)のステップS32において、全ての記憶部40Aから40CがローレベルLにリセットされる。ステップS34において制御回路28にUDFが入力すると、ステップS36において、対応するブロック24Aから24Cの記憶部40Aから40CがハイレベルHにセットされる。
 SFBF記憶部41Aから41CはそれぞれブロックAからCに対応する1ビットのラッチ回路である。図7(a)のステップS20において、全ての記憶部41Aから41CがハイレベルHにリセットされる。ステップS22においてデコーダ42にライトのアドレス信号が入力する。ステップS24においてサブアレイアドレスXおよびブロックアドレスYから対応するブロック24が選択される。ステップS26において、対応するブロック24AからCの記憶部40Aから40CがローレベルLにセットされる。
 制御回路43は、ストア制御信号a、bおよびストア制御信号を出力する。PS制御回路44は、レジスタ40および41に保持されたUDFおよびSFBFに基づき各ブロック24Aから24CのパワースイッチPS1AからPS1CおよびPS2AからPS2Cを制御する。
 PS制御回路44は、各々ブロック24Aから24Cの個数のAND回路50、NAND回路51、OR回路52、NOR回路53、AND回路54、AND回路55、OR回路56、OR回路57、OR回路58およびAND回路59を備えている。
 PS制御回路44に入力する制御信号a、b、ENNLBおよびENSLPは、各々ブロック24Aから24Cに共通の制御信号であり、制御信号VCTRLおよびVSRは、各々ブロック24Aから24Cごとに独立する信号である。
 AND回路50には、UDF記憶部40Aから40Cの出力信号と制御信号ENNLBが入力する。NAND回路51にはUDF記憶部40Aから40Cの出力信号と制御信号ENNLBが入力する。
 OR回路52にはSFBF記憶部41Aから41Cの出力信号と制御信号aが入力する。NOR回路53にはSFBF記憶部41Aから41Cの出力信号と制御信号bが入力する。AND回路54にはOR回路52の出力信号と制御信号ENNLBが入力する。AND回路55にはNOR回路53の出力信号と制御信号ENNLBが入力する。OR回路56にはAND回路54の出力信号と制御信号ENSLPが入力する。OR回路57にはAND回路55の出力信号と制御信号ENSLPが入力する。
 OR回路58にはAND回路50の出力信号とOR回路56の出力信号が入力する。OR回路58からPS制御信号VPG1AからVPG1Cが出力される。PS制御信号VPG1AからVPG1Cはそれぞれブロック24Aから24CのパワースイッチPS1AからPS1Cのゲートに入力する。
 AND回路59にはNAND回路51の出力信号とOR回路57の出力信号が入力する。AND回路59からPS制御信号VPG2AからVPG2Cが出力される。PS制御信号VPG2AからVPG2Cはそれぞれブロック24Aから24CのパワースイッチPS2AからPS2Cのゲートに入力する。
 図13(a)から図13(e)は、実施例1における各信号とパワースイッチの動作を示す図である。図13(a)に示すように、リード/ライト期間には、制御信号a、b、ENNLBおよびENSLPは全てLである。ブロック24Aから24CのUDFをそれぞれL、LおよびHであるとする。ブロック24Aから24CのSFBFをそれぞれL、HおよびLであるとする。このとき、VPG1AからVPG1CはLでありパワースイッチPS1AからPS1Cはオンである。VPG2AからVPG2CはLでありパワースイッチPS2AからPS2Cはオフである。このように、リード/ライト期間では、UDFおよびSFBFによらず、パワースイッチPS1AからPS1CがオンでありパワースイッチPS2AからPS2Cがオフである。よって、全ブロック24Aから24Cには電源電圧VVDD-VGNDとしてリード/ライト用の電圧V2が印加される。
 図13(b)に示すように、スリープ期間には、制御信号ENSLPがHであり、制御信号a、bおよびENNLBはLである。VPG1AからVPG1CはHでありパワースイッチPS1AからPS1Cはオフである。VPG2AからVPG2CはHでありパワースイッチPS2AからPS2Cはオンである。このように、スリープ期間では、UDFおよびSFBFによらず、パワースイッチPS1AからPS1CがオフでありパワースイッチPS2AからPS2Cがオンである。よって、全ブロック24Aから24Cには電源電圧VVDD-VGNDとしてスリープ用の電圧V1が印加される。
 図8のステップS42において、リード/ライト状態からストアフリーブロック24Bおよび24Cを一括してシャットダウン状態とする。図13(c)に示すように、図13(a)と比べ、制御信号aおよびENNLBはLからHとなる。制御信号bおよびENSLPはLを維持する。VPG1AからVPG1CはLからHとなりパワースイッチPS1AからPS1Cはオンからオフとなる。VPG2AはLからHとなり、VPG2BおよびVPG2CはLを維持する。パワースイッチPS2Aはオフからオンし、パワースイッチPS2BおよびPS2Cはオフを維持する。これにより、UDFおよびSFBFの少なくとも一方がHのブロック24Bおよび24Cの電源電圧VVDD-VGNDはV0となり、ブロック24Bおよび24Cはシャットダウン状態となる。UDFおよびSFBFの両方がLのブロック24Aの電源電圧VVDD-VGND電圧はV1となり、ブロック24Aはスリープ状態となる。
 図8のステップS42の状態(この期間をT1とする)から、ステップS46において、選択されたブロック24Aがストア動作する。図13(d)に示すようにステップS42からS46において、制御信号aはHからLとなり、制御信号bはLからHとなる。制御信号ENNLBおよびENSLPはそれぞれHおよびLを維持する。VPG1AはHからLとなり、PS1Aはオフからオンとなる。VPG2AはHからLとなり、PS2Aはオンからオフとなる。PS1B、PS1C、PS2BおよびPS2Cはオフを維持する。ブロック24Aの電源電圧VVDD-VGNDはスタンバイ用の電圧V2となり、ブロック24Bおよび24Cの電源電圧VVDD-VGNDはV0となる。これにより、ブロック24Aはストア動作のスタンバイ状態となり、ブロック24BおよびCはシャットダウン状態を維持する。ブロック24Aには制御回路43から出力されるストア制御信号に応じて制御信号VCTRLおよびVSRが印加される。これにより、図10(a)から図10(c)のように、対象となるブロック24Aのストア動作が実行される。この期間をT2とする。
 図8のステップS48において、ブロック24Aのストアが終了すると、制御信号aはLからHとなる。制御信号b、ENNLBおよびENSLPはそれぞれH、HおよびLを維持する。VPG1AはLからHとなり、PS1Aはオンからオフとなる。これにより、ブロック24Aの電源電圧VVDD-VGNDは電圧V2から電圧V0となり、ブロック24Aはシャットダウン状態となる。この期間をT3とする。図8のステップS44からS52のループを行うことにより、ストア動作対象のブロック24について、制御信号(a、b)を順次(H、L)→(L、H)→(H、H)とする。これにより、ストア動作対象のブロック24が順次ストアされる。
 図13(e)に示すように、シャットダウン状態においては、制御信号a、b、ENNLBおよびENSLPはそれぞれH、H、HおよびLである。PS1AからPS1CおよびPS2AからPS2Cは、UDFおよびSFBFによらずオフとなる。これにより、全ブロック24の電源電圧VVDD-VGNDはV0であり、全ブロック24がシャットダウン状態となる。
 図14は、実施例1における制御信号のタイミングチャートである。制御信号a1~anは各ブロック241から24nに対応する制御信号aであり、制御信号b1~bnは各ブロック241から24nに対応する制御信号bである。ブロック241~24kはストア動作対象のブロックであり、ブロック24k+1~ブロック24nはストアフリーブロックである。
 図14に示すように、時刻t10とt11との間はリード/ライト期間であり、制御信号a1~an、b1~bn、ENNLBおよびENSLPはLである。時刻t11とt12との間はスリープ期間であり、制御信号ENSLPはHであり、他の制御信号はLである。
 ストア動作が開始されると、時刻t13(図8のステップS42)において、制御信号ENNLBおよびa1~anがHとなる。これにより、ストア動作対象のブロック241~24kは期間T1のスリープ状態となり、ストアフリーブロック24k+1~24nはシャットダウン状態となる。この状態は期間T1である。
 時刻t14において、ストア動作対象のブロック241に対応する制御信号a1およびb1はそれぞれLおよびHとなる。時刻t14とt15との間の期間はブロック241の期間T2であり、ブロック241はストア動作されている。時刻t15において、制御信号a1はHとなりb1はHを維持する。時刻t15以降の期間はブロック241の期間T3であり、ブロック241はシャットダウン状態である。時刻t15において、ブロック242に対応する制御信号a2およびb2はそれぞれLおよびHとなる。時刻t15とt16との間の期間はブロック242の期間T2であり、ブロック242はストア動作されている。時刻t16において制御信号a2はHとなりb2はHを維持する。時刻t16以降の期間はブロック242の期間T3であり、ブロック242はシャットダウン状態である。
 ストア動作対象のブロック241~24kについて順次ステップS46およびS48を行う。時刻t17において全てのストア動作対象のブロック241~24kについてストア動作が終了すると、全ブロック241~24nがシャットダウン状態となる。時刻t18において、制御信号a1~an、b1~bn、ENNLBおよびENSLPはLとなると、リード/ライト期間となる。
 このように、時刻t13においてブロック241から24kは一括してスリープ状態(期間T1)となり、ブロック24k+1から24nは一括してシャットダウン状態となる。その後、ブロック241から24kは順次ストア(期間T2)となる。ストアの終了したブロックは順次シャットダウン状態(期間T3)となる。
 図15は、実施例1における制御回路28の別の例のブロック図である。図15に示すように、制御信号ENSLPをブロック24Aから24C毎の信号とすることで、ブロック24Aから24Cごとにスリープ状態とすることが可能である。その他の構成は図12と同じであり説明を省略する。
[シミュレーション]
 実施例1に係る電子回路についてBETおよびストアのレイテンシをシミュレーションした。比較例1-1および比較例1-2についてもシミュレーションした。比較例1-1では、サブアレイ22およびブロック24の一括遮断を行なわず、SFBFがセットされているブロック24のストア動作を順次スキップする。比較例1-2では、UDFによる一括遮断を行わずSFBFによる一括遮断のみを行なう。
 シミュレーション条件は以下である。リード/ライト期間、ストア期間およびリストア期間における電源電圧VVDD-VGNDである電圧V2を1.2Vとした。スリープ期間における電源電圧VVDD-VGNDである電圧V1および制御線CTRLの電圧をそれぞれ0.8Vおよび0Vとした。ストア期間におけるスイッチ線SRの電圧を0.75Vとした。ストア期間における制御線CTRLのハイレベルおよびローレベルの電圧をそれぞれ0.45Vおよび0Vとした。サブアレイ22およびブロック24の記憶容量をそれぞれ8kバイトおよび1kバイトとした。
 セルアレイ20内の全メモリセルの個数に対するSFBFによるストアフリーメモリセルの個数の比をSFBFストアフリー割合(proportion)とした。セルアレイ20内の全メモリセルの個数に対するUDFによるストアフリーメモリセルの個数の比をUD割合(proportion)とした。セルアレイ20内に揮発的に書き込まれるメモリセル10は特定のサブアレイ22およびブロック24に集中することを考慮し、ストア動作にかかる時間をストアレイテンシとした。セルアレイ20の記憶容量が32kバイト、256kバイトおよび2Mバイトについてシミュレーションした。
 図16(a)から図16(c)は、実施例1、比較例1-1および1-2におけるSFBFストアフリー割合に対するBETを示す図、図16(d)から図16(f)は、SFBFストアフリー割合に対するストアレイテンシを示す図である。図16(a)に示すように、比較例1-1では、32kバイトのときストアフリー割合が大きくなるとBETが短くなる。
 図16(b)および図16(c)のように、256kバイトおよび2Mバイトと記憶容量が大きくなると、SFBFストアフリー割合が大きくなってもBETは小さくならない。これは以下の理由のためである。すなわち、記憶容量が大きくなると、ストア動作を待機するブロック24が大きくなる。ストア動作の待機中にもメモリセル10にはリーク電流が流れる。このため、セルアレイ20全体でのリーク電流が大きく、ストアフリー割合が大きくなってもBETは小さくならない。
 図16(d)から図16(f)に示すように、比較例1ではストアレイテンシはストアフリー割合によらず一定である。
 図16(a)から図16(c)のように、比較例1-2では記憶容量によらずストアフリー割合が大きくなるとBETが小さくなる。図16(d)から図16(f)のように、比較例1-1では記憶容量によらずストアフリー割合が大きくなるとストアレイテンシが短くなる。これらは、比較例1-2では、ストアフリーのブロック24を最初にシャットダウンするためである。
 図16(a)から図16(c)のように、実施例1では、比較例1-1に比べUD割合が大きくなるとBETが短くなる。図16(d)から図16(f)のように、実施例1では、比較例1-1に比べUD割合が大きくなるとストアレイテンシが短くなる。
 実施例1によれば、図1のように、各々のメモリセル10は、データを揮発的に記憶する双安定回路12と、双安定回路12に記憶されたデータを不揮発的にストアし、不揮発的にストアされたデータを双安定回路12にリストアする不揮発性素子と、を有する。図8のステップS42のように、制御回路28は、セルアレイ20をシャットダウン(電源遮断)するときに、複数のメモリセル10のうち揮発的に書き換えられているかいないかにかわらず不揮発的にストアしなくてもよい1または複数の第1メモリセルをシャットダウンする。ステップS44およびS46のように、第1メモリセルをシャットダウンした後、複数のメモリセルのうち残りの1または複数の第2メモリセルにおいて双安定回路12に揮発的に記憶されたデータを不揮発性素子にストアするストア動作を行う。ステップS48のように、その後制御回路28は第2メモリセルをシャットダウンする。
 これにより、揮発的に書き換えられているかいないかにかわらず不揮発的にストアしなくてもよい第1メモリセルをシャットダウンした後、残りの第2メモリセルをストア動作するための消費電力を抑制できる。また、ストアレイテンシを削減できる。
 図4および図5のように、セルアレイ20は、各々のブロック24が少なくとも2つのメモリセル10を含む複数のブロック24に分割されている。図8のステップS40のように、制御回路28は、セルアレイ20をシャットダウン(電源遮断)するときに、複数のブロック24からブロック24内のメモリセル10が揮発的に書き換えられているかいないかにかわらず、不揮発的にストアしなくてもよい1または複数の第1ブロック(すなわちUDFがセットされたブロック)を抽出する。図8のステップS42および図9(a)のように、制御回路28は、第1ブロックをシャットダウンする。図8のステップS46および図9(b)のように、制御回路28は、第1ブロックをシャットダウンした後,複数のブロック24のうち残りの1または複数の第2ブロック内のメモリセル10において双安定回路12に記憶されたデータを不揮発性素子にストアするストア動作を行う。図8のステップS48および図9(c)のように、制御回路28は、ストア動作の終了した第2ブロックをシャットダウンする。
 このように、ブロック24毎に、UDFがセットされた第1ブロックをシャットダウンするため、第1ブロックをストア動作するための消費電力を抑制できる。また、ストアレイテンシを削減できる。また、UDFがセットされた第1ブロックを最初にシャットダウンするため、ストア動作を待機するときのリーク電流に起因する消費電力を削減できる。
 図9(a)のように、制御回路28は、抽出された第1ブロックを全てシャットダウンした後、図9(b)から図9(d)のように、残りの第2ブロック内のメモリセル10においてストア動作を行う。これにより、UDFがセットされた第1ブロックがシャットダウンを待機するときの消費電力を削減できる。
 レジスタ40(記憶回路)は、セルアレイ20の外に設けられ、外部回路から受信したUDF(不揮発的にストアしなくてもよい第1ブロックを示す情報)を記憶する。制御回路28は、UDFに基づき、第1ブロックを抽出する。これにより、UDFを記憶する記憶回路を各サブアレイ22またはブロック24に設ける方法に比べ、UDFをバス25等を介し制御回路28に転送しなくてもよく、制御が簡単になる。
 図8のステップS40のように、制御回路28は、複数のブロック24から、UDFがセットされたブロックと、SFBFがセットされたブロック24(すなわちブロック24内のいずれのメモリセル10も揮発的に書き換えられていないブロック)と、を第1ブロックとして抽出する。これにより、UDFがセットされたブロックとSFBFがセットされたブロックを最初にシャットダウンするため、ストア動作を待機するときのリーク電流に起因する消費電力を削減できる。また、ストアレイテンシを低減できる。
 レジスタ41(記憶回路)は、セルアレイ20の外に設けられている。これにより、SFBFを各サブアレイ22またはブロック24に記憶する方法に比べ、SFBFをバス25等を介し制御回路28に転送しなくてもよく、制御が簡単になる。
 実施例1において、MTJ1およびMTJ2がノードQおよびQBにそれぞれ接続される例を説明したが、ノードQまたはQBにMTJ1およびMTJ2のいずれか一方が接続されていればよい。メモリセルは、双安定回路12と不揮発性素子を有していればよい。不揮発性素子としてMTJを例に説明したが、不揮発性素子としては巨大磁気抵抗(GMR)素子、ReRAM(Resistance Random Access Memory)に用いられるような可変抵抗素子、または、PRAM(Phase change RAM)に用いられる相変化素子を用いることができる。
 特許文献5をセルアレイに適用する場合、VNR-SRAMのULVリテンションはBI(ブーステッドインバータ)モードからST(シュミットトリガ)モードにモードを切り替えた後に電源電圧を低下させることにより行う。セルアレイのサイズが大きくなると、モード切り替えを待機するメモリセルにおけるリーク電流に起因する消費電力が大きくなる。また、待機期間によりレイテンシが増加する。また、メモリセルのデータが不要なデータであってもリテンションを行ってしまう。これにより、消費電力およびレイテンシが増大する。
 実施例2は、消費電力および消費エネルギーを抑制することを目的とする。具体的には、PG時(リテンション時)、PGへの移行およびPGからの復帰における消費電力および消費エネルギーを削減すること、およびPGに関するBETを削減することを目的とする。
 実施例2では、セルアレイにデータを書き込むとき、またはデータを処理するときに電源復帰後に不要となるデータの存在するメモリセルをシャットダウンし、残りのメモリセルをリテンションする。これにより、リテンション不要なメモリセルのモード切り替えが不要なため消費電力およびレイテンシを抑制できる。
 より具体的に、セルアレイを複数のブロックに分割する。電源復帰後に不要となるデータの存在するメモリセルを有するブロックを指定するUDFを生成する。リテンションのときには、UDFに基づき、リテンション不要なブロックをシャットダウンする。その後、その他のブロックにおいてリテンションを行う。これにより、リテンション不要なブロックのモード切り替えが不要なため消費電力およびレイテンシを抑制できる。また、リテンション不要なブロックをシャットダウンするため消費電力をより削減できる。
 以下、実施例2の詳細な例について説明する。
[メモリセルの説明]
 図17は、実施例2におけるメモリセルの回路図である。図17に示すように、メモリセル10は、インバータ回路14および16を主に備えている。
 インバータ回路14および16はループ状に接続され双安定回路12を構成している。インバータ回路14は、FETm1、m2a、m2bおよびm9を備えている。インバータ回路16は、FETm3、m4a、m4bおよびm10を備えている。FETm1およびm3はPチャネルMOSFETであり、FETm2a、m2b、m4a、m4b、m9およびm10はNチャネルMOSFETである。FETm1およびm3のソースは仮想電源電圧VVDDが印加された電源線15aに接続され、ドレインはノードQおよびQBに接続されている。FETm2aおよびm2bはノードQとグランド電圧VGNDが印加されたグランド線15bとの間に直列に接続され、FETm2bのソースはグランド線15bにFETm2aのドレインはノードQに接続されている。FETm4aおよびm4bも同様にノードQBとグランド線15bとの間に接続されている。
 インバータ回路14の入力ノードはFETm1、m2aおよびm2bが共通に接続されたノードN1であり、インバータ回路14の出力ノードはノードQである。インバータ回路16の入力ノードはFETm3、m4aおよびm4bが共通に接続されたノードN3であり、インバータ回路16の出力ノードはノードQBである。インバータ回路14の入力ノードおよび出力ノードはそれぞれインバータ回路16の出力ノードおよび入力ノードに接続されている。
 FETm9のソースおよびドレインの一方はFETm2aとm2bとの間のノードN2に接続され、他方は制御線CTRLに接続され、ゲートはノードQに接続されている。FETm10のソースおよびドレインの一方はFETm4aとm4bとの間のノードN4に接続され、他方は制御線CTRLに接続され、ゲートはノードQBに接続されている。
 インバータ26aは制御線CTRL用のドライバ26であり、制御信号VCTRLを反転し、ハイレベルの電圧が電圧VSCTRLおよびローレベルの電圧が電圧VLCTRLの制御信号を出力する。制御信号VCTRLがハイレベルのとき制御線CTRLはVLCTRLとなり、インバータ回路14および16はBIモードとなる。制御信号VCTRLがローレベルのとき制御線CTRLはVSCTRLとなり、インバータ回路14および16はSTモードとなる。
 ノードQおよびQBは、それぞれMOSFETm5およびm6を介しビット線BLおよびBLBに接続されている。MOSFETm5およびm6のゲートはワード線WLに接続されている。
 BIモードは、インバータ回路14および16の伝達特性にヒステリシスを実質的に有さず、かつ高速動作可能なモードである。STモードは、インバータ回路14および16の伝達特性にヒステリシスを有し、かつ動作が遅いモードである。なお、ヒステリシスを実質的に有さないとはSTモードのような意図的なヒステリシスを有さないことであり、意図しないヒステリシスを有することを許容する。
 BIモードでは、メモリセル10は、通常のSRAMセルとして機能する。STモードでは、電源電圧(VVDD-VGND)を例えば0.2Vと超低電圧(ULV:Ultralow Voltage)としても双安定回路12のデータを保持する。
 パワースイッチ30はパワースイッチPS1、PS2およびPS3を備えている。パワースイッチPS1およびPS2は高電圧の電源15chと電源線15aとの間に並列に接続されている。パワースイッチPS1およびPS2は例えばそれぞれPチャネルFETおよびNチャネルFETである。パワースイッチPS1およびPS2のゲートにそれぞれPS制御信号VPG1およびVPG2が印加される。パワースイッチPS1およびPS2の基板バイアスは例えばそれぞれVDDHおよびVGNDである。
 低電圧の電源15clと電源線15aとの間にパワースイッチPS3およびFETm11が直列に接続されている。パワースイッチPS3およびFETm11はそれぞれPチャネルFETおよびNチャネルFETである。FETm11は負荷として機能する。パワースイッチPS3のゲートにPS制御信号VPG3が印加される。パワースイッチPS3およびFETm11の基板バイアスは例えばそれぞれVDDLおよびVDDHである。実施例1と同様に、パワースイッチ30は、グランド線15bとグランド15dとの間に設けられていてもよい。パワースイッチ30は、電源線15aと電源15chおよび15clの少なくとも一方との間と、グランド線15bとグランド15dとの間の両方に設けられていてもよい。
[各状態の説明]
 図18(a)および図18(b)は、実施例2における各状態に印加される電圧を示す図である。図18(a)のように、スタンバイ状態ではVPG1、VPG2およびVPG3はそれぞれローレベルL、ローレベルLおよびハイレベルHである。パワースイッチPS1、PS2およびPS3はそれぞれオン、オフおよびオフとなる。これにより、電源電圧VVDD-VGNDは電圧V3となる。電圧V3は例えば1.2Vである。
 スリープ状態ではVPG1、VPG2およびVPG3はそれぞれH、HおよびHである。パワースイッチPS1、PS2およびPS3はそれぞれオフ、オンおよびオフとなる。これにより、電源電圧VVDD-VGNDは電圧V3より低い電圧V2となる。電圧V2は例えば0.8Vである。
 リテンション状態ではVPG1、VPG2およびVPG3はそれぞれH、LおよびLである。パワースイッチPS1、PS2およびPS3はそれぞれオフ、オフおよびオンとなる。これにより、電源電圧VVDD-VGNDは電圧V2より低い電圧V1となる。電圧V1は例えば0.2Vである。
 シャットダウン状態ではVPG1、VPG2およびVPG3はそれぞれH、LおよびHである。パワースイッチPS1、PS2およびPS3はそれぞれオフ、オフおよびオフとなる。電源電圧VVDD-VGNDは電圧V1より低い電圧V0となる。電圧V0はほぼ0Vである。
 図18(b)に示すように、スタンバイ状態では、電源電圧VVDD-VGNDは電圧V3である。制御信号VCTRLはLの場合とHの場合があり、VCTRLがHのときメモリセル10はBIモードであり、VCTRLがLのときメモリセル10はSTモードである。スタンバイ(BI)状態は、実施例1のリード/ライト状態と同じであり、通常のSRAMとして双安定回路12のデータを書き換えが可能な状態である。電源電圧VVDD-VGNDは、双安定回路12がデータの書き換えが可能でかつデータが保持できる電圧V3である。
 スリープ状態では、電源電圧VVDD-VGNDは電圧V3より低い電圧V2である。制御信号VCTRLはLの場合とHの場合があり、VCTRLがHのときメモリセル10はBIモードであり、VCTRLがLのときメモリセル10はSTモードである。電源電圧VVDD-VGNDは、双安定回路12がデータの書き換えはできないがデータが保持できる電圧V2である。電圧V2は電圧V3より低いため、消費電力を抑制できる。
 リテンション状態では、電源電圧VVDD-VGNDは電圧V2より低い電圧V1である。制御信号VCTRLはLでありメモリセル10はSTモードである。電源電圧VVDD-VGNDは、双安定回路12がBIモードではデータを保持できないが、STモードではデータが保持できる電圧V1である。リテンション状態ではメモリセル10が擬似不揮発性の状態であり、電圧V1を電圧V2より低くできるため、消費電力を非常に抑制できる。
 シャットダウン状態では、電源電圧VVDD-VGNDは電圧V1より低い電圧V0である。制御信号VCTRLはHでありメモリセル10はBIモードである。シャットダウン状態ではメモリセル10の消費電力はほぼ0である。
 図19(a)および図19(b)は、実施例2におけるリテンションおよびシャットダウンに印加される電圧を示す図である。図19(a)に示すように、スタンバイ状態では、電源電圧VVDD-VGNDは電圧V3、制御信号VCTRLはHであり、BIモードである。モード切り替え期間では、まずVCTRLをLとする。これにより、STモードとなる。その後、電源電圧VVDD-VGNDを電圧V1とする。これにより、リテンション状態となる。その後モード切り替え期間において電源電圧VVDD-VGNDを電圧V3とする。その後、VCTRLをHとする。これによりスタンバイ状態に戻る。このようにリテンション状態とする前後にはモード切り替えを行う。
 図19(b)に示すように、スタンバイ状態において、電源電圧VVDD-VGNDを電圧V0とするとシャットダウン状態となる。このとき、VCTRLはHを維持しBIモードを維持する。電源電圧VVDD-VGNDを電圧V3とすると、スタンバイ状態に戻る。
 図20は、実施例2における各期間の消費電力を示す図である。実線は図17に示したメモリセル10(VNR-SRAM)を有する記憶回路の消費電力(パワー)を示す。点線は、6トランジスタSRAM(6T-SRAM)セルを用いた記憶回路の消費電力を示している。
 図20に示すように、メモリセル10の動作期間には、スタンバイ期間、モード切り替え期間およびリテンション期間がある。スタンバイ期間の長さをτNLとする。リテンション期間前のモード切り替え期間の長さをτEXTとする。リテンション期間の長さをτSDとする。リテンション期間後のモード切り替え期間の長さをτENTとする。
 VNR-SRAMのスタンバイ期間の消費電力は6T-SRAMの消費電力よりPLKG大きい。これは、FETm9およびm10のリーク電流に起因する。VNR-SRAMでは、モード切り替え期間にモード切り替えのための消費電力が必要となる。リテンション期間では、VNR-SRAMの消費電力はP´Saveであり、VNR-SRAMでは6T-SRAMより消費電力をPSave削減できる。
 VNR-SRAMセルの6T-SRAMセルに対するエネルギーの増加は、スタンバイ期間におけるPLKGによるエネルギー増加ELKG、モード切り替え期間のエネルギー増加EEXTおよびEENTの合計である。VNR-SRAMセルがリテンションにより節約できるエネルギーは、リテンション期間におけるPSaveによるエネルギー減少ESaveである。ELKG+EEXT+EENT=PSave×BETとなる。双安定回路12のリード/ライトが行われない待機期間がBET以上のときはリテンション状態とし、BET以下のときはスタンバイ状態とする。これにより、極めて高効率にエネルギーを削減できる。
 図21(a)および図21(b)は、実施例2におけるメモリセルの別の例である。図21(a)に示すように、インバータ回路14は、FETm1a、m1b、m2およびm9aを備え、インバータ回路16は、FETm3a、m3b、m4およびm10aを備える。FETm1a、m1b、m3a、m3b、m9aおよびm10aはPチャネルFETであり、FETm2およびm4はNチャネルFETである。FETm9aのソースおよびドレインの一方はFETm1aとm1bとの間のノードN2aに接続され、FETm10aのソースおよびドレインの一方はFETm3aとm3bとの間のノードN4aに接続されている。
 ドライバ26は、インバータ26aの前段にインバータ26cを備えている。VCTRLがLのとき、インバータ26cはVDDを出力し、インバータ26aはCTRLとしてVLCTRLを出力し、インバータ回路14および16はBIモードとなる。VCTRLがHのとき、インバータ26cはVGNDを出力し、インバータ26aはCTRLとしてVSCTRLを出力し、インバータ回路14および16はSTモードとなる。その他の構成は図17と同じであり説明を省略する。インバータ26cの電源電圧および接地電圧をVDDおよびVGNDとしているが、インバータ26aと同様に電源電圧および接地電圧をVSCTRLおよびVLCTRLとしてもよい。ドライバ26は、インバータ26aと26cの代わりに、インバータ26aのみを用いて構成してもよい。
 図21(b)に示すように、インバータ回路14は、FETm1a、m1b、m2a、m2b、m9およびm9aを備え、インバータ回路16は、FETm3a、m3b、m4a、m4b、m10およびm10aを備える。FETm1a、m1b、m3a、m3b、m9aおよびm10aはPチャネルFETであり、FETm2a、m2b、m4aおよびm4b、m9およびm10はNチャネルFETである。
 FETm9aおよびFETm10aのソースおよびドレインの他方は制御線CTRLPに接続され、FETm9およびFETm10のソースおよびドレインの他方は制御線CTRLNに接続されている。ドライバ26はインバータ26aおよび26bを備えている。インバータ26aは制御線CTRLNに出力する。インバータ26bはインバータ26aの出力を反転し制御線CTRLPに出力する。その他の構成は図17および図21(a)と同じであり説明を省略する。
 図21(a)および図21(b)のように、インバータ回路14および16において、PチャネルFETm1aおよびm3aとNチャネルFETm2およびm4との少なくとも一方が直列に複数接続されていてればよい。PチャネルFETm9aおよびm10aとNチャネルFETm9およびm10との少なくとも一方が設けられていればよい。
[電子回路の説明]
 図22は、実施例2における電子回路を示すブロック図である。図22に示すように、電子回路102は、セルアレイ20、制御回路28を備えている。セルアレイ20は、複数のサブアレイ22に分割されている。サブアレイ22の記憶容量は例えば8kバイトである。サブアレイ22には複数のメモリセル10がマトリックス状に設けられている。サブアレイ22はバス25に接続されている。サブアレイ22の個数は適宜設計可能である。
 サブアレイ22にはパワースイッチ30および周辺回路38が設けられている。パワースイッチ30はサブアレイ22毎に電源電圧を設定する。周辺回路38はモード制御信号に基づき、各メモリセル10のモードを制御する。
 制御回路28はレジスタ40を備えている。制御回路28が外部回路から受信したブロックごとのUDFをレジスタ40に格納する。制御回路28は、PS制御信号を用い各サブアレイ22のパワースイッチ30を制御する。制御回路28はバス25を介しサブアレイ22へのデータの入出力を行う。制御回路28の少なくとも一部の機能は外部のCPU等のプロセッサ回路がソフトウエアと協働で行ってもよい。
[サブアレイの説明]
 図23は、実施例2におけるサブアレイのブロック図である。図23に示すように、サブアレイ22は、メモリセル10を有する複数のブロック24(例えば8個)に分割されている。ブロック24の記憶容量は例えば1kバイトである。ブロック24の個数は適宜設計可能である。サブアレイ22内には複数のメモリセル10がマトリックス状に配置されている。サブアレイ22内には、行方向にワード線WLおよび制御線CTRLが延伸し、列方向にビット線BLが延伸している。各メモリセル10には、ワード線WL、ビット線BL、制御線CTRL、電源線15aおよびグランド線15bが接続されている。
 各サブアレイ22に対応し、パワースイッチ30および周辺回路38が設けられている。制御回路28は、パワースイッチ30および周辺回路38を制御する。
 パワースイッチ30は、ブロック24毎に電源電圧VVDD-VGNDを電圧V3、V2、V1およびV0にできる。周辺回路38は、WLデコーダ31、列デコーダ32、プリチャージ回路33および読出書込回路34を備えている。
 スタンバイ期間において、WLデコーダ31は行アドレスに基づきワード線WLを選択する。列デコーダ32は列アドレスに基づきビット線BLを選択する。プリチャージ回路33はビット線BLをプリチャージする。読出書込回路34は、WLデコーダ31および列デコーダ32に選択されたメモリセル10の双安定回路12にデータを書き込みまたは双安定回路12からデータを読み出しバス25に出力する。
 リテンション期間において、制御回路28は1または複数のメモリセル10をSTモードとし、VVDDを電圧V1とする。これにより、メモリセル10はリテンション状態となる。
[動作の説明]
 図24は、実施例2における動作を示すフローチャートである。図24に示すように、制御回路28は、外部回路からの指令によりセルアレイ20の電源を投入する(ステップS10)。例えば、制御回路28は、全てのブロック24のメモリセル10をBIモードとし、パワースイッチPS1をオンし、パワースイッチPS2およびPS3をオフする。これにより、全てのブロック24がスタンバイ状態となる。
 制御回路28は、スタンバイ状態でリードおよびライト動作を行う(ステップS12)。制御回路28は、外部回路からセルアレイ20をシャットダウンする指示を受けたか否か判定する(ステップS14)。NoのときステップS12に戻る。Yesのとき、制御回路28は、リテンション動作およびシャットダウンを行う(ステップS17)。その後終了しステップS10に戻る。
[UDF設定の説明]
 UDFを設定する動作は実施例1の図7(b)と同じであり説明を省略する。
[リテンション動作のタイプAの説明]
 図24のステップS17の動作としてリテンション動作のタイプAについて説明する。図25は、実施例2におけるリテンション動作のタイプAを示すフローチャートである。図26(a)から図26(e)は、実施例2におけるリテンション動作のタイプAにおけるセルアレイを示す模式図である。図27(a)から図27(e)は、実施例2におけるリテンション動作のタイプAにおけるセルアレイおよびブロックを示す模式図である。図26(a)から図26(e)はサブアレイ22毎にリテンション動作を行う例であり、図27(a)から図27(e)はブロック24毎にリテンション動作を行う例である。サブアレイ22毎にリテンション動作を行う場合もブロック24毎にリテンション動作を行う場合も基本的な動作は同じである。リテンション動作のタイプBおよびCでも同様である。
 図24のステップS17において制御回路28がリテンション動作を開始する。図25に示すように、このとき、各ブロック24(またはサブアレイ22)はスタンバイ(BI)状態となっている(ステップS54)。例えば制御回路28は全てのブロック24(サブアレイ22)の電源電圧VVDD-VGNDを電圧V3とし、制御信号VCTRLをHとする。図26(a)のように、全てのサブアレイ22はスタンバイ(BI)状態である。図27(a)のように、全てのブロック24はスタンバイ(BI)状態である。
 制御回路28はブロック24(またはサブアレイ22)に対応するUDFをレジスタ40からそれぞれ読み出す(ステップS56)。制御回路28は、UDFがセットされた(例えばハイレベルHの)ブロック24(サブアレイ22)を抽出し、一括してシャットダウンする(ステップS58)。例えば制御回路28は、対応するブロック24(サブアレイ22)の電源電圧VVDD-VGNDを電圧V0とする。図26(b)に示すように、制御回路28は9個のサブアレイ22のうち、4個のサブアレイ22を一括してシャットダウン状態とする。図27(b)に示すように、制御回路28は72個のブロック24のうち、28個のブロック24を一括してシャットダウン状態とする。
 制御回路28は、UDFがセットされていない(すなわちリテンション対象の)最初のブロック24a(サブアレイ22a)を選択する(ステップS60)。制御回路28は最初のブロック24a(サブアレイ22a)をスタンバイ(ST)とする(ステップS62)。例えば制御回路28はブロック24a(サブアレイ22a)の電源電圧VVDD-VGNDを電圧V3とした状態で、制御信号VCTRLをLとする。図26(c)に示すように、サブアレイ22aはスタンバイ(ST)状態となる。図27(c)に示すように、ブロック24aはスタンバイ(ST)状態となる。
 制御回路28は最後のブロック24(サブアレイ22)か判定する(ステップS64)。Noのとき、次のブロック24(サブアレイ22)に進み(ステップS66)、ステップS60に戻る。順次、リテンション対象のブロック24(サブアレイ22)をスタンバイ(ST)状態とする。図26(d)のように、全てのリテンション対象のサブアレイ22がスタンバイ(ST)状態となる。図27(d)のように、全てのリテンション対象のブロック24がスタンバイ(ST)状態となる。
 ステップS64においてYesと判定されると、制御回路28は全てのリテンション対象のブロック24(サブアレイ22)を一括あるいは複数のブロック24(サブアレイ22)毎にリテンション状態とする(ステップS68)。図26(e)のように、全てのリテンション対象のサブアレイ22がリテンション状態となる。図27(e)のように、全てのリテンション対象のブロック24がリテンション状態となる。その後終了する。
[リテンション動作のタイプBの説明]
 リテンション動作のタイプBについて説明する。図28は、実施例2におけるリテンション動作のタイプBを示すフローチャートである。図29(a)から図29(e)は、実施例2におけるリテンション動作のタイプBにおけるセルアレイを示す模式図である。図30(a)から図30(e)は、実施例2におけるリテンション動作のタイプBにおけるセルアレイおよびブロックを示す模式図である。
 図28に示すように、制御回路28は、各ブロック24(またはサブアレイ22)をスリープ(BI)状態とする(ステップS70)。例えば制御回路28は全てのブロック24(サブアレイ22)の電源電圧VVDD-VGNDを電圧V2とし、制御信号VCTRLをHとする。図29(a)のように、全てのサブアレイ22はスリープ(BI)状態である。図30(a)のように、全てのブロック24はスリープ(BI)状態である。
 制御回路28はステップS56において読み出したUDFがセットされた(例えばハイレベルHの)ブロック24(サブアレイ22)を抽出し、一括してシャットダウンする(ステップS58)。図29(b)に示すように、制御回路28は4個のサブアレイ22を一括してシャットダウン状態とする。図30(b)に示すように、制御回路28は28個のブロック24を一括してシャットダウン状態とする。
 制御回路28はステップS60において選択された最初のブロック24a(サブアレイ22a)をスリープ(ST)状態とする(ステップS72)。例えば制御回路28はブロック24a(サブアレイ22a)の電源電圧VVDD-VGNDを電圧V2とし、制御信号VCTRLをLとする。図29(c)に示すように、サブアレイ22aはスリープ(ST)状態となる。図30(c)に示すように、ブロック24aはスリープ(ST)状態となる。
 ステップS64においてNoと判定されると、次のブロック24(サブアレイ22)についてステップS60およびS72を行う。図29(d)のように、全てのリテンション対象のサブアレイ22がスリープ(ST)状態となる。図30(d)のように、全てのリテンション対象のブロック24がスリープ(ST)状態となる。
 ステップS64においてYesと判定されると、制御回路28は全てのリテンション対象のブロック24(サブアレイ22)を一括してリテンション状態とする(ステップS68)。図29(e)のように、全てのリテンション対象のサブアレイ22がリテンション状態となる。図30(e)のように、全てのリテンション対象のブロック24がリテンション状態となる。その後終了する。その他の動作はリテンション動作のタイプAと同じである。
[リテンション動作のタイプCの説明]
 リテンション動作のタイプCについて説明する。図31は、実施例2におけるリテンション動作のタイプCを示すフローチャートである。図32(a)から図32(e)は、リテンション動作のタイプCにおけるセルアレイを示す模式図である。図33(a)から図33(e)は、リテンション動作のタイプCにおけるセルアレイおよびブロックを示す模式図である。
 図31に示すように、ステップS70、S56、S58、S60、S72はリテンションのタイプBと同じであり、図32(a)から図32(c)および図33(a)から図33(c)は、図29(a)から図29(c)および図30(a)から図30(c)とそれぞれ同じである。
 ステップS72において、制御回路28は、リテンション対象の最初のブロック24a(またはサブアレイ22a)をスリープ(ST)状態とした後、ブロック24a(またはサブアレイ22a)をリテンション状態とする(ステップS74)。図32(d)に示すように、サブアレイ22aはリテンション状態となる。図33(d)に示すように、ブロック24aはリテンション状態となる。
 その後、リテンション対象のブロック24(サブアレイ22)を順次スリープ(ST)状態とし(ステップS72)、その後リテンション状態とする(ステップS74)。ステップS64においてYesと判定されたとき、図32(e)のように、全てのリテンション対象のサブアレイ22がリテンション状態となる。図33(e)のように、全てのリテンション対象のブロック24がリテンション状態となる。その後終了する。その他の動作はリテンション動作のタイプBと同じである。
[リテンション動作のタイプBの制御回路の例]
 図34は、リテンション動作のタイプBにおける制御回路の例を示すブロック図である。制御回路28Bは、レジスタ40、モード制御回路45およびPS制御回路44を備えている。レジスタ40のビット数は各々ブロック24の個数のNSA×Nblock以上である。NSA×Nblock個のブロック24のうちブロック24Aから24Bについて説明する。
 実施例1の図7(b)のステップS32と同様に、全ての記憶部40Aから40BがローレベルLにリセットされる。ステップS34において制御回路28BにUDFが入力すると、ステップS36において、対応するブロック24Aから24Bの記憶部40Aから40BがハイレベルHにセットされる。
 モード制御回路45は、モード制御信号VCTRLを出力する。PS制御回路44は、レジスタ40に保持されたUDFに基づき各ブロック24Aから24BのパワースイッチPS1AからPS1B、PS2AからPS2BおよびPS3AからPS3Bを制御する。
 PS制御回路44は、各々ブロック24Aから24Bの個数のOR回路60、AND回路61、OR回路62、OR回路63、NAND回路64、AND回路65、AND回路66、OR回路67、OR回路68、OR回路69、AND回路70、AND回路71、OR回路72およびOR回路73を備えている。
 OR回路60には、UDF記憶部40Aから40Bの出力信号と制御信号ENNLBが入力する。AND回路61にはOR回路60の出力信号と制御信号ENNLBが入力する。OR回路62にはAND回路61の出力信号と制御信号ENSLPが入力する。OR回路62からPS制御信号VPG1AからVPG1Bが出力される。PS制御信号VPG1AからVPG1Bはそれぞれブロック24Aから24BのパワースイッチPS1AからPS1Bのゲートに入力する。
 OR回路63にはUDF記憶部40Aから40Bの出力信号と制御信号ENRBが入力する。NAND回路64にはUDF記憶部40Aから40Bの出力信号と制御信号ENNLBが入力する。AND回路65にはOR回路63の出力信号とNAND回路64の出力信号が入力する。AND回路66にはAND回路65の出力信号と制御信号ENNLBが入力する。OR回路67にはAND回路65の出力信号と制御信号ENSLPが入力する。OR回路67からPS制御信号VPG2AからVPG2Bが出力される。PS制御信号VPG2AからVPG2Bはそれぞれブロック24Aから24BのパワースイッチPS2AからPS2Bのゲートに入力する。
 OR回路68にはUDF記憶部40Aから40Bの出力信号と制御信号ENRBが入力する。OR回路69にはUDF記憶部40Aから40Bの出力信号と制御信号ENNLBが入力する。AND回路70にはOR回路68の出力信号とOR回路69の出力信号が入力する。AND回路71にはAND回路70の出力信号と制御信号ENNLBが入力する。OR回路72にはAND回路71の出力信号と制御信号ENSLPが入力する。OR回路73にはOR回路72の出力信号と制御信号ENRBが入力する。OR回路73からPS制御信号VPG3AからVPG3Bが出力される。PS制御信号VPG3AからVPG3Bはそれぞれブロック24Aから24BのパワースイッチPS3AからPS3Bのゲートに入力する。
 図35(a)から図35(e)は、リテンション動作のタイプBにおける各信号とパワースイッチの動作を示す図である。図35(a)に示すように、スタンバイ(BI)状態では、制御信号ENRB、ENNLB、ENSLPおよびVCTRLは、それぞれH、L、LおよびHである。ブロック24Aおよび24BのUDFをそれぞれLおよびHとする。このとき、VPG1AからVPG1BはLでありパワースイッチPS1AからPS1Bはオンである。VPG2AからVPG2BはLでありパワースイッチPS2AからPS2Bはオフである。VPG3AからVPG3BはHでありパワースイッチPS3AからPS3Bはオフである。このように、スタンバイ(BI)状態では、UDFによらず、パワースイッチPS1AからPS1BがオンでありパワースイッチPS2AからPS2BおよびPS3AからPS3Bはオフである。よって、全てのブロック24Aから24Bの電源電圧VVDD-VGNDは電圧V3である。
 図35(b)に示すように、スリープ(BI)状態では、制御信号ENRB、ENNLB、ENSLPおよびVCTRLは、それぞれH、L、HおよびHである。VPG1AからVPG1BはHでありパワースイッチPS1AからPS1Bはオフである。VPG2AからVPG2BはHでありパワースイッチPS2AからPS2Bはオンである。VPG3AからVPG3BはHでありパワースイッチPS3AからPS3Bはオフである。このように、スリープ(BI)状態では、UDFによらず、パワースイッチPS1AからPS1BおよびPS3AからPS3BがオフでありパワースイッチPS2AからPS2Bがオンである。よって全ブロック24Aから24Bの電源電圧VVDD-VGNDは電圧V2となりスリープ(BI)となる。図28のステップS70では、図35(b)のように全ブロックがスリープ(BI)状態となる。
 図28のステップS70、S56およびS58においてUDFがHのブロック24をスリープ(BI)状態とし、UDFがLのブロックを一括遮断する。図35(c)に示すように、図35(a)のスタンバイ(BI)の状態から制御信号ENNLBがLからHとなる。VPG1AからVPG1BがLからHとなり、VPG2AがLからHとなる。これにより、パワースイッチPS2Aはオフからオンになる。パワースイッチPS1AおよびPS1Bはオンからオフになる。パワースイッチPS2B、PS3AおよびPS3Bはオフを維持する。よって、リテンション対象のブロック24Aの電源電圧VVDD-VGNDは電圧V3からV2となり、ブロック24Aはスリープ(BI)状態となる。UDFがセットされたブロック24Bの電源電圧VVDD-VGNDは電圧V0となり、ブロック24Bはシャットダウン状態となる。
 図28のステップS72においてブロック24Aをスリープ(BI)からスリープ(ST)に切り替える。図35(d)に示すように、制御信号ENRB、ENNLBおよびENSLPは図35(c)の状態を維持する。各パワースイッチの状態は変わらず、ブロック24Aおよび24Bの電源電圧VVDD-VGNDはそれぞれ電圧V2およびV0が維持される。制御信号VCTRLはHからLとなる。これにより、対象となるブロック24AのモードがBIモードからSTモードに切り替わる。これにより、ブロック24Aはスリープ(ST)状態となる。
 図28のステップS60からS66のループを行うことにより、全てのリテンション対象のブロック24について、スリープ(BI)状態をスリープ(ST)状態に切り替える。
 図28のステップS68において、全てのリテンション対象のブロック24Aをスリープ(ST)状態からリテンション状態とする。図35(e)に示すように、制御信号ENNLB、ENSLPおよびVCTRLは図35(d)の状態を維持し、制御信号ENRBをHからLとする。これにより、VPG2AおよびVPG3AがHからLとなり、パワースイッチPS2Aがオンからオフとなり、パワースイッチPS3Aがオフからオンになる。これにより、リテンション対象のブロック24Aの電源電圧VVDD-VGNDが電圧V2から電圧V1となり、全てのリテンション対象のブロック24Aはリテンション状態となる。ブロック24Bの電源電圧VVDD-VGNDは電圧V0が維持される。
 図36は、リテンション動作のタイプBにおける制御信号のタイミングチャートである。制御信号VCTRL1~VCTRLnは各ブロック241~24nに対応する制御信号VCTRLである。ブロック241~24kはリテンション対象のブロックであり、ブロック24k+1~ブロック24nはシャットダウン対象のブロックである。
 図36に示すように、時刻t20とt21との間はスタンバイ(BI)期間であり、制御信号ENNLBおよびENSLPはL、ENRBおよびVCTRL1~VCTRLnはHである。時刻t21とt22との間はスリープ(BI)期間であり、制御信号ENSLPはHである。
 時刻t23(図28のステップS58)において、制御信号ENNLBがHとなる。これにより、リテンション対象のブロック241~24kはスリープ(BI)状態を維持し、UDFのブロック24k+1~24nはシャットダウン状態となる。この状態は期間T1である。
 時刻t24(図28のステップS72)において、リテンション対象の最初のブロック241の制御信号VCTRL1がLとなる。これによりブロック241のモードがBIからSTに切り替わり、ブロック241はスリープ(ST)状態となる。時刻t24以降の期間はブロック241の期間T2であり、ブロック241がSTモードの期間である。時刻t25において、リテンション対象の2番目のブロック242について、制御信号VCTRL2をLとする。ブロック242はスリープ(ST)状態となり期間T2となる。
 図28のステップS60からS66のループを行うことにより、全てのリテンション対象のブロック241~24kについて順次ステップS68を行う。全てのリテンション対象のブロック241~24kについてBIモードがSTモードに切り替わる。時刻t26(図28のステップS68)において、制御信号ENRBがLとなる。これにより、全てのリテンション対象のブロック241~24nがリテンション状態となる。
 時刻t27において、制御信号ENRBがHとなる。これにより、リテンション対象のブロック241~24kはスリープ(ST)状態となる。制御信号VCTRL1~VCTRLkを順次Hとする。ブロック241~24kは順次スリープ(BI)状態となる。時刻t28において、STモードからBIモードへのモードの切り替えが終了する。
[リテンション動作のタイプCの制御回路の例]
 図37は、リテンション動作のタイプCにおける制御回路の例を示すブロック図である。制御回路28Cは、図34の制御回路28Bに対し、OR回路63、NAND回路64およびAND回路65がNAND回路74に置き換わり、OR回路68、69およびAND回路70がOR回路75に置き換わっている。モード制御回路45はブロック24Aから24B毎に制御信号ENRBを出力する。
 NAND回路74にはUDF記憶部40Aから40Bの出力信号と制御信号ENNLBが入力する。AND回路65にはNAND回路74の出力信号とブロック24Aから24B毎の制御信号ENRBが入力する。OR回路75にはUDF記憶部40Aから40Bの出力信号とブロック24Aから24B毎の制御信号ENRBが入力する。OR回路75の出力信号はAND回路71に入力する。その他の構成は図34の制御回路28Bと同じであり説明を省略する。制御回路28Cではブロック24Aから24B毎にリテンションすることができる。
 各信号とパワースイッチの動作は、図35(a)から図35(e)と同様であり説明を省略する。
 図38は、リテンション動作のタイプCにおける制御信号のタイミングチャートである。制御信号ENRB1~ENRBnは各ブロック241から24nに対応する制御信号ENRBである。
 図38に示すように、時刻t20からt23の間では、制御信号ENRB1からENRBnはHである。その他は図36と同じである。
 時刻t24(図31のステップS72)において、リテンション対象の最初のブロック241について、制御信号VCTRL1がLとなる。これによりブロック241のモードがBIモードからSTモードに切り替わり、ブロック241はスリープ(ST)状態となる。時刻t25において、ブロック241について、制御信号ENRB1がLとなる。これにより、ブロック241はリテンション状態となる。リテンション対象の2番目のブロック242について、制御信号VCTRL2がLとなる。ブロック242はスリープ(ST)状態となる。
 図31のステップS60からS66のループを行うことにより、全てのリテンション対象のブロック241~24kについて順次ステップS72およびS74を行う。全てのリテンション対象のブロック241~24kについてモード切り替えおよびリテンションが終了すると、時刻t26において、全てのリテンション対象のブロック241~24nはリテンション状態となる。
 時刻t27以降、各ブロック241から24k毎に、制御信号ENRB1~ENRBkおよび制御信号VCTRL1~VCTRLkが順次Hとなる。ブロック241~24kは順次スリープ(BI)となる。時刻t28において、STモードからBIモードへのモード切り替えが終了する。
[シミュレーション]
 実施例2に係る電子回路についてBETおよびリテンションのスタンバイ(BI)状態とスタンバイ(ST)状態とのモード切り替えのレイテンシをシミュレーションした。比較例2についてもシミュレーションした。比較例2では、UDFによるサブアレイ22およびブロック24の一括遮断を行なわず、全てのブロックをスタンバイ(BI)状態とし、ブロックごとに順次モード切り替えを行う。最後に全てのブロック24を一括してリテンション状態とする。
 シミュレーション条件は以下である。VDDH、VDDL、VGND、VSCTRL、VLCTRLおよびWLを、それぞれ1.2V、0.2V、0V、0.3V、0.1Vおよび0Vとした。VPG1のHおよびLをそれぞれ1.4Vおよび0Vとした。VPG2のHおよびLをそれぞれ1.2Vおよび-0.2Vとした。VPG3のHおよびLをそれぞれ1.4Vおよび0Vとした。VCTRLのHおよびLをそれぞれ1.2Vおよび0Vとした。ビット線BLおよびBLBはスタンバイ状態およびスリープ状態のとき1.2Vとし、リテンション状態およびシャットダウン状態のとき0Vとした。モード切り替えのときにドライバ26を充電する時間として1サブアレイ22毎に15nsとした。サブアレイ22およびブロック24の記憶容量をそれぞれ8kバイトおよび1kバイトとした。
 セルアレイ20内の全メモリセルの個数に対するUDFがセットされたメモリセルの個数の比をUD割合とした。セルアレイ20の記憶容量が32kバイト、256kバイトおよび2Mバイトについてシミュレーションした。
 図39(a)から図39(c)は、タイプAからCおよび比較例2におけるUD割合に対するBETを示す図、図39(d)から図39(f)は、UD割合に対するレイテンシを示す図である。図39(a)から図39(c)に示すように、比較例2では、UD割合によらずBETは一定である。タイプAではUD割合が0%のとき比較例2のBETと同じである。UD割合が大きくなるとBETは短くなる。タイプBではUD割合が0%のとき比較例2よりBETが小さい。これは、タイプBでは、リテンションの前に全てのブロックを一括してスリープ(BI)状態にしているため、リテンションの待機中のブロックのリーク電流による消費電力を抑制できるためである。タイプCではUD割合が0%のときタイプBよりBETが小さい。これは、対象となるブロックごとにスリープ(BI)状態からスリープ(ST)状態の切り替えおよびリテンションを順次行うため、スリープ(ST)状態での待機時間を短くでき消費電力を抑制できるためである。
 図39(d)から図39(f)に示すように、タイプAからCでは比較例2に比べUD割合が大きくなるとレイテンシを削減できる。タイプAからCの間ではレイテンシは同じである。
 以上のシミュレーションのように、タイプAではBETは長いもののスリープ状態を設定しなくてもよいため制御が簡単である。タイプBでは、BETはタイプAとCとの間である。タイプBの制御はスリープ状態を設定するためタイプAより複雑であるが、リテンションを一括して行うためタイプCより簡単である。タイプCでは、BETは短いがリテンションを順次行うため制御が複雑である。
 次にUDFによる一括シャットダウンを行わず、リテンションを行うときにスタンバイ(BI)状態で待機する比較例2-1、スリープ(BI)で待機する比較例2-2およびタイプCについて、スタンバイ電力をシミュレーションした。
 図40(a)から図40(c)は、実施例2におけるVNR-SRAMと6T-SRAMとを比較する図である。6T-SRAMのスタンバイ状態およびスリープ状態のスタンバイ電力と、タイプCのVNR-SRAMのスタンバイ電力と、を比較している。図40(a)から図40(c)に示すように、6T-SRAMにおいて、スタンバイ状態からスリープ状態とするとスタンバイ電力は約30%削減できる。リテンション動作のタイプCの場合、UD割合が0%でもスタンバイ電圧を90%削減できる。UD割合が100%の場合、スタンバイ電力を99%削減できる。
 実施例2によれば、図17、図21(a)および図21(b)のように、メモリセル10は、伝達特性にヒステリシスを実質的に有さないBIモード(第1モード)と伝達特性にヒステリシスを有するSTモード(第2モード)とが切り替わるインバータ回路14(第1インバータ回路)およびインバータ回路16(第2インバータ回路)を各々備える双安定回路12を有する。双安定回路12では、インバータ回路14の出力ノードおよび入力ノードはインバータ回路16のそれぞれ入力ノードおよび出力ノードに接続されている。
 図25、図28および図31のステップS56およびS58のように、制御回路28は、複数のメモリセル10のうちデータを保持しなくてもよい1または複数の第1メモリセルをシャットダウン(電源遮断)する。ステップS62およびS72のように、制御回路28は、複数のメモリセル10のうち残りの1または複数の第2メモリセル内の双安定回路12をSTモードとし、ステップS68およびS74のように、STモードを維持した状態で第2メモリセル内の双安定回路12に電圧V1(第2電源電圧)を供給する。電圧V1は、データをリードおよび/またはライトするときに双安定回路12に供給される電圧V3(第1電源電圧)より低くSTモードの双安定回路12がデータを保持できる電圧である。
 このように、データを保持しなくてもよいメモリセルをシャットダウンするため、データを保持しなくてもよいメモリセルのモードの切り替えおよびリテンション状態を維持するための消費電力を抑制できる。また、レイテンシを削減できる。
 図22および図23のように、セルアレイ20は各々のブロック24が少なくとも2つのメモリセル10を含む複数のブロック24に分割されている。図25、図28および図31のステップS56のように、制御回路28は、複数のブロック24からデータを保持しなくてもよい1または複数の第1ブロックを抽出する。ステップS58のように、制御回路28は、第1ブロックをシャットダウン(電源遮断)する。その後、ステップS62およびS72のように制御回路28は、複数のブロック24のうち残りの1または複数の第2ブロック内の双安定回路をSTモードとする。ステップS68およびS74のように制御回路28はSTモードを維持した状態で第2ブロック内の双安定回路12に電圧V1を供給する。
 このように、ブロック単位で、UDFがセットされた第1ブロックをシャットダウンするため、第1ブロックのモードの切り替えおよびリテンション状態を維持するための消費電力を抑制できる。また、レイテンシを削減できる。また、UDFがセットされた第1ブロックを最初にシャットダウンするため、モード切り替え動作を待機するときのリーク電流に起因する消費電力を削減できる。
 リテンション動作のタイプBおよびCのように、制御回路28は、リテンション対象のブロックをSTモードとする前に、図28および図31のステップS70のように、リテンション対象の第2ブロックに電源電圧として電圧V2(第3電源電圧)を供給する(すなわちスリープ状態とする)。電圧V2は、電圧V3より低くかつ電圧V1より高くBIモードの双安定回路12がデータを保持できる電源電圧である。これにより、シャットダウンおよびリテンションを待機する期間の消費電力を抑制できる。
 ステップS72のように、制御回路28は、第2ブロック内の双安定回路12に電圧V2を供給した状態で第2ブロック内の双安定回路12をSTモードとする。これにより、リテンションを待機する期間の消費電力を抑制できる。
 リテンション動作のタイプCの図38のように、制御回路28は、複数の第2ブロック内のうちのブロック241(第3ブロック)の双安定回路に電圧V2を供給した状態でブロック241内の双安定回路12をSTモードとし(図31のステップS72、期間T2)、ブロック241内の双安定回路12をSTモードとした状態で電圧V1を供給する(ステップS74、期間T3)。その後、制御回路28は、複数の第2ブロック内のうちのブロック241とは別のブロック242(第4ブロック)の双安定回路12に電圧V1を供給した状態でブロック242内の双安定回路12をSTモードとし、ブロック242内の双安定回路12をSTモードとした状態で電圧V1を供給する。これにより、リテンションを待機する期間を短くでき、消費電力を抑制できる。
 リテンション動作のタイプBの図36のように、制御回路28は、第2ブロック内の双安定回路12に電圧V2を供給した状態で第2ブロック内の双安定回路12をSTモードとした後、第2ブロック内の双安定回路12をSTモードとした状態で電圧V1を供給する(図28のステップS74、図36の時刻t26)。これにより、タイプCに比べ制御を簡単にできる。制御回路28は、複数の第2ブロック内の双安定回路12をSTモードとした状態で電圧V2を一括して供給してもよい。また、制御回路28は、複数の第2ブロックを各々1または複数の第2ブロックを含む複数のグループに分割し、分割されたグループ毎に電圧V2を順次供給してもよい。
 レジスタ40(記憶回路)は、セルアレイ20の外に設けられ、外部回路から受信したUDF(データを保持しなくてもよいブロックを示す情報)を記憶する。制御回路28は、UDFに基づき、データを保持しなくてもよいブロックを抽出する(ステップS56)。これにより、UDFを記憶する記憶回路を各サブアレイ22またはブロック24に設ける方法に比べ、UDFをバス25等を介し制御回路28に転送しなくてもよく、制御が簡単になる。
 図17のように、インバータ回路14および16は、FETm1およびm3(第1FET)、FETm2bおよびm4b(第2FET)、FETm2aおよびm4a(第3FET)並びにFETm9およびm10(第4FET)を備えている。FETm1およびm3は、Pチャネル(第1導電型のチャネル)FETであり、ソースが電源線15a(第1電源線)に接続され、ドレインが出力ノードQおよびQBに接続され、ゲートが入力ノードN1およびN3に接続されている。FETm2bおよびm4bは、Nチャネル(第1導電型の反対の第2導電型のチャネル)FETであり、ソースがグランド線15b(第2電源線)に接続され、ドレインが中間ノードN2およびN4に接続され、ゲートが入力ノードN1およびN3に接続されている。FETm2aおよびm4aは、NチャネルFETであり、ソースが中間ノードN2およびN4に接続され、ドレインが出力ノードQおよびQBに接続され、ゲートが入力ノードN1およびN3に接続されている。FETm9およびm10(第4FET)は、NチャネルFETであり、ソースおよびドレインの一方が中間ノードN2およびN4に接続され、ソースおよびドレインの他方が制御線CTRL(制御ノード)に接続され、ゲートが出力ノードQおよびQBに接続されている。これにより、制御線CTRLの電圧によりBIモードとSTモードを切り替えることができる。
 図21(a)のように、第1FETはFETm2およびm4であり、第2FETはFETm1aおよびm3aであり、第3FETはFETm1bおよびm3bであり、第4FETはFETm9aおよびm10aでもよい。このとき第1導電型のチャネルはNチャネル、第2導電型のチャネルはPチャネルである。
 図21(b)のように、第1FETは電源線15aと出力ノードQおよびQBとの間の直列に接続されたFETm1aおよびm1bとm3aおよびm3bを設けてもよい。
 実施例2の図17、図21(a)および図21(b)のメモリセル10では、プルダウン側のフィードバックトランジスタFBTrであるFETm9およびm10はNチャネルFETである。プルアップ側のフィードバックトランジスタFBTrであるFETm9aおよびm10aはPチャネルFETである。
 FETm9およびm10を設けたタイプをプルダウン型フィードバックPDFBと呼ぶ。FETm9aおよびm10aを設けたタイプをプルアップ型フィードバックPUFBと呼ぶ。FETm9、m9a、m10およびm10aを設けたタイプをプルアッププルダウン型フィードバックPUPDFBと呼ぶ。電源線15aと電源15cとの間にパワースイッチ30を設けたタイプをヘッダPSと呼ぶ。グランド線15bとグランド15dとの間にパワースイッチ30を設けたタイプをフッタPSと呼ぶ。図17のメモリセルはヘッダPS・PDFBである。図21(a)のメモリセルはヘッダPS・PUFBである。図21(b)のメモリセルはヘッダPS・PUPDFBである。
 以下、ヘッダPS・PDFBを例に実施例2の課題を説明する。図17において、スタンバイ状態およびリテンション状態のVVDDおよびCTRLの電圧は以下である。
 スタンバイ状態(BIモード):VVDD=VVDDH、CTRLの電圧VFNL
 リテンション状態(STモード):VVDD=VVDDL、CTRLの電圧VFNH
 各電圧は例えば以下の関係である。
 VFNL<VFNH=VVDDL<VVDDH
 VFNL<VVDDL<VFNH<VVDDH、または
 VFNL<VFNH<VVDDL<VVDDH
 VVDDL、VVDDH、VGND、VFNLおよびVFNHは例えばそれぞれ0.2V、1.2V、0.0V、0.0Vおよび0.2Vである。
 例えばノードQがハイレベルのとき、FETm9がオンし、ノードN2は電圧がVFNHである制御線CTRLから充電される。しかし、FETm9がNチャネルであり、FETm9の閾値電圧Vthは正のため、制御線CTRLから充電電位は、実質的にはVFNH-Vthとなる。これにより、FBTrであるFETm9のフィードバック効果が低下し、リテンション状態における双安定回路の動作安定性(例えばノイズマージン)が低下する場合がある。
[ヘッダPS・PDFB]
 実施例2におけるメモリセルの上記課題を解決する実施例3について説明する。図41は、実施例3におけるヘッダPS・PDFB・タイプ1のメモリセルの回路図、図42は、実施例3におけるヘッダPS・PDFB・タイプ2のメモリセルの回路図である。タイプ1はドライバ26を設けないタイプであり、タイプ2はドライバ26を設けるタイプである。図41および図42に示すように、FBTrであるFETm9およびm10はPチャネルFETである。FETm9およびm10のゲートはそれぞれノードQBおよびQに接続されている。パワースイッチ30は電源線15aに仮想電源電圧VVDDを印加する。
 図41のタイプ1では、ドライバ26が設けられておらず、制御線CTRLには定電圧VFNが印加されている。図42のタイプ2では、ドライバ26が設けられている。ドライバ26はインバータ26aであり、制御信号VCTRLがハイレベルのとき、制御線CTRLに電圧VFNLを供給し、制御信号VCTRLがローレベルのとき、制御線CTRLに電圧VFNHを供給する。その他の構成は実施例2の図17と同じであり説明を省略する。
 図41に示すヘッダPS・PDFB・タイプ1におけるスタンバイ状態およびリテンション状態のVVDDおよびCTRLの電圧は以下である。
 スタンバイ状態(BIモード):VVDD=VVDDH、CTRLの電圧VFN
 リテンション状態(STモード):VVDD=VVDDL、CTRLの電圧VFN
 各電圧は例えば以下の関係である。
 VFN=VVDDL<VVDDH
 VVDDL<VFN<VVDDH、または
 VFN<VVDDL<VVDDH(この関係ではノードN3およびN4が制御線CTRLから充電しにくいため好ましくない)
 VVDDL、VVDDH、VGNDおよびVFNは例えばそれぞれ0.2V、1.2V、0.0Vおよび0.2Vである。
 図42に示すヘッダPS・PDFB・タイプ2におけるスタンバイ状態およびリテンション状態のVVDDおよびCTRLの電圧は図17で例示した電圧と同じである。
 図41および図42の実施例3のメモリセルでは、例えばノードQがハイレベルのとき、ノードQBがローレベルとなるためFETm9がオンし、ノードN2は電圧がVFN(図41)またはVFNH(図42)である制御線CTRLから充電される。FETm9がPチャネルであり、FETm9のゲートにはソースおよびドレインに対し十分低い電圧が加わるため、ノードN2をVFN(図41)またはVFNH(図42)にプルアップできる。これにより、FETm9のフィードバック効果が十分に生じる。よって、リテンション状態における双安定回路の動作安定性を向上させることができる。
 図41に示すタイプ1では、VVDDHに対しVFNを十分小さくすることで、VFNを定電圧としてもSTモードとBIモードの切り替えが可能となる。例えばノードQがハイレベルのとき、FETm9がオンしてもノードN2の電圧はVVDDHに対し十分低い。このため、双安定回路12はBIモードとして機能する。これにより、図17における制御線CTRL用のドライバ26が不要となり、チップ面積を削減できる。さらに、VFNをVVDDHより十分低くすることで、スタンバイ状態およびリテンション状態におけるリーク電流を抑制できる。
 タイプ1では、VVDDHがVFNに近い場合には、BIモードへの遷移が不十分となる場合がある。図42に示すように、タイプ2では、STモードのときCTRLの電圧をVFNHとし、BIモードのときCTRLの電圧をVFNLとする。これにより、十分なBIモードに遷移可能である。
[シミュレーション]
 6T-SRAMのメモリセル(比較例3)、図17に示す実施例2のメモリセル、図41に示す実施例3のヘッダPS・PDFB・タイプ1のメモリセルおよび図42に示す実施例3のヘッダPS・PDFB・タイプ2のメモリセルについてシミュレーションを行った。
 各FETのチャネル幅W/長さLは以下である。
 FETm1、m3:100nm/60nm
 FETm2a、m2b、m4a、m4b:150nm/60nm
 FETm5、m6:100nm/120nm
 FETm9、m10:150nm/60nm
 PS1:300nm/60nm
 PS3:150nm/60nm
 インバータ26aのFET:100nm/60nm
 各電圧は以下である。
 VVDDH=1.2V
 VVDDL=0.2V
 VGND=0V
 VFNH=0.2V
 VFNL=0V
 VFN=0.2V
 図43(a)は、リテンション状態におけるインバータ回路の伝達特性を示す図である。比較例3は6T-SRAMの通常の状態の特性を示す。図43(a)に示すように、実施例2では比較例3に比べ、バタフライ特性の開口が大きくなりノイズマージンが大きくなる。実施例3のタイプ1および2では実施例2よりノイズマージンが大きくなる。
 図43(b)は、スタンバイ状態におけるSNM(Static Noise Margin)を示す図である。VVDD=1.2Vであり、BIモードである。リテンションは、ULVリテンション状態ではなく、FETm5およびm6をオフし、データを保持している状態を示す。リードは、FETm5およびm6をオンし、ビット線BLおよびBLBを1.2Vとした状態を示す。ライトはFETm5およびm6をオンし、ビット線BLおよびBLBの一方を1.2Vとし他方を0Vとした状態を示す。
 図43(b)に示すように、実施例3では比較例3および実施例2に比べSNMがやや大きい。これは、実施例3では、FETm9およびm10がPチャネルのため、ノードN3およびN4の電位が実施例2より少し高くなる。このため、BIモードにおいてFETm9およびm10によるフィードバックが少しかかる。これにより、SNMが少し増加するためである。
 図44(a)は、リテンション状態のSNMを示す図である。図44(a)に示すように、比較例3ではSNMは約50mVであるのに対し、実施例2ではSNMを約80mVと大きくできる。実施例3ではSNMは約100mVであり、実施例2よりSNMを約20mV、比較例3よりSNMを約50mV大きくできる。実施例3のタイプ1とタイプ2ではSNMはほぼ同程度である。実施例3では、比較例2よりSNMをほぼ2倍にできる。このように、実施例3では実施例2よりリテンション状態のSNMを大きくでき、動作安定性が向上する。実施例2の同程度のSNM(例えば80mV)を確保する場合、実施例2よりVVDDLを低くできる。これにより消費電力を抑制できる。
 実施例3のタイプ1はタイプ2よりSNMが約6mV大きい。これは、タイプ1ではドライバ26が設けられていないため、制御線CTRLに効果的にバイアスが加わるためである。図示していないが、後述するPUPDFBでは、PUFBおよびPDFBよりノイズマージンを拡大することができる。
 図44(b)は、BIモードのリーク電力を示す図である。図44(b)に示すように、実施例2のスタンバイ状態(BIモード)では、比較例3に比べリーク電力を25%削減できる。実施例3では比較例3に比べ、タイプ2で70%、タイプ1で81%リーク電力を削減できる。このように、実施例3では、実施例2よりスタンバイ状態におけるリーク電力を抑制できる。
 図44(c)および図44(d)は、STモードのリーク電力を示す図である。図44(c)の比較例3は6T-SRAMのスタンバイ状態のリーク電力である。図44(c)に示すように、実施例2のリテンション状態(STモード)では比較例3のスタンバイ状態に比べリーク電力を92%削減できる。実施例3のタイプ1および2では比較例3に比べそれぞれ95%および94%リーク電力を削減できる。図44(d)に示すように、実施例3のタイプ1および2では、実施例2に比べリーク電力をそれぞれ40%および20%削減できる。
 以下、ヘッダPS・PDFB以外の例について説明する。
[フッタPS・PDFB]
 図45は、実施例3におけるフッタPS・PDFB・タイプ2のメモリセルの回路図である。図45に示すように、電源線15aにはVDDが供給され、グランド線15bとグランドとの間にパワースイッチ30が設けられている。グランド線15bは仮想グランド電圧VVGNDである。
 スタンバイ状態およびリテンション状態のVVGNDおよびCTRLの電圧は以下である。
スタンバイ状態(BIモード):VVGND=VVGNDL、CTRLの電圧VFNL
リテンション状態(STモード):VVGND=VVGNDH、CTRLの電圧VFNH
 各電圧は例えば以下の関係である。
 VVGNDL<VVGNDH
 VFNL~VVGNDL、および
 VFNH~VVGNDH
 なお、~は近傍を示す。
 VVGNDL、VVGNDH、VDD、VFNLおよびVFNHは例えばそれぞれ0.0V、1.0V、1.2V、0.0Vおよび1.2Vである。
[PDFB]
 PDFBでは、図41のように、ヘッダPSとする場合、VVDDH-VGNDが大きいとき、例えば0.5V以上であり、例えばVFN-VGND<(VVDDH-VGND)/2のとき、タイプ1とすることができる。VVDDH-VGNDが小さいとき、例えば0.5V以下のとき、タイプ1では、BIモードへの遷移が不十分な場合がある。よって、タイプ2とすることで、十分なBIモードに遷移することができる。フッタ・PDFBでは、図45のようにタイプ2となる。
[フッタPS・PUFB]
 図46は、実施例3におけるフッタPS・PUFB・タイプ1のメモリセルの回路図である。FETm9aおよびm10aはNチャネルFETである。FETm9aおよびm10aのゲートは、それぞれノードQBおよびQに接続されている。電源線15aにはVDDが供給され、グランド線15bとグランド15dとの間にパワースイッチ30が設けられている。グランド線15bは仮想グランド電圧VVGNDである。制御線CTRLには定電圧VFPが印加される。その他の構成は、実施例2の図21(a)と同じであり、説明を省略する。
 スタンバイ状態およびリテンション状態のVVGNDおよびCTRLの電圧は以下である。
 スタンバイ状態(BIモード):VVGND=VVGNDL、CTRLの電圧VFP
 リテンション状態(STモード):VVGND=VVGNDH、CTRLの電圧VFP
 各電圧は例えば以下の関係である。
 VVGNDL<VFP=VVGNDH
 VVGNDL<VFP<VVGNDH、または
 VVGNDL<VVGNDH<VFP(この関係ではノードN2aおよびN4aが制御線CTRLから放電しにくいため好ましくない)
 VVGNDL、VVGNDH、VDD、VFPは例えばそれぞれ0.0V、1.0V、1.2Vおよび1.0Vである。
[ヘッダPS・PUFB]
 図47は、実施例3におけるヘッダPS・PUFB・タイプ2のメモリセルの回路図である。図46に対し、ドライバ26が設けられている。ドライバ26は、インバータ26aであり、制御回路28が出力する制御信号VCTRLがローレベルのとき制御線CTRLに電圧VFPHを出力し、VCTRLがハイレベルのとき制御線CTRLに電圧VFPLを出力する。
 スタンバイ状態およびリテンション状態のVVDDおよびCTRLの電圧は以下である。
 スタンバイ状態(BIモード):VVDD=VVDDH、CTRLの電圧VFPH
 リテンション状態(STモード):VVDD=VVDDL、CTRLの電圧VFPL
 各電圧は例えば以下の関係である。
 VVDDL<VVDDH
 VFPL~VGND、および
 VFPH~VVDDH
 なお、~は近傍を示す。
 VVDDL、VVDDH、VGND、VFNLおよびVFNHは例えばそれぞれ0.2V、1.2V、0.0V、0.0Vおよび1.2Vである。
[PUFB]
 PUFBでは、図46のように、フッタPSとする場合、VDD-VVGNDLが大きいとき、例えば0.5V以上であり、例えばVDD-VFP<(VDD-VVGNDL)/2のとき、タイプ1とすることができる。VDD-VVGNDLが小さいとき、例えば0.5V以下のとき、タイプ1では、BIモードへの遷移が不十分な場合がある。よって、タイプ2とすることで、十分なBIモードに遷移することができる。ヘッダ・PUFBでは、図47のようにタイプ2となる。
[ヘッダPS・PUPDFB]
 図48は、実施例3におけるヘッダPS・PUPDFBのメモリセルの回路図である。FETm9およびm10はPチャネルFETであり、FETm9aおよびm10aはNチャネルFETである。FETm9およびm9aのゲートは、ノードQBに接続され、FETm10およびm10aのゲートは、ノードQに接続されている。電源線15aと電源15cとの間にパワースイッチ30が設けられ、グランド線15bにグランド電圧VGNDが供給される。FETm9およびm10の制御線CTRLNには定電圧VFNが供給される。FETm9aおよびm10aの制御線CTRLPにはドライバ26から電圧印加される。ドライバ26は、インバータ26aであり、制御回路28が出力する制御信号VCTRLがローレベルのとき制御線CTRLPに電圧VFPHを出力し、VCTRLがハイレベルのとき制御線CTRLPに電圧VFPLを出力する。その他の構成は、実施例2の図21(b)と同じであり、説明を省略する。
 図48に示すヘッダPS・PUPDFBのメモリセルの動作条件は、図41に示すヘッダPS・PDFB・タイプ1のメモリセルの動作条件と、図47に示すヘッダPS・PUFB・タイプ2のメモリセルの動作条件を合わせたものである。
[フッタPS・PUPDFB]
 図49は、実施例3におけるフッタPS・PUPDFBのメモリセルの回路図である。電源線15aに電源電圧VDDが供給され、グランド線15bとグランド15dとの間にパワースイッチ30が設けられている。FETm9aおよびm10aの制御線CTRLPには定電圧VFPが供給される。FETm9およびm10の制御線CTRLNにはドライバ26から電圧印加される。ドライバ26は、インバータ26aであり、制御回路28が出力する制御信号VCTRLがローレベルのとき制御線CTRLNに電圧VFNHを出力し、VCTRLがハイレベルのとき制御線CTRLNに電圧VFNLを出力する。その他の構成は、図48と同じであり、説明を省略する。
 図49に示すフッタPS/PUPDFBのメモリセルの動作条件は、図45に示すフッタPS・PDFB・タイプ2のメモリセルの動作条件と、図46に示すフッタPS・PUFB・タイプ1のメモリセルの動作条件を合わせたものである。
 ヘッダPSでは、スタンバイ状態のVVDDを通常動作状態のVVDDHよりやや低いVVDDHSとしてもよい。フッタPSでは、スタンバイ状態のVVGNDを通常動作状態のVVGNDLよりやや高いVVGNDLSとしてもよい。低電圧動作させるため、ヘッダPSでは、VVDDL<VVDDM<VVDDHとなるVVDDM、フッタPSでは、VVGNDL<VVGNDM<VVGNDLとなるVVGNDMを用いてもよい。
 実施例3によれば、PDFBの場合、インバータ回路14(第1インバータ回路)および16(第2インバータ回路)の各々において、PチャネルFETm1およびm3(第1導電型のチャネルの第1FET)では、ソースが電源線15a(第1電源線)に接続され、ドレインがノードQおよびQB(出力ノード)に接続され、ゲートがノードN1およびN3(入力ノード)に接続される。NチャネルFETm2bおよびm4b(第2導電型のチャネルの第2FET)では、ソースが電源線15aとの間に電源電圧VVDD-VGNDが供給されるグランド線15b(第2電源線)に接続され、ドレインがノードN2およびN4(中間ノード)に接続され、ゲートがノードN1およびN3に接続される。NチャネルFETm2aおよびm4a(第2導電型のチャネルの第3FET)では、ソースがノードN2およびN4に接続され、ドレインがノードQおよびQBに接続され、ゲートがノードN1およびN3に接続される。
 PチャネルFETm9およびm10(第1導電型のチャネルの第4FET)では、ソースおよびドレインの一方がノードN2およびN4に接続され、ソースおよびドレインの他方が制御線CTRL(制御ノード)に接続され、ゲートがノードN1およびN3に接続される。インバータ回路14の出力ノードおよびインバータ回路16の入力ノードN1およびN3はノードQ(第1記憶ノード)に接続され、インバータ回路14の入力ノードN1およびN3およびインバータ回路16の出力ノードはノードQB(第2記憶ノード)に接続されている。これにより、電源電圧VVDD-VGNDおよび制御線CTRLの電圧を適宜設定することにより、STモードにおける動作安定性を向上できる。
 インバータ回路14のFETm9のゲートはインバータ回路16の出力ノードに接続され、インバータ回路16のFETm10のゲートはインバータ回路14の出力ノードに接続されていてもよい。
 PUFBの場合、NチャネルFETm2およびm4が第1FETに対応し、PチャネルFETm1aおよびm3aが第2FETに対応し、PチャネルFETm1bおよびm3bが第3FETに対応し、NチャネルFETm9aおよびm10aが第4FETに対応する。グランド線15bおよび電源線15aがそれぞれ第1電源線および第2電源線に対応する。
 PDFBの場合、パワースイッチ30(電源回路)は、電源電圧VVDD-VGNDとして、電圧VVDDH-VGND(第1電圧)と電圧VVDDH-VGNDより低く電圧VVDDL-VGND(第2電圧)と、に切り替えて供給する。電圧VVDDH-VGNDは、双安定回路12がデータをライトおよびリード可能な電圧であり、電圧VVDDL-VGNDは電圧VVDDH-VGNDより低く双安定回路12がデータをライトおよびリードができずデータを保持可能な電圧である。これにより、データを保持するときに、消費電力を抑制できる。
 電源回路は、1つの電源からパワースイッチのようなトランジスタを用い第1電圧と第2電圧とを生成し、双安定回路に供給してもよい。また、制御回路は、2つの電源にそれぞれパワースイッチが接続され、パワースイッチを制御することで第1電圧と第2電圧を双安定回路に供給してもよい。
 PUFBの場合、電圧VDD-VVGNDLおよびVDD-VVGNDHがそれぞれ第1電圧および第2電圧に対応する。
 タイプ1のように、パワースイッチ30が双安定回路12に第1電圧および第2電圧のいずれを供給するときにも、制御線CTRLには定バイアス(PDFBの場合VFN、PUFBの場合VFP)が供給される。これにより、ドライバ26が不要となり、チップサイズを削減できる。
 図41のヘッダPS・PDFBでは、定バイアス(VFN)は、電源電圧としてVVDDH-VGND(第1電圧)が供給されるときの電源線15a(第1電源線)の電圧VVDDHとグランド線15b(第2電源線)の電圧VGNDとの間のバイアスであればよい。図46のフッタPS・PUFBでは、定バイアス(VFP)は、電源電圧としてVDD-VVGNDL(第1電圧)が供給されるときのグランド線15b(第1電源線)の電圧VVGNDLと電源線15a(第2電源線)の電圧VDDとの間でのバイアスであれよい。これにより、タイプ1のように制御線CTRLに定電圧が加わっていても、電源電圧の切り替えにより、STモードとBIモードを切り替えることができる。
 図41のヘッダPS・PDFBでは、定バイアス(VFN)は、電源電圧としてVVDDH-VGND(第1電圧)が供給されるときの電源線15a(第1電源線)の電圧VVDDHとグランド線15b(第2電源線)の電圧VGNDとの中間(VVDDH-VGND)/2よりグランド線15bの電圧VGNDに近い。図46のフッタPS・PUFBでは、定バイアス(VFP)は、電源電圧としてVDD-VVGNDL(第1電圧)が供給されるときのグランド線15b(第1電源線)の電圧VVGNDLと電源線15a(第2電源線)の電圧VDDとの中間(VDD-VVGNDL)/2より電源線15aの電圧VDDに近い。これにより、タイプ1のように制御線CTRLに定電圧が加わっていても、電源電圧の切り替えにより、STモードとBIモードを切り替えることができる。
 ヘッダPS・PDFBでは、VFNは(VVDDH-VGND)/3よりVGNDに近いことが好ましく、フッタPS・PUFBでは、VFNは2(VDD-VVGNDL)/3よりVDDに近いことが好ましい。
 タイプ2では、制御回路28は、PDFBのとき、パワースイッチ30がVVDDH-VGNDおよびVVDDL-VGNDを供給するとき制御線CTRLにそれぞれローレベルおよびローレベルより高いハイレベルを供給する。制御回路28は、PUFBのとき、パワースイッチ30がVDD-VVGNDLおよびVDD-VVGNDHを供給するとき制御線CTRLにそれぞれハイレベルおよびハイレベルより低いローレベルを供給する。これにより、データを保持するときに、消費電力を抑制できる。なお、ハイレベルはローレベルより高い電圧であればよい。
 実施例3のメモリセルを実施例2のメモリセルとする場合、インバータ回路14および16の制御線CTRLには定バイアスが印加され、インバータ回路14および16は、電源電圧として電圧V3が供給されるときBIモードとなり、電圧V1が供給されるときSTモードとなる。これにより、制御信号VCTRLが不要となる。
[ヘッダPS、フッタPS、デュアルPSの説明]
 まず各名称についてまとめる。図50(a)から図50(f)は、セルに接続されるパワースイッチの配置を示す図である。図50(a)に示すように、電源15cの電圧はVDDであり、グランド15dの電圧はVGNDである。ヘッダPSでは、メモリセル10の電源線15aと電源15cとの間にパワースイッチ30が接続されている。パワースイッチ30は、電源線15aの仮想電源電圧VVDDをVVDDHおよびVVDDLに切り替える。仮想電源電圧VVDDがVVDDHおよびVVDDLに切り替わってもグランド線15bの電圧VVGNDはグランド電圧VGNDで一定である。スタンバイ状態(BIモード)のときの電源電圧はVVDDH-VGNDとなり、低電圧(ULV)リテンション状態(STモード)のときの電源電圧はVVDDL-VGNDとなる。
 図50(b)に示すように、フッタPSでは、メモリセル10のグランド線15bとグランド15dとの間にパワースイッチ30が接続されている。パワースイッチ30は、グランド線15bの仮想グランド電圧VVGNDをVVGNDHおよびVVGNDLに切り替える。仮想グランド電圧VVGNDがVVGNDHおよびVVGNDLに切り替わっても電源線15aの電圧VVDDは電源電圧VDDで一定である。スタンバイ状態(BIモード)のときの電源電圧はVDD-VVGNDLとなり、低電圧リテンション状態(STモード)のときの電源電圧はVDD-VVGNDHとなる。
 図50(c)に示すように、デュアルPSでは、電源線15aと電源15cとの間と、グランド線15bとグランド15dとの間と、の両方にパワースイッチ30が接続されている。パワースイッチ30は、電源線15aの仮想電源電圧VVDDをVVDDHおよびVVDDLに切り替え、グランド線15bの仮想グランド電圧VVGNDをVVGNDHおよびVVGNDLに切り替える。スタンバイ状態(BIモード)のときの電源電圧はVVDDH-VVGNDLとなり、低電圧リテンション状態(STモード)のときの電源電圧はVVDDL-VVGNDHとなる。
 図50(d)のように、ヘッダPSでは、パワースイッチ30は、電源VDD1と電源線15aとの間に接続されたPFET30aと、電源VDD2と電源線15aとの間に接続されたPFET30bと、を備えてもよい。FET30aをオンしFET30bをオフすると仮想電源電圧VVDDはVDD1となり、FET30aをオフしFET30bをオンするとVVDDはVDD2となる。FET30aおよび30bをオフすると、電源が遮断される。
 図50(e)のように、フッタPSでは、パワースイッチ30は、VGND1とグランド線15bとの間に接続されたNFET30cと、VGND2とグランド線15bとの間に接続されたNFET30dと、を備えてもよい。FET30cをオンしFET30dをオフすると仮想グランド電圧VVGNDはVGND1となり、FET30cをオフしFET30dをオンするとVVGNDはVGND2となる。FET30cおよび30dをオフすると、電源が遮断される。
 図50(f)のように、デュアルPSでは、パワースイッチ30は、VDD1と電源線15aとの間に接続されたPFET30aと、VDD2と電源線15aとの間に接続されたPFET30bと、VGND1とグランド線15bとの間に接続されたNFET30cと、VGND2とグランド線15bとの間に接続されたNFET30dと、を備えている。FET30aからFET30dの適宜オンおよびオフすることで、仮想電源線15aと仮想グランド線との間に供給される電源電圧を適宜切り替えることができる。
[PDFB、PUFB、PUPDFBの説明]
 PDFB(プルダウン型フィードバック)は、図41のように、インバータ回路14のNチャネルFETm2aとm2bとの間にFETm9がフィードバックされ、インバータ回路16のNチャネルFETm4aとm4bとの間にFETm10がフィードバックされるタイプである。
 PUFB(プルアップ型フィードバック)は、図46のように、インバータ回路14のPチャネルFETm1aとm1bとの間にFETm9aがフィードバックされ、インバータ回路16のPチャネルFETm3aとm3bとの間にFETm10aがフィードバックされるタイプである。
 PUPDFB(プルアッププルダウン型フィードバック)は、図48および図49のように、PDFBのFETm9およびm10と、PUFBのFETm9aおよびm10aと、の両方が設けられるタイプである。
[タイプ1、タイプ2の説明]
 図51(a)から図52(c)は、セルに接続されるドライバの配置を示す図である。図51(a)に示すように、PUFBのタイプ2型では、ドライバ26が設けられている。ドライバ26は制御回路28が出力する制御信号VCTRLに基づき、電圧VFPを電圧VFPHと電圧VFPLに切り替える。電圧VFPがVFPH(ハイレベル)のとき、インバータ回路14および16はBIモードとなり、VFPL(ローレベル)のときSTモードとなる。
 図51(b)に示すように、PUFBのタイプ1型では、ドライバ26が設けられていない。VFPは定バイアスであるが、電源電圧が切り替わるとインバータ回路14および16はBIモードとSTモードが切り替わる。
 図51(c)に示すように、PDFBのタイプ2型では、ドライバ26が設けられている。ドライバ26は制御回路28が出力する制御信号VCTRLに基づき、電圧VFNを電圧VFNHと電圧VFNLに切り替える。電圧VFNがVFNL(ローレベル)のとき、インバータ回路14および16はBIモードとなり、VFNH(ハイレベル)のときSTモードとなる。
 図51(d)に示すように、PDFBのタイプ1型では、ドライバ26が設けられていない。VFNは定バイアスであるが、電源電圧が切り替わるとインバータ回路14および16はBIモードとSTモードが切り替わる。
 図52(a)に示すように、PUPDFBのVFPおよびVFNともタイプ2型では、電圧VFPおよびVFNの両方にドライバ26が設けられている。電圧VFPがVFPHおよび電圧VFNがVFNLのとき、インバータ回路14および16はBIモードとなり、電圧VFPがVFPLおよび電圧VFNがVFNHのとき、STモードとなる。
 図52(b)に示すように、PUPDFBのVFPがタイプ2型およびVFNがタイプ1型では、電圧VFPにドライバ26が設けられ、VFNは定バイアスである。電圧VFPがVFPHのとき、インバータ回路14および16はBIモードとなり、電圧VFPがVFPLのとき、STモードとなる。
 図52(c)に示すように、PUPDFBのVFPがタイプ1型およびVFNがタイプ2型では、電圧VFPは定バイアスであり、VFNにドライバ26が設けられる。電圧VFNがVFNLのとき、インバータ回路14および16はBIモードとなり、電圧VFNがVFNHのとき、STモードとなる。
 図53(a)および図53(b)は、それぞれヘッダPS・PDFB・タイプ1型およびフッタPS・PUFB・タイプ1型の各電圧を示す図である。図53(a)では、VGNDに対するVVDDHおよびVVDDLを縦方向に示し、図53(b)では、VDDに対するVVGNDLおよびVVGNDHを縦方向に示す。
 図53(a)に示すように、ヘッダPSでは、スタンバイ状態では電源線15aにVVDDH、グランド線15bにVGNDが供給される。このとき、VFNをVVDDL程度の定バイアスとすると、VFNはVVDDHに対し十分低いため、インバータ回路14および16はBIモードとなる。低電圧リテンション状態では電源線15aにVVDDL、グランド線15bにVGNDが供給される。このとき、VFNをVVDDL程度とすると、VFNはVGNDに対し高いため、インバータ回路14および16はSTモードとなる。
 定電圧VFNはVVDDHより小さくVGNDより大きければよい。定電圧VFNがVVDDHに近すぎると、仮想電源電圧VVDDをVVDDHとしたときに、インバータ回路14および16はBIモードとなり難い。よって、定電圧VFNは、VVDDHとVGNDとの中点の電圧以下(すなわち(VVDDH-VGND)/2以下)が好ましく、VVDDLにVVDDLとVGNDの差の電圧を加えた電圧以下(すなわちVVDDL+(VVDDL-VGND)/2以下)がより好ましい。定電圧VFNがVGNDに近すぎると、仮想電源電圧VVDDをVVDDLとしたときに、インバータ回路14および16はSTモードとなり難い。よって、定電圧VFNは、VVDDLとVGNDとの中点の電圧以上(すなわち(VVDDL-VGND)/2以上)が好ましい。
 ヘッダPS・PUFBでは、VFPがハイレベルのときBIモードとなりローレベルのときSTモードとなる。よって、ヘッダPS・PUFB・タイプ1型とすると、BIとSTモードの切り替えができなくなる。
 図53(b)に示すように、フッタPSでは、スタンバイ状態ではグランド線15bにVVGNDL、電源線15aにVDDが供給される。このとき、VFPをVVGNDH程度の定バイアスとすると、VFPはVVGNDLに対し十分高いため、インバータ回路14および16はBIモードとなる。低電圧リテンション状態ではグランド線15bにVVGNDH、電源線15aにVDDが供給される。このとき、VFPをVVGNDH程度とすると、VFPはVDDに対し低いため、インバータ回路14および16はSTモードとなる。
 定電圧VFPはVVGNDLより大きくVDDより小さければよい。定電圧VFPがVVGNDLに近すぎると、仮想グランド電圧VVGNDをVVGNDLとしたときに、インバータ回路14および16はBIモードとなり難い。よって、定電圧VFPは、VDDとVVGNDLとの中点の電圧以上(すなわち(VDD-VVGNDL)/2以上)が好ましく、VVGNDHにVDDとVVGNDHの差の電圧を減じた電圧以上(すなわちVVGNDH-(VDD-VVGNDH)/2以上)がより好ましい。定電圧VFPがVVDDに近すぎると、仮想グランド電圧VVGNDをVVGNDHとしたときに、インバータ回路14および16はSTモードとなり難い。よって、定電圧VFPは、VDDとVVGNDHとの中点の電圧以下(すなわち(VDD-VVGNDH)/2以下)が好ましい。
 フッタPS・PDFBでは、VFNがローレベルのときBIモードとなりハイレベルのときSTモードとなる。よって、フッタPS・PDFB・タイプ1型とすると、BIとSTモードの切り替えができなくなる。
 表1は定バイアスが可能か否かをまとめた表である。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、PDFBでは、ヘッダPSにおいて定バイアスが可能である。フッタPSおよびデュアルPSでは定バイアスは不可でありドライバ26を用いる。
 PUFBでは、フッタPSにおいて、定バイアスが可能である。ヘッダPSおよびデュアルPSでは定バイアスは不可でありドライバ26を用いる。PUPDFBでは、ヘッダPSにおいて、PD(すなわちVFN)側のみ定バイアスが可能である。フッタPSにおいて、PU(すなわちVFP)側のみ定バイアスが可能である。デュアルPSにおいて、定バイアスは不可である。
 実施例3では、フィードバックFETm9および/またはm9aのゲートがインバータ回路14の入力ノードまたはインバータ回路16の出力ノードに接続され、フィードバックFETm10および/またはm10aのゲートがインバータ回路16の入力ノードまたはインバータ回路14の出力ノードに接続されている。これを実施例3型と呼ぶこととする。実施例3型の場合、表1のヘッダPS・PDFB・タイプ1型は図41に、フッタPS・PUFB・タイプ1型は図46に、ヘッダPS・PUPDFB・PD側タイプ1型は図48に、フッタPS・PUPDFB・PU側タイプ1型は図49に、図示されている。
 実施例2のように、フィードバックFETm9および/またはm9aのゲートがインバータ回路14の出力ノードに接続され、フィードバックFETm10および/またはm10aのゲートがインバータ回路16の出力ノードに接続されていてもよい。この場合を実施例2型とよぶこととする。実施例2型でも表1が成り立つ。
 図54は、実施例4におけるヘッダPS・PDFB・タイプ1型のメモリセルの回路図である。図54に示すように、FETm9(およびm10)はNチャネルFETであり、ゲートはインバータ回路14(および16)の出力ノードに接続されている。その他の構成は実施例3の図41と同じであり説明を省略する。
 図55は、実施例4におけるフッタPS・PUFB・タイプ1型のメモリセルの回路図である。図55に示すように、FETm9a(およびm10a)はPチャネルFETであり、ゲートはインバータ回路14(および16)の出力ノードに接続されている。その他の構成は実施例3の図46と同じであり説明を省略する。
 図56は、実施例4におけるヘッダPS・PUPDFB・PD側タイプ1型の回路図である。図56に示すように、FETm9(およびm10)はNチャネルFETであり、FETm9a(およびm10a)はPチャネルFETであり、ゲートはインバータ回路14(および16)の出力ノードに接続されている。その他の構成は実施例3の図48と同じであり説明を省略する。
 図57は、実施例4におけるフッタPS・PUPDFB・PU側タイプ1型の回路図である。図57に示すように、FETm9(およびm10)はNチャネルFETであり、FETm9a(およびm10a)はPチャネルFETであり、ゲートはインバータ回路14(および16)の出力ノードに接続されている。その他の構成は実施例3の図49と同じであり説明を省略する。
[実施例4の変形例1]
 実施例4の変形例1は、マスタスレーブ型フリップフロップ回路の例である。図58は、実施例4の変形例1に係る電子回路の回路図である。図58に示すように、ラッチ回路(Dラッチ回路)76および77を備えている。ラッチ回路76および77は、それぞれマスタ側およびスレーブ側ラッチ回路である。ラッチ回路76はインバータ80aおよび80bを有する双安定回路80とインバータ78aとを備えている。インバータ78aはクロック信号Cがハイレベルのとき動作し、インバータ80bはクロック信号Cがローレベルとなると動作する。ラッチ回路77は双安定回路12とパスゲート79aを備えている。双安定回路12のループ内にパスゲート79bが設けられている。パスゲート79aはクロック信号Cがローレベルのとき動作し、パスゲート79bはクロック信号Cがハイレベルとなると動作する。双安定回路12のループのうちノードQBはインバータ78bを介しQ信号として出力される。
 クロック生成回路81はイネーブル信号VENがハイレベルのとき動作し、ローレベルのとき動作しない。クロック生成回路81は、クロック信号VCLKとしてローレベルが入力するとクロック信号Cとしてハイレベルをクロック信号CBとしてローレベルを出力し、クロック信号VCLKとしてハイレベルが入力するとクロック信号Cとしてローレベルをクロック信号CBとしてハイレベルを出力する。
 電源線15aにはパワースイッチ30から仮想電源電圧VVDDが供給され、グランド線15bにはグランド電圧VGNDが供給され、ヘッダPS型である。インバータ回路14および16のフィードバックFETはPチャネルFETm9およびm10であり、PDFB型である。電圧VFNは定電圧であり、タイプ1型である。FETm9(およびm10)のゲートはインバータ回路16(および14)の出力ノードに接続されており、実施例3型である。このように、図58の変形例1はヘッダPS・PDFB・タイプ1型・実施例3型である。
 表1はマスタスレーブ型フリップフロップ回路でも成り立つ。すなわち、マスタスレーブ型フリップフロップ回路を、フッタPS・PUFB・タイプ1型、ヘッダPS・PUPDFB・PD側タイプ1型、フッタPS・PUPDFB・PU側タイプ1型としてもよい。また、双安定回路12は、実施例3型でもよいし、実施例2型でもよい。双安定回路12をマスタ側ラッチ回路に用いてもよい。
[シミュレーション]
 マスタスレーブ型フリップフロップ回路のSNMおよびスタンバイパワーをシミュレーションした。シミュレーションした回路は以下の回路A~Cである。
回路A:通常のディレイフリップフロップ回路
回路B:ヘッダPS・PDFB・タイプ2型・実施例2型
回路C:ヘッダPS・PDFB・タイプ1型・実施例3型(図58に示した回路)
 シミュレーション条件は以下である。
回路A:
 構成する各トランジスタのチャネル幅W/長さLはスタンダードセルを参考に決定した。
回路B:
 ラッチ回路77における各FETのチャネル幅W/長さLは以下である。
 FETm1およびm1a:180nm/60nm
 FETm2a、m2b、m4aおよびm4b:385nm/60nm
 FETm9およびm10:150nm/60nm
 回路Bには実施例2の図17と同様にインバータ26aを設けており、チャネル幅W/長さLは以下である。
 インバータ26aのFET:150nm/60nm
回路C:
 ラッチ回路77における各FETのチャネル幅W/長さLは以下である。
 FETm1およびm1a:130nm/60nm
 FETm2a、m2b、m4aおよびm4b:385nm/60nm
 FETm9およびm10:150nm/60nm
 各電圧は以下である。
 VVDDH=1.2V
 VVDDL=0.2V
 VGND=0V
 VFNH=0.2V
 図59(a)および図59(b)は、フリップフロップ回路のバタフライカーブを示す図である。図59(a)は、(Vin,Vout)が(L,H)を記憶ノードとし、図59(b)は、(H,L)を記憶ノードとしている。回路Aでは、VVDD=0.2Vとした。回路Cでは、STモードとしVVDDL=0.2Vとした。いずれもTTについて示している。
 なお、SNMのTTはFETの閾値電圧がTypicalなときのSNMである。以降、FF、SS、FSおよびSFは閾値電圧がプロセス変動によりTypical値よりFast(F)側またはSlow(S)側に3σばらついたときのSNMを示す。
 図59(a)および図59(b)に示すように、回路Aではバタフライカーブはほぼ対称であり、開口が小さくノイズマージンが小さい。回路Cでは、VVDD=0.2Vとすることで双安定回路12がSTモードとなり、伝達特性のヒステリシスが大きくなる。これにより、記憶ノード側の開口が大きくなりノイズマージンが大きくなる。
 図60(a)は、SNMを示す図、図60(b)は、スタンバイパワーを示す図である。図60(a)では、(L,H)および(H,L)について、TT、FF、SS、FS、SFのSNMを示している。回路Aでは、VVDD=0.2Vとし、回路Bおよび回路Cでは、STモードとしVVDDL=0.2Vとした。
 回路AではSNMは約60mVである。回路Bでは回路AよりSNMが少し高くなり70mV~80mV程度である。回路CではSNMが90mV~100mVとなり、十分なSNMを得ることができる。回路CにおいてSNMを80mVとすればVVDDLを0.2Vより低くでき、より消費電力を削減できる。
 図60(b)において、「SB1.2」はVVDDを1.2Vとしたスタンバイ状態、「ULV0.2」はVVDDL=0.2Vとした低電圧リテンション状態である。SB1.2では、回路Bは回路Aよりスタンバイパワーが約14%大きい。回路Cでは、スタンバイ状態のパワーを回路Aと同程度にできる。回路BおよびCのULV0.2では、回路Aに比べスタンバイパワーを98%削減できる。このように、実施例4の変形例1のフリップフロップ回路Cでは、回路AとVDD=1.2Vにおけるスタンバイパワーが同程度であり、低電圧リテンション状態におけるスタンバイパワーを98%削減できる。
 表2は、回路A、バルーンFF、NVFFおよび回路Cについて、電力削減効果、チップ面積、遅延、BET、プロセスコストおよび制御ステップ数を示す表である。バルーンFFはバルーン型FF回路であり、NVFFは実施例1のような不揮発性メモリ素子を用いたFF回路である。
Figure JPOXMLDOC01-appb-T000002
 電力削減効果は、低電圧リテンション状態における回路Aからの削減率を示している。NVFFおよび回路Cでは、回路Aに比べそれぞれ99%および98%電力を削減できる。面積は回路Aの面積を1としている。バルーンFFの面積は回路Aの面積の1.7倍となる。NVFFの面積は回路Aの面積の1.5倍となる。回路Cの面積は回路Aの面積の1.2倍である。遅延は、CLK-QHおよびCLK-QLのそれぞれで回路Aを基準に比較しており、回路Aを1としている。バルーンFFおよびNVFFの遅延は回路Aに比べ1.1から1.2である。回路Cの遅延は回路Aに比べCLK-QLが1.6である。
 バルーンFFのBETは100nsであるのに対しNVFFのBETは8μsと長くなる。これに対し回路CのBETは160nsであり、バルーンFF程度である。NV-FFのプロセスコストは不揮発性素子のプロセスコストが高いため高い。これに対し、回路CはCMOSプロセスで作製できるため、回路Cのプロセスコストは回路AおよびバルーンFF程度に低い。制御ステップ数はパワースイッチの制御を含まない制御に必要なパルス数である。バルーンFFおよびNVFFの制御ステップ数は3である、これに対し、回路Cの制御ステップ数は回路Aの制御ステップ数と同じく0である。
 このように、回路Cは、NVFFと同程度の電力削減効果およびチップ面積であり、BETはバルーンFFと同程度であり、プロセスコストおよび制御ステップは回路Aと同程度にできる。
 次にSOC(System on a chip)等のロジックシステムを想定しスタンバイパワーをシミュレーションした。図61(a)は、シミュレーションしたロジックシステムの概念図である。システム82の50%の面積をLLC(Last-level Cache)84とした。システム82の残りの50%には複数のコア83が設けられているとした。各コア83の面積の20%がFF(フリップフロップ)83aであり、10%がFLC(First-level Cache)83bとした。シミュレーションしたシステムは以下のシステムAおよびCである。
システムA:6T-SRAMを用いたキャッシュおよびフリップフロップ
システムC:実施例3のヘッダPS・PDFB・タイプ1型を用いたキャッシュおよび図58に示したフリップフロップ回路
 図61(b)は、システムAおよびCの規格化スタンバイパワーを示す図である。システムAのA1はコア83およびLLC84ともにVVDD=1.2Vのスタンバイ状態である。A2はコア83のFF83aをVVDD=1.2Vのスタンバイ状態とし、FLC83bをVVDD=0.8Vのスリープ状態とし、コア83のうちFF83aとFLC83bを除く回路をすべて電源遮断し、LLC84をVVDD=1.2Vとした状態である。A3はコア83のFF83aをVVDD=1.2Vのスタンバイ状態とし、FLC83bをVVDD=0.8Vのスリープ状態とし、コア83のうちFF83aとFLC83bを除く回路をすべて電源遮断し、LLC84をVVDD=0.8Vのスリープ状態とした状態である。A2の規格化スタンバイパワーはA1の約0.6であり、A3の規格化スタンバイパワーは、A1の約0.5である。
 システムCのC1はコア83およびLLC84ともにVVDD=1.2Vのスタンバイ状態である。C2はコア83のFF83aをVVDD=0.2Vの低電圧リテンション状態とし、FLC83bをVVDD=0.2Vの低電圧リテンション状態とし、コア83のうちFF83aとFLC83bを除く回路をすべて電源遮断し,LLC84をVVDD=1.2Vとした状態である。C3はコア83のFF83aをVVDD=0.2Vの低電圧リテンション状態とし,FLC83bをVVDD=0.2Vの低電圧リテンション状態とし、コア83のうちFF83aとFLC83bを除く回路をすべて電源遮断し、LLC84をVVDD=0.2Vの低電圧リテンション状態とした状態である。C2の規格化スタンバイパワーはA1の0.2以下であり、C3の規格化スタンバイパワーは、C1の約0.05である。
 以上のように、システムCでは、FF83a、FLC83bおよびLLC84を低電圧リテンション状態とすることにより、スタンバイパワーを非常に小さくできる。
 実施例4およびその変形例1によれば、実施例2型では、インバータ回路14(第1インバータ回路)のFETm9およびm9a(第4FET)のゲートは、インバータ回路14の出力ノードまたはインバータ回路16の入力ノードに接続され、インバータ回路16(第2インバータ回路)のFETm10およびm10aのゲートは、インバータ回路14の入力ノードまたはインバータ回路16の出力ノードに接続されている。このとき、FETm9およびm10のチャネルの導電型はFETm2、m2a、m2b、m4、m4aおよびm4bと同じであり、FETm9aおよびm10aのチャネルの導電型はFETm1、m1a、m1b、m3、m3aおよびm3bと同じである。
 実施例3型では、インバータ回路14のフィードバックFETm9およびm9aのゲートは、インバータ回路16の出力ノードまたはインバータ回路14の入力ノードに接続され、インバータ回路16のFETm10およびm10aのゲートは、インバータ回路16の入力ノードまたはインバータ回路14の出力ノードに接続されている。このとき、FETm9およびm10のチャネルの導電型はFETm1、m1a、m1b、m3、m3aおよびm3bと同じであり、FETm9aおよびm10aのチャネルの導電型はFETm2、m2a、m2b、m4、m4aおよびm4bと同じである。
 実施例2型および実施例3型のいずれにおいても、パワースイッチ30(電源回路)は、電源電圧VVDD-VVGNDを、双安定回路12がデータをライトおよびリード可能な第1電圧と、第1電圧より低く双安定回路12がデータを保持可能な第2電圧と、に切り替えて供給する。パワースイッチ30が双安定回路12に第1電圧および第2電圧のいずれを供給するときにも、制御ノードVFNおよびVFPには定バイアスが供給される。これにより、ドライバ26が不要となり、電子回路を小型化できる。また消費電力を抑制できる。
 図53(a)および表1のように、PDFBおよびPUPDFB・ヘッダPSでは、電源電圧VVDD-VGNDを第1電圧と第2電圧に切り替えるとき、グランド線15b(第2電源線)に一定のグランド電圧VGND(第3電圧)を供給し、電源線15a(第1電源線)に、VVDDH(第4電圧)およびVVDDL(第5電圧)とを切り替えて供給する。図53(b)および表1のように、PUFBおよびPUPDFB・フッタPSでは、電源電圧VDD-VVGNDを第1電圧と第2電圧に切り替えるとき、電源線15a(第2電源線)に一定の電源電圧VDD(第3電圧)を供給し、グランド線15b(第1電源線)に、VVGNDL(第4電圧)およびVVGNDH(第5電圧)とを切り替えて供給する。これにより、制御線に定バイアスVFNおよびVFPを供給してもBIモードとSTモードを切り替えることができる。
 以上、本発明の好ましい実施例について詳述したが、本発明は係る特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
 10 メモリセル
 12 双安定回路
 14、16 インバータ回路
 20 セルアレイ
 22、22a-22d サブアレイ
 24、24a、24b、24A-24C、241-24n ブロック
 28 制御回路
 30 パワースイッチ
 40、41 レジスタ
 

Claims (24)

  1.  各々のメモリセルが、伝達特性にヒステリシスを実質的に有さない第1モードと伝達特性にヒステリシスを有する第2モードとが切り替わる第1インバータ回路および第2インバータ回路を各々備え、前記第1インバータ回路の出力ノードおよび入力ノードは前記第2インバータ回路のそれぞれ入力ノードおよび出力ノードに接続された双安定回路を備える複数のメモリセルを有するセルアレイと、
     前記複数のメモリセルのうちデータを保持しなくてもよい1または複数の第1メモリセルを電源遮断した後、前記複数のメモリセルのうち残りの1または複数の第2メモリセル内の双安定回路を前記第2モードとし、前記第2モードを維持した状態で前記1または複数の第2メモリセル内の双安定回路に、データをリードおよび/またはライトするときに双安定回路に供給される第1電源電圧より低く前記第2モードの双安定回路がデータを保持できる第2電源電圧を供給する制御回路と、
    を備える電子回路。
  2.  前記セルアレイは、各々のブロックが少なくとも2つのメモリセルを含む複数のブロックに分割され、
     前記制御回路は、前記複数のブロックからデータを保持しなくてもよい1または複数の第1ブロックを抽出し、前記1または複数の第1ブロックを電源遮断した後、前記複数のブロックのうち残りの1または複数の第2ブロック内の双安定回路を前記第2モードとし、前記第2モードを維持した状態で前記1または複数の第2ブロック内の双安定回路に前記第2電源電圧を供給する請求項1に記載の電子回路。
  3.  前記制御回路は、前記1または複数の第2ブロック内の双安定回路を前記第2モードとする前に、前記1または複数の第2ブロックに、前記第1電源電圧より低くかつ前記第2電源電圧より高く前記第1モードの双安定回路がデータを保持できる第3電源電圧を供給する請求項2に記載の電子回路。
  4.  前記制御回路は、前記1または複数の第2ブロック内の双安定回路に前記第3電源電圧を供給した状態で前記1または複数の第2ブロック内の双安定回路を前記第2モードとする請求項3に記載の電子回路。
  5.  前記1または複数の第2ブロックは複数の第2ブロックであり、
     前記制御回路は、前記複数の第2ブロックのうち1または複数の第3ブロックの双安定回路に前記第3電源電圧を供給した状態で前記1または複数の第3ブロック内の双安定回路を前記第2モードとし、前記1または複数の第3ブロック内の双安定回路を前記第2モードとした状態で前記第2電源電圧を供給し、その後、前記複数の第2ブロックのうち前記1または複数の第3ブロックとは別の1または複数の第4ブロックの双安定回路に前記第3電源電圧を供給した状態で前記1または複数の第4ブロック内の双安定回路を前記第2モードとし、前記1または複数の第4ブロック内の双安定回路を前記第2モードとした状態で前記第2電源電圧を供給する請求項3に記載の電子回路。
  6.  前記1または複数の第2ブロックは複数の第2ブロックであり、
     前記制御回路は、前記複数の第2ブロック内の双安定回路に前記第3電源電圧を供給した状態で前記複数の第2ブロック内の双安定回路を前記第2モードとした後、前記複数の第2ブロック内の双安定回路を前記第2モードとした状態で前記第2電源電圧を供給する請求項3に記載の電子回路。
  7.  前記セルアレイの外に設けられ、外部回路から受信した前記データを保持しなくてもよいブロックを示す情報を記憶する記憶回路を備え、前記制御回路は、前記情報に基づき、前記データを保持しなくてもよい前記1または複数の第1ブロックを抽出する請求項2から6のいずれか一項に記載の電子回路。
  8.  前記第1インバータ回路および前記第2インバータ回路は、
     ソースが第1電源線に接続され、ドレインが出力ノードに接続され、ゲートが入力ノードに接続された第1導電型のチャネルの第1FETと、
     ソースが前記第1電源線との間に電源電圧が供給される第2電源線に接続され、ドレインが中間ノードに接続され、ゲートが前記入力ノードに接続された前記第1導電型と反対の第2導電型のチャネルの第2FETと、
     ソースが前記中間ノードに接続され、ドレインが前記出力ノードに接続され、ゲートが前記入力ノードに接続された第2導電型のチャネルの第3FETと、
     ソースおよびドレインの一方が前記中間ノードに接続され、前記ソースおよび前記ドレインの他方が制御ノードに接続された第4FETと、
    を各々備え、
     前記第1インバータ回路の第4FETのゲートは、前記第1インバータ回路の入力ノード、出力ノード、前記第2インバータ回路の入力ノードおよび出力ノードのいずれか1つのノードに接続され、
     前記第2インバータ回路の第4FETのゲートは、前記第2インバータ回路の入力ノード、出力ノード、前記第1インバータ回路の入力ノードおよび出力ノードのいずれか1つのノードに接続され、
     前記第1インバータ回路の第4FETは、ゲートが前記第1インバータ回路の出力ノードまたは前記第2インバータ回路の入力ノードに接続されているとき第2導電型のチャネルのFETであり、ゲートが前記第1インバータ回路の入力ノードまたは前記第2インバータ回路の出力ノードに接続されているとき第1導電型のチャネルのFETであり、
     前記第2インバータ回路の第4FETは、ゲートが前記第2インバータ回路の出力ノードまたは前記第1インバータ回路の入力ノードに接続されているとき第2導電型のチャネルのFETであり、ゲートが前記第2インバータ回路の入力ノードまたは前記第1インバータ回路の出力ノードに接続されているとき第1導電型のチャネルのFETである請求項1から7のいずれか一項に記載の電子回路。
  9.  前記第1インバータ回路および前記第2インバータ回路の制御ノードには定バイアスが印加され、前記第1インバータ回路および前記第2インバータ回路は、前記第1電源電圧が供給されるとき前記第1モードとなり、前記第2電源電圧が供給されるとき前記第2モードとなる請求項8に記載の電子回路。
  10.   ソースが第1電源線に接続され、ドレインが出力ノードに接続され、ゲートが入力ノードに接続された第1導電型のチャネルの第1FETと、
      ソースが前記第1電源線との間に電源電圧が供給される第2電源線に接続され、ドレインが中間ノードに接続され、ゲートが前記入力ノードに接続された前記第1導電型と反対の第2導電型のチャネルの第2FETと、
      ソースが前記中間ノードに接続され、ドレインが前記出力ノードに接続され、ゲートが前記入力ノードに接続された第2導電型のチャネルの第3FETと、
      ソースおよびドレインの一方が前記中間ノードに接続され、前記ソースおよび前記ドレインの他方が制御ノードに接続された第1導電型のチャネルの第4FETと、
    を各々備える第1インバータ回路および第2インバータ回路と、
     前記第1インバータ回路の出力ノードおよび前記第2インバータ回路の入力ノードが接続された第1記憶ノードと、
     前記第1インバータ回路の入力ノードおよび前記第2インバータ回路の出力ノードが接続された第2記憶ノードと、を備え、
     前記第1インバータ回路の第4FETのゲートは、前記第1インバータ回路の入力ノードまたは前記第2インバータ回路の出力ノードに接続され、
     前記第2インバータ回路の第4FETのゲートは前記第2インバータ回路の入力ノードまたは前記第1インバータ回路の出力ノードに接続された双安定回路。
  11.  請求項10に記載の双安定回路と、
     前記電源電圧を、前記双安定回路がデータをライトおよびリード可能な第1電圧と、前記第1電圧より低く前記双安定回路がデータを保持可能な第2電圧と、に切り替えて供給する電源回路と、
    を備える電子回路。
  12.  前記電源回路が前記双安定回路に前記第1電圧および前記第2電圧のいずれを供給するときにも、前記制御ノードには定バイアスが供給される請求項11に記載の電子回路。
  13.  前記定バイアスは、前記第1電圧が供給されるときの前記第1電源線の電圧と前記第2電源線の電圧との間のバイアスである請求項12に記載の電子回路。
  14.  前記定バイアスは、前記第1電圧が供給されるときの前記第1電源線の電圧と前記第2電源線の電圧との中間より前記第2電源線の電圧に近い請求項12に記載の電子回路。
  15.  前記第4FETがPチャネルFETのとき、前記電源回路が前記第1電圧および第2電圧を供給するとき前記制御ノードにそれぞれローレベルおよび前記ローレベルより高いハイレベルを供給し、
     前記第4FETがNチャネルFETのとき、前記電源回路が前記第1電圧および第2電圧を供給するとき前記制御ノードにそれぞれハイレベルおよび前記ハイレベルより低いローレベルを供給する制御回路を備える請求項11に記載の電子回路。
  16.   ソースが第1電源線に接続され、ドレインが出力ノードに接続され、ゲートが入力ノードに接続された第1導電型のチャネルの第1FETと、
      ソースが前記第1電源線との間に電源電圧が供給される第2電源線に接続され、ドレインが中間ノードに接続され、ゲートが前記入力ノードに接続された前記第1導電型と反対の第2導電型のチャネルの第2FETと、
      ソースが前記中間ノードに接続され、ドレインが前記出力ノードに接続され、ゲートが前記入力ノードに接続された第2導電型のチャネルの第3FETと、
      ソースおよびドレインの一方が前記中間ノードに接続され、前記ソースおよび前記ドレインの他方が制御ノードに接続された第4FETと、
    を各々備える第1インバータ回路および第2インバータ回路と、
     前記第1インバータ回路の出力ノードおよび前記第2インバータ回路の入力ノードが接続された第1記憶ノードと、
     前記第1インバータ回路の入力ノードおよび前記第2インバータ回路の出力ノードが接続された第2記憶ノードと、
     を備え、
     前記第1インバータ回路の第4FETのゲートは、前記第1インバータ回路の入力ノード、出力ノード、前記第2インバータ回路の入力ノードおよび出力ノードのいずれか1つのノードに接続され、
     前記第2インバータ回路の第4FETのゲートは、前記第2インバータ回路の入力ノード、出力ノード、前記第1インバータ回路の入力ノードおよび出力ノードのいずれか1つのノードに接続された双安定回路と、
     前記電源電圧を、前記双安定回路がデータをライトおよびリード可能な第1電圧と、前記第1電圧より低く前記双安定回路がデータを保持可能な第2電圧と、に切り替えて供給する電源回路と、
    を備え、
     前記電源回路が前記双安定回路に前記第1電圧および前記第2電圧のいずれを供給するときにも、前記制御ノードには定バイアスが供給される電子回路。
  17.  前記電源回路は、前記電源電圧を前記第1電圧と前記第2電圧とに切り替えるときに、前記第2電源線には一定の第3電圧を供給し、前記第1電源線に供給する電圧をそれぞれ第4電圧と第5電圧とに切り替える請求項16に記載の電子回路。
  18.  前記定バイアスは、前記第3電圧と前記第4電圧との間のバイアスである請求項17に記載の電子回路。
  19.  前記第1インバータ回路の第4FETは、ゲートが前記第1インバータ回路の出力ノードまたは前記第2インバータ回路の入力ノードに接続されているとき第2導電型のチャネルのFETであり、ゲートが前記第1インバータ回路の入力ノードまたは前記第2インバータ回路の出力ノードに接続されているとき第1導電型のチャネルのFETであり、
     前記第2インバータ回路の第4FETは、ゲートが前記第2インバータ回路の出力ノードまたは前記第1インバータ回路の入力ノードに接続されているとき第2導電型のチャネルのFETであり、ゲートが前記第2インバータ回路の入力ノードまたは前記第1インバータ回路の出力ノードに接続されているとき第1導電型のチャネルのFETである請求項16から18のいずれか一項に記載の電子回路。
  20.  各々のメモリセルが、データを揮発的に記憶する双安定回路と、前記双安定回路に記憶されたデータを不揮発的にストアし、不揮発的にストアされたデータを前記双安定回路にリストアする不揮発性素子と、を備える複数のメモリセルを有するセルアレイと、
     前記セルアレイを電源遮断するときに、前記複数のメモリセルのうち揮発的に書き換えられているかいないかにかわらず不揮発的にストアしなくてもよい1または複数の第1メモリセルを電源遮断し、前記第1メモリセルを電源遮断した後前記複数のメモリセルのうち残りの1または複数の第2メモリセルにおいて双安定回路に揮発的に記憶されたデータを前記不揮発性素子にストアするストア動作を行い、その後前記第2メモリセルを電源遮断する制御回路と、
    を備える電子回路。
  21.  前記セルアレイは、各々のブロックが少なくとも2つのメモリセルを含む複数のブロックに分割され、
     前記制御回路は、前記セルアレイを電源遮断するときに、前記複数のブロックからブロック内のメモリセルが揮発的に書き換えられているかいないかにかわらず不揮発的にストアしなくてもよい1または複数の第1ブロックを抽出し、前記1または複数の第1ブロックを電源遮断し、前記1または複数の第1ブロックを電源遮断した後前記複数のブロックのうち残りの1または複数の第2ブロック内のメモリセルにおいてストア動作を行い、ストア動作の終了した第2ブロックを電源遮断する請求項20に記載の電子回路。
  22.  前記制御回路は、前記1または複数の第1ブロックを全て電源遮断した後、前記1または複数の第2ブロック内のメモリセルにおいてストア動作を行う請求項21に記載の電子回路。
  23.  前記セルアレイの外に設けられ、外部回路から受信した前記1または複数の第1ブロックを示す情報を記憶する記憶回路を備え、
     前記制御回路は、前記情報に基づき、前記1または複数の第1ブロックを抽出する請求項21または22に記載の電子回路。
  24.  前記制御回路は、前記複数のブロックから、ブロック内のメモリセルが揮発的に書き換えられているかいないかにかわらず不揮発的にストアしなくてもよいブロックと、ブロック内のいずれのメモリセルも揮発的に書き換えられていないブロックと、を前記1または複数の第1ブロックとして抽出し、前記1または複数の第1ブロックを電源遮断し、前記1または複数の第1ブロックを電源遮断した後前記複数のブロックのうち残りの1または複数の第2ブロック内のメモリセルにおいてストア動作を行い、ストア動作の終了した第2ブロックを電源遮断する請求項21から23のいずれか一項に記載の電子回路。
     
PCT/JP2020/012099 2019-05-30 2020-03-18 電子回路および双安定回路 WO2020241000A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2021522653A JP7430407B2 (ja) 2019-05-30 2020-03-18 電子回路
EP20812785.2A EP3979499A4 (en) 2019-05-30 2020-03-18 ELECTRONIC CIRCUIT AND BISTABLE CIRCUIT
CN202080040101.5A CN113892232A (zh) 2019-05-30 2020-03-18 电子电路和双稳态电路
US17/536,493 US20220084583A1 (en) 2019-05-30 2021-11-29 Electronic circuit and bistable circuit
JP2024008654A JP2024038472A (ja) 2019-05-30 2024-01-24 電子回路および双安定回路

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-101720 2019-05-30
JP2019101720 2019-05-30
JP2019186042 2019-10-09
JP2019-186042 2019-10-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/536,493 Continuation US20220084583A1 (en) 2019-05-30 2021-11-29 Electronic circuit and bistable circuit

Publications (1)

Publication Number Publication Date
WO2020241000A1 true WO2020241000A1 (ja) 2020-12-03

Family

ID=73552315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/012099 WO2020241000A1 (ja) 2019-05-30 2020-03-18 電子回路および双安定回路

Country Status (6)

Country Link
US (1) US20220084583A1 (ja)
EP (1) EP3979499A4 (ja)
JP (2) JP7430407B2 (ja)
CN (1) CN113892232A (ja)
TW (1) TW202044252A (ja)
WO (1) WO2020241000A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113452354B (zh) * 2021-07-20 2022-12-06 山东交通学院 一种基于mtj器件的rs触发器
US11394373B1 (en) * 2021-10-07 2022-07-19 Macronix International Co., Ltd. Managing flip flop circuits

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009028298A1 (ja) 2007-08-31 2009-03-05 Tokyo Institute Of Technology スピン注入磁化反転mtjを用いた不揮発性sram/ラッチ回路
WO2013172065A1 (ja) 2012-05-18 2013-11-21 独立行政法人科学技術振興機構 記憶回路
WO2013172066A1 (ja) 2012-05-18 2013-11-21 独立行政法人科学技術振興機構 双安定回路と不揮発性素子とを備える記憶回路
WO2016024527A1 (ja) 2014-08-12 2016-02-18 国立研究開発法人科学技術振興機構 記憶回路
WO2016158691A1 (ja) 2015-04-01 2016-10-06 国立研究開発法人科学技術振興機構 電子回路

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107683506B (zh) 2015-06-24 2021-08-13 索尼公司 半导体设备
JP6993681B2 (ja) 2017-11-30 2022-01-13 国立研究開発法人科学技術振興機構 電子回路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009028298A1 (ja) 2007-08-31 2009-03-05 Tokyo Institute Of Technology スピン注入磁化反転mtjを用いた不揮発性sram/ラッチ回路
WO2013172065A1 (ja) 2012-05-18 2013-11-21 独立行政法人科学技術振興機構 記憶回路
WO2013172066A1 (ja) 2012-05-18 2013-11-21 独立行政法人科学技術振興機構 双安定回路と不揮発性素子とを備える記憶回路
WO2016024527A1 (ja) 2014-08-12 2016-02-18 国立研究開発法人科学技術振興機構 記憶回路
WO2016158691A1 (ja) 2015-04-01 2016-10-06 国立研究開発法人科学技術振興機構 電子回路

Also Published As

Publication number Publication date
CN113892232A (zh) 2022-01-04
TW202044252A (zh) 2020-12-01
JP2024038472A (ja) 2024-03-19
US20220084583A1 (en) 2022-03-17
EP3979499A1 (en) 2022-04-06
JP7430407B2 (ja) 2024-02-13
EP3979499A4 (en) 2022-07-27
JPWO2020241000A1 (ja) 2020-12-03

Similar Documents

Publication Publication Date Title
JP6830681B2 (ja) 電子回路
USRE42145E1 (en) Write-assisted SRAM bit cell
US7599210B2 (en) Nonvolatile memory cell, storage device and nonvolatile logic circuit
US8116149B2 (en) Circuit and method for small swing memory signals
JP5478772B2 (ja) 安定性が改善されビットセルサイズが縮小された低出力5tsram
US5353251A (en) Memory cell circuit with single bit line latch
US9361950B1 (en) Semiconductor device with reduced leakage current and method for manufacture of the same
JP2024038472A (ja) 電子回路および双安定回路
JP2009505315A (ja) 独立の読み書き回路を有するsramセル
JP2003022677A (ja) Sramセルにおける書込み動作のための方法および装置
AU8331291A (en) Bit storage cell
JP5209083B2 (ja) 半導体装置
CN109196587B (zh) 半导体电路、驱动方法和电子设备
US20120230130A1 (en) Memory Cell System and Method
US20150318024A1 (en) Non-volatile memory using bi-directional resistive elements
JP3754593B2 (ja) データビットを記憶するメモリーセルを有する集積回路および集積回路において書き込みデータビットをメモリーセルに書き込む方法
JP2005050421A (ja) 半導体記憶装置
CN112863571A (zh) 近阈值超低漏电的锁存型存储器单元及其读写控制电路
US9135988B2 (en) Semiconductor device and control method of the same
TWI708245B (zh) 整合式位準轉換器
KR102021601B1 (ko) 초저전압 메모리 장치 및 그 동작 방법
TWI625724B (zh) 記憶體裝置及其操作方法
JP2009026376A (ja) 記憶回路
US10049724B2 (en) Aging tolerant register file
Kumar et al. Design and power analysis of 16× 16 SRAM Array Employing 7T I-LSVL

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20812785

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021522653

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020812785

Country of ref document: EP

Effective date: 20220103