WO2020240755A1 - 光散乱検出装置 - Google Patents

光散乱検出装置 Download PDF

Info

Publication number
WO2020240755A1
WO2020240755A1 PCT/JP2019/021431 JP2019021431W WO2020240755A1 WO 2020240755 A1 WO2020240755 A1 WO 2020240755A1 JP 2019021431 W JP2019021431 W JP 2019021431W WO 2020240755 A1 WO2020240755 A1 WO 2020240755A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample cell
light
cell
axis
detection device
Prior art date
Application number
PCT/JP2019/021431
Other languages
English (en)
French (fr)
Inventor
佐藤 晃
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to JP2021521673A priority Critical patent/JP7070797B2/ja
Priority to PCT/JP2019/021431 priority patent/WO2020240755A1/ja
Publication of WO2020240755A1 publication Critical patent/WO2020240755A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid

Definitions

  • the present invention relates to a light scattering detection device.
  • Size exclusion chromatography SEC
  • GPC gel filtration chromatography
  • the MALS detection device includes a cell that holds a liquid sample introduced from a liquid chromatograph such as SEC or GPC, a plurality of detectors, and a light source that irradiates the liquid sample held in the cell with a laser beam. ..
  • a cylindrical cell is usually used in a MALS detector, and a liquid sample held in the cell is irradiated with light from a light source from a direction perpendicular to the central axis of the cell. When the light from the light source passes through the liquid sample, the light is radiated in the passage path with a scattering cross section depending on the fine particles contained in the liquid sample, and exits from the cell.
  • a plurality of detectors are arranged so as to surround the center of the cell so that the scattered cross sections of a plurality of directions coming out of the liquid sample (cell) can be detected at the same time. Then, the relationship between the scattered light intensity and the scattering angle is obtained from the intensity of the scattered light obtained by a plurality of detectors, and the molecular weight and size (radius of rotation) of the unknown substance in the liquid sample are calculated from this relationship. ..
  • a through hole for holding a liquid sample is formed along the diameter of the cylindrical cell, and light from a light source is emitted from one end to the other end of the through hole. The cell is irradiated so as to pass through the through hole toward the portion (see Patent Document 1).
  • a through hole for holding a liquid sample is formed along the central axis of the cylindrical cell, and the light from the light source is formed so as to cross the through hole. (See Patent Document 2).
  • the first type cell functions as a cylindrical lens with respect to the light scattered by the liquid sample (fine particles contained in) in the path of the irradiation light. Therefore, in the MALS detection device using this cell, each angular component of the scattered light is collected by the cell. Since the detector is arranged at the condensing position of each angle component, the intensity of each angle component can be detected by the corresponding detector.
  • the light source is a flow path for introducing the liquid sample from the chromatograph into the through hole and a flow path for discharging the liquid sample from the through hole. It is necessary to provide the introduction flow path and the discharge flow path with bending portions that are bent at a right angle in the vicinity of both ends of the through hole so as not to interfere with the light from.
  • the conductance of the liquid sample flowing through the flow path is greatly modulated. Such conductance modulation reduces the measurement accuracy of the chromatograph.
  • the scattered light generation region corresponds to the diameter of the cell
  • the spherical aberration is large.
  • the scattered light of the angular component having a large aberration is added to the scattered light of the angular component in the vicinity as noise, there is a problem that the angular resolution is reduced.
  • the light from the light source irradiates the cell so as to cross the through hole, so that the introduction flow paths provided on both ends of the through hole of the cell are provided. And the discharge channel does not interfere with the light from the light source.
  • the second type cell has a circular outer and inner circumference (that is, the outer circumference of the through hole), and the interface between the liquid sample flowing through the through hole and the cell and the interface between the cell and air are optically formed.
  • the function as a cylindrical lens is the same as that of the first type.
  • the light emitting region is limited to a narrow region near the center of the cell, the problem of spherical aberration is much smaller when the second type cell is used. Therefore, a MALS detector using a second type cell is useful as a detector for chromatographically separated fine particles.
  • quartz glass which is a general material for optical members, is used as the cell material. Since the refractive index (1.46) of quartz glass is larger than the refractive index (1.0) of air, the interface between the cell and air always has a converging action. On the other hand, since various kinds of solvents are used as mobile phases in chromatography, the refractive index of the solvent of the liquid sample introduced from the chromatograph is wide. Therefore, depending on the magnitude relationship between the refractive index of the liquid sample (solvent) and the refractive index of the cell, the interface between the liquid sample and the cell has a high refractive index / low refractive index interface having a converging action and a low refractive index / having a divergent action. It can be any of the high refractive index interfaces. That is, whether the interface between the liquid sample and the cell has a converging action or a dispersing action depends on the refractive index of the solvent of the liquid sample.
  • the scattered light generated in the liquid sample can be taken out from the cell as parallel light by canceling the convergence action at the interface between the cell and the air.
  • the interface between the liquid sample and the cell has a converging action
  • the scattered light is more strongly converged by being superimposed on the converging action of the interface between the cell and the air, and a focal point is formed in the immediate vicinity of the cell. Since the scattered light after passing through the focal point continues to diverge, it cannot be parallelized.
  • the emitted light can be condensed to some extent, but if the difference in refractive index between the solvent and the cell becomes large, the imaging element Even a child cannot collect light.
  • An object to be solved by the present invention is to enable a light scattering detection device to detect the intensity of scattered light generated in a liquid sample regardless of the refractive index of the solvent of the liquid sample.
  • the first aspect of the present invention made to solve the above problems is A sample cell having a cylindrical flow path through which a fluid sample flows, A light source that irradiates a laser beam toward the flow path from a direction perpendicular to the axis of the flow path, A light scattering detection device including a plurality of photodetectors arranged so as to surround the axis in a plane perpendicular to the axis.
  • the outer circumference of the sample cell is a circle centered on the axis in a cross section perpendicular to the axis, and the diameter of the circle has different dimensions along the axis. The position of the laser beam from the light source incident on the outer periphery of the sample cell can be changed.
  • a sample cell having a cylindrical flow path through which a fluid sample flows, A light source that irradiates a laser beam toward the flow path from a direction perpendicular to the axis of the flow path, A light scattering detection device including a plurality of photodetectors arranged so as to surround the axis in a plane perpendicular to the axis.
  • the sample cell With a circular tubular cell body, It is provided with a plurality of columnar optical members having different outer diameter dimensions, which are interchangeably mounted on the outer peripheral portion of the cell body.
  • the laser light from the light source when the laser light from the light source is irradiated toward the flow path of the sample cell, the laser light is scattered by the fine particles contained inside the fluid sample flowing through the flow path. It is radiated from the sample cell.
  • the scattered light generated in the flow path passes through the interface between the solvent of the fluid sample and the sample cell and the interface between the sample cell and the external space of the sample cell before coming out of the sample cell.
  • Each interface functions as a convergent lens or a divergent lens for the scattered light passing through it, and the scattered light emitted from the sample cell is parallel light, divergent light, and convergent light depending on the balance between convergence and divergence at each interface. Which one will be decided.
  • the balance between convergence and divergence at each interface is determined by the refractive index of each of the fluid sample, sample cell and exterior space, and the ratio of the inner diameter (that is, the diameter of the flow path) to the outer diameter of the sample cell.
  • the outer circumference of the sample cell is a circle centered on the axis in a cross section perpendicular to the axis of the flow path, and the diameter of the circle has different dimensions along the axis. It has become Since the incident position of the laser beam from the light source on the outer periphery of the sample cell can be changed, the outer diameter of the sample cell at the incident position of the laser beam from the light source can be changed. Therefore, by injecting the laser light from the light source into an appropriate position in the sample cell according to the refractive index of the fluid sample, the balance between convergence and divergence at each interface is adjusted, and the scattered light emitted from the sample cell is collected. It can be focused on a light detector.
  • the sample cell has a cylindrical cell body and a plurality of columnar optical members having different outer diameters, which are interchangeably mounted on the outer peripheral portion of the cell body. I have. Therefore, the ratio of the inner diameter to the outer diameter of the sample cell can be adjusted by changing the optical member mounted on the cell body. Therefore, by mounting an optical member having an appropriate outer diameter according to the refractive index of the fluid sample on the cell body, the balance between convergence and divergence at each interface is adjusted, and the scattered light emitted from the sample cell is emitted. It can be focused on a detector.
  • the schematic overall block diagram of the multi-angle light scattering detection apparatus which is one Embodiment of the light scattering detection apparatus which concerns on this invention.
  • the figure which shows the positional relationship of a beam splitter, a sample cell, an imaging optical system, and a detector.
  • FIG. 5 is a light beam diagram when a laser beam from a laser light source is applied to the sample cell of the second embodiment so that the effective diameter becomes the value of the outer diameter shown in Table 2 when the refractive index n0 of the solvent is 1.26.
  • FIG. 5 is a light beam diagram when a laser beam from a laser light source is applied to the sample cell of the second embodiment so that the effective diameter becomes the value of the outer diameter shown in Table 2 when the refractive index n0 of the solvent is 1.33.
  • FIG. 5 is a ray diagram when a laser beam from a laser light source is applied to the sample cell of the second embodiment so that the effective diameter becomes the value of the outer diameter shown in Table 2 when the refractive index n0 of the solvent is 1.492.
  • FIG. 5 is a light beam diagram when a laser beam from a laser light source is applied to the sample cell of the second embodiment so that the effective diameter becomes the value of the outer diameter shown in Table 2 when the refractive index n0 of the solvent is 1.56.
  • FIG. 5 is a light beam diagram when a laser beam from a laser light source is applied to the sample cell of the second embodiment so that the effective diameter becomes the value of the outer diameter shown in Table 2 when the refractive index n0 of the solvent is 1.56
  • FIG. 5 is a light beam diagram when a laser beam from a laser light source is applied to the sample cell of the second embodiment so that the effective diameter becomes the value of the outer diameter shown in Table 2 when the refractive index n0 of the solvent is 1.66.
  • FIG. FIG. 5 is a ray diagram when a laser beam from a laser light source is applied to the sample cell of the second embodiment when the conditions shown in Table 4 are satisfied and the refractive index n0 of the solvent is 1.26.
  • FIG. 5 is a ray diagram when a laser beam from a laser light source is applied to the sample cell of the second embodiment when the conditions shown in Table 4 are satisfied and the refractive index n0 of the solvent is 1.33.
  • FIG. 5 is a ray diagram when a laser beam from a laser light source is applied to the sample cell of the second embodiment when the conditions shown in Table 4 are satisfied and the refractive index n0 of the solvent is 1.492.
  • FIG. 5 is a ray diagram when a laser beam from a laser light source is applied to the sample cell of the second embodiment when the conditions shown in Table 4 are satisfied and the refractive index n0 of the solvent is 1.56.
  • FIG. 5 is a ray diagram when a laser beam from a laser light source is applied to the sample cell of the second embodiment when the conditions shown in Table 4 are satisfied and the refractive index n0 of the solvent is 1.66.
  • FIG. 5 is a ray diagram when a laser beam from a laser light source is applied to the sample cell of the second embodiment when the conditions shown in Table 6 are satisfied and the refractive index n0 of the solvent is 1.26.
  • FIG. 6 is a ray diagram when a laser beam from a laser light source is applied to the sample cell of the second embodiment when the conditions shown in Table 6 are satisfied and the refractive index n0 of the solvent is 1.33.
  • FIG. 5 is a ray diagram when a laser beam from a laser light source is applied to the sample cell of the second embodiment when the conditions shown in Table 4 are satisfied and the refractive index n0 of the solvent is 1.66.
  • FIG. 5 is a ray diagram when a laser beam from a laser light source is applied to the sample cell
  • FIG. 6 is a ray diagram when a laser beam from a laser light source is applied to the sample cell of the second embodiment when the conditions shown in Table 6 are satisfied and the refractive index n0 of the solvent is 1.492.
  • FIG. 5 is a ray diagram when a laser beam from a laser light source is applied to the sample cell of the second embodiment when the conditions shown in Table 6 are satisfied and the refractive index n0 of the solvent is 1.56.
  • FIG. 6 is a ray diagram when a laser beam from a laser light source is applied to the sample cell of the second embodiment when the conditions shown in Table 6 are satisfied and the refractive index n0 of the solvent is 1.66. The figure which shows the optical member of the sample cell of Embodiment 3 of this invention.
  • FIG. 1 is a schematic overall configuration diagram of a multi-angle light scattering detection device (MALS detection device), which is an embodiment of the light scattering detection device according to the present invention.
  • the MALS detection device 100 surrounds the sample cell 7 at a predetermined angle ⁇ on the cylindrical transparent sample cell 7 in which the liquid sample 71 is housed and the circumference E centered on the sample cell 7. It includes a plurality of arranged light detectors 8 and 9, and a laser light source 1 and an incoherent light source 2 that irradiate the sample cell 7 with light.
  • Laser light which is coherent light, is emitted from the laser light source 1, and incoherent light or partial coherent light is emitted from the incoherent light source 2.
  • the laser beam emitted from the laser light source 1 and traveling along the optical path L1 and the incoherent light emitted from the incoherent light source 2 and traveling along the optical path L2 are alternately selected by the sector mirror 3 and sent to the sample cell 7. It is sent to an optical path L3 having the same optical axis toward it.
  • the sector mirror 3 is composed of, for example, a rotating plate in which reflecting portions and transmitting portions are alternately arranged.
  • the rotating plate is rotationally driven in the same direction at a predetermined speed by a drive mechanism 4 such as a motor, and laser light is sent to the optical path L3 at the timing when the transmitting portion comes at the intersection of the optical paths L1 and L2, and in at the timing when the reflecting portion comes.
  • Coherent light is sent to the optical path L3.
  • the direction perpendicular to the same plane in which the photodetectors 8 and 9 are arranged is the polarization direction of the electric vector.
  • a beam splitter 5 is arranged on the optical path L3, and a part of the light radiated to the sample cell 7 is split and reflected by the beam splitter 5 and introduced into the intensity monitor detector 6.
  • the detection signal of the intensity monitor detector 6 is input to the data processing unit 11 and used to correct fluctuations in the emission intensity of the light sources 1 and 2.
  • the photodetector 8 arranged on the extension of the optical path L3 in a plan view is a detector for measuring the transmitted absorbance, and all the other photodetectors 9 are. It is a detector for multi-angle scattering measurement.
  • the detection signal by the photodetector 8 is input to the concentration calculation unit 13 included as a function in the data processing unit 11, while the detection signal by the plurality of photodetectors 9 is a particle information calculation unit included as a function in the data processing unit 11. It is input to 12.
  • the laser light emitted from the light source 1 travels along the optical path L1
  • the incoherent light emitted from the light source 2 travels along the optical path L2. Since these light fluxes are periodically and alternately selected by the sector mirror 3 and sent to the optical path L3, the liquid sample 71 in the sample cell 7 is alternately irradiated with the laser beam and the incoherent light.
  • the drive mechanism 4 that drives the sector mirror 3 is controlled by the control unit 10.
  • the control unit 10 sends a timing control signal to the data processing unit 11 indicating which of the laser light and the incoherent light is the period during which the sample 71 is irradiated, in synchronization with the rotation position of the sector mirror 3.
  • the data processing unit 11 reads the detection signal of the photodetector 8 during the period in which the incoherent light is irradiated.
  • the concentration calculation unit 13 calculates the absorbance of the sample 71 based on this detection signal, and calculates the concentration of the fine particles in the sample 71. The calculated concentration value is sent to the particle information calculation unit 12.
  • the data processing unit 11 simultaneously reads the detection signals of the plurality of photodetectors 9 during the period in which the sample 71 is irradiated with the laser beam.
  • the particle information calculation unit 12 calculates the scattered light intensity at each angular position based on these detection signals.
  • the particle information calculation unit 12 calculates the molecular weight, turning radius, and the like of the fine particles contained in the sample 71 based on the scattered light intensity at each angle position and the concentration value of the fine particles in the sample.
  • FIG. 2 is a schematic view showing the positional relationship between the beam splitter 5, the sample cell 7, and the detector 9 in the MALS detector 100.
  • the detector 9 is located on the extension of the optical path L3, but in reality, all of the plurality of detectors 9 are located outside the extension of the optical path L3.
  • the sample cell 7 depicted in FIG. 2 is conventionally generally used in a MALS detection device.
  • an imaging optical system 20 composed of a slit plate 21 having a slit for limiting scattered light and a plano-convex lens 22 is arranged between the sample cell 7 and the photodetector 9.
  • the slit of the slit plate 21 has a vertically long rectangular shape in order to limit the scattering angle in the horizontal direction and to take in a large amount of light flux in the vertical direction.
  • the sample cell 7, the imaging optical system 20, and the imaging optical system 20 are arranged so that each angle component of the scattered light emitted from the sample cell 7 in various directions is focused on the light receiving surface of the corresponding photodetector 9. And the arrangement of the photodetector 9 is set.
  • each angle component of the scattered light emitted from the sample cell 7 to be focused on the light receiving surface of the photodetector 9 after passing through the imaging optical system 20, each angle component should be as close to parallel light as possible. It is desirable that the light incident on the imaging optical system 20.
  • the sample cell 7 has a through hole (flow path) having a circular cross section formed along the central axis, and the liquid sample 71 is housed in the through hole.
  • the laser beam emitted to the sample cell 7 is scattered by the fine particles contained in the liquid sample 71 when crossing the through hole, and is scattered at the interface between the liquid sample 71 (solvent) and the sample cell 7 and the sample cell 7 and its outside ( After passing through the interface with air), the sample cell 7 emits light. Whether or not each angular component of the scattered light generated in the liquid sample 71 is emitted from the sample cell 7 as parallel light depends on the optical function of these interfaces. Therefore, first, the optical function of the interface of the sample cell 7, which is generally used in the MALS detection device, was verified. The verification results will be described below.
  • the sample cell on the left side of FIG. 3 holds a liquid sample having a refractive index n0 of the solvent of 1.26, and the sample cell on the right side holds a liquid sample having a refractive index n0 of the solvent of 1.66.
  • the light rays incident on the liquid sample from the sample cell are largely converged regardless of whether the refractive index n0 of the solvent is smaller than the refractive index n1 of the sample cell (left side) or larger (right side). It can be seen that it passes through the liquid sample in a state of being substantially parallel without divergence. Born approximation is established from the ratio of the width of the light beam to the inner and outer diameters of the sample cell, and from the intensity ratio of the excitation light and the scattered light, and the influence of multiple scattering can be excluded.
  • a line segment having a length corresponding to the inner diameter of the sample cell and having no width is emitted in the light emitting region (light source region) of the scattered light when the parallel light (laser light) is incident on the liquid sample held in the sample cell. Approximate as.
  • Scattered light is emitted from the above-mentioned light emitting region in various directions.
  • the normal direction the azimuth angle of the laser light incident on the sample cell is 0 °
  • the azimuth angle of the scattered light is defined as ⁇ 0
  • the refractive index n0 of the solvent is 1.26 ((a), for example, fluorescent solvent), 1.36 ((b), for example, ethanol), 1.46 ((c), for example, fluorobenzene), 1.56 ((d), for example, nitrobenzene). ), 1.66 ((e), for example, quinoline) is a ray diagram of scattered light emitted in the normal direction from the light emitting region of the liquid sample.
  • 1.66 ((e), for example, quinoline) is a ray diagram of scattered light emitted in the normal direction from the light emitting region of the liquid sample.
  • air exists in the external space of the sample cell, and its refractive index n2 is 1.0.
  • the solvent / cell interface At the interface between the liquid sample and the sample cell (hereinafter referred to as the "solvent / cell interface"), when n0 ⁇ n1 (when FIGS.
  • the interface between the sample cell and the outside (hereinafter referred to as "cell / air interface") always functions as a focusing lens. To do. Therefore, as shown in FIG. 5, the solvent / cell interface functions as a divergent lens. In the cases (a) and (b), the divergence and convergence cancel each other out, and in the case of (b) in particular, the parallel component of the scattered light. Most of them are emitted from the sample cell as almost parallel rays.
  • the convergence action of the cell / air interface and the solvent / cell interface function as a focusing lens in (d) and (e).
  • the light emitted from the sample cell is focused on a predetermined focal point by superimposing the convergence action.
  • the focus is focused in the immediate vicinity of the sample cell, and the divergence continues after that.
  • FIG. 7 is an intensity distribution diagram when a liquid sample having a solvent refractive index n0 of 1.56 (nitrobenzene) and (e) a solvent having a refractive index n0 of 1.66 (quinolin) is held in a sample cell.
  • n0 solvent refractive index
  • FIGS. 7 (a) to 7 (e) Nine spectra are drawn in each of FIGS. 7 (a) to 7 (e), and these are azimuth dispersion spectra of nine parallel components having an azimuth angle ⁇ 0 of 10 ° to 90 ° at 10 ° intervals. Equivalent to. From FIG. 7, it can be seen that the azimuth dispersion (spreading) of light is maximized when the azimuth angle ⁇ 0 is 90 °, regardless of the magnitude of the refractive index n0 of the solvent.
  • the width of the scattered light emitted from the light emitting region at the azimuth angle ⁇ 0 is represented by 2R ⁇ sin ⁇ 0, so that the azimuth angle ⁇ 0 is 90 °.
  • the width of the scattered light is equal to and maximum of the inner diameter (diameter) 2R of the sample cell. Therefore, among the light emitted from the sample cell, it is expected that the azimuth dispersion (spreading) of the light derived from the scattered light having an azimuth angle ⁇ 0 of 90 ° is maximized, but this is actually the case.
  • FIG. 8 shows the relationship between the azimuth angle ⁇ 0 and the full width at half maximum ( ⁇ 2) of the azimuth angle ⁇ 2 in the model shown in FIG. 6A.
  • the horizontal axis is the azimuth angle ⁇ 0
  • the vertical axis is the full width at half maximum ⁇ 2.
  • (a) to (e) in FIG. 8 correspond to (a) to (e) in FIG. 7, respectively.
  • the divergence action of the solvent / cell interface and the convergence action of the cell / air interface are almost completely canceled regardless of the azimuth angle ⁇ 0.
  • the half-value full width is very small and light rays with good parallelism are emitted from the sample cell.
  • a standard lens can be used to form a focal point with less aberration.
  • the full width at half maximum increases as the azimuth angle ⁇ 0 increases, and (d)
  • the full width at half maximum was 5 ° when the azimuth angle ⁇ 0 was about 15 °
  • the azimuth angle ⁇ 0 was 10 °. This means that most of the angular components of the scattered light have a dispersion width of more than 10 ° when they are emitted from the charge cell, and it is difficult to collect each angular component of the scattered light.
  • the light intensity of the scattered light shown in FIG. 7 is a weight proportional to the density of the light beam emitted from the sample cell in consideration of the transmittance at each interface through which the scattered light is emitted from the sample cell. It is calculated by multiplying by a coefficient.
  • the overall weighting coefficient is standardized so that the weighting coefficient of the central ray among the rays emitted from the sample cell by the scattered light at each scattering angle is "1".
  • the weighting coefficient is "1".
  • the scattered light intensity may exceed "1", which is not an error in the calculation.
  • the balance between the convergence action and the divergence action at the solvent / cell interface and the cell / air interface is important.
  • the present inventor focused on the ratio of the inner diameter to the outer diameter of the sample cell as one of the factors that determine the balance between the convergence action and the divergence action at these interfaces.
  • Table 1 shows a sample cell made of synthetic quartz having a refractive index n1 of 1.46 and an inner diameter (radius) r1 of 0.8 mm, and a solvent having a lower refractive index than this sample cell (a fluorescent solvent having a refractive index n0 of 1.26, refraction).
  • the "optimal outer diameter (radius) r2" is defined as the outer diameter (radius) when the angular spread (full width at half maximum) ⁇ 2 (region where the light intensity is 0.5 or more) of the light ray emitted from the sample cell is minimized.
  • Table 1 shows the optimum value of the outer diameter (radius) r2 in each solvent, the angle spread ⁇ 2 at that time, and the energy ratio concentrated in the range of the angle spread angle ⁇ 2.
  • FIG. 9 is a ray diagram of scattered light having an azimuth angle ⁇ 0 of 90 ° under the conditions of Table 1
  • FIG. 10 is a light intensity distribution diagram under the same conditions. Similar to FIG. 7, in FIG. 10, the light intensity was calculated by reflecting the weight coefficient of the transmittance and the light ray density at the interface.
  • Table 2 shows a sample cell made of a high refractive index material having a refractive index n1 of 1.91 and an inner diameter (radius) r1 of 0.8 mm, and a liquid sample having a refractive index n0 of a solvent of 1.26, 1.333, 1.492, 1.56, 1.66. The optimum outer diameter (diameter) r2 when housed is shown.
  • Examples of the high-refractive index material having a refractive index of 1.91 include high-refractive index glass (product number K-LaSFn23) of Sumita Optical Glass, Inc. This high refractive index glass has a refractive index of 1.91 in light having a wavelength of 589 nm (sodium D line). From Table 2, it can be seen that the optimum outer diameter r2 differs depending on the refractive index n0 of the solvent.
  • the scattered light generated in the light emitting region is emitted from the sample cell while maintaining its parallelism. This means that if the outer diameter of the sample cell can be changed according to the refractive index of the liquid sample solvent held in the sample cell, the scattered light can be used as a parallel component of the scattered light generated in the light emitting region. It means that it can be parallelized again when it emits from.
  • sample cell 107 as shown in FIG. 11A as a sample cell in which the outer diameter r2 can be continuously changed according to the refractive index n0 of the solvent.
  • This sample cell 107 is the first embodiment of the present invention.
  • the sample cell 107 has a truncated cone-shaped portion (truncated cone-shaped portion) 110 and cylindrical portions 111 and 112 above and below the truncated cone-shaped portion 110 coaxially.
  • the sample cell 107 is formed with a hole 113 having a constant inner diameter r1 that penetrates the sample cell 107 along its central axis, and the liquid sample is housed in the hole 113. Therefore, the hole 113 becomes the flow path of the present invention.
  • the light from the laser light source 1 irradiates the truncated cone-shaped portion 110 so as to penetrate the hole 113.
  • the laser light source 1 can be moved in the vertical direction by the drive mechanism 115 (corresponding to the position changing means of the present invention), and the height at which the laser light is incident on the sample cell 107. The position can be changed.
  • the drive mechanism 115 also moves the photodetector 9 in the vertical direction in synchronization with the laser light source 1. Since the inner diameter r1 of the hole 113 is constant, the length of the light emitting region is equal to the inner diameter of the hole (2 ⁇ r1) and is constant even if the height position where the light from the laser light source 1 is incident changes.
  • the truncated cone-shaped portion 110 and the columnar portions 111 and 112 may be integrally formed, but as in the second embodiment shown in FIGS. 12A and 12B, the sample cell 107 and the cylindrical cell body 121
  • the sample cell 120 may be configured from a truncated cone-shaped optical member 122 mounted on the outer periphery thereof.
  • the height position of the laser light source 1 (and the detector 9) is as shown in FIGS. 11B and 11C. Will be changed.
  • the sample cell 120 as shown in FIGS.
  • the moving mechanism 125 for moving the optical member 122 up and down is provided.
  • the height position of the sample cell 107 may be changed while keeping the height positions of the laser light source 1 and the detector 9.
  • the optical member 122 may be manually moved up and down. In this case, the moving mechanism 125 becomes unnecessary.
  • 13A to 13E show the effective diameters when the laser beam from the laser light source 1 is applied to the arrangement of the sample cell 120 and the sample cell 120 and the imaging lens 22 satisfying the conditions shown in Table 3 below.
  • the light beam diagram when the optical member 122 is moved up and down so as to have the value of the indicated outer diameter (radius) is shown.
  • the effective diameter refers to the outer diameter (radius) of the sample cell 120 (optical member 122) in the horizontal plane containing the laser beam passing through the inside of the sample cell 120.
  • the imaging optical system 20 (condensing) takes into consideration the refraction angle when this horizontal component exits the sample cell 120.
  • the imaging optical system 20 (condensing optical system) and the light detector 9 are arranged so that the angle ⁇ formed by the optical axis of the optical system) and the optical detector 9 and the horizontal plane is -10.69 °.
  • the interface between the liquid sample and the cell body 121 (hereinafter referred to as the "first interface"), and the interface between the cell body 121 and the optical member 122. (Hereinafter referred to as “second interface”) and the function of the interface between the optical member 122 and the air (hereinafter referred to as “third interface”) (function of first interface ⁇ function of second interface ⁇ function of third interface) are as follows. It becomes the street.
  • the cell 120 was used, it was verified whether or not the focal point could be formed at the same point even if the refractive index n0 of the solvent was changed.
  • 15A to 15E show that when the sample cell 120 is irradiated with the laser beam from the laser light source 1 when the conditions shown in Table 4 below are satisfied, the light emitted from the sample cell 120 is applied to the light receiving surface of the photodetector.
  • a ray diagram is shown when the optical member 122 is moved up and down so as to form a focal point.
  • the relationship shown in Table 4 corresponds to the relationship (2).
  • Table 5 shows the relationship between the refractive index n0 of the solvent and the effective diameter (outer diameter (radius) r2) of the sample cell in the ray diagrams shown in FIGS. 15A to 15E.
  • FIGS. 16A to 16E when the sample cell 120 is irradiated with the laser beam from the laser light source 1 when the conditions shown in Table 6 below are satisfied, the light emitted from the sample cell 120 receives light from the photodetector.
  • a ray diagram is shown when the optical member 122 is moved up and down so as to form a focal point on the surface.
  • the relationship shown in Table 6 corresponds to the relationship (5).
  • Table 5 shows the relationship between the refractive index n0 of the solvent and the effective diameter (outer diameter (radius) r2) of the sample cell in the ray diagrams shown in FIGS. 16A to 16E.
  • the light beam emitted from the sample cell 120 heads toward the lens while maintaining the parallel state, whereas the table shows.
  • the light emitted from the sample cell 120 once forms a focal point in the vicinity of the sample cell 120 and then heads toward the lens. Since the focal point can be regarded as a spherical wave source, the group of light rays from the focal point toward the lens becomes divergent light (spherical wave (divergent wave surface)), and not only the imaging optical system corresponding to the scattering angle but also the imaging adjacent to it. It also incidents on the optical system. Therefore, the angular resolution is lower than the conditions shown in Table 4.
  • FIG. 17 shows the optical member 130 of the sample cell of the third embodiment.
  • the optical member 130 has a substantially truncated cone shape in which a part of the outer peripheral portion is missing, and is mounted on the outer peripheral portion of the cell body 121 of the second embodiment so as to be vertically movable.
  • the optical member 130 has a hole 131 into which the cell body 121 is inserted.
  • the outer peripheral surface of the optical member 130 has a flat surface 132 parallel to the hole 131.
  • the flat surface 132 is a surface on which the laser light LT from the laser light source 1 is incident.
  • the laser beam LT incident on the flat surface 132 of the optical member 130 goes straight as it is, and when it is emitted, it goes slightly below the horizontal plane. Therefore, in the third embodiment, the positional relationship of the laser light source 1 with respect to the sample cell can be easily selected. On the other hand, there is a drawback that the scattered light emitted between the directions D1 and the direction D2 shown by the two-point difference line in FIG. 17 cannot be detected.
  • FIG. 18 shows the optical member 140 of the sample cell of the fourth embodiment.
  • the optical member 140 has a substantially truncated cone shape in which a part of the outer peripheral portion is missing, and is mounted on the outer peripheral portion of the cell body 121 of the second embodiment so as to be vertically movable.
  • the optical member 140 has a hole 141 into which the cell body 121 is inserted. Further, there are two defective portions on the outer peripheral surface of the optical member 140 with the hole 141 interposed therebetween, and these are the incident portion 142 and the emitting portion 143 of the laser beam LT.
  • the laser beam LT incident from the incident portion 142 advances in the horizontal direction and is emitted from the emitting portion 143 in the horizontal direction. Therefore, in the fourth embodiment, the positional relationship between the laser light source 1 and the detector 8 with respect to the sample cell can be easily selected. However, there is a drawback that scattered light emitted between the directions D1 and D2 and between the directions D3 and D4 shown by the two-point difference line in FIG. 18 cannot be detected.
  • FIG. 19 shows the sample cell 150 of the fifth embodiment.
  • the sample cell 150 is composed of a columnar member 151 having a truncated cone-shaped hole 152 inside.
  • the light from the laser light source 1 irradiates the columnar member 151 so as to pass through the center of the hole 152.
  • the laser light source 1 can be moved in the vertical direction by the drive mechanism 115.
  • the outer diameter (radius) of the columnar member 151 changes.
  • the inner diameter (radius) of the hole 152 changes. Therefore, the ratio of the inner diameter to the outer diameter of the sample cell 150 changes depending on the incident position of the light from the laser light source 1. Therefore, also in this embodiment, the light from the laser light source 1 is incident on the sample cell 150 at an appropriate height position according to the refractive index of the solvent of the liquid sample held in the sample cell 150.
  • the parallel components of the scattered light generated in the light emitting region of 150 can be parallelized again when the scattered light is emitted from the sample cell 150.
  • FIG. 20 shows the sample cell 160 of the sixth embodiment.
  • the sample cell 160 has a cylindrical cell body 161 and an optical member 162 having a shape in which a plurality of cylindrical portions 1621-1624 having different outer diameter dimensions are laminated so as to be vertically movable on the outer peripheral portion thereof. doing.
  • the laser beam from the laser light source 1 is incident on the outer peripheral surface of any of the columnar portions 1621 to 1624.
  • the outer diameter of the sample cell 160 can be changed by changing the location where the laser beam is incident.
  • the laser beam can be incident from the direction perpendicular to the flow path, and the laser light source 1 and the photodetectors 8 and 9 are arranged. It can be set easily.
  • FIG. 21 shows the sample cell 170 of the seventh embodiment.
  • the sample cell 170 includes a cylindrical cell body 171 and a plurality of optical members 172 and 173 that are detachably attached to the outer peripheral portion thereof.
  • the optical members 172 and 173 can be divided into two, respectively, and the optical members 172 and 173 are divided into two when they are attached to the cell body 171 and when they are removed from the cell body 171.
  • the optical members 172 and 173 have different outer diameter dimensions, and the outer diameter dimension of the sample cell 170 can be changed depending on which of the optical members 172 is attached to the cell body 171.
  • the light scattering detection device is A sample cell having a cylindrical flow path through which a fluid sample flows, A light source that irradiates a laser beam toward the flow path from a direction perpendicular to the axis of the flow path, A device including a plurality of photodetectors arranged so as to surround the axis in a plane perpendicular to the axis.
  • the outer circumference of the sample cell is a circle centered on the axis in a cross section perpendicular to the axis, and the diameter of the circle has different dimensions along the axis. The position of the laser beam from the light source incident on the outer periphery of the sample cell can be changed.
  • the balance between convergence and divergence at each interface is adjusted by injecting a laser beam from a light source into an appropriate position of a sample cell according to the refractive index of a fluid sample.
  • the scattered light emitted from the sample cell can be focused on the light detector.
  • a position changing means for changing the relative positions of the light source and the plurality of photodetectors with respect to the sample cell in a direction along the axis is provided.
  • the position changing means may be composed of the moving mechanism of the sample cell, or may be composed of the moving mechanism of the light source and the plurality of photodetectors.
  • the moving mechanism may be a mechanism capable of automatically moving the sample cell or the set of the light source and the plurality of photodetectors, or a mechanism capable of manually moving the sample cell or a set of the plurality of photodetectors.
  • the sample cell With a circular tubular cell body, It includes a truncated cone-shaped optical member mounted on the outer peripheral portion of the cell body and movable in a direction along the axis.
  • the spread of the light flux to be radiated from the scattered light generated in the flow path can be controlled only by moving the truncated cone-shaped optical member up and down.
  • the optical member is a surface on which a laser beam from the light source is incident, and has a flat surface perpendicular to the optical axis of the laser beam.
  • the laser beam is incident on the sample cell through the flat surface, when the laser beam is irradiated toward the sample cell from a direction perpendicular to the axis of the flow path, it is external.
  • the laser beam is not refracted at the interface between the space and the sample cell. Therefore, the positional relationship between the sample cell and the light source can be easily set.
  • the interface is flat, light scattering at the interface that causes noise can be suppressed.
  • the optical member is cut out at a portion through which the laser beam from the light source passes.
  • the laser beam passes through the cut portion, the laser beam is not refracted when the laser beam enters the sample cell and when the laser beam is emitted from the sample cell. Therefore, the positional relationship between the sample cell, the light source, and the photodetector can be easily set. Moreover, since the interface is flat, light scattering at the interface that causes noise can be suppressed.
  • the sample cell With a circular tubular cell body, It includes an optical member attached to the outer peripheral portion of the cell body, which is composed of a plurality of columnar portions having different outer diameter dimensions and can move in a direction along the axis.
  • the light scattering detection device it is not necessary to consider the refraction of the cell flow path parallel component of the laser light on the surface where the laser light is incident and the surface where the laser light is emitted from the sample cell. Further, it is not necessary to consider the refraction of the cell flow path parallel component of the scattered light on the surface from which the scattered light is emitted from the sample cell. Therefore, the positional relationship between the light source and the photodetector with respect to the sample cell can be easily selected.
  • the light scattering detection device is A sample cell having a cylindrical flow path through which a fluid sample flows, A light source that irradiates a laser beam toward the flow path from a direction perpendicular to the axis of the flow path, A light scattering detection device including a plurality of photodetectors arranged so as to surround the axis in a plane perpendicular to the axis.
  • the sample cell With a circular tubular cell body, It is provided with a plurality of columnar optical members having different outer diameter dimensions, which are interchangeably mounted on the outer peripheral portion of the cell body.
  • the scattered light emitted from the sample cell is detected by the photodetector by mounting an optical member having an appropriate outer diameter according to the refractive index of the fluid sample on the cell body. can do.
  • Laser light source 107 120, 150, 160, 170 ...
  • Sample cell 110 Frustrated cone 111 . Cylindrical portion 115, 125 ... Moving mechanism (position changing means) 121, 161, 171 ... Cell body 122, 130, 140, 162, 172, 173 ...
  • Optical member 20 ... Imaging optical system 9 . Photodetector 100 ... Multi-angle light scattering detector

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Optical Measuring Cells (AREA)

Abstract

本発明に係る光散乱検出装置は、流体試料が流通する円筒状の流路を有する試料セルと、前記流路に向けてレーザ光を照射する光源と、前記流路の軸に垂直な面内で該軸を取り囲むように配置された複数の光検出器とを備える光散乱検出装置であって、前記試料セルの外周が、前記軸に垂直な断面において、前記軸を中心とする円となっているとともに、該円の径が前記軸に沿って異なる寸法となっており、前記光源からのレーザ光の前記試料セルの外周への入射位置が変更可能に構成されている。

Description

光散乱検出装置
 本発明は、光散乱検出装置に関する。
 液体試料中に分散しているタンパク質やポリマー等の比較的大きな分子量の微粒子を分離する手法として、サイズ排除クロマトグラフィ(SEC)、ゲルろ過クロマトグラフィ(GPC)が知られている。これらの手法により分離された微粒子の検出器の一つに多角度光散乱検出装置(以下、MALS検出装置という)がある。
 MALS検出装置は、SEC、GPC等の液体クロマトグラフから導入される液体試料を保持するセルと、複数の検出器と、該セルに保持された液体試料にレーザ光を照射する光源を備えている。MALS検出装置では通常、円筒形のセルが用いられ、該セルに保持された液体試料に対して、該セルの中心軸と垂直な方向から光源からの光が照射される。光源からの光が液体試料を通過することにより、該通過経路においてその光が、液体試料に含まれる微粒子に依存する散乱断面積を以て輻射され、セルから出てくる。この、液体試料(セル)から出てくる複数の方位の散乱断面積を同時に検出することができるように、セルを中心を取り囲むように複数の検出器が配置される。そして、複数の検出器によって得られた散乱光の強度から、散乱光強度と散乱角との関係が求められ、この関係から液体試料中の未知物質の分子量やサイズ(回転半径)が算出される。
 MALS検出装置で用いられるセルには大きく分けて2つのタイプがある。第1のタイプのセルは、液体試料を保持するための貫通孔が円柱形の該セルの直径に沿って形成されており、光源からの光は、貫通孔の一方の端部から他方の端部に向かって貫通孔内を通過するようにセルに照射される(特許文献1参照)。一方、第2のタイプのセルは、液体試料を保持するための貫通孔が円筒状のセルの中心軸に沿って形成されており、光源からの光は、該貫通孔を横切るように、セルに照射される(特許文献2参照)。
 第1タイプのセルは、照射光の経路において液体試料(に含まれる微粒子)で散乱された光に対してシリンドリカルレンズとして機能する。したがって、このセルを用いたMALS検出装置では、散乱光の各角度成分はセルによって集光される。各角度成分の集光位置に検出器が配置されているため、各角度成分の強度は、それに対応する検出器によって検出することができる。
 しかしながら、第1タイプのセルは、貫通孔に沿って光源からの光を通過させるため、クロマトグラフから貫通孔に液体試料を導入する流路および該貫通孔から液体試料を排出する流路が光源からの光と干渉しないように、該貫通孔の両端部付近で直角に折れ曲がる屈曲部位を導入流路及び排出流路に設ける必要がある。屈曲部位では流路を流れる液体試料のコンダクタンスが大きな変調を受ける。このようなコンダクタンスの変調はクロマトグラフの測定精度の低減を招く。
 また、第1タイプのセルでは、散乱光の発生領域が該セルの直径に相当するため、球面収差が大きい。収差が大きい角度成分の散乱光がノイズとしてその近傍の角度成分の散乱光に加わると、角度分解能が低減するという問題がある。
 これに対して、第2タイプのセルを用いたMALS検出装置では、光源からの光が、貫通孔を横切るようにセルに照射されるため、セルの貫通孔の両端側に設けられる導入流路及び排出流路が光源からの光と干渉することはない。また、第2タイプのセルは、外周および内周(つまり貫通孔の外周)断面が円形状であり、貫通孔を流れる液体試料とセルとの界面、およびセルと空気との界面は光学的にシリンドリカルレンズとして機能することは第1タイプと同様である。しかし、発光領域がセルの中心近傍の狭い領域に限定されるため、第2タイプのセルを用いた場合には、球面収差の問題が遥かに小さい。したがって、第2タイプのセルを用いたMALS検出器は、クロマトグラフィで分離された微粒子の検出器として有用である。
特開平07-072068号公報 特開2008-032548号公報
 通常、セルの材料には光学部材の一般的な材料である石英ガラスが用いられる。石英ガラスの屈折率(1.46)は空気の屈折率(1.0)よりも大きいため、セルと空気の界面は常に収束作用を有する。一方、クロマトグラフィでは様々な種類の溶媒が移動相として用いられるため、クロマトグラフから導入される液体試料の溶媒の屈折率は広範囲にわたる。したがって、液体試料(溶媒)の屈折率とセルの屈折率との大小関係によって、液体試料とセルの界面は、収束作用を有する高屈折率/低屈折率界面、発散作用を示す低屈折率/高屈折率界面のいずれにも成り得る。つまり、液体試料とセルの界面が収束作用、分散作用のいずれを有するかは、液体試料の溶媒の屈折率に依存する。
 液体試料とセルの界面が発散作用を有する場合は、セルと空気の界面の収束作用と相殺することにより、液体試料で生じた散乱光を平行光としてセルから取り出すことができる。一方、液体試料とセルの界面が収束作用を有する場合は、セルと空気の界面の収束作用と重畳されることにより散乱光はより強く収束され、セルのごく近傍に焦点を形成する。焦点を通過した後の散乱光は発散の一途を辿るため、平行光化することができない。試料セルと検出器の間にレンズや回折素子、曲面鏡等の結像素子を配置すれば発散する光をある程度集光することができるが、溶媒とセルの屈折率差が大きくなると、結像素子によっても集光することができない。
 本発明が解決しようとする課題は、光散乱検出装置において、液体試料の溶媒の屈折率に関係なく、該液体試料で生じた散乱光の強度を検出できるようにすることである。
 上記課題を解決するために成された本発明の第1の態様は、
 流体試料が流通する円筒状の流路を有する試料セルと、
 前記流路に向けて該流路の軸に垂直な方向からレーザ光を照射する光源と、
 前記軸に垂直な面内で該軸を取り囲むように配置された複数の光検出器とを備える光散乱検出装置であって、
 前記試料セルの外周が、前記軸に垂直な断面において該軸を中心とする円となっているとともに、該円の径が前記軸に沿って異なる寸法となっており、
 前記光源からのレーザ光の前記試料セルの外周への入射位置が変更可能に構成されている。
 また、上記課題を解決するために成された本発明の第2の態様は、
 流体試料が流通する円筒状の流路を有する試料セルと、
 前記流路に向けて該流路の軸に垂直な方向からレーザ光を照射する光源と、
 前記軸に垂直な面内で該軸を取り囲むように配置された複数の光検出器とを備える光散乱検出装置であって、
 前記試料セルが、
 円管状のセル本体と、
 前記セル本体の外周部に交換可能に装着される、外径寸法が異なる複数の円柱状の光学部材とを備えている。
 本発明に係る光散乱検出装置では、光源からのレーザ光が試料セルの流路に向けて照射されると、流路を流通する流体試料の内部に含まれる微粒子によって該レーザ光は散乱され、試料セルから輻射される。流路内で発生した散乱光は試料セルから出てくるまでの間に流体試料の溶媒と試料セルの界面、および試料セルと該試料セルの外部空間との界面を通過する。各界面は、そこを通過する散乱光に対して収束レンズ又は発散レンズとして機能し、各界面における収束と発散のバランスによって、試料セルから出てくる散乱光が平行光、発散光、および収束光のいずれになるかが決まる。各界面における収束と発散のバランスは、流体試料、試料セルおよび外部空間それぞれの屈折率、試料セルの内径(つまり、流路の直径)と外径の比によって決まる。
 本発明の第1の態様では、試料セルの外周が、流路の軸に垂直な断面において該軸を中心とする円となっているとともに、該円の径が前記軸に沿って異なる寸法となっており、
前記光源からのレーザ光の前記試料セルの外周への入射位置が変更可能に構成されているため、光源からのレーザ光の入射位置における試料セルの外径を変更することができる。したがって、流体試料の屈折率に応じて光源からのレーザ光を試料セルの適宜な位置に入射させることにより、各界面における収束と発散のバランスを調整して、試料セルから出てくる散乱光を光検出器に集光させることができる。
 また、本発明の第2の態様では、試料セルが、円管状のセル本体と、該セル本体の外周部に交換可能に装着される、外径寸法が異なる複数の円柱状の光学部材とを備えている。このため、セル本体に装着する光学部材を変更することにより、試料セルの内径と外径の比を調整することができる。したがって、流体試料の屈折率に応じた適宜の外径寸法の光学部材をセル本体に装着することによって、各界面における収束と発散のバランスを調整して、試料セルから出てくる散乱光を光検出器に集光させることができる。
本発明に係る光散乱検出装置の一実施形態である多角度光散乱検出装置の概略的な全体構成図。 ビームスプリッタ、試料セル、結像光学系、及び検出器の位置関係を示す図。 液体試料に平行光が入射したときの散乱光の発生領域の説明図。 散乱光発生領域から出射する散乱光の平行成分の説明図。 溶媒の屈折率が異なる液体試料における散乱光発生領域から法線方位に出射した散乱光の光線図。 発光領域から出射する散乱光の方位角θ0、および試料セルから出射する光の方位角θ2の説明図。 発光領域から出射する散乱光の方位角θ0と該散乱光束の幅の関係を説明する図。 試料セルから出射する光の方位角θ2と光強度分布の関係を示すグラフ。 発光領域から出射する散乱光の方位角θ0と試料セルから出射する方位角θ2の半値全幅(Δθ2)との関係を示すグラフ。 表1の条件下における方位角θ0が90°の散乱光の光線図。 表1の条件下における方位角θ0が90°の散乱光の光強度分布図。 本発明の実施形態1の試料セルの斜視図。 実施形態1の試料セルに対して光源部からの光が入射する様子を示す図。 実施形態1の試料セルに対して別の高さ位置に光源部からの光が入射する様子を示す図。 本発明の実施形態2の試料セルの斜視図。 本発明の実施形態2の試料セルの円錐台状部材を移動させたときの斜視図。 溶媒の屈折率n0が1.26のときに、実効径が表2に示す外径の値になるように、実施形態2の試料セルに対してレーザ光源からのレーザ光を照射したときの光線図。 溶媒の屈折率n0が1.33のときに、実効径が表2に示す外径の値になるように、実施形態2の試料セルに対してレーザ光源からのレーザ光を照射したときの光線図。 溶媒の屈折率n0が1.492のときに、実効径が表2に示す外径の値になるように、実施形態2の試料セルに対してレーザ光源からのレーザ光を照射したときの光線図。 溶媒の屈折率n0が1.56のときに、実効径が表2に示す外径の値になるように、実施形態2の試料セルに対してレーザ光源からのレーザ光を照射したときの光線図。 溶媒の屈折率n0が1.66のときに、実効径が表2に示す外径の値になるように、実施形態2の試料セルに対してレーザ光源からのレーザ光を照射したときの光線図。 実施形態2の試料セルに対するレーザ光源、結像光学系、および光検出器の配置を示す図。 表4に示す条件を満たし、且つ、溶媒の屈折率n0が1.26のときに、実施形態2の試料セルに対してレーザ光源からのレーザ光を照射したときの光線図。 表4に示す条件を満たし、且つ、溶媒の屈折率n0が1.33のときに、実施形態2の試料セルに対してレーザ光源からのレーザ光を照射したときの光線図。 表4に示す条件を満たし、且つ、溶媒の屈折率n0が1.492のときに、実施形態2の試料セルに対してレーザ光源からのレーザ光を照射したときの光線図。 表4に示す条件を満たし、且つ、溶媒の屈折率n0が1.56のときに、実施形態2の試料セルに対してレーザ光源からのレーザ光を照射したときの光線図。 表4に示す条件を満たし、且つ、溶媒の屈折率n0が1.66のときに、実施形態2の試料セルに対してレーザ光源からのレーザ光を照射したときの光線図。 表6に示す条件を満たし、且つ、溶媒の屈折率n0が1.26のときに、実施形態2の試料セルに対してレーザ光源からのレーザ光を照射したときの光線図。 表6に示す条件を満たし、且つ、溶媒の屈折率n0が1.33のときに、実施形態2の試料セルに対してレーザ光源からのレーザ光を照射したときの光線図。 表6に示す条件を満たし、且つ、溶媒の屈折率n0が1.492のときに、実施形態2の試料セルに対してレーザ光源からのレーザ光を照射したときの光線図。 表6に示す条件を満たし、且つ、溶媒の屈折率n0が1.56のときに、実施形態2の試料セルに対してレーザ光源からのレーザ光を照射したときの光線図。 表6に示す条件を満たし、且つ、溶媒の屈折率n0が1.66のときに、実施形態2の試料セルに対してレーザ光源からのレーザ光を照射したときの光線図。 本発明の実施形態3の試料セルの光学部材を示す図。 本発明の実施形態4の試料セルの光学部材を示す図。 本発明の実施形態5の試料セルの光学部材を示す図。 本発明の実施形態6の一部の円柱状部を断面にて示す試料セルの図。 本発明の実施形態7の試料セルを示す図。
 以下、本発明の実施形態に係る光散乱検出装置について、図面を参照して説明する。
<1.光散乱検出器の構成>
 図1は、本発明に係る光散乱検出装置の一実施形態である多角度光散乱検出装置(MALS検出装置)の概略的な全体構成図である。このMALS検出装置100は、液体試料71が収容される、円筒状の透明な試料セル7と、該試料セル7を中心にした円周E上に、該試料セル7を取り囲んで所定角度θに配置された複数の光検出器8、9と、試料セル7に光を照射する、レーザ光源1とインコヒーレント光源2とを備えている。レーザ光源1からはコヒーレント光であるレーザ光が出射され、インコヒーレント光源2からはインコヒーレント光又は部分コヒーレント光が出射される。
 レーザ光源1から出射され光路L1に沿って進むレーザ光と、インコヒーレント光源2から出射されて光路L2に沿って進むインコヒーレント光とは、セクタ鏡3により交互に選択されて、試料セル7に向かう同一光軸を有する光路L3へと送られる。セクタ鏡3は、例えば反射部と透過部とが交互に配置された回転板から成る。回転板はモータ等の駆動機構4により所定速度で同一方向に回転駆動され、光路L1とL2の交差部に透過部が来るタイミングではレーザ光が光路L3に送られ、反射部が来るタイミングではインコヒーレント光が光路L3に送られる。レーザ光とインコヒーレント光とは共に、光検出器8、9が配置されている同一平面に垂直な方向が電気ベクトルの偏光方位である。
 光路L3上にはビームスプリッタ5が配置され、試料セル7に照射される光の一部がビームスプリッタ5で分割・反射されて強度モニタ用検出器6に導入される。この強度モニタ用検出器6の検出信号はデータ処理部11に入力され、光源1、2の発光強度の変動を補正するために利用される。
 円周E上に配置された複数の光検出器のうち、平面視で光路L3の延長上に配置された光検出器8は透過吸光度測定用検出器であり、そのほかの光検出器9は全て多角度散乱測定用検出器である。光検出器8による検出信号はデータ処理部11に機能として含まれる濃度算出部13に入力され、一方、複数の光検出器9による検出信号はデータ処理部11に機能として含まれる粒子情報演算部12に入力される。
 上記構成のMALS検出装置100においては、光源1から出射されるレーザ光は光路L1に沿って進み、光源2から出射されるインコヒーレント光は光路L2に沿って進む。これらの光束はセクタ鏡3により周期的に交互に選択されて光路L3に送られるため、試料セル7内の液体試料71にはレーザ光とインコヒーレント光が交互に照射される。セクタ鏡3を駆動する駆動機構4は制御部10により制御される。制御部10は、セクタ鏡3の回転位置に同期して、レーザ光、インコヒーレント光のいずれが試料71に照射されている期間であるのかを示すタイミング制御信号をデータ処理部11に送る。
 試料セル7にインコヒーレント光が照射された場合、その透過光の強度は試料71による吸光(角度ゼロの散乱)を反映したものとなる。そこで、データ処理部11では、インコヒーレント光が照射される期間において光検出器8の検出信号を読み込む。濃度算出部13は、この検出信号に基づいて試料71による吸光度を算出し、試料71中の微粒子の濃度を計算する。算出された濃度値は粒子情報演算部12に送られる。
 一方、試料セル7にレーザ光が照射された場合、そのレーザ光が液体試料71を通過する際に該液体試料71に含まれる微粒子により異なる複数の角度で以て散乱され、試料セル7から出てくる。そこで、データ処理部11は、試料71にレーザ光が照射されている期間において複数の光検出器9の検出信号を同時に読み込む。粒子情報演算部12は、これらの検出信号に基づき各角度位置での散乱光強度を計算する。粒子情報演算部12では、各角度位置での散乱光強度と試料中の微粒子の濃度値に基づいて、試料71に含まれる微粒子の分子量や回転半径などを計算する。
 図2は、上記MALS検出装置100におけるビームスプリッタ5と試料セル7と検出器9の位置関係を示す概略図である。図2では、便宜上、光路L3の延長上に検出器9が位置しているが、実際は、複数の検出器9はいずれも光路L3の延長上から外れた位置にある。また、図2に描かれている試料セル7は、MALS検出装置において従来一般的に使用されているものである。
 図2に示すように、試料セル7と光検出器9の間には、散乱光制限用のスリットを有するスリット板21および平凸レンズ22から成る結像光学系20が配置されている。スリット板21のスリットは、水平方向の散乱角を制限し、且つ、鉛直方向の光束を多く取り込むために、縦長の長方形状を有している。
 MALS検出装置100では、試料セル7から様々な方向に出射する散乱光の各角度成分が、対応する光検出器9の受光面に集光するように、試料セル7、結像光学系20、及び光検出器9の配置が設定されている。試料セル7から出射された散乱光の各角度成分が結像光学系20を通過した後、光検出器9の受光面に集光するためには、各角度成分はできるだけ平行光に近い状態で結像光学系20に入射することが望ましい。
 試料セル7は、中心軸に沿って形成された断面円形状の貫通孔(流路)を内部に有しており、該貫通孔に液体試料71が収容されている。試料セル7に照射されたレーザ光は、貫通孔を横切る際に液体試料71に含まれる微粒子により散乱され、液体試料71(溶媒)と試料セル7との界面、及び試料セル7とその外部(一般的には空気)との界面を通過した後、試料セル7から出射する。液体試料71中で発生した散乱光の各角度成分が平行光として試料セル7から出射するか否かは、これら界面の光学的な機能に依る。そこで、まずは、MALS検出装置において従来一般的に使用されている試料セル7について、前記界面の光学的な機能について検証した。以下、検証結果について説明する。
<2.試料セルの界面の光学的な機能に関する検証>
<2.1 散乱光発生領域の特定>
 まず、液体試料71における散乱光の発生領域を特定した。図3は、外径が8mm、内径が1.6mmの合成石英(屈折率n1=1.46)製の円筒状の試料セルに対して、半導体レーザ光源から波長が660nmで且つ、幅が50μmの平行光を、該試料セルの中心を貫くように入射させたときの光線図である。図3の左側の試料セルには溶媒の屈折率n0が1.26の液体試料が保持されており、右側の試料セルには溶媒の屈折率n0が1.66の液体試料が保持されている。
 図3より、溶媒の屈折率n0が試料セルの屈折率n1よりも小さい場合(左側)、大きい場合(右側)のいずれであっても、試料セルから液体試料に入射した光線は大きく収束されることも発散されることもなく、ほぼ平行性を保った状態で液体試料中を通過することが分かる。光線の幅と試料セルの内径および外径の比とから、また、励起光と散乱光の強度比とからボルン近似が成立し、多重散乱の影響は除外することができる。そこで、試料セルの内径に相当する長さを持った幅のない線分を、試料セルに保持された液体試料に平行光(レーザ光)が入射したときの散乱光の発光領域(光源領域)として近似する。
<2.2 試料セルの内外の界面における収束および発散>
 上述した発光領域からは様々な方向に散乱光が出射するが、ここでは、図4に示すように、発光領域の片側から法線方位(試料セルに入射するレーザ光の方位角を0°、散乱光の方位角をθ0と定義すると、θ0=90°となる方位)に等間隔で出射する散乱光を考える。そして、このような散乱光が各界面を通過した後、試料セルから出射されるまでの光路を追跡した。なお、以下の説明では、便宜上、法線方位に出射する散乱光の半分のみを扱うこととする。
 図5は、溶媒の屈折率n0が1.26((a)、例えば蛍光溶媒)、1.36((b)、例えばエタノール)、1.46((c)、例えばフルオロベンゼン)、1.56((d)、例えばニトロベンゼン)、1.66((e)、例えばキノリン)である液体試料の発光領域から法線方位に出射した散乱光の光線図である。以下、特に断らない限り、試料セルの外部空間には空気が存在し、その屈折率n2は1.0とする。液体試料と試料セルとの界面(以下「溶媒/セル界面」という)では、n0<n1のとき(図5(a)、(b)のとき)は発散レンズとして機能し、n0>n1のとき((d)、(e)のとき)は収束レンズとして機能する。また、n0=n1のとき((c)のとき)は、溶媒/セル界面では光線は屈折せず直進する。
 一方、試料セルの屈折率n1と外部空間の屈折率n2との関係は常にn1>n2であるため、試料セルと外部間の界面(以下「セル/空気界面」という)は常に収束レンズとして機能する。そのため、図5に示すように、溶媒/セル界面が発散レンズとして機能する、(a)および(b)の場合は発散と収束が相殺され、特に(b)の場合は、散乱光の平行成分の多くがほぼ平行な光線として試料セルから出射する。
 これに対して、溶媒/セル界面がレンズとして機能しない(c)の場合は、セル/空気界面の収束作用によって、また、溶媒/セル界面が収束レンズとして機能する(d)および(e)の場合は収束作用が重畳されることによって、試料セルから出射する光は所定の焦点に集光する。ただし、収束作用の強い(e)の場合は、試料セルのごく近傍で焦点を結び、その先は発散の一途を辿る。
 以上より、溶媒の屈折率n0と試料セルの屈折率n1の大小関係によって、試料セルから出射する光線が発散光、平行光、収束光のいずれになるか、収束光の場合にその焦点がどこに位置するかが決まることが分かる。
<2.3 散乱光の強度分布>
 次に、長さが1.6mmの発光領域から各方位に出射する散乱角が平行光として試料セルから出射すると仮定した場合における、空気中の方位角と光強度との関係を調べた。図6Aに示すように、発光領域から出射する散乱光の方位角をθ0、試料セルから出射する光の方位角をθ2とし、発光領域から0.01mm間隔で計161本の散乱光が出射すると仮定した。そして、散乱光が試料セルから出射するまでに通過する各界面における透過率を考慮に入れ、さらに試料セルから出射する光線の密度に比例する重みづけを行って、光強度の方位分布を算出した。その結果を図7に示す。図7中、(a)は溶媒の屈折率n0が1.26(蛍光溶媒)、(b)は溶媒の屈折率n0が1.333(水)、(c)は溶媒の屈折率n0が1.46(フルオロベンゼン)、(d)は溶媒の屈折率n0が1.56(ニトロベンゼン)、(e)は溶媒の屈折率n0が1.66(キノリン)の液体試料が試料セルに保持されているときの強度分布図である。図7の(a)~(e)にはそれぞれ9個のスペクトルが描かれているが、これらは方位角θ0が10°から90°まで10°間隔の9個の平行成分の方位分散スペクトルに相当する。図7より、溶媒の屈折率n0の大きさに関係なく、方位角θ0が90°のときの光の方位分散(拡がり)が最大となることが分かる。
 図6Bに示すように、試料セルの内径(半径)をRとすると、発光領域から方位角θ0で出射する散乱光の幅は、2R・sinθ0で表されることから、方位角θ0が90°のときの散乱光の幅は試料セルの内径(直径)2Rと等しく、最大となる。したがって、試料セルから出射する光のうち方位角θ0が90°の散乱光に由来する光の方位分散(拡がり)が最大になることが予想されるが、実際にその通りとなった。
 図8は、図6Aに示すモデルにおける、方位角θ0と方位角θ2の半値全幅(Δθ2)との関係を示している。図8において、横軸は方位角θ0、縦軸は半値全幅Δθ2である。また、図8の(a)~(e)は、それぞれ図7の(a)~(e)に対応している。図7および図8より、溶媒が水(n0=1.333)のときは、いずれの方位角θ0であっても、溶媒/セル界面の発散作用とセル/空気界面の収束作用がほぼ完全に相殺されるため、半値全幅が非常に小さく、試料セルからは平行性が良好な光線が出射することが分かった。試料セルから平行光線が出射する場合は、標準的なレンズを用いて収差の少ない焦点を形成することができる。一方、溶媒の屈折率n0が試料セルの屈折率(n2=1.46)を上回る場合((d)、(e)の場合)は、方位角θ0が大きくなるにつれて半値全幅が大きくなり、(d)の場合は方位角θ0が約15°のとき、(e)の場合は方位角θ0が10°のときの半値全幅が5°となった。このことは、散乱光の各角度成分の多くが料セルから出射する際の分散幅が10°を超え、散乱光の各角度成分を集光させることが困難であることを意味する。
 なお、上述したように、図7に示す散乱光の光強度は、散乱光が試料セルから出射するまでに通過する各界面における透過率を考慮し試料セルから出射する光線の密度に比例する重み係数を掛けて算出したものである。ここでは、各散乱角の散乱光が試料セルから出射する光線のうち中心の光線の重み係数が「1」となるよう、全体の重み係数を規格化した。ところが、溶媒の屈折率n0が1.46のモデルでは、散乱光が正(又は負)方位分散から負(又は正)方位分散に転移するところがあり、ここでは光線が密集するため、重み係数が「1」を超える。そのため、溶媒の屈折率n0が1.46のモデルでは、図7(c)に示すように、散乱光強度が「1」を超える場合が生じたのであって、演算のエラーではない。
<2.4 平行化条件>
 以上説明したように、図2に示す従来一般的な形状の試料セルを用いたMALS検出装置では、溶媒の屈折率n0と試料セルの屈折率n1の大小関係によって、発光領域で生じた散乱光が溶媒/セル界面およびセル/空気界面を通過するときの挙動が異なる結果、散乱光を集光させることが困難となるケースが存在する。このことは、測定対象となる液体試料の溶媒の屈折率によっては、散乱光強度を正確に測定できない、もしくは全く測定できないことを意味する。
 試料セルから出射する散乱光を集光させるためには、溶媒/セル界面およびセル/空気界面における収束作用と発散作用のバランスが重要になる。本発明者は、これらの界面における収束作用と発散作用のバランスを決める因子の一つとして、試料セルの内径と外径の比に着目した。例えば、表1は、屈折率n1が1.46、内径(半径)r1が0.8mmの合成石英製の試料セルに、この試料セルよりも屈折率が低い溶媒(屈折率n0が1.26の蛍光溶媒、屈折率n0が1.333の水)からなる液体試料を収容したときの最適な外径(半径)r2を示している。ここで、「最適な外径(半径)r2」を、試料セルから出射する光線の角度広がり(半値全幅)Δθ2(光線強度が0.5以上の領域)が最小となるときの外径(半径)と定義する。表1には、各溶媒における外径(半径)r2の最適値と、そのときの角度広がりΔθ2、および該角度広がり角度Δθ2の範囲に集中するエネルギー比率を示している。
Figure JPOXMLDOC01-appb-T000001
 また、図9は、表1の条件下における方位角θ0が90°の散乱光の光線図、図10は、同条件下での光強度分布図である。なお、図7と同様、図10においても、界面での透過率および光線密度の重み係数を反映させて光強度を算出した。さらに、表2は、屈折率n1が1.91、内径(半径)r1が0.8mmの高屈折率材料から成る試料セルに、溶媒の屈折率n0が1.26、1.333、1.492、1.56、1.66の液体試料を収容したときの最適な外径(直径)r2を示している。なお、屈折率が1.91の高屈折率材料としては、株式会社住田光学ガラスの高屈折率ガラス(品番K-LaSFn23)が挙げられる。この高屈折率ガラスは、波長が589nmの光(ナトリウムのD線)において、1.91の屈折率を有する。表2より、溶媒の屈折率n0によって最適な外径r2が異なることが分かる。
Figure JPOXMLDOC01-appb-T000002
 表1および表2に示す条件を満たすとき、発光領域で生じた散乱光は、その平行性を保持したまま試料セルから出射することになる。このことは、試料セルに保持されている液体試料の溶媒の屈折率に応じて試料セル外径を変化させることができれば、発光領域で生じた散乱光の平行成分を、該散乱光が試料セルから出射するときに再び平行化できることを意味する。
 そこで、溶媒の屈折率n0に応じて外径r2を連続可変とすることができる試料セルとして、図11Aに示すような試料セル107を考える。この試料セル107は本発明の実施形態1である。前記試料セル107は、円錐台状の部分(円錐台状部)110と、その上下の円柱状部111、112を同軸上に有している。試料セル107には、その中心軸に沿って該試料セル107を貫通する、内径r1が一定の孔113が形成されており、該孔113に液体試料が収容される。従って、孔113が本発明の流路となる。
 レーザ光源1からの光は孔113を貫通するように円錐台状部110に照射される。図11B及び11Cに示すように、レーザ光源1は駆動機構115(本発明の位置変更手段に相当)により上下方向に移動できるようになっており、試料セル107に対してレーザ光が入射する高さ位置を変更できるようになっている。尚、図示しないが、駆動機構115は、レーザ光源1と同期して光検出器9も上下方向に移動させるようになっている。孔113の内径r1は一定であるため、レーザ光源1からの光が入射する高さ位置が変化しても、発光領域の長さは孔の内径直径(2×r1)と等しく一定である。
 なお、試料セル107は、円錐台状部110と円柱状部111、112を一体的に形成しても良いが、図12A、12Bに示す実施形態2のように、円管状のセル本体121とその外周に装着される上下動可能な円錐台状の光学部材122とから試料セル120を構成しても良い。試料セル107の場合は、レーザ光源1からの光の円錐台状部110に対する入射位置を変えるためには、図11B、11Cに示すように、レーザ光源1(および検出器9)の高さ位置を変更することになる。これに対して、試料セル120の場合は、図12A、12Bに示すように、レーザ光源1および検出器9の高さ位置はそのままで光学部材122を上下動させることで、該レーザ光源1からの光の光学部材122に対する入射位置を変えることができる。したがって実施形態2の場合は、光学部材122を上下動させる移動機構125を備える。
 ただし、実施形態1の試料セル107においても、レーザ光源1および検出器9の高さ位置はそのままで、試料セル107の高さ位置を変更できるようにしても良い。実施形態1の試料セル120においては、手動で光学部材122を上下動させるようにしても良い。この場合、移動機構125は不要となる。
 図13A~13Eは、以下の表3に示す条件を満たす試料セル120および試料セル120と結像レンズ22の配置に対してレーザ光源1からのレーザ光を照射したときの実効径が表2に示す外径(半径)の値になるように、光学部材122を上下させたときの光線図を示している。
Figure JPOXMLDOC01-appb-T000003
 ここで実効径とは、試料セル120の内部を通過するレーザ光を含む水平面における該試料セル120(光学部材122)の外径(半径)を指す。なお、レーザ光源1からの光が試料セル120に入射したときにその光路が水平になるように、図14に示すように、試料セル120に対して仰角α(=10.69°)でレーザ光を入射させている。また、発光領域で生じる散乱光の水平成分を光検出器9で検出するものと仮定し、この水平成分が試料セル120から出るときの屈折角を考慮して、結像光学系20(集光光学系)および光検出器9の光軸と水平面とのなす角度βが-10.69°となるように、結像光学系20(集光光学系)および光検出器9を配置した。
 図13A~13Eから明らかなように、上記条件を満たす試料セル120、結像レンズ22を用いることにより、溶媒の屈折率に関係なく、光検出器9の受光面に散乱光を集光させることができることが分かる。
 図13A~13Eは、セル本体121と光学部材122の屈折率が等しく(n11=n12)、かつ、セル本体121および光学部材122の屈折率が溶媒の屈折率よりも大きい(n11=n12>n0)ときに、溶媒の屈折率に関係なく、光検出器9の受光面に散乱光を集光させることができることを示すものである。そこで、この条件を満たしていないときであっても、溶媒の屈折率に関係なく、光検出器9の受光面に散乱光を集光させることができるか否かについて検証した。
 試料セル120の外側を空気(屈折率n2=1.0)とすると、セル本体121(屈折率n11)、光学部材122(屈折率n12)、溶媒(屈折率n0、液体試料71)、および空気の屈折率の間には、以下の(1)~(6)に示す関係が考えられる。
 (1)n12>n11>n0>n2
 (2)n12>n0>n11>n2
 (3)n11>n12>n0>n2
 (4)n11>n0>n12>n2
 (5)n0>n11>n12>n2
 (6)n0>n12>n11>n2
 屈折率n11、n12、n0、n2が(1)~(6)の関係を満たすとき、液体試料とセル本体121の界面(以下「第1界面」という)、セル本体121と光学部材122の界面(以下「第2界面」という)、および光学部材122と空気の界面(以下「第3界面」という)の機能(第1界面の機能→第2界面の機能→第3界面の機能)は以下の通りとなる。
 (1)発散→発散→収束
 (2)収束→発散→収束
 (3)発散→収束→収束
 (4)発散→収束→収束
 (5)収束→収束→収束
 (6)収束→発散→収束
 そこで、測定対象となる液体試料の溶媒の屈折率として考えられる最大値(n0=1.66)を基準に、(1)~(6)の各関係を満たす試料セル120を構成し、そのような試料セル120を用いたときに、溶媒の屈折率n0を変化させても、同一点に焦点を形成することができるか否かを検証した。
 図15A~15Eは、以下の表4に示す条件を満たす場合にレーザ光源1からのレーザ光を試料セル120に照射したときに、該試料セル120から出射した光が光検出器の受光面に焦点を形成するように、光学部材122を上下させたときの光線図を示している。表4に示す関係は(2)の関係に相当する。
Figure JPOXMLDOC01-appb-T000004
 また、図15A~15Eに示す光線図における、溶媒の屈折率n0と試料セルの実効径(外径(半径)r2)との関係を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 また、図16A~16Eは、以下の表6に示す条件を満たす場合にレーザ光源1からのレーザ光を試料セル120に照射したときに、該試料セル120から出射した光が光検出器の受光面に焦点を形成するように、光学部材122を上下させたときの光線図を示している。表6に示す関係は(5)の関係に相当する。
Figure JPOXMLDOC01-appb-T000006
 また、図16A~16Eに示す光線図における、溶媒の屈折率n0と試料セルの実効径(外径(半径)r2)との関係を表5に示す。
Figure JPOXMLDOC01-appb-T000007
 図15A~15E、図16A~16Eより、(2)の関係、および(5)の関係を満たす試料セル120を用いたときは、溶媒の屈折率n0を変化させても、同一点に焦点を形成することができることが確認された。ひたすら収束作用のみが複合するもっとも厳しい条件である(5)において屈折率n0に依存する所望の特性が得られる構成が存在することから、収束作用と発散作用とが相殺することできる(1)、(3)、(4)及び(6)においては、より容易に集光条件が達成できることは自明である。
 また、図15A~図15Eと図16A~16Eの比較から分かるように、表4に示す条件では、試料セル120から出射した光線は、平行状態を保持したままレンズに向かうのに対して、表6に示す条件では、試料セル120から射出した光は、該試料セル120の近傍で一度、焦点を形成した後、レンズに向かう。焦点は球面波源とみなすことができるため、焦点からレンズに向かう光線群は発散光(球面波(発散波面))となり、その散乱角に対応する結像光学系だけでなく、それに隣接する結像光学系にも入射する。したがって、表4に示す条件に比べると、角度分解能が低くなる。
 次に、試料セルの別の実施形態について説明する。
 図17は、実施形態3の試料セルの光学部材130を示している。この光学部材130は外周部の一部が欠損した、ほぼ円錐台形状を有しており、実施形態2のセル本体121の外周部に上下動可能に装着される。この光学部材130は、セル本体121が挿入される孔131を有している。又、光学部材130の外周面には、孔131と平行な平坦面132を有している。この平坦面132は、レーザ光源1からのレーザ光LTが入射する面となる。
 図17に示すように、光学部材130の平坦面132から入射したレーザ光LTはそのまま直進し、出射するときは水平面よりもやや下方位に向かう。したがって、この実施形態3においては、試料セルに対するレーザ光源1の位置関係を容易に選定することができる。一方、図17に二点差線で示した方位D1と方位D2の間から出てくる散乱光は検出できないという欠点がある。
 図18は、実施形態4の試料セルの光学部材140を示している。この光学部材140は、外周部の一部が欠損した、ほぼ円錐台形状を有しており、実施形態2のセル本体121の外周部に上下動可能に装着される。この光学部材140は、セル本体121が挿入される孔141を有している。また、光学部材140外周面に孔141を挟んで2箇所の欠損箇所があり、そこがレーザ光LTの入射部142及び出射部143となっている。
 実施形態4の光学部材140を用いた試料セルでは、入射部142から入射したレーザ光LTは水平方向に進み、出射部143から水平方向に出射する。したがって、実施形態4においては、試料セルに対するレーザ光源1および検出器8の位置関係を容易に選定することができる。ただし、図18に二点差線で示した方位D1と方位D2の間、方位D3と方位D4の間から出てくる散乱光は検出できないという欠点がある。
 図19は、実施形態5の試料セル150を示している。この試料セル150は、内部に円錐台状の孔152を有する円柱状部材151から構成されている。レーザ光源1からの光は孔152の中心を通過するように円柱状部材151に照射される。この実施形態5においても、実施形態1と同様、レーザ光源1は駆動機構115により上下方向に移動できるようになっている。
 実施形態5においては、レーザ光源1が上下動されて該光源1からの光が円柱状部材151に入射する高さ位置が変更されたとき、該円柱状部材151の外径(半径)は変化しないのに対して、孔152の内径(半径)は変化する。このため、レーザ光源1からの光の入射位置によって、試料セル150の内径と外径の比が変化する。したがって、この実施形態においても、試料セル150に保持される液体試料の溶媒の屈折率に応じた適宜の高さ位置で、レーザ光源1からの光を試料セル150に入射させることにより、試料セル150の発光領域で生じた散乱光の平行成分を、該試料セル150から散乱光が出射する際に再び平行化することができる。
 図20は、実施形態6の試料セル160を示している。この試料セル160は、円筒状のセル本体161と、その外周部に上下動可能に装着された、外径寸法が異なる複数の円柱状部1621~1624が積層された形状の光学部材162を有している。レーザ光源1からのレーザ光は、円柱状部1621~1624のいずれかの外周面に入射する。この構成では、レーザ光が入射する箇所を変更することにより、試料セル160の外径を変更することができる。また、この構成では、外周面がセル本体162の流路と平行になるため、流路と垂直な方向からレーザ光を入射させることができ、レーザ光源1および光検出器8、9の配置を容易に設定することができる。
 図21は、実施形態7の試料セル170を示している。この試料セル170は、円筒状のセル本体171と、その外周部に着脱自在に装着される複数の光学部材172、173とを備えている。光学部材172、173はそれぞれ2個の分割できるようになっており、セル本体171に装着するとき、及びセル本体171から取り外すときは、光学部材172、173を2個に分割する。光学部材172、173はそれぞれ外径寸法が異なっており、セル本体171に光学部材172のいずれを装着するかによって、試料セル170の外径寸法を変更することができる。
 以上、図面を参照して本発明における実施形態を詳細に説明したが、該実施形態は、以下の態様の具体例であることが当業者により理解される。
(第1項)第1項に係る光散乱検出装置は、
流体試料が流通する円筒状の流路を有する試料セルと、
 前記流路に向けて該流路の軸に垂直な方向からレーザ光を照射する光源と、
 前記軸に垂直な面内で該軸を取り囲むように配置された複数の光検出器とを備えている装置であって、
 前記試料セルの外周が、前記軸に垂直な断面において該軸を中心とする円となっているとともに、該円の径が前記軸に沿って異なる寸法となっており、
 前記光源からのレーザ光の前記試料セルの外周への入射位置が変更可能に構成されている。
 第1項に記載の光散乱検出装置では、流体試料の屈折率に応じて光源からのレーザ光を試料セルの適宜な位置に入射させることにより、各界面における収束と発散のバランスを調整して、試料セルから出てくる散乱光を光検出器に集光させることができる。
(第2項)第1項の光散乱検出装置において、
 前記軸に沿う方向における、前記試料セルに対する前記光源および前記複数の光検出器の相対位置を変更する位置変更手段を備える。
 第2項に記載の光散乱検出装置において、前記位置変更手段は、前記試料セルの移動機構から構成しても良く、前記光源および前記複数の光検出器の移動機構から構成しても良い。移動機構は、前記試料セル、または前記光源と前記複数の光検出器の組を自動的に移動させることができる機構でも良く、手動で移動させることができる機構でも良い
(第3項)第1項又は第2項の光散乱検出装置において、
 前記試料セルが、
 円管状のセル本体と、
 前記セル本体の外周部に装着される、前記軸に沿う方向に移動可能な円錐台状の光学部材とを備える。
 第3項に記載の光散乱検出装置においては、前記円錐台状の光学部材を上下動させるだけで、前記流路内で発生した散乱光がこれから輻射される光束の拡がりを制御できる。
(第4項)第3項の光散乱検出装置において、
 前記光学部材が、前記光源からのレーザ光が入射する面であって、該レーザ光の光軸と垂直な平坦面を有する。
 第4項に記載の光散乱検出装置においては、前記平坦面を通して試料セルにレーザ光が入射するため、流路の軸と垂直な方向から試料セルに向けてレーザ光を照射したときに、外部空間と試料セルの界面で該レーザ光が屈折することがない。したがって、試料セルと光源との位置関係を容易に設定することができる。また、界面が平坦であるため、ノイズとなる界面における光散乱を抑制することができる。
(第5項)第3項の光散乱検出装置において、
 前記光学部材が、前記光源からの前記レーザ光が通過する部分が切り欠かれている。
 第5項に記載の光散乱検出装置においては、切りかかれた部分をレーザ光が通過するため、レーザ光が試料セルに入射するとき、及び試料セルから出射するときに、該レーザ光が屈折しないため、試料セルと光源及び光検出器との位置関係を容易に設定することができる。また、界面が平坦であるため、ノイズとなる界面における光散乱を抑制することができる。
(第6項)第1項又は第2項の光散乱検出装置において、
 前記試料セルが、
 円管状のセル本体と、
 前記セル本体の外周部に装着される、外径寸法が異なる複数の円柱状部から成る、前記軸に沿う方向に移動可能な光学部材とを備える。
 第6項に記載の光散乱検出装置では、試料セルに対してレーザ光が入射する面および出射する面におけるレーザ光のセル流路平行成分の屈折を考慮する必要がない。また、試料セルから散乱光が出射する面における該散乱光のセル流路平行成分の屈折を考慮する必要がない。このため、試料セルに対する光源および光検出器の位置関係を容易に選定することができる。
(第7項)第7項に係る光散乱検出装置は、
 流体試料が流通する円筒状の流路を有する試料セルと、
 前記流路に向けて該流路の軸に垂直な方向からレーザ光を照射する光源と、
 前記軸に垂直な面内で該軸を取り囲むように配置された複数の光検出器とを備える光散乱検出装置であって、
 前記試料セルが、
 円管状のセル本体と、
 前記セル本体の外周部に交換可能に装着される、外径寸法が異なる複数の円柱状の光学部材とを備えている。
 第7項に記載の光散乱検出装置では、流体試料の屈折率に応じて適宜の外径寸法の光学部材をセル本体に装着することで、試料セルから出射する散乱光を光検出器で検出することができる。
1…レーザ光源
107、120、150、160、170…試料セル
110…円錐台状部
111…円柱状部
115、125…移動機構(位置変更手段)
121、161、171…セル本体
122、130、140、162、172、173…光学部材
20…結像光学系
9…光検出器
100…多角度光散乱検出装置

Claims (7)

  1.  流体試料が流通する円筒状の流路を有する試料セルと、
     前記流路に向けて該流路の軸に垂直な方向からレーザ光を照射する光源と、
     前記軸に垂直な面内で該軸を取り囲むように配置された複数の光検出器とを備える光散乱検出装置において、
     前記試料セルの外周が、前記軸に垂直な断面において該軸を中心とする円となっているとともに、該円の径が前記軸に沿って異なる寸法となっており、
     前記光源からのレーザ光の前記試料セルの外周への入射位置が変更可能に構成されている、光散乱検出装置。
  2.  請求項1に記載の光散乱検出装置において、
     前記軸に沿う方向における、前記試料セルに対する前記光源および前記複数の光検出器の相対位置を変更する位置変更手段を備える、光散乱検出装置。
  3.  請求項1に記載の光散乱検出装置において、
     前記試料セルが、
     円管状のセル本体と、
     前記セル本体の外周部に、前記軸に沿う方向に移動可能に装着される、円錐台状の光学部材とを備える、光散乱検出装置。
  4.  請求項3に記載の光散乱検出装置において、
     前記光学部材が、前記光源からのレーザ光が入射する面であって、該レーザ光の光軸と垂直な平坦面を有する、光散乱検出装置。
  5.  請求項3に記載の光散乱検出装置において、
     前記光学部材が、前記光源からの前記レーザ光が通過する部分が切り欠かれ平面となっている、光散乱検出装置。
  6.  請求項1に記載の光散乱検出装置において、
     前記試料セルが、
     円管状のセル本体と、
     前記セル本体の外周部に、前記軸に沿う方向に移動可能に装着される、外径寸法が異なる複数の円柱状部から成る光学部材とを備える、光散乱検出装置。
  7.  流体試料が流通する円筒状の流路を有する試料セルと、
     前記流路に向けて該流路の軸に垂直な方向からレーザ光を照射する光源と、
     前記軸に垂直な面内で該軸を取り囲むように配置された複数の光検出器とを備える光散乱検出装置において、
     前記試料セルが、
     円管状のセル本体と、
     前記セル本体の外周部に交換可能に装着される、外径寸法が異なる複数の円柱状の光学部材とを備えている、光散乱検出装置。
PCT/JP2019/021431 2019-05-29 2019-05-29 光散乱検出装置 WO2020240755A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021521673A JP7070797B2 (ja) 2019-05-29 2019-05-29 光散乱検出装置
PCT/JP2019/021431 WO2020240755A1 (ja) 2019-05-29 2019-05-29 光散乱検出装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/021431 WO2020240755A1 (ja) 2019-05-29 2019-05-29 光散乱検出装置

Publications (1)

Publication Number Publication Date
WO2020240755A1 true WO2020240755A1 (ja) 2020-12-03

Family

ID=73553140

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/021431 WO2020240755A1 (ja) 2019-05-29 2019-05-29 光散乱検出装置

Country Status (2)

Country Link
JP (1) JP7070797B2 (ja)
WO (1) WO2020240755A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6418043A (en) * 1987-07-14 1989-01-20 Kowa Co Method and apparatus for measuring fine particle in liquid
JPH01502533A (ja) * 1987-03-13 1989-08-31 クールター・エレクトロニクス・インコーポレーテッド 散乱光による粒子分析装置
JPH0612946U (ja) * 1992-07-14 1994-02-18 日本分光株式会社 蛍光検出器用フローセル
JP2007024783A (ja) * 2005-07-20 2007-02-01 Shimadzu Corp 粒度分布測定装置
JP2008032548A (ja) * 2006-07-28 2008-02-14 Shimadzu Corp 光散乱検出装置
US20180313737A1 (en) * 2014-11-21 2018-11-01 Anton Paar Gmbh Determination of a Refractive Index of a Sample and of a Particle Size of Particles in Said Samples by Means of a Dynamic Light Scattering Apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102272580B (zh) * 2010-03-31 2014-07-30 古河电气工业株式会社 光信息解析装置及光信息解析方法
JPWO2013145836A1 (ja) * 2012-03-30 2015-12-10 ソニー株式会社 マイクロチップ型光学測定装置及び該装置における光学位置調整方法
JP6955385B2 (ja) * 2017-07-14 2021-10-27 株式会社堀場製作所 粒子分析装置における光照射を調整するためのモニター装置
CN111164418B (zh) * 2017-08-10 2024-09-03 横河积分通量分析有限公司 用于在制造过程中表征和控制生物聚合物和合成聚合物的装置和方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01502533A (ja) * 1987-03-13 1989-08-31 クールター・エレクトロニクス・インコーポレーテッド 散乱光による粒子分析装置
JPS6418043A (en) * 1987-07-14 1989-01-20 Kowa Co Method and apparatus for measuring fine particle in liquid
JPH0612946U (ja) * 1992-07-14 1994-02-18 日本分光株式会社 蛍光検出器用フローセル
JP2007024783A (ja) * 2005-07-20 2007-02-01 Shimadzu Corp 粒度分布測定装置
JP2008032548A (ja) * 2006-07-28 2008-02-14 Shimadzu Corp 光散乱検出装置
US20180313737A1 (en) * 2014-11-21 2018-11-01 Anton Paar Gmbh Determination of a Refractive Index of a Sample and of a Particle Size of Particles in Said Samples by Means of a Dynamic Light Scattering Apparatus

Also Published As

Publication number Publication date
JPWO2020240755A1 (ja) 2021-11-11
JP7070797B2 (ja) 2022-05-18

Similar Documents

Publication Publication Date Title
JP6691043B2 (ja) 粒子特性評価装置
EP2972205B1 (en) Sorting flow cytometer
JP2825644B2 (ja) 粒子寸法分析方法および装置
JP5705261B2 (ja) 広幅分光計
US8576396B2 (en) Cell construction for light scatter detectors having self-focusing properties
US20090201501A1 (en) Optical System for a Flow Cytometer
JP7429643B2 (ja) 落射蛍光測定用の光学フローサイトメータ
JP3186375B2 (ja) キャピラリディテクタセル及びその性能の最適化方法
CA2748402A1 (en) Combined lens and reflector, and an optical apparatus using the same
JP2012026754A (ja) 微小粒子測定装置及び光照射装置
KR20220159975A (ko) 샘플의 부분으로 광을 포커싱하기 위한 광학 분광 프로브 구성
JP5252892B2 (ja) 光学ユニット
US20200408683A1 (en) Light scattering detection device and light scattering detection method
JP7070797B2 (ja) 光散乱検出装置
US20120243567A1 (en) Laser irradiation device and microparticle measuring device
JP7052925B2 (ja) 光散乱検出装置
JP7140193B2 (ja) 光散乱検出装置
WO2020026378A1 (ja) 光散乱検出装置および光散乱検出方法
CN208013058U (zh) 糖化血红蛋白分析仪检测器
JP4029406B2 (ja) 光学分析器
WO2020021682A1 (ja) 光散乱検出装置
JP2019168313A (ja) 光学式高さ計測用光モジュール
JP2006098289A (ja) 全反射吸収測定用プリズムおよびこれを用いた全反射吸収測定装置
JP2687539B2 (ja) 粒度分布測定装置
JPH03197841A (ja) 検体検査装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19930480

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021521673

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19930480

Country of ref document: EP

Kind code of ref document: A1