WO2020240914A1 - モニタリング装置及び方法並びに伝熱管の洗浄システム及び方法 - Google Patents
モニタリング装置及び方法並びに伝熱管の洗浄システム及び方法 Download PDFInfo
- Publication number
- WO2020240914A1 WO2020240914A1 PCT/JP2020/001519 JP2020001519W WO2020240914A1 WO 2020240914 A1 WO2020240914 A1 WO 2020240914A1 JP 2020001519 W JP2020001519 W JP 2020001519W WO 2020240914 A1 WO2020240914 A1 WO 2020240914A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cleaning liquid
- test piece
- monitoring device
- cleaning
- heat transfer
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B37/00—Component parts or details of steam boilers
- F22B37/02—Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
- F22B37/38—Determining or indicating operating conditions in steam boilers, e.g. monitoring direction or rate of water flow through water tubes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B37/00—Component parts or details of steam boilers
- F22B37/02—Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
- F22B37/48—Devices for removing water, salt, or sludge from boilers; Arrangements of cleaning apparatus in boilers; Combinations thereof with boilers
- F22B37/52—Washing-out devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28G—CLEANING OF INTERNAL OR EXTERNAL SURFACES OF HEAT-EXCHANGE OR HEAT-TRANSFER CONDUITS, e.g. WATER TUBES OR BOILERS
- F28G13/00—Appliances or processes not covered by groups F28G1/00 - F28G11/00; Combinations of appliances or processes covered by groups F28G1/00 - F28G11/00
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28G—CLEANING OF INTERNAL OR EXTERNAL SURFACES OF HEAT-EXCHANGE OR HEAT-TRANSFER CONDUITS, e.g. WATER TUBES OR BOILERS
- F28G9/00—Cleaning by flushing or washing, e.g. with chemical solvents
Definitions
- the present disclosure relates to monitoring devices and methods, as well as heat transfer tube cleaning systems and methods.
- Patent Document 1 discloses a scaling monitor device for observing scale growth in piping.
- a glass tube having an inner diameter substantially the same diameter as the pipe is provided so as to form a part of the pipe to be measured through which hot water flows, and a coupon made of the same material as the pipe is provided in the glass pipe. Is placed. Then, the scaling growth of the coupon is observed by using an observation means such as a television scope arranged outside the glass tube.
- the scale adhering to the member may be removed by chemical cleaning.
- chemical cleaning the scale attached to the member is removed by cleaning the member with a cleaning solution containing an acid or a chelating agent.
- the status of scale removal in the pipe to be cleaned is confirmed by, for example, a sample taken out from the pipe to be cleaned in a pipe in which the cleaning liquid is branched from the cleaning liquid circulation system in which the cleaning liquid is circulated in the pipe to be cleaned. Is set up and the sample is observed.
- At least one embodiment of the present invention aims to provide a monitoring device and method capable of appropriately grasping a scale removal state at the time of chemical cleaning, and a heat transfer tube cleaning system and method.
- the monitoring device is A monitoring device for monitoring the cleaning status of observation test pieces with scales attached.
- a flow path for the cleaning liquid is formed so that the scale-attached surface of the test piece to which the scale is attached and the window member face each other, and between the scale-attached surface of the test piece and the window member.
- a cleaning liquid inlet for introducing the cleaning liquid into the flow path, and A cleaning liquid outlet for discharging the cleaning liquid from the flow path and To be equipped.
- the window member and the scale adhesion surface of the test piece are provided.
- the test piece can be installed in the casing so that a flow path of the cleaning liquid is formed between them. Therefore, the cleaning liquid can be flowed through the flow path to clean the scale-attached surface of the test piece, and the scale-attached surface can be visually recognized from the outside through the window member. That is, it is possible to monitor the scale removal state on the scale adhesion surface of the test piece to be washed with the cleaning liquid while the test piece is installed inside the casing.
- the scale removal state that changes with time can be continuously monitored, and for example, the end determination of scale removal by the cleaning liquid can be performed in a timely manner. Therefore, the man-hours and processes required for grasping the scale removal state can be reduced, and thus the cost required for chemical cleaning can be reduced.
- the test piece comprises at least one piece obtained by dividing the tube along the tube axis direction.
- the guide member has a curved surface arranged so as to face the outer peripheral surface of the at least one divided piece.
- the guide member since the guide member has a curved surface arranged so as to face the outer peripheral surface of the divided piece of the pipe, it can be used as a test piece in the accommodation space formed by the casing and the window member. The pieces can be properly positioned. Therefore, when the object to be cleaned is a pipe, the split piece cut out from the pipe can be used as a test piece to appropriately monitor the removal state of the scale adhering to the inner surface of the pipe.
- the at least one piece comprises two or more pieces.
- the two or more divided pieces are configured to be arranged in series in the pipe axis direction in the accommodation space.
- the inner surface of the window member and the inner surface of the divided piece form the flow path through which the cleaning liquid flows.
- the inner surface of the window member has a protruding shape corresponding to the shape of the inner surface of the divided piece.
- the window member and the inner surface of the window member have a flat shape as compared with the case where the inner surface of the window member has a flat shape.
- the width of the flow path between the divided pieces and the inner surface of the divided pieces can be narrowed.
- the monitoring device is Further, an illumination unit provided in a hole or groove formed in the window member is provided.
- the scale adhered surface of the test piece is illuminated by the illumination unit to scale from the outside through the window member.
- the visibility of the adhered surface can be improved. For example, the above-mentioned visibility can be ensured by the lighting unit regardless of the brightness depending on the installation location of the monitoring device and the brightness depending on the time of day.
- the monitoring device is An inlet valve capable of stopping the supply of the cleaning liquid from the cleaning liquid inlet portion, and an outlet valve capable of stopping the discharge of the cleaning liquid from the cleaning liquid outlet portion. It is further provided with a discharge line provided separately from the cleaning liquid outlet portion and for discharging the cleaning liquid in the flow path to the outside.
- the inlet valve and the outlet valve temporarily stop the supply of the cleaning liquid to the flow path in the monitoring device, and the cleaning liquid is retained in the flow path via the discharge line.
- the cleaning liquid can be discharged to the outside.
- the monitoring device is Comparison casing and A comparison window member that is attached to the comparison casing and forms a storage space for accommodating the comparison test piece together with the comparison casing.
- a flow path is provided so that the surface of the comparative test piece to which the scale is attached and the comparative window member face each other, and between the surface of the comparative test piece and the comparative window member.
- a comparison guide member for positioning the comparison test piece in the accommodation space so as to be formed.
- a comparison cell including is further provided.
- the comparison cell for installing the test piece for comparison is provided separately from the cell for installing the test piece for observation (configuration of (1) above).
- the internal environment of the comparison cell can be maintained in a state different from that of the cell in which the observation test piece is placed. Therefore, the environment inside the comparison cell can be adjusted so that the scale adhesion state of the comparison test piece is maintained in the initial state at the start of cleaning. Therefore, the observation test piece and the comparison test piece can be easily compared, and it becomes easy to grasp the progress of scale removal in the observation test piece.
- the guide member is configured to be removable from the casing.
- the guide member can be removed from the casing. That is, since the guide members can be replaced, guide members having various shapes can be attached to the monitoring device. As a result, even if the test pieces have different shapes, the scale adhesion surface can be monitored by using the guide member corresponding to each test piece by using the same monitoring device. Therefore, the cost can be reduced as compared with the case where the monitoring device is prepared for each shape of the test piece.
- the heat transfer tube cleaning system is A cleaning system for cleaning multiple heat transfer tubes installed in a boiler.
- the monitoring device according to any one of (1) to (8) above, and A cleaning liquid circulation line connected to the plurality of heat transfer tubes and for circulating the cleaning liquid through the plurality of heat transfer tubes.
- a branch line that branches from the cleaning liquid circulation line and is connected to the cleaning liquid inlet portion of the monitoring device.
- a temperature control unit for adjusting the temperature of the cleaning liquid introduced into the monitoring device via the branch line, and a temperature control unit.
- a flow rate adjusting unit for adjusting the flow rate of the cleaning liquid introduced into the monitoring device via the branch line, and a flow rate adjusting unit.
- a control unit for controlling the temperature control unit and the flow rate control unit, To be equipped.
- the cleaning liquid for cleaning the heat transfer tube can be supplied to the internal flow path of the monitoring device, and the temperature and flow rate of the cleaning liquid introduced into the monitoring device can be adjusted. Therefore, the flow conditions (temperature and flow rate) of the cleaning liquid on the scale-adhered surface of the test piece of the monitoring device can be adjusted according to the flow conditions on the inner surface of the heat transfer tube. Therefore, by monitoring the scale adhesion surface of the test piece in the monitoring device, the scale removal state of the inner surface of the heat transfer tube can be grasped.
- the monitoring method is The step of installing the observation test piece to which the scale is attached to the monitoring device according to any one of (1) to (8) above, and A step of circulating the cleaning liquid through the flow path through the cleaning liquid inlet portion and the cleaning liquid outlet portion, A step of monitoring the cleaning status of the test piece through the window member, and To be equipped.
- the test piece is installed in the accommodation space so that a flow path of the cleaning liquid is formed between the window member and the scale adhesion surface of the test piece, and the cleaning liquid is allowed to flow through the flow path.
- the scale-attached surface of the test piece can be cleaned, and the scale-attached surface can be visually recognized from the outside through the window member. That is, it is possible to monitor the scale removal state on the scale adhesion surface of the test piece to be washed with the cleaning liquid while the test piece is installed inside the casing.
- the scale removal state that changes with time can be continuously monitored, and for example, the end determination of scale removal by the cleaning liquid can be performed in a timely manner. Therefore, the man-hours and processes required for grasping the scale removal state can be reduced, and thus the cost required for chemical cleaning can be reduced.
- the method (10) above is Prior to the step of installing the test piece, a step of forming a coating layer of a corrosion-resistant material on a surface of the test piece other than the scale adhesion surface is further provided.
- a coating layer of a corrosion-resistant material is formed on the surface of the test piece other than the scale adhesion surface, so that the test piece is monitored.
- the cleaning solution is circulated through the flow path in the monitoring device, it is possible to prevent the cleaning solution from coming into contact with a surface of the test piece other than the scale adhesion surface. Therefore, the reaction between the base material and the cleaning liquid on the surface other than the scale adhesion surface can be suppressed, and the cleaning state of the object to be cleaned (for example, a pipe) can be more appropriately reproduced in the monitoring device.
- a monitoring device is used to monitor the cleaning status of the test piece.
- the cleaning status of the test piece can be efficiently monitored by using the monitoring device.
- the method for cleaning the heat transfer tube according to at least one embodiment of the present invention is as follows.
- the test piece for observation obtained from the heat transfer tube of the boiler is installed in the monitoring device, and the cleaning liquid branched from the cleaning liquid circulation line is supplied to the flow path of the monitoring device. Therefore, it is possible to simulate the cleaning state of the heat transfer tube of the boiler in the monitoring device. Therefore, by monitoring the cleaning state of the scale adhesion surface of the test piece using a monitoring device, the cleaning state of the heat transfer tube of the boiler can be appropriately grasped based on the monitoring result.
- the method (13) above During cleaning of the plurality of heat transfer tubes, a step of acquiring the flow rate and temperature of the cleaning liquid in the plurality of heat transfer tubes, and A flow rate adjusting unit for adjusting the flow rate of the cleaning liquid flowing through the flow path so that the flow rate and temperature of the cleaning liquid flowing through the flow path of the monitoring device approach the flow rate and the temperature of the plurality of heat transfer tubes. And the step of controlling the temperature control unit for adjusting the temperature of the cleaning liquid flowing through the flow path. Further prepare.
- the flow rate control unit and the temperature control unit are controlled so that the temperature and flow rate of the cleaning liquid introduced into the monitoring device approaches the flow rate and temperature in the heat transfer tube of the boiler.
- the cleaning state of the heat transfer tube of the boiler can be simulated in more detail in the monitoring device. Therefore, by monitoring the cleaning state of the scale adhesion surface of the test piece using a monitoring device, the cleaning state of the heat transfer tube of the boiler can be more appropriately grasped based on the monitoring result.
- a monitoring device and method capable of appropriately grasping the scale removal state at the time of chemical cleaning, and a heat transfer tube cleaning system and method.
- FIG. 2 is a cross-sectional view taken along the line BB of FIG. It is a figure which shows an example of the test piece installed in the monitoring apparatus which concerns on one Embodiment. It is an enlarged sectional view of the monitoring apparatus which concerns on one Embodiment. It is an enlarged sectional view of the monitoring apparatus which concerns on one Embodiment. It is an enlarged sectional view of the monitoring apparatus which concerns on one Embodiment. It is an enlarged sectional view of the monitoring apparatus which concerns on one Embodiment.
- the cleaning object in the cleaning system or cleaning method according to the embodiment is a heat transfer tube of a boiler constituting a thermal power generation device
- the cleaning object in the present invention is limited to this.
- it may be a heat transfer tube of a marine boiler, a part other than the heat transfer tube of the boiler, a heat transfer tube of a heat exchanger, or a component device of a chemical plant.
- FIG. 1 is a schematic view of a cleaning system to which the monitoring devices according to some embodiments are applied.
- the cleaning system 1 shown in FIG. 1 is configured to clean a plurality of heat transfer tubes 104 constituting the furnace 102 of the boiler 100.
- the boiler 100 shown in FIG. 1 includes a fireplace 102 arranged on a circulation line 106, a brackish water separator 110, an economizer (not shown), a superheater, and the like. Water is supplied to the heat transfer tube 104 of the fireplace 102 via the circulation line 106. In the heat transfer tube 104 of the furnace 102, the steam generated by heat exchange with the combustion heat of the fuel is supplied to the turbine (not shown) via the steam water separator 110 and the superheater (not shown) to drive the turbine rotor. It is driven to rotate. The steam that has finished its work in the turbine is condensed into water by a condenser (not shown).
- the water generated by the condenser is supplied to the furnace 102 again through a heater, a deaerator, an economizer, etc. (all not shown) provided in the circulation line 106.
- the circulation line 106 may be provided with a pump (not shown) for pumping steam or water.
- a scale mainly composed of iron oxide may adhere to the inside of the heat transfer tube 104 constituting the fireplace 102 of the boiler 100, and the thermal conductivity of the heat transfer tube may decrease.
- the cleaning system 1 shown in FIG. 1 is a cleaning system for removing the scale adhering to the inner surface of the heat transfer tube 104 using a cleaning liquid.
- the cleaning system 1 shown in FIG. 1 includes a cleaning liquid circulation line 2 connected to the circulation line 106, and a circulation pump 4 provided in the cleaning liquid circulation line 2 for circulating the cleaning liquid.
- the upstream end of the cleaning liquid circulation line 2 is connected to the first connection point 105 located on the downstream side of the brackish water separator 110 in the circulation line 106, and the downstream end of the cleaning liquid circulation line 2 is the fireplace 102 in the circulation line 106. It is connected to a second connection point 108 located on the upstream side. That is, the cleaning liquid circulation line 2 is connected to the plurality of heat transfer tubes 104 via the circulation line 106.
- the cleaning system 1 includes a cleaning liquid tank 8 for storing the cleaning liquid, a cleaning liquid supply line 6 for supplying the cleaning liquid from the cleaning liquid tank 8 to the cleaning liquid circulation line 2, and an injection pump 10 provided in the cleaning liquid supply line 6. And, including.
- the cleaning liquid stored in the cleaning liquid tank 8 is supplied to the cleaning liquid circulation line 2 by the injection pump 10 via the cleaning liquid supply line 6.
- the type of cleaning liquid used for cleaning the scale (that is, the cleaning liquid stored in the cleaning liquid tank 8) is not particularly limited as long as it is a chemical that can dissolve the scale mainly containing iron oxide.
- a cleaning solution may be, for example, a cleaning solution containing an acid such as hydrochloric acid, or may be a cleaning solution containing a chelating agent, a reducing agent, or a corrosion inhibitor.
- the above-mentioned chelating agents include, for example, aminocarboxylic acids such as EDTA, BAPTA, DOTA, EDDS, INN, NTA, DTPA, HEADTA, TTHA, PDTA, DPTA-OH, HIDA, DHEG, GEDTA, CMGA, EDDS and salts thereof.
- the above-mentioned reducing agents include, for example, various metal ions such as Fe 2+ and Sn 2+ , sulfites such as sodium sulfite, hyposulfite, oxalic acid, formic acid, ascorbic acid, elsorbic acid, pyrogallol, thiourea compounds, and thiodioxide. It may be a urea compound, an organic compound such as thioglycolate, hydrazine, hydrogen or the like.
- various metal ions such as Fe 2+ and Sn 2+
- sulfites such as sodium sulfite, hyposulfite, oxalic acid, formic acid, ascorbic acid, elsorbic acid, pyrogallol, thiourea compounds, and thiodioxide. It may be a urea compound, an organic compound such as thioglycolate, hydrazine, hydrogen or the like.
- the above-mentioned corrosion inhibitors include, for example, an amphoteric surfactant, a nonionic surfactant, a cationic surfactant, a corrosion inhibitor that forms an adsorptive film such as a sulfur compound, a precipitation film type corrosion inhibitor, and a complex salt. It may be a film-forming type corrosion inhibitor or the like.
- the cleaning liquid from the cleaning liquid tank 8 is pumped by the circulation pump 4, and the cleaning liquid circulation line 2, the circulation line 106 on the downstream side of the second connection point 108 and on the upstream side of the fireplace 102, and a plurality of transmissions. It circulates through the heat pipe 104 (fireplace 102) and the circulation line 106 on the downstream side of the fireplace 102 and on the upstream side of the first connection point 105.
- the valve 109 provided on the downstream side of the first connection point 105 and the valve 107 provided on the upstream side of the second connection point 108 are closed in the circulation line 106. , The flow of water and steam circulating in the circulation line 106 is stopped.
- the cleaning system 1 adjusts the temperature and flow rate of the branch line 12 branching from the cleaning liquid circulation line 2, the monitoring device 18 provided on the branch line 12, and the cleaning liquid introduced into the monitoring device 18 via the branch line 12, respectively.
- a temperature control unit and a flow rate control unit for the purpose are further provided.
- the upstream end 11 and the downstream end 13 of the branch line 12 are connected to the cleaning liquid circulation line 2, respectively.
- a pump 14 is provided in the branch line 12, and the pump 14 draws the cleaning liquid from the cleaning liquid circulation line 2 into the branch line 12.
- the monitoring device 18 is a device for monitoring the cleaning status of the observation test piece to which the scale is attached. As this observation test piece, one taken from one of a plurality of heat transfer tubes 104 constituting the fireplace 102 can be used.
- the monitoring device 18 has a cleaning liquid inlet portion 56 and a cleaning liquid outlet portion 62, respectively, which are connected to the branch line 12.
- the cleaning liquid drawn into the branch line 12 from the cleaning liquid circulation line 2 is introduced into the monitoring device 18 via the cleaning liquid inlet portion 56, and the cleaning liquid that has passed through the internal flow path of the monitoring device 18 is branched via the cleaning liquid outlet portion 62. It is discharged to the line 12.
- the cleaning liquid discharged to the branch line 12 is returned to the cleaning liquid circulation line 2 via the downstream end 13 of the branch line 12.
- the configuration of the monitoring device 18 will be described later.
- a temperature control unit for adjusting the temperature of the cleaning liquid introduced into the monitoring device 18 is provided in the branch line 12, and the cleaning liquid is heated by the heat generated by the electric resistance.
- the heater 16 is configured as described above.
- the temperature control unit may be a heat exchanger configured to overheat the cleaning liquid by heat exchange with a heat medium.
- the flow rate adjusting unit for adjusting the flow rate of the cleaning liquid introduced into the monitoring device 18 is the above-mentioned pump 14 provided in the branch line 12.
- the pump 14 is configured so that the discharge pressure can be adjusted by changing the rotation speed, that is, the flow rate of the cleaning liquid on the discharge side can be adjusted.
- the cleaning system 1 acquires the temperature and flow rate of the cleaning liquid in the control device 20 (control unit), the flow meter 21 and the temperature sensor 22 for acquiring the temperature and flow rate of the cleaning liquid in the plurality of heat transfer tubes 104, and the monitoring device 18.
- a flow meter 23 and a temperature sensor 24 are further provided.
- the flow meter 21 and the temperature sensor 22 are provided on the circulation line 106 on the downstream side of the fireplace 102.
- the flow rate of the cleaning liquid measured by the flow meter 21 can be regarded as the total value of the flow rates in each of the plurality of heat transfer tubes 104. it can. Therefore, the flow rate (or the average flow rate) of one heat transfer tube 104 can be calculated by dividing the flow rate measured by the flow meter 21 by the number of heat transfer tubes 104.
- the temperature measurement value by the temperature sensor 22 can be regarded as the temperature of the cleaning liquid at the outlet of the heat transfer tube 104.
- the control device 20 Based on the signals received from the flow meters 21 and 23 and the temperature sensors 22 and 24, the control device 20 has the output of the heater 16 (temperature control unit) and the rotation speed of the pump 14 (flow control unit) (more specifically). Is configured to control the frequency of the motor driving inverter that drives the pump 14. Therefore, the control device 20 can be used to adjust the temperature and flow rate of the cleaning liquid supplied to the monitoring device 18.
- FIGS. 9 to 11 are cross-sectional views orthogonal to the cleaning liquid flow direction of the monitoring device 18 according to the embodiment, respectively, and FIG. 4 is a cross-sectional view taken along the line BB of FIG. It is a figure.
- FIG. 5 is a diagram showing an example of a test piece installed in the monitoring device 18.
- 6 to 8 are cross-sectional views of the monitoring device 18 according to the embodiment, respectively, and are views corresponding to the enlarged view of FIG.
- the cleaning liquid flow direction in the monitoring device 18 is the extending direction of the flow path 54 (described later) formed between the cleaning liquid inlet portion 56 and the cleaning liquid outlet portion 62 inside the monitoring device 18.
- the monitoring device 18 includes an observation cell 120 for monitoring the cleaning status of the observation test piece 80 to which the scale is attached.
- the observation test piece 80 (see FIG. 5) can be manufactured from a tube (a part of the heat transfer tube 104) cut out from one of a plurality of heat transfer tubes 104 constituting the fireplace 102.
- the observation test piece 80 shown in FIG. 5 is a divided piece obtained by dividing the tube in half along the pipe axis direction.
- the observation test piece 80 has an inner surface 84 and an outer surface 82 corresponding to the inner peripheral surface and the outer peripheral surface of the heat transfer tube 104, respectively, and a pair of cut surfaces formed at both ends in the tube axial direction when cut out from the heat transfer tube 104. It has 88 and a pair of dividing surfaces 86 formed when the pipe is divided.
- the scale adheres to the inner surface of the heat transfer tube 104, the scale adheres to the inner surface of the observation test piece 80 at the time when the observation test piece 80 is prepared. That is, the inner surface 84 of the observation test piece 80 is the scale adhesion surface.
- the observation cell 120 includes a casing 30, a window member 42 forming a storage space 33 between the casing 30 and the observation test piece 80, and an observation test piece 80 in the storage space 33.
- a guide member 40 for positioning, a cleaning liquid inlet portion 56, and a cleaning liquid outlet portion 62 are provided.
- the casing 30 includes a casing main body 31 and a bottom member 32, and the casing main body 31 and the bottom member 32 are fastened with a plurality of bolts 34.
- the window member 42 is provided together with the casing 30 to form an accommodation space 33 for accommodating the observation test piece 80.
- the accommodation space 33 is a space surrounded by the inner side surface 42B of the window member 42 and the wall surfaces 31A, 31B, 32A (see FIG. 6) of the casing 30.
- the accommodation space 33 has a size capable of accommodating the observation test piece 80.
- the observation test piece 80 is arranged so that the inner surface 84 (see FIG. 6), which is the scale attachment surface, and the inner surface 42B of the window member 42 face each other.
- the window member 42 is sandwiched between the casing main body 31 and the fixing member 36, and the casing main body 31 and the fixing member 36 are fastened by bolts 38. In this way, the window member 42 is attached to the casing 30.
- the window member 42 and the fixing member 36 are provided so that the outer surface 42A located on the side opposite to the inner side surface 42B of the window member 42 is exposed without being covered by the fixing member 36.
- observation cell 120 is a seal member 45 for suppressing leakage of the cleaning liquid between the casing main body 31 and the bottom member 32, and a cleaning liquid passing between the window member 42 and the casing main body 31.
- a sealing member 46 for suppressing leakage is included.
- a guide member 40 for positioning the observation test piece 80 is arranged in the accommodation space 33.
- the guide member 40 has a scale attachment surface (inner surface 84) to which the scale is attached among the observation test pieces 80 so that the window member 42 faces the scale attachment surface (inner surface 84) of the observation test piece 80.
- the observation test piece 80 is positioned in the accommodation space 33 so that the cleaning liquid flow path 54 is formed between the window member 42 and the window member 42. As shown in FIG. 4, the flow path 54 is formed so as to extend along the pipe axis direction.
- the guide member 40 faces the curved surface 39 having a shape corresponding to the outer surface 82 of the observation test piece 80 and the wall surfaces 31A, 31B, 32A of the casing 30 (casing body 31 and bottom member 32). It has surfaces 39B to 39D. As a result, the movement of the observation test piece 80 in the tube axis orthogonal plane is restricted.
- the guide member 40 has a pair of flange portions 41 protruding inward in the pipe radial direction at both ends in the pipe axis direction.
- the flange portion 41 regulates the movement of the observation test piece 80 in the tube axis direction.
- the observation cell 120 includes a cleaning liquid inlet portion 56 and a cleaning liquid outlet portion 62 provided at both ends in the pipe axial direction of the casing main body 31.
- the cleaning liquid inlet portion 56 includes an inlet passage 58 provided in the casing main body 31 and an inlet joint 60 for connecting the inlet passage 58 and the branch line 12 (see FIG. 1).
- the cleaning liquid outlet portion 62 includes an outlet passage 64 provided in the casing main body 31, and an outlet joint 66 for connecting the outlet passage 64 and the branch line 12 (see FIG. 1).
- the window member 42 has a transparency and transparency so that the inner surface 84 of the observation test piece 80 installed in the accommodation space 33 can be visually recognized when visually viewed from the outer surface 42A (exposed surface) of the window member 42 toward the inner surface 42B. It has a thickness (distance between the inner surface 42B and the outer surface 42A).
- the window member 42 may be formed of a resin such as glass or acrylic resin. Further, it is desirable that the casing 30 is made of a material (for example, resin) that does not react with the cleaning liquid.
- the window The observation test piece 80 can be installed in the accommodation space 33 so that the flow path 54 of the cleaning liquid is formed between the member 42 and the scale adhesion surface (inner surface 84) of the observation test piece 80. Further, since the flow path 54 is formed by the inner side surface 42B of the window member 42, when viewed in the direction from the outer side surface 42A of the window member 42 toward the inner side surface 42B (that is, the arrow A in FIG. 2). (When viewed from the direction), the inner surface 84 of the observation test piece 80 can be visually recognized through the window member 42.
- the cleaning liquid can be flowed through the flow path 54 to clean the scale adhesion surface (inner surface 84) of the observation test piece 80, and the scale adhesion surface (inner surface 84) can be visually recognized from the outside through the window member 42. Can be done. That is, it is possible to monitor the scale removal state on the scale adhesion surface of the observation test piece 80 washed with the cleaning liquid while the observation test piece 80 is installed inside the casing 30. As a result, the scale removal state that changes with time can be continuously monitored, and for example, the end determination of scale removal by the cleaning liquid can be timely performed. Therefore, the man-hours and processes required for grasping the scale removal state can be reduced, and thus the cost required for chemical cleaning can be reduced.
- the observation cell 120 may include an illumination section 52 for illuminating the surroundings, for example, as shown in FIGS. 2 and 3.
- the illumination unit 52 is provided in a groove 51 formed on the surface of the window member 42 along the tube axis direction.
- the illumination unit 52 is provided in a hole formed inside the window member 42 along the tube axis direction.
- the illumination unit 52 may be, for example, a tape LED including a tape-shaped base material and a plurality of LEDs arranged in the base material shape at intervals in the longitudinal direction of the tape-shaped base material.
- the scale attachment surface (inner surface 84) of the observation test piece 80 can be illuminated by the illumination unit 52.
- the visibility of the scale adhering surface via the window member 42 can be improved from the outside.
- the above-mentioned visibility can be ensured by the illumination unit 52 regardless of the brightness depending on the installation location of the monitoring device 18 or the brightness depending on the time of day.
- a surface (outer surface 82, a pair of cut surfaces 88, and a pair of divided surfaces) other than the scale attachment surface (inner surface).
- a coating layer 90 of a corrosion-resistant material (for example, resin) is formed on 86).
- the observation test piece 80 is placed in the observation cell 120 (monitoring device 18). ), And when the cleaning liquid is circulated through the flow path 54 in the monitoring device 18, it is possible to prevent the cleaning liquid from coming into contact with a surface of the observation test piece 80 other than the scale adhesion surface. Therefore, it is possible to suppress the reaction between the base material of the heat transfer tube and the cleaning liquid on the surfaces (outer surface 82, pair of cut surfaces 88, and pair of split surfaces 86) other than the scale adhesion surface (inner surface 84), and the cleaning target.
- the cleaning state of the heat transfer tube 104 which is an object, can be more appropriately reproduced in the monitoring device 18.
- the inner surface 42B of the window member 42 has a protruding shape corresponding to the shape of the inner surface 84 of the observation test piece 80 (divided piece). Includes a protruding portion 43 having.
- the inner side surface 42B of the window member 42 includes the protruding portion 43 having a protruding shape corresponding to the shape of the inner surface 84 of the observation test piece 80, the inner side surface 42B of the window member 42 has a flat shape.
- the width of the flow path between the window member 42 and the inner surface 84 of the observation test piece 80 can be narrowed as compared with the case of having the above.
- the guide member 40 is configured to be removable from the casing 30. That is, since the guide member 40 can be replaced, the guide member 40 having various shapes can be attached to the monitoring device 18.
- the monitoring device 18 shown in FIG. 7 and the monitoring device 18 shown in FIG. 8 are the same except that the shape of the observation test piece 80 and the shape of the guide member 40 are different. More specifically, the diameter d1 of the observation test piece 80 in FIG. 7 is larger than the diameter d2 of the observation test piece 80 in FIG. 8, and therefore the diameter of the curved surface 39A of the guide member 40 in FIG. 7 is shown in FIG. It is larger than the diameter of the curved surface 39A of the guide member 40 in 8.
- the scale adhesion surface can be monitored by using the same observation cell 120 (monitoring device 18). .. Therefore, the cost can be reduced as compared with the case where the observation cell 120 (monitoring device 18) is prepared for each shape of the test piece.
- the bottom member 32 can be removed from the casing main body 31 by removing the bolt 34 (see FIG. 2) to access the accommodation space 33. can do. In this way, after taking out the used guide member 40 and the observation test piece 80 already installed in the accommodating space 33, the replacement guide member 40 and the observation test piece 80 are installed in the accommodating space 33 again.
- the bottom member 32 may be fastened to the casing main body 31 by the bolt 34.
- the observation cell 120 is capable of arranging the observation test pieces 80 including two or more divided pieces in series in the tube axis direction in the accommodation space 33.
- the observation test piece 80 includes two divided pieces 80A and 80B, and the two divided pieces 80A and 80B are arranged in series in the tube axis direction. .. That is, one flow path 54 extending along the pipe axis direction is formed by the inner surface of the divided piece 80A and the inner surface of the divided piece 80B and the inner surface 42B of the window member 42.
- the guide member 40 has a flange portion 41 located between the split piece 81A and the split piece 80B in the pipe axial direction. As a result, the movement of the split piece 81A and the split piece 80B in the pipe axis direction is restricted.
- the composition and amount of scale adhering to the inner surface of the pipe may not be uniform in the circumferential direction or the axial direction.
- the temperature at the time of combustion by the burner differs between the portion near the burner and the portion far from the burner, so that the inner surface of these portions
- the composition and amount of adhered scale may differ.
- the sample (tube) cut out from one heat transfer tube 104 can be divided into a burner side portion and a portion far from the burner side to obtain two divided pieces 80A and 80B. By arranging these divided pieces 80A and 80B in series in the observation cell 120 as described above, the scale removal state in the heat transfer tube 104 to be cleaned can be grasped in more detail.
- the observation cell 120 (monitoring device 18) has an inlet valve 70 capable of stopping the supply of cleaning liquid via the cleaning liquid inlet portion 56, and a cleaning liquid outlet portion 62. It is provided with an outlet valve 74 capable of stopping the discharge of the cleaning liquid via the cleaning liquid, and is further provided with a discharge line 78 for discharging the cleaning liquid in the flow path 54 to the outside, which is provided separately from the cleaning liquid outlet portion 62. ..
- the discharge line 78 may be provided with a valve 79 for controlling the discharge of the cleaning liquid.
- the inlet valve 70 and the outlet valve 74 temporarily stop the supply of the cleaning liquid to the flow path 54 in the observation cell 120 (monitoring device 18), and also through the discharge line 78. Therefore, the cleaning liquid staying in the flow path 54 can be discharged to the outside. As a result, even when the cleaning liquid is colored and the visibility is deteriorated, the cleaning liquid in the flow path 54 is temporarily discharged to remove the scale-attached surface (inner surface 84) of the observation test piece 80. It can be seen properly, and thus the descaled state can be properly monitored.
- the observation cell 120 (monitoring device 18) further comprises a flushing line 76 and a valve 77 for supplying a flushing fluid into the flow path 54.
- the flushing fluid may be, for example, a liquid such as pure water or a gas such as air or nitrogen.
- the flushing fluid is supplied to the flow path 54 via the flushing line 78.
- the cleaning fluid in the flow path 54 can be discharged more reliably. Therefore, the scale adhesion surface (inner surface 84) of the observation test piece 80 can be visually recognized more appropriately, and thus the scale removal state can be monitored more appropriately.
- the monitoring device 18 includes a comparison cell 122 in addition to the observation cell 120 described above.
- a comparison test piece 180 for control can be installed, and by arranging the observation cell 120 and the comparison cell 122 side by side, the observation cell 120 can be washed (scale removed). You can check the degree of progress. Therefore, the comparative test piece 180 may be manufactured in the same manner as the observation test piece 80.
- the comparison cell 122 includes a comparison casing 130, a comparison window member (not shown), and a comparison guide member 140. These are members corresponding to the casing 30, the window member 42, and the guide member 40, respectively.
- the comparison window member is attached to the comparison casing 130, and together with the comparison casing 130, forms an accommodation space 133 for accommodating the comparison test piece 180.
- the comparison guide member 140 is provided so that the surface (inner surface) of the comparison test piece 180 to which the scale is attached faces the comparison window member, and the inner surface of the comparison test piece 180 and the comparison window member.
- the comparative test piece 180 is positioned in the accommodation space 133 so that the flow path 154 is formed between the two.
- the comparison cell 122 does not have the cleaning liquid inlet portion 56 and the cleaning liquid outlet portion 62. That is, no cleaning liquid is supplied to the observation cell 120.
- the observation cell 120 shown in FIG. 11 is the same as that shown in FIG.
- the comparison cell 122 for installing the comparison test piece 180 is provided separately from the observation cell 120 for installing the observation test piece 80, so that the inside of the comparison cell 122 is provided.
- the environment can be maintained in a state different from that of the observation cell 120 in which the observation test piece 80 is installed. Therefore, the internal environment of the comparison cell 122 can be adjusted so that the scale adhesion state of the comparison test piece 180 is maintained in the initial state at the start of cleaning. Therefore, the observation test piece 80 and the comparison test piece 180 can be easily compared, and it becomes easy to grasp the progress of scale removal in the observation test piece 80.
- the comparative cell 122 has a supply line 92 for supplying the inert fluid to the flow path 154 and a discharge for discharging the inert fluid from the flow path 154.
- a line 94 may be provided.
- the supply line 92 and the discharge line 94 may be provided with valves 93 and 95 for controlling the supply and discharge of the inert gas, respectively.
- the inert fluid supplied to the comparison cell 122 via the supply line 92 is a fluid having less reactivity with the scale adhering to the test piece than the cleaning liquid introduced into the observation cell 120.
- the inert fluid described above may be, for example, nitrogen, air, or water.
- the cleaning liquid circulation line 2 is connected to the plurality of heat transfer tubes 104 of the boiler 100 via the circulation line 106, and the cleaning liquid from the cleaning liquid tank 8 is circulated through the cleaning liquid circulation line 2 to circulate the cleaning liquid from the cleaning liquid tank 8 to the plurality of heat transfer tubes 104. Perform cleaning.
- a branch line 12 is connected to the cleaning liquid circulation line 2, and the cleaning liquid branched from the cleaning liquid circulation line 2 is circulated to the flow path 54 of the monitoring device 18 via the cleaning liquid inlet portion 56 and the cleaning liquid outlet portion 62. Then, the cleaning status of the observation test piece 80 is monitored through the window member 42 (see FIG. 2) of the monitoring device 18. The cleaning status of the observation test piece 80 may be monitored while the cleaning liquid is circulated through the flow path 54 of the monitoring device 18.
- the cleaning status of the observation test piece 80 may be monitored visually or by using a monitoring device.
- a monitoring device for example, the cleaning status may be monitored via an imaging device such as a camera.
- the observation test piece 80 is installed in the accommodation space 33 so that the flow path 54 of the cleaning liquid is formed between the window member 42 and the scale adhesion surface of the observation test piece 80. Then, the cleaning liquid can be flowed through the flow path 54 to clean the scale-attached surface of the observation test piece 80, and the scale-attached surface can be visually recognized from the outside through the window member 42. That is, it is possible to monitor the scale removal state on the scale adhesion surface of the test piece to be washed with the cleaning liquid while the observation test piece 80 is installed inside the casing 30.
- the scale removal state that changes with time can be continuously monitored, and for example, the end determination of scale removal by the cleaning liquid can be performed in a timely manner. Therefore, the man-hours and processes required for grasping the scale removal state can be reduced, and thus the cost required for chemical cleaning can be reduced.
- the cleaning conditions of the heat transfer tube 104 change with the passage of time. Therefore, in some embodiments, the following steps may be further performed to reproduce the cleaning conditions (temperature and flow rate of the cleaning liquid) of the heat transfer tube 104 in the actual boiler 100 in the monitoring device 18.
- the flow meter 21 and the temperature sensor 22 are used to measure the flow rate F1 and the temperature T1 of the cleaning liquid in the plurality of heat transfer tubes 104 during the cleaning of the plurality of heat transfer tubes 104.
- the measurement results related to the flow rate F1 and the temperature T1 are sent to the control device 20.
- the flow meter 23 and the temperature sensor 24 are used to measure the flow rate F2 and the temperature T2 of the cleaning liquid in the flow path 54 of the monitoring device 18.
- the measurement results related to the flow rate F2 and the temperature T2 are sent to the control device 20.
- the flow rate and temperature of the cleaning liquid flowing through the flow path 54 of the monitoring device 18 are adjusted to the flow rates and temperatures in the plurality of heat transfer tubes 104 based on the acquired measurement results of the flow rates F1 and F2 and the temperatures T1 and T2.
- the rotation speed of the pump 14 (flow rate adjusting unit) and the output of the heater 16 (temperature adjusting unit) are controlled so as to approach each other.
- control device 20 may perform feedback control (for example, P control, PI control or PID control) with respect to the flow rate and temperature of the cleaning liquid flowing through the flow path 54 of the monitoring device 18.
- feedback control for example, P control, PI control or PID control
- control device 20 sets the flow rate F1 of the cleaning liquid in the heat transfer tube 104 as a target value, and based on the deviation between the measured value F2 of the flow rate of the cleaning liquid flowing through the flow path 54 of the monitoring device 18 and the above-mentioned target value F1.
- the rotation speed of the pump 14 and / or the corresponding inverter frequency may be calculated so that the deviation becomes small, and the calculated inverter frequency may be given to the inverter as a control command value.
- control device 20 sets the temperature T1 of the cleaning liquid in the heat transfer tube 104 as a target value, and the deviation is based on the deviation between the measured value T2 of the temperature of the cleaning liquid flowing through the flow path 54 of the monitoring device 18 and the above-mentioned target value T1.
- the output of the heater 16 may be calculated so that the value becomes smaller, and the calculated output value may be given to the heater 16 as a control command value.
- the flow rate adjusting unit and the temperature control are made so that the temperature T2 and the flow rate F2 of the cleaning liquid introduced into the monitoring device 18 approach the flow rate F1 and the temperature T2 in the heat transfer tube 104 of the boiler 100. Since the unit is controlled, the cleaning state of the heat transfer tube 104 of the boiler 100 can be simulated in more detail in the monitoring device 18. Therefore, by monitoring the cleaning state of the scale adhesion surface of the observation test piece 80 using the monitoring device 18, the cleaning state of the heat transfer tube of the boiler can be more appropriately grasped based on the monitoring result.
- the present invention is not limited to the above-described embodiments, and includes a modified form of the above-described embodiments and a combination of these embodiments as appropriate.
- the expression representing a shape such as a square shape or a cylindrical shape not only represents a shape such as a square shape or a cylindrical shape in a geometrically strict sense, but also within a range in which the same effect can be obtained.
- the shape including the uneven portion, the chamfered portion, etc. shall also be represented.
- the expression “comprising”, “including”, or “having” one component is not an exclusive expression excluding the existence of another component.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Cleaning By Liquid Or Steam (AREA)
- Cleaning In General (AREA)
- Optical Measuring Cells (AREA)
Abstract
スケールが付着した観察用試験片(80)の洗浄状況を監視するためのモニタリング装置(18)は、ケーシング(30)と、前記ケーシングに取り付けられ、前記ケーシングとともに前記試験片を収容するための収容空間(33)を形成する窓部材(42)と、該試験片のうちスケールが付着したスケール付着面(84)と、前記窓部材とが対向するように、かつ、前記試験片の前記スケール付着面と、前記窓部材との間に洗浄液の流路(54)が形成されるように、前記収容空間における前記試験片の位置決めをするためのガイド部材(40)と、前記流路に洗浄液を導入するための洗浄液入口部(56)と、前記流路から前記洗浄液を排出するための洗浄液出口部(62)と、を備える。
Description
本開示は、モニタリング装置及び方法並びに伝熱管の洗浄システム及び方法に関する。
ボイラ等の機器における部材(例えば配管)の表面にスケールが付着及び成長すると、スケールの付着部位において、局所的な過熱によるクリープ破壊が生じたり、あるいは、伝熱管の場合には、伝熱管に付着したスケールが伝熱障壁となり伝熱性能が低下したりする場合がある。したがって、部材におけるスケール付着状態を把握することは重要である。
この点、例えば特許文献1には、配管におけるスケール成長を観測するためのスケーリングモニタ装置が開示されている。この装置では、熱水が流れる計測対象の配管の一部を形成するように、該配管とほぼ同径の内径を有するガラス管が設けられており、該ガラス管内に、配管と同材質のクーポンが配置される。そして、ガラス管外に配置したテレビスコープ等の観測手段を用いて、クーポンのスケーリング成長を観測するようになっている。
ところで、スケールに起因する諸問題(例えば、上述したクリープ破壊や伝熱性能の低下等)を回避するために、部材に付着したスケールを化学洗浄により除去することがある。化学洗浄では、酸又はキレート剤等を含む洗浄液を用いて部材を洗浄することで、部材に付着したスケールを除去する。
従来、化学洗浄では、洗浄対象の配管におけるスケール除去状況の確認は、例えば、洗浄対象の配管に洗浄液を循環させる洗浄液循環系統から洗浄液を分岐させた配管中に、洗浄対象の配管から取り出したサンプルを設置して、該サンプルを観察することによって行われている。
しかしながら、通常、サンプルを設置した配管の内部を外部から視認することはできない。このため、サンプルにおけるスケール除去の状態を確認するためには、サンプルを配管の外部に取り出す必要があるため、工数が増大してしまう。また、サンプルを配管の外部に取り出すまでは、サンプルにおけるスケール除去状態を正確に知ることができないため、洗浄の終了タイミングを適時に把握することは難しい。
そこで、化学洗浄時におけるスケール除去状態を適切に把握することで、スケール除去状態の確認にかかる工数を削減し、あるいは、化学洗浄の終了タイミングを適切に把握して、化学洗浄に係るコストを低減することが望まれる。
上述の事情に鑑みて、本発明の少なくとも一実施形態は、化学洗浄時におけるスケール除去状態を適切に把握可能なモニタリング装置及び方法並びに伝熱管の洗浄システム及び方法を提供することを目的とする。
(1)本発明の少なくとも一実施形態に係るモニタリング装置は、
スケールが付着した観察用試験片の洗浄状況を監視するためのモニタリング装置であって、
ケーシングと、
前記ケーシングに取り付けられ、前記ケーシングとともに前記試験片を収容するための収容空間を形成する窓部材と、
該試験片のうちスケールが付着したスケール付着面と、前記窓部材とが対向するように、かつ、前記試験片の前記スケール付着面と、前記窓部材との間に洗浄液の流路が形成されるように、前記収容空間における前記試験片の位置決めをするためのガイド部材と、
前記流路に洗浄液を導入するための洗浄液入口部と、
前記流路から前記洗浄液を排出するための洗浄液出口部と、
を備える。
スケールが付着した観察用試験片の洗浄状況を監視するためのモニタリング装置であって、
ケーシングと、
前記ケーシングに取り付けられ、前記ケーシングとともに前記試験片を収容するための収容空間を形成する窓部材と、
該試験片のうちスケールが付着したスケール付着面と、前記窓部材とが対向するように、かつ、前記試験片の前記スケール付着面と、前記窓部材との間に洗浄液の流路が形成されるように、前記収容空間における前記試験片の位置決めをするためのガイド部材と、
前記流路に洗浄液を導入するための洗浄液入口部と、
前記流路から前記洗浄液を排出するための洗浄液出口部と、
を備える。
上記(1)の構成によれば、ケーシングと窓部材とによって形成される収容空間において試験片の位置決めをするための上述のガイド部材を設けたので、窓部材と試験片のスケール付着面との間に洗浄液の流路が形成されるように試験片を収容空間に設置可能である。よって、該流路に洗浄液を流して試験片のスケール付着面の洗浄が可能であるとともに、窓部材を介してスケール付着面を外部から視認することができる。すなわち、試験片をケーシングの内部に設置したまま、洗浄液で洗浄される試験片のスケール付着面におけるスケール除去状態を監視することができる。これにより、時間とともに変化するスケール除去状態を継続的に監視することができ、例えば、洗浄液によるスケール除去の終了判定等を適時に行うことができる。よって、スケール除去状態の把握にかかる工数や工程を低減することができ、これにより、化学洗浄にかかるコストを削減することができる。
(2)幾つかの実施形態では、上記(1)の構成において、
前記試験片は、管を管軸方向に沿って分割して得られる少なくとも1つの分割片を含み、
前記ガイド部材は、前記少なくとも1つの分割片の外周面に対向するように配置される曲面を有する。
前記試験片は、管を管軸方向に沿って分割して得られる少なくとも1つの分割片を含み、
前記ガイド部材は、前記少なくとも1つの分割片の外周面に対向するように配置される曲面を有する。
上記(2)の構成によれば、ガイド部材が、管の分割片の外周面に対向するように配置される曲面を有するので、ケーシング及び窓部材によって形成される収容空間において、試験片としての分割片を適切に位置決めすることができる。よって、洗浄対象物が管である場合に、該管から切り出した分割片を試験片として用いて、管の内面に付着したスケールの除去状態を適切に監視することができる。
(3)幾つかの実施形態では、上記(2)の構成において、
前記少なくとも1つの分割片は、2以上の分割片を含み、
前記2以上の分割片が、前記収容空間において、管軸方向にて直列に配置されるように構成される。
前記少なくとも1つの分割片は、2以上の分割片を含み、
前記2以上の分割片が、前記収容空間において、管軸方向にて直列に配置されるように構成される。
上記(3)の構成によれば、2以上の分割片を直列に配置可能であるので、初期状態(すなわち洗浄開始時点)においてスケールの付着状況が異なる2以上の分割片について、同一の洗浄条件でのスケール除去状態を同時に監視することができる。よって、洗浄対象の管におけるスケール除去状態を、より詳細に把握することができる。
(4)幾つかの実施形態では、上記(2)又は(3)の構成において、
前記窓部材の内側面と、前記分割片の内面とによって前記洗浄液が流通する前記流路が形成され、
前記窓部材の前記内側面は、前記分割片の前記内面の形状に対応するように突出した形状を有する。
前記窓部材の内側面と、前記分割片の内面とによって前記洗浄液が流通する前記流路が形成され、
前記窓部材の前記内側面は、前記分割片の前記内面の形状に対応するように突出した形状を有する。
上記(4)の構成によれば、窓部材の内側面が、分割片の内面の形状に対応する形状を有するので、窓部材の内側面が平坦な形状を有する場合に比べて、窓部材と分割片の内面との間の流路幅を狭くすることができる。これにより、化学洗浄の進行に伴い洗浄液が着色した場合であっても、外部から窓部材を介したスケール付着面の視認性の悪化を抑制することができる。
(5)幾つかの実施形態では、上記(1)乃至(4)の何れかの構成において、
前記モニタリング装置は、
前記窓部材に形成された孔又は溝に設けられた照明部をさらに備える。
前記モニタリング装置は、
前記窓部材に形成された孔又は溝に設けられた照明部をさらに備える。
上記(5)の構成によれば、照明部を窓部材に形成された孔又は溝に設けたので、照明部で試験片のスケール付着面を照明することにより、外部から窓部材を介したスケール付着面の視認性を良好にすることができる。例えば、モニタリング装置の設置場所による明暗や、時刻による明暗によらず、照明部によって上述の視認性を確保することができる。
(6)幾つかの実施形態では、上記(1)乃至(5)の何れかの構成において、
前記モニタリング装置は、
前記洗浄液入口部からの洗浄液の供給を停止可能な入口バルブ、及び、前記洗浄液出口部からの洗浄液の排出を停止可能な出口バルブと、
前記洗浄液出口部とは別に設けられ、前記流路内の洗浄液を外部に排出するための排出ラインをさらに備える。
前記モニタリング装置は、
前記洗浄液入口部からの洗浄液の供給を停止可能な入口バルブ、及び、前記洗浄液出口部からの洗浄液の排出を停止可能な出口バルブと、
前記洗浄液出口部とは別に設けられ、前記流路内の洗浄液を外部に排出するための排出ラインをさらに備える。
化学洗浄の進行に伴い、スケールの溶解や懸濁物の発生により洗浄液の着色が進行する場合がある。この点、上記(6)の構成によれば、入口バルブ及び出口バルブによってモニタリング装置内の流路への洗浄液の供給を一時的に停止するとともに、排出ラインを介して、該流路に滞留された洗浄液を外部に排出することができる。これにより、洗浄液の着色が進行して視認性が悪化した場合であっても、流路内の洗浄液を一時的に排出することで、試験片のスケール付着面を適切に視認することができ、よって、スケール除去状態を適切に監視することができる。
(7)幾つかの実施形態では、上記(1)乃至(6)の何れかの構成において、
前記モニタリング装置は、
比較用ケーシングと、
前記比較用ケーシングに取り付けられ、前記比較用ケーシングとともに比較用試験片を収容するための収容空間を形成する比較用窓部材と、
該比較用試験片のうちスケールが付着した面と、前記比較用窓部材とが対向するように、かつ、前記比較用試験片の前記面と、前記比較用窓部材との間に流路が形成されるように、前記収容空間における前記比較用試験片の位置決めをするための比較用ガイド部材と、
を含む比較用セルをさらに備える。
前記モニタリング装置は、
比較用ケーシングと、
前記比較用ケーシングに取り付けられ、前記比較用ケーシングとともに比較用試験片を収容するための収容空間を形成する比較用窓部材と、
該比較用試験片のうちスケールが付着した面と、前記比較用窓部材とが対向するように、かつ、前記比較用試験片の前記面と、前記比較用窓部材との間に流路が形成されるように、前記収容空間における前記比較用試験片の位置決めをするための比較用ガイド部材と、
を含む比較用セルをさらに備える。
上記(7)の構成によれば、比較用試験片を設置するための比較用セルを、観察用の試験片を設置するためのセル(上記(1)の構成)とは別に設けたので、比較用セルの内部の環境を、観察用試験片を設置するセルとは異なる状態に維持することができる。よって、比較用試験片のスケール付着状態を、洗浄開始時の初期状態に維持するように比較用セルの内部の環境を調整することができる。したがって、観察用試験片と、比較用試験片とを容易に比較することができ、観察用試験片におけるスケール除去の進行度合いを把握しやすくなる。
(8)幾つかの実施形態では、上記(1)乃至(7)の何れかの構成において、
前記ガイド部材は、前記ケーシングから取り外し可能に構成される。
前記ガイド部材は、前記ケーシングから取り外し可能に構成される。
上記(8)の構成によれば、ガイド部材をケーシングから取り外し可能である。すなわち、ガイド部材を交換可能であるので、様々な形状のガイド部材を、モニタリング装置に装着することができる。これにより、異なる形状の試験片であっても、各試験片に対応したガイド部材を用いることで、同一のモニタリング装置を用いてスケール付着面の監視をすることができる。よって、試験片の形状毎にモニタリング装置を用意する場合に比べて、コスト削減が可能である。
(9)本発明の少なくとも一実施形態に係る伝熱管の洗浄システムは、
ボイラに設けられる複数の伝熱管を洗浄するための洗浄システムであって、
上記(1)乃至(8)の何れか一項に記載のモニタリング装置と、
前記複数の伝熱管に接続され、前記複数の伝熱管を通って前記洗浄液を循環させるための洗浄液循環ラインと、
前記洗浄液循環ラインから分岐し、前記モニタリング装置の前記洗浄液入口部に接続される分岐ラインと、
前記分岐ラインを介して前記モニタリング装置に導入される前記洗浄液の温度を調節するための温度調節部と、
前記分岐ラインを介して前記モニタリング装置に導入される前記洗浄液の流量を調節するための流量調節部と、
前記温度調節部及び前記流量調節部を制御するための制御部と、
を備える。
ボイラに設けられる複数の伝熱管を洗浄するための洗浄システムであって、
上記(1)乃至(8)の何れか一項に記載のモニタリング装置と、
前記複数の伝熱管に接続され、前記複数の伝熱管を通って前記洗浄液を循環させるための洗浄液循環ラインと、
前記洗浄液循環ラインから分岐し、前記モニタリング装置の前記洗浄液入口部に接続される分岐ラインと、
前記分岐ラインを介して前記モニタリング装置に導入される前記洗浄液の温度を調節するための温度調節部と、
前記分岐ラインを介して前記モニタリング装置に導入される前記洗浄液の流量を調節するための流量調節部と、
前記温度調節部及び前記流量調節部を制御するための制御部と、
を備える。
上記(9)の構成によれば、伝熱管を洗浄する洗浄液を、モニタリング装置の内部の流路に供給可能であるとともに、モニタリング装置に導入される洗浄液の温度及び流量を調節可能である。よって、モニタリング装置の試験片のスケール付着表面における洗浄液の流動条件(温度及び流量)を、伝熱管の内面における流動条件に応じて調節することができる。したがって、モニタリング装置における試験片のスケール付着面を監視することにより、伝熱管の内面のスケール除去状態を把握することができる。
(10)本発明の少なくとも一実施形態に係るモニタリング方法は、
上記(1)乃至(8)の何れか一項に記載のモニタリング装置に、スケールが付着した観察用試験片を設置するステップと、
前記洗浄液入口部及び前記洗浄液出口部を介して前記流路に洗浄液を流通させるステップと、
前記窓部材を通して前記試験片の洗浄状況を監視するステップと、
を備える。
上記(1)乃至(8)の何れか一項に記載のモニタリング装置に、スケールが付着した観察用試験片を設置するステップと、
前記洗浄液入口部及び前記洗浄液出口部を介して前記流路に洗浄液を流通させるステップと、
前記窓部材を通して前記試験片の洗浄状況を監視するステップと、
を備える。
上記(10)の方法によれば、窓部材と試験片のスケール付着面との間に洗浄液の流路が形成されるように試験片を収容空間に設置し、該流路に洗浄液を流して試験片のスケール付着面の洗浄が可能であるとともに、窓部材を介してスケール付着面を外部から視認することができる。すなわち、試験片をケーシングの内部に設置したまま、洗浄液で洗浄される試験片のスケール付着面におけるスケール除去状態を監視することができる。これにより、時間とともに変化するスケール除去状態を継続的に監視することができ、例えば、洗浄液によるスケール除去の終了判定等を適時に行うことができる。よって、スケール除去状態の把握にかかる工数や工程を低減することができ、これにより、化学洗浄にかかるコストを削減することができる。
(11)幾つかの実施形態では、上記(10)の方法は、
前記試験片を設置するステップの前に、前記試験片のうち、前記スケール付着面以外の面に耐腐食材料の被覆層を形成するステップをさらに備える。
前記試験片を設置するステップの前に、前記試験片のうち、前記スケール付着面以外の面に耐腐食材料の被覆層を形成するステップをさらに備える。
上記(11)の方法によれば、試験片をモニタリング装置に設置する前に、試験片のうちスケール付着面以外の面に耐腐食材料の被覆層を形成するようにしたので、試験片をモニタリング装置に設置して、モニタリング装置内の流路に洗浄液を流通させたときに、試験片のうちスケール付着面以外の面と洗浄液との接触を防ぐことができる。よって、スケール付着面以外の面における母材と洗浄液との反応を抑制することができ、洗浄対象物(例えば管)の洗浄状態を、モニタリング装置においてより適切に再現することができる。
(12)幾つかの実施形態では、上記(10)又は(11)の方法において、
前記監視するステップでは、監視装置を用いて前記試験片の洗浄状況を監視する。
前記監視するステップでは、監視装置を用いて前記試験片の洗浄状況を監視する。
上記(12)の方法によれば、監視装置を用いて効率的に試験片の洗浄状況を監視することができる。
(13)本発明の少なくとも一実施形態に係る伝熱管の洗浄方法は、
ボイラに設けられる複数の伝熱管から観察用の伝熱管を採取して、該観察用の伝熱管から前記試験片を作製するステップと、
前記ボイラの前記複数の伝熱管に洗浄液循環ラインを接続し、前記洗浄液循環ラインに洗浄液を循環させて前記複数の伝熱管の洗浄を行うステップと、
上記(10)乃至(12)の何れかに記載のモニタリング方法により、前記試験片の洗浄状況を監視するステップと、
を備え、
前記監視するステップでは、前記洗浄液循環ラインから分岐させた洗浄液を、前記モニタリング装置の前記流路に流通させて、前記試験片の洗浄状況を監視する。
ボイラに設けられる複数の伝熱管から観察用の伝熱管を採取して、該観察用の伝熱管から前記試験片を作製するステップと、
前記ボイラの前記複数の伝熱管に洗浄液循環ラインを接続し、前記洗浄液循環ラインに洗浄液を循環させて前記複数の伝熱管の洗浄を行うステップと、
上記(10)乃至(12)の何れかに記載のモニタリング方法により、前記試験片の洗浄状況を監視するステップと、
を備え、
前記監視するステップでは、前記洗浄液循環ラインから分岐させた洗浄液を、前記モニタリング装置の前記流路に流通させて、前記試験片の洗浄状況を監視する。
上記(13)の方法によれば、ボイラの伝熱管から取得された観察用の試験片をモニタリング装置に設置するとともに、洗浄液循環ラインから分岐させた洗浄液をモニタリング装置の流路に供給するようにしたので、モニタリング装置内において、ボイラの伝熱管の洗浄状態を模擬することができる。よって、モニタリング装置を用いて試験片のスケール付着面の洗浄状態を監視することにより、この監視結果に基づき、ボイラの伝熱管の洗浄状態を適切に把握することができる。
(14)幾つかの実施形態では、上記(13)の方法は、
前記複数の伝熱管の洗浄中に、前記複数の伝熱管における前記洗浄液の流量及び温度を取得するステップと、
前記モニタリング装置の前記流路を流れる前記洗浄液の流量及び温度が、前記複数の伝熱管における前記流量及び前記温度に近づくように、前記流路を流れる前記洗浄液の流量を調節するための流量調節部、及び、前記流路を流れる前記洗浄液の温度を調節するための温度調節部の制御を行うステップと、
をさらに備える。
前記複数の伝熱管の洗浄中に、前記複数の伝熱管における前記洗浄液の流量及び温度を取得するステップと、
前記モニタリング装置の前記流路を流れる前記洗浄液の流量及び温度が、前記複数の伝熱管における前記流量及び前記温度に近づくように、前記流路を流れる前記洗浄液の流量を調節するための流量調節部、及び、前記流路を流れる前記洗浄液の温度を調節するための温度調節部の制御を行うステップと、
をさらに備える。
上記(14)の方法によれば、モニタリング装置に導入される洗浄液の温度及び流量が、ボイラの伝熱管における流量及び温度に近づくように、流量調節部及び温度調節部を制御するようにしたので、モニタリング装置内において、ボイラの伝熱管の洗浄状態をより詳細に模擬することができる。よって、モニタリング装置を用いて試験片のスケール付着面の洗浄状態を監視することにより、この監視結果に基づき、ボイラの伝熱管の洗浄状態をより適切に把握することができる。
本発明の少なくとも一実施形態によれば、化学洗浄時におけるスケール除去状態を適切に把握可能なモニタリング装置及び方法並びに伝熱管の洗浄システム及び方法が提供される。
以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
以下の実施形態では、一実施形態に係る洗浄システム又は洗浄方法における洗浄対象物が火力発電装置を構成するボイラの伝熱管である場合について説明するが、本発明における洗浄対象物はこれに限定されず、例えば、舶用ボイラの伝熱管、ボイラの伝熱管以外の部位、熱交換器の伝熱管、又は、化学プラントの構成機器であってもよい。
図1は、幾つかの実施形態に係るモニタリング装置が適用される洗浄システムの概略図である。図1に示す洗浄システム1は、ボイラ100の火炉102を構成する複数の伝熱管104を洗浄するように構成されている。
図1に示すボイラ100は、循環ライン106上に配置される火炉102、汽水分離器110、及び、図示しない節炭器、過熱器等を含む。火炉102の伝熱管104には、循環ライン106を介して給水が供給されるようになっている。火炉102の伝熱管104において、燃料の燃焼熱との熱交換により生成された蒸気は、汽水分離器110、過熱器(不図示)を経由してタービン(不図示)に供給されてタービンロータを回転駆動する。タービンで仕事を終えた蒸気は復水器(不図示)で凝縮されて水となる。復水器で生成された水は、循環ライン106に設けられた加熱器、脱気器、及び、節炭器等(何れも不図示)を通って、再び火炉102に供給される。循環ライン106には、蒸気又は水を圧送するためのポンプ(不図示)が設けられていてもよい。
ボイラ100の火炉102を構成する伝熱管104の内部には、鉄酸化物を主体とするスケールが付着して伝熱管の熱伝導率が低下する場合がある。図1に示す洗浄システム1は、このように伝熱管104の内面に付着したスケールを、洗浄液を用いて除去するための洗浄システムである。
図1に示す洗浄システム1は、循環ライン106に接続される洗浄液循環ライン2と、洗浄液循環ライン2に設けられ、洗浄液を循環させるための循環ポンプ4と、を含む。洗浄液循環ライン2の上流端は、循環ライン106における汽水分離器110の下流側に位置する第1接続点105に接続されており、洗浄液循環ライン2の下流端は、循環ライン106における火炉102の上流側に位置する第2接続点108に接続されている。すなわち、洗浄液循環ライン2は、循環ライン106を介して、複数の伝熱管104に接続されている。
また、洗浄システム1は、洗浄液を貯留するための洗浄液タンク8と、洗浄液タンク8からの洗浄液を洗浄液循環ライン2に供給するための洗浄液供給ライン6と、洗浄液供給ライン6に設けられる注入ポンプ10と、を含む。洗浄液タンク8に貯留された洗浄液が、注入ポンプ10により、洗浄液供給ライン6を介して洗浄液循環ライン2に供給されるようになっている。
スケールの洗浄に用いる洗浄液(すなわち、洗浄液タンク8に貯留される洗浄液)の種類は、主として酸化鉄を含むスケールを溶解可能な薬剤であればよく、特に限定されない。このような洗浄液は、例えば、塩酸等の酸を含む洗浄液であってもよく、あるいは、キレート剤又は還元剤又は腐食抑制剤を含む洗浄液であってもよい。
上述のキレート剤は、例えばEDTA、BAPTA、DOTA、EDDS、INN、NTA、DTPA、HEDTA、TTHA、PDTA、DPTA-OH、HIDA、DHEG、GEDTA、CMGA、EDDSなどのアミノカルボン酸やこれらの塩などのアミノカルボン酸系キレート剤、クエン酸、グルコン酸、ヒドロキシ酢酸などのオキシカルボン酸やこれらの塩などのオキシカルボン酸系キレート剤、ATMP、HEDP、NTMP、PBTC、EDTMP等の有機リン酸やこれらの塩などの有機リン系キレート剤であってもよい。
上述の還元剤は、例えば、Fe2+、Sn2+などの各種金属イオン、亜硫酸ナトリウムなどの亜硫酸塩、次亜硫酸塩、シュウ酸、蟻酸、アスコルビン酸、エルソルビン酸、ピロガロール、チオ尿素系化合物、二酸化チオ尿素系化合物、チオグリコール酸塩などの有機化合物、ヒドラジン、水素などであってもよい。
上述の腐食抑制剤は、例えば、両性界面活性剤、非イオン界面活性剤、カチオン型界面活性剤、硫黄系化合物などの吸着性皮膜を形成する腐食抑制剤や沈殿皮膜型の腐食抑制剤、錯塩皮膜形成型の腐食抑制剤などであってもよい。
上述した構成により、洗浄液タンク8からの洗浄液は、循環ポンプ4によって圧送されて、洗浄液循環ライン2、第2接続点108よりも下流側かつ火炉102よりも上流側の循環ライン106、複数の伝熱管104(火炉102)、及び、火炉102よりも下流側かつ第1接続点105よりも上流側の循環ライン106、を通って循環するようになっている。なお、このように洗浄液を循環させる際には、循環ライン106において、第1接続点105の下流側に設けられたバルブ109及び第2接続点108の上流側に設けられたバルブ107は閉止され、循環ライン106を循環する水及び蒸気の流れは停止される。
洗浄システム1は、洗浄液循環ライン2から分岐する分岐ライン12と、分岐ライン12に設けられるモニタリング装置18と、分岐ライン12を介してモニタリング装置18に導入される洗浄液の温度及び流量をそれぞれ調節するための温度調節部及び流量調節部と、をさらに備えている。
分岐ライン12の上流端11及び下流端13は、それぞれ、洗浄液循環ライン2に接続されている。分岐ライン12にはポンプ14が設けられており、該ポンプ14によって、洗浄液循環ライン2からの洗浄液が、分岐ライン12に引き込まれるようになっている。
モニタリング装置18は、スケールが付着した観察用試験片の洗浄状況を監視するための装置である。この観察用試験片として、火炉102を構成する複数の伝熱管104のうち1本から採取したものを用いることができる。モニタリング装置18は、分岐ライン12にそれぞれ接続される洗浄液入口部56及び洗浄液出口部62を有している。洗浄液循環ライン2から分岐ライン12に引き込まれた洗浄液は、洗浄液入口部56を介してモニタリング装置18に導入され、モニタリング装置18の内部流路を通過した洗浄液は、洗浄液出口部62を介して分岐ライン12に排出される。分岐ライン12に排出された洗浄液は、分岐ライン12の下流端13を介して、洗浄液循環ライン2に返送されるようになっている。なお、モニタリング装置18の構成については後述する。
図1に示す例示的な実施形態では、モニタリング装置18に導入される洗浄液の温度を調節するための温度調節部は、分岐ライン12に設けられ、電気抵抗にて発生する熱により洗浄液を加熱するように構成されたヒータ16である。他の実施形態では、該温度調節部は、熱媒体との熱交換により洗浄液を過熱するように構成された熱交換器であってもよい。
また、図1に示す例示的な実施形態では、モニタリング装置18に導入される洗浄液の流量を調節するための流量調節部は、分岐ライン12に設けられた上述のポンプ14である。ポンプ14は、回転数を変更することにより吐出圧を調節可能に構成されており、すなわち、吐出側における洗浄液の流量を調節可能に構成されている。
洗浄システム1は、制御装置20(制御部)と、複数の伝熱管104における洗浄液の温度及び流量を取得するための流量計21及び温度センサ22と、モニタリング装置18における洗浄液の温度及び流量を取得するための流量計23及び温度センサ24と、をさらに備えている。
図1に示す例示的な実施形態では、流量計21及び温度センサ22は、火炉102よりも下流側における循環ライン106に設けられている。
複数の伝熱管104を流れる洗浄液は、伝熱管104の下流側で合流するので、該流量計21で計測される洗浄液の流量は、複数の伝熱管104の各々における流量の合計値とみなすことができる。よって、流量計21で計測された流量を、伝熱管104の本数で除算することにより、1本の伝熱管104における流量(あるいは流量の平均)を算出することができる。
また、複数の伝熱管104から循環ライン106に流出した洗浄液の温度は急激には変化しないので、温度センサ22による温度の計測値を、伝熱管104の出口における洗浄液の温度とみなすことができる。
制御装置20は、流量計21,23及び温度センサ22,24から受け取る信号に基づいて、ヒータ16(温度調節部)の出力、及び、ポンプ14(流量調節部)の回転数(より具体的には、ポンプ14を駆動するモータ駆動用のインバータの周波数)を制御するように構成されている。したがって、制御装置20を用いて、モニタリング装置18に供給される洗浄液の温度及び流量を調節することができる。
図2及び図3、及び、図9~図11は、それぞれ、一実施形態に係るモニタリング装置18の洗浄液流れ方向に直交する断面図であり、図4は、図2のB-B矢視断面図である。図5は、モニタリング装置18に設置される試験片の一例を示す図である。図6~図8は、それぞれ、一実施形態に係るモニタリング装置18の断面図であり、図2の拡大図に相当する図である。なお、モニタリング装置18における洗浄液流れ方向とは、モニタリング装置18の内部において洗浄液入口部56と洗浄液出口部62との間に形成される流路54(後述)の延在方向である。
図2~4に示すように、一実施形態に係るモニタリング装置18は、スケールが付着した観察用試験片80の洗浄状況を監視するための観察用セル120を備えている。
観察用試験片80(図5参照)は、火炉102を構成する複数の伝熱管104のうち1本から切り出した管(伝熱管104の一部分)から作製することができる。図5に示す観察用試験片80は、管軸方向に沿って管を半分に分割して得られる分割片である。この観察用試験片80は、伝熱管104の内周面及び外周面にそれぞれ対応する内面84及び外面82と、伝熱管104から切り出す際に管軸方向の両端部に形成される一対の切断面88と、管を分割する際に形成される一対の分割面86と、を有する。伝熱管104において、スケールは内面に付着するので、観察用試験片80を作成した時点では、観察用試験片80の内面に、スケールが付着している。すなわち、観察用試験片80の内面84がスケール付着面である。
図2~図4に示すように、観察用セル120は、ケーシング30と、ケーシング30と観察用試験片80の収容空間33を形成する窓部材42と、収容空間33における観察用試験片80の位置決めをするためのガイド部材40と、洗浄液入口部56と、洗浄液出口部62と、を備えている。
ケーシング30は、ケーシング本体31と、底部材32と、を含み、ケーシング本体31と底部材32とは、複数のボルト34で締結されている。窓部材42は、ケーシング30とともに観察用試験片80を収容するための収容空間33を形成するように設けられている。収容空間33は、窓部材42の内側面42Bと、ケーシング30の壁面31A,31B,32A(図6参照)とによって囲まれる空間である。収容空間33は、観察用試験片80を収容可能なサイズを有している。観察用試験片80は、スケール付着面である内面84(図6参照)と、窓部材42の内側面42Bとが互いに対向するように配置される。
ケーシング本体31と固定部材36とによって窓部材42が挟まれた状態で、ボルト38によってケーシング本体31と固定部材36とが締結されている。このようにして、窓部材42がケーシング30に取り付けられている。窓部材42及び固定部材36は、窓部材42の内側面42Bと反対側に位置する外側面42Aが、固定部材36によって覆われずに露出するように設けられる。
また、観察用セル120は、ケーシング本体31と底部材32との間を介した洗浄液の漏洩を抑制するためのシール部材45、及び、窓部材42とケーシング本体31との間を介した洗浄液の漏洩を抑制するためのシール部材46を含む。
収容空間33には、観察用試験片80の位置決めをするためのガイド部材40が配置される。ガイド部材40は、観察用試験片80のうちスケールが付着したスケール付着面(内面84)と、窓部材42とが対向するように、かつ、観察用試験片80のスケール付着面(内面84)と、窓部材42との間に洗浄液の流路54が形成されるように、収容空間33における観察用試験片80の位置決めをするように構成される。図4に示すように、流路54は、管軸方向に沿って延びるように形成される。
図6に示すように、ガイド部材40は、観察用試験片80の外面82に対応する形状を有する曲面39と、ケーシング30(ケーシング本体31及び底部材32)の壁面31A,31B,32Aに対向する面39B~39Dと、を有している。これにより、観察用試験片80の管軸直交面内における移動が規制されるようになっている。
また、図4に示すように、ガイド部材40は、管軸方向の両端部に、管径方向内側に向かって突出する一対の鍔部41を有している。該鍔部41により、観察用試験片80の管軸方向における移動が規制されるようになっている。
図2及び図4に示すように、観察用セル120は、ケーシング本体31のうち管軸方向の両端部に設けられた洗浄液入口部56及び洗浄液出口部62を含む。洗浄液入口部56は、ケーシング本体31に設けられた入口通路58と、該入口通路58と分岐ライン12(図1参照)を接続するための入口ジョイント60と、を含む。洗浄液出口部62は、ケーシング本体31に設けられた出口通路64と、該出口通路64と分岐ライン12(図1参照)を接続するための出口ジョイント66と、を含む。
窓部材42は、該窓部材42の外側面42A(露出面)から内側面42Bに向かって目視したとき、収容空間33に設置された観察用試験片80の内面84が視認できるような透明度及び厚さ(内側面42Bと外側面42Aとの間の距離)を有する。窓部材42は、ガラスや、アクリル樹脂等の樹脂を材料として形成されていてもよい。また、ケーシング30は、洗浄液と反応を生じない材料(例えば樹脂)で形成されることが望ましい。
上述の観察用セル120(モニタリング装置18)によれば、ケーシング30と窓部材42とによって形成される収容空間33において観察用試験片80の位置決めをするためのガイド部材40を設けたので、窓部材42と観察用試験片80のスケール付着面(内面84)との間に洗浄液の流路54が形成されるように観察用試験片80を収容空間33に設置可能である。また、窓部材42の内側面42Bによって流路54を形成するするようにしたので、窓部材42の外側面42Aから内側面42Bに向かう方向に視たとき(すなわち、図2中の矢印Aの方向から視たとき)、窓部材42を介して、観察用試験片80の内面84を視認することができる。
よって、流路54に洗浄液を流して観察用試験片80のスケール付着面(内面84)の洗浄が可能であるとともに、窓部材42を介してスケール付着面(内面84)を外部から視認することができる。すなわち、観察用試験片80をケーシング30の内部に設置したまま、洗浄液で洗浄される観察用試験片80のスケール付着面におけるスケール除去状態を監視することができる。これにより、時間とともに変化するスケール除去状態を継続的に監視することができ、例えば、洗浄液によるスケール除去の終了判定等を適時に行うことができる。よって、スケール除去状態の把握にかかる工数や工程を低減することができ、これにより、化学洗浄にかかるコストを削減することができる。
よって、流路54に洗浄液を流して観察用試験片80のスケール付着面(内面84)の洗浄が可能であるとともに、窓部材42を介してスケール付着面(内面84)を外部から視認することができる。すなわち、観察用試験片80をケーシング30の内部に設置したまま、洗浄液で洗浄される観察用試験片80のスケール付着面におけるスケール除去状態を監視することができる。これにより、時間とともに変化するスケール除去状態を継続的に監視することができ、例えば、洗浄液によるスケール除去の終了判定等を適時に行うことができる。よって、スケール除去状態の把握にかかる工数や工程を低減することができ、これにより、化学洗浄にかかるコストを削減することができる。
幾つかの実施形態では、例えば図2及び図3に示すように、観察用セル120は、周囲を照明するための照明部52を含んでいてもよい。図2に示す例示的な実施形態では、照明部52は、窓部材42の表面に管軸方向に沿って形成された溝51に設けられている。図3に示す例示的な実施形態では、照明部52は、窓部材42の内部に管軸方向に沿って形成された孔の中に設けられている。照明部52は、例えば、テープ状の基材と、テープ状基材の長手方向において間隔を空けて基材状に配置された複数のLEDと、を含むテープLEDであってもよい。
このように、照明部52を窓部材42に形成された孔53又は溝51に設けることで、照明部52で観察用試験片80のスケール付着面(内面84)を照明することができ、これにより、外部から窓部材42を介したスケール付着面の視認性を良好にすることができる。例えば、モニタリング装置18の設置場所による明暗や、時刻による明暗によらず、照明部52によって上述の視認性を確保することができる。
幾つかの実施形態では、例えば図6~8に示すように、観察用試験片80のうち、スケール付着面(内面)以外の面(外面82、一対の切断面88、及び、一対の分割面86)には、耐腐食性材料(例えば樹脂)の被覆層90が形成されている。
このように、観察用試験片80のうちスケール付着面(内面84)以外の面に耐腐食性材料の被覆層90を形成することにより、観察用試験片80を観察用セル120(モニタリング装置18)に設置して、モニタリング装置18内の流路54に洗浄液を流通させたときに、観察用試験片80のうちスケール付着面以外の面と洗浄液との接触を防ぐことができる。よって、スケール付着面(内面84)以外の面(外面82、一対の切断面88、及び、一対の分割面86)における伝熱管の母材と洗浄液との反応を抑制することができ、洗浄対象物である伝熱管104の洗浄状態を、モニタリング装置18においてより適切に再現することができる。
幾つかの実施形態では、例えば図7及び図8に示すように、窓部材42の内側面42Bは、観察用試験片80(分割片)の内面84の形状に対応するように突出した形状を有する突出部43を含む。
この場合、窓部材42の内側面42Bが、観察用試験片80の内面84の形状に対応するように突出した形状を有する突出部43を含むので、窓部材42の内側面42Bが平坦な形状を有する場合に比べて、窓部材42と観察用試験片80(分割片)の内面84との間の流路幅を狭くすることができる。これにより、化学洗浄の進行に伴い、スケールの溶解や懸濁物の発生等に起因して洗浄液が着色した場合であっても、外部から窓部材42を介したスケール付着面(内面84)の視認性の悪化を抑制することができる。
幾つかの実施形態では、ガイド部材40は、ケーシング30から取り外し可能に構成される。すなわち、ガイド部材40を交換可能であるので、様々な形状のガイド部材40を、モニタリング装置18に装着することができる。例えば、図7に示すモニタリング装置18と、図8に示すモニタリング装置18とは、観察用試験片80の形状及びガイド部材40の形状が異なる以外の点において同一である。より具体的には、図7における観察用試験片80の径d1は、図8における観察用試験片80の径d2よりも大きく、したがって、図7におけるガイド部材40の曲面39Aの径は、図8におけるガイド部材40の曲面39Aの径よりも大きい。
すなわち、異なる形状の試験片であっても、各試験片に対応したガイド部材40を用いることで、同一の観察用セル120(モニタリング装置18)を用いてスケール付着面の監視をすることができる。よって、試験片の形状毎に観察用セル120(モニタリング装置18)を用意する場合に比べて、コスト削減が可能である。
なお、観察用セル120に設置されたガイド部材40を交換するためには、ボルト34(図2参照)を外すことで、ケーシング本体31から底部材32を取り外すことができ、収容空間33にアクセスすることができる。こうして、収容空間33に既に設置されている使用済みのガイド部材40及び観察用試験片80を取り出した後、交換用のガイド部材40及び観察用試験片80を収容空間33に設置し、再度、ボルト34により、底部材32をケーシング本体31に締結すればよい。
幾つかの実施形態では、観察用セル120は、2以上の分割片を含む観察用試験片80を、収容空間33内おいて、管軸方向にて直列に配置可能になっている。たとえば 、図9に示す例示的な実施形態では、観察用試験片80は、2つの分割片80A、80Bを含み、該2つの分割片80A,80Bが、管軸方向に直列に配置されている。すなわち、分割片80Aの内面及び分割片80Bの内面と、窓部材42の内側面42Bとによって、管軸方向に沿って延びる1本の流路54が形成されるようになっている。
なお、ガイド部材40は、管軸方向において分割片81Aと分割片80Bとの間に位置する鍔部41を有している。これにより、分割片81A及び分割片80Bの管軸方向における移動が規制されるようになっている。
この場合、観察用セル120内において2以上の分割片を直列に配置可能であるので、初期状態(すなわち洗浄開始時点)においてスケールの付着状況が異なる2以上の分割片について、同一の洗浄条件でのスケール除去状態を同時に監視することができる。よって、洗浄対象の伝熱管104におけるスケール除去状態を、より詳細に把握することができる。
洗浄対象物が管である場合、管の内面に付着するスケールの組成や付着量は、周方向又は軸方向において均一でない場合がある。例えば、火炉102に設けられる伝熱管104の場合、伝熱管の周方向において、バーナに近い側の部分と遠い側の部分とでは、バーナによる燃焼時の温度が異なるため、これらの部分の内面に付着するスケールの組成や付着量は異なる場合がある。この場合、1本の伝熱管104から切り出したサンプル(管)を、バーナ側の部分と、バーナから遠い側の部分とに分割して、2つの分割片80A、80Bを得ることができる。これらの分割片80A,80Bを上述のように、観察用セル120内にて直列に配置することにより、洗浄対象の伝熱管104におけるスケール除去状態を、より詳細に把握することができる。
幾つかの実施形態では、例えば図10に示すように、観察用セル120(モニタリング装置18)は、洗浄液入口部56を介した洗浄液の供給を停止可能な入口バルブ70、及び、洗浄液出口部62を介した洗浄液の排出を停止可能な出口バルブ74と、を備えているとともに、洗浄液出口部62とは別に設けられ、流路54内の洗浄液を外部に排出するための排出ライン78をさらに備える。排出ライン78には、洗浄液の排出を制御するためのバルブ79が設けられていてもよい。
化学洗浄の進行に伴い、スケールの溶解や懸濁物の発生により洗浄液の着色が進行する場合がある。この点、上述の構成によれば、入口バルブ70及び出口バルブ74によって観察用セル120(モニタリング装置18)内の流路54への洗浄液の供給を一時的に停止するとともに、排出ライン78を介して、該流路54に滞留した洗浄液を外部に排出することができる。これにより、洗浄液の着色が進行して視認性が悪化した場合であっても、流路54内の洗浄液を一時的に排出することで、観察用試験片80のスケール付着面(内面84)を適切に視認することができ、よって、スケール除去状態を適切に監視することができる。
図10に示す例示的な実施形態では、観察用セル120(モニタリング装置18)は、流路54内にフラッシング流体を供給するためのフラッシングライン76及びバルブ77をさらに備えている。フラッシング流体は、例えば、純水等の液体や、空気又は窒素等の気体であってもよい。この構成によれば、上述のように排出ライン78を介して流路54に滞留した洗浄液を外部に排出する際に、フラッシングラインを78を介してフラッシング流体を流路54に供給することで、流路54内の洗浄液をより確実に排出することができる。よって、観察用試験片80のスケール付着面(内面84)をより適切に視認することができ、よって、スケール除去状態をより適切に監視することができる。
幾つかの実施形態では、例えば図11に示すように、モニタリング装置18は、上述した観察用セル120に加えて、比較用セル122を備えている。比較用セル122は、対照用の比較用試験片180を設置可能となっており、観察用セル120と比較用セル122とを並べて配置することで、観察用セル120の洗浄(スケール除去)の進行度合いを確認することができる。したがって、比較用試験片180は、観察用試験片80と同様に作製されたものであってもよい。
比較用セル122は、比較用ケーシング130と、比較用窓部材(不図示)と、比較用ガイド部材140と、を備えている。これらは、それぞれ、ケーシング30、窓部材42、及びガイド部材40に相当する部材である。比較用窓部材は、比較用ケーシング130に取り付けられ、比較用ケーシング130とともに比較用試験片180を収容するための収容空間133を形成する。比較用ガイド部材140は、比較用試験片180のうちスケールが付着した面(内面)と、比較用窓部材とが対向するように、かつ、比較用試験片180の内面と、比較用窓部材との間に流路154が形成されるように、収容空間133における比較用試験片180の位置決めをするように構成されている。比較用セル122は、観察用セル120と異なり、洗浄液入口部56及び洗浄液出口部62を有しない。すなわち、観察用セル120には洗浄液は供給されない。なお、図11に示す観察用セル120は、図10に示すものと同じものである。
上述の実施形態では、比較用試験片180を設置するための比較用セル122を、観察用試験片80を設置するための観察用セル120とは別に設けたので、比較用セル122の内部の環境を、観察用試験片80を設置する観察用セル120とは異なる状態に維持することができる。よって、比較用試験片180のスケール付着状態を、洗浄開始時の初期状態に維持するように比較用セル122の内部の環境を調整することができる。したがって、観察用試験片80と、比較用試験片180とを容易に比較することができ、観察用試験片80におけるスケール除去の進行度合いを把握しやすくなる。
幾つかの実施形態では、例えば図11に示すように、比較用セル122は、不活性流体を流路154に供給するための供給ライン92及び不活性流体を流路154から排出するための排出ライン94を備えていてもよい。供給ライン92及び排出ライン94には、それぞれ、不活性ガスの供給及び排出を制御するためのバルブ93,95が設けられていてもよい。
供給ライン92を介して比較用セル122に供給される不活性流体は、観察用セル120に導入される洗浄液に比べ、試験片に付着したスケールとの反応性が小さい流体である。上述の不活性流体は、例えば窒素、空気、又は水であってもよい。
以下、図1を参照して、一実施形態に係る伝熱管104の洗浄方法について説明する。
まず、運転していたボイラ100を停止させた状態で、ボイラ100に設けられる複数の伝熱管104から、観察用の伝熱管を採取して、該観察用の伝熱管を管軸方向に分割して、観察用試験片80(分割片)を作製する。なお、このとき、同一の観察用伝熱管から、比較用試験片180(図11参照)を作製してもよい。次に、観察用試験片80のうち、スケール付着面(内面84;図6参照)以外の面(外面82、切断面88、分割面86;図6参照)に、耐腐食材料の被覆層を形成する。そして、上述したモニタリング装置18に、スケールが付着した観察用試験片80を設置する。
次に、洗浄液循環ライン2を、循環ライン106を介して、ボイラ100の複数の伝熱管104に接続し、洗浄液循環ライン2に洗浄液タンク8からの洗浄液を循環させて、複数の伝熱管104の洗浄を行う。
また、洗浄液循環ライン2に分岐ライン12を接続し、洗浄液循環ライン2から分岐させた洗浄液を、洗浄液入口部56及び洗浄液出口部62を介して、モニタリング装置18の流路54に流通させる。そして、モニタリング装置18の窓部材42(図2参照)を通して、観察用試験片80の洗浄状況を監視する。
観察用試験片80の洗浄状況を監視は、モニタリング装置18の流路54に洗浄液を流通させながら行ってもよい。
観察用試験片80の洗浄状況を監視は、モニタリング装置18の流路54に洗浄液を流通させながら行ってもよい。
観察用試験片80の洗浄状況の監視は、目視で行ってもよいし、監視装置を用いて行ってもよい。監視装置を用いる場合、例えば、カメラなどの撮像装置を介して洗浄状況の監視を行ってもよい。
上述の実施形態に係る方法によれば、窓部材42と観察用試験片80のスケール付着面との間に洗浄液の流路54が形成されるように観察用試験片80を収容空間33に設置し、該流路54に洗浄液を流して観察用試験片80のスケール付着面の洗浄が可能であるとともに、窓部材42を介してスケール付着面を外部から視認することができる。すなわち、観察用試験片80をケーシング30の内部に設置したまま、洗浄液で洗浄される試験片のスケール付着面におけるスケール除去状態を監視することができる。これにより、時間とともに変化するスケール除去状態を継続的に監視することができ、例えば、洗浄液によるスケール除去の終了判定等を適時に行うことができる。よって、スケール除去状態の把握にかかる工数や工程を低減することができ、これにより、化学洗浄にかかるコストを削減することができる。
伝熱管104の洗浄にはある程度の時間がかかるため、時間の経過にともない、伝熱管104の洗浄条件が変化する。そこで、幾つかの実施形態では、さらに、以下のステップを行い、実際のボイラ100における伝熱管104の洗浄条件(洗浄液の温度及び流量)を、モニタリング装置18において再現するようにしてもよい。
幾つかの実施形態では、複数の伝熱管104の洗浄中に、流量計21及び温度センサ22を用いて、複数の伝熱管104における洗浄液の流量F1及び温度T1を計測する。この流量F1及び温度T1に係る計測結果は、制御装置20に送られる。
また、流量計23及び温度センサ24を用いて、モニタリング装置18の流路54における洗浄液の流量F2及び温度T2を計測する。この流量F2及び温度T2に係る計測結果は、制御装置20に送られる。
制御装置は、取得した流量F1、F2、及び、温度T1,T2の計測結果に基づいて、モニタリング装置18の流路54を流れる洗浄液の流量及び温度が、複数の伝熱管104における流量及び温度に近づくように、ポンプ14(流量調節部)の回転数、及び、ヒータ16(温度調節部)の出力の制御を行う。
制御装置20は上述の計測結果に基づいて、モニタリング装置18の流路54を流れる洗浄液の流量及び温度に関してフィードバック制御(例えば、P制御、PI制御又はPID制御)を行ってもよい。
例えば、制御装置20は、伝熱管104における洗浄液の流量F1を目標値とし、モニタリング装置18の流路54を流れる洗浄液の流量の実測値F2と上述の目標値F1との偏差に基づいて、該偏差が小さくなるようなポンプ14の回転数及び/又はこれに対応するインバータ周波数を算出し、算出したインバータ周波数を制御指令値として、インバータに与えるようになっていてもよい。
あるいは、制御装置20は伝熱管104における洗浄液の温度T1を目標値とし、モニタリング装置18の流路54を流れる洗浄液の温度の実測値T2と上述の目標値T1との偏差に基づいて、該偏差が小さくなるようなヒータ16の出力を算出し、算出した出力値を制御指令値としてヒータ16に与えるようになっていてもよい。
上述の実施形態に係る方法によれば、モニタリング装置18に導入される洗浄液の温度T2及び流量F2が、ボイラ100の伝熱管104における流量F1及び温度T2に近づくように、流量調節部及び温度調節部を制御するようにしたので、モニタリング装置18内において、ボイラ100の伝熱管104の洗浄状態をより詳細に模擬することができる。よって、モニタリング装置18を用いて観察用試験片80のスケール付着面の洗浄状態を監視することにより、この監視結果に基づき、ボイラの伝熱管の洗浄状態をより適切に把握することができる。
以上、本発明の実施形態について説明したが、本発明は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。
本明細書において、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
また、本明細書において、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
また、本明細書において、一の構成要素を「備える」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
また、本明細書において、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
また、本明細書において、一の構成要素を「備える」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
1 洗浄システム
2 洗浄液循環ライン
4 循環ポンプ
6 洗浄液供給ライン
8 洗浄液タンク
10 注入ポンプ
11 上流端
12 分岐ライン
13 下流端
14 ポンプ
16 ヒータ
18 モニタリング装置
20 制御装置
21 流量計
22 温度センサ
23 流量計
24 温度センサ
30 ケーシング
31 ケーシング本体
31A 壁面
31B 壁面
32 底部材
32A 壁面
33 収容空間
34 ボルト
36 固定部材
38 ボルト
39 曲面
39A 曲面
39B~39D 面
40 ガイド部材
41 鍔部
42 窓部材
42A 外側面
42B 内側面
43 突出部
45 シール部材
46 シール部材
51 溝
52 照明部
53 孔
54 流路
56 洗浄液入口部
58 入口通路
60 入口ジョイント
62 洗浄液出口部
64 出口通路
66 出口ジョイント
70 入口バルブ
74 出口バルブ
76 フラッシングライン
77 バルブ
78 排出ライン
79 バルブ
80 観察用試験片
80A 分割片
80B 分割片
82 外面
84 内面
86 分割面
88 切断面
90 被覆層
92 供給ライン
93 バルブ
94 排出ライン
95 バルブ
100 ボイラ
102 火炉
104 伝熱管
105 第1接続点
106 循環ライン
107 バルブ
108 第2接続点
109 バルブ
110 汽水分離器
120 観察用セル
122 比較用セル
130 比較用ケーシング
133 収容空間
140 比較用ガイド部材
154 流路
180 比較用試験片
2 洗浄液循環ライン
4 循環ポンプ
6 洗浄液供給ライン
8 洗浄液タンク
10 注入ポンプ
11 上流端
12 分岐ライン
13 下流端
14 ポンプ
16 ヒータ
18 モニタリング装置
20 制御装置
21 流量計
22 温度センサ
23 流量計
24 温度センサ
30 ケーシング
31 ケーシング本体
31A 壁面
31B 壁面
32 底部材
32A 壁面
33 収容空間
34 ボルト
36 固定部材
38 ボルト
39 曲面
39A 曲面
39B~39D 面
40 ガイド部材
41 鍔部
42 窓部材
42A 外側面
42B 内側面
43 突出部
45 シール部材
46 シール部材
51 溝
52 照明部
53 孔
54 流路
56 洗浄液入口部
58 入口通路
60 入口ジョイント
62 洗浄液出口部
64 出口通路
66 出口ジョイント
70 入口バルブ
74 出口バルブ
76 フラッシングライン
77 バルブ
78 排出ライン
79 バルブ
80 観察用試験片
80A 分割片
80B 分割片
82 外面
84 内面
86 分割面
88 切断面
90 被覆層
92 供給ライン
93 バルブ
94 排出ライン
95 バルブ
100 ボイラ
102 火炉
104 伝熱管
105 第1接続点
106 循環ライン
107 バルブ
108 第2接続点
109 バルブ
110 汽水分離器
120 観察用セル
122 比較用セル
130 比較用ケーシング
133 収容空間
140 比較用ガイド部材
154 流路
180 比較用試験片
Claims (14)
- スケールが付着した観察用試験片の洗浄状況を監視するためのモニタリング装置であって、
ケーシングと、
前記ケーシングに取り付けられ、前記ケーシングとともに前記試験片を収容するための収容空間を形成する窓部材と、
該試験片のうちスケールが付着したスケール付着面と、前記窓部材とが対向するように、かつ、前記試験片の前記スケール付着面と、前記窓部材との間に洗浄液の流路が形成されるように、前記収容空間における前記試験片の位置決めをするためのガイド部材と、
前記流路に洗浄液を導入するための洗浄液入口部と、
前記流路から前記洗浄液を排出するための洗浄液出口部と、
を備えたモニタリング装置。 - 前記試験片は、管を管軸方向に沿って分割して得られる少なくとも1つの分割片を含み、
前記ガイド部材は、前記少なくとも1つの分割片の外周面に対向するように配置される曲面を有する
請求項1に記載のモニタリング装置。 - 前記少なくとも1つの分割片は、2以上の分割片を含み、
前記2以上の分割片が、前記収容空間において、管軸方向にて直列に配置されるように構成された
請求項2に記載のモニタリング装置。 - 前記窓部材の内側面と、前記分割片の内面とによって前記洗浄液が流通する前記流路が形成され、
前記窓部材の前記内側面は、前記分割片の前記内面の形状に対応するように突出した形状を有する
請求項2又は3に記載のモニタリング装置。 - 前記窓部材に形成された孔又は溝に設けられた照明部をさらに備えた
請求項1乃至4の何れか一項に記載のモニタリング装置。 - 前記洗浄液入口部からの洗浄液の供給を停止可能な入口バルブ、及び、前記洗浄液出口部からの洗浄液の排出を停止可能な出口バルブと、
前記洗浄液出口部とは別に設けられ、前記流路内の洗浄液を外部に排出するための排出ラインをさらに備えた
請求項1乃至5の何れか一項に記載のモニタリング装置。 - 比較用ケーシングと、
前記比較用ケーシングに取り付けられ、前記比較用ケーシングとともに比較用試験片を収容するための収容空間を形成する比較用窓部材と、
該比較用試験片のうちスケールが付着した面と、前記比較用窓部材とが対向するように、かつ、前記比較用試験片の前記面と、前記比較用窓部材との間に流路が形成されるように、前記収容空間における前記比較用試験片の位置決めをするための比較用ガイド部材と、
を含む比較用セルをさらに備えた
請求項1乃至6の何れか一項に記載のモニタリング装置。 - 前記ガイド部材は、前記ケーシングから取り外し可能に構成された
請求項1乃至7の何れか一項に記載のモニタリング装置。 - ボイラに設けられる複数の伝熱管を洗浄するための洗浄システムであって、
請求項1乃至8の何れか一項に記載のモニタリング装置と、
前記複数の伝熱管に接続され、前記複数の伝熱管を通って前記洗浄液を循環させるための洗浄液循環ラインと、
前記洗浄液循環ラインから分岐し、前記モニタリング装置の前記洗浄液入口部に接続される分岐ラインと、
前記分岐ラインを介して前記モニタリング装置に導入される前記洗浄液の温度を調節するための温度調節部と、
前記分岐ラインを介して前記モニタリング装置に導入される前記洗浄液の流量を調節するための流量調節部と、
前記温度調節部及び前記流量調節部を制御するための制御部と、
を備えた伝熱管の洗浄システム。 - 請求項1乃至8の何れか一項に記載のモニタリング装置に、スケールが付着した観察用試験片を設置するステップと、
前記洗浄液入口部及び前記洗浄液出口部を介して前記流路に洗浄液を流通させるステップと、
前記窓部材を通して前記試験片の洗浄状況を監視するステップと、
を備えたモニタリング方法。 - 前記試験片を設置するステップの前に、前記試験片のうち、前記スケール付着面以外の面に耐腐食材料の被覆層を形成するステップをさらに備える
請求項10に記載のモニタリング方法。 - 前記監視するステップでは、監視装置を用いて前記試験片の洗浄状況を監視する
請求項10又は11に記載のモニタリング方法。 - ボイラに設けられる複数の伝熱管から観察用の伝熱管を採取して、該観察用の伝熱管から前記試験片を作製するステップと、
前記ボイラの前記複数の伝熱管に洗浄液循環ラインを接続し、前記洗浄液循環ラインに洗浄液を循環させて前記複数の伝熱管の洗浄を行うステップと、
請求項10乃至12の何れか一項に記載のモニタリング方法により、前記試験片の洗浄状況を監視するステップと、
を備え、
前記監視するステップでは、前記洗浄液循環ラインから分岐させた洗浄液を、前記モニタリング装置の前記流路に流通させて、前記試験片の洗浄状況を監視する
伝熱管の洗浄方法。 - 前記複数の伝熱管の洗浄中に、前記複数の伝熱管における前記洗浄液の流量及び温度を取得するステップと、
前記モニタリング装置の前記流路を流れる前記洗浄液の流量及び温度が、前記複数の伝熱管における前記流量及び前記温度に近づくように、前記流路を流れる前記洗浄液の流量を調節するための流量調節部、及び、前記流路を流れる前記洗浄液の温度を調節するための温度調節部の制御を行うステップと、
をさらに備えた請求項13に記載の伝熱管の洗浄方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019098121A JP7308078B2 (ja) | 2019-05-24 | 2019-05-24 | モニタリング装置及び方法並びに伝熱管の洗浄システム及び方法 |
JP2019-098121 | 2019-05-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020240914A1 true WO2020240914A1 (ja) | 2020-12-03 |
Family
ID=73545881
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/001519 WO2020240914A1 (ja) | 2019-05-24 | 2020-01-17 | モニタリング装置及び方法並びに伝熱管の洗浄システム及び方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7308078B2 (ja) |
WO (1) | WO2020240914A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013134022A (ja) * | 2011-12-27 | 2013-07-08 | Mitsubishi Heavy Ind Ltd | 水蒸気酸化スケールの除去方法 |
JP2016017659A (ja) * | 2014-07-04 | 2016-02-01 | 三菱日立パワーシステムズ株式会社 | 化学洗浄方法及び化学洗浄装置 |
KR101657030B1 (ko) * | 2016-01-09 | 2016-09-13 | 정찬웅 | 번들형 에코노마이저 |
-
2019
- 2019-05-24 JP JP2019098121A patent/JP7308078B2/ja active Active
-
2020
- 2020-01-17 WO PCT/JP2020/001519 patent/WO2020240914A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013134022A (ja) * | 2011-12-27 | 2013-07-08 | Mitsubishi Heavy Ind Ltd | 水蒸気酸化スケールの除去方法 |
JP2016017659A (ja) * | 2014-07-04 | 2016-02-01 | 三菱日立パワーシステムズ株式会社 | 化学洗浄方法及び化学洗浄装置 |
KR101657030B1 (ko) * | 2016-01-09 | 2016-09-13 | 정찬웅 | 번들형 에코노마이저 |
Also Published As
Publication number | Publication date |
---|---|
JP7308078B2 (ja) | 2023-07-13 |
JP2020193734A (ja) | 2020-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101817008B1 (ko) | 염소가스상의 고온튜브부식 측정장치, 측정방법, 그 측정장치를 이용한 분석시스템 | |
WO2019163358A1 (ja) | チューブリーク検知装置及びチューブリーク検知方法 | |
ES2389218B2 (es) | Aplicacion de dispersante para la limpieza de recorridos de recirculación de una instalación de produccion de energía durante la puesta en marcha. | |
WO2020240914A1 (ja) | モニタリング装置及び方法並びに伝熱管の洗浄システム及び方法 | |
JP4879770B2 (ja) | 熱交換器のメンテナンス装置 | |
JP6064166B2 (ja) | 熱交換システム | |
JP6619256B2 (ja) | 化学洗浄方法および化学洗浄装置 | |
JP2008039224A (ja) | 定圧貫流ボイラ構成とその運用方法 | |
CN103851953B (zh) | 管式换热器独立小流量循环化学除垢法 | |
WO2012117620A1 (ja) | 熱交換器の漏洩検査方法 | |
Tsubakizaki et al. | Water quality control technology for thermal power plants (current situation and future prospects) | |
JP4614256B2 (ja) | 試験リグ及び同装置を用いて微粒子堆積及び清浄化を評価する方法 | |
JP5654393B2 (ja) | プレート式熱交換器のメンテナンス方法 | |
CN114111430A (zh) | 在热交换器上原位形成保护性表面处理物的方法 | |
EA026327B1 (ru) | Способ химической очистки внутренних полостей водоохлаждаемых узлов и агрегатов системы водяного охлаждения дизеля тепловоза от накипно-коррозионных отложений | |
WO2020240915A1 (ja) | 試験片ホルダ及び洗浄システム並びに腐食量測定方法及び腐食量測定装置 | |
CN205237508U (zh) | 具有水路防腐特性的采煤机摇臂壳体制备装置 | |
JP2010091177A (ja) | 熱交換器 | |
Franco | Failures of heat exchangers | |
NOGUCHI et al. | Development of Chemical-Cleaning Technology Effective at Neutral pH and Ambient Temperature Condition enable Safety Improvement and Period Reduction of Maintenance of Power Generation Equipment | |
Raeymaekers | Polyamine Treatment in HP Steam System of an Ammonia Plant | |
CN118583738A (zh) | 一种传热管沉积可视化实验装置及方法 | |
CN216513102U (zh) | 一种工业循环冷却水系统在线监测加药装置 | |
KR102134916B1 (ko) | 열교환기 튜브의 보수 방법 | |
RU174133U1 (ru) | Циркуляционная проточная установка очистки систем водяного отопления от отложений на внутренней поверхности |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20813205 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20813205 Country of ref document: EP Kind code of ref document: A1 |