WO2020240940A1 - Manipulateur de déplacement au plafond et système de manipulation - Google Patents

Manipulateur de déplacement au plafond et système de manipulation Download PDF

Info

Publication number
WO2020240940A1
WO2020240940A1 PCT/JP2020/005265 JP2020005265W WO2020240940A1 WO 2020240940 A1 WO2020240940 A1 WO 2020240940A1 JP 2020005265 W JP2020005265 W JP 2020005265W WO 2020240940 A1 WO2020240940 A1 WO 2020240940A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceiling
end effector
joint
arm
manipulator
Prior art date
Application number
PCT/JP2020/005265
Other languages
English (en)
Japanese (ja)
Inventor
小田井 正樹
馬場 淳史
亨 柴田
有坂 寿洋
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2020240940A1 publication Critical patent/WO2020240940A1/fr

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages
    • B25J5/02Manipulators mounted on wheels or on carriages travelling along a guideway
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/06Programme-controlled manipulators characterised by multi-articulated arms

Definitions

  • Patent Document 1 a movable base, a turntable, and a three-legged articulated telescopic arm are provided on the lower surface of a bogie that can travel along a running rail laid in the upper space of a building, and the telescopic arm is a feed screw.
  • An aerial traveling work robot that is configured to expand and contract up and down by a mechanism is disclosed.
  • the ceiling-moving manipulator 100 works in the work space 1 (work area), and is composed of a trolley 101, an arm 102, and an end effector 103.
  • An arm 102 is connected to the lower part of the carriage 101, and an end effector 103 is connected to the lower end of the arm 102.
  • the end effector 103 is also called a hand effector, and is a part that actually grips an object or the like. In other words, the end effector 103 is a portion that comes into direct contact with the object.
  • the end effector 103 may be replaceable depending on the content of the work.
  • the carriage 101 is arranged in the upper part of the work space 1 and is configured to be movable in the horizontal direction.
  • the work space 1 is the whole or a part of one room.
  • the work space 1 may be the whole or a part of the plurality of rooms when the carriage 101 can move a plurality of rooms by using the moving means (for example, a rail or the like).
  • the work space 1 is not a component of the ceiling-moving manipulator 100. Further, in FIG. 1, all the components of the ceiling-moving manipulator 100 are arranged inside the work space 1, but the present invention is not limited to this. Other components may be arranged inside or outside the work space 1 as long as the end effector 103 is arranged inside the work space 1 during work.
  • a plurality of types of end effectors 103 may be prepared and exchangeable, and may be selected and connected to the arm 102 as necessary.
  • the retractable flexion joint 1022, the torsional joint 1021, the telescopic joint 1023, and the wrist flexion joint 1024 constituting the arm 102 are connected in this order. That is, it is different from the first embodiment (FIG. 1) in that the retractable flexion joint 1022 and the torsion joint 1021 are interchanged.
  • FIG. 3B schematically shows the configuration of the ceiling-moving manipulator of the third embodiment.
  • the torsion joint 1021 constituting the arm 102 is provided between the expansion joint 1023 and the wrist flexion joint 1024.
  • the storage flexion joint 1022 is arranged at the position closest to the carriage 101. Further, in Examples 1 to 3, the wrist flexion joint 1024 is arranged on the end effector 103 side of the torsion joint 1021.
  • FIG. 3C schematically shows the configuration of the ceiling-moving manipulator of the fourth embodiment.
  • any 5 degrees of freedom can be secured.
  • the configuration of the ceiling-moving manipulator of the present invention is not limited to the configurations of these examples.
  • the end effector can be arranged with the degree of freedom required for the operation of the ceiling-moving manipulator in the work space (5 degrees of freedom in the configuration of the above embodiment), and the arm and the end effector can be stored in the upper part of the work space. Any configuration may be sufficient.
  • the carriage 101 is movably arranged on the X-axis guide 1011.
  • Y-axis bogies 1012 are provided at both ends of the X-axis guide 1011.
  • the Y-axis bogie 1012 is movably arranged on the Y-axis guide 1013.
  • the dolly 101 moves along the X-axis guide 1011 and also moves along the Y-axis guide 1013 in a direction orthogonal to the direction along the X-axis guide 1011. As a result, the dolly 101 can move in the XY plane.
  • the means shown in this figure has a configuration in which it is horizontally driven by a gantry type stage.
  • FIG. 4B is a schematic configuration diagram showing a second example of means for moving the carriage.
  • FIG. 4C is a schematic configuration diagram showing a third example of means for moving the carriage.
  • the carriage 101 is movably arranged on the R-axis guide 1015.
  • One end of the R-axis guide 1015 is connected to the ⁇ -rotating shaft 1016.
  • the R-axis guide 1015 rotates around the ⁇ -rotation axis 1016 due to the rotation of the ⁇ -rotation axis 1016.
  • the dolly 101 can move in the XY plane.
  • the bogie 101, the Y-axis bogie 1012, etc. are suspended vertically below the X-axis guide 1011, the Y-axis guide 1013, etc., but for example, in FIG. 4A, the bogie 101 May be arranged on the lateral portion (side surface portion or the like) or the upper portion of the X-axis guide 1011. The same applies to FIGS. 4B and 4C.
  • FIG. 5A is a schematic configuration diagram showing a first example of a telescopic joint.
  • the telescopic joint 1023 is composed of a fixed portion 10231, a movable portion 10232, and a stage 10233.
  • the stage 10233 is movably arranged on the fixed portion 10231.
  • the movable portion 10232 is fixed to the stage 10233. That is, the stage 10233 is configured to be movable along the fixed portion 10231.
  • the drive source of the stage 10233 may be, for example, a ball screw (not shown) by a rotary motor (not shown) or a linear motor (not shown).
  • the force transmission unit 10234 is composed of, for example, a wire, and is connected to a rotary motor (not shown) provided in the fixed unit 10231.
  • the length of the exposed portion of the wire is adjusted by the forward rotation and the reverse rotation of the rotary motor, and the position of the movable portion 10232 is changed.
  • the distance between the fixed portion 10231 and the movable portion 10232 increases or decreases. That is, the total length of the telescopic joint 1023 fluctuates.
  • the telescopic joint 1023 is composed of a fixed portion 10231, a movable portion 10232, and an telescopic rotation motor 10235.
  • the rotation of the telescopic rotation motor 10235 causes the movable portion 10232 to rotate with respect to the fixed portion 10231. As a result, the tip of the movable portion 10232 is moved up and down.
  • the distance between the link mechanism end point 1051 and the link mechanism end point 1052 can be changed.
  • the distance between the fixed portion 10231 and the movable portion 10232 can be changed.
  • the shape of the relay link mechanism 10236 with the rotating portion 1056 as a fulcrum changes, and the distance between the fixed portion 10231 and the movable portion 10232 increases or decreases.
  • the drive method using a ball screw using a rotary motor is an example, and the present invention is not limited to this method.
  • Other mechanisms may be adopted as long as the distance between the fixed portion 10231 and the movable portion 10232 can be increased or decreased.
  • the wire of the force transmission unit 10234 can be wound up using the motor, and the distance between the fixed unit 10231 and the movable unit 10232 can be increased or decreased.
  • the telescopic joint 1023 may have a relay link provided with a pulley 10237 that relays between the fixed portion 10231 and the movable portion 10232.
  • FIG. 6 is a schematic configuration diagram showing an example of the manipulation system of the present invention.
  • the environment sensor 204a and the work sensor 204b can observe at least the inside of the work space 1.
  • the environment sensor 204a and the work sensor 204b have a camera, obtain image information, and observe the inside of the work space 1.
  • the environment sensor 204a may be movable in the work space 1.
  • an environment sensor (not shown) that can move in the work space 1 may be provided.
  • control device 201 detects the position, shape, and the like of the obstacle 3 and the object 2 by using the information detected by the sensors such as the environment sensor 204a and the work sensor 204b. As a result, the ceiling-moving manipulator 100a can automatically approach the object 2 while avoiding interference (collision) with the obstacle 3.
  • the ceiling movable manipulator 100b may be housed in the upper part of the work space 1 to generate a signal for the storage work. For example, a signal that moves in the horizontal direction may be generated in an infrequently used area in the work space 1. In this case, the ceiling-moving manipulator 100b is in the state shown in this figure.
  • the information obtained by the sensor 204 is sent to the communication unit 2011 of the control device 201.
  • the area observed by the sensor 204 may be changed according to the command of the control device 201.
  • the information input to the operation terminal 205 is sent to the communication unit 2011 of the control device 201.
  • the operation terminal 205 has a display function.
  • the display function refers to a function in which the operation terminal 205 has a display unit (screen), or an image is projected from the operation terminal 205 onto a wall surface or a screen and displayed.
  • the display function a part or all of the information possessed by the control device 201, such as the observation information of the sensor 204, can be sent to the operation terminal 205 for display, and the operation of the operator can be assisted.
  • the storage unit 2012 stores at least a part of the information collected by the communication unit 2011, the destination of each information, the parameters used for the calculation of the calculation unit 2013, and the like.
  • the manipulator system 200 exercises the ceiling-moving manipulator 100 based on not only the latest collected information collected by the communication unit 2011 but also past history information and learning results (experience value by work) related to the work. Can be done.
  • a part or all of the functions of the storage unit 2012 may be arranged in the external system 4.
  • the calculation unit 2013 may perform a calculation using information on the experience value of the work such as success or failure and send it to the communication unit 2011.
  • the work content, environmental information, movement information, work results, etc. are accumulated in the storage unit 2012 as an experience value data set, and machine learning is performed to increase the work success rate of the movement control of the ceiling-moving manipulator 100. it can.
  • the present invention it is possible to prevent interference (collision) with humans and structures in the work space in manipulation work in a wide work space, and it is possible to reduce the risk of the robot falling.
  • the space occupied by the ceiling-moving manipulator when the ceiling-moving manipulator is not working can be reduced, and the working range of other robots and manipulators can be expanded.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

La présente invention concerne un manipulateur de déplacement de plafond comprenant un chariot, un bras et un organe terminal effecteur. Le chariot est agencé sur une partie supérieure d'une zone de travail et présente une configuration qui peut déplacer l'organe terminal effecteur dans la direction horizontale. Le bras est disposé entre le chariot et l'organe terminal effecteur et présente une configuration dans laquelle la hauteur de l'organe terminal effecteur peut être modifiée. L'organe terminal effecteur présente une configuration grâce à laquelle l'organe terminal effecteur peut s'approcher d'un objet cible depuis une direction sensiblement horizontale, capturer l'objet cible, et déplacer l'objet cible d'une section basse vers une section haute ou d'une section haute vers une section basse de la zone de travail. Par conséquent, l'invention fournit un manipulateur qui peut effectuer un travail où un objet est transporté d'une section basse d'une pièce à une section haute ou d'une section haute à une section basse et, lorsqu'il n'est pas utilisé, peut être stocké de manière compacte. La présente invention concerne également un système de manipulation comprenant le manipulateur.
PCT/JP2020/005265 2019-05-28 2020-02-12 Manipulateur de déplacement au plafond et système de manipulation WO2020240940A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019099238A JP2020192632A (ja) 2019-05-28 2019-05-28 天井移動型マニピュレータ及びマニピュレーションシステム
JP2019-099238 2019-05-28

Publications (1)

Publication Number Publication Date
WO2020240940A1 true WO2020240940A1 (fr) 2020-12-03

Family

ID=73547702

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/005265 WO2020240940A1 (fr) 2019-05-28 2020-02-12 Manipulateur de déplacement au plafond et système de manipulation

Country Status (2)

Country Link
JP (1) JP2020192632A (fr)
WO (1) WO2020240940A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130226340A1 (en) * 2012-02-23 2013-08-29 Kuka Roboter Gmbh Mobile Robot
JP2016190297A (ja) * 2015-03-31 2016-11-10 セイコーエプソン株式会社 ロボットシステム
US9718564B1 (en) * 2017-03-16 2017-08-01 Amazon Technologies, Inc. Ground-based mobile maintenance facilities for unmanned aerial vehicles
JP2018069370A (ja) * 2016-10-28 2018-05-10 ファナック株式会社 搬送用ロボット
JP2018126796A (ja) * 2017-02-06 2018-08-16 セイコーエプソン株式会社 制御装置、ロボットおよびロボットシステム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10137566B2 (en) * 2015-09-09 2018-11-27 Bastian Solutions, Llc Automated guided vehicle (AGV) with batch picking robotic arm
JP6987566B2 (ja) * 2017-08-07 2022-01-05 三菱重工業株式会社 作業システム及び作業システムの作業方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130226340A1 (en) * 2012-02-23 2013-08-29 Kuka Roboter Gmbh Mobile Robot
JP2016190297A (ja) * 2015-03-31 2016-11-10 セイコーエプソン株式会社 ロボットシステム
JP2018069370A (ja) * 2016-10-28 2018-05-10 ファナック株式会社 搬送用ロボット
JP2018126796A (ja) * 2017-02-06 2018-08-16 セイコーエプソン株式会社 制御装置、ロボットおよびロボットシステム
US9718564B1 (en) * 2017-03-16 2017-08-01 Amazon Technologies, Inc. Ground-based mobile maintenance facilities for unmanned aerial vehicles

Also Published As

Publication number Publication date
JP2020192632A (ja) 2020-12-03

Similar Documents

Publication Publication Date Title
JP6255901B2 (ja) ロボット制御装置、ロボットおよびロボットシステム
JP4911701B2 (ja) マスタ・スレーブ式マニピュレータシステム
US20030005786A1 (en) Parallel mechanism
US10759634B2 (en) Electromechanical system for interaction with an operator
WO2017033355A1 (fr) Système manipulateur
JP5669590B2 (ja) マスタスレーブマニピュレータ及び医療用マスタスレーブマニピュレータ
JP6255724B2 (ja) ロボットおよびロボットの操作方法
US10626963B2 (en) Articulated mechanism for linear compliance
US5673595A (en) Four degree-of-freedom manipulator
WO2012104895A1 (fr) Robot à bras à articulations multiples, procédé de commande et programme de commande
US20150127147A1 (en) Robot, controller, and robot system
KR101474772B1 (ko) 로봇
CN103237633A (zh) 主操作输入装置以及主-从机械手
JPWO2007111252A1 (ja) マニピュレータの制御方法および制御システム
JP2013049102A (ja) ロボットの制御装置及びロボットの姿勢決定方法
JP2017104964A (ja) マスターアーム入力装置
JP2009034813A (ja) マニプレータシステム
JP6630050B2 (ja) ロボット、ロボットの制御方法、ワークの取付方法及びワークの搬送方法
KR20190009106A (ko) 증분형 제어를 이용한 매니퓰레이터 조작기 및 이를 이용한 매니퓰레이터의 제어방법
WO2020240940A1 (fr) Manipulateur de déplacement au plafond et système de manipulation
US20230035296A1 (en) Method of suppressing vibrations of a robot arm with external objects
JPH01289684A (ja) ロボットの自律近接制御装置
CN115476331B (zh) 机械手以及主从随动设备
KR102503568B1 (ko) 수술 로봇 장치
JP7481941B2 (ja) ロボットおよびロボットシステム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20815488

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20815488

Country of ref document: EP

Kind code of ref document: A1