WO2020238784A1 - 带搅拌的三元前驱体小颗粒的过滤浓缩装置及浓缩方法 - Google Patents

带搅拌的三元前驱体小颗粒的过滤浓缩装置及浓缩方法 Download PDF

Info

Publication number
WO2020238784A1
WO2020238784A1 PCT/CN2020/091734 CN2020091734W WO2020238784A1 WO 2020238784 A1 WO2020238784 A1 WO 2020238784A1 CN 2020091734 W CN2020091734 W CN 2020091734W WO 2020238784 A1 WO2020238784 A1 WO 2020238784A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
pipe
cylinder
liquid
filtering
Prior art date
Application number
PCT/CN2020/091734
Other languages
English (en)
French (fr)
Inventor
刘一灵
陈金富
胡良分
Original Assignee
浙江东瓯过滤机制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江东瓯过滤机制造有限公司 filed Critical 浙江东瓯过滤机制造有限公司
Priority to KR1020217040865A priority Critical patent/KR20220009423A/ko
Priority to EP20814930.2A priority patent/EP3978092A4/en
Priority to JP2022516257A priority patent/JP2022536003A/ja
Priority to US17/612,007 priority patent/US20220212121A1/en
Publication of WO2020238784A1 publication Critical patent/WO2020238784A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/005Selection of auxiliary, e.g. for control of crystallisation nuclei, of crystal growth, of adherence to walls; Arrangements for introduction thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/11Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with bag, cage, hose, tube, sleeve or like filtering elements
    • B01D29/13Supported filter elements
    • B01D29/15Supported filter elements arranged for inward flow filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/50Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with multiple filtering elements, characterised by their mutual disposition
    • B01D29/52Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with multiple filtering elements, characterised by their mutual disposition in parallel connection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/60Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor integrally combined with devices for controlling the filtration
    • B01D29/601Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor integrally combined with devices for controlling the filtration by clearness or turbidity measuring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/60Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor integrally combined with devices for controlling the filtration
    • B01D29/603Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor integrally combined with devices for controlling the filtration by flow measuring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/62Regenerating the filter material in the filter
    • B01D29/66Regenerating the filter material in the filter by flushing, e.g. counter-current air-bumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/76Handling the filter cake in the filter for purposes other than for regenerating
    • B01D29/86Retarding cake deposition on the filter during the filtration period, e.g. using stirrers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D35/00Filtering devices having features not specifically covered by groups B01D24/00 - B01D33/00, or for applications not specifically covered by groups B01D24/00 - B01D33/00; Auxiliary devices for filtration; Filter housing constructions
    • B01D35/18Heating or cooling the filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/08Filter cloth, i.e. woven, knitted or interlaced material
    • B01D39/083Filter cloth, i.e. woven, knitted or interlaced material of organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/10Filter screens essentially made of metal
    • B01D39/12Filter screens essentially made of metal of wire gauze; of knitted wire; of expanded metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2027Metallic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2027Metallic material
    • B01D39/2031Metallic material the material being particulate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2068Other inorganic materials, e.g. ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/0063Control or regulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D2009/0086Processes or apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2201/00Details relating to filtering apparatus
    • B01D2201/04Supports for the filtering elements
    • B01D2201/0469Filter tubes connected to collector tubes
    • B01D2201/0484Filter tubes connected to collector tubes suspended from collector tubes at the upper side of the filter elements

Definitions

  • the invention relates to the technical field of filtration and concentration equipment, in particular to a filtration and concentration device and a concentration method for small particles of ternary precursor with stirring.
  • the current vehicle power batteries are mainly divided into lithium iron phosphate batteries and ternary lithium batteries.
  • Lithium iron phosphate batteries have good safety, while ternary lithium batteries have higher energy density.
  • most large vehicles such as passenger cars use lithium iron phosphate batteries, while passenger cars and various special-purpose vehicles mostly use ternary lithium batteries.
  • traditional car companies around the world have clearly stated that they want to develop in the direction of electrification.
  • the demand for ternary lithium batteries has increased significantly, especially high-nickel ternary materials, which have become a hot spot and production trend in the current cathode material industry.
  • the quality of the ternary cathode material determines the performance of the lithium battery, and the quality of the ternary precursor determines the quality of the ternary cathode material.
  • Industry policies and the ever-increasing requirements of downstream customers have caused upstream material manufacturers to gradually put forward higher and higher requirements for the performance of their production equipment. Enterprises are becoming more aware of the stability and stability of product quality that intelligent production can improve. The importance of consistency.
  • the morphology, particle size distribution, purity, tap density and other factors of the ternary precursor will directly affect the performance of the sintered ternary cathode material.
  • the co-precipitation reaction of the material is the key process for the preparation of the ternary precursor. Before the feed liquid is input into the reactor for the co-precipitation reaction, the feed liquid needs to be treated to increase the concentration to ensure that the feed liquid in the reactor can rapidly grow crystals during the co-precipitation reaction to achieve a higher reaction rate .
  • the concentration technology currently used uses the partition sedimentation method to limit the overflow speed of the material liquid to make the material liquid crystallize in the cylinder and settle down.
  • the flow rate of the feed material cannot be controlled too fast because of the Once the flow rate is too fast, it will cause the material liquid to flow out from the overflow outlet before it has time to crystallize and settle, resulting in the loss of product, which in turn causes the feed volume at the reactor to be controlled and cannot be increased, which will cause the entire reaction
  • the system cannot have high production efficiency.
  • the existing concentration device has the problems of low solid particle content, inability to speed up the feed flow rate, product loss, inability to increase the feed volume of the reactor, poor concentration effect and low production efficiency.
  • the present invention provides a filtration and concentration device and a concentration method for small particles of ternary precursor with stirring. It has high solid particle content, faster feed flow rate, and product There is no loss, the feed volume of the reactor can be increased, the concentration effect is better and the production efficiency is higher.
  • a filtering and concentrating device for small particles of ternary precursor with stirring comprising a cylinder, one end of the cylinder is provided with a first head, and the other end of the cylinder is provided with a second head ,
  • the barrel or the first head or the second head is provided with a feed port, the inner wall of the barrel is provided with one or more sets of rows of pipes, and the row of pipes is provided with internal connections to the pipes
  • the end of the pipe is communicated with the outside of the cylinder; the inside of the cylinder is provided with a stirring device.
  • one or more sets of rows of tubes are arranged on the inner wall of the cylinder, and a microporous filter medium communicating with the inside of the row of tubes is arranged on the inner wall of the tube.
  • the microporous filter medium is used to filter the material liquid, and the filtration accuracy is relatively high. High, improve the solid concentration of the material liquid. Under the filtering effect of the microporous filter medium, only the filtrate can pass through the microporous filter medium and then enter the drain pipe and discharge. The required solid particles are filtered by the microporous filter medium.
  • the molar content of the metal salt in the liquid material to be concentrated into the cylinder can be increased, and the concentration of the liquid material to be concentrated in the cylinder can be increased, so that the entire process flow is shortened, the filtrate can be filtered and discharged quickly, and the filtrate is reduced.
  • the solid particle concentration in the reactor can be Increase by 20% to 200%, the reaction in the reactor is also accelerated, the output per unit time in the reactor is increased, the production volume is increased, the output is increased, and the production cost is reduced.
  • the concentration of the liquid material and the high-precision filtration of the microporous filter medium can increase the direct yield of the product in the reactor to 98%; because the solid particles left behind after the material liquid passes through the microporous filter medium can settle quickly , And transported from the cylinder to the reactor in time for co-precipitation and crystal growth, making the entire reaction cycle shorter.
  • the specific production process can be reduced by 15% on the basis of the original reaction cycle, and the solid particles stay in the cylinder for approximately The same, so the crystal size of the solid particles in the cylinder is not much different.
  • the solid particles will rub together when they settle together.
  • the sharp part of the surface of the solid particles can be removed, so that the surface of the solid particles is rounded, so that the size of the solid particles entering the reactor from the cylinder is uniform, and the difference in particle size is small.
  • the solid particles are concentrated in the reactor.
  • the crystal grain morphology of the product formed after crystal growth has also been improved and is more beautiful; the setting of the stirring device makes the filter cake falling from the filter tube into the cylinder after backflushing or backflushing can fall off under the disturbance of stirring Disperse in time and return to the reactor to participate in crystallization, thereby ensuring that the solids entering the reactor can have a uniform particle size.
  • the row tube is composed of one or more annular tubes, the top or bottom of the annular tube is provided with a number of mounting holes, and the microporous filter medium is arranged at the mounting holes.
  • the structure of the platoon pipe as a ring tube can make the filter liquid better discharge and reduce the resistance in the tube when the filter liquid is discharged by the tube.
  • the ring tube can have one, two, three or more.
  • the top or bottom of each ring tube is provided with a number of mounting holes at equal intervals, so that multiple microporous filter media can be set at the mounting holes of the pipe according to actual needs, which is convenient for better filtering the material and liquid in the cylinder.
  • the mounting hole can also be replaced with a joint, and the microporous filter medium can be connected and installed in a threaded or tightened manner.
  • the microporous filter medium is a filter tube
  • the filter tube is arranged on the top of the annular tube
  • the filter tube is arranged on the bottom of the annular tube
  • the filter tubes are staggered on the top and bottom of the annular tube .
  • the pore size of the filtering holes on the filter tube is 0.1 ⁇ 1 ⁇ m, so as to ensure that the filtrate is clarified and does not leak when filtering small particle products.
  • the filter tube can be installed upright on the ring tube as needed, or installed upside down on the ring tube It can also be installed on the ring tube in an upright and inverted staggered manner, with more options, and users can flexibly choose the setting method of the filter tube on the ring tube according to the actual filtering needs.
  • the plurality of annular tubes are arranged concentrically, and adjacent annular tubes are communicated.
  • the concentric arrangement of multiple annular tubes the first can be arranged in the cylinder parallel to the surface of the material liquid, and the second is to facilitate the fall of the filter cake on the surface of the filter tube and the return of the denser slurry near the filter tube to form a more uniform
  • the third is to provide an orderly installation position for the filter tube, so that the filter tube can be arranged neatly after installation on the pipe, so that the material liquid can be better filtered; the material liquid on the ring tube
  • the annular tube is a circular tube or a regular hexagonal tube.
  • the circular tube formed by the circular tube or the regular hexagonal tube is convenient for processing and manufacturing, and the resistance to the filter liquid will be smaller; of course, the circular tube can also be set to other regular polygons or other polygons.
  • the filter tube is made of ultra-high molecular weight polyethylene material, or made of filter cloth, or made of ceramic, or made of tetrafluoroethylene material, or made of titanium powder, or made of titanium mesh It is made of metal powder or metal mesh.
  • the filter tube is made of ultra-high molecular weight polyethylene sintered, so that the filter tube has good wear resistance, impact resistance and thermal stability, and will not chemically react with the material, even if the filter tube is in the cylinder for a long time The filter will not be easily damaged.
  • the gap between adjacent filter tubes on the same ring tube is 5-100 mm.
  • the more preferable gap is 10 to 80 mm.
  • the most preferable gap is 15-50 mm.
  • the specific design of the gap between adjacent filter tubes is for the filter tube to better filter the material and liquid. After the fixed particles adhere to the filter tube, it can be filtered as soon as possible without being disturbed by the adjacent filter tube. The tube falls into the cylinder to continue crystallization.
  • the gap between the filter tubes can also be designed by setting the distance between adjacent mounting holes.
  • the ratio of the length of the filter tube to the outer diameter is in the range of [10, 50]. More preferably, the ratio of the length of the filter tube to the outer diameter is in the range of [15, 40].
  • the length and outer diameter of the filter tube are coordinated so that the filter cake can be better removed.
  • a plurality of filter tubes on the same annular tube are connected together by a clamp row and/or clamp band. Since the filter tube is in the process of filtering the material liquid, the filtrate will have a certain impact on the filter tube when it passes through the filter tube. Because the entire filter tube is flexible, the clamp arrangement can connect the same filter tube. All the filter tubes on the upper part are connected in series into a whole. Because the clamp has a certain strength, it will not be affected by the impact of the filtrate. The setting of all the clamps can effectively prevent the stirring, filtering, backflushing and backflushing. The filter tube swings under the action of, avoiding the leakage problem at the connection between the filter tube and the drain tube. More preferably, a clamp can also be used to fix multiple filter tubes on the same ring tube, so that the connection between multiple filter tubes on the same ring tube is more stable, wherein the clamps and The clamp band is arranged near the two ends of the filter tube.
  • a support tube is arranged inside the filter tube, the filter tube is arranged on the support tube, and one end of the support tube is arranged on the row tube.
  • the support tube can better prevent the filter tube from swinging, so that the filter tube always performs filtration operations in the vertical direction, which can ensure the stability of the filter tube.
  • the support tube may be a solid rod shape or a hollow tube shape. In the case of a tube shape, a flow hole and/or a flow groove may be provided on the surface.
  • a plurality of circulation holes or circulation grooves are provided on the support tube.
  • the flow hole or the flow groove facilitates the filtration of the filtrate through the filter hole on the filter tube, and then enters the support tube and is discharged from the drain tube. It provides a way for the filtrate to enter the drain tube, and the filtrate can pass through After the filter hole, it directly enters the discharge pipe and is discharged.
  • the filtrate can also pass through the circulation hole and/or the circulation groove and then enter the support pipe and then be discharged from the discharge pipe.
  • the filtrate can also enter the discharge pipe and discharge together through the above two methods.
  • the two or three sets of rows of tubes are arranged side by side on the inner wall of the cylinder in a vertical direction.
  • the number of rows of pipes can be selected and installed according to the actual needs of the user. It can be one group, two groups, three groups or more.
  • the position of the pipes inside the cylinder can also be set flexibly, as long as the filter can be installed. In order to better install the filtering effect, it is enough to meet the requirements of the actual filtering capacity. Of course, it is best to set two or three sets of pipes.
  • the pipe connected to the end of the discharge pipe is provided with a liquid outlet valve
  • the liquid outlet valve is connected with a filter liquid outlet pipe
  • the filter liquid outlet pipe is provided with a first regulating valve.
  • the main function of the outlet pipe is to control the communication or obstruction between the filter outlet pipe and the inside of the cylinder.
  • the outlet valve is either fully open or fully closed; the main function of the first regulating valve
  • the function is to adjust and control the flow of the filtrate discharged from the filtrate pipe according to the requirements, and cooperate with other valves to maintain the stability of the filtration and flow of the entire material in the cylinder, and to ensure that the material in the cylinder is more efficient at the best flow rate The filtering and concentration effect.
  • the pipe connected to the end of the discharge pipe is provided with a backflush valve and/or a backflush valve, and the backflush valve is connected with a filter liquid inlet pipe and/or a non-ionized water inlet pipe.
  • a nitrogen inlet pipe is connected to the blow valve.
  • the function of the backflush valve is to control whether to pass filtrate or ion-free water to the inside of the tube according to needs, so as to remove the filter cake formed on the surface of the filter tube in time; the function of the backflush valve is to control whether to pass nitrogen into the tube as needed , In order to purge the inside of the pipeline; since the filter tube has been working for a period of time, more and more solid particles will be blocked at the filter hole of the filter tube. It is necessary to open the backflush valve or the backflush valve to reverse the discharge pipe.
  • Flushing or back-blowing one is to blow the solid particles at the filter hole from the filter hole in time, so that the filter tube maintains a good filtering effect, and the other is to let the solid particles on the filter tube return to the reactor in time to participate in crystallization and filtration The solid particles on the tube return to the inside of the cylinder in time to participate in crystallization.
  • a remote turbidity meter is provided on the filter liquid outlet pipe near the liquid outlet valve, and a remote turbidity meter is provided on the filter liquid outlet pipe between the remote turbidity meter and the first regulating valve. Clean liquid flow meter.
  • the function of the remote turbidity meter is to check the content of solid particles in the filtrate in time, so that the operator can understand the filtering status of the filter tube.
  • the remote turbidity meter detects that the content of solid particles in the filtrate exceeds the standard, it is convenient The operator checks the cause in time to ensure that there is no need for solid particles to leak through the filter tube, filter through or run out; the function of the remote clear liquid flowmeter is to detect the discharge of the filtrate from the filtrate tube in real time Flow rate, and then know the filtration concentration rate in the cylinder in time to ensure the high efficiency of the entire filtration concentration.
  • the filtrate outlet pipe between the remote turbidity meter and the remote clear liquid flowmeter is provided with an initial filtrate return valve, and the initial filtrate return valve is connected to a reaction kettle through a pipeline.
  • the solid particles in the material liquid entering the barrel are the initial products at the beginning of the filtration and concentration, the nucleus particles of the solid particles have just been generated, and the particle size will be less than 0.1 microns.
  • the solid particles can be filtered
  • the filter hole of the tube passes through and is discharged together with the filtrate. Therefore, the filtrate will contain the required solid particles during this period. Therefore, during this period of time, it is necessary to completely close the first regulating valve and open the initial filtrate return.
  • the feed valve allows all the filtrate containing tiny solid particles during this period to be returned to the reactor for crystal growth until these tiny solid particles become larger. This period of time needs to be maintained for 3 to 100 minutes, and pass the remote turbidity meter.
  • the data shows that after the amount of fine solid particles in the filtrate reaches an appropriate value, close the initial filtrate return valve, open and adjust the opening of the first regulating valve, and perform normal filtration and concentration operations.
  • the filtrate outlet pipe between the remote turbidity meter and the remote clear liquid flowmeter is provided with a first regeneration material valve, and a regeneration tank is connected to the first regeneration material valve through a pipeline.
  • a regeneration tank is connected to the first regeneration material valve through a pipeline.
  • the solid particles in other pipelines are dissolved to ensure the discharge flow rate of the filtrate in the filtrate pipe to ensure the efficient and stable operation of the entire filtration and concentration work.
  • the regeneration tank is used to control the pipeline.
  • the first regenerated material valve is to control the communication between the regeneration tank and the inside of the concentration device.
  • an insulation layer is provided on the outside of the cylinder.
  • the body material of the equipment needs to be heated to the required temperature to prevent the material from entering the filtering and concentrating device from causing changes in the temperature of the material and affecting product quality.
  • the insulation layer can prevent the material in the cylinder.
  • the loss of liquid temperature makes the material-liquid reaction in the cylinder always maintain a relatively stable temperature range, such as 60-70°C.
  • the thermal insulation layer is a jacket or thermal insulation cotton.
  • the setting of the jacket can directly use the mechanism of electric heating or heat conduction, add distilled water or other heating liquid into the jacket, and directly preheat the equipment by heating the distilled water or heating liquid in the jacket, so as to directly meet the requirements of the process; Insulation cotton replaces the jacket, but in this way, it is necessary to use hot air or hot water to preheat the equipment before feeding, and then feed the material when the equipment temperature reaches the process requirements, and use the insulation cotton to maintain a relatively constant temperature of the equipment.
  • a first interface and a second interface are provided on the jacket, and a constant temperature heating device is connected to the jacket.
  • the first port is used for distilled water or other heating liquid to enter the jacket
  • the second port is used for distilled water or other heating liquid to exit the jacket.
  • the constant temperature heating device is used to heat the distilled water or other heating liquid in the jacket at a constant temperature to ensure that the equipment is always In the temperature range required by the process, the constant temperature heating device is a constant temperature heating rod or other existing constant temperature heaters.
  • a remote liquid level gauge and a remote pressure transmitter are connected to the first head.
  • the remote transmission level gauge is used for real-time detection of the liquid level height in the cylinder
  • the remote transmission pressure transmitter is used for real-time detection of the air pressure in the cylinder, which is convenient for the operator to understand and specific adjustment control. It can also run automatically by using PLC program.
  • a spray device is connected to the first head, and the spray device is located inside the cylinder, and the spray device is respectively connected with a first regeneration liquid pipe and a first ion-free water pipe.
  • the first regeneration liquid pipe is provided with a first regeneration liquid valve
  • the first ion-free water pipe is provided with a first ion-free water valve.
  • the spray device is used to clean the equipment after the completion of a reaction, or after the filtration and concentration device has been used for a period of time.
  • the first regenerant valve can be opened. Pour dilute sulfuric acid into the cylinder to dissolve the solid particles in the cylinder and in the pipeline.
  • the spray device is a spray ball or a spray pipe.
  • the spray device whether the spray ball or the spray pipe is selected can be flexibly selected according to the user's preference. Both the spray ball and the spray pipe have the characteristics of simple structure, low price and good spray effect.
  • a first process connection pipe is provided on the first head, an air inlet pipe and a vent pipe are respectively connected to the first process connection pipe, an air inlet valve is provided on the air inlet pipe, and the vent pipe There is a vent valve on it.
  • the coordinated adjustment of the intake valve and the vent valve can ensure that the material liquid is always at a stable level in the cylinder.
  • the remote transmission level gauge shows that the level is too high, open the intake valve and flush nitrogen into the cylinder. Make the material and liquid level in the cylinder lower to the required height.
  • the remote transmission level gauge shows that the level is too low, open the vent valve to discharge the gas in the cylinder so that the material and liquid level in the cylinder rises to the required level the height of.
  • the height of the liquid level in the cylinder is the height that never passes through the microporous filter medium.
  • a second process connection pipe is provided on the cylinder near the first head, an overflow valve is provided on the second process connection pipe, and the second process connection pipe is connected to the reactor.
  • the stirring device includes a stirring shaft, and one, two, three or four layers of stirring blades are provided on the stirring shaft, and the lengths of the stirring blades of the two, three or four layers of stirring blades are the same, or two layers
  • the length of the stirring paddle of the three-layer and four-layer stirring paddle decreases from the second head to the first head one by one.
  • the number of layers of the stirring blade and the length of the stirring blade can be flexibly adjusted according to the characteristics of the material, so that the filter cake falling off the filter tube can be better broken up, and the number of layers of the stirring blade is the best. It is preferably two or three layers, in which the length of the multi-layer stirring paddle is preferably reduced from the second head to the first head one by one.
  • the two sets of rows of tubes are the first row of tubes and the second row of tubes
  • the microporous filter medium at the first row of tubes is the first microporous filter medium
  • the microporous filter medium at the second row of tubes is The medium is the second microporous filter medium
  • the three layers of stirring paddles are respectively located above the first microporous filter medium, above the second layer of microporous filter medium, and below the second microporous filter medium.
  • the pipes are designed into two groups, and the two groups of pipes are correspondingly equipped with microporous filter media, so that there are two groups of microporous filter media. When there are multiple groups, when backflushing or backflushing, the others will still filter out the filtrate.
  • the relative position of the three-layer stirring paddle and the microporous filter media can be set
  • the material liquid at the microporous filter medium is stirred and disturbed in a targeted manner.
  • the filter cake on the microporous filter medium falls off, it can be dispersed in time and returned to the reactor to participate in crystallization under the action of stirring and disturbing next to it; if it is two layers Stirring paddles, the two layers of stirring paddles are preferably located above the second layer of microporous filter medium and below the second layer of microporous filter medium.
  • the length ratio of the three-layer stirring blade from the second head to the first head is 5:4:3.
  • the design of the length ratio of the three-layer agitating paddle is specially designed according to the direction of the filter cake falling and sinking downward.
  • the disturbance amplitude of the three-layer agitating paddle to the material liquid gradually decreases from the second head to the first head, which conforms to the filter
  • the cake sinks from the top to the bottom, and the disturbance is gradually increased.
  • the filter cake that is not dispersed by the upper stirring paddle in the process of sinking from the top to the bottom will be once again by the lower layer with greater force during the descending process.
  • the stirring blade is broken up to ensure that the filter cake settled in the lower part of the cylinder is completely broken up, and the nucleus of the solid particles entering the reactor is dispersed; at the same time, the stirring effect can also promote the friction between the solid particles in the material liquid. Make the surface of the solid particles more rounded, which can improve the morphology of the crystal nucleus.
  • the range of the length ratio of the three-layer mixing blade is (6 ⁇ 2):(5 ⁇ 2):(4 ⁇ 1).
  • a support is provided on the outside of the jacket or on the cylinder or on the first or second head, and the support is provided with lifting lugs.
  • the support is used to install the cylinder, so that the cylinder can be suspended at the top and bottom at the same time, which is convenient for other process operations, and overcomes the existing installation method that the cylinder can only be placed flat on the ground.
  • the existing equipment is on the ground.
  • the second head has a V-shaped structure, or a spherical crown structure, or an elliptical structure, or a flat bottom structure; the first head has an elliptical structure. It is best to have a spherical cap structure, and the second head of the spherical cap structure enables the material liquid in the cylinder to be drained quickly without residue.
  • a third process connector is provided on the cylinder or the second head, a second regulating valve is provided on the third process connector, and the third process connector is connected to the reactor.
  • the second regulating valve is used to regulate the flow rate of the solid particulate matter remaining after filtration and concentration in the cylinder into the reactor.
  • the first regulating valve, the second regulating valve and the diaphragm pump are coordinated to adjust the opening degree of each other to make the cylinder
  • the material and liquid in the body are always at a stable liquid level, and the material and liquid in the cylinder are always in a circulating working state. Through the coordinated adjustment of the opening of the first regulating valve, the second regulating valve and the diaphragm pump, it can be appropriately accelerated according to needs.
  • the flow rate of the material also increases the amount of material fed into the reactor, so that the entire reaction system can achieve a higher production efficiency.
  • a feed pipe is connected to the feed port, a pneumatic ball valve is provided on the feed pipe close to the feed port, and the pneumatic ball valve is sequentially connected with a remote feed flow meter, a damper, Check valve, hose, diaphragm pump and feed valve.
  • the pneumatic ball valve can remotely control the opening and closing of the feed in the cylinder; the remote feed flow meter can detect the flow rate of the liquid entering the cylinder in real time, and then the flow rate and the amount of material entering the cylinder are reasonable Control; the damper is used to reduce the shock and vibration intensity of the material liquid entering the pipeline, so that the remote feed flow meter can detect the feed flow rate in the pipeline more stable; the check valve can prevent the material liquid from backflowing and damaging the diaphragm pump; It can reduce the impact of the vibration of the diaphragm pump on the pipeline; the diaphragm pump provides power for the flow of the material liquid, and the diaphragm pump also has the function of adjusting the flow rate of the material liquid; the feed valve can control the material liquid in the reactor to feed into the cylinder The opening and closing of the circulating flow at the tube.
  • the feed pipe is connected to the reactor via a pipeline, and a thick slurry return valve is provided on the pipeline between the feed pipe and the reactor.
  • a thick slurry return valve is provided on the pipeline between the feed pipe and the reactor.
  • the feed pipe is connected to the regeneration tank through a pipeline, and a second regeneration material valve is provided on the pipeline between the feed pipe and the regeneration tank.
  • a second regeneration material valve is provided on the pipeline between the feed pipe and the regeneration tank.
  • a third regulating valve is provided on the pipeline between the pneumatic ball valve and the remote feed flow meter.
  • the feed flow can also be adjusted by adjusting the opening of the third regulating valve.
  • the third regulating valve can be used in conjunction with the diaphragm pump to control the feed flow, or only the diaphragm pump can be used to control the feed flow. For some diaphragm pumps that do not have the function of adjusting the feed flow, there is no need to install the third regulating valve, and the third regulating valve is used to control the size of the feed flow.
  • a second regeneration liquid pipe and a second ion-free water pipe are arranged in parallel on the pipeline between the diaphragm pump and the feed valve, and a second regeneration liquid valve is provided on the second regeneration liquid pipe.
  • a second ion-free water valve is provided on the ion-free water pipe.
  • Non-ionized water valve use non-ionized water to thoroughly flush the inside of the corresponding pipeline to ensure that the corresponding pipeline is always in a good liquid flow state; it can also be found that there is no deposit in the corresponding pipeline after completing a filtration and concentration operation. For solid particles, at this time, there is no need to spray dilute sulfuric acid into the cylinder, just open the second non-ionized water valve, and pass non-ionized water into the corresponding pipeline for cleaning; flush the pipeline, diaphragm pump, valve, Prevent pipeline blockage.
  • a first sight glass is provided on the pipeline between the pneumatic ball valve and the reaction kettle, and a second sight glass is provided on the filter outlet pipe close to the remote turbidity meter.
  • the first sight glass and the second sight glass can observe the liquid flow in the corresponding pipeline, and the operator can intuitively understand the material and liquid flow in the corresponding pipeline.
  • the pressure of nitrogen in the nitrogen inlet pipe is 0.55 to 0.65 MPa.
  • the specific setting of nitrogen pressure in the nitrogen inlet pipe can produce a better back-blowing effect at the filter pipe.
  • the nitrogen pressure in the nitrogen inlet pipe is sufficient to blow the filter cake at the filter hole in the filter pipe. Fall into the inside of the barrel.
  • the backflushing pressure is low, the same purpose of removing the filter cake can be achieved by extending the opening time of the backflushing valve and restoring the energy of the filter tube.
  • the stirring speed of the stirring device is 30 to 300 rpm. More preferably, the stirring speed is 50 to 200 rpm. Most preferably, the stirring speed is 60-150 rpm.
  • the specific mixing speed can be flexibly designed according to the material properties, so as to achieve better disturbance and dispersion of the filter cake.
  • the cylinder, the upper head and the lower head are integrated or separated.
  • an integrated structure it is easy to process and manufacture, reduce the manufacturing cost, and has better strength; in the case of a separate structure, it is easy to repair and install, and it is also easy to clean the inside of the cylinder.
  • the concentration method of the filtration and concentration device with agitated ternary precursor small particles is carried out according to the following steps:
  • step S04 After all valves in step S03 are opened, the diaphragm pump is started, and the liquid to be concentrated is delivered into the cylinder, and the liquid to be concentrated is filtered through the microporous filter medium;
  • step S01 is also included before step S02, the system power-on self-check.
  • step S10 is further included after step S09, and step S09 is repeated until the product detected in the reactor is qualified.
  • step S11 is further included after step S10, in which the operations of closing the diaphragm pump, discharging the material liquid in the cylinder, cleaning the device, closing all valves and standby are performed in sequence.
  • the height of the concentrated liquid level in the step S05 exceeds the microporous filter medium, it is a suitable height.
  • the microporous filter medium is fully utilized, and the filtering effect of the microporous filter medium can be fully exerted, with high filtration efficiency and large flow.
  • the time for maintaining the height of the liquid level in the cylinder in the step S07 is 5 to 200 minutes. More preferably, the time for maintaining the height of the liquid level in the cylinder in step S07 is 10-100 minutes. Most preferably, the time for maintaining the height of the liquid level in the cylinder in step S07 is 30 to 700 minutes.
  • the thickness of the filter cake on the filter tube is qualitatively judged by the specific time, and then the filter cake on the filter tube should be backflushed or blown back to determine when the filter cake on the filter tube should be backflushed or backflushed. The judgment is more accurate.
  • the time for maintaining the opening of the backflush valve is 3 to 300S; the time for maintaining the opening of the backflushing valve is 2-100S. More preferably, the time for maintaining the opening of the backflush valve in step S08 is 5-60S; the time for maintaining the opening of the backflushing valve is 3-20S. Most preferably, the time for maintaining the opening of the backflush valve in step S08 is 8-20S; the time for maintaining the opening of the backflushing valve is 4-10S. It is more accurate to judge whether the backflush or backflush of the filter cake on the filter tube is completely judged by a specific time.
  • the initial filtrate return valve is opened for a certain period of time.
  • the opening time of the initial filtrate return valve is 3-100 min. More preferably, the opening time of the initial filtrate return valve is 5-15 min. It is more accurate to judge whether the small solid particles entering the barrel at the beginning have become larger through the specific time.
  • the flow rate in the pipeline at the first regulating valve and/or the second regulating valve in the step S06 is 10L/h to 10000L/h. More preferably, the flow rate in the pipeline at the first regulating valve and/or the second regulating valve in step S06 is 50L/h to 6000L/h. Most preferably, the flow rate in the pipeline at the first regulating valve and/or the second regulating valve in step S06 is 300L/h to 5000L/h.
  • the flow rate in the entire reaction process satisfies the following formula:
  • the flow rate in the entire reaction process satisfies the following formula:
  • the microporous filter media is used to filter the material and the filtration accuracy Higher, increasing the concentration of the material liquid.
  • the microporous filter media Under the filtering effect of the microporous filter medium, only the filtrate can pass through the microporous filter medium and then enter the discharge pipe and discharge.
  • the required solid particles are filtered by the microporous filter medium. It will stay in the cylinder and return to the reactor to grow crystals in time, without leakage, filtering or running-out, and there is almost no loss of solid particles, which has the characteristics of good concentration effect;
  • the molar content of the metal salt in the liquid to be concentrated into the cylinder can be increased, and the concentration of the liquid to be concentrated in the cylinder can be increased, so that The entire process flow is shortened, the filtrate can be filtered and discharged quickly, and the discharge of the filtrate is reduced. In the actual production process, the discharge of the original filtrate can be reduced by 40%, which reduces the treatment of the filtrate.
  • Costs, which in turn reduce time and labor costs the concentration of solid particles in the reactor can increase by 20% to 200%, the reaction in the reactor is also accelerated, the output per unit time in the reactor is increased, and the production volume is increased. , The output is increased, and the production cost is reduced.
  • the sharp part of the surface of the solid particles can be removed, so that the surface of the solid particles is rounded, and the reaction is entered from the cylinder.
  • the size of the solid particles in the kettle is uniform, and there is little difference between the particle sizes.
  • the crystal grain morphology of the product formed after the solid particle thick slurry grows in the reaction kettle has also been improved, which is more beautiful;
  • the stirring device is set up so that the filter cake falling from the filter tube into the cylinder after backflushing or backflushing can be broken up in time after falling off under the disturbance of stirring, and return to the reactor to participate in crystallization, thereby ensuring that it enters the reactor
  • the medium solid can have uniform particle size.
  • Figure 1 is a schematic diagram of the structure of the present invention
  • Figure 2 is a schematic diagram of a specific embodiment of the present invention.
  • Figure 3 is a diagram of the circulation state of the material and liquid in the cylinder during the stirring process of the present invention
  • connection structure between the row tube and the microporous filter medium in the present invention is a longitudinal cross-sectional view of the connection structure between the row tube and the microporous filter medium in the present invention
  • Figure 5 is the first top view of the structure after the row tube is connected to the microporous filter medium in the present invention
  • Figure 6 is a second top view of the structure of the present invention after the row tube is connected to the microporous filter medium;
  • Figure 7 is a process flow diagram of the present invention.
  • the marks in the drawings are: 100-cylinder, 101-first head, 102-second head, 103-feed port, 104-remote level gauge, 105-remote pressure transmitter, 106 -The first process takes over, 107-intake pipe, 108-vent pipe, 109-intake valve, 110-vent valve, 111-second process takes over, 112-overflow valve, 113-support, 114-lifting lug , 115-Third process takeover, 116-Second regulating valve, 200-pipe, 201-installation hole, 202-outlet valve, 203-outlet filtrate pipe, 204-backflush valve, 205-backflush valve , 206-Inlet filtrate pipe, 207-Deionized water inlet pipe, 208-Nitrogen inlet pipe, 209-Remote turbidity meter, 210-Remote clear liquid flowmeter, 211-Initial filtrate return valve, 212- The first regenerated material valve, 2
  • the filtering and concentrating device for small particles with agitated ternary precursor as shown in Figures 1 and 2 includes a cylinder 100 as shown in Figure 3, one end of the cylinder is provided with a first head 101, and the other One end is provided with a second head 102, the barrel or the first or second head is provided with a feed port 103, and one or more sets of rows are provided on the inner wall of the barrel as shown in Figures 5 and 6
  • the tube 200 is provided with a microporous filter medium 300 in communication with the inside of the tube as shown in FIG. 4, and the end of the tube is in communication with the outside of the cylinder.
  • the arranging pipe is composed of one or more annular pipes.
  • a number of installation holes 201 are arranged on the top or bottom of the annular pipe, and the microporous filter medium is arranged at the installation holes.
  • the microporous filter medium is a filter tube, and the filter tube is arranged on the top of the ring tube, or the filter tube is arranged on the bottom of the ring tube, or the filter tubes are staggered on the top and bottom of the ring tube.
  • a plurality of annular tubes are arranged concentrically, and adjacent annular tubes are connected; the annular tubes are circular tubes or regular hexagonal tubes.
  • the filter tube is made of ultra-high molecular weight polyethylene material, or made of filter cloth, or made of ceramic, or made of tetrafluoride material, or made of titanium powder, or made of titanium mesh, or made of metal Made of powder or made of metal mesh.
  • the gap between adjacent filter tubes on the same ring tube is 5-100mm.
  • the ratio of the length of the filter tube to the outer diameter is in the range of [10,50].
  • Multiple filter tubes on the same ring tube are connected together by the clamp row 301.
  • the inside of the filter tube is provided with a support tube 302, the filter tube is arranged on the support tube, and one end of the support tube is arranged on the row tube.
  • a liquid outlet valve 202 is arranged on the pipeline connected to the end of the discharge pipe, a filter liquid outlet pipe 203 is connected to the liquid outlet valve, and a first regulating valve 218 is arranged on the filter liquid outlet pipe.
  • the pipe connected to the end of the discharge pipe is provided with a backflush valve 204 and/or a backflush valve 205, the backflush valve is connected with a filter liquid inlet pipe 206 and/or an ion-free water inlet pipe 207, and the backflush valve is connected with Nitrogen inlet pipe 208.
  • a remote turbidity meter 209 is provided on the filter fluid outlet pipe near the exit valve, and a remote fluid flow meter 210 is provided on the filter fluid outlet pipe between the remote turbidity meter and the first regulating valve;
  • the initial filtrate return valve 211 is provided on the filtrate outlet pipe between the remote turbidity meter and the remote clear liquid flowmeter, and the reactor 400 is connected to the initial filtrate return valve through a pipeline;
  • a first regenerated material valve 212 is provided on the filtered liquid outlet pipe between the remote clear liquid flowmeter and the first regenerated material valve, and a regeneration tank 500 is connected to the first regenerated material valve through a pipeline.
  • the outside of the cylinder is provided with an insulation layer 600; the insulation layer is a jacket or thermal insulation cotton; a first interface 601 and a second interface 602 are provided on the jacket, and a constant temperature heating device 603 is connected to the jacket.
  • the remote transmission level gauge 104 and the remote transmission pressure transmitter 105 are connected to the first seal head.
  • the first regulating valve and the second regulating valve are electric or pneumatic valves.
  • a spraying device 700 is connected to the first sealing head.
  • the spraying device is located inside the cylinder.
  • the spraying device is respectively connected with a first regenerated liquid pipe 701 and a first ion-free water pipe 702.
  • the first regenerated liquid pipe is provided with The first regeneration fluid valve 703, the first ion-free water pipe is provided with a first ion-free water valve 704;
  • the spray device is a spray ball or a spray pipe;
  • the cylinder is provided with a second valve near the first head
  • the process connection pipe 111 is provided with an overflow valve 112 on the second process connection pipe, and the second process connection pipe is connected to the reactor.
  • a first process connection pipe 106 is provided on the first sealing head, an air inlet pipe 107 and a vent pipe 108 are respectively connected to the first process connection pipe, an air inlet valve 109 is provided on the air inlet pipe, and a vent valve 110 is provided on the vent pipe.
  • a stirring device 800 is provided inside the barrel.
  • the stirring device includes a stirring shaft 801.
  • One, two, three, or four layers of stirring blades 802 are arranged on the stirring shaft.
  • the lengths of the stirring blades of the two, three or four layers of stirring blades are the same, or two, three, or four
  • the length of the stirring paddle of the layer stirring paddle decreases one by one from the second head to the first head.
  • the two sets of rows of tubes are the first row of tubes 213 and the second row of tubes 214.
  • the microporous filter medium at the first row of tubes is the first microporous filter medium 215, and the microporous filter medium at the second row of tubes is the second In the microporous filter medium 216, the three layers of stirring paddles are respectively located above the first microporous filter medium, above the second layer of microporous filter medium, and below the second microporous filter medium.
  • the length ratio of the three-layer stirring paddle from the second head to the first head is 5:4:3.
  • a support 113 is provided on the outside of the jacket or on the cylinder, the first head or the second head, and a lifting lug 114 is provided on the support.
  • the second head has a V-shaped structure, or a spherical crown structure, or an oval structure, or a flat bottom structure; the first head has an oval structure.
  • the cylinder body or the second head is provided with a third process connection pipe 115, the third process connection pipe is provided with a second regulating valve 116, and the third process connection pipe is connected to the reactor.
  • a feed pipe 900 is connected to the feed port.
  • a pneumatic ball valve 901 is installed on the feed pipe near the feed port.
  • the pneumatic ball valve is connected with a remote feed flow meter 902, a damper 903, a check valve 904,
  • the feed pipe is connected to the reactor through a pipeline, and the thick slurry return valve 908 is provided on the pipeline between the feed pipe and the reactor;
  • the feed pipe passes through the pipeline Connected to the regeneration tank, the pipeline between the feed pipe and the regeneration tank is provided with a second regeneration valve 909;
  • the pipeline between the pneumatic ball valve and the remote feed flow meter is provided with a third regulating valve 910;
  • a diaphragm pump and A second regenerated liquid pipe 911 and a second ion-free water pipe 912 are arranged in parallel on the pipeline between the feed valves.
  • the second regenerated liquid pipe is provided with a second regenerated liquid valve 913, and the second ion-free water pipe is provided with a second Deionized water valve 914.
  • a first sight mirror 915 is provided on the pipeline between the pneumatic ball valve and the reaction kettle, and a second sight mirror 217 is provided on the filter outlet pipe near the remote turbidity meter.
  • the pressure of nitrogen in the nitrogen inlet pipe is 0.55 ⁇ 0.65MPa.
  • the stirring speed of the stirring device is 30 to 300 rpm.
  • the cylinder, the upper head and the lower head are integrated or separated.
  • a number of circulation holes 304 or circulation grooves are provided on the support tube.
  • the filtering and concentrating device for small particles with agitated ternary precursor as shown in Figures 1 and 2 includes a cylinder 100 as shown in Figure 3, one end of the cylinder is provided with a first head 101, and the other One end is provided with a second head 102, the barrel or the first or second head is provided with a feed port 103, and one or more sets of rows of tubes 200 are provided on the inner wall of the barrel as shown in Figure 5 and Figure 6,
  • the row tube is provided with a microporous filter medium 300 as shown in FIG. 4 communicating with the inside of the row tube, and the end of the row tube is located outside the cylinder.
  • the arranging pipe is composed of one or more annular pipes.
  • a number of installation holes 201 are arranged on the top or bottom of the annular pipe, and the microporous filter medium is arranged at the installation holes.
  • the microporous filter medium is a filter tube, which is arranged on the top of the annular tube, or arranged on the bottom of the annular tube, or arranged alternately on the top and bottom of the annular tube.
  • a plurality of annular tubes are arranged concentrically, and adjacent annular tubes are connected.
  • the ring tube is a circular tube or a regular hexagonal tube.
  • the filter tube is made of ultra-high molecular weight polyethylene material.
  • the gap between adjacent filter tubes on the same ring tube is 5-100mm.
  • the ratio of the length of the filter tube to the outer diameter is in the range of [10,50].
  • a support tube 302 is arranged inside the filter tube, the filter tube is arranged on the support tube, and one end of the support tube is arranged on the row tube.
  • the pipe connected to the end of the discharge pipe is provided with a liquid outlet valve 202, the liquid outlet valve is connected with a filter liquid outlet pipe 203, and the filter liquid outlet pipe is provided with a first regulating valve 218.
  • the pipe connected to the end of the discharge pipe is provided with a backflush valve 204 and/or a backflush valve 205, the backflush valve is connected with a filter liquid inlet pipe 206 and/or an ion-free water inlet pipe 207, and the backflush valve is connected with Nitrogen inlet pipe 208.
  • a remote turbidity meter 209 is arranged on the filter liquid outlet pipe close to the liquid outlet valve, and a remote liquid flow meter 210 is arranged on the filter liquid outlet pipe between the remote turbidity meter and the first regulating valve.
  • An initial filtrate return valve 211 is provided on the filtrate outlet pipe between the remote turbidity meter and the remote clear liquid flowmeter, and a reactor 400 is connected to the initial filtrate return valve through a pipeline.
  • a first regeneration material valve 212 is provided on the filtrate outlet pipe between the remote turbidity meter and the remote clear liquid flowmeter, and a regeneration tank 500 is connected to the first regeneration material valve through a pipeline.
  • An insulation layer 600 is provided on the outside of the cylinder. The insulation layer is jacket or insulation cotton. The jacket is provided with a first interface 601 and a second interface 602, and a constant temperature heating device 603 is connected to the jacket.
  • the remote transmission level gauge 104 and the remote transmission pressure transmitter 105 are connected to the first seal head.
  • a spraying device 700 is connected to the first sealing head.
  • the spraying device is located inside the cylinder.
  • the spraying device is respectively connected with a first regenerated liquid pipe 701 and a first ion-free water pipe 702, and the first regenerated liquid pipe is provided with
  • the first regenerated liquid valve 703 is provided with a first ion-free water valve 704 on the first ion-free water pipe.
  • the spray device is a spray ball or spray pipe.
  • a first process connection pipe 106 is provided on the first sealing head, an air inlet pipe 107 and a vent pipe 108 are respectively connected to the first process connection pipe, an air inlet valve 109 is provided on the air inlet pipe, and a vent valve 110 is provided on the vent pipe.
  • a second process connection pipe 111 is provided on the cylinder near the first head, an overflow valve 112 is provided on the second process connection pipe, and the second process connection pipe is connected to the reactor.
  • a stirring device 800 is provided inside the barrel.
  • the stirring device includes a stirring shaft 801. One, two, three, or four layers of stirring blades 802 are provided on the stirring shaft.
  • the lengths of the stirring blades of the two, three or four layers of stirring blades are the same, or two, three, or four
  • the length of the stirring paddle of the layer stirring paddle decreases one by one from the second head to the first head.
  • the two sets of rows of tubes are the first row of tubes 213 and the second row of tubes 214.
  • the microporous filter medium at the first row of tubes is the first microporous filter medium 215, and the microporous filter medium at the second row of tubes is the second In the microporous filter medium 216, the three layers of stirring paddles are respectively located above the first microporous filter medium, above the second layer of microporous filter medium, and below the second microporous filter medium.
  • the length ratio of the three-layer stirring blade from the second head to the first head is 5:4:3.
  • a support 113 is provided on the outside of the jacket, and a lifting lug 114 is provided on the support.
  • the second head has a V-shaped structure.
  • the cylinder body or the second head is provided with a third process connection pipe 115, the third process connection pipe is provided with a second regulating valve 116, and the third process connection pipe is connected to the reactor.
  • a feed pipe 900 is connected to the feed port.
  • a pneumatic ball valve 901 is provided on the feed pipe close to the feed port.
  • the pneumatic ball valve is connected with a remote feed flow meter 902, a damper 903, a check valve 904, Hose 905, diaphragm pump 906 and feed valve 907.
  • the feed pipe is connected to the reaction kettle through a pipeline, and a thick slurry return valve 908 is provided on the pipeline between the feed pipe and the reaction kettle.
  • the feed pipe is connected to the regeneration tank through a pipeline, and a second regeneration valve 909 is provided on the pipeline between the feed pipe and the regeneration tank.
  • a third regulating valve 910 is provided on the pipeline between the pneumatic ball valve and the remote feed flow meter.
  • a second regenerated liquid pipe 911 and a second ion-free water pipe 912 are arranged in parallel on the pipeline between the diaphragm pump and the feed valve.
  • the second regenerated liquid pipe is provided with a second regenerated liquid valve 913, and the second ion-free water pipe is arranged There is a second non-ionized water valve 914.
  • a first sight glass 915 is provided on the pipeline between the pneumatic ball valve and the reaction kettle, and a second sight glass 217 is provided on the filter outlet pipe near the remote turbidity meter.
  • the pressure of nitrogen in the nitrogen inlet pipe is 0.55 ⁇ 0.65MPa.
  • the stirring speed of the stirring device is 30 to 300 rpm.
  • the cylinder, the upper head and the lower head are integrated or separated. It is also possible to use another clamp 303 to fix multiple filter tubes on the same ring tube, so that the connection between the multiple filter tubes on the same ring tube is more stable, wherein the clamp row and the clamp ring can be set separately At the positions close to both ends of the filter tube; the first interface valve 604 is used to control the delivery of distilled water into the jacket.
  • the first regenerated material valve and the second regenerated material valve are both return valves.
  • the concentration method of the filtration and concentration device with agitated ternary precursor particles as shown in Figure 7 is carried out according to the following steps:
  • step S04 After all valves in step S03 are opened, the diaphragm pump is started to deliver the concentrated liquid into the cylinder, and the concentrated liquid is filtered through the microporous filter medium;
  • S05 Real-time detection of the liquid level in the cylinder, when the concentrated liquid level in the cylinder reaches the appropriate height, close the vent valve; when the height of the concentrated liquid exceeds the microporous filter medium, the appropriate height; the pressure in the cylinder and the flow rate of the filtrate , Feeding flow or opening, reconcentration slurry flow or opening, reaction kettle liquid level, intermediate tank liquid level; after all the stirring blades are filled, there is a certain volume of gas space at the upper head.
  • the stirring blades are fully immersed to ensure the normal operation of the stirring; there is a certain amount of gas space, one is to protect the machine seal from being immersed in the liquid, to prevent particles from entering the machine seal and damaging the machine; the second is not to be sprayed into the liquid to prevent product particles from accumulating It will affect the uniformity of the batch; 3 liquid materials will not be taken away when emptying.
  • step S09 Detect the liquid level in the cylinder in real time, open and close the vent valve again, re-stabilize the liquid level in the cylinder, and loop to step S07; after timing or setting the flow rate of the filtrate;
  • step S10 Repeat step S09 until the product detected in the reactor is qualified;
  • the working principle of the present invention is:
  • the system starts self-checking, and the first interface valve 604 is opened.
  • the steam enters and exits from the top, the hot liquid enters and exits from the bottom, and the bottom belt is drained.
  • Add distilled water or other heating liquid to the jacket, and heat the jacket through the thermostatic heating device 603 Distilled water or heating liquid to directly preheat the equipment, which directly meets the process requirements of about 65 degrees; insulation cotton can be used instead of the jacket, but this requires hot air or hot water to preheat the equipment before feeding ,
  • the equipment temperature reaches the process requirements, feed the material again, and use thermal insulation cotton to maintain a relatively constant temperature of the equipment; open the vent valve 110 to vent the cylinder 100, and after the cylinder is vented, close the vent valve 110 and open them respectively
  • the feed liquid flows from the reactor 400 and/or The intermediate tank enters the pipeline at the feed valve 907.
  • the material liquid enters the cylinder 100.
  • the diaphragm pump provides power for the flow of the material liquid, and the diaphragm pump also has the function of adjusting the flow rate of the material liquid.
  • the hose 905 can reduce the impact of the diaphragm pump’s vibration on the pipeline, the check valve 904 can prevent the material liquid from damaging the diaphragm pump, and the damper 903 can reduce the shock vibration intensity of the material liquid entering the pipeline, so that the remote feeding
  • the flow meter is more stable in detecting the feed flow rate in the pipeline.
  • the remote feed flow meter 902 can detect the flow rate of the material liquid entering the cylinder in real time, and then make a reasonable calculation of the flow rate and the amount of the material liquid entering the cylinder. Regulated, the pneumatic ball valve 901 can remotely control the opening and closing of the feed in the cylinder 100, and the outlet valve 202 can control the communication or barrier between the filter liquid tube 203 and the inside of the cylinder; In time, the solid particles in the liquid entering the barrel are the initial products. The nucleus particles of the solid particles have just been generated, and the particle size will be less than 0.1 microns. At this time, the solids can pass through the filter holes of the filter tube. As the filtrate is discharged together, the filtrate will contain the required solid particles during this period.
  • the filtrate containing tiny solid particles within a period of time is returned to the reactor for crystal growth until these tiny solid particles become larger. This period of time needs to be maintained for about 10 minutes.
  • the data of the remote transmission turbidity meter 209 shows that the filtration After the amount of fine solid particles in the liquid reaches a suitable value, close the initial filtrate return valve, open and adjust the opening of the first regulating valve, and perform normal filtration and concentration operations; the first regulating valve 218 can be adjusted and controlled according to requirements.
  • the flow rate of the filtrate discharged from the filtrate pipe 203 which cooperates with other valves to maintain the stability of the filtration and flow of the entire liquid in the cylinder 100, to ensure that the liquid in the cylinder achieves a more efficient filtration and concentration effect at the best flow rate ;
  • the remote turbidity meter 209 can check the content of solid particles in the filtrate in time If the remote transmission turbidity meter detects that the content of solid particles in the filtrate exceeds the standard, it is convenient for the operator to check the cause in time and ensure that no solid particles are needed to pass through the filter tube.
  • the remote clear liquid flow meter 210 can detect the flow rate of the filtrate discharged from the filtrate tube 203 in real time, and then understand the filtration concentration rate in the cylinder in time to ensure the entire filtration concentration.
  • the second sight glass 217 can observe the liquid flow in the corresponding pipeline, and the operator can more intuitively understand the material and liquid flow in the corresponding pipeline;
  • the second regulating valve 116 is used to adjust the tube The flow rate of the solid particulate matter remaining after filtration and concentration in the body 100 into the reactor 400, wherein the first regulating valve 218, the second regulating valve 116, and the diaphragm pump 906 are adjusted in coordination with each other to make the cylinder 100
  • the material and liquid inside are always at a stable liquid level, and the material and liquid in the cylinder are always in a circulating working state.
  • the flow rate of the material can also increase the amount of material entering the reactor 400, so that the entire reaction system can achieve higher production efficiency; the setting of the stirring device 800 makes it fall from the filter tube after backflushing or backflushing.
  • the filter cake in the cylinder 100 can be broken up in time after falling off under the disturbance of stirring, and returned to the reactor to participate in crystallization, thereby ensuring that the solids entering the reactor 400 can have a uniform particle size.
  • the number of layers of the stirring paddle 802 and the stirring paddle The length can be flexibly adjusted according to the characteristics of the material as required, so that the filter cake falling off the filter tube can be better broken up, and the number of layers of the stirring paddle is preferably two or three.
  • the length ratio of the three-layer agitating paddle 802 is designed according to the direction in which the filter cake falls off and settles down.
  • the design, the disturbance amplitude of the three-layer stirring blade to the material liquid gradually decreases from the second head to the first head, which meets the attribute requirements of the filter cake sinking from the top to the bottom, and the disturbance breaking strength gradually increases.
  • the filter cake that has not been broken up by the upper stirring blade during the top-down sedimentation process is again dispersed by the stronger lower stirring blade during the descending process, so as to ensure that the filter cake settled to the lower part of the cylinder 100 is completely broken Disperse to ensure the diameter of the crystal nucleus of the fixed particles entering the reactor 400; at the same time, the stirring effect can also promote the friction between the solid particles in the material liquid, making the surface of the solid particles more rounded, and improving the morphology of the crystal nucleus.
  • the remote transmission level gauge 104 is used to detect the liquid level height of the material in the cylinder 100 in real time.
  • the remote pressure transmitter 105 is used to detect the air pressure in the cylinder 100 in real time, which is convenient for the operator to understand and specific adjustment and control.
  • the coordinated adjustment of the intake valve 109 and the vent valve 110 can ensure that the material liquid is in the cylinder 100. Always at a stable liquid level.
  • the remote transmission level gauge 104 shows that the liquid level is too high, open the intake valve 109 and flush nitrogen into the cylinder 100 to reduce the material and liquid level in the cylinder to the required height
  • the vent valve 110 is opened to discharge the gas in the cylinder 100, so that the liquid level in the cylinder rises to a required height.
  • the height of the liquid level in the cylinder is the height that never passes through the microporous filter medium 300; when the liquid level in the cylinder 100 is maintained for about 100 minutes, close the liquid outlet valve 202, open the backflush valve 204 or blow back
  • the valve 205 and the recoil valve 204 can control whether to pass filtrate or ion-free water to the inside of the discharge pipe 200 as required to flush the inside of the pipeline; the backflush valve 205 can control whether to pass nitrogen into the discharge pipe 200 according to needs, In order to purge the inside of the pipeline; as the filter tube has been working for a period of time, more and more solid particles will be blocked at the filter hole of the filter tube.
  • backflush valve 204 or the backflush valve 205 it is necessary to open the backflush valve 204 or the backflush valve 205 to the discharge pipe 200 Perform backflushing or backflushing, one is to blow the solid particles at the filter hole from the filter hole in time, so that the filter tube maintains a good filtering effect, and the other is to let the solid particles on the filter tube return to the reactor in time to participate in crystallization Let the solid particles on the filter tube return to the inside of the cylinder in time to participate in the crystallization.
  • non-ionized water to thoroughly rinse the inside of the corresponding pipeline to ensure that the corresponding pipeline is always in a good liquid flow state; it is also possible to complete a filtration and concentration operation in peacetime, and it is found that there are no solid particles deposited in the corresponding pipeline. It is not necessary to spray dilute sulfuric acid into the cylinder 100, just open the second non-ionized water valve 914, and pass non-ionized water into the corresponding pipeline for cleaning; after the filtering and concentration device has been used for a long time, it will In the machine corner between the filter tube and the piping, many solid particles are consolidated with other pipelines and even the inside of the cylinder. These solid particles will affect the flow rate of the filtrate in the pipeline during normal filtration and concentration operations.
  • the entire filtration and concentration work is carried out efficiently and stably, and the regeneration tank 500 is filled with sulfuric acid used to dissolve the solid particles in the pipeline.
  • the first regeneration material valve 212 is to control the communication between the regeneration tank 500 and the inside of the thickening device; the spray device 700 is used to clean the equipment after the completion of a reaction or after the filtering and thickening device is used for a period of time.
  • the first regeneration fluid valve 212 can be opened, and dilute sulfuric acid is introduced into the cylinder 100 to dissolve the solid particles in the cylinder 100 and in the pipeline. After the dissolution is completed, the dilute sulfuric acid is discharged, and then the first non-ionized water valve 704 is opened, and the inside of the cylinder 100 and related pipelines are thoroughly rinsed with non-ionized water to ensure that the equipment is always in a good filtering and concentration state; After completing a filtration and concentration operation, it is found that there are no solid particles deposited inside the cylinder 100.
  • the overflow valve 112 can be opened to make the excess material liquid in the cylinder 100 return to the reaction.
  • the kettle 400 ensures that the liquid in the cylinder 100 will not be too full; the support is used to install the cylinder so that the top and bottom of the cylinder can be installed in the air at the same time, which is convenient for other process operations and overcomes the existing cylinder It can be installed flat on the ground.
  • the lifting lugs are used to raise and lower the cylinder when installing the cylinder.
  • the existing equipment is on the ground. Before stopping the pump, a certain amount of water is automatically fed into the pipeline to prevent the pump, valve, and pipeline from depositing and blocking the pipeline due to particles.
  • a filtering and concentrating device for small particles of ternary precursor with stirring including a cylinder body 100.
  • the upper and lower ends of the cylinder body 100 are respectively provided with a first head 101 and a second head 102, the cylinder 100 and the first head 101
  • the jacket is set according to the process requirements.
  • the second head 102 is provided with a third process nozzle 115 on the side of the second head 102.
  • the third process nozzle is a pipe from which the thick slurry is recycled. According to the site location, The height and direction of this connection tube can be adjusted; the side of the cylinder 100 is provided with a second process connection tube 111, a first row of tubes 213, and a second row of tubes 214. It can also be set as a single-layer tube, the first row of tubes 213 and The second row of tubes 214 are respectively provided with a first microporous filter medium 215 and a second microporous filter medium 215.
  • the cylinder 100 is provided with a stirring device 800; the first head 101 is provided with a remote transmission level gauge 104.
  • the remote transmission level gauge is a capacitance level gauge or radar, a remote transmission pressure transmitter 105 and the first process takeover 106.
  • the first head 101 is equipped with a spray device 700, specifically a spray ball or spray row Tube structure.
  • the stirring device 800 includes a stirring shaft 801 on which three layers of stirring blades 802 are arranged.
  • the number of layers of stirring blades is divided into four layers or/and three layers or/and two layers or/and one layer, three layers or/and four layers or /
  • the length of the two-layer stirring blade gradually decreases from bottom to top or/is set as the length of the stirring blade; the jacket or/and the side of the cylinder 100 are provided with a support 113.
  • the three-layer stirring paddles 802 are respectively located above the first microporous filter medium 215, above the second microporous filter medium 216, and below the second microporous filter medium 216, and the length ratio of the three layers of stirring paddles 802 from bottom to top is 5:4:3 or/and 1:1:1, and the turning direction is upward or/and downward.
  • the length ratio of the first microporous filter medium 215 and the second microporous filter medium 216 is 0.3-3, and it can also be set as a single-layer filter medium.
  • the structure of the first microporous filter medium 215 and the second microporous filter medium 216 Same, it includes multiple filter tubes, the multiple filter tubes are arranged in a concentric circle or hexagonal arrangement, the gap between adjacent filter tubes is 5-100mm, and the ratio of the length of the filter tube to the outer diameter is ⁇ 50.
  • the spray device 700 is connected with a first regenerated liquid pipe 701 and a first non-ionized water pipe 702 arranged side by side.
  • the first regenerated liquid pipe and the first non-ionized water pipe are respectively provided with a first regenerated liquid valve 703 and a first non-ionized water Valve 704;
  • the first process connection pipe 106 is connected with an intake pipe 107 and a vent pipe 108 arranged side by side, and an intake valve 109 and a vent valve 110 are respectively provided on the intake pipe and the vent pipe.
  • the second process connection pipe 111 is connected with an overflow valve 112.
  • the second process connection pipe and overflow valve are not necessary. When the solid content of the thick slurry is high and the flow rate is large, this connection pipe can be used as a backup pipe for circulating thick slurry back to the reactor 400.
  • the third process connection pipe 115 is connected with a second electric regulating valve 116, which must be set to control the flow rate of the return thick slurry.
  • the feed pipe 900 at the bottom of the second head 102 is connected with a pneumatic ball valve 901, and the pneumatic ball valve 901 is connected in parallel.
  • the thick slurry return valve 908 and the second regeneration valve 909, the overflow valve 112, the second electric regulating valve 116 and the thick slurry return valve 908 are connected to the reactor 400; the second regeneration valve 909 is connected to the regeneration tank 500 ; There is a third electric regulating valve 910 connected between the pneumatic ball valve 901 and the thick slurry return valve 908.
  • the third electric regulating valve is not necessary and can be controlled by directly controlling the diaphragm pump 906.
  • the third electric regulating valve 910 is connected in turn with remote
  • the feeding flow meter 902 is not necessary, the damper 903, the check valve 904, the hose 905 and the diaphragm pump 906.
  • the diaphragm pump is pneumatic or electric, with automatic flow adjustment function.
  • the diaphragm pump 906 is connected with a second non-return valve arranged in parallel.
  • the ionized water valve 914 before stopping the diaphragm pump 906, needs to enter the water through the pipeline to clean the product solid particles in the pipeline to prevent the product solid particles from settling and block the pipeline, the second regenerant valve 913 and the feed valve 907.
  • the first row pipe 213 is connected with a recoil valve 204, a back blow valve 206 and a liquid outlet valve 202 arranged in parallel;
  • the second row pipe 214 is also connected with a recoil valve 204, a back blow valve 206 and the liquid outlet valve 202 arranged in parallel ;
  • the backflush valve 204 is connected to the filter liquid inlet pipe 206 or the non-ionized water inlet pipe 207;
  • the backflush valve 206 is connected to the nitrogen inlet pipe 208;
  • the outlet valve (202) is connected with a remote turbidity meter 209, remotely transmitting turbidity
  • the meter 209 is connected with the first regenerated material valve 212 and the initial filtrate return valve 211 which are arranged in parallel.
  • the first regenerated material valve 212 and The initial filtrate return valve 211 is connected to the regeneration tank 500 and the reactor 400 respectively; the remote clear liquid flowmeter 210 is connected between the initial filtrate return valve 211 and the remote turbidity meter 209, and the remote clear liquid flowmeter 210 is connected There is a first electric regulating valve 218.
  • the pressure of nitrogen or other compressed gas that does not affect the process requirements is controlled at 0.55-0.65MPa.
  • the stirring speed of the stirring device 800 is controlled at 30-300 rpm.
  • the concentration method of the filtration and concentration device for small particles of ternary precursor with stirring is carried out according to the following steps:
  • the first step system startup self-check, automatic control system start, check valve status or opening, pressure, stirring, etc.;
  • the second step prepare to feed, open the vent valve 110 to vent;
  • Step 3 Turn on the thick slurry return valve 908, the third electric regulating valve 910, the feed valve 907 and the diaphragm pump 906;
  • Step 4 Open the pneumatic ball valve 901 and close the thick slurry return valve 908; the pneumatic ball valve is ultra-thin, and the accumulation of materials in conventional valves will cause pipeline blockage;
  • Step 5 Close the vent valve 110, and check the particle size and particle distribution of the product in the reactor 400;
  • Step 6 Open the liquid outlet valve 202 and the first electric regulating valve 218 to discharge the filtrate; or open the liquid outlet valve 202 and the initial filtrate return valve 211 back to the reactor 400;
  • the seventh step real-time detection of pressure, liquid level, outflow filtrate flow, feed flow, and stirring revolutions, and stabilize the filtrate flow by adjusting the first electric regulating valve 218 and the second electric regulating valve 116;
  • the eighth step regularly close the liquid outlet valve and open the recoil valve or blowback valve;
  • Step 9 Open the outlet valve regularly
  • the tenth step check the liquid level, open the vent valve 110 to vent, and cycle the seventh step;
  • the eleventh step repeat the tenth step until it is determined that the product detected in the reactor 400 is qualified;
  • the twelfth step stop the pump, discharge, clean and standby in sequence. Stop the pump and flush the pipeline before proceeding.
  • the liquid in the equipment is disturbed.
  • the thick slurry correspondingly returns from the lower part and ⁇ or upper middle part.
  • the disturbance direction of the liquid is consistent with the feeding direction
  • the flow direction is: as shown in Figure 3, the liquid is turned up in the middle and the circumference goes down. If it is more conducive to the settlement of the solid in the middle, it will be driven by the liquid to roll up to keep the solid-liquid content balanced; the first microporous filter medium 215 and
  • the material of the second microporous filter medium 216 is preferably ultra-high molecular weight polyethylene sintered.
  • the invention controls the flow rate of the filtrate, the number of rotations of stirring, the frequency and number of backflushing or backflushing, and ensures that the slurry in the filtration and concentration equipment can be returned to the reactor in time to participate in the reaction And growth; small particle size, low solid content, low backflushing or backflushing frequency, low pressure, low stirring speed, small feed flow rate and flow rate of the first electric regulating valve 218; large particle size, high solid content, The frequency of backflushing or backflushing is high, the pressure is high, the stirring speed is high, and the feed flow rate and the flow rate of the first electric regulating valve 218 are large.
  • the solid particles on the outer surface of the microporous filter medium 300 can be returned to the reactor 400 in time to participate in the reaction and crystal growth. This can not only increase the output, but also reduce the production cost and reduce waste water. the amount.
  • the present invention can also improve the product appearance, uniform size, timely return of concentrated slurry to the reaction kettle, narrower particle size distribution; shorten the reaction period by 15%; shorten the process flow, and increase the direct yield to 98%, high filtration accuracy, no leakage, low material loss; increase the solid concentration of the reactor by 20% to 200%, increase the output per unit time, and reduce the production cost by using more; reduce the amount of waste water by 40% and reduce the waste water treatment Cost, increase the molar content of the metal salt, the filtrate is discharged quickly, and the reaction is accelerated and the liquid volume is reduced.
  • the flow rate is limited by the equipment or the flow rate of the overflow liquid, and the process time is long;
  • the settling tank needs to be placed horizontally with the reactor, which occupies a large area.
  • the concentration of product solid particles is not limited by low concentration, and can reach 1500g/L;
  • the filter tube is reinforced, with a support tube 302 inside;
  • the pipe 200 has a variety of joints, including threaded connections, and also directly welded inverted tooth joints to expand the filter tube to the inverted tooth joint; add clamp row 301 at the end of the filter tube Structure, the filter tube is connected in series into a whole to prevent the filter tube from swinging under the action of stirring, resulting in leakage at the connection;
  • the filtration accuracy is above 0.2 microns, and the filtrate is clarified and does not leak when making small particle products;
  • high filtration accuracy prevents small particles Particle leakage ensures the yield of the product;
  • the use of ultra-high molecular weight polyethylene materials, filter cloth, ceramics, tetrafluoroethylene, titanium powder, titanium mesh, metal powder and metal mesh filter materials to adapt to changes in the material environment; filtration Multiple groups are used for pipe lead-out and then aggregated, which is conducive to group back-blowing.
  • the filter area of a single group is constant, this ensures the effective discharge effect of filter cake during single-group back-blowing; multiple groups of filter pipes can be taken out, and the flow rate can be adjusted.
  • the number of open groups is large, the flow needs to be small, and the number of open groups is small; add stirring, so that the filter cake after grouping back-blown will fall off and break up under the disturbance of stirring;
  • the blade form and the number of blade layers are adjusted according to the material characteristics; automatic operation, liquid level, pressure, flow, mixing revolution, valve switching sequence, valve opening, process automation; increase the filter area, concentric circle or polygonal arrangement, which is beneficial Stirring, manufacturing, and maintenance; the particle size distribution is narrow, under the strong circulation of stirring and pump, the thick slurry returns to the reactor 400 for crystal growth in time to prevent long residence time and affect the crystal growth speed and cause the particle size distribution to widen ; Select diaphragm pump 906 or hose pump to prevent the impact of centrifugal pump from breaking and destroying

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Textile Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Filtration Of Liquid (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

带搅拌的三元前驱体小颗粒的过滤浓缩装置,包括筒体(100),筒体(100)的一端设有第一封头(101),筒体(100)的另一端设有第二封头(102),筒体(100)或第一封头(101)或第二封头(102)上设有进料口(103),筒体(100)的内壁上设有一组或多组排管(200),排管(200)上设有与排管(200)内部相连通的微孔过滤介质(300),排管(200)的端部与筒体(100)的外部相连通;筒体(100)的内部设有搅拌装置(800)。

Description

带搅拌的三元前驱体小颗粒的过滤浓缩装置及浓缩方法 技术领域
本发明涉及过滤浓缩设备技术领域,特别涉及一种带搅拌的三元前驱体小颗粒的过滤浓缩装置及浓缩方法。
背景技术
众所周知,汽车电动化已成大势所趋,高蓄能的锂离子动力电池已成为电池行业最大的需求增长点。目前动力电池企业主要分布在中、日、韩三个国家,而中国已毫无疑问地成为当前全球最大的锂电池及其正极材料(决定锂电池能量密度的核心材料)生产国。
根据正极材料的不同,目前车用动力电池主要分为磷酸铁锂电池和三元锂电池。磷酸铁锂电池具有良好的安全性,而三元锂电池则具有更高的能量密度。目前对客车等大型车辆,采用磷酸铁锂电池居多,而乘用车及各种专用车辆,则采用三元锂电池居多,尤其是近几年来全球的传统车企皆明确要往电动化方向发展,由此带来对三元锂电池的需求大幅增长,尤其是高镍三元材料,已成为当下正极材料行业关注的热点和生产趋势。
三元正极材料(NCM镍钴锰酸锂/NCA镍钴铝酸锂)的品质决定锂电池的性能,而三元前驱体的品质则决定三元正极材料的品质。来自行业政策及下游客户不断提高的要求,使得上游材料的生产厂家对其生产设备的性能也逐渐提出越来越高的要求,企业越来越意识到智能化生产对提高产品品质的稳定性和一致性的重要性。
三元前驱体的形貌、粒径分布、纯度、振实密度等因素会直接影响到烧结后的三元正极材料的性能,而物料的共沉淀反应是三元前驱体制备的关键工艺,而在料液输入反应釜中进行共沉淀反应之前,需要对料液进行提高浓度的处理,以保证反应釜中的料液能够在进行共沉淀反应的过程中快速长晶,达到较高的反应速率。而目前采用的浓缩技术,是采用隔板沉降的方式,通过限制料液的溢流速度,来使得料液在筒体内结晶后沉降,其中进料的流速受控制不能过快,因为进料的流速一旦过快,就会造成料液还来不及结晶沉降,就从溢流口处流出,造成产品的流失,进而导致反应釜处的进料量也受控制不能增大,这样就会造成整个反应系统无法具有较高的生产效率。
因此,现有的浓缩装置,存在固体颗粒含量低、进料流速不能加快、产品会流失、反应釜的进料量不能增大、浓缩效果较差和生产效率较低的问题。
发明内容
本发明为了解决现有浓缩装置所存在的上述技术问题,提供了一种带搅拌的三元前驱体小颗粒的过滤浓缩装置及浓缩方法,它具有固体颗粒含量高、进料流速能够加快、产品不会流失、反应釜的进料量能够增大、浓缩效果较好和生产效率较高的特点。
本发明的技术方案:带搅拌的三元前驱体小颗粒的过滤浓缩装置,包括筒体,所述筒体的一端设有第一封头,所述筒体的另一端设有第二封头,所述筒体或第一封头或第二封头上设有进料口,所述筒体的内壁上设有一组或多组排管,所述排管上设有与排管内部相连通的微孔过滤介质,所述排管的端部与筒体的外部相连通;所述筒体的内部设有搅拌装置。本发明通过在筒体的内壁上设置一组或多组排管,又在排管上设置与排管内部相连通的微孔过滤介质,使用微孔过滤介质对料液进行过滤,过滤精度较高,提高了料液的固体浓度,在微孔过滤介质的过滤作用下,只有滤清液才能够通过微孔过滤介质后进入排管排出,需要的固体颗粒在微孔过滤介质的过滤作用下会留在筒体内参与结晶,没有穿漏或穿滤或跑混现象,固体颗粒物料几乎没有流失,具有浓缩效果较好的特点;由于不存在固定颗粒穿过微孔过滤介质后流失的问题,因此可以提高进入筒体内待浓缩液料液中金属盐的摩尔含量,提高筒体内待浓缩液料液的浓度,这样使得整个工艺流程缩短,能够快速的过滤排出滤清液,减少了滤清液的排放量,实际的生产过程中能在原来滤清液排出量的基础上减少40%,降低了滤清液的处理成本,进而也降低了时间和人力成本;反应釜内的固体颗粒浓度能够增长20%~200%,反应釜内的反应也加快了,提高了反应釜内单位时间的产量,使得生产量提高了,产出变多了,生产成本降低了,通过提高进入筒体内待浓缩液料液浓度和微孔过滤介质高精度 过滤两种方式,可以使得反应釜内产品的直收率提高到98%;由于料液经过微孔过滤介质后留下的固体颗粒物浓浆能够快速沉降,并从筒体及时输送到反应釜内进行共沉淀长晶,使得整个反应周期变短,具体的生产过程中能在原反应周期的基础上缩短15%,固体颗粒物在筒体内停留的时间也大致相同,所以固体颗粒物在筒体内的结晶大小也差别不大,同时固体颗粒物在沉降的过程中,由于筒体内固体颗粒物浓度较大,固体颗粒物在一起沉降的时候会相对发生摩擦,在相互摩擦的过程中,可以会除固体颗粒物表面尖锐的部分,使得固体颗粒物的表面圆润,进而使得从筒体进入反应釜的固体颗粒物大小均匀,粒径之间差别不大,固体颗粒物浓浆在反应釜中长晶之后形成的产品晶粒形貌也得到了提升,较为美观;搅拌装置的设置使得反冲或反吹后由过滤管上掉落至筒体内的滤饼能够在搅拌的扰动下,脱落后及时打散,返回反应釜参与结晶,进而保证进入反应釜中固体可以粒径大小均匀。
作为优选,所述排管由一个或多个环形管构成,所述环形管的顶部或底部设有若干安装孔,所述微孔过滤介质设置在安装孔处。将排管设置为环形管的结构,能够使得滤清液更好的排出,减少排管对滤清液排出时的管内阻力,其中环形管可以有一个、两个、三个或更多个,而且每个环形管的顶部或底部等间隔设置有若干安装孔,这样就可以在排管的安装孔处根据实际需要设置多个微孔过滤介质,便于对筒体内的料液进行更好的过滤浓缩,其中的安装孔也可以更换为接头,以螺纹或涨紧的方式来对微孔过滤介质进行连接和安装。
作为优选,所述微孔过滤介质为过滤管,所述过滤管设置在环形管的顶部,或所述过滤管设置在环形管的底部,或所述过滤管交错设置在环形管的顶部和底部。过滤管上过滤若干过滤孔的孔径为0.1~1μm,以便于在过滤小颗粒产品时保证滤液澄清不穿漏,其中过滤管可以根据需要正立安装在环形管上,也可以倒立安装在环形管上,还可以正立和倒立交错安装在环形管上,可以选择性较多,用户可以根据实际过滤的需要灵活选择过滤管在环形管上的设置方式。
作为优选,所述多个环形管同心排布,相邻环形管相连通。多个环形管同心排布的方式,第一能够与料液表面平行的设置在筒体内部,第二便于过滤管表面的滤饼掉落及靠近过滤管区域的更浓浆料返回形成更均匀的均匀浆料,第三能够为过滤管提供有序的安装位置,使得过滤管在排管上安装后能够整齐排列,以便于能够对料液进行更好的过滤;其中环形管上的料液第二接口可以有一个、两个或多个,可以根据需要灵活设置。
作为优选,所述环形管为圆形管或正六边形管。圆形管或正六边形管构成的环形管便于加工制造,对滤清液的阻力会更小;当然环形管也可以设置为其他的正多边形或其他多边形。
作为优选,所述过滤管由超高分子量聚乙烯材料制成,或由滤布制成,或由陶瓷制成,或由四氟材料制成,或由钛粉末制成,或由钛网制成,或由金属粉末制成,或由金属网制成。其中过滤管选用超高分子量聚乙烯烧结制成,使得过滤管具有较好的耐磨性、抗冲击性和热稳定性,且与物料不会产生化学反应,即使过滤管在筒体内进行长时间过滤,也不会轻易损坏。
作为优选,同一个环形管上相邻过滤管之间的间隙为5~100mm。更优选的间隙为10~80mm。最优选的间隙为15~50mm。相邻过滤管之间间隙的具体设计,是为了过滤管能够更好的过滤料液,当固定颗粒粘附在过滤管上之后,也能够不被相邻过滤管干扰的情况下,尽快从过滤管上掉落至筒体内继续进行结晶。其中过滤管之间的间隙,也可以通过设置相邻安装孔之间距离的方式进行设计。
作为优选,所述过滤管的长度与外径的比值范围为[10,50]。更优选,所述过滤管的长度与外径的比值范围为[15,40]。使得过滤管的长度和外径协调,以便于能够更好的卸除滤饼。
作为优选,同一个环形管上的多个过滤管通过夹排和/或夹箍连接在一起。由于过滤管在对料液过滤的过程中,滤清液在穿过过滤管的时候会对过滤管进行一定的冲击,由于整个过滤管是柔性的,夹排的设置,能够将同一个过滤管上的所有的过滤管串连成一个整体,由于夹排具有一定的强度,不会受滤清液冲击的影响,所有夹片的设置,可以有效的防止在搅拌、过滤、反冲和反吹的作用下过滤管摇摆,避免了过滤管与排管连接处泄露问题的发生。更优选的,也可以再使用一个夹箍将同一个环形管上的多个过滤管进行固定,使得同一个环形管上的多个过滤管之间连接的更加稳固,其中可以分别将夹排和夹箍设置在过滤管靠近两端的位置。
作为优选,所述过滤管的内部设有支撑管,所述过滤管设置在支撑管上,所述支撑管的一端设置在排管上。支撑管可以更好的防止过滤管的摇摆,使得过滤管始终在竖直方向上进行过滤作业,能够保证过滤 管工作的稳定性。其中支撑管可以为实心的杆状,也可以为空心管状,管状时可以在表面上带流通孔和/或流通槽。
作为优选,所述支撑管上设有若干流通孔或流通槽。流通孔或流通槽便于滤清液透过过滤管上的过滤孔后,进入支撑管的内部从排管排出,更多的提供了一种滤清液进入排管的方式,滤清液可以通过过滤孔之后直接进入排管排出,滤清液也可以通过流通孔和/或流通槽后接入支撑管内部再从排管排出,滤清液还可以通过以上两种方式一起进入排管排出。
作为优选,所述排管有一组、两组或三组,两组或三组排管沿竖直方向并列设置在筒体的内壁上。排管的数量可以根据用户的实际需要进行选择安装,可以为一组、两组、三组或更多组,排管在筒体内部的设置位置也可以灵活设置,只要是能够对过滤管起到更好的安装过滤效果,满足实际的过滤量的要求就可以了,当然其中设置两组或三组排管为最佳。
作为优选,所述排管端部连接的管路上设有出液阀,所述出液阀上连接有出滤清液管,所述出滤清液管上设有第一调节阀。出液管主要作用是控制出滤清液管的和筒体内部之间的连通或阻隔,在实际的操作过程中,出液阀要么是全开,要么是全闭;第一调节阀的主要作用是根据要求调节控制出滤清液管中排出滤清液的流量,协同其他阀门一起维持筒体内整个料液过滤和流动的稳定性,保证筒体内的料液以最佳的流速达到更高效的过滤浓缩效果。
作为优选,所述排管端部连接的管路上设有反冲阀和/或反吹阀,所述反冲阀上连接有进滤清液管和/或无离子水进管,所述反吹阀上连接有氮气进管。反冲阀的作用是根据需要控制是否向排管内部通滤清液或无离子水,以便及时卸除过滤管表面形成的滤饼;反吹阀的作用是根据需要控制是否向排管内部氮气,以便对管路内部进行吹洗;由于过滤管工作一段时间之后,堵塞到过滤管过滤孔处的固体颗粒物料会越来越多,需要使用打开反冲阀或反吹阀对排管进行反冲或反吹,一是为了将过滤孔处的固体颗粒物料及时从过滤孔处吹走,使得过滤管保持良好的过滤效果,二是为了让过滤管上固体颗粒及时返回反应釜参与结晶让过滤管上固体颗粒及时返回至筒体内部参与结晶。
作为优选,所述出滤清液管上靠近出液阀的位置设有远传浊度仪,所述远传浊度仪和第一调节阀之间的出滤清液管上设有远传清液流量计。远传浊度仪的作用是及时检查滤清液中固体颗粒的含量,进而让操作人员进行了解过滤管的过滤状态,若远传浊度仪检测到滤清液中固体颗粒的含量超标,便于操作人员及时检查原因,保证没有需要的固体颗粒从过滤管处穿漏或穿滤或跑混的问题发生;远传清液流量计的作用是实时检测出滤清液管中排出滤清液的流量,进而及时了解筒体内的过滤浓缩速率,保证整个过滤浓缩的高效率进行。
作为优选,所述远传浊度仪和远传清液流量计之间的出滤清液管上设有初期滤液回料阀,所述初期滤液回料阀上通过管路连接有反应釜。由于在过滤浓缩开始的一端时间里,进入料筒内的料液中的固体颗粒为初期产品,固体颗粒的晶核颗粒才刚刚生成,粒径会小于0.1微米,此时的固体可以会从过滤管的过滤孔处穿过,随着滤清液一起排出,所以这段时间内滤清液中会含有需要的固体颗粒,所以在这段时间里需要完全关闭第一调节阀,打开初期滤液回料阀,让这段时间内的含有微小固体颗粒的滤清液重新全部返回反应釜进行长晶,直到这些微小固体颗粒变大,这段时间大概需要维持3~100min,通过远传浊度仪的数据显示,滤清液中的微小固体颗粒的量达到合适的数值之后,关闭初期滤液回料阀,打开并调节第一调节阀的开度,进行正常的过滤浓缩作业。
作为优选,所述远传浊度仪和远传清液流量计之间的出滤清液管上设有第一再生料阀,所述第一再生料阀上通过管路连接有再生罐。过滤浓缩装置在使用时间久了之后,反冲或反吹后,总会在筒体内部及过滤管与排管之间一些机角旮旯中残留固体颗粒,会在出滤清液管和其他管路甚至筒体的内部固结出许多固体颗粒块,这些固体颗粒块会影响产品批次中颗粒的均匀性,此时需要使用硫酸进行清洗,最好是稀硫酸,将出滤清液管和其他管路中的固体颗粒块进行溶解,进而保证出滤清液管中滤清液的排出流速,保证整个过滤浓缩工作的高效、稳定进行,而再生罐中装的就是用于对管路中的固体颗粒块进行溶解的硫酸,第一再生料阀就是控制再生罐与浓缩装置内部之间的连通与否。
作为优选,所述筒体的外部设有保温层。按照工艺的要求,在每批进料前,需要将设备本体材料升温到需要的温度,防止物料开始进入过滤浓缩装置时,引起物料温度的变化进而影响产品质量,保温层可以能够防止筒体内料液温度的散失,使得筒体内的料液反应始终维持在一个相对稳定的温度范围,例如60~ 70℃。
作为优选,所述保温层为夹套或保温棉。夹套的设置可直接利用电加热或热传导的机理,向夹套内部加入蒸馏水或其他加热液体,通过加热夹套内的蒸馏水或加热液体来直接预热设备,进而直接满足工艺的要求;可以用保温棉代替夹套,不过这样就需要在进料前先利用热空气或热水,对设备进行预热,当设备温度达到工艺要求时再进料,使用保温棉维持设备具有相对恒定的温度。
作为优选,所述夹套上设有第一接口和第二接口,所述夹套上连接有恒温加热装置。第一接口用于蒸馏水或其他加热液体进入夹套,第二接口用于蒸馏水或其他加热液体排出夹套,恒温加热装置用于对夹套内的蒸馏水或其他加热液体进行恒温加热,保证设备始终处于工艺要求的温度范围,恒温加热装置为恒温加热棒或现有的其他恒温加热器。
作为优选,所述第一封头上连接有远传液位计和远传压力变送器。远传液位计用于实时检测筒体内料液的液位高度,远传压力变送器用于实时检测筒体内的气压,便于操作人员的了解和具体的调节控制。更利用PLC程序能够自动运行。
作为优选,所述第一封头上连接有喷淋装置,所述喷淋装置位于筒体的内部,所述喷淋装置上分别连接有第一再生液管和第一无离子水管,所述第一再生液管上设有第一再生液阀门,所述第一无离子水管上设有第一无离子水阀门。喷淋装置用于一次反应完成之后,或者是过滤浓缩装置使用一段时间之后,对设备的清洗,当筒体内部或管路中沉积了太多固体颗粒块之后,可以打开第一再生液阀门,向筒体内部通入稀硫酸,对筒体内和管路中的固体颗粒块进行溶解,溶解完成之后排出稀硫酸,再打开第一无离子水阀门,使用无离子水对筒体及其相关管路内部进行彻底的冲洗,保证设备始终处于良好的过滤浓缩状态;也可以平时完成一次过滤浓缩作业之后,发现筒体内部也没有沉积什么固体颗粒块,此时,无需向筒体内喷淋稀硫酸,只需打开第一无离子水阀门,向筒体内部喷淋无离子水进行清洗即可。
作为优选,所述喷淋装置为喷淋球或喷淋排管。喷淋装置至于选用喷淋球还是喷淋排管,可以根据用户的喜好灵活选用,喷淋球和喷淋排管均具有结构简单,价格低廉,喷淋效果较好的特点。
作为优选,所述第一封头上设有第一工艺接管,所述第一工艺接管上分别连接有进气管和放空管,所述进气管上设有进气阀门,所述放空管上设有放空阀门。进气阀门和放空阀门的协同调节,能够保证料液在筒体内始终处于稳定的液位高度,当远传液位计显示液位太高时,打开进气阀门,向筒体内冲入氮气,使得筒体内的料液液位降低到需要的高度,当远传液位计显示液位太低时,打开放空阀门,将筒体内的气体排出,使得筒体内的料液液位升高到需要的高度。其中筒体内液位的高度以始终没过微孔过滤介质的高度为最佳。
作为优选,所述筒体上靠近第一封头的位置设有第二工艺接管,所述第二工艺接管上设有溢流阀,所述第二工艺接管与反应釜连接。当进入筒体内的料液流量过大,使得筒体内的料液液位太高时,可以通过打开溢流阀,来使得筒体内多余的料液重新返回进入反应釜,保证筒体内的料液不会太满。
作为优选,所述搅拌装置包括搅拌轴,所述搅拌轴上设有一层、两层、三层或四层搅拌桨,两层、三层或四层搅拌桨的搅拌桨长度相同,或两层、三层、四层搅拌桨的搅拌桨长度从第二封头到第一封头的方向逐个减小。其中搅拌桨的层数和搅拌桨的长度可以根据物料的特性根据需要进行灵活调整,能够使得从过滤管上脱落下来的滤饼被较好的打散为最佳,其中搅拌桨的层数最好为两层或三层,其中多层搅拌桨的长度最好是从第二封头到第一封头的方向逐个减小为最佳。
作为优选,两组排管分别为第一排管和第二排管,所述第一排管处的微孔过滤介质为第一微孔过滤介质,所述第二排管处的微孔过滤介质为第二微孔过滤介质,三层搅拌桨分别位于第一微孔过滤介质的上方、第二层微孔过滤介质的上方和第二微孔过滤介质的下方。将排管设计为两组,两组排管上对应设置微孔过滤介质,使得微孔过滤介质有两组,多组时,反冲或反吹时,其它仍保持过滤出滤清液状态,保证滤清液流量的连续性,相比于一组微孔过滤介质具有更好的过滤效果,使得过滤速度可以更快;三层搅拌桨与微孔过滤介质之间相对位置的设置,能够有针对性的对微孔过滤介质处的料液进行搅拌扰动,当微孔过滤介质上的滤饼脱落后,能够在旁边搅拌扰动的作用下,及时打散返回反应釜参与结晶;若是为两层搅拌桨,那么两层搅拌桨最好是分别位于第二层微孔过滤介质的上方和第二微孔过滤介质的下方。
作为优选,三层搅拌桨从第二封头到第一封头的方向的长度比为5:4:3。三层搅拌桨长度比的设计,根据滤饼脱落向下沉降的方向专门设计,三层搅拌桨对料液产生的扰动幅度从第二封头到第一封头的方向 逐渐变小,符合滤饼从上往下沉降,扰动打散力度逐渐增大的属性要求,从上往下沉降的过程中没有被上层搅拌桨打散的滤饼,在下降的过程中,再次被更大力度的下层搅拌桨打散,从而保证沉降到筒体下部的滤饼被完全打散,保证进入反应釜中固体颗粒的晶核被分散;同时,搅拌作用也可以促进料液中固体颗粒之间的摩擦,使得固体颗粒的表面更圆润,能够提升晶核的形貌。三层拌桨叶长度比的范围为(6~2):(5~2):(4~1)。
作为优选,所述夹套的外部或筒体上或第一封头上或第二封头上设有支座,所述支座上设有吊耳。支座用于对筒体的安装,使得筒体可以顶部和底部同时悬空安装,便于其他工艺操作,克服了现有的筒体只能平放在地面上的安装方式,吊耳用于在安装筒体时对筒体的升起和放下。现有设备是座地上的。
作为优选,所述第二封头为V字形结构,或球冠形结构,或椭圆形结构,或平底结构;所述第一封头为椭圆形结构。最好为球冠形结构,球冠形结构的第二封头,使得在需要排空筒体内的料液时,能够没有残留的快速排出干净。
作为优选,所述筒体或第二封头上设有第三工艺接管,所述第三工艺接管上设有第二调节阀,所述第三工艺接管与反应釜连接。第二调节阀用于调节筒体内的过滤浓缩后剩下的固体颗粒物浓浆进入反应釜内的流速,其中第一调节阀、第二调节阀和隔膜泵通过彼此开度的协同调节,使得筒体内的料液始终处于稳定的液位高度,筒体内的料液始终处于循环的工作状态,通过第一调节阀、第二调节阀和隔膜泵彼此开度的协同调节,可以根据需要适当加快进料的流速,也使得进入反应釜中的进料量能够增大,使得整个反应系统能够达到较高的生产效率。
作为优选,所述进料口处连接有进料管,所述进料管上靠近进料口的位置设有气动球阀,所述气动球阀上依次连接有远传进料流量计、阻尼器、止回阀、软管、隔膜泵和进料阀。通过气动球阀可以远程控制筒体内进料的打开与关闭;远传进料流量计能够实时检测出进入筒体内料液的流速,进而具体对进入筒体内料液的流速和进料量进行合理的调控;阻尼器用于减少进入管路内料液的冲击震动强度,使得远传进料流量计对管路中进料流速的检测更稳定;止回阀能够防止料液倒流损坏隔膜泵;软管能够减少隔膜泵的震动对管路的影响;隔膜泵为料液的流动提供动力,同时隔膜泵也具有调整料液流速的功能;进料阀能够控制反应釜中的料液向筒体进料管处的循环流动的打开和关闭。
作为优选,所述进料管通过管路与反应釜连接,所述进料管与反应釜之间的管路上设有浓浆回料阀。当过滤浓缩装置要停止工作时,此时向筒体内的进料已经停止了,需要将筒体内未从第二调节阀返回反应釜的浓浆料液进行排出,此时只需要打开浓浆回料阀,就可以将筒体内所有的浓浆料液彻底排入反应釜了。其中的反应釜可以为中间罐等反应次釜。
作为优选,所述进料管通过管路与再生罐连接,所述进料管与再生罐之间的管路上设有第二再生料阀。过滤浓缩装置在使用时间久了之后,会在进料管和相关的管路内部固结出许多固体颗粒块,残留的固体颗粒会影响下一批产品的粒径均匀,这些固体颗粒块会影响正常过滤浓缩作业中管路中进料的流速,此时需要使用硫酸进行清洗,最好是稀硫酸,将进料管和相关管路中的固体颗粒块进行溶解,进而保证进料管中料液的进入流速,保证整个过滤浓缩工作的高效、稳定进行,而再生罐中装的就是用于对管路中的固体颗粒块进行溶解的硫酸,第二再生料阀就是控制再生罐与进料管及其相关管路之间的连通与否。
作为优选,所述气动球阀和远传进料流量计之间的管路上设有第三调节阀。通过调节第三调节阀的开度也可以调节进料流量的大小,第三调节阀可以和隔膜泵协同使用进行进料流量大小的控制,也可以只使用隔膜泵进行进料流量大小的控制,对于有些不具有进料流量调节功能的隔膜泵,就不需要安装第三调节阀,使用第三调节阀来对进料流量的大小进行控制了。
作为优选,所述隔膜泵和进料阀之间的管路上并列设置有第二再生液管和第二无离子水管,所述第二再生液管上设有第二再生液阀门,所述第二无离子水管上设有第二无离子水阀门。第二再生液阀门打开之后,能够向相应管路中通入稀硫酸,对相关管路中的固体颗粒块进行溶解,当相应管路中的固体颗粒块溶解完成之后排出稀硫酸,再打开第二无离子水阀门,使用无离子水对相应管路内部进行彻底的冲洗,保证相应管路始终处于良好的液体流通状态;也可以平时完成一次过滤浓缩作业之后,发现相应管路内部也没有沉积什么固体颗粒块,此时,无需向筒体内喷淋稀硫酸,只需打开第二无离子水阀门,向相应管路内部通入无离子水进行清洗即可;冲洗管道、隔膜泵、阀门,防止管路堵塞。
作为优选,所述气动球阀和反应釜之间的管路上设有第一视镜,所述出滤清液管上靠近远传浊度仪的 位置设有第二视镜。第一视镜和第二视镜能够对相应管路内的液体流动情况进行观察,操作人员能够较为直观的了解到相应管路内部的料液流通情况。
作为优选,氮气进管中氮气的压力为0.55~0.65MPa。氮气进管中氮气压力的具体设定,能够在过滤管处产生较好的反吹效果,通入氮气进管中的氮气压力充足,能够将过滤管中过滤孔处的滤饼较好的吹下掉落进入筒体内部。反吹压力低时,可以通过延长反吹阀门开启的时间来达到相同卸除滤饼的目的,并恢复过滤管的能量。
作为优选,所述搅拌装置的搅拌转速为30~300rpm。更优选,所述搅拌转速为50~200rpm。最优先,所述搅拌转速为60~150rpm。具体搅拌转速可以根据物料的料性灵活设计,以达到对滤饼进行较好的扰动打散为佳。
作为优选,所述筒体、上封头和下封头为一体结构或分体结构。一体结构时,便于加工和制造,降低制造成本,具有更好的强度;分体结构时,便于检修和安装,也便于对筒体内部进行清洁。
本发明的另一种技术方案:带搅拌的三元前驱体小颗粒的过滤浓缩装置的浓缩方法,按照下述步骤进行:
S02:开启放空阀门进行筒体内部放空;
S03:待筒体内部放空完成后,开启进料阀、气动球阀、出液阀、第一调节阀和第二调节阀;
S04:步骤S03中的所有阀门都开启后启动隔膜泵,向筒体内输送待浓缩液,待浓缩液通过微孔过滤介质进行过滤;
S05:实时检测筒体内的液位,当筒体内的浓缩液液位达到合适高度时,关闭放空阀;
S06:关闭放空阀后,调节隔膜泵、第一调节阀和第二调节阀的开度,使得筒体内的液位高度稳定;
S07:待筒体内的液位高度维持一定时间后,关闭出液阀,打开反冲阀或反吹阀;
S08:反冲阀或反吹阀打开一定时间后,关闭反冲阀或反吹阀,重新打开出液阀;
S09:实时检测筒体内的液位,再次进行放空阀的打开和关闭,重新使得筒体内的液位高度稳定,并循环至步骤S07。
作为优选,步骤S02之前还包括步骤S01,系统开机自检。
作为优选,步骤S09之后还包括步骤S10,重复步骤S09,直到反应釜内检测的产品为合格。
作为优选,步骤S10之后还包括步骤S11,依次进行关闭隔膜泵、排出筒体内的料液、清洗装置、关闭所有阀门和待机的操作。
作为优选,所述步骤S05中浓缩液液位高度超过微孔过滤介质时为合适高度。这样对微孔过滤介质的利用充分,能够充分发挥微孔过滤介质的过滤作用,过滤效率高,流量大。
作为优选,所述步骤S07中筒体内的液位高度维持的时间为5~200min。更优选,步骤S07中筒体内的液位高度维持的时间为10~100min。最优选,步骤S07中筒体内的液位高度维持的时间为30~700min。通过具体的时间来定性的对过滤管上滤饼的厚度进行判断,进而确定什么时候该对过滤管上的滤饼进行反冲或反吹,判断较为准确。
作为优选,所述步骤S08中反冲阀打开维持的时间为3~300S;反吹阀打开维持的时间为2~100S。更优选,步骤S08中反冲阀打开维持的时间为5~60S;反吹阀打开维持的时间为3~20S。最优选,步骤S08中反冲阀打开维持的时间为8~20S;反吹阀打开维持的时间为4~10S。通过具体的时间来对过滤管上滤饼的反冲或反吹是否完全进行判断,判断较为准确。
作为优选,所述步骤S03中,在打开第一调节阀之前,先打开初期滤液回料阀一定时间。
作为优选,所述初期滤液回料阀打开的时间为3~100min。更优选,所述初期滤液回料阀打开的时间为5~15min。通过具体的时间来判断起初进入料筒内的微小固体颗粒是否变大,判断较为准确。
作为优选,所述步骤S06中第一调节阀和/或第二调节阀处管路中的流速为10L/h~10000L/h。更优选,步骤S06中第一调节阀和/或第二调节阀处管路中的流速为50L/h~6000L/h。最优选,步骤S06中第一调节阀和/或第二调节阀处管路中的流速为300L/h~5000L/h。
作为优选,整个反应过程中的流量满足以下公式;
公式一:反应釜中参与反应的总流量=反应釜成品去陈化釜的流量+过滤浓缩装置中滤清液的流量;
公式二:隔膜泵的进料流量=通过第二调节阀的的流量+过滤浓缩装置中滤清液的流量。
作为优选,整个反应过程中的流量满足以下公式;
公式三:隔膜泵的进料流量=过滤浓缩装置中滤清液流量的2~20倍。
本发明具有如下有益效果:
(1)通过在筒体的内壁上设置一组或多组排管,又在排管上设置与排管内部相连通的微孔过滤介质,使用微孔过滤介质对料液进行过滤,过滤精度较高,提高了料液的浓度,在微孔过滤介质的过滤作用下,只有滤清液才能够通过微孔过滤介质后进入排管排出,需要的固体颗粒在微孔过滤介质的过滤作用下会留在筒体内及时返回反应釜进行长晶,没有穿漏或穿滤或跑混现象,固体颗粒物料几乎没有流失,具有浓缩效果较好的特点;
(2)由于不存在固定颗粒穿过微孔过滤介质后流失的问题,因此可以提高进入筒体内待浓缩液料液中金属盐的摩尔含量,提高筒体内待浓缩液料液的浓度,这样使得整个工艺流程缩短,能够快速的过滤排出滤清液,减少了滤清液的排放量,实际的生产过程中能在原来滤清液排出量的基础上减少40%,降低了滤清液的处理成本,进而也降低了时间和人力成本,反应釜内的固体颗粒浓度能够增长20%~200%,反应釜内的反应也加快了,提高了反应釜内单位时间的产量,使得生产量提高了,产出变多了,生产成本降低了,通过提高进入筒体内待浓缩液料液浓度和微孔过滤介质高精度过滤两种方式,可以使得反应釜内产品的直收率提高到98%;
(3)由于料液经过微孔过滤介质后留下的固体颗粒物浓浆能够快速沉降,并从筒体及时输送到反应釜内进行共沉淀长晶,使得整个反应周期变短,具体的生产过程中能在原反应周期的基础上缩短15%,固体颗粒物在筒体内停留的时间也大致相同,所以固体颗粒物在筒体内的结晶大小也差别不大,同时固体颗粒物在沉降的过程中,由于筒体内固体颗粒物浓度较大,固体颗粒物在一起沉降的时候会相对发生摩擦碰撞,在相互摩擦的过程中,可以会除固体颗粒物表面尖锐的部分,使得固体颗粒物的表面圆润,进而使得从筒体进入反应釜的固体颗粒物大小均匀,粒径之间差别不大,固体颗粒物浓浆在反应釜中长晶之后形成的产品晶粒形貌也得到了提升,较为美观;
(4)搅拌装置的设置使得反冲或反吹后由过滤管上掉落至筒体内的滤饼能够在搅拌的扰动下,脱落后及时打散,返回反应釜参与结晶,进而保证进入反应釜中固体可以粒径大小均匀。
附图说明
图1是本发明的结构示意图;
图2是本发明的具体实施方案示意图;
图3是本发明在搅拌过程中筒体内料液的循环状态图;
图4是本发明中排管与微孔过滤介质的连接结构纵向截面图;
图5是本发明中排管与微孔过滤介质连接后的第一种俯视结构图;
图6是本发明中排管与微孔过滤介质连接后的第二种俯视结构图;
图7是本发明的工艺流程图。
附图中的标记为:100-筒体,101-第一封头,102-第二封头,103-进料口,104-远传液位计,105-远传压力变送器,106-第一工艺接管,107-进气管,108-放空管,109-进气阀门,110-放空阀门,111-第二工艺接管,112-溢流阀,113-支座,114-吊耳,115-第三工艺接管,116-第二调节阀,200-排管,201-安装孔,202-出液阀,203-出滤清液管,204-反冲阀,205-反吹阀,206-进滤清液管,207-无离子水进管,208-氮气进管,209-远传浊度仪,210-远传清液流量计,211-初期滤液回料阀,212-第一再生料阀,213-第一排管,214-第二排管,215-第一微孔过滤介质,216-第二微孔过滤介质,217-第二视镜,218-第一调节阀,300-微孔过滤介质,301-夹排,302-支撑管,303-夹箍,304-流通孔,400-反应釜,500-再生罐,600-保温层,601-第一接口,602-第二接口,603-恒温加热装置,604-第一接口阀门,700-喷淋装置,701-第一再生液管,702-第一无离子水管,703-第一再生液阀门,704-第一无离子水阀门,800-搅拌装置,801-搅拌轴,802-搅拌桨,900-进料管,901-气动球阀,902-远传进料流量计,903-阻尼器,904-止回阀,905-软管,906-隔膜泵,907-进料阀,908-浓浆回料阀,909-第二再生料阀,910-第三调节阀,911-第二再生液管,912-第二无离子水管,913-第二再生液阀门,914-第二无离子水阀门,915-第一视镜。
具体实施方式
下面结合附图和实施例对本发明作进一步的说明,但并不作为对本发明限制的依据。
如图1和图2所示的带搅拌的三元前驱体小颗粒的过滤浓缩装置,包括如图3所示的筒体100,筒体的一端设有第一封头101,筒体的另一端设有第二封头102,筒体或第一封头或第二封头上设有进料口103,筒体的内壁上设有一组或多组如图5和图6所示的排管200,排管上设有与排管内部相连通的如图4所示的微孔过滤介质300,排管的端部与筒体的外部相连通。排管由一个或多个环形管构成,环形管的顶部或底部设有若干安装孔201,微孔过滤介质设置在安装孔处。微孔过滤介质为过滤管,过滤管设置在环形管的顶部,或过滤管设置在环形管的底部,或过滤管交错设置在环形管的顶部和底部。多个环形管同心排布,相邻环形管相连通;环形管为圆形管或正六边形管。过滤管由超高分子量聚乙烯材料制成,或由滤布制成,或由陶瓷制成,或由四氟材料制成,或由钛粉末制成,或由钛网制成,或由金属粉末制成,或由金属网制成。同一个环形管上相邻过滤管之间的间隙为5~100mm。过滤管的长度与外径的比值范围为[10,50]。同一个环形管上的多个过滤管通过夹排301连接在一起。过滤管的内部设有支撑管302,过滤管设置在支撑管上,支撑管的一端设置在排管上。排管有一组、两组或三组,两组或三组排管沿竖直方向并列设置在筒体的内壁上。排管端部连接的管路上设有出液阀202,出液阀上连接有出滤清液管203,出滤清液管上设有第一调节阀218。排管端部连接的管路上设有反冲阀204和/或反吹阀205,反冲阀上连接有进滤清液管206和/或无离子水进管207,反吹阀上连接有氮气进管208。出滤清液管上靠近出液阀的位置设有远传浊度仪209,远传浊度仪和第一调节阀之间的出滤清液管上设有远传清液流量计210;远传浊度仪和远传清液流量计之间的出滤清液管上设有初期滤液回料阀211,初期滤液回料阀上通过管路连接有反应釜400;远传浊度仪和远传清液流量计之间的出滤清液管上设有第一再生料阀212,第一再生料阀上通过管路连接有再生罐500。筒体的外部设有保温层600;保温层为夹套或保温棉;夹套上设有第一接口601和第二接口602,夹套上连接有恒温加热装置603。第一封头上连接有远传液位计104和远传压力变送器105。第一调节阀和第二调节阀位电动阀或气动阀。
第一封头上连接有喷淋装置700,喷淋装置位于筒体的内部,喷淋装置上分别连接有第一再生液管701和第一无离子水管702,第一再生液管上设有第一再生液阀门703,第一无离子水管上设有第一无离子水阀门704;喷淋装置为喷淋球或喷淋排管;筒体上靠近第一封头的位置设有第二工艺接管111,第二工艺接管上设有溢流阀112,第二工艺接管与反应釜连接。第一封头上设有第一工艺接管106,第一工艺接管上分别连接有进气管107和放空管108,进气管上设有进气阀门109,放空管上设有放空阀门110。筒体的内部设有搅拌装置800。搅拌装置包括搅拌轴801,搅拌轴上设有一层、两层、三层或四层搅拌桨802,两层、三层或四层搅拌桨的搅拌桨长度相同,或两层、三层、四层搅拌桨的搅拌桨长度从第二封头到第一封头的方向逐个减小。两组排管分别为第一排管213和第二排管214,第一排管处的微孔过滤介质为第一微孔过滤介质215,第二排管处的微孔过滤介质为第二微孔过滤介质216,三层搅拌桨分别位于第一微孔过滤介质的上方、第二层微孔过滤介质的上方和第二微孔过滤介质的下方。三层搅拌桨从第二封头到第一封头的方向的长度比为5:4:3。夹套的外部或筒体上或第一封头上或第二封头上设有支座113,支座上设有吊耳114。第二封头为V字形结构,或球冠形结构,或椭圆形结构,或平底结构;第一封头为椭圆形结构。筒体或第二封头上设有第三工艺接管115,第三工艺接管上设有第二调节阀116,第三工艺接管与反应釜连接。进料口处连接有进料管900,进料管上靠近进料口的位置设有气动球阀901,气动球阀上依次连接有远传进料流量计902、阻尼器903、止回阀904、软管905、隔膜泵906和进料阀907;进料管通过管路与反应釜连接,进料管与反应釜之间的管路上设有浓浆回料阀908;进料管通过管路与再生罐连接,进料管与再生罐之间的管路上设有第二再生料阀909;气动球阀和远传进料流量计之间的管路上设有第三调节阀910;隔膜泵和进料阀之间的管路上并列设置有第二再生液管911和第二无离子水管912,第二再生液管上设有第二再生液阀门913,第二无离子水管上设有第二无离子水阀门914。气动球阀和反应釜之间的管路上设有第一视镜915,出滤清液管上靠近远传浊度仪的位置设有第二视镜217。氮气进管中氮气的压力为0.55~0.65MPa。搅拌装置的搅拌转速为30~300rpm。筒体、上封头和下封头为一体结构或分体结构。支撑管上设有若干流通孔304或流通槽。
如图1和图2所示的带搅拌的三元前驱体小颗粒的过滤浓缩装置,包括如图3所示的筒体100,筒体的一端设有第一封头101,筒体的另一端设有第二封头102,筒体或第一封头或第二封头上设有进料口103, 筒体的内壁上设有一组或多组如图5和图6排管200,排管上设有与排管内部相连通的如图4所示的微孔过滤介质300,排管的端部位于筒体的外部。排管由一个或多个环形管构成,环形管的顶部或底部设有若干安装孔201,微孔过滤介质设置在安装孔处。微孔过滤介质为过滤管,过滤管设置在环形管的顶部,或过滤管设置在环形管的底部,或过滤管交错设置在环形管的顶部和底部。多个环形管同心排布,相邻环形管相连通。环形管为圆形管或正六边形管。过滤管由超高分子量聚乙烯材料制成。同一个环形管上相邻过滤管之间的间隙为5~100mm。过滤管的长度与外径的比值范围为[10,50]。同一个环形管上的多个过滤管通过夹排301连接在一起。过滤管的内部设有支撑管302,过滤管设置在支撑管上,支撑管的一端设置在排管上。排管有一组、两组或三组,两组或三组排管沿竖直方向并列设置在筒体的内壁上。排管端部连接的管路上设有出液阀202,出液阀上连接有出滤清液管203,出滤清液管上设有第一调节阀218。排管端部连接的管路上设有反冲阀204和/或反吹阀205,反冲阀上连接有进滤清液管206和/或无离子水进管207,反吹阀上连接有氮气进管208。出滤清液管上靠近出液阀的位置设有远传浊度仪209,远传浊度仪和第一调节阀之间的出滤清液管上设有远传清液流量计210。远传浊度仪和远传清液流量计之间的出滤清液管上设有初期滤液回料阀211,初期滤液回料阀上通过管路连接有反应釜400。远传浊度仪和远传清液流量计之间的出滤清液管上设有第一再生料阀212,第一再生料阀上通过管路连接有再生罐500。筒体的外部设有保温层600。保温层为夹套或保温棉。夹套上设有第一接口601和第二接口602,夹套上连接有恒温加热装置603。第一封头上连接有远传液位计104和远传压力变送器105。第一封头上连接有喷淋装置700,喷淋装置位于筒体的内部,喷淋装置上分别连接有第一再生液管701和第一无离子水管702,第一再生液管上设有第一再生液阀门703,第一无离子水管上设有第一无离子水阀门704。喷淋装置为喷淋球或喷淋排管。
第一封头上设有第一工艺接管106,第一工艺接管上分别连接有进气管107和放空管108,进气管上设有进气阀门109,放空管上设有放空阀门110。筒体上靠近第一封头的位置设有第二工艺接管111,第二工艺接管上设有溢流阀112,第二工艺接管与反应釜连接。筒体的内部设有搅拌装置800。搅拌装置包括搅拌轴801,搅拌轴上设有一层、两层、三层或四层搅拌桨802,两层、三层或四层搅拌桨的搅拌桨长度相同,或两层、三层、四层搅拌桨的搅拌桨长度从第二封头到第一封头的方向逐个减小。两组排管分别为第一排管213和第二排管214,第一排管处的微孔过滤介质为第一微孔过滤介质215,第二排管处的微孔过滤介质为第二微孔过滤介质216,三层搅拌桨分别位于第一微孔过滤介质的上方、第二层微孔过滤介质的上方和第二微孔过滤介质的下方。三层搅拌桨从第二封头到第一封头的方向的长度比为5:4:3。夹套的外部设有支座113,支座上设有吊耳114。第二封头为V字形结构。筒体或第二封头上设有第三工艺接管115,第三工艺接管上设有第二调节阀116,第三工艺接管与反应釜连接。进料口处连接有进料管900,进料管上靠近进料口的位置设有气动球阀901,气动球阀上依次连接有远传进料流量计902、阻尼器903、止回阀904、软管905、隔膜泵906和进料阀907。进料管通过管路与反应釜连接,进料管与反应釜之间的管路上设有浓浆回料阀908。进料管通过管路与再生罐连接,进料管与再生罐之间的管路上设有第二再生料阀909。气动球阀和远传进料流量计之间的管路上设有第三调节阀910。隔膜泵和进料阀之间的管路上并列设置有第二再生液管911和第二无离子水管912,第二再生液管上设有第二再生液阀门913,第二无离子水管上设有第二无离子水阀门914。气动球阀和反应釜之间的管路上设有第一视镜915,出滤清液管上靠近远传浊度仪的位置设有第二视镜217。氮气进管中氮气的压力为0.55~0.65MPa。搅拌装置的搅拌转速为30~300rpm。筒体、上封头和下封头为一体结构或分体结构。也可以再使用一个夹箍303将同一个环形管上的多个过滤管进行固定,使得同一个环形管上的多个过滤管之间连接的更加稳固,其中可以分别将夹排和夹箍设置在过滤管靠近两端的位置;第一接口阀门604用于控制向夹套内输送蒸馏水。其中第一再生料阀和第二再生料阀均为回料阀。
如图7所示的带搅拌的三元前驱体小颗粒的过滤浓缩装置的浓缩方法,按照下述步骤进行:
S01:系统开机自检
S02:开启放空阀门进行筒体内部放空;
S03:待筒体内部放空完成后,开启进料阀、气动球阀、出液阀、第一调节阀和第二调节阀;在打开第一调节阀之前,先打开初期滤液回料阀一定时间;初期滤液回料阀打开的时间为3~100min。
S04:步骤S03中的所有阀门都开启后启动隔膜泵,向筒体内输送待浓缩液,待浓缩液通过微孔过滤 介质进行过滤;
S05:实时检测筒体内的液位,当筒体内的浓缩液液位达到合适高度时,关闭放空阀;浓缩液液位高度超过微孔过滤介质时为合适高度;筒体内压力、滤清液流量、进料流量或开度、回浓浆流量或开度、反应釜液位、中间罐液位;满过所有搅拌桨叶,上封头处存有一定体积的气体空间。搅拌桨叶全浸入保证搅拌正常工作;留有一定的气体空间,其1保护机封不浸入液体中,防止颗粒物进入机封,损坏机封;其2喷淋不浸入液体中,防止产品颗粒积留,影响批次均匀性;其3放空时不会有液体物料被带走。
S06:关闭放空阀后,调节隔膜泵、第一调节阀和第二调节阀的开度,使得筒体内的液位高度稳定;第一调节阀和/或第二调节阀处管路中的流速为10L/h~10000L/h;
S07:待筒体内的液位高度维持一定时间后,关闭出液阀,打开反冲阀或反吹阀;筒体内的液位高度维持的时间为30~70min;
S08:反冲阀或反吹阀打开一定时间后,关闭反冲阀或反吹阀,重新打开出液阀;反冲阀打开维持的时间为3~200S;反吹阀打开维持的时间为2~100S;
S09:实时检测筒体内的液位,再次进行放空阀的打开和关闭,重新使得筒体内的液位高度稳定,并循环至步骤S07;定时或设定滤清液流量流出后;
S10:重复步骤S09,直到反应釜内检测的产品为合格;
S11:依次进行关闭隔膜泵、排出筒体内的料液、清洗装置、关闭所有阀门和待机的操作。
整个反应过程中的流量满足以下公式;
公式一:反应釜中参与反应的总流量=反应釜成品去陈化釜的流量+过滤浓缩装置中滤清液的流量;
公式二:隔膜泵的进料流量=通过第二调节阀的流量+过滤浓缩装置中滤清液的流量。
公式三:隔膜泵的进料流量=过滤浓缩装置中滤清液流量的2~20倍。
本发明的工作原理为:
系统开机自检,打开第一接口阀门604,蒸汽为上进下出、热液体下进上出且底下带放净,向夹套内部加入蒸馏水或其他加热液体,通过恒温加热装置603加热夹套内的蒸馏水或加热液体来直接预热设备,进而直接满足工艺65度左右的要求;可以用保温棉代替夹套,不过这样就需要在进料前先利用热空气或热水,对设备进行预热,当设备温度达到工艺要求时再进料,使用保温棉维持设备具有相对恒定的温度;打开放空阀门110进行筒体100内的放空,待筒体内部放空完成后,关闭放空阀门110,分别打开进料阀907、第三调节阀910、第二调节阀116、出液阀202和初期滤液回料阀211,再打开隔膜泵906和搅拌装置800,此时料液从反应釜400和/或中间罐进入进料阀907处的管路中,在隔膜泵906的作用下,料液进入筒体100,其中隔膜泵为料液的流动提供动力,同时隔膜泵也具有调整料液流速的功能,软管905能够减少隔膜泵的震动对管路的影响,止回阀904能够防止料液倒流损坏隔膜泵,阻尼器903能够减少进入管路内料液的冲击震动强度,使得远传进料流量计对管路中进料流速的检测更稳定,远传进料流量计902能够实时检测出进入筒体内料液的流速,进而具体对进入筒体内料液的流速和进料量进行合理的调控,气动球阀901可以远程控制筒体100内进料的打开与关闭,出液阀202能够控制出滤清液管203的和筒体内部之间的连通或阻隔;由于在过滤浓缩开始的一端时间里,进入料筒内的料液中的固体颗粒为初期产品,固体颗粒的晶核颗粒才刚刚生成,粒径会小于0.1微米,此时的固体可以会从过滤管的过滤孔处穿过,随着滤清液一起排出,所以这段时间内滤清液中会含有需要的固体颗粒,所以在这段时间里需要完全关闭第一调节阀218,打开初期滤液回料阀211,让这段时间内的含有微小固体颗粒的滤清液重新全部返回反应釜进行长晶,直到这些微小固体颗粒变大,这段时间大概需要维持10min,通过远传浊度仪209的数据显示,滤清液中的微小固体颗粒的量达到合适的数值之后,关闭初期滤液回料阀,打开并调节第一调节阀的开度,进行正常的过滤浓缩作业;第一调节阀218能根据要求调节控制出滤清液管203中排出滤清液的流量,协同其他阀门一起维持筒体100内整个料液过滤和流动的稳定性,保证筒体内的料液以最佳的流速达到更高效的过滤浓缩效果;在滤清液流动的过程中,通过远传浊度仪209能及时检查滤清液中固体颗粒的含量,进而让操作人员进行了解过滤管的过滤状态,若远传浊度仪检测到滤清液中固体颗粒的含量超标,便于操作人员及时检查原因,保证没有需要的固体颗粒从过滤管处穿漏或穿滤或跑混的问题发生;远传清液流量计210能实时检测出滤清液管203中排出滤清液的流量,进而及时了解筒体内的过滤浓缩速率,保证整个过滤浓缩的高效率进行;通过第二视镜217能够对相应管路内的液体流动情况进行观察,操作人员能够较 为直观的了解到相应管路内部的料液流通情况;第二调节阀116用于调节筒体100内的过滤浓缩后剩下的固体颗粒物浓浆进入反应釜400内的流速,其中第一调节阀218、第二调节阀116和隔膜泵906通过彼此开度的协同调节,使得筒体100内的料液始终处于稳定的液位高度,筒体内的料液始终处于循环的工作状态,通过第一调节阀、第二调节阀和隔膜泵彼此开度的协同调节,可以根据需要适当加快进料的流速,也使得进入反应釜400中的进料量能够增大,使得整个反应系统能够达到较高的生产效率;搅拌装置800的设置使得反冲或反吹后由过滤管上掉落至筒体100内的滤饼能够在搅拌的扰动下,脱落后及时打散,返回反应釜参与结晶,进而保证进入反应釜400中固体可以粒径大小均匀,其中搅拌桨802的层数和搅拌桨的长度可以根据物料的特性根据需要进行灵活调整,能够使得从过滤管上脱落下来的滤饼被较好的打散为最佳,其中搅拌桨的层数最好为两层或三层,其中多层搅拌桨的长度最好是从第二封头102到第一封头101的方向逐个减小为最佳,三层搅拌桨802长度比的设计,根据滤饼脱落向下沉降的方向专门设计,三层搅拌桨对料液产生的扰动幅度从第二封头到第一封头的方向逐渐变小,符合滤饼从上往下沉降,扰动打散力度逐渐增大的属性要求,从上往下沉降的过程中没有被上层搅拌桨打散的滤饼,在下降的过程中,再次被更大力度的下层搅拌桨打散,从而保证沉降到筒体100下部的滤饼被完全打散,保证进入反应釜400中固定颗粒的晶核直径;同时,搅拌作用也可以促进料液中固体颗粒之间的摩擦,使得固体颗粒的表面更圆润,能够提升晶核的形貌。
实时观察远传液位计104和远传压力变送器105,适当的调整进气阀门109和放空阀门110,远传液位计104用于实时检测筒体100内料液的液位高度,远传压力变送器105用于实时检测筒体100内的气压,便于操作人员的了解和具体的调节控制,进气阀门109和放空阀门110的协同调节,能够保证料液在筒体100内始终处于稳定的液位高度,当远传液位计104显示液位太高时,打开进气阀门109,向筒体100内冲入氮气,使得筒体内的料液液位降低到需要的高度,当远传液位计104显示液位太低时,打开放空阀门110,向筒体100内的气体排出,使得筒体内的料液液位升高到需要的高度。其中筒体内液位的高度以始终没过微孔过滤介质300的高度为最佳;当筒体100内的液位高度维持100min左右后,关闭出液阀202,打开反冲阀204或反吹阀205,反冲阀204能根据需要控制是否向排管200内部通滤清液或无离子水,以便对管路内部进行冲洗;反吹阀205能根据需要控制是否向排管200内部氮气,以便对管路内部进行吹洗;由于过滤管工作一段时间之后,堵塞到过滤管过滤孔处的固体颗粒物料会越来越多,需要使用打开反冲阀204或反吹阀205对排管200进行反冲或反吹,一是为了将过滤孔处的固体颗粒物料及时从过滤孔处吹走,使得过滤管保持良好的过滤效果,二是为了让过滤管上固体颗粒及时返回反应釜参与结晶让过滤管上固体颗粒及时返回至筒体内部参与结晶,反冲80s或反吹70s之后,关闭反吹阀205或反冲阀204,重新打开出液阀202,直到反应釜400内检测的产品为合格;当反应要停止的时候,关闭隔膜泵906和进料阀907,打开浓浆回料阀908,此时向筒体100内的进料已经停止了,需要将筒体100内未从第二调节阀116返回反应釜400的浓浆料液进行排出,此时只需要打开浓浆回料阀908,就可以将筒体100内所有的浓浆料液彻底排入反应釜400了;当需要对筒体100及管路内的沉积的固体颗粒块进行溶化处理时,打开第二再生液阀门913、第一再生料阀212和第一再生液阀门703,第二再生液阀门打开之后,能够向相应管路中通入稀硫酸,对相关管路中的固体颗粒块进行溶解,当相应管路中的固体颗粒块溶解完成之后排出稀硫酸,再打开第二无离子水阀门914,使用无离子水对相应管路内部进行彻底的冲洗,保证相应管路始终处于良好的液体流通状态;也可以平时完成一次过滤浓缩作业之后,发现相应管路内部也没有沉积什么固体颗粒块,此时,无需向筒体100内喷淋稀硫酸,只需打开第二无离子水阀门914,向相应管路内部通入无离子水进行清洗即可;过滤浓缩装置在使用时间久了之后,会在过滤管与排管间的机角旮旯中,和其他管路甚至筒体的内部固结出许多固体颗粒块,这些固体颗粒块会影响正常过滤浓缩作业中管路中滤清液的流速,此时需要使用硫酸进行清洗,最好是稀硫酸,将出滤清液管203和其他管路中的固体颗粒块进行溶解,进而保证出滤清液管203中滤清液的排出流速,保证整个过滤浓缩工作的高效、稳定进行,而再生罐500中装的就是用于对管路中的固体颗粒块进行溶解的硫酸,第一再生料阀212就是控制再生罐500与浓缩装置内部之间的连通与否;喷淋装置700用于一次反应完成之后,或者是过滤浓缩装置使用一段时间之后,对设备的清洗,当筒体100内部或管路中沉积了太多固体颗粒块之后,可以打开第一再生液阀门212,向筒体100内部通入稀硫酸,对筒体100内和管路中的固体颗粒块进行溶解,溶解完成之后排出稀硫酸,再打开第一无离子水阀门704,使用无离子水对筒体100及其相关管路内部进行彻底的冲洗,保证设备始终处 于良好的过滤浓缩状态;也可以平时完成一次过滤浓缩作业之后,发现筒体100内部也没有沉积什么固体颗粒块,此时,无需向筒体内喷淋稀硫酸,只需打开第一无离子水阀门704,向筒体100内部喷淋无离子水进行清洗即可,如此便完成了一个工作循环。其中当进入筒体100内的料液流量过大,使得筒体100内的料液液位太高时,可以通过打开溢流阀112,来使得筒体100内多余的料液重新返回进入反应釜400,保证筒体100内的料液不会太满;支座用于对筒体的安装,使得筒体可以顶部和底部同时悬空安装,便于其他工艺操作,克服了现有的筒体只能平放在地面上的安装方式,吊耳用于在安装筒体时对筒体的升起和放下。现有设备是座地上的。停泵前,自动进一定量的水通管道,防止泵、阀门、管道因颗粒沉积及堵塞管道。
带搅拌的三元前驱体小颗粒的过滤浓缩装置,包括筒体100,筒体100的上下两端分别设有第一封头101和第二封头102,筒体100、第一封头101和第二封头102外设有一夹套,工艺要求:在每批进料前,需要将设备本体材料升温到需要的温度,防止物料开始进入过滤浓缩装置时,引起物料温度的变化进而影响产品质量。在有夹套可直接利用电加热的机理先预热设备;如没有夹套,一般需要在进料前,先利用热空气或热水,对设备进行预热后再进料。夹套根据工艺要求设置,非必要,可用保温棉代替夹套的作用,第二封头102侧部设有第三工艺接管115,第三工艺接管为浓浆循环出的接管,根据现场位置,可调整此接管的高度与方向;筒体100侧部设有第二工艺接管111、第一排管213和第二排管214,也可以设为制单层排管,第一排管213和第二排管214分别设有第一微孔过滤介质215和第二微孔过滤介质215,筒体100内设有搅拌装置800;第一封头101上设有远传液位计104,具体的远传液位计为电容液位计或雷达、远传压力变送器105和第一工艺接管106,第一封头101内设有喷淋装置700,具体为喷淋球或喷淋排管结构。搅拌装置800包括搅拌轴801,搅拌轴上设有三层搅拌桨802,搅拌桨的层数分四层或/和三层或/和二层或/和一层,三层或/和四层或/和二层搅拌桨的长度由下至上逐渐变小或/和搅拌桨叶长度一样设置;夹套或/和筒体100侧部设有支座113。三层搅拌桨802分别位于第一微孔过滤介质215的上方、第二微孔过滤介质216的上方和第二微孔过滤介质216的下方,且三层搅拌桨802由下至上的长度比为5:4:3或/和1:1:1,且翻转方向均朝上或/和朝下。第一微孔过滤介质215和第二微孔过滤介质216的长度比为0.3~3,也可以设制为单层过滤介质,第一微孔过滤介质215和第二微孔过滤介质216的结构相同,其包括多根过滤管,多根过滤管呈同心圆排列或六边形排列,相邻过滤管的间隙为5-100mm,过滤管的长度与外径的比值≤50。喷淋装置700连接有并列设置的第一再生液管701和第一无离子水管702,第一再生液管和第一无离子水管上分别设有第一再生液阀门703和第一无离子水阀门704;第一工艺接管106连接有并列设置的进气管107和放空管108,进气管和放空管上分别设有进气阀门109和放空阀门110。
第二工艺接管111连接有溢流阀112,第二工艺接管和溢流阀非必需,浓浆含固量高,流量大时,此接管可作为循环浓浆出返回反应釜400的备用接管,第三工艺接管115连接有第二电动调节阀116,必需设置,控制返回浓浆的流量大小,第二封头102底部的进料管900上连接有气动球阀901,气动球阀901连接有并联设置的浓浆回料阀908和第二再生料阀909,溢流阀112、第二电动调节阀116和浓浆回料阀908连接至反应釜400;第二再生料阀909连接至再生罐500;气动球阀901与浓浆回料阀908之间连接有第三电动调节阀910,第三电动调节阀非必需,可通过直接控制隔膜泵906进行控制,第三电动调节阀910依次连接有远传进料流量计902非必需、阻尼器903、止回阀904、软管905和隔膜泵906,隔膜泵为气动或电动,带流量自动调整功能,隔膜泵906连接有并列设置的第二无离子水阀门914,当停隔膜泵906前,需进水通管道,清理管道内的产品固体颗,防止产品固体颗沉降而堵塞管道、第二再生液阀门913和进料阀907。第一排管213连接有并列设置的反冲阀204、反吹阀206和出液阀202;第二排管214也连接有并列设置的反冲阀204、反吹阀206和出液阀202;反冲阀204连接至进滤清液管206或无离子水进管207;反吹阀206连接至氮气进管208;出液阀(202)连接有远传浊度仪209,远传浊度仪209连接有并列设置的第一再生料阀212和初期滤液回料阀211,初期产品晶核颗粒刚生成小于0.1微米时,需全部返回反应釜进行长晶,第一再生料阀212和初期滤液回料阀211分别连接至再生罐500和反应釜400;初期滤液回料阀211与远传浊度仪209之间连接有远传清液流量计210,远传清液流量计210连接有第一电动调节阀218。氮气或不影响工艺要求的其它压缩气体进管的压力控制在0.55-0.65MPa。搅拌装置800的搅拌转速控制在30-300rpm。
带搅拌的三元前驱体小颗粒的过滤浓缩装置的浓缩方法,按下述步骤进行:
第一步:系统开机自检,自控系统启动、检测阀门状态或开度、压力、搅拌等;
第二步:准备进料,开启放空阀门110进行放空;
第三步:将浓浆回料阀908、第三电动调节阀910、进料阀907和隔膜泵906开启;
第四步:将气动球阀901开启,关闭浓浆回料阀908;其中气动球阀超薄,常规阀门存在积料现象会造成管道堵塞;
第五步:关闭放空阀门110,检测反应釜400内产品粒径及颗粒分布情况;
第六步:打开出液阀202和第一电动调节阀218出滤清液;或打开出液阀202和初期滤液回料阀211回反应釜400;
第七步:实时检测压力、液位、出滤液流量、进料流量、搅拌转数,并通过调节第一电动调节阀218和第二电动调节阀116稳定滤清液流量;
第八步:定时关闭出液阀和开启反冲阀或反吹阀;
第九步:定时开启出液阀;
第十步:检测液位,开启放空阀门110进行放空,并循环第七步;
第十一步:重复第十步直到确定反应釜400内检测的产品为合格;
第十二步:依次进行停泵、排料、清洗和待机。停泵前进水冲洗管道。
搅拌旋转后,设备内液体具有扰动,根据进料从上部和\或下部和\或中部进料,浓浆对应的从中下部和\或中上部返回,液体的扰动方向与进料方向一致,推荐的流动方向为:如图3液体为中间上翻、周圈往下,如更利于中间的固体沉降时会被液体带动朝上翻滚,保持固液含量的均衡;第一微孔过滤介质215与第二微孔过滤介质216的材质优先选用超高分子量聚乙烯烧结。
本发明按反应釜中产品的粒径大小及分布,控制滤清液流量、搅拌的转数、反吹或反冲的频率与次数,保证过滤浓缩设备内的浆料能及时返回反应釜参与反应及生长;粒径小、固体含量低,反吹或反冲的频率低、压力低,搅拌转数低,进料流量与第一电动调节阀218的流量小;粒径大、固体含量高,反吹或反冲的频率高、压力高,搅拌转数高,进料流量与第一电动调节阀218的流量大。
本发明通过搅拌与反冲或反吹的共同作用,使微孔过滤介质300外表面的固体颗粒能及时返回反应釜400参与反应长晶,这不仅能够提高产量,还能降低生产成本,减少废水量。本发明通过各个结构与各种参数的配合,还能提升产品形貌,大小均匀,浓浆返回反应釜及时,粒径分布更窄;缩短反应周期15%;缩短工艺流程,直收率提高到98%,过滤精度高,没有穿漏现象,物料损失低;增加反应釜固体浓度20%~200%,提高单位时间的产量,投出多而降低生产成本;减少40%废水量,降低废水处理成本,提高金属盐的摩尔含量,滤清液排出快速,至反应加快,液体量减少。
新旧工艺对比
1.旧工工艺
1)采用间断式,或利用沉降槽,或带有滤布结构的沉降槽,利用颗粒的重力作用,将上清液排出;
2)浓浆依靠重力,自然返回反应釜;
3)产品固体的颗粒浓度不会超过500g/L;
4)及易使细小产品固体的颗粒流失,因滤布的精度有限,小颗粒也会跑料造成流失;
5)流量受到设备或溢流液体流动速度的限制,工艺时间长;
6)产量低;
7)颗粒在沉降槽中停留时间长,粒径分布宽;
8)自然沉降,多晶产品占比大;
9)沉降槽需与反应釜平放,占地面积大。
2.新工艺
1)利用东瓯浓缩机,进行连续不间断式出滤清液;
2)浓浆利用搅拌及泵,强制及时返回反应釜;
3)产品固体颗粒的浓度不受低浓度的限制,可达到1500g/L;
4)过滤精度高,产品固体的颗粒无流失,收率高;
5)流量大,受设备影响小,缩短工艺时间,工艺时间短;
6)产量高;
7)颗粒在浓缩机中停留时间短,粒径分布窄;
8)控制搅拌的转数,成为单晶产品;
9)浓缩机相对反应釜的安装位置没有限制,不占地方;
3.新工艺的实现
过滤管加强,内部带支撑管302;排管200上接头形式有多样,有螺纹连接,也有直接焊接倒齿接头,将过滤管涨接在倒齿接头上;在过滤管端部增加夹排301结构,将过滤管串连成一个整体,防止在搅拌作用下过滤管摇摆,导致连接处泄漏;过滤精度0.2微米以上,做小颗粒产品时保证滤液澄清不穿漏;高的过滤精度,防止小颗粒穿漏,保证了产品的收率;采用超高分子量聚乙烯材料、滤布、陶瓷、四氟、钛粉末、钛网、金属粉末和金属网材质的滤材,适应物料环境的变化;过滤管引出采用多组后再汇总,利于分组反吹,由于单组的过滤面积一定,这样就保证了单组反吹时的滤饼有效的卸出效果;过滤管多组引出,可调节流量大小,流量需要大时,开的组数多,流量需要小时,开的组数少;加搅拌,使分组反吹后的滤饼,在搅拌的扰动下,脱落后并打散;搅拌转数、桨叶形式、桨叶层数跟据物料特性调整;自动化运行,液位、压力、流量、搅拌转数、阀门开关顺序、阀门开度、工艺自动化;增加过滤面积,同心圆或多边形排列,利于搅拌拢动、制造、维护;粒径分布窄,在搅拌、泵的强力循环作用下,浓浆及时返回反应釜400进行长晶,防止停留时间长,影响长晶速度而造成粒径分布变宽;选取隔膜泵906或软管泵,防止离心泵对产品颗粒的打碎破坏影响;运行时,限制并控制出滤清液量,采用加大泵的进料量与回流量、让浓缩机内的浆料,在限定的时间内返回反应釜,大的流量又能保证浆料在管道内不会沉降堵塞。

Claims (21)

  1. 带搅拌的三元前驱体小颗粒的过滤浓缩装置,其特征是:包括筒体(100),所述筒体的一端设有第一封头(101),所述筒体的另一端设有第二封头(102),所述筒体或第一封头或第二封头上设有进料口(103),所述筒体的内壁上设有一组或多组排管(200),所述排管上设有与排管内部相连通的微孔过滤介质(300),所述排管的端部与筒体的外部相连通;所述筒体的内部设有搅拌装置(800)。
  2. 根据权利要求1所述的带搅拌的三元前驱体小颗粒的过滤浓缩装置,其特征是:所述排管由一个或多个环形管构成,所述环形管上设有若干安装孔(201),所述微孔过滤介质与安装孔相连接。
  3. 根据权利要求2所述的带搅拌的三元前驱体小颗粒的过滤浓缩装置,其特征是:所述微孔过滤介质为过滤管,所述过滤管设置在环形管的顶部,或所述过滤管设置在环形管的底部,或所述过滤管交错设置在环形管的顶部和底部。
  4. 根据权利要求3所述的带搅拌的三元前驱体小颗粒的过滤浓缩装置,其特征是:所述多个环形管同心排布,相邻环形管相连通;所述环形管为圆形管或正六边形管。
  5. 根据权利要求3或4所述的带搅拌的三元前驱体小颗粒的过滤浓缩装置,其特征是:所述过滤管由超高分子量聚乙烯材料制成,或由滤布制成,或由陶瓷制成,或由四氟材料制成,或由钛粉末制成,或由钛网制成,或由金属粉末制成,或由金属网制成。
  6. 根据权利要求3或4所述的带搅拌的三元前驱体小颗粒的过滤浓缩装置,其特征是:同一个环形管上的多个过滤管通过夹排(301)和/或夹箍(303)连接在一起。
  7. 根据权利要求3或4所述的带搅拌的三元前驱体小颗粒的过滤浓缩装置,其特征是:所述过滤管的内部设有支撑管(302),所述过滤管设置在支撑管上,所述支撑管的一端设置在排管上。
  8. 根据权利要求1或2或3或4所述的带搅拌的三元前驱体小颗粒的过滤浓缩装置,其特征是:所述排管有一组、两组或三组,两组或三组排管沿竖直方向并列设置在筒体的内壁上。
  9. 根据权利要求1或2或3或4所述的带搅拌的三元前驱体小颗粒的过滤浓缩装置,其特征是:所述排管端部连接的管路上设有出液阀(202),所述出液阀上连接有出滤清液管(203),所述出滤清液管上设有第一调节阀(218)。
  10. 根据权利要求1或2或3或4所述的带搅拌的三元前驱体小颗粒的过滤浓缩装置,其特征是:所述排管端部连接的管路上设有反冲阀(204)和/或反吹阀(205),所述反冲阀上连接有进滤清液管(206)和/或无离子水进管(207),所述反吹阀上连接有氮气进管(208)。
  11. 根据权利要求9所述的带搅拌的三元前驱体小颗粒的过滤浓缩装置,其特征是:所述出滤清液管上靠近出液阀的位置设有远传浊度仪(209),所述远传浊度仪和第一调节阀之间的出滤清液管上设有远传清液流量计(210);所述远传浊度仪和远传清液流量计之间的出滤清液管上设有初期滤液回料阀(211),所述初期滤液回料阀上通过管路连接有反应釜(400);所述远传浊度仪和远传清液流量计之间的出滤清液管上设有第一再生料阀(212),所述第一再生料阀上通过管路连接有再生罐(500)。
  12. 根据权利要求1或2或3或4或11所述的带搅拌的三元前驱体小颗粒的过滤浓缩装置,其特征是:所述筒体的外部设有保温层(600);所述保温层为夹套或保温棉;所述夹套上设有第一接口(601)和第二接口(602),所述夹套上连接有恒温加热装置(603)。
  13. 根据权利要求11所述的带搅拌的三元前驱体小颗粒的过滤浓缩装置,其特征是:所述第一封头上连接有喷淋装置(700),所述喷淋装置位于筒体的内部,所述喷淋装置上分别连接有第一再生液管(701)和第一无离子水管(702),所述第一再生液管上设有第一再生液阀门(703),所述第一无离子水管上设有第一无离子水阀门(704);所述喷淋装置为喷淋球或喷淋排管;所述筒体上靠近第一封头的位置设有第二工艺接管(111),所述第二工艺接管上设有溢流阀(112),所述第二工艺接管与反应釜连接。
  14. 根据权利要求1或2或3或4或11或13所述的带搅拌的三元前驱体小颗粒的过滤浓缩装置,其特征是:所述第一封头上设有第一工艺接管(106),所述第一工艺接管上分别连接有进气管(107)和放空管(108),所述进气管上设有进气阀门(109),所述放空管上设有放空阀门(110)。
  15. 根据权利要求1或2或3或4或11或13所述的带搅拌的三元前驱体小颗粒的过滤浓缩装置,其特征是:所述搅拌装置包括搅拌轴(801),所述搅拌轴上设有一层、两层、三层或四层搅拌桨(802),两层、三层或四层搅拌桨的搅拌桨长度相同,或两层、三层、四层搅拌桨的搅拌桨长度从第二封头到第一封头的方向逐个减小。
  16. 根据权利要求15所述的带搅拌的三元前驱体小颗粒的过滤浓缩装置,其特征是:两组排管分别为第一排管(213)和第二排管(214),所述第一排管处的微孔过滤介质为第一微孔过滤介质(215),所述第二排管处的微孔过滤介质为第二微孔过滤介质(216),三层搅拌桨分别位于第一微孔过滤介质的上方、第二层微孔过滤介质的上方和第二微孔过滤介质的下方。
  17. 根据权利要求11或13所述的带搅拌的三元前驱体小颗粒的过滤浓缩装置,其特征是:所述筒体或第二封头上设有第三工艺接管(115),所述第三工艺接管上设有第二调节阀(116),所述第三工艺接管与反应釜连接。
  18. 根据权利要求11或13所述的带搅拌的三元前驱体小颗粒的过滤浓缩装置,其特征是:所述进料口处连接有进料管(900),所述进料管上靠近进料口的位置设有气动球阀(901),所述气动球阀上依次连接有远传进料流量计(902)、阻尼器(903)、止回阀(904)、软管(905)、隔膜泵(906)和进料阀(907);所述进料管通过管路与反应釜连接,所述进料管与反应釜之间的管路上设有浓浆回料阀(908);所述进料管通过管路与再生罐连接,所述进料管与再生罐之间的管路上设有第二再生料阀(909);所述隔膜泵和进料阀之间的管路上并列设置有第二再生液管(911)和第二无离子水管(912),所述第二再生液管上设有第二再生液阀门(913),所述第二无离子水管上设有第二无离子水阀门(914)。
  19. 根据权利要求7所述的带搅拌的三元前驱体小颗粒的过滤浓缩装置,其特征是:所述支撑管上设有若干流通孔(304)或流通槽。
  20. 带搅拌的三元前驱体小颗粒的过滤浓缩装置的浓缩方法,其特征是:按照下述步骤进行:
    S02:开启放空阀门进行筒体内部放空;
    S03:待筒体内部放空完成后,开启进料阀、气动球阀、出液阀、第一调节阀和第二调节阀;
    S04:步骤S03中的所有阀门都开启后启动隔膜泵,向筒体内输送待浓缩液,待浓缩液通过微孔过滤介质进行过滤;
    S05:实时检测筒体内的液位,当筒体内的浓缩液液位达到合适高度时,关闭放空阀;浓缩液液位高度超过微孔过滤介质时为合适高度;
    S06:关闭放空阀后,调节隔膜泵、第一调节阀和第二调节阀的开度,使得筒体内的液位高度稳定;
    S07:待筒体内的液位高度维持一定时间后,关闭出液阀,打开反冲阀或反吹阀;
    S08:反冲阀或反吹阀打开一定时间后,关闭反冲阀或反吹阀,重新打开出液阀;
    S09:实时检测筒体内的液位,再次进行放空阀的打开和关闭,重新使得筒体内的液位高度稳定,并循环至步骤S07。
  21. 根据权利要求20所述的带搅拌的三元前驱体小颗粒的过滤浓缩装置的浓缩方法,其特征是:整个反应过程中的流量满足以下公式;
    公式一:反应釜中参与反应的总流量=反应釜成品去陈化釜的流量+过滤浓缩装置中滤清液的流量;
    公式二:隔膜泵的进料流量=通过第二调节阀的流量+过滤浓缩装置中滤清液的流量。
PCT/CN2020/091734 2018-05-28 2020-05-22 带搅拌的三元前驱体小颗粒的过滤浓缩装置及浓缩方法 WO2020238784A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020217040865A KR20220009423A (ko) 2018-05-28 2020-05-22 교반 기능이 있는 삼원계 전구체 소립자의 여과 농축 장치 및 농축 방법
EP20814930.2A EP3978092A4 (en) 2018-05-28 2020-05-22 FILTERING AND CONCENTRATION APPARATUS WITH STIRRING FUNCTION FOR SMALL PARTICLES OF TERNARY PRECURSOR, AND CONCENTRATION METHOD
JP2022516257A JP2022536003A (ja) 2018-05-28 2020-05-22 撹拌付きの三元前駆体小粒子の濾過濃縮装置及び濃縮方法
US17/612,007 US20220212121A1 (en) 2018-05-28 2020-05-22 Filtering and concentrating apparatus having stirring function for small ternary precursor particles, and concentrating method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201810521800.6A CN108479103A (zh) 2018-05-28 2018-05-28 一种带搅拌过滤浓缩装置及其搅拌过滤浓缩方法
CN201910441806.7A CN110102080B (zh) 2018-05-28 2019-05-24 带搅拌的三元前驱体小颗粒的过滤浓缩装置及浓缩方法
CN201910441806.7 2019-05-24

Publications (1)

Publication Number Publication Date
WO2020238784A1 true WO2020238784A1 (zh) 2020-12-03

Family

ID=63351864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/091734 WO2020238784A1 (zh) 2018-05-28 2020-05-22 带搅拌的三元前驱体小颗粒的过滤浓缩装置及浓缩方法

Country Status (6)

Country Link
US (1) US20220212121A1 (zh)
EP (1) EP3978092A4 (zh)
JP (1) JP2022536003A (zh)
KR (1) KR20220009423A (zh)
CN (5) CN108479103A (zh)
WO (1) WO2020238784A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115531946A (zh) * 2022-09-20 2022-12-30 攀钢集团研究院有限公司 一种管式过滤装置及其使用方法

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108479103A (zh) * 2018-05-28 2018-09-04 浙江东瓯过滤机制造有限公司 一种带搅拌过滤浓缩装置及其搅拌过滤浓缩方法
WO2019241248A1 (en) * 2018-06-13 2019-12-19 Cargill, Incorporated Liquid discharge filter and its use
CN109382058A (zh) * 2018-11-02 2019-02-26 四川思达能环保科技有限公司 一种新型过滤浓缩装置和主反应釜装置
CN110756140B (zh) * 2019-11-05 2022-07-12 华友新能源科技(衢州)有限公司 一种三元前驱体合成反应中物料浓缩的方法
CN111939859B (zh) * 2020-07-17 2021-12-14 广东芳源环保股份有限公司 窄粒径分布的三元前驱体反应装置
CN111921267A (zh) * 2020-07-23 2020-11-13 华友新能源科技(衢州)有限公司 一种前驱体合成中稳定分离母液的方法
CN111905676B (zh) * 2020-07-28 2022-01-18 帕特克(武汉)科技有限公司 一种沉淀硫酸钡连续化合反应器
CN111774218A (zh) * 2020-07-30 2020-10-16 江苏国富氢能技术装备有限公司 自动油墨喷涂装置及其喷涂工艺
CN113058520A (zh) * 2021-04-15 2021-07-02 昆山宝创新能源科技有限公司 反应釜以及电极材料前驱体制备方法
CN113413657A (zh) * 2021-06-30 2021-09-21 浙江东瓯过滤机制造有限公司 一种钛白粉生产微滤洗涤装置及其工艺
CN113620355B (zh) * 2021-08-17 2024-01-19 浙江东瓯过滤机制造有限公司 电池正极材料粉体制备方法及其制备装置
CN113856593B (zh) * 2021-10-18 2022-11-25 浙江东瓯过滤机制造有限公司 微孔过滤浓缩的磷酸铁粉体制备方法及其制备装置
CN114408982A (zh) * 2021-12-09 2022-04-29 西安航天华威化工生物工程有限公司 一种回收三元正极材料的系统及方法
CN114931917B (zh) * 2022-04-08 2024-04-30 成都思达能环保设备有限公司 正极材料前驱体共沉淀反应系统
CN115193368B (zh) * 2022-04-08 2024-03-22 成都思达能环保设备有限公司 正极材料前驱体共沉淀反应设备
CN114931910B (zh) * 2022-04-18 2024-03-22 成都思达能环保设备有限公司 用于正极材料前驱体共沉淀反应的设备及过滤组件
CN114917676A (zh) * 2022-05-17 2022-08-19 恒丰泰精密机械股份有限公司 用于制备锂电池正极材料的过滤洗涤二合一搅拌设备
CN114931804A (zh) * 2022-05-31 2022-08-23 成都思达能环保设备有限公司 一种共沉淀反应系统及其出清系统
CN115069022A (zh) * 2022-06-27 2022-09-20 成都思达能环保设备有限公司 一种共沉淀反应系统
CN218590204U (zh) * 2022-09-05 2023-03-10 宏工科技股份有限公司 循环捏合式制浆系统
CN116712893A (zh) * 2023-08-10 2023-09-08 山东德浩化学有限公司 一种具有加料量自调功能的农药制备装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108465281A (zh) * 2018-05-28 2018-08-31 浙江东瓯过滤机制造有限公司 一种过滤浓缩装置及其过滤浓缩方法
CN108465282A (zh) * 2018-05-31 2018-08-31 浙江东瓯过滤机制造有限公司 一种三元前驱体小颗粒的过滤洗涤装置及其过滤洗涤工艺
CN108479103A (zh) * 2018-05-28 2018-09-04 浙江东瓯过滤机制造有限公司 一种带搅拌过滤浓缩装置及其搅拌过滤浓缩方法
CN208320790U (zh) * 2018-04-23 2019-01-04 灌云天骄科技开发有限公司 一种浓缩反应釜

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4916868U (zh) * 1972-05-16 1974-02-13
DE4005737A1 (de) * 1990-02-23 1991-10-24 Biersdorf Apparatebau Filtervorrichtung mit filterzylinder
CN1605617A (zh) * 2004-08-22 2005-04-13 宋志骥 用于冬化食用油脱脂蜡的精密微孔过滤方法及其装置
CN201524477U (zh) * 2009-11-05 2010-07-14 温州市东瓯微孔过滤有限公司 一种微孔过滤机
CN101974031B (zh) * 2010-10-13 2015-10-07 浙江东瓯过滤机制造有限公司 一种草甘膦反应过滤方法及其草甘膦专用过滤机
CN201873634U (zh) * 2010-10-13 2011-06-22 温州市东瓯微孔过滤有限公司 草甘膦专用过滤机
JP2014200781A (ja) * 2013-04-10 2014-10-27 アタカ大機株式会社 リン回収装置およびリン回収方法
CN103550974B (zh) * 2013-11-05 2015-09-02 浙江东瓯过滤机制造有限公司 一种快速过滤连续出渣装置
JP6616216B2 (ja) * 2016-03-08 2019-12-04 ユミコア リチウムイオン電池用正極活物質の製造方法
CN206121214U (zh) * 2016-08-31 2017-04-26 山东焦点生物科技有限公司 透明质酸钠结晶罐溶剂分离装置
CN106621513A (zh) * 2016-09-21 2017-05-10 北京化工大学 一种滤芯式分散过滤装置及用于制备无机材料的方法
KR101967979B1 (ko) * 2017-05-29 2019-04-10 주식회사 포스코 반응 장치 및 방법
CN207041961U (zh) * 2017-06-27 2018-02-27 浙江得恩德制药股份有限公司 一种冷却装置
CN207119159U (zh) * 2017-08-31 2018-03-20 北京金隅琉水环保科技有限公司 一种结晶器筒体结构以及结晶器
CN107670364B (zh) * 2017-10-26 2023-07-18 威孔过滤科技(苏州)有限公司 连续增稠过滤机及其增稠系统与增稠方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN208320790U (zh) * 2018-04-23 2019-01-04 灌云天骄科技开发有限公司 一种浓缩反应釜
CN108465281A (zh) * 2018-05-28 2018-08-31 浙江东瓯过滤机制造有限公司 一种过滤浓缩装置及其过滤浓缩方法
CN108479103A (zh) * 2018-05-28 2018-09-04 浙江东瓯过滤机制造有限公司 一种带搅拌过滤浓缩装置及其搅拌过滤浓缩方法
CN108465282A (zh) * 2018-05-31 2018-08-31 浙江东瓯过滤机制造有限公司 一种三元前驱体小颗粒的过滤洗涤装置及其过滤洗涤工艺

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115531946A (zh) * 2022-09-20 2022-12-30 攀钢集团研究院有限公司 一种管式过滤装置及其使用方法

Also Published As

Publication number Publication date
CN110102081A (zh) 2019-08-09
CN110102081B (zh) 2022-09-16
CN210495299U (zh) 2020-05-12
JP2022536003A (ja) 2022-08-10
KR20220009423A (ko) 2022-01-24
CN110102080B (zh) 2022-09-16
US20220212121A1 (en) 2022-07-07
EP3978092A4 (en) 2022-11-23
CN108479103A (zh) 2018-09-04
CN110102080A (zh) 2019-08-09
CN210473106U (zh) 2020-05-08
EP3978092A1 (en) 2022-04-06

Similar Documents

Publication Publication Date Title
WO2020238784A1 (zh) 带搅拌的三元前驱体小颗粒的过滤浓缩装置及浓缩方法
CN109382058A (zh) 一种新型过滤浓缩装置和主反应釜装置
CN205925137U (zh) 一种麦芽糖浆生产工艺中的精密防堵过滤器
CN202569669U (zh) 用于1,3-环己二酮固液分离的沉淀罐
CN108178130A (zh) 一种连续熔硫系统及方法
CN108465281B (zh) 一种过滤浓缩装置及其过滤浓缩方法
CN109664156B (zh) 一种不锈钢加工车间内切削液循环系统
CN207342337U (zh) 一种树脂过滤与自动回收装置
CN104436778B (zh) 大型连续自动砂滤器
CN211273759U (zh) 一种方便清洗过滤装置的电池材料过滤器
CN212369950U (zh) 氨法烟气脱硫液力搅拌系统
CN108465282B (zh) 一种三元前驱体小颗粒的过滤洗涤装置及其过滤洗涤工艺
CN207237425U (zh) 一种新型淀粉乳过滤器
CN209885340U (zh) 一种密闭烛式过滤器
CN208870167U (zh) 一种水利管道排淤装置
CN209423036U (zh) 一种自动反冲洗砂石过滤器
CN207576149U (zh) 超滤水处理器反向清理装置
CN205771992U (zh) 沥青连续输送负压系统
CN206642859U (zh) 一种用于生产悬浮液体肥料的研磨装置
CN206868074U (zh) 水泥助磨剂配料设备
CN110204127A (zh) 一种外部晶种法抑制钙盐结垢的系统及其定向结垢方法
CN210964063U (zh) 一种葛粉浆沉淀装置
CN203725034U (zh) 一种陶瓷过滤系统
CN220918416U (zh) 液体硫磺提纯装置
CN204637774U (zh) 一种新型稠厚器用罐体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20814930

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022516257

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217040865

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020814930

Country of ref document: EP

Effective date: 20220103