WO2020239113A1 - 具有纳米级分支的动物皮革纤维束、纱线、包芯纱及制品 - Google Patents

具有纳米级分支的动物皮革纤维束、纱线、包芯纱及制品 Download PDF

Info

Publication number
WO2020239113A1
WO2020239113A1 PCT/CN2020/093506 CN2020093506W WO2020239113A1 WO 2020239113 A1 WO2020239113 A1 WO 2020239113A1 CN 2020093506 W CN2020093506 W CN 2020093506W WO 2020239113 A1 WO2020239113 A1 WO 2020239113A1
Authority
WO
WIPO (PCT)
Prior art keywords
nano
animal leather
leather fiber
branches
level
Prior art date
Application number
PCT/CN2020/093506
Other languages
English (en)
French (fr)
Inventor
张立文
Original Assignee
广东五源新材料科技集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东五源新材料科技集团有限公司 filed Critical 广东五源新材料科技集团有限公司
Priority to EA202190223A priority Critical patent/EA202190223A1/ru
Priority to AU2020282482A priority patent/AU2020282482A1/en
Priority to KR1020217010734A priority patent/KR102651000B1/ko
Priority to EP20814070.7A priority patent/EP3819412B1/en
Priority to SG11202113096YA priority patent/SG11202113096YA/en
Priority to US17/269,165 priority patent/US11613828B2/en
Priority to BR112021023876A priority patent/BR112021023876A2/pt
Priority to JP2021537475A priority patent/JP2022500572A/ja
Publication of WO2020239113A1 publication Critical patent/WO2020239113A1/zh
Priority to AU2023222857A priority patent/AU2023222857A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/02Yarns or threads characterised by the material or by the materials from which they are made
    • D02G3/10Yarns or threads formed from collagenous materials, e.g. catgut
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01BMECHANICAL TREATMENT OF NATURAL FIBROUS OR FILAMENTARY MATERIAL TO OBTAIN FIBRES OF FILAMENTS, e.g. FOR SPINNING
    • D01B9/00Other mechanical treatment of natural fibrous or filamentary material to obtain fibres or filaments
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/02Yarns or threads characterised by the material or by the materials from which they are made
    • D02G3/04Blended or other yarns or threads containing components made from different materials
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/22Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
    • D02G3/32Elastic yarns or threads ; Production of plied or cored yarns, one of which is elastic
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/22Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
    • D02G3/32Elastic yarns or threads ; Production of plied or cored yarns, one of which is elastic
    • D02G3/328Elastic yarns or threads ; Production of plied or cored yarns, one of which is elastic containing elastane
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/22Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
    • D02G3/36Cored or coated yarns or threads
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/44Yarns or threads characterised by the purpose for which they are designed
    • D02G3/449Yarns or threads with antibacterial properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0002Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
    • D06N3/0015Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using fibres of specified chemical or physical nature, e.g. natural silk
    • D06N3/0018Collagen fibres or collagen on fibres
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2211/00Protein-based fibres, e.g. animal fibres
    • D10B2211/01Natural animal fibres, e.g. keratin fibres
    • D10B2211/06Collagen fibres
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/06Load-responsive characteristics
    • D10B2401/063Load-responsive characteristics high strength
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/13Physical properties anti-allergenic or anti-bacterial
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/20Physical properties optical

Definitions

  • the invention relates to animal leather fiber bundles, yarns and core-spun yarns, especially animal leather fiber bundles, yarns and core-spun yarns with nano-level branches.
  • leather industry is an integral part of the light industry, which includes three natural industries of leather, fur and leather products.
  • the finished product of tanning is called leather.
  • leather is the leather products of de-haired animals.
  • Fur is also called fur leather or fur. It is the leather products of animals with fur.
  • leather products are the products of deep processing of leather or fur, such as leather shoes, leather clothes and leather goods. Wait.
  • Tanning refers to a series of physical and chemical processing of raw hides to change the properties and appearance of raw hides to obtain leather.
  • the rawhide is peeled off from the animal body, and the rawhide mainly includes the epidermis, dermis and subcutaneous tissue.
  • the dermis layer is located under the epidermis layer, and its weight and thickness respectively account for more than 90% of the hide, which is the main part of the hide.
  • the dermis is mainly composed of collagen fibers, elastic fibers and reticular fibers that are tightly woven and connected together.
  • the dermis also contains some non-fibrous components, such as hair follicles, sweat glands, fat glands, fat cells, muscles, blood vessels, Lymphatic vessels and fibrous interstitium.
  • the collagen fibers described above are the main fibers in the dermis, which constitute the main body of the rawhide.
  • the collagen fibers are composed of collagen and account for 95%-98% of the total fiber weight of the dermis.
  • Collagen fibers do not bifurcate, but gather into bundles. Its formation structure is as follows:
  • Procollagen molecule ⁇ protofibril (diameter 1.2 ⁇ 1.7nm) ⁇ subfibril (diameter 3 ⁇ 5nm) ⁇ fibril (diameter 20nm) ⁇ thin fibre (diameter 2 ⁇ 5 ⁇ m) ⁇ collagen fibre (diameter 20 ⁇ 150 ⁇ m) .
  • the procollagen molecule is a right-handed composite helix structure formed by three left-hand helix collagen peptide chains.
  • the collagen peptide chain is composed of helix chains and non-helical end peptides connected to them. Both helix and non-helical end peptides are composed of amino acid sequences.
  • the amino acid composition and sequence of collagen are different due to different sources and types of collagen, the composition of several main amino acids is roughly the same, namely glycine, alanine, proline and hydroxyproline.
  • Procollagen molecule ⁇ protofibril (diameter 1.2 ⁇ 1.7nm) ⁇ subfibril (diameter 3 ⁇ 5nm) ⁇ fibril (diameter 20nm) ⁇ thin fibre (diameter 2 ⁇ 5 ⁇ m) ⁇ collagen fibre (diameter 20 ⁇ 150 ⁇ m) It is the formation process of collagen fibers, but there are no independent, isolated collagen fiber bundles with nano-level branches in the state of collagen fibers in animal skin or leather products.
  • the raw material "raw hides" for tanning has the following properties before processing:
  • the leather obtained by processing the rawhide is favored by people because it does not become a hard and brittle material, does not rot, does not shrink, has good air and water vapor permeability, and has good chemical resistance.
  • leather is made into leather products, there will be a lot of leftovers. According to statistics, every year my country only produces 1.4 million tons of leather leftovers in the tanning and leather products industry. India produces 150,000 tons of leather leftovers every year. The chromium-containing leather waste produced alone amounts to 60,000 tons, and these leather scraps are one of the important factors causing serious pollution in the leather industry.
  • the inventor conducted an in-depth study on the reuse of leather scraps, and applied for domestic and foreign patents, and put them into actual production.
  • the Chinese patent application numbers are 200410034435.4, 200410090255.8, 200410097268.8, 200410097268.8, 200510036778.9, 200710003092.9 , 200710090219.5, 201010211811.8, 201020236921.5, 201621302339.8, etc. all involve collagen fibers.
  • the above-mentioned collagen fibers studied by the inventors are obtained by gradually loosening the leather scraps or the collagen fibers in the leather under the woven state under the hydraulic action of the liquid decomposer.
  • the natural biological materials include spider silk, silkworm silk, wild silk, wool, fish scales, bamboo fibers, collagen fibers, and wood fibers.
  • Type I collagen constitutes bone collagen. Bone type I collagen has more than 3,000 amino acids and a molecular weight of 95,000. It is different from connective tissue and type I collagen in chemical structure. Bone type I collagen has fewer cross-linking sites, and the cross-linking is a structure formed after G-aldehyde lysine is reduced by sodium borohydride. The anterior N-terminal extension peptide of bone type I collagen was phosphorylated, while no translationally modified procollagen was found in connective tissue.
  • bone collagen is also different from cartilage collagen. It contains two special amino acids, namely serine and glycine. A large amount of serine exists in the form of phosphoserine, so the combination of phosphate and collagen is important in the process of mineralization.
  • hydroxyapatite combines with bone collagen to form normal bone.
  • the type I collagen of bone is cross-linked to form a bone matrix framework; the quality and quantity of bone collagen are also related to mineralization and maintain a certain deposition ratio.
  • the mineralization process also requires the participation of non-collagen proteins in the bone matrix, namely osteocalcin, matrix protein, etc. Type I collagen not only provides a structural place for osteocalcin, but also combines with non-collagen proteins such as osteocalcin to form
  • the network support provides basic conditions for bone mineralization.
  • the hydroxyapatite crystals can be seen distributed along the long axis of the collagen fibers on the ultra-thin bone slices without decalcification.
  • Collagen fibers have poor compression resistance and elasticity.
  • Hydroxyapatite crystals are fragile, but when the two are combined, they have great structural strength, so that bone tissue can obtain strong mechanical properties.
  • the collagen fiber in leather is also composed of collagen, but it is different from the collagen in the bone collagen fiber, and the collagen fiber in the leather has better compression resistance and elasticity, which shows that the collagen fiber in the leather and the collagen fiber are in There are obvious differences in composition and performance.
  • the first object of the present invention is to provide an animal leather fiber bundle with nano-level branches, the animal leather fiber bundle structure of the present invention, the animal leather fiber bundle has an independent, separated and attached to the main body of the animal leather fiber
  • the second object of the present invention is to provide an animal leather fiber bundle yarn with nano-level branches.
  • the animal leather fiber bundle has independent, separated, and nano-level branches connected to the main body of the animal leather fiber, and presents the characteristics of good antibacterial effect, good adsorption performance, and improved mechanical properties. .
  • the third object of the present invention is to provide an animal leather fiber bundle core-spun yarn with nano-level branches.
  • the animal leather fiber bundle has independent, separated, and nano-level branches connected to the main body of the animal leather fiber, and exhibits good antibacterial effect, good adsorption performance, and improved mechanical properties. characteristic.
  • the fourth object of the present invention is to provide a product with nano-scale branched animal leather fiber bundles.
  • the animal leather fiber bundle has independent, separated, nano-level branches connected to the main body of the animal leather fiber in the product, and presents the characteristics of good antibacterial effect, good adsorption performance and improved mechanical properties.
  • an animal leather fiber bundle with nano-level branches includes an animal leather fiber body, which is a spinnable animal leather fiber body; and has nano-level branches on the animal leather fiber body.
  • nano-scale branches include nano-scale branches with a diameter of 200 nm or less.
  • Animal leather fiber bundles with nano-level branches are spinnable fiber bundles with nano-level branches, which are formed by liquid defibrillation, opening and carding of animal leather.
  • the nano-level branches exist independently and separately and are attached to the main body of the animal leather fiber, and the number per unit length of the morphological structure of the fibrils, sub-fibrils, and fibrils.
  • the specific surface area of the nano-level branches is significantly increased, so that the animal leather fiber bundle has its own performance and new functions. That is to say, a great adsorption function is produced.
  • This adsorption function is due to the generation of independent, separated nano-level branches attached to the main body of the animal leather fiber, and the animal leather fiber bundle is formed by the amino acid sequence to form a peptide chain.
  • the peptide chain forms collagen molecules.
  • This special component in the animal leather fiber bundle makes the animal leather fiber bundle have a "blue shift" in the optical properties, and therefore, has a stronger ability to absorb ultraviolet light.
  • Liquid defibrillation is the extraction of animal leather fiber bundles from leather or leather scraps under the mechanical action of the rotor of the liquid defibrillator and the hydraulic shear caused by the rotation of the rotor.
  • the blades on the rotor interact with leather or leather leftovers, so that friction and other forces are generated between the leather or leather leftovers and the rotor.
  • due to the rotor A strong vortex is generated, forming a high-speed turbulent area around the rotor, and the flow rate of the liquid in each area is different, so the leather or leather leftovers rub against each other, and finally the leather fiber bundle is extracted.
  • the collagen molecule is a right-handed composite helix of procollagen composed of three left-handed ⁇ -chains entangled with each other.
  • This is the collagen helix, which is the secondary structure of collagen.
  • the high stability of the secondary structure of collagen is mainly due to inter-chain hydrogen bonds and intra-molecular and inter-molecular inter-chain covalent cross-linking. So far, the first confirmed cross-linking structures mainly include Schiff base cross-linking and ⁇ -Aldol crosslinking and aldol histidine crosslinking, etc.
  • nano-level branches For animal leather fiber bundles with nano-level branches, nano-level branches due to the increase in the number of surface atoms, insufficient atomic coordination and high surface energy, make these surface atoms have high activity and are extremely unstable. Based on the covalent cross-linking between chains, nano-level branches are easily combined with animal leather fibers and other nano-level branches. At the same time, nano-level branches are attached to the main body of animal leather fibers.
  • the animal leather fiber bundle provides greater mechanical strength. It is easy to interweave between the animal leather fiber main body, the nano-level branch, and the animal leather fiber main body and the nano-level branch, thereby improving the animal leather fiber bundle. Mechanical properties such as strength.
  • an animal leather fiber bundle yarn with nano-level branches includes animal leather fiber bundles with nano-level branches, and the animal leather fiber bundles with nano-level branches include animal leather fiber bodies and animal leather fibers.
  • the main body is a spinnable animal leather fiber main body, and the animal leather fiber main body has branches and nano-level branches.
  • the animal leather fiber main body, the branches and the nano-level branches are interlaced and twisted together in a longitudinal arrangement.
  • nano-scale branches include nano-scale branches with a diameter of 200 nm or less.
  • animal leather fiber bundle yarn with nano-level branches also includes other textile fibers except the animal leather fiber bundle with nano-level branches.
  • the animal leather fiber bundle yarn with nano-level branches is made by twisting animal leather fiber bundles with nano-level branches.
  • the animal leather fiber main body, branches and nano-level branches are interlaced and twisted in the longitudinal arrangement. together.
  • Animal leather fiber bundles with nano-level branches are spinnable fiber bundles formed through various processes such as liquid defibrillation, opening and carding. Compared with the protofibrils, subfibrils and fibrils in the process of collagen fiber formation
  • the nano-level branches exist independently and separately and are attached to the main body of the animal leather fiber, which is obviously different from the morphology and structure of the protofibril, sub-fibril and fibril.
  • the specific surface area of the nano-level branches is significantly increased, so that the animal leather fiber exerts its own performance and also produces new functions, that is, a great adsorption function.
  • the adsorption function is produced due to Produced independent, separated nano-level branches attached to the main body of animal leather fibers, and animal leather fiber bundles are formed by amino acid sequences to form peptide chains, and then the peptide chains form collagen molecules.
  • This special type of animal leather fiber bundles The ingredients make the animal leather fiber bundle have a "blue shift" phenomenon in the optical properties, therefore, the absorption capacity of ultraviolet light is stronger. Based on the improved UV absorption capacity of animal leather fiber bundles with nano-level branches, and through testing and comparison, its antibacterial effect is very good, and the sterilization rate can reach more than 95%, which greatly exceeds the antibacterial properties of existing fiber materials. performance.
  • Liquid defibrillation is the extraction of animal leather fiber bundles from leather or leather scraps under the mechanical action of the rotor of the liquid defibrillator and the hydraulic shear caused by the rotation of the rotor.
  • the blades on the rotor interact with leather or leather leftovers, causing friction and other forces to be generated between the leather or leather leftovers and the rotor.
  • due to the rotor A strong vortex is generated, forming a high-speed turbulent area around the rotor, and the flow rate of the liquid in each area is different, so the leather or leather leftovers rub against each other, and finally the leather fiber bundle is extracted.
  • the collagen molecule is a right-handed composite helix of procollagen composed of three left-handed ⁇ -chains entangled with each other.
  • This is the collagen helix, which is the secondary structure of collagen.
  • the high stability of the secondary structure of collagen is mainly due to inter-chain hydrogen bonds and intra-molecular and inter-molecular inter-chain covalent cross-linking. So far, the first confirmed cross-linking structures mainly include Schiff base cross-linking and ⁇ -Aldol crosslinking and aldol histidine crosslinking, etc.
  • nano-level branches due to the increase in the number of surface atoms, insufficient atomic coordination and high surface energy, make these surface atoms have high activity and are extremely unstable.
  • the nano-level branches are easy to interact with the main body of the animal leather fiber and its branches and other nano-level branches.
  • the branches are combined, and at the same time, the nano-level branches are attached to the animal leather fiber main body.
  • the animal leather fiber main body provides the animal leather fiber bundle with greater mechanical strength. Between the animal leather fiber main body and the nano-level branch, The animal leather fiber main body and the nano-level branches are easily interwoven with each other, thereby improving the mechanical properties such as the strength of the yarn.
  • a core-spun yarn of animal leather fiber bundles with nano-level branches includes a core yarn, and the core yarn is covered with a skin layer formed by twisting animal leather fiber bundles with nano-level branches.
  • the animal leather fiber bundle with nano-level branches includes animal leather fiber main body, which is spinnable animal leather fiber main body, has branches and nano-level branches on the animal leather fiber main body, animal leather fiber main body, branch and nano-level The branches are staggered and twisted together in a longitudinal arrangement.
  • nano-scale branches include nano-scale branches with a diameter of less than 200 nm.
  • the skin layer also includes other textile fibers other than the animal leather fiber bundles with nano-level branches.
  • the core yarn is an elastic core yarn.
  • the animal leather fiber bundle core-spun yarn with nano-level branches uses the animal leather fiber bundles with nano-level branches to form a skin layer by twisting and arranging in the longitudinal direction, so that the main body, branches and nano-level branches of the animal leather fiber are interlaced and interwoven with each other. Cover the core yarn.
  • the adjacent nano-level branched animal leather fiber bundles and their branches are intertwined and twisted to form a longitudinally arranged network structure; the more branches and nano-level branches, the more complex the network structure, the nano-level branched animal leather fiber bundles
  • the present invention solves the shortcoming that the prior art extracts animal leather fiber bundles from the leather and directly spins the yarn cannot reach the basic tensile strength, and solves the shortcomings that it is extremely difficult or impossible to process high-count yarns.
  • Animal leather fiber bundles with nano-level branches are spinnable fiber bundles formed through various processes such as liquid defibrillation, opening and carding. Compared with the protofibrils, subfibrils and fibrils in the process of collagen fiber formation
  • the nano-level branches exist independently and separately, and they are obviously different from the morphology and structure of the protofibrils, sub-fibrils, and fibrils.
  • nano-level branches For animal leather fiber bundles with nano-level branches, nano-level branches The specific surface area is significantly increased, so that the animal leather fiber has a new function in addition to its own performance, that is, a great adsorption function.
  • the adsorption function is generated due to the independent and separated nanometer
  • the animal leather fiber bundle is composed of amino acid sequences to form peptide chains, and then the peptide chains form collagen molecules.
  • This special component in the animal leather fiber bundle makes the animal leather fiber bundle a "blue shift" in optical properties. Therefore, the absorption capacity of ultraviolet light is stronger.
  • Liquid defibrillation is the extraction of animal leather fiber bundles in leather or leather leftovers under the mechanical action of the rotor of the liquid defibrillation machine and the hydraulic shear caused by the rotation of the rotor.
  • the blades on the rotor interact with leather or leather leftovers, so that friction and other forces are generated between the leather or leather leftovers and the rotor.
  • due to the rotor A strong vortex is generated, forming a high-speed turbulent area around the rotor, and the flow rate of the liquid in each area is different, so the leather or leather leftovers rub against each other, and finally the leather fiber bundle is extracted.
  • the collagen molecule is a right-handed composite helix of procollagen composed of three left-handed ⁇ -chains entangled with each other.
  • This is the collagen helix, which is the secondary structure of collagen.
  • the high stability of the secondary structure of collagen is mainly due to the inter-chain hydrogen bonds and intra-molecular and inter-molecular inter-chain covalent cross-linking. So far, the first confirmed cross-linking structures mainly include Schiff base cross-linking and ⁇ -Aldol crosslinking and aldol histidine crosslinking, etc.
  • nano-level branches due to the increase in the number of surface atoms, insufficient atomic coordination and high surface energy, make these surface atoms have high activity and are extremely unstable.
  • the nano-level branches are easy to interact with the body of the animal leather fiber and its branches and other Nano-level branches are combined.
  • nano-level branches are attached to the main body of animal leather fibers.
  • the main body of animal leather fibers provides greater mechanical strength for the animal leather fiber bundle.
  • the animal leather fiber main body and the nano-level branches are easy to interweave each other, thereby improving the mechanical properties such as the strength of the yarn.
  • the first technical solution for achieving the above-mentioned fourth objective is: a product with nano-scale branched animal leather fiber bundles, including the animal leather fiber bundle with nano-scale branches.
  • it also includes other textile fibers besides animal leather fiber bundles with nano-level branches.
  • the second technical solution for achieving the above-mentioned fourth objective is: a product with nano-scale branched animal leather fiber bundles, including the animal leather fiber bundle yarn with nano-scale branches.
  • the third technical solution to achieve the fourth objective is: a product with nano-scale branched animal leather fiber bundles, including the animal leather fiber bundle core-spun yarn with nano-scale branches.
  • Figure 1 is an animal leather fiber bundle with nano-level branches.
  • Figure 2 is an electron micrograph of the animal leather fiber bundle before combing.
  • Figure 3 is an electron micrograph of the animal leather fiber bundle with nano-level branches after carding.
  • Fig. 4 is another electron micrograph of the animal leather fiber bundle with nano-level branches.
  • Figure 5 is a third electron micrograph of an animal leather fiber bundle with nano-level branches.
  • Fig. 6 is a schematic diagram of animal leather fiber bundle yarn with nano-level branches.
  • Fig. 7 is a schematic diagram of animal leather fiber bundle core-spun yarn with nano-level branches.
  • Fig. 8 is an electron micrograph of the animal leather fiber bundle core-spun yarn with nano-level branches peeling off from the core yarn.
  • an animal leather fiber bundle with nano-level branches includes an animal leather fiber body 100.
  • the animal leather fiber body is a spinnable animal leather fiber body; there are branches 101 on the animal leather fiber body.
  • Nano-scale branches include nano-scale branches with a diameter of 200 nm or less.
  • the animal leather fiber bundles with nano-level branches are spinnable fiber bundles formed by various processes such as liquid defibrillation, opening and carding. Compared with the protofibrils, subfibrils and fibrils in the process of collagen fiber formation
  • the nano-level branches exist independently and separately and are attached to the main body of the animal leather fiber. They are obviously different from the morphology and structure of the protofibril, sub-fibril and fibril.
  • the specific surface area of the nano-level branches has been significantly increased, so that the animal leather fiber bundles exert their own performance and also produce new functions, that is, they have a great adsorption function.
  • the animal leather fiber bundle Because of the independent and isolated nano-level branches attached to the main body of the animal leather fiber, the animal leather fiber bundle is formed by the amino acid sequence to form the peptide chain, and then the peptide chain forms the collagen molecule, this special in the animal leather fiber bundle
  • the composition of the animal leather fiber bundle has a "blue shift" phenomenon in the optical properties, so it has a stronger ability to absorb ultraviolet light. Based on the improved UV absorption capacity of animal leather fiber bundles with nano-level branches, and through testing and comparison, its antibacterial effect is very good, and the sterilization rate can reach more than 95%, which greatly exceeds the antibacterial properties of existing fiber materials. performance.
  • Liquid defibrillation is the extraction of animal leather fiber bundles in leather or leather leftovers under the mechanical action of the rotor of the liquid defibrillation machine and the hydraulic shear caused by the rotation of the rotor.
  • the blades on the rotor interact with leather or leather leftovers, so that friction and other forces are generated between the leather or leather leftovers and the rotor.
  • due to the rotor A strong vortex is generated, forming a high-speed turbulent area around the rotor, and the flow rate of the liquid in each area is different, so the leather or leather leftovers rub against each other, and finally the leather fiber bundle is extracted.
  • the animal leather fibers are basically showing a thicker fiber bundle structure after being defibrated and opened by liquid.
  • nano-level fibers appear.
  • Animal leather fiber branches as can be seen from the electron micrographs, there are 195.3 nm nano-level branches in Fig. 3, 139.6 nm nano-level branches in Fig. 4, and 117.7 nm nano-level branches in Fig. 5.
  • the collagen molecule is a right-handed composite helix of procollagen composed of three left-handed ⁇ -chains entangled with each other.
  • This is the collagen helix, which is the secondary structure of collagen.
  • the high stability of the secondary structure of collagen is mainly due to the inter-chain hydrogen bonds and intra-molecular and inter-molecular inter-chain covalent cross-linking. So far, the first confirmed cross-linking structures mainly include Schiff base cross-linking and ⁇ -Aldol crosslinking and aldol histidine crosslinking, etc.
  • nano-level branches For animal leather fiber bundles with nano-level branches, nano-level branches due to the increase in the number of surface atoms, insufficient atomic coordination and high surface energy, make these surface atoms have high activity and are extremely unstable. Based on the covalent cross-linking between chains, nano-level branches are easily combined with animal leather fibers and other nano-level branches. At the same time, nano-level branches are attached to the main body of animal leather fibers.
  • the animal leather fiber bundle provides greater mechanical strength. It is easy to interweave between the animal leather fiber main body, the nano-level branch, and the animal leather fiber main body and the nano-level branch, thereby improving the animal leather fiber bundle. Mechanical properties such as strength.
  • the animal leather fiber bundle yarn with nano-level branches includes animal leather fiber bundles 3 with nano-level branches.
  • the animal leather fiber bundle 3 with nano-level branches includes an animal leather fiber body. 100.
  • the animal leather fiber main body is a spinnable animal leather fiber main body.
  • the animal leather fiber main body 100 has branches 101 and nano-level branches 102.
  • the animal leather fiber main body 100, branches 101 and nano-level branches 102 are interlaced and arranged longitudinally Twist together.
  • Nano-scale branches include nano-scale branches with a diameter of 200 nm or less.
  • other textile fibers other than the animal leather fiber bundle with nano-level branches can also be added.
  • the animal leather fiber bundle yarn with nano-level branches is formed by twisting animal leather fiber bundles with nano-level branches, so that the animal leather fiber main body, branches and nano-level branches are interlaced and arranged in the longitudinal direction.
  • the animal leather fiber bundles with nano-level branches are spinnable fiber bundles formed by various processes such as liquid defibrillation, opening and carding. Compared with the protofibrils, subfibrils and fibrils in the process of collagen fiber formation
  • the nano-level branches exist independently and separately and are attached to the main body of the animal leather fiber. They are obviously different from the morphology and structure of the protofibril, sub-fibril and fibril.
  • the specific surface area of the nano-level branches is significantly increased, so that the animal leather fiber exerts its own performance and also produces new functions, that is, a great adsorption function.
  • the adsorption function is produced due to Produced independent, separated nano-scale branches attached to the main body of animal leather fibers, and animal leather fiber bundles are formed by amino acid sequences to form peptide chains, and then the peptide chains form collagen molecules.
  • This special in animal leather fiber bundles The ingredients make the animal leather fiber bundle have a "blue shift" phenomenon in the optical properties, so it has a stronger ability to absorb ultraviolet light. Based on the improved UV absorption capacity of animal leather fiber bundles with nano-level branches, and through testing and comparison, its antibacterial effect is very good, and the sterilization rate can reach more than 95%, which greatly exceeds the antibacterial properties of existing fiber materials. performance.
  • Liquid defibrillation is the extraction of animal leather fiber bundles in leather or leather leftovers under the mechanical action of the rotor of the liquid defibrillation machine and the hydraulic shear caused by the rotation of the rotor.
  • the blades on the rotor interact with leather or leather leftovers, so that friction and other forces are generated between the leather or leather leftovers and the rotor.
  • due to the rotor A strong vortex is generated, forming a high-speed turbulent area around the rotor, and the flow rate of the liquid in each area is different, so the leather or leather leftovers rub against each other, and finally the leather fiber bundle is extracted.
  • the collagen molecule is a right-handed composite helix of procollagen composed of three left-handed ⁇ -chains entangled with each other.
  • This is the collagen helix, which is the secondary structure of collagen.
  • the high stability of the secondary structure of collagen is mainly due to the inter-chain hydrogen bonds and intra-molecular and inter-molecular inter-chain covalent cross-linking. So far, the first confirmed cross-linking structures mainly include Schiff base cross-linking and ⁇ -Aldol crosslinking and aldol histidine crosslinking, etc.
  • nano-level branches due to the increase in the number of surface atoms, insufficient atomic coordination and high surface energy, make these surface atoms have high activity and are extremely unstable.
  • the nano-level branches are easy to interact with the main body of the animal leather fiber and its branches and other nano-level branches.
  • the nano-level branches are attached to the animal leather fiber body.
  • the animal leather fiber body provides greater mechanical strength for the animal leather fiber bundle. Between the animal leather fiber body and the nano-level branches, The animal leather fiber main body and nano-level branches are easily interwoven with each other, thereby improving the mechanical properties such as the strength of the yarn.
  • the animal leather fiber bundle corespun yarn with nano-level branches includes a core yarn 21, and the core yarn 21 is covered with a twisted animal leather fiber bundle 3 with nano-level branches.
  • the skin layer as shown in Figure 1, the animal leather fiber bundle with nano-level branches includes an animal leather fiber body 100, which is a spinnable animal leather fiber body, and has branches 101 and nano-level on the animal leather fiber body.
  • the branches 102, the animal leather fiber main body 100, the branches 101 and the nano-level branches 102 are interlaced with each other and arranged in the longitudinal direction and twisted together.
  • the core yarn may be an elastic core yarn, and the core-spun yarn produced in this way has elasticity.
  • Nano-scale branches include nano-scale branches with a diameter of 200 nm or less. Of course, other textile fibers other than animal leather fiber bundles with nano-level branches can also be added to the skin layer.
  • the animal leather fiber bundle core-spun yarn with nano-level branches uses the animal leather fiber bundles with nano-level branches to form a skin layer through twisting, so that the animal leather fiber main body, branches and nano-level branches are interlaced and arranged in the longitudinal direction. Cover the core yarn.
  • the adjacent nano-level branched animal leather fiber bundles and their branches are intertwined and twisted to form a network structure; the more branches and nano-level branches, the more complex the network structure, and the more specific surface area of the nano-level branched animal leather fiber bundles.
  • the present invention solves the shortcomings of the fact that the prior art extracts animal leather fiber bundles from leather and directly spins the yarn to achieve the basic tensile strength, and solves the shortcomings that it is extremely difficult or impossible to process high count yarns.
  • the animal leather fiber bundles with nano-level branches are spinnable fiber bundles formed by various processes such as liquid defibrillation, opening and carding. Compared with the protofibrils, subfibrils and fibrils in the process of collagen fiber formation
  • the nano-level branches exist independently and separately and are attached to the main body of the animal leather fiber, which is obviously different from the morphology and structure of the protofibril, sub-fibril and fibril.
  • the specific surface area of the nano-level branches is significantly increased, so that the animal leather fiber exerts its own performance and also produces new functions, that is, a great adsorption function.
  • the adsorption function is produced due to Produced independent, separated nano-scale branches attached to the main body of animal leather fibers, and animal leather fiber bundles are formed by amino acid sequences to form peptide chains, and then the peptide chains form collagen molecules.
  • This special in animal leather fiber bundles The ingredients make the animal leather fiber bundle have a "blue shift" phenomenon in the optical properties, so it has a stronger ability to absorb ultraviolet light.
  • Liquid defibrillation is the extraction of animal leather fiber bundles from leather or leather scraps under the mechanical action of the rotor of the liquid defibrillator and the hydraulic shear caused by the rotation of the rotor.
  • the blades on the rotor interact with leather or leather leftovers, causing friction and other forces to be generated between the leather or leather leftovers and the rotor.
  • due to the rotor A strong vortex is generated, forming a high-speed turbulent area around the rotor, and the flow rate of the liquid in each area is different, so the leather or leather leftovers rub against each other, and finally the leather fiber bundle is extracted.
  • the collagen molecule is a right-handed composite helix of procollagen composed of three left-handed ⁇ -chains entangled with each other.
  • This is the collagen helix, which is the secondary structure of collagen.
  • the high stability of the secondary structure of collagen is mainly due to inter-chain hydrogen bonds and intra-molecular and inter-molecular inter-chain covalent cross-linking. So far, the first confirmed cross-linking structures mainly include Schiff base cross-linking and ⁇ -Aldol crosslinking and aldol histidine crosslinking, etc.
  • nano-level branches due to the increase in the number of surface atoms, insufficient atomic coordination and high surface energy, make these surface atoms have high activity and are extremely unstable.
  • the nano-level branches are easy to interact with the body of the animal leather fiber and its branches and other Nano-level branches are combined.
  • nano-level branches are attached to the main body of animal leather fibers.
  • the main body of animal leather fibers provides greater mechanical strength for the animal leather fiber bundle.
  • the animal leather fiber main body and the nano-level branches are easy to interweave each other, thereby improving the mechanical properties such as the strength of the yarn.
  • a product with nano-level branched animal leather fiber bundles which is manufactured from the nano-level branched animal leather fiber bundles described in Example 1.
  • a product with nano-level branched animal leather fiber bundles which is manufactured from the nano-level branched animal leather fiber bundle yarn described in Example 2.
  • a product with nano-level branched animal leather fiber bundles is manufactured from the animal leather fiber bundle core-spun yarn with nano-level branches described in Example 3.
  • the above products can be clothing, hats, shoes, socks, gloves, etc., or bedding, decorative materials, etc.
  • test report entrusted by the applicant to Guangdong Guangfang Testing and Measurement Technology Co., Ltd. on April 8, 2019.
  • the test report was issued on April 18, 2019.
  • the number is (NO.): 19F02538, anti-counterfeiting Code: VBTU-IN1L-S8, report anti-counterfeiting query URL: report.gztzs.com, the content of the test report is as follows:
  • the test report shows that the antibacterial effect of animal leather fiber bundles and yarns with nano-level branches is very high.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Treatment And Processing Of Natural Fur Or Leather (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)
  • Artificial Filaments (AREA)
  • Synthetic Leather, Interior Materials Or Flexible Sheet Materials (AREA)

Abstract

一种具有纳米级分支(102)的动物皮革纤维束(3)、纱线、包芯纱及制品,具有纳米级分支(102)的动物皮革纤维束(3)包括动物皮革纤维主体(100),动物皮革纤维主体(100)为可纺性动物皮革纤维主体(100);在动物皮革纤维主体(100)上具有纳米级分支(102),纱线由具有纳米级分支(102)的动物皮革纤维束(3)形成,包芯纱包括芯纱(21)和皮层,皮层包括具有纳米级分支(102)的动物皮革纤维束(3),制品由上述任一一种制作而成。该动物皮革纤维束(3)具有独立的、已经分离的纳米级分支(102),呈现了抑菌效果好、能提高力学性能的特性。

Description

具有纳米级分支的动物皮革纤维束、纱线、包芯纱及制品 技术领域
本发明涉及动物皮革纤维束、纱线和包芯纱,尤其是具有纳米级分支的动物皮革纤维束、纱线和包芯纱。
背景技术
我国的皮革工业是轻工业的组成部分,它包括制革、毛皮和革制品三个自然行业。制革的成品叫皮革,皮革是去毛动物的皮制品;毛皮又称毛革或裘,它是带毛动物的皮制品;革制品是皮革或毛皮深加工的产品,如皮鞋、皮衣、皮件等。
制革是指将生皮经过一系列的物理和化学加工处理,以改变生皮的性质和外观,得到皮革。
生皮是从动物体剥离下来的,生皮主要包括表皮层、真皮层和皮下组织。其中,真皮层位于表皮层的下面,其重量和厚度分别占生皮的90%以上,是生皮的主要部分。真皮层主要由紧密编织和连接在一起的胶原纤维、弹性纤维和网状纤维所组成,此外,真皮层中还含有一些非纤维成分,如毛囊、汗腺、脂腺、脂肪细胞、肌肉、血管、淋巴管和纤维间质等。
上述所记载的胶原纤维是真皮中的主要纤维,它构成了生皮的主体,胶原纤维系胶原构成,占真皮全部纤维重量的95%-98%。
胶原纤维不分叉,而是集结成束状。其形成结构如下:
原胶原分子→初原纤维(直径1.2~1.7nm)→亚原纤维(直径3~5nm)→原纤维(直径一般20nm)→细纤维(直径2~5μm)→胶原纤维(直径20~150μm)。原胶原分子为通过三条左手螺旋胶原肽链形成的右手复合螺旋结构,胶原肽链由螺旋链和与之连接的非螺旋端肽构成,螺旋链和非螺旋端肽均由氨基酸序列组成。胶原的氨基酸组成和序列虽然由于来源和胶原类型不同有一定差异,但几种主要氨基酸的组成大致相同,即甘氨酸、丙氨酸、脯氨酸和羟脯氨酸。
原胶原分子→初原纤维(直径1.2~1.7nm)→亚原纤维(直径3~5nm)→原纤维(直径一般20nm)→细纤维(直径2~5μm)→胶原纤维(直径20~150μm)为胶原纤维的形成过程,但胶原纤维在动物的皮或皮革等产品中存在的状态不存在独立的、分离的具有纳米级分支的胶原纤维束。
制革的原料“生皮”在未加工之前具有如下性质:
(1)由动物体上剥下的皮是湿的,晾干后变硬,并失去扰曲性和柔软性,弯曲时易折断。
(2)湿态的生皮在湿热气温条件下,会很快腐烂、掉毛、发臭。
(3)在65℃以上的热水中,生皮会发生收缩,温度越高,收缩的程度越大。
(4)生皮的透气性和透水汽性都不好,也就是卫生性不好。
(5)在化学药品的作用下,生皮易被破坏。
由于生皮的以上性质,生皮不能直接制成生活用品供人们使用。因此,人们将生皮通过一系列的物理和化学处理制作成皮革。虽然皮革是将生皮经过物理和化学处理得到的,但皮革中的胶原纤维束的形态和结构与生皮中的胶原纤维束形态、结构基本相同。
将生皮通过处理得到的皮革因不会变成硬而脆的材料,不会腐烂,不收缩、透气性和透水汽性较好,耐化学性能好等优点而被人们青睐。但是在将皮革制作成皮革制品时,会出现大量的边角料,据统计,每年我国仅制革及革制品行业大约要产生140万吨的皮革边角料,印度每年产生15万吨的皮革边角料,美国每年仅产生的含铬皮革废料就达6万吨,这些皮革边角料是造成皮革工业污染严重的重要因素之一。
基于皮革边角料的大量产生,80年代以来,由于发达国家日益严格的环保法规的限制和可用于填埋皮革边角料地点的减少,以及污染治理费用昂贵等原因,一方面,发达国家将其污染性工业向发展中国家转移;另一方面.也积极开展皮革边角料回收利用的研究和应用。特别是90年代以来,随着资源、环境等全球性生态问题的日益严峻,皮革工业的发展正面临着“可持续发展”战略的挑战。因此,皮革边角料的资源化现已成为国内外关注的重要课题。
关于皮革边角料的回收利用已有相当久的历史,但在过去它并没有引起业内外人士的普遍重视。近20年来,随着分子生物学的发展及人们对胶原和其性质的认识的深入,其应用领域也更为广泛;因此,皮革边角料的资源化也不再仅仅是利用废弃皮屑生产再生革等低附加值的产品,而是被赋予了新的内容,也就是尽力追求高附加值转化。由于胶原纤维是构成动物机体的重要功能物质及它具有其它合成高分子材料无可比拟的生物相容性和生物降解性。因此,胶原纤维(即动物皮革纤维)作为天然的生物质资源,在食品、医药、化妆品、饲料、肥料等工业中应用的重要性和经济地位正日益突出。
基于上述背景,发明人对皮革边角料的再次利用进行了深入的研究,并申请了国内和国外专利,同时投入到了实际生产中,如中国专利申请号为200410034435.4、200410090255.8、200410097268.8、200410097268.8、200510036778.9、200710003092.9、200710090219.5、201010211811.8、201020236921.5、201621302339.8等均涉及到胶原纤维。 发明人所研究的上述胶原纤维是通过在液体疏解机的水力作用下使皮革边角料或皮革中的胶原纤维在编织状态下逐渐松解得到的。但在之前的研究和实施中,仅仅是将皮革边角料或皮革中的胶原纤维松解形成具有主体和逐渐分支的动物皮革纤维。在研究中发现,纳米级的材料会产生非纳米级相同材料特有的性能,因此,研究和实施具有独立、分离出来的纳米级动物皮革纤维分支及其加工方法具有重要的意义。
为此,也有人开始研究天然纳米纤维,如在中国专利申请号为200510086251.7公开日为2006年2月8日的专利文献中公开了一种天然纳米纤维的制备方法,并具体公开了如下步骤:
(1)将天然生物材料浸泡在一定的溶剂的容器中。
(2)开启一定频率一定功率的超声波装置,将超声波发射探头深入装载有天然生物材料溶液的容器中,进行一定时间的超声波解离,从而制备得到一种天然纳米纤维。所述天然生物材料包括蜘蛛丝、家蚕丝、野蚕丝、羊毛、鱼鳞、竹纤维、骨胶原纤维、木纤维。
在上述文献中公开了可以通过骨胶原纤维获得天然纳米纤维,但本领域技术人员知晓,骨胶原纤维是分布在骨组织中,构成骨胶原纤维的蛋白质为Ⅰ型胶原蛋白。Ⅰ型胶原构成骨胶原,骨Ⅰ型胶原共3000多个氨基酸,分子量为95000,在化学结构上与结缔组织与Ⅰ型胶原不同。骨Ⅰ型胶原的交联部位较少,交联是经过G醛基赖氨酸被氢硼酸钠还原后形成的结构。骨Ⅰ型胶原前N端扩展肽被磷酸化,而在结缔组织中则未发现翻译修饰后的前胶原。在氨基酸组成上骨胶原也不同于软骨胶原,它含有两种特殊氨基酸,即丝氨酸和甘氨酸,大量丝氨酸以磷酸丝氨酸盐的形式存在,故在矿化过程中磷酸盐与骨胶原的结合很重要。骨基质矿化过程中,羟基磷灰石与骨胶原相结合形成正常的骨质。骨的Ⅰ型胶原之间相互交联,形成骨基质框架;骨胶原的质量、数量也与矿化相关,保持一定的沉积比例。矿化过程还需有骨基质中的非胶原蛋白,即骨钙素、基质蛋白等的参与,Ⅰ型胶原不仅给骨钙素提供结构场所,还与骨钙素等非胶原蛋白相结合,形成网络支架,为骨矿化提供基本条件。
在实践研究过程中,在不脱钙的骨超薄切片上,可见羟磷灰石结晶沿胶原纤维长轴分布。骨胶原纤维的抗压性和弹性较差,羟磷灰石结晶易碎但两者结合在一起,则具有很大的结构强度,从而使骨组织获得坚强的机械性能。
皮革中的胶原纤维也是由胶原蛋白组成,但与骨胶原纤维中的胶原蛋白不同,而且皮革中的胶原纤维具有较好的抗压性能和弹性,这说明皮革中的胶原纤维与骨胶原纤维在组成和性能上存在明显的不同。
因此,研发出一种从皮革中分离出具有纳米级分支的动物皮革胶原纤维束以提高分离 的动物皮革纤维束的性能具有深远的意义。
发明内容
本发明的第一目的是提供一种具有纳米级分支的动物皮革纤维束,本发明的动物皮革纤维束结构,动物皮革纤维束在其中具有独立的、已经分离的并依附在动物皮革纤维主体上的纳米级分支,呈现了抑菌效果好、吸附性能好、能提高力学性能的特性。
本发明的第二目的是提供一种具有纳米级分支的动物皮革纤维束纱线。本发明的纱线结构,动物皮革纤维束在其中具有独立的、已经分离的且连接在动物皮革纤维主体上的纳米级分支,呈现了抑菌效果好、吸附性能好、能提高力学性能的特性。
本发明的第三目的是提供一种具有纳米级分支的动物皮革纤维束包芯纱。本发明的包芯纱结构,动物皮革纤维束在其中具有独立的、已经分离的且连接在动物皮革纤维主体上的纳米级分支,呈现了抑菌效果好、吸附性能好、能提高力学性能的特性。
本发明的第四目的是提供一种具有纳米级分支动物皮革纤维束的制品。动物皮革纤维束在该制品中具有独立的、已经分离的且连接在动物皮革纤维主体上的纳米级分支,呈现了抑菌效果好、吸附性能好、能提高力学性能的特性。
为达到上述第一目的,一种具有纳米级分支的动物皮革纤维束,包括动物皮革纤维主体,动物皮革纤维主体为可纺性动物皮革纤维主体;在动物皮革纤维主体上具有纳米级分支。
进一步的,纳米级分支包括直径为200nm以下的纳米级分支。
具有纳米级分支的动物皮革纤维束是通过对动物皮革进行液体解纤、开松和梳理等多种工艺形成得到的具有纳米级分支的可纺性纤维束,相对于胶原纤维形成过程中的初原纤维、亚原纤维、原纤维,该纳米级分支独立的、分离的存在并依附在动物皮革纤维主体上,其与初原纤维、亚原纤维、原纤维的形态结构在单位长度中的数量上存在明显的区别,对于具有纳米级分支的动物皮革纤维束来说,纳米级分支的比表面积明显增大,使得该动物皮革纤维束发挥了其本身的性能之外还产生了新的功能,即产生了极大的吸附功能,该吸附功能的产生,由于产生了独立的、分离的并依附在动物皮革纤维主体上的纳米级分支,而动物皮革纤维束是由氨基酸序列形成肽链,再由肽链形成胶原分子,动物皮革纤维束中的这种特殊的成分使得该动物皮革纤维束在光学性能上具有“蓝移”的现象,因此,对紫外光的吸收能力更加的强。基于具有纳米级分支的动物皮革纤维束对紫外的吸附能力提高,并通过检测对比,其抑菌效果非常的好,能够达到灭菌率在95%以上,大大超过了现有纤维材料的本身抗菌性能。
液体解纤是在液体解纤机转子的机械作用和转子回转时所引起的水力剪切作用下将皮 革或皮革边角料中的动物皮革纤维束抽取出来。具体来说,液体解纤机的转子在旋转过程中,一方面转子上的叶片与皮革或皮革边角料作用,让皮革或皮革边角料与转子之间产生摩擦力等作用力,另一方面,由于转子产生强力蜗旋,在转子周围形成一个速度很高的湍流区域,产生各区域液体的流速不同,于是皮革或皮革边角料相互摩擦,最终将皮革纤维束抽取出来。
另外,胶原分子是由三根左旋α-链相互缠绕构成的原胶原的右手复合螺旋,这就是胶原螺旋,该胶原螺旋是胶原蛋白的二级结构。胶原蛋白二级结构的高度稳定性主要得益于链间氢键以及分子内和分子间的链间共价交联,到目前为止,首先被确认的交联结构主要有Schiff碱交联、β-羟醛交联和羟醛组氨酸交联等。而对于具有纳米级分支的动物皮革纤维束来说,纳米级分支由于表面原子数增多,原子配位不足及高的表面能,使这些表面原子具有高的活性,极不稳定,很容易与其他的原子结合,基于链间的共价交联作用,纳米级分支容易与动物皮革纤维及其其他的纳米级分支结合,同时,纳米级分支是依附在动物皮革纤维主体上,动物皮革纤维主体为动物皮革纤维束提供了较大的机械强力,在加上动物皮革纤维主体之间、纳米级分支之间、动物皮革纤维主体与纳米级分支之间容易相互交织,从而提高了动物皮革纤维束的强度等力学性能。
为达到上述第二目的,一种具有纳米级分支的动物皮革纤维束纱线,包括具有纳米级分支的动物皮革纤维束,具有纳米级分支的动物皮革纤维束包括动物皮革纤维主体,动物皮革纤维主体为可纺性动物皮革纤维主体,在动物皮革纤维主体上具有分支和纳米级分支,动物皮革纤维主体、分支和纳米级分支相互交错并且沿纵向排列捻合在一起。
进一步的,纳米级分支包括直径为200nm以下的纳米级分支。
进一步的,具有纳米级分支的动物皮革纤维束纱线还包括有除具有纳米级分支的动物皮革纤维束的其他纺织纤维。
具有纳米级分支的动物皮革纤维束纱线是利用具有纳米级分支的动物皮革纤维束通过捻合而成的,让动物皮革纤维主体、分支和纳米级分支相互交错交织并且沿纵向排列捻合在一起。具有纳米级分支的动物皮革纤维束是通过液体解纤、开松和梳理等多种工艺形成得到的可纺性纤维束,相对于胶原纤维形成过程中的初原纤维、亚原纤维、原纤维,该纳米级分支独立的、分离的存在并依附在动物皮革纤维主体上,其与初原纤维、亚原纤维、原纤维的形态和结构存在明显的区别,对于具有纳米级分支的动物皮革纤维束来说,纳米级分支的比表面积明显增大,使得该动物皮革纤维发挥了其本身的性能之外还产生了新的功能,即产生了极大的吸附功能,该吸附功能的产生,由于产生了独立的、分离的依附在动物皮革纤维主体上的纳米级分支,而动物皮革纤维束是由氨基酸序列形成肽链,再由肽链形成胶原分子,动物皮革纤维束中的这种特殊的成分使得该动物皮革纤维束在光学性能上具有“蓝移”的现 象,因此,对紫外光的吸收能力更加的强。基于具有纳米级分支的动物皮革纤维束对紫外的吸附能力提高,并通过检测对比,其抑菌效果非常的好,能够达到灭菌率在95%以上,大大超过了现有纤维材料的本身抗菌性能。
液体解纤是在液体解纤机转子的机械作用和转子回转时所引起的水力剪切作用下将皮革或皮革边角料中的动物皮革纤维束抽取出来。具体来说,液体解纤机的转子在旋转过程中,一方面转子上的叶片与皮革或皮革边角料作用,让皮革或皮革边角料与转子之间产生摩擦力等作用力,另一方面,由于转子产生强力蜗旋,在转子周围形成一个速度很高的湍流区域,产生各区域液体的流速不同,于是皮革或皮革边角料相互摩擦,最终将皮革纤维束抽取出来。
另外,胶原分子是由三根左旋α-链相互缠绕构成的原胶原的右手复合螺旋,这就是胶原螺旋,该胶原螺旋是胶原蛋白的二级结构。胶原蛋白二级结构的高度稳定性主要得益于链间氢键以及分子内和分子间的链间共价交联,到目前为止,首先被确认的交联结构主要有Schiff碱交联、β-羟醛交联和羟醛组氨酸交联等。而对于具有纳米级分支的动物皮革纤维束来说,纳米级分支由于表面原子数增多,原子配位不足及高的表面能,使这些表面原子具有高的活性,极不稳定,很容易与其他的原子结合,基于链间的共价交联作用,当采用捻合工艺将具有纳米级分支的动物皮革纤维交织在一起后,纳米级分支容易与动物皮革纤维主体及其分支和其他的纳米级分支结合,同时,纳米级分支是依附在动物皮革纤维主体上,动物皮革纤维主体为动物皮革纤维束提供了较大的机械强力,在加上动物皮革纤维主体之间、纳米级分支之间、动物皮革纤维主体与纳米级分支之间容易相互交织,从而提高了纱线的强度等力学性能。
为达到上述第三目的,一种具有纳米级分支的动物皮革纤维束包芯纱,包括芯纱,在芯纱外包覆有由具有纳米级分支的动物皮革纤维束经捻合形成的皮层,具有纳米级分支的动物皮革纤维束包括动物皮革纤维主体,动物皮革纤维主体为可纺性动物皮革纤维主体,在动物皮革纤维主体上具有分支和纳米级分支,动物皮革纤维主体、分支和纳米级分支相互交错并且沿纵向排列捻合在一起。
进一步的,纳米级分支包括直径为200nm以下的纳米级分支。
进一步的,皮层中还包括有除具有纳米级分支的动物皮革纤维束的其他纺织纤维。
进一步的,所述的芯纱为弹力芯纱。
具有纳米级分支的动物皮革纤维束包芯纱是利用具有纳米级分支的动物皮革纤维束通过捻合并且沿纵向排列形成皮层,让动物皮革纤维主体、分支和纳米级分支相互交错交织,皮层包覆在芯纱外。
在对本发明的具有纳米级分支的动物皮革纤维束进行梳理时,梳理越充分,纳米级分 支的动物皮革纤维束分裂越多,分支和纳米级分支越多,动物皮革纤维主体越细、分支也越细,虽然梳理后的纳米级分支的动物皮革纤维束的长度变短,但由于产生了更多的分支,通过纺纱的加捻工艺使纳米级分支的动物皮革纤维束及其分支与相邻的纳米级分支的动物皮革纤维束及其分支形成相互交错缠绕捻合形成沿纵向排列的网状结构;分支和纳米级分支越多,网状结构越复杂,纳米级分支的动物皮革纤维束的比表面积越大,其相互之间的摩擦力会越大,抱合力越大,会提高皮层本身的抗拉强度和耐磨强度,使同样支数的纱,纳米级分支的动物皮革纤维束及其分支数量增多缠结交织点也越多,使纱线条干越好,质量及性能越高,充分利用了纳米级分支的动物皮革纤维束这一天然独特的结构特点。而由于设置了芯纱,即使纳米级分支的动物皮革纤维束被梳理呈较短的纳米级分支的动物皮革纤维束,也不会影响包芯纱的抗拉强度。因此,本发明解决了现有技术从皮革中提取动物皮革纤维束直接进行纺纱达不到基本的抗拉强力,解决了加工高支数纱极为困难或根本加工不成的缺点。
具有纳米级分支的动物皮革纤维束是通过液体解纤、开松和梳理等多种工艺形成得到的可纺性纤维束,相对于胶原纤维形成过程中的初原纤维、亚原纤维、原纤维,该纳米级分支独立的、分离的存在,其与初原纤维、亚原纤维、原纤维的形态和结构存在明显的区别,对于具有纳米级分支的动物皮革纤维束来说,纳米级分支的比表面积明显增大,使得该动物皮革纤维发挥了其本身的性能之外还产生了新的功能,即产生了极大的吸附功能,该吸附功能的产生,由于产生了独立的、分离的纳米级分支,而动物皮革纤维束是由氨基酸序列形成肽链,再由肽链形成胶原分子,动物皮革纤维束中的这种特殊的成分使得该动物皮革纤维束在光学性能上具有“蓝移”的现象,因此,对紫外光的吸收能力更加的强。基于具有纳米级分支的动物皮革纤维束对紫外的吸附能力提高,并通过检测对比,其抑菌效果非常的好,能够达到灭菌率在95%以上,大大超过了现有纤维材料的本身抗菌性能。
液体解纤是在液体解纤机转子的机械作用和转子回转时所引起的水力剪切作用下将皮革或皮革边角料中的动物皮革纤维束抽取出来。具体来说,液体解纤机的转子在旋转过程中,一方面转子上的叶片与皮革或皮革边角料作用,让皮革或皮革边角料与转子之间产生摩擦力等作用力,另一方面,由于转子产生强力蜗旋,在转子周围形成一个速度很高的湍流区域,产生各区域液体的流速不同,于是皮革或皮革边角料相互摩擦,最终将皮革纤维束抽取出来。
另外,胶原分子是由三根左旋α-链相互缠绕构成的原胶原的右手复合螺旋,这就是胶原螺旋,该胶原螺旋是胶原蛋白的二级结构。胶原蛋白二级结构的高度稳定性主要得益于链间氢键以及分子内和分子间的链间共价交联,到目前为止,首先被确认的交联结构主要有Schiff碱交联、β-羟醛交联和羟醛组氨酸交联等。而对于具有纳米级分支的动物皮革纤维束来说,纳米级分支由于表面原子数增多,原子配位不足及高的表面能,使这些表面原子具 有高的活性,极不稳定,很容易与其他的原子结合,基于链间的共价交联作用,当采用捻合工艺将具有纳米级分支的动物皮革纤维交织在一起形成皮层后,纳米级分支容易与动物皮革纤维主体及其分支和其他的纳米级分支结合,同时,纳米级分支是依附在动物皮革纤维主体上,动物皮革纤维主体为动物皮革纤维束提供了较大的机械强力,在加上动物皮革纤维主体之间、纳米级分支之间、动物皮革纤维主体与纳米级分支之间容易相互交织,从而提高了纱线的强度等力学性能。
达到上述第四目的的第一种技术方案为:一种具有纳米级分支动物皮革纤维束的制品,包括所述的具有纳米级分支的动物皮革纤维束。
进一步的,还包括除具有纳米级分支的动物皮革纤维束的其他纺织纤维。
达到上述第四目的的第二种技术方案为:一种具有纳米级分支动物皮革纤维束的制品,包括所述的具有纳米级分支的动物皮革纤维束纱线。
达到上述第四目的的第三种技术方案为:一种具有纳米级分支动物皮革纤维束的制品,包括所述的具有纳米级分支的动物皮革纤维束包芯纱。
附图说明
图1为具有纳米级分支的动物皮革纤维束。
图2为梳理前动物皮革纤维束的电镜图。
图3为梳理后动物皮革纤维束具有纳米级分支的电镜图。
图4为动物皮革纤维束具有纳米级分支的另一电镜图。
图5为具有纳米级分支的动物皮革纤维束的第三种电镜图。
图6为具有纳米级分支的动物皮革纤维束纱线示意图。
图7为具有纳米级分支的动物皮革纤维束包芯纱示意图。
图8为具有纳米级分支的动物皮革纤维束包芯纱具有纳米级分支的动物皮革纤维束从芯纱剥离的电镜图。
具体实施方式
下面结合附图和具体实施方式对本发明进行进一步详细说明。
实施例1。
如图1至图5所示,一种具有纳米级分支的动物皮革纤维束,包括动物皮革纤维主体100,动物皮革纤维主体为可纺性动物皮革纤维主体;在动物皮革纤维主体上具有分支101和纳米级分支102。纳米级分支包括直径为200nm以下的纳米级分支。
具有纳米级分支的动物皮革纤维束是通过液体解纤、开松和梳理等多种工艺形成得到的可纺性纤维束,相对于胶原纤维形成过程中的初原纤维、亚原纤维、原纤维,该纳米级分支独立的、分离的存在并依附在动物皮革纤维主体上,其与初原纤维、亚原纤维、原纤维的形态和结构存在明显的区别,对于具有纳米级分支的动物皮革纤维束来说,纳米级分支的比表面积明显增大,使得该动物皮革纤维束发挥了其本身的性能之外还产生了新的功能,即产生了极大的吸附功能,该吸附功能的产生,由于产生了独立的、分离的依附在动物皮革纤维主体上的纳米级分支,而动物皮革纤维束是由氨基酸序列形成肽链,再由肽链形成胶原分子,动物皮革纤维束中的这种特殊的成分使得该动物皮革纤维束在光学性能上具有“蓝移”的现象,因此,对紫外光的吸收能力更加的强。基于具有纳米级分支的动物皮革纤维束对紫外的吸附能力提高,并通过检测对比,其抑菌效果非常的好,能够达到灭菌率在95%以上,大大超过了现有纤维材料的本身抗菌性能。
液体解纤是在液体解纤机转子的机械作用和转子回转时所引起的水力剪切作用下将皮革或皮革边角料中的动物皮革纤维束抽取出来。具体来说,液体解纤机的转子在旋转过程中,一方面转子上的叶片与皮革或皮革边角料作用,让皮革或皮革边角料与转子之间产生摩擦力等作用力,另一方面,由于转子产生强力蜗旋,在转子周围形成一个速度很高的湍流区域,产生各区域液体的流速不同,于是皮革或皮革边角料相互摩擦,最终将皮革纤维束抽取出来。
从图2中可以看出,在梳理前,动物皮革纤维被液体解纤和开松后基本呈现较粗的纤维束结构,如图3至图5所示,通过梳理后则出现了纳米级的动物皮革纤维分支,从电镜图中可以看到,图3中具有195.3nm的纳米级分支,在图4中具有139.6nm的纳米级分支,在图5中具有117.7nm的纳米级分支。
另外,胶原分子是由三根左旋α-链相互缠绕构成的原胶原的右手复合螺旋,这就是胶原螺旋,该胶原螺旋是胶原蛋白的二级结构。胶原蛋白二级结构的高度稳定性主要得益于链间氢键以及分子内和分子间的链间共价交联,到目前为止,首先被确认的交联结构主要有Schiff碱交联、β-羟醛交联和羟醛组氨酸交联等。而对于具有纳米级分支的动物皮革纤维束来说,纳米级分支由于表面原子数增多,原子配位不足及高的表面能,使这些表面原子具有高的活性,极不稳定,很容易与其他的原子结合,基于链间的共价交联作用,纳米级分支容易与动物皮革纤维及其其他的纳米级分支结合,同时,纳米级分支是依附在动物皮革纤维主体上,动物皮革纤维主体为动物皮革纤维束提供了较大的机械强力,在加上动物皮革纤维主体之间、纳米级分支之间、动物皮革纤维主体与纳米级分支之间容易相互交织,从而提高了动物皮革纤维束的强度等力学性能。
实施例2。
如图6所示,具有纳米级分支的动物皮革纤维束纱线包括具有纳米级分支的动物皮革纤维束3,如图1所示,具有纳米级分支的动物皮革纤维束3包括动物皮革纤维主体100,动物皮革纤维主体为可纺性动物皮革纤维主体,在动物皮革纤维主体100上具有分支101和纳米级分支102,动物皮革纤维主体100、分支101和纳米级分支102相互交错并沿纵向排列捻合在一起。纳米级分支包括直径为200nm以下的纳米级分支。当然,在具有纳米级分支的动物皮革纤维束纱线还可以加入除具有纳米级分支的动物皮革纤维束的其他纺织纤维
具有纳米级分支的动物皮革纤维束纱线是利用具有纳米级分支的动物皮革纤维束通过捻合而成的,让动物皮革纤维主体、分支和纳米级分支相互交错交织且沿纵向排列。具有纳米级分支的动物皮革纤维束是通过液体解纤、开松和梳理等多种工艺形成得到的可纺性纤维束,相对于胶原纤维形成过程中的初原纤维、亚原纤维、原纤维,该纳米级分支独立的、分离的存在并依附在动物皮革纤维主体上,其与初原纤维、亚原纤维、原纤维的形态和结构存在明显的区别,对于具有纳米级分支的动物皮革纤维束来说,纳米级分支的比表面积明显增大,使得该动物皮革纤维发挥了其本身的性能之外还产生了新的功能,即产生了极大的吸附功能,该吸附功能的产生,由于产生了独立的、分离的依附在动物皮革纤维主体上的纳米级分支,而动物皮革纤维束是由氨基酸序列形成肽链,再由肽链形成胶原分子,动物皮革纤维束中的这种特殊的成分使得该动物皮革纤维束在光学性能上具有“蓝移”的现象,因此,对紫外光的吸收能力更加的强。基于具有纳米级分支的动物皮革纤维束对紫外的吸附能力提高,并通过检测对比,其抑菌效果非常的好,能够达到灭菌率在95%以上,大大超过了现有纤维材料的本身抗菌性能。
液体解纤是在液体解纤机转子的机械作用和转子回转时所引起的水力剪切作用下将皮革或皮革边角料中的动物皮革纤维束抽取出来。具体来说,液体解纤机的转子在旋转过程中,一方面转子上的叶片与皮革或皮革边角料作用,让皮革或皮革边角料与转子之间产生摩擦力等作用力,另一方面,由于转子产生强力蜗旋,在转子周围形成一个速度很高的湍流区域,产生各区域液体的流速不同,于是皮革或皮革边角料相互摩擦,最终将皮革纤维束抽取出来。
另外,胶原分子是由三根左旋α-链相互缠绕构成的原胶原的右手复合螺旋,这就是胶原螺旋,该胶原螺旋是胶原蛋白的二级结构。胶原蛋白二级结构的高度稳定性主要得益于链间氢键以及分子内和分子间的链间共价交联,到目前为止,首先被确认的交联结构主要有Schiff碱交联、β-羟醛交联和羟醛组氨酸交联等。而对于具有纳米级分支的动物皮革纤维束来说,纳米级分支由于表面原子数增多,原子配位不足及高的表面能,使这些表面原子具有高的活性,极不稳定,很容易与其他的原子结合,基于链间的共价交联作用,当采用捻合工艺将具有纳米级分支的动物皮革纤维交织在一起后,纳米级分支容易与动物皮革纤维主体 及其分支和其他的纳米级分支结合,同时,纳米级分支是依附在动物皮革纤维主体上,动物皮革纤维主体为动物皮革纤维束提供了较大的机械强力,在加上动物皮革纤维主体之间、纳米级分支之间、动物皮革纤维主体与纳米级分支之间容易相互交织,从而提高了纱线的强度等力学性能。
实施例3。
如图7和图8所示,具有纳米级分支的动物皮革纤维束包芯纱包括芯纱21,在芯纱21外包覆有由具有纳米级分支的动物皮革纤维束3经捻合形成的皮层,如图1所示,具有纳米级分支的动物皮革纤维束包括动物皮革纤维主体100,动物皮革纤维主体100为可纺性动物皮革纤维主体,在动物皮革纤维主体上具有分支101和纳米级分支102,动物皮革纤维主体100、分支101和纳米级分支102相互交错且沿纵向排列捻合在一起。在本实施例中,芯纱可以为弹力芯纱,这样制作的包芯纱具有弹力。纳米级分支包括直径为200nm以下的纳米级分支。当然,在皮层中还可以加入除具有纳米级分支的动物皮革纤维束的其他纺织纤维。
具有纳米级分支的动物皮革纤维束包芯纱是利用具有纳米级分支的动物皮革纤维束通过捻合形成皮层,让动物皮革纤维主体、分支和纳米级分支相互交错交织且沿纵向排列,皮层包覆在芯纱外。
在对本发明的具有纳米级分支的动物皮革纤维束进行梳理时,梳理越充分,纳米级分支的动物皮革纤维束分裂越多,分支和纳米级分支越多,动物皮革纤维主体越细、分支也越细,虽然梳理后的纳米级分支的动物皮革纤维束的长度变短,但由于产生了更多的分支,通过纺纱的加捻工艺使纳米级分支的动物皮革纤维束及其分支与相邻的纳米级分支的动物皮革纤维束及其分支形成相互交错缠绕捻合形成网状结构;分支和纳米级分支越多,网状结构越复杂,纳米级分支的动物皮革纤维束的比表面积越大,其相互之间的摩擦力会越大,抱合力越大,会提高皮层本身的抗拉强度和耐磨强度,使同样支数的纱,纳米级分支的动物皮革纤维束及其分支数量增多缠结交织点也越多,使纱线条干越好,质量及性能越高,充分利用了纳米级分支的动物皮革纤维束这一天然独特的结构特点。而由于设置了芯纱,即使纳米级分支的动物皮革纤维束被梳理呈较短的纳米级分支的动物皮革纤维束,也不会影响包芯纱的抗拉强度。因此,本发明解决了现有技术从皮革中提取动物皮革纤维束直接进行纺纱达不到基本的抗拉强力,解决了加工高支数纱极为困难或根本加工不成的缺点。
具有纳米级分支的动物皮革纤维束是通过液体解纤、开松和梳理等多种工艺形成得到的可纺性纤维束,相对于胶原纤维形成过程中的初原纤维、亚原纤维、原纤维,该纳米级分支独立的、分离的存在且依附在动物皮革纤维主体上,其与初原纤维、亚原纤维、原纤维的形态和结构存在明显的区别,对于具有纳米级分支的动物皮革纤维束来说,纳米级分支的比 表面积明显增大,使得该动物皮革纤维发挥了其本身的性能之外还产生了新的功能,即产生了极大的吸附功能,该吸附功能的产生,由于产生了独立的、分离的依附在动物皮革纤维主体上的纳米级分支,而动物皮革纤维束是由氨基酸序列形成肽链,再由肽链形成胶原分子,动物皮革纤维束中的这种特殊的成分使得该动物皮革纤维束在光学性能上具有“蓝移”的现象,因此,对紫外光的吸收能力更加的强。基于具有纳米级分支的动物皮革纤维束对紫外的吸附能力提高,并通过检测对比,其抑菌效果非常的好,能够达到灭菌率在95%以上,大大超过了现有纤维材料的本身抗菌性能。
液体解纤是在液体解纤机转子的机械作用和转子回转时所引起的水力剪切作用下将皮革或皮革边角料中的动物皮革纤维束抽取出来。具体来说,液体解纤机的转子在旋转过程中,一方面转子上的叶片与皮革或皮革边角料作用,让皮革或皮革边角料与转子之间产生摩擦力等作用力,另一方面,由于转子产生强力蜗旋,在转子周围形成一个速度很高的湍流区域,产生各区域液体的流速不同,于是皮革或皮革边角料相互摩擦,最终将皮革纤维束抽取出来。
另外,胶原分子是由三根左旋α-链相互缠绕构成的原胶原的右手复合螺旋,这就是胶原螺旋,该胶原螺旋是胶原蛋白的二级结构。胶原蛋白二级结构的高度稳定性主要得益于链间氢键以及分子内和分子间的链间共价交联,到目前为止,首先被确认的交联结构主要有Schiff碱交联、β-羟醛交联和羟醛组氨酸交联等。而对于具有纳米级分支的动物皮革纤维束来说,纳米级分支由于表面原子数增多,原子配位不足及高的表面能,使这些表面原子具有高的活性,极不稳定,很容易与其他的原子结合,基于链间的共价交联作用,当采用捻合工艺将具有纳米级分支的动物皮革纤维交织在一起形成皮层后,纳米级分支容易与动物皮革纤维主体及其分支和其他的纳米级分支结合,同时,纳米级分支是依附在动物皮革纤维主体上,动物皮革纤维主体为动物皮革纤维束提供了较大的机械强力,在加上动物皮革纤维主体之间、纳米级分支之间、动物皮革纤维主体与纳米级分支之间容易相互交织,从而提高了纱线的强度等力学性能。
实施例4。
一种具有纳米级分支动物皮革纤维束的制品,其由实施例1所述的具有纳米级分支的动物皮革纤维束制造而成。
实施例5。
一种具有纳米级分支动物皮革纤维束的制品,其由实施例2所述的具有纳米级分支的动物皮革纤维束纱线制造而成。
实施例6。
一种具有纳米级分支动物皮革纤维束的制品,其由实施例3所述的具有纳米级分支的 动物皮革纤维束包芯纱制造而成。
以上的制品可以为衣服、帽子、鞋子、袜子、手套等穿戴品,也可以是床上用品、装饰材料等等。
以下是申请人委托广东广纺检测计量技术股份有限公司于2019年4月8日作出的抑菌检测报告,该检测报告于2019年4月18日签发,编号为(NO.):19F02538,防伪码:VBTU-IN1L-S8,报告防伪查询网址:report.gztzs.com,检测报告的内容如下:
Figure PCTCN2020093506-appb-000001
从检测报告中显示,具有纳米级分支的动物皮革纤维束、纱线等抑菌效果非常的高。

Claims (13)

  1. 一种具有纳米级分支的动物皮革纤维束,包括动物皮革纤维主体;其特征在于:动物皮革纤维主体为可纺性动物皮革纤维主体,在动物皮革纤维主体上具有纳米级分支。
  2. 根据权利要求1所述的具有纳米级分支的动物皮革纤维束,其特征在于:纳米级分支包括直径为200nm以下的纳米级分支。
  3. 一种具有纳米级分支的动物皮革纤维束纱线,其特征在于:包括具有纳米级分支的动物皮革纤维束,具有纳米级分支的动物皮革纤维束包括动物皮革纤维主体,动物皮革纤维主体为可纺性动物皮革纤维主体,在动物皮革纤维主体上具有分支和纳米级分支,动物皮革纤维主体、分支和纳米级分支相互交错并且沿纵向排列捻合在一起。
  4. 根据权利要求3所述的具有纳米级分支的动物皮革纤维束纱线,其特征在于:纳米级分支包括直径为200nm以下的纳米级分支。
  5. 根据权利要求3所述的具有纳米级分支的动物皮革纤维束纱线,其特征在于:具有纳米级分支的动物皮革纤维束纱线还包括混有除具有纳米级分支的动物皮革纤维束之外的其他纺织纤维。
  6. 一种具有纳米级分支的动物皮革纤维束包芯纱,包括芯纱,其特征在于:在芯纱外包覆有由具有纳米级分支的动物皮革纤维束经捻合形成的皮层,具有纳米级分支的动物皮革纤维束包括动物皮革纤维主体,动物皮革纤维主体为可纺性动物皮革纤维主体,在动物皮革纤维主体上具有分支和纳米级分支,动物皮革纤维主体、分支和纳米级分支相互交错并且沿纵向排列捻合在一起。
  7. 根据权利要求6所述的具有纳米级分支的动物皮革纤维束包芯纱,其特征在于:纳米级分支包括直径为200nm以下的纳米级分支。
  8. 根据权利要求6所述的具有纳米级分支的动物皮革纤维束包芯纱,其特征在于:皮层中还包括混有除具有纳米级分支的动物皮革纤维束之外的其他纺织纤维。
  9. 根据权利要求6所述的具有纳米级分支的动物皮革纤维束包芯纱,其特征在于:所述的芯纱为弹力芯纱。
  10. 一种具有纳米级分支动物皮革纤维束的制品,其特征在于:包括权利要求1或2所述的具有纳米级分支的动物皮革纤维束。
  11. 根据权利要求10所述的具有纳米级分支动物皮革纤维束的制品,其特征在于:还包括除具有纳米级分支的动物皮革纤维束之外的其他纺织纤维。
  12. 一种具有纳米级分支动物皮革纤维束的制品,其特征在于:包括权利要求3至5 任一项所述的具有纳米级分支的动物皮革纤维束纱线。
  13. 一种具有纳米级分支动物皮革纤维束的制品,其特征在于:包括权利要求6至9任一项所述的具有纳米级分支的动物皮革纤维束包芯纱。
PCT/CN2020/093506 2019-05-27 2020-05-29 具有纳米级分支的动物皮革纤维束、纱线、包芯纱及制品 WO2020239113A1 (zh)

Priority Applications (9)

Application Number Priority Date Filing Date Title
EA202190223A EA202190223A1 (ru) 2019-05-27 2020-05-29 Пучки волокон кожи животных, пряжа, армированная пряжа и изделия с наноответвлениями
AU2020282482A AU2020282482A1 (en) 2019-05-27 2020-05-29 Animal leather fiber bundle having nanoscale branches, yarn, core-spun yarn and product
KR1020217010734A KR102651000B1 (ko) 2019-05-27 2020-05-29 나노급 분지를 갖는 동물피혁 섬유 번들, 얀, 코어 스펀 얀 및 제품
EP20814070.7A EP3819412B1 (en) 2019-05-27 2020-05-29 Animal leather fiber bundle having nanoscale branches, yarn, core-spun yarn and product
SG11202113096YA SG11202113096YA (en) 2019-05-27 2020-05-29 Animal leather fiber bundles, yarns, core-spun yarns and products with nanoscale branches
US17/269,165 US11613828B2 (en) 2019-05-27 2020-05-29 Animal leather fiber bundles, yarns, core-spun yarns and products with nanoscale branches
BR112021023876A BR112021023876A2 (pt) 2019-05-27 2020-05-29 Feixes de fibras de couro animal, fios, fios fiados e produtos com ramos em nanoescala
JP2021537475A JP2022500572A (ja) 2019-05-27 2020-05-29 ナノスケールの分岐を有する動物皮革繊維束、糸、コアスパン糸および製品
AU2023222857A AU2023222857A1 (en) 2019-05-27 2023-08-29 Animal leather fiber bundle having nanoscale branches, yarn, core-spun yarn and product

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910446876.1 2019-05-27
CN201910446876 2019-05-27
CN202010441933.X 2020-05-22
CN202010441933.XA CN111455516A (zh) 2019-05-27 2020-05-22 具有纳米级分支的动物皮革纤维束、纱线、包芯纱及制品

Publications (1)

Publication Number Publication Date
WO2020239113A1 true WO2020239113A1 (zh) 2020-12-03

Family

ID=71677097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/093506 WO2020239113A1 (zh) 2019-05-27 2020-05-29 具有纳米级分支的动物皮革纤维束、纱线、包芯纱及制品

Country Status (10)

Country Link
US (1) US11613828B2 (zh)
EP (1) EP3819412B1 (zh)
JP (1) JP2022500572A (zh)
KR (1) KR102651000B1 (zh)
CN (5) CN113106592B (zh)
AU (2) AU2020282482A1 (zh)
BR (1) BR112021023876A2 (zh)
EA (1) EA202190223A1 (zh)
SG (1) SG11202113096YA (zh)
WO (1) WO2020239113A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113106592B (zh) * 2019-05-27 2021-12-07 广东五源新材料科技集团有限公司 具有纳米级分支的动物皮革纤维束、纱线、包芯纱及制品
CN112210882B (zh) * 2020-09-04 2022-08-12 广东五源新材料科技集团有限公司 基于动物皮革纤维束缠绕织物层的基布匀整方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1098024A1 (en) * 1998-06-11 2001-05-09 Yasuhiko Shimizu Collagen material and process for producing the same
CN101050602A (zh) * 2007-02-03 2007-10-10 张立文 一种胶原纤维制造的纸及其加工方法
JP2009150005A (ja) * 2007-12-19 2009-07-09 Kuraray Co Ltd 繊維状構造物およびその用途ならびに製造方法
CN101597865A (zh) * 2009-07-05 2009-12-09 韩仕银 一种真皮纤维革及其制造工艺
CN104894695A (zh) * 2015-05-07 2015-09-09 浙江纺可新纤维科技有限公司 一种可直接纺纱用胶原纤维及由其制备的真皮纤维革
CN206337353U (zh) * 2016-04-07 2017-07-18 张立文 一种以胶原纤维束作为皮层的包芯纱及制条梳理机
CN107429479A (zh) * 2016-02-15 2017-12-01 现代牧场股份有限公司 用于制备含有胶原原纤维的生物制造材料的方法
CN111455515A (zh) * 2019-05-27 2020-07-28 广东五源新材料科技集团有限公司 具有纳米级分支的动物皮革纤维包缠纱、面料及制品

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59144606A (ja) * 1983-02-01 1984-08-18 Kazuo Kawasumi 鞣されているコラーゲン繊維の製造方法
DK0388854T3 (da) * 1989-03-23 1995-02-06 Daicel Chem Plade af collagenfibre
JP2003155349A (ja) * 2001-11-19 2003-05-27 Seibutsu Kankyo System Kogaku Kenkyusho:Kk 天然有機繊維からのナノ・メーター単位の超微細化繊維
AU2003299954B2 (en) * 2002-10-04 2009-08-13 Organogenesis, Inc. Sealants for skin and other tissues
US20050048274A1 (en) * 2003-08-26 2005-03-03 Rabolt John F. Production of nanowebs by an electrostatic spinning apparatus and method
CN1263908C (zh) * 2004-04-10 2006-07-12 张立文 动物皮革胶原纤维纱线及其生产方法
CN2701881Y (zh) * 2004-05-04 2005-05-25 张立文 动物皮或皮革纤维束纱线
US20060005735A1 (en) 2004-07-07 2006-01-12 Industrial Design Laboratories Inc. Electromagnetic moving toy system
CN1766188A (zh) * 2004-10-29 2006-05-03 张立文 纺纱用纤维条及其加工方法
CN1779002B (zh) * 2004-11-20 2010-04-07 张立文 胶原纤维还原革基布及其加工方法
CN2787691Y (zh) * 2005-03-28 2006-06-14 常熟市新力无纺设备有限公司 一种皮革纤维分离机
CN100545329C (zh) * 2006-04-30 2009-09-30 张立文 一种液体开松机
KR100680887B1 (ko) * 2006-05-25 2007-02-08 김수복 신축성을 가진 샤넬 사
JP2008002037A (ja) * 2006-06-26 2008-01-10 Kuraray Co Ltd エチレン−ビニルアルコール系共重合体ナノ繊維を含む繊維状構造物
CN101235579A (zh) * 2007-01-31 2008-08-06 张立文 一种水刺布及其加工方法
US20100075143A1 (en) 2007-03-07 2010-03-25 Toray Industries, Inc. Fiber structure and method for production thereof
CN102076280B (zh) * 2008-06-24 2014-08-27 生物活性外科公司 掺入有干细胞或其它生物活性物质的外科缝合线
CN101736478A (zh) 2008-11-10 2010-06-16 丁晨妍 一种复合纤维生成的织物及制法
US20120295505A1 (en) * 2010-01-16 2012-11-22 Zhejiang Hongzhan New Materials Co., Ltd. Reducing leather and method for preparing the same
CN106591982B (zh) * 2010-09-23 2020-10-27 英威达纺织(英国)有限公司 阻燃性纤维、纱线和由其制造的织物
US20130012694A1 (en) * 2011-07-05 2013-01-10 Nanjingjinsirui Science & Technology Biology Corp. Monumental adornment
TWM444383U (zh) * 2012-06-27 2013-01-01 Hong Yan 具有膠原蛋白分子的紡織物件
CN104032423B (zh) 2014-06-20 2018-04-06 东华大学 一种静电纺纳米纤维包芯纱的装置及其应用
WO2017053433A1 (en) 2015-09-21 2017-03-30 Modern Meadow, Inc. Fiber reinforced tissue composites
CN105671723A (zh) * 2016-04-07 2016-06-15 张立文 一种以胶原纤维为主作为皮层的包芯纱及其加工方法
CN106012295A (zh) * 2016-08-03 2016-10-12 江苏盛纺纳米材料科技股份有限公司 一种纳米纤维热风亲水非织造材料及制备方法
CN107059142B (zh) * 2017-04-01 2018-02-13 顾勇杰 一种超长牛皮胶原纤维及其制备方法和应用
KR102511304B1 (ko) * 2017-07-10 2023-03-17 주식회사 아모라이프사이언스 세포배양 지지체용 혼섬사 제조방법, 이를 통해 구현된 세포배양 지지체용 혼섬사 및 이를 포함하는 원단
CN108251905B (zh) * 2018-01-19 2019-05-28 嘉兴奥克兰特种牛皮科技有限公司 牛皮胶原纤维的制备方法及其制得的牛皮胶原纤维和应用
CN109082763B (zh) * 2018-10-09 2020-03-06 广州五源新材料集团有限公司 一种胶原纤维束形成网状结构的新型织物及全新皮革产品
CN109098004A (zh) * 2018-11-01 2018-12-28 广州五源新材料有限公司 基于人造粒面层形成的皮革材料、人造粒面层及加工方法
CN113106592B (zh) * 2019-05-27 2021-12-07 广东五源新材料科技集团有限公司 具有纳米级分支的动物皮革纤维束、纱线、包芯纱及制品

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1098024A1 (en) * 1998-06-11 2001-05-09 Yasuhiko Shimizu Collagen material and process for producing the same
CN101050602A (zh) * 2007-02-03 2007-10-10 张立文 一种胶原纤维制造的纸及其加工方法
JP2009150005A (ja) * 2007-12-19 2009-07-09 Kuraray Co Ltd 繊維状構造物およびその用途ならびに製造方法
CN101597865A (zh) * 2009-07-05 2009-12-09 韩仕银 一种真皮纤维革及其制造工艺
CN104894695A (zh) * 2015-05-07 2015-09-09 浙江纺可新纤维科技有限公司 一种可直接纺纱用胶原纤维及由其制备的真皮纤维革
CN107429479A (zh) * 2016-02-15 2017-12-01 现代牧场股份有限公司 用于制备含有胶原原纤维的生物制造材料的方法
CN206337353U (zh) * 2016-04-07 2017-07-18 张立文 一种以胶原纤维束作为皮层的包芯纱及制条梳理机
CN111455515A (zh) * 2019-05-27 2020-07-28 广东五源新材料科技集团有限公司 具有纳米级分支的动物皮革纤维包缠纱、面料及制品

Also Published As

Publication number Publication date
KR102651000B1 (ko) 2024-03-25
CN111455516A (zh) 2020-07-28
CN213013243U (zh) 2021-04-20
SG11202113096YA (en) 2021-12-30
CN113106594A (zh) 2021-07-13
JP2022500572A (ja) 2022-01-04
EP3819412A1 (en) 2021-05-12
CN113106592A (zh) 2021-07-13
BR112021023876A2 (pt) 2022-01-18
AU2020282482A1 (en) 2021-11-25
CN114427134A (zh) 2022-05-03
CN113106594B (zh) 2022-03-25
CN114427134B (zh) 2023-10-31
US20210324546A1 (en) 2021-10-21
EA202190223A1 (ru) 2021-11-17
EP3819412A4 (en) 2021-10-20
EP3819412B1 (en) 2024-03-20
CN113106592B (zh) 2021-12-07
KR20210145120A (ko) 2021-12-01
AU2023222857A1 (en) 2023-09-14
US11613828B2 (en) 2023-03-28

Similar Documents

Publication Publication Date Title
JP6480026B2 (ja) 布帛及び培養細胞からの布帛の製造方法
RU2383665C2 (ru) Пряжа из коллагенового волокна животной кожи и способ ее изготовления
AU2023222857A1 (en) Animal leather fiber bundle having nanoscale branches, yarn, core-spun yarn and product
EP4289998A2 (en) A filament and yarn produced on the basis of a natural protein
CN109082763A (zh) 一种胶原纤维束形成网状结构的新型织物及全新皮革产品
CN113330057A (zh) 蛋白质涂覆的材料
CN104894695A (zh) 一种可直接纺纱用胶原纤维及由其制备的真皮纤维革
CN113106593B (zh) 具有纳米级分支的动物皮革纤维包缠纱、面料及制品
Ahmed et al. Introduction to natural fibres and textiles
CN2777005Y (zh) 皮革纤维基布
Xueliang Animal fibers: wool
CN213013330U (zh) 一种由具有纳米级分支的动物皮革纤维束形成的热熔棉
EA042458B1 (ru) Пучок волокон кожи животного, пряжа, армированная пряжа и изделие с наноответвлениями
TR2021018632T2 (tr) Hayvansal deri̇ li̇f demetleri̇, i̇pli̇kler, çeki̇rdekli̇ eğri̇lmi̇ş i̇pli̇kler ve nano ölçekli̇ dallara sahi̇p ürünler
CN207619583U (zh) 一种生物质喷气涡流混纺纱
Shukhratov et al. The choice of raw materials for the production of bicomponent yarn
RU2113568C1 (ru) Мех на трикотажной основе и способ его изготовления

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20814070

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021537475

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020282482

Country of ref document: AU

Date of ref document: 20200529

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021023876

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112021023876

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20211126