WO2020238660A1 - 电池单元及其制造方法、电池模组 - Google Patents

电池单元及其制造方法、电池模组 Download PDF

Info

Publication number
WO2020238660A1
WO2020238660A1 PCT/CN2020/090694 CN2020090694W WO2020238660A1 WO 2020238660 A1 WO2020238660 A1 WO 2020238660A1 CN 2020090694 W CN2020090694 W CN 2020090694W WO 2020238660 A1 WO2020238660 A1 WO 2020238660A1
Authority
WO
WIPO (PCT)
Prior art keywords
guide plate
electrode tab
plate
negative electrode
current collecting
Prior art date
Application number
PCT/CN2020/090694
Other languages
English (en)
French (fr)
Inventor
许虎
来佑磊
陈元宝
任苗苗
郑东来
金海族
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Publication of WO2020238660A1 publication Critical patent/WO2020238660A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/045Cells or batteries with folded plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/538Connection of several leads or tabs of wound or folded electrode stacks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to the technical field of batteries, in particular to a battery unit, a manufacturing method thereof, and a battery module.
  • Rechargeable batteries have been widely used to power high-power devices, such as electric vehicles.
  • Rechargeable batteries can achieve greater capacity or power by connecting multiple battery cells in series or in parallel.
  • the current battery unit is provided with an electrode assembly in the casing.
  • the electrode assembly is formed by stacking and winding the positive pole piece, the separator and the negative pole piece. Both the positive pole piece and the negative pole piece include a coated part and an uncoated part.
  • the covering part forms tabs, and the tabs on both sides of the electrode assembly are respectively connected to the positive and negative terminals on the top of the casing through current collecting members.
  • the current collecting members on both sides of the electrode assembly are provided with support plates connected with the tabs, and the tabs and the support plates are integrally bent after welding.
  • this method of fixing the current collecting member and the tabs occupies a large space on both sides of the electrode assembly.
  • the winding space will be reduced, thereby reducing the energy density of the battery.
  • the embodiments of the present invention provide a battery unit, a manufacturing method thereof, and a battery module, which can effectively increase the energy density of the battery.
  • a battery unit including:
  • At least one electrode assembly comprising a main body and a negative electrode tab and a positive electrode tab respectively extending from both ends of the main body in the length direction;
  • the negative terminal and the positive terminal are located on the top of the electrode assembly.
  • a first current collecting member and a second current collecting member electrically connects the negative electrode tab with the negative terminal, and the second current collecting member electrically connects the positive electrode tab with the positive terminal;
  • the first current collecting member includes a first guide plate, the first guide plate is a flat plate structure, and the first guide plate is located on the side of the main body close to the negative terminal along the length direction and extends in the width direction. Fold to the side of the first guide plate away from the main body and connect with the first guide plate.
  • the battery cell includes two electrode assemblies, the negative electrode tab of one electrode assembly is drawn from the side of the main body part away from the other electrode assembly in the width direction, and the negative electrode tabs of the two electrode assemblies are respectively drawn from the first electrode assembly.
  • the two ends of the guide plate in the width direction are relatively bent.
  • the second current collecting member includes a second guide plate, the second guide plate is a flat plate structure, and the second guide plate is located on a side of the main body part close to the positive terminal in the length direction and extends in the width direction, The positive electrode tab is bent to the side of the second guide plate away from the main body, and is connected with the second guide plate.
  • the second current collecting member includes a second guide plate and a support plate.
  • the second guide plate is located on the side of the main body close to the positive terminal in the length direction and extends in the width direction.
  • the support plate is connected to the second At the end of the guide plate in the width direction, the positive electrode tab is connected to the support plate from the outside and is integrally bent to the side of the second guide plate away from the main body.
  • both ends of the second guide plate in the width direction are provided with support plates, and the two support plates are folded back relative to each other.
  • the root of the support plate is retracted inwardly by a preset distance relative to the end edge of the second guide plate in the width direction;
  • the end edge of the first guide plate and/or the second guide plate that is the free end in the width direction is retracted inward at least part of the height by a preset distance to form a first gap, negative electrode tab and/or positive electrode tab Go through the first gap.
  • the second current collecting member further includes a second adapter plate, the positive terminal is fixed on the second adapter plate, the top surface of the support plate is spaced from the second adapter plate, and the second guide plate and The top of the connecting position of the supporting plate is provided with a second notch.
  • both the negative electrode tab and the positive electrode tab are layered structures
  • the negative electrode tab includes a first connecting part and a first collecting part.
  • the first connecting part is located on the side of the first guide plate away from the main body part along the length direction, and is connected to the first guide plate.
  • the guide plate is close to one side of the main body part along the length direction, and the first guide plate is arranged in close contact with the first assembly part.
  • the first guide plate includes a substrate layer, and the substrate layer is attached to the first assembly part;
  • the first guide plate includes a substrate layer and an insulating layer.
  • the insulating layer is attached to the side surface of the substrate layer close to the first assembly portion, and the insulating layer is attached to the first assembly portion.
  • each layer of the first connecting portion is integrated by ultrasonic welding to form a first welding area, and the first connecting portion and the first guide plate are fixed by laser welding to form a second welding area. In a plane perpendicular to the length direction, the projection of the second welding zone is completely located in the projection area of the first welding zone.
  • the hardness of the first current collecting member is greater than the hardness of the second current collecting member.
  • the first current collecting member further includes a first adapter plate, the negative terminal is fixed on the first adapter plate, and the first adapter plate is connected to the top of the first guide plate so that the first A current collecting member forms an L-shaped structure as a whole.
  • the outer surface of the negative electrode tab or the positive electrode tab is provided with a protective sheet.
  • the positive electrode tab covers the support plate in the width direction, and both ends of the support plate in the height direction extend beyond the positive electrode tab or are flush with the positive electrode tab.
  • the supporting plate and the second guide plate are arranged at an included angle, for example, at 90 degrees, and the positive electrode tab is attached to the outside of the supporting plate.
  • the negative electrode tabs of the two electrode assemblies have no overlap in the width direction after being relatively bent.
  • a battery module including:
  • the battery units are arranged in the fixed frame and arranged side by side in the width direction.
  • the battery module of the present invention can be applied to, for example, a battery pack used in an electric vehicle, and the increased battery energy density effectively increases the cruising range of the electric vehicle.
  • a method for manufacturing a battery unit based on the above-mentioned embodiment including:
  • the positive electrode tab is bent and connected to the second current collecting member.
  • the step of bending the negative electrode tab and connecting it with the first guide plate specifically includes:
  • Part areas of the negative electrode tabs of each layer of the negative pole piece in the electrode assembly are pre-integrated by ultrasonic welding;
  • the step of bending the negative electrode tab and connecting it with the first guide plate specifically includes:
  • the main body After welding, the main body is rotated 90° around the root of the negative electrode tab to realize the bending of the negative electrode tab.
  • the second current collecting member includes a second guide plate and a supporting plate, the supporting plate is connected to the end of the second guide plate in the width direction, and the positive electrode tab is bent and connected to the second current collecting member.
  • the steps of connection include:
  • the welded positive electrode tab and the supporting plate are integrally bent to the side of the second guide plate away from the main body.
  • the negative electrode tab and the first guide plate are ultrasonically welded, and the step of welding the negative electrode tab is performed before the step of welding the positive electrode tab.
  • the second current collecting member includes a second guide plate
  • the positive electrode tab is a flat plate structure
  • the positive electrode tab is bent to the side of the second guide plate away from the main body, and is connected to the second guide plate.
  • Laser welding is used between the negative electrode tab and the first guide plate and between the positive electrode tab and the second guide plate;
  • Laser welding is used for one of the negative electrode tabs and the first guide plate and between the positive electrode tabs and the second guide plate, and the other is ultrasonic welding.
  • the ultrasonic welding is performed before the laser welding.
  • the first guide plate of the first current collecting member is arranged in a flat plate structure, which can reduce the length of the connecting part of the negative electrode tab and the first current collecting member along the main body.
  • the space occupied by one side end of the direction can increase the winding space and increase the energy density of the battery cell; moreover, directly fold back the negative electrode tab with lower hardness to connect with the first guide plate, which can reduce the bending process
  • the external force needs to be applied to reduce the deformation of the first guide plate, ensure the electrochemical performance and safety performance of the battery unit, and enable the electrode assembly to be smoothly assembled into the casing.
  • FIG. 1 is a schematic diagram of the internal structure of an embodiment of a battery unit of the present invention
  • FIG. 2 is a schematic structural diagram of an embodiment of the top cover assembly in the battery unit of the present invention.
  • Figure 3 is a front view of an embodiment of the battery unit of the present invention.
  • Figure 4 is a cross-sectional view of A-A in Figure 3;
  • 5A and 5B are respectively enlarged views of B and C in FIG. 4;
  • FIG. 6 is a schematic diagram of the welding area of the welding tab in the battery unit of the present invention.
  • FIG. 7 is a schematic flowchart of an embodiment of a method for manufacturing a battery cell of the present invention.
  • FIG. 8 is a schematic flowchart of another embodiment of a method for manufacturing a battery cell of the present invention.
  • FIG. 9 is a schematic flowchart of another embodiment of a method for manufacturing a battery cell of the present invention.
  • FIG. 10 is a schematic flowchart of another embodiment of a method for manufacturing a battery cell of the present invention.
  • Electrode assembly 11, body part; 12, negative electrode tab; 121, first connection part; 122, first collection part; 13, positive electrode tab; 131, second connection part; 132, second collection part; 2.
  • first and second appearing in the present invention are only for convenience of description, to distinguish different components with the same name, and do not indicate a sequence or a primary-secondary relationship.
  • the element when an element is referred to as being “on” another element, the element may be directly on the other element, or it may be indirectly on the other element with one or More intermediate components.
  • the element when an element is referred to as being “connected to” another element, the element may be directly connected to the other element, or may be indirectly connected to the other element with one or more interposed therebetween.
  • a middle element In the following, the same reference numerals denote the same elements.
  • the coordinate system in Figure 1 defines the various directions of the battery cell.
  • the x direction represents the length direction of the battery cell;
  • the y direction is perpendicular to the x direction in the horizontal plane, which represents the battery.
  • the z direction is perpendicular to the plane formed by the x and y directions, indicating the height direction of the battery cell.
  • the description of the orientation or positional relationship indicated by "upper”, “lower”, “top”, “bottom”, “front”, “rear”, “inner” and “outer” is adopted. It is only for the convenience of describing the present invention, rather than indicating or implying that the device referred to must have a specific orientation, be constructed and operated in a specific orientation, and therefore cannot be understood as a limitation of the protection scope of the present invention.
  • the battery module When a battery module is formed by a plurality of battery cells, the battery module includes a fixed frame and a plurality of battery cells, and each battery cell is arranged in the fixed frame and arranged side by side along the width direction, which can be connected in parallel and/or in series Connection, each battery cell can be provided with a separate housing, or the housing can be omitted. Or the battery unit can also be used alone.
  • FIG. 1 illustrates a schematic structural diagram of an embodiment of the battery unit of the present invention.
  • the battery cell may include an electrode assembly 1, a cover plate 6, two terminals, and two current collecting members.
  • the electrode assembly 1 is also provided with a casing connected to the cover plate 6, and the casing is filled with electrolyte.
  • the battery cell is provided with one electrode assembly 1 in the width direction, or a plurality of electrode assemblies 1 are superimposed.
  • the electrode assembly 1 includes a main body 11 and negative tabs 12 extending from both ends of the main body 11 in the length direction. And positive tab 13.
  • the main body portion 11 is a coated portion, and includes a first electrode and a second electrode with opposite polarities.
  • the first electrode is a positive electrode and the second electrode is a negative electrode.
  • the negative electrode tab 12 and the positive electrode tab 13 are uncoated parts, made of aluminum, and both have a layered structure.
  • the electrode assembly 1 in the battery cell can be set individually, which is suitable for the case where the thickness of each electrode is small after being laminated. Or as shown in Figure 1, when the thickness of each electrode is large after being laminated, two or more independently wound electrode assemblies 1 can also be arranged in the battery cell, and the corresponding tabs of each electrode assembly 1 are separated from the current collector. The members are led out along both sides in the width direction.
  • the cover plate 6 is provided on the top of the electrode assembly 1, and the cover plate 6 is provided with an exhaust member 61 and a liquid injection hole 62.
  • the exhaust member 61 is used to release the gas in the battery cell and has a safety function.
  • Electrolyte is injected into the battery cell and sealed by a sealing member.
  • Two terminals are arranged at both ends of the top of the cover plate 6 along the length direction, including a negative terminal 4 and a positive terminal 5.
  • An insulating plate 7 is provided at the bottom of the cover plate 6 to insulate and isolate the cover plate 6 from the electrode assembly 1 and improve the insulation performance inside the battery unit.
  • the two current collecting members include a first current collecting member 2 and a second current collecting member 3.
  • the first current collecting member 2 electrically connects the negative electrode tab 12 with the negative terminal 4
  • the second current collecting member 3 connects the positive electrode tab 13 with The positive terminal 5 is electrically connected.
  • the first current collecting member 2 includes a first guide plate 21 and a first adapter plate, and the first adapter plate is connected to the top end of the first guide plate 21
  • the first current collecting member 2 is formed into an L-shaped structure as a whole, and the negative terminal 4 is fixed on the first adapter plate.
  • the first guide plate 21 is a flat plate structure.
  • the first guide plate 21 is located on the side of the main body 11 close to the negative terminal 4 along the length direction and extends in the width direction.
  • the negative electrode tab 12 is bent until the first guide plate 21 is far away On one side of the main body 11, the outer surface of the first guide plate 21 is in contact with the folded back portion of the negative electrode tab 12, and the negative electrode tab 12 is connected to the first guide plate 21, for example, can be fixedly connected by welding.
  • a protective sheet 8 can be provided on the outer surface of the outermost tabs.
  • the embodiment of the present invention can reduce the space occupied by the connecting part of the negative electrode tab 12 and the first current collecting member 2 at one side end of the main body 11 in the longitudinal direction by setting the first current collecting member 2 as a flat structure. Increase the winding space, thereby effectively increasing the energy density of the battery unit and increasing the power of the battery unit. Or the overall size of the battery cell can be reduced when the size of the electrode assembly 1 remains unchanged. Moreover, when a plurality of flat plates are cut out from the plate and bent to form the first current collecting member 2, the utilization rate of the plate can be improved and the cost can be saved.
  • the first current collecting member 2 generally uses the same material as the negative terminal 4, such as copper, its material hardness is relatively high.
  • the width direction ends of the first guide plate of the negative current collecting member The structure of the support plate is provided. In the process of bending the negative tabs on both sides together with the support plate, the external force received will cause the first guide plate to deform more seriously.
  • the first guide plate is concavely deformed toward the main body , The pressure will be transferred to at least part of the pole pieces in the main body, which will easily cause the pole pieces coated with the active material to be mechanically detached or powdered, thereby affecting the electrochemical performance and safety performance of the battery cell; Protruding deformation of the guide plate in a direction away from the main body will affect the assembly of the battery unit.
  • the negative electrode tab 12 with lower hardness for example, the material of the negative electrode tab may be copper
  • the first guide plate 21 of the first current collecting member 2 is directly folded back separately and connected to the first guide plate 21, which does not involve
  • the bending of the support plate can reduce the external force that needs to be applied during the bending process, and reduce the deformation of the first guide plate 21 of the first current collecting member 2 to ensure the electrochemical performance and safety performance of the battery cell, and prevent The first guide plate 21 protrudes outward, so that the electrode assembly can be smoothly assembled into the housing.
  • the battery cell includes two electrode assemblies 1, the negative electrode tab 12 of one electrode assembly 1 is drawn from the side of the main body 11 away from the other electrode assembly 1 in the width direction, and the negative electrodes of the two electrode assemblies 1
  • the tabs 12 are respectively bent relatively from both ends of the first guide plate 21 in the width direction.
  • the size of the arc at the bottom is larger, which will result in low space utilization of the electrode assembly 1 on the outer sides of the arc on both sides of the bottom, and splitting into two electrode assemblies 1 can reduce the circle.
  • the arc size makes full use of the bottom space of the battery unit, reduces space waste, and increases the energy density of the battery cell.
  • the total thickness of the tabs is also reduced, which is also conducive to welding and bending, and can also reduce the length of a single tab.
  • the risk of the innermost tab being inserted into the main body 11 due to a long detour distance can be reduced.
  • the second current collecting member 3 includes a second guide plate 31 and a second adapter plate.
  • the second adapter plate is connected to the top of the second guide plate 31 to form an L-shaped structure, and the positive terminal 5 is fixed. On the second adapter board.
  • the second guide plate 31 is also a flat plate structure.
  • the second guide plate 31 is located on the side of the main body 11 close to the positive terminal 5 in the length direction and extends in the width direction.
  • the positive tab 13 is bent to the second guide plate 31 The side away from the main body 11 and connected to the second guide plate 31, for example, can be fixedly connected by welding.
  • the second current collecting member 3 is also provided as a flat plate structure, which can reduce the space occupied by the connecting portion of the positive electrode tab 13 and the second current collecting member 3 at the other side end of the main body 11 in the longitudinal direction. , The reduced thickness is the thickness of the support plate. Both the first current collecting member 2 and the second current collecting member 3 are arranged in a flat plate structure, which can further increase the winding space, thereby effectively increasing the energy density of the battery unit.
  • the second current collecting member 3 is generally made of the same material as the positive terminal 5, such as aluminum. Although the material has a low hardness, the process of bending the positive electrode tabs on both sides together with the support plate may also cause slight Deformation; or the second collecting member 3 may also be made of a material with higher hardness.
  • the positive electrode tab 13 when the positive electrode tab 13 is bent, the positive electrode tab 13 can be directly folded back separately, without involving the bending of the support plate, which can reduce the requirement on the hardness of the second current collecting member 3, and can reduce
  • the deformation of the second guide plate 31 of the small second current collecting member 3 further guarantees the electrochemical performance and safety performance of the battery unit, and prevents the second guide plate 31 from protruding outwards, so that the electrode assembly can be assembled more smoothly.
  • the shell Into the shell.
  • first current collecting member 2 and the second current collecting member 3 have the same structure.
  • the same process method can be used, for example, in the welding and fixing
  • the same process can be used for the tabs and the guide plate, which can simplify the process flow and reduce the manufacturing difficulty of the battery unit.
  • the second current collecting member 3 when the hardness of the second current collecting member 3 is lower than the hardness of the first current collecting member 2, as shown in FIG. 2, the second current collecting member 3 includes a second guide plate 31 and a second The adapter plate and the support plate 32.
  • the second guide plate 31 is located on the side of the main body 11 close to the positive terminal 5 in the length direction and extends in the width direction.
  • the support plate 32 is connected to the end of the second guide plate 31 in the width direction Part, the positive electrode tab 13 is connected to the support plate 32 from the outside and is integrally bent to the side of the second guide plate 31 away from the main body part 11.
  • the positive electrode tab 13 After the positive electrode tab 13 is folded back, the positive electrode tab 13 covers the support plate 32 in the width direction, and both ends of the support plate 32 in the height direction can extend beyond the positive electrode tab 13 or be flush with each other, thus being the second with lower hardness.
  • the current collecting member 3 provides a more stable supporting effect and provides firmness of the connection.
  • the second guide plate 31, the second adapter plate and the support plate 32 are integrally formed. This structure can reduce the processing difficulty and improve the structural strength.
  • This embodiment takes into account that the material hardness of the second current collecting member 3 is relatively low. During the bending process of the positive electrode tab 13 together with the support plate 32, the amount of deformation is small, which is very important for the electrochemical performance, safety performance and assembly of the battery cell. Therefore, the second current collecting member 3 with the supporting plate 32 is still used.
  • the advantage of this structure is that it is easy to install a support on the inner side of the support plate 32, and the support plate 32 and each positive electrode tab 13 can be ultrasonically welded together by applying pre-pressure before bending, which can improve the support plate 32 and The firmness of the connection of the positive electrode tab 13.
  • both ends of the second guide plate 31 in the width direction are provided with support plates 32, and the two support plates 32 are folded back relative to each other.
  • the positive electrode tabs 13 and the second current collecting member 3 on both sides in the width direction can be connected and bent in the same manner, which can simplify the process flow and reduce the manufacturing difficulty of the battery unit.
  • the support plate 32 can be set at an angle with the second guide plate 31 in the unfolded state, so as to facilitate manufacturing and welding operation with the positive electrode tab, for example, set at 90°, two electrodes
  • the positive electrode tab 13 corresponding to the assembly 1 is attached to the outside of the support plate 32.
  • Each positive electrode tab 13 and the support plate 32 need to be fixedly connected by welding or the like, and then the whole is folded back until the support plate 32 is attached to the second guide plate 31.
  • the rollers need to apply force on the outside of the support plate 32 to gradually fold it back inward.
  • the lead plate 31 is placed upward on the side away from the main body portion 11 of the electrode assembly, and then the positive electrode tabs 13 on both sides are flattened by a flat tooling, and the flat tooling covers the areas corresponding to the two positive electrode tabs 13.
  • Fig. 3 is a front view of the battery unit shown in Fig. 1
  • Fig. 4 is a cross-sectional view of A-A in Fig. 3, showing a schematic diagram of the structure after the tab is folded back.
  • the battery cell includes two electrode assemblies 1, and the tabs of the two electrode assemblies 1 are respectively led out from both sides of the main body 11 in the width direction.
  • the first guide plate 21 of the first current collecting member 2 adopts a flat plate structure without a support plate.
  • the negative electrode tabs 12 on both sides are relatively bent to the side of the first guide plate 21 away from the main body 11, and the negative electrode The ear 12 is connected with the first guide plate 21.
  • Both ends of the second guide plate 31 of the second current collecting member 3 in the width direction are provided with support plates 32, and the positive electrode tabs 13 on both sides are connected to the corresponding support plate 32 from the outside and are relatively bent to the second guide plate.
  • the lead plate 31 is away from the side of the main body 11.
  • one end of the second guide plate 31 in the width direction is provided with a support plate 32, the positive electrode tab 13 on the side of the support plate 32 is attached to the outside of the support plate 32, the positive electrode tab 13 and the support plate 32 After being fixedly connected by welding, etc., the whole is folded back to the support plate 32 to fit the second guide plate 31; the positive electrode tab 13 on the side where the support plate 32 is not provided is directly bent to the second guide plate 31 away from the main body 11 , And connected with the second guide plate 31.
  • This structure can reduce the space locally occupied by the connecting structure of the positive electrode tab 13 and the second current collecting member 3 in the longitudinal direction, and the electrode assembly 1 is arranged as a partially convex structure to further increase the energy density of the battery unit.
  • the root of the supporting plate 32 is retracted inwardly by a preset distance relative to the end edge of the second guide plate 31 in the width direction.
  • This structure is suitable for both single and multiple electrode assembly 1 battery cells.
  • the thickness of the positive electrode tab 13 when the thickness of the positive electrode tab 13 is large, it is easy to bend the positive electrode tab 13 and reduce the covering length of the positive electrode tab 13 when bypassing the support plate 32, thereby reducing the positive electrode tab 13 The total length, saving materials. Moreover, it is beneficial to attach the positive electrode tab 13 to the support plate 32, thereby further reducing the size of the battery unit in the length direction.
  • the ends of the supporting plate 32 are not provided for the first guide plate 21 and the second guide plate 31, and the first guide plate 21 and/or the second guide plate 31 are free ends in the width direction
  • the edge of the end portion is retracted inward by a predetermined distance at least part of the height to form a first gap, and the negative electrode tab 12 and/or the positive electrode tab 13 pass through the first gap, so as to facilitate the bending of the tab in the width direction. fold.
  • the first notch may be rectangular.
  • This embodiment is easy to bend the tab when the thickness of the tab stack is large, and reduce the covering length when the tab goes around the guide plate.
  • the root of the tab does not need to be bent to form an arc-shaped structure, but A slope-like structure is formed, thereby reducing the total length of the tabs and saving materials.
  • the second current collecting member 3 further includes a second adapter plate, the positive terminal 5 is fixed on the second adapter plate, the top surface of the support plate 32 is spaced from the second adapter plate, and the second guide plate A second notch 311 is provided at the top of the connecting position of the lead plate 31 and the supporting plate 32.
  • the second notch 311 may be a process hole formed by stamping.
  • the negative electrode tab 12 has a layered structure, and the negative electrode tab 12 includes a first connection portion 121 and a first assembly portion 122, and the first connection portion 121 is located at the A guide plate 21 is away from the side of the main body 11 along the length direction and is fixedly connected to the first guide plate 21.
  • the first assembly portion 122 is located on the side of the first guide plate 21 close to the main body 11 along the length direction. The first guide plate 21 and the first assembly portion 122 are attached to each other.
  • This structure can further reduce the space occupied by the connecting part of the tab and the current collecting member at the side end of the main body 11, and can increase the winding space, thereby effectively improving the energy density of the battery unit.
  • the negative electrode tab 12 is drawn out from the middle position of the main body of the single electrode assembly 1 in the width direction. Since the first guide plate 21 and the first assembly part 122 are arranged in close contact, in order to increase the first guide The insulation between the board 21 and the main body 11.
  • the first guide plate 21 includes a substrate layer and an insulating layer. The insulating layer is attached to the side of the substrate layer close to the first assembly portion 122, and the insulating layer is attached to the first assembly portion 122 . For example, the insulating layer can be attached to the substrate layer by bonding.
  • the first guide plate 21 includes a substrate layer, no insulating layer is attached to the substrate layer, and the substrate layer is directly connected to the first assembly. Section 122 is attached.
  • the positive electrode tab 13 has a layered structure, and the positive electrode tab 13 includes a second connection portion 131 and a second assembly portion 132, and the second connection portion 131 is located at the first
  • the two guide plates 31 are away from the side of the main body portion 11 along the length direction and are fixedly connected to the support plate 32.
  • the second assembly portion 132 is located on the side of the second guide plate 31 that is close to the main body portion 11 along the length direction.
  • the lead plate 31 and the second assembly portion 132 are attached to each other.
  • the second guide plate 31 includes a substrate layer and an insulating layer.
  • the insulating layer is attached to the side surface of the substrate layer close to the second assembly portion 132.
  • the two assembly parts 132 are attached.
  • the insulating layer can be attached to the substrate layer by bonding.
  • the second guide plate 31 includes a substrate layer, no insulating layer is attached to the substrate layer, and the substrate layer is directly connected to the second assembly. Section 132 fits.
  • the welding method adopted in the present invention is as follows: firstly, a support is provided on the inner side of the tab, and the tabs of the pole pieces in the electrode assembly are welded together by ultrasonic welding; secondly, the integrated tab is bent To the side of the guide plate away from the main body 11; again, the tabs and the guide plate are fixedly connected by laser welding.
  • This embodiment first adopts ultrasonic welding to compact each layer of tabs by applying pressure to prevent false welding, improve the firmness of each layer of tabs after welding, and after the tabs are bent and the guide plate can be solved by laser welding The problem of the inability to install the support, and because the tabs have been welded to form a whole, the reliability after welding can also be ensured, and the generation of impurities can be reduced.
  • This welding method combines the advantages of ultrasonic welding and laser welding.
  • the projection of the second welding area W2 formed by laser welding is completely located within the projection area of the first welding area W1 formed by ultrasonic welding.
  • the welding area can be a rectangular or rectangular ring structure, of course, it can also be a circle, a triangle or other polygons. This structure can avoid false welding to the greatest extent and reduce impurities generated during laser welding.
  • the first welding zone W1 is preferably located at a position outside the bending area of the tab as a whole, which facilitates bending of the tab.
  • each layer of the first connecting portion 121 is integrated by ultrasonic welding to form a first welding area W1.
  • the first connecting portion 121 and the first guide plate 21 are laser
  • the second welding area W2 is formed by welding and fixing, and the first welding area W1 completely covers the second welding area W2.
  • each layer of the second connecting portion 131 is integrated by ultrasonic welding to form the first welding zone W1
  • the second connecting portion 131 and the second guide plate 31 are fixed by laser welding to form a second In the welding area W2, in a plane perpendicular to the length direction, the projection of the second welding area W2 is completely located in the projection area of the first welding area W1.
  • the present invention also provides a method for manufacturing battery cells based on the above-mentioned embodiments.
  • the manufacturing method includes:
  • Step 101 Prepare the electrode assembly 1;
  • Step 102 Fix the negative terminal 4 and the positive terminal 5 on the first current collecting member 2 and the second current collecting member 3, respectively;
  • Step 103 Bend the negative electrode tab 12 and connect it with the first guide plate 21, for example, by welding, etc., to fix it.
  • Step 104 Bend the positive electrode tab 13 and connect it with the second current collecting member 3, for example, by welding or the like.
  • steps 101 and 102 are executed sequentially, steps 103 and 104 are executed after step 102, and the execution order of steps 103 and 104 is not limited.
  • the negative electrode tab 12 when the negative electrode tab 12 is bent, the negative electrode tab 12 with lower hardness is directly folded back separately and connected to the first guide plate 21, which does not involve the bending of the support plate, and can reduce the bending process
  • the electrode assembly is smoothly assembled into the housing.
  • step 103 bending the negative electrode tab 12 and connecting it with the first guide plate 21 specifically includes:
  • Step 201 Preliminarily form a part of the negative electrode tab 12 into a whole by ultrasonic welding to form a first welding zone W1.
  • a support can be placed inside the negative electrode tab 12 to apply pressure during ultrasonic welding;
  • Step 202 Then bend the welded negative electrode tab 12 to the side of the first guide plate 21 away from the main body portion 11, and adhere to the first guide plate 21;
  • Step 203 Laser welding the negative electrode tab 12 and the first guide plate 21 from the outside of the negative electrode tab 12 to form a second welding area W2.
  • the first welding area W1 entirely covers the second welding area W2.
  • steps 201 to 203 are executed sequentially.
  • This embodiment first adopts ultrasonic welding to compact each layer of tabs by applying pressure to prevent false welding, improve the firmness of each layer of tabs after welding, and after the tabs are bent and the guide plate can be solved by laser welding.
  • step 103 bending the negative electrode tab 12 and connecting it with the first guide plate 21 specifically includes:
  • Step 301 Place the surface of the main body 11 perpendicular to the width direction in parallel with the first guide plate 21, and the inner surface of the negative electrode tab 12 is attached to the outer surface of the first guide plate 21, such as the first guide plate 21 can be upright;
  • Step 302 Place a support, such as a spacer, on the inner side of the first guide plate 21;
  • Step 303 Ultrasonic welding the negative electrode tab 12 and the first guide plate 21 from the outside of the negative electrode tab 12;
  • Step 304 Rotate the main body portion 11 around the root of the negative electrode tab 12 by 90° after welding to realize the bending of the negative electrode tab 12.
  • steps 301 to 304 are executed sequentially.
  • the main body 11 can be assisted to limit the position to prevent the main body 11 from being misaligned and affecting the welding effect.
  • This embodiment can directly weld the negative electrode tab 12 and the first guide plate 21 by ultrasonic wave, and realize the bending of the negative electrode tab 12 by the rotation of the main body 11, which can improve the welding firmness by applying pressure and prevent false welding. Can reduce the generation of impurities.
  • all the lugs are welded by ultrasonic, which can reduce the requirements for the types of welding equipment, simplify the process flow, and improve the welding efficiency.
  • the second current collecting member 3 includes a second guide plate 31 and a support plate 32, and the support plate 32 is connected to the end of the second guide plate 31 in the width direction.
  • step 104 bending the positive electrode tab 13 and connecting it with the second current collecting member 3 specifically includes:
  • Step 401 Place a support on the inner side of the support plate 32 to provide support for ultrasonic welding;
  • Step 402 Ultrasonic welding the positive electrode tab 13 and the support plate 32 from the outside of the positive electrode tab 13;
  • Step 403 bend the welded positive electrode tab 13 and the support plate 32 integrally to the side of the second guide plate 31 away from the main body 11.
  • steps 401 to 403 are executed sequentially.
  • This embodiment is suitable for welding the positive electrode tab 13 provided with the support plate 32.
  • the support plate 32 and the second guide plate 31 form an L-shaped structure, forming a space for placing the support before bending, so it is suitable for ultrasonic welding , Can improve welding firmness by applying pressure, prevent false welding, and reduce the generation of impurities.
  • the positive electrode tab 13 and the support plate 32 are also ultrasonically welded, due to the ultrasonic welding process of the negative electrode tab 12 and the first guide plate 21 This involves the rotation of the main body 11, so the step of welding the negative electrode tab 12 should be performed before the step of welding the positive electrode tab 13.
  • the layers of the negative electrode tab 12 are first formed by ultrasonic welding, and then bend and welded with the first guide plate 21 by laser, and the positive electrode tab 13 and the support plate 32 are also ultrasonically welded, the negative electrode tab 12 and the positive electrode
  • the welding sequence of the tab 13 is not limited. In the present application, by adopting the structure in which the tabs and the guide plate are directly welded, the flexibility of welding of the tabs can be improved, and the main body 11 does not need to be rotated during the welding process, which can reduce the difficulty of operation.
  • the second current collecting member 3 includes a second guide plate 31, the positive electrode tab 13 is a flat plate structure, and the positive electrode tab 13 is bent to the side of the second guide plate 31 away from the main body 11, And it is fixedly connected with the second guide plate 31, that is, neither the first current collecting member 2 nor the second current collecting member 3 is provided with a supporting plate.
  • laser welding is used between the negative electrode tab 12 and the first guide plate 21 and between the positive electrode tab 13 and the second guide plate 31. Before laser welding, the negative electrode tab 12 or the positive electrode of each layer is still welded. The tab 13 is welded into one body.
  • one of the positions between the negative electrode tab 12 and the first guide plate 21 and between the positive electrode tab 13 and the second guide plate 31 is laser welding, and the other is ultrasonic welding. Since ultrasonic welding involves the rotation of the main body portion 11, ultrasonic welding is performed before laser welding.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

本发明涉及一种电池单元及其制造方法、电池模组,其中,电池单元包括:至少一个电极组件(1),该电极组件包括主体部(11)和从主体部(11)沿长度方向的两端分别延伸出的负极极耳(12)和正极极耳(13);负极端子(4)和正极端子(5);将负极极耳(12)与负极端子(4)电联接的第一集流构件(2),将正极极耳(13)与正极端子(5)电联接的第二集流构件(3);其中,第一集流构件(2)包括为平板结构的第一导引板(21),负极极耳(12)弯折到第一导引板(21)远离主体部(11)的一侧,并与第一导引板(21)连接。该结构能够提高电池单元的能量密度,并减小第一导引板在弯折极耳时的变形。

Description

电池单元及其制造方法、电池模组 技术领域
本发明涉及电池技术领域,尤其涉及一种电池单元及其制造方法、电池模组。
背景技术
近年来,可充电电池被广泛地应用于为高功率的装置提供动力,例如电动车辆等。可充电电池通过将多个电池单元串联或并联连接以实现较大的容量或功率。
目前的电池单元在壳体内设有电极组件,电极组件通过将正极极片、隔膜和负极极片叠加卷绕形成,正极极片和负极极片均包括涂覆部分和未涂覆部分,未涂覆部分形成极耳,电极组件两侧的极耳分别通过集流构件与壳体顶部的正负极端子连接。
在发明人所知晓的相关技术中,为了方便焊接,电极组件两侧的集流构件均设有与极耳连接的支撑板,在极耳与支撑板焊接后整体弯折。但是此种集流构件与极耳固定的方式在电极组件两侧占用较大空间,在电池单元体积一定的情况下,会减小卷绕空间,从而降低电池的能量密度。
发明内容
本发明的实施例提供了一种电池单元及其制造方法、电池模组,能够有效提高电池的能量密度。
根据本发明的一方面,提供了一种电池单元,包括:
至少一个电极组件,所述电极组件包括主体部和从主体部沿长度方向的两端分别延伸出的负极极耳和正极极耳;
负极端子和正极端子,设在电极组件顶部;和
第一集流构件和第二集流构件,第一集流构件将负极极耳与负极端子电联接,第二集流构件将正极极耳与正极端子电联接;
其中,第一集流构件包括第一导引板,第一导引板为平板结构,第一导引板位于主体部沿长度方向靠近负极端子的一侧并沿宽度方向延伸,负极极耳弯折到第一导引板远离主体部的一侧,并与第一导引板连接。
在一些实施例中,电池单元包括两个电极组件,一个电极组件的负极极耳从主体部沿宽度方向远离另一个电极组件的一侧引出,并且两个电极组件的负极极耳分别从第一导引板沿宽度方向的两端相对弯折。
在一些实施例中,第二集流构件包括第二导引板,第二导引板为平板结构,第二导引板位于主体部沿长度方向靠近正极端子的一侧并沿宽度方向延伸,正极极耳弯折到第二导引板远离主体部的一侧,并与第二导引板连接。
在一些实施例中,第二集流构件包括第二导引板和支撑板,第二导引板位于主体部沿长度方向靠近正极端子的一侧并沿宽度方向延伸,支撑板连接在第二导引板沿宽度方向的端部,正极极耳从外侧连接于支撑板并整体弯折到第二导引板远离主体部的一侧。
在一些实施例中,第二导引板沿宽度方向的两端均设有支撑板,两个支撑板相对折回。
在一些实施例中,支撑板的根部相对于第二导引板沿宽度方向的端部边缘向内缩回预设距离;和/或
第一导引板和/或第二导引板沿宽度方向为自由端的端部边缘在至少部分高度上向内缩回预设距离,以形成第一缺口,负极极耳和/或正极极耳穿过第一缺口。
在一些实施例中,第二集流构件还包括第二转接板,正极端子固定在第二转接板上,支撑板的顶面与第二转接板间隔设置,第二导引板与支撑板相连位置的顶部设有第二缺口。
在一些实施例中,负极极耳和正极极耳均为层状结构;
负极极耳包括第一连接部和第一集合部,第一连接部位于第一导引板沿长度方向远离主体部的一侧,并与第一导引板连接,第一集合 部位于第一导引板沿长度方向靠近主体部的一侧,第一导引板与第一集合部贴合设置。
在一些实施例中,第一导引板包括基板层,基板层与第一集合部贴合;或者
第一导引板包括基板层和绝缘层,绝缘层贴设在基板层靠近第一集合部的侧面上,绝缘层与第一集合部贴合。
在一些实施例中,第一连接部的每层之间通过超声波焊接形成为一体并形成第一熔接区,第一连接部与第一导引板通过激光焊接固定并形成第二熔接区,在垂直于长度方向的平面内,第二熔接区的投影完全位于第一熔接区的投影区域内。
在一些实施例中,第一集流构件的硬度大于第二集流构件的硬度。
在一些实施例中,第一集流构件还包括第一转接板,负极端子固定在该第一转接板上,且该第一转接板连接在第一导引板的顶端,使得第一集流构件整体形成L形结构。
在一些实施例中,负极极耳或正极极耳的外表面设置有保护片。
在一些实施例中,在正极极耳折回后,正极极耳在宽度方向上覆盖支撑板,支撑板在高度方向上的两端超出正极极耳或与正极极耳齐平。
在一些实施例中,在未折回的状态下,支撑板与第二导引板呈夹角设置,例如呈90度设置,且正极极耳与支撑板的外侧贴合。
在一些实施例中,两个电极组件的负极极耳在相对弯折后在宽度方向上无交叠部分。
根据本发明的另一方面,提供了一种电池模组,包括:
固定框架;和
上述实施例的电池单元,各个电池单元设在固定框架内且沿宽度方向并排设置。
本发明的电池模组例如可应用于电动车辆所使用的电池包中,通过提高的电池能量密度,有效增加电动车辆的续航里程。
根据本发明的再一方面,提供了一种基于上述实施例电池单元的 制造方法,包括:
制备电极组件;
将负极端子和正极端子分别固定在第一集流构件和第二集流构件上;
将负极极耳弯折并与第一导引板连接;
将正极极耳弯折并与第二集流构件连接。
在一些实施例中,将负极极耳弯折并与第一导引板连接的步骤具体包括:
将电极组件中负极极片的各层负极极耳的部分区域预先通过超声波焊接形成一体;
再将焊接后的负极极耳弯折到第一导引板远离主体部的一侧,且与第一导引板贴合;
从负极极耳的外侧将负极极耳与第一导引板激光焊接。
在一些实施例中,将负极极耳弯折并与第一导引板连接的步骤具体包括:
将主体部垂直于宽度方向的面与第一导引板平行摆放,且负极极耳内侧面与第一导引板的外侧面贴合;
在第一导引板的内侧放置支撑件;
从负极极耳的外侧将负极极耳与第一导引板超声波焊接;
焊接后将主体部绕负极极耳的根部旋转90°,实现负极极耳的弯折。
在一些实施例中,第二集流构件包括第二导引板和支撑板,支撑板连接在第二导引板沿宽度方向的端部,将正极极耳弯折并与第二集流构件连接的步骤具体包括:
在支撑板的内侧放置支撑件;
从正极极耳的外侧将正极极耳与支撑板超声波焊接;
将焊接后的正极极耳与支撑板整体弯折到第二导引板远离主体部的一侧。
在一些实施例中,负极极耳与第一导引板采用超声波焊接,负极 极耳焊接的步骤在正极极耳焊接的步骤之前执行。
在一些实施例中,第二集流构件包括第二导引板,正极极耳为平板结构,正极极耳弯折到第二导引板远离主体部的一侧,并与第二导引板固定连接;
负极极耳与第一导引板之间和正极极耳与第二导引板之间均采用激光焊接;或者
负极极耳与第一导引板之间和正极极耳与第二导引板之间的其中一处采用激光焊接,另一处采用超声波焊接,超声波焊接在激光焊接之前执行。
基于上述技术方案,本发明一个实施例的电池单元,将第一集流构件的第一导引板设置为平板结构,能够减小负极极耳和第一集流构件连接部分在主体部沿长度方向的一个侧端占用的空间,可增加卷绕空间,提高电池单元的能量密度;而且,直接将硬度较低的负极极耳单独折回与第一导引板连接,可减小弯折过程中需要施加的外力,减小第一导引板的变形,保证电池单元的电化学性能及安全性能,并使电极组件顺利装配到壳体内。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为本发明电池单元的一个实施例的内部结构示意图;
图2为本发明电池单元中顶盖组件的一个实施例的结构示意图;
图3为本发明电池单元的一个实施例的主视图;
图4为图3的A-A剖视图;
图5A和图5B分别为图4中的B处和C处放大图;
图6为本发明电池单元中焊接极耳的熔接区示意图;
图7为本发明电池单元制造方法的一个实施例的流程示意图;
图8为本发明电池单元制造方法的另一个实施例的流程示意图;
图9为本发明电池单元制造方法的再一个实施例的流程示意图;
图10为本发明电池单元制造方法的又一个实施例的流程示意图。
附图标记说明
1、电极组件;11、主体部;12、负极极耳;121、第一连接部;122、第一集合部;13、正极极耳;131、第二连接部;132、第二集合部;2、第一集流构件;21、第一导引板;3、第二集流构件;31、第二导引板;311、第二缺口;32、支撑板;33、第二转接板;4、负极端子;5、正极端子;6、盖板;61、排气构件;62、注液孔;7、绝缘板;8、保护片。
具体实施方式
以下详细说明本发明。在以下段落中,更为详细地限定了实施例的不同方面。如此限定的各方面可与任何其他的一个方面或多个方面组合,除非明确指出不可组合。尤其是,被认为是优选的或有利的任何特征可与其他一个或多个被认为是优选的或有利的特征组合。
本发明中出现的“第一”、“第二”等用语仅是为了方便描述,以区分具有相同名称的不同组成部件,并不表示先后或主次关系。
此外,当元件被称作“在”另一元件“上”时,该元件可以直接在所述另一元件上,或者可以间接地在所述另一元件上并且在它们之间插入有一个或更多个中间元件。另外,当元件被称作“连接到”另一元件时,该元件可以直接连接到所述另一元件,或者可以间接地连接到所述另一元件并且在它们之间插入有一个或更多个中间元件。在下文中,同样的附图标记表示同样的元件。
为了在以下实施例中清楚地描述各个方位,例如图1中的坐标系对电池单元的各个方向进行了定义,x方向表示电池单元的长度方向;y方向在水平面内与x方向垂直,表示电池单元的宽度方向;z方向垂直于x和y方向形成的平面,表示电池单元的高度方向。基于此种方位定义,采用了“上”、“下”、“顶”、“底”、“前”、“后”、 “内”和“外”等指示的方位或位置关系的描述,这仅是为了便于描述本发明,而不是指示或暗示所指的装置必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明保护范围的限制。
为了使本领域技术人员清楚地了解本发明的改进点,首先对电池模组和电池单元的整体结构进行说明。
在通过多个电池单元形成电池模组时,电池模组包括固定框架和多个电池单元,各个电池单元设在固定框架内且沿所述宽度方向并排设置,可采用并联和/或串联的方式联接,各个电池单元可以单独设置壳体,或者省去壳体。或者电池单元也可单独使用。
图1示意出了本发明电池单元的一个实施例的结构示意图。电池单元可包括电极组件1、盖板6、两个端子和两个集流构件。在电池单元单独使用时,电极组件1外还设有与盖板6连接的壳体,且壳体填充电解液。
其中,电池单元在宽度方向上设有一个电极组件1,或者叠加设置多个电极组件1,电极组件1包括主体部11和从主体部11沿长度方向的两端分别延伸出的负极极耳12和正极极耳13。具体地,主体部11为涂覆部分,包括极性相反的第一电极和第二电极,例如,第一电极为正电极,第二电极为负电极。负极极耳12和正极极耳13为未涂覆部分,材料为铝,且均为层状结构。
电池单元内的电极组件1可以设置单个,适合于各个电极层叠后厚度较小的情况。或者如图1所示,在各个电极层叠后厚度较大时,也可在电池单元内设置两个或更多个独立卷绕的电极组件1,各个电极组件1对应的极耳分别从集流构件沿宽度方向的两侧引出。
盖板6设在电极组件1顶部,盖板6上设有排气构件61和注液孔62,排气构件61用于释放电池单元内的气体,起到安全作用,注液孔用于向电池单元内注入电解液,并通过密封件封口。两个端子设在盖板6顶部沿长度方向的两端,包括负极端子4和正极端子5。盖板6底部设有绝缘板7,以将盖板6与电极组件1绝缘隔离,提高电池单元内部的绝缘性能。
两个集流构件包括第一集流构件2和第二集流构件3,第一集流构件2将负极极耳12与负极端子4电联接,第二集流构件3将正极极耳13与正极端子5电联接。
在上面给出电池单元整体结构的基础上,下面进一步说明本发明的改进点。
在一些实施例中,如图1和图2所示,第一集流构件2包括第一导引板21和第一转接板,第一转接板连接在第一导引板21的顶端使第一集流构件2整体形成L形结构,负极端子4固定在第一转接板上。这样的构造使得第一集流构件2便于与盖板6和负极端子4形成更有效地操作性连接。第一导引板21为平板结构,第一导引板21位于主体部11沿长度方向靠近负极端子4的一侧并沿宽度方向延伸,负极极耳12弯折到第一导引板21远离主体部11的一侧,第一导引板21的外侧面与负极极耳12折回的部分接触,且负极极耳12与第一导引板21连接,例如,可采用焊接的方式固定连接。在焊接过程中,为了防止对极耳造成损伤,可在最外层极耳的外表面设置保护片8。
本发明的实施例通过将第一集流构件2设置为平板结构,能够减小负极极耳12和第一集流构件2连接部分在主体部11沿长度方向的一个侧端占用的空间,可增加卷绕空间,从而有效提高电池单元的能量密度,提高电池单元的功率。或者在电极组件1尺寸不变的情况下可减小电池单元的整体尺寸。而且,在板材上裁切出多块平板弯折形成第一集流构件2时,可提高板材的利用率,节约成本。
而且,由于第一集流构件2一般采用与负极端子4相同的材料,例如铜,其材料硬度较高,对于现有技术中在负极集流构件的第一导引板沿宽度方向的两端设置支撑板的结构,在将两侧的负极极耳连同支撑板弯折的过程中,受到的外力使第一导引板变形较为严重,如果第一导引板朝向主体部方向产生凹入变形,会将压力传递至主体部中的至少部分极片,容易导致涂覆有活性物质的极片受到机械力而脱膜或掉粉,从而影响电池单元的电化学性能及安全性能;如果第一导引板朝向远离主体部的方向产生凸出变形,则会影响电池单元的装配。
本发明的实施例在弯折负极极耳12时,直接将硬度较低的负极极耳12(例如,负极极耳的材质可以为铜)单独折回并与第一导引板21连接,不涉及支撑板的弯折,可减小弯折过程中需要施加的外力,并减小第一集流构件2的第一导引板21的变形,保证电池单元的电化学性能及安全性能,并防止第一导引板21向外凸出,可使电极组件顺利装配到壳体内。
如图1所示,电池单元包括两个电极组件1,一个电极组件1的负极极耳12从主体部11沿宽度方向远离另一个电极组件1的一侧引出,并且两个电极组件1的负极极耳12分别从第一导引板21沿宽度方向的两端相对弯折。
在电极组件1卷绕厚度较大时,底部的圆弧尺寸较大,会导致电极组件1在底部两侧圆弧外侧的空间利用率低,而拆分为两个电极组件1可减小圆弧尺寸,充分利用电池单元的底部空间,减少空间浪费,增加电芯能量密度。而且,极耳的总厚度也减小,也利于焊接和弯折,也可减小单个极耳的长度。另外,还能减小最内层极耳因绕行距离较长插入主体部11的风险。
在一些实施例中,第二集流构件3包括第二导引板31和第二转接板,第二转接板连接在第二导引板31的顶端形成L形结构,正极端子5固定在第二转接板上。这样的构造使得第二集流构件3便于与盖板6和正极端子5形成更有效地操作性连接。第二导引板31也为平板结构,第二导引板31位于主体部11沿长度方向靠近正极端子5的一侧并沿宽度方向延伸,正极极耳13弯折到第二导引板31远离主体部11的一侧,并与第二导引板31连接,例如,可采用焊接的方式固定连接。
本发明的该实施例将第二集流构件3也设置为平板结构,能够减小正极极耳13和第二集流构件3连接部分在主体部11沿长度方向的另一个侧端占用的空间,减小的厚度为支撑板的厚度。将第一集流构件2和第二集流构件3均设置为平板结构,可进一步增加卷绕空间,从而有效提高电池单元的能量密度。
而且,第二集流构件3一般采用与正极端子5相同的材料,例如铝,虽然材料硬度较低,但是在将两侧的正极极耳连同支撑板弯折的过程中,也可能会产生轻微变形;或者第二集流构件3也可能采用硬度较高的材料。本发明的该实施例在弯折正极极耳13时,可直接将正极极耳13单独折回,不涉及支撑板的弯折,能够降低对第二集流构件3选材硬度的要求,而且可减小第二集流构件3的第二导引板31的变形,进一步保证电池单元的电化学性能及安全性能,并防止第二导引板31向外凸出,可使电极组件更顺利低装配到壳体内。
此外,第一集流构件2和第二集流构件3采用相同的结构,在将极耳弯折并与导引板固定连接的工序中,可采用相同的工艺方法,例如,在采用焊接固定极耳与导引板时,可采用相同的工艺,可简化工艺流程,降低电池单元的制造难度。
在另一些实施例中,在第二集流构件3的硬度低于第一集流构件2的硬度时,如图2所示,第二集流构件3包括第二导引板31、第二转接板和支撑板32,第二导引板31位于主体部11沿长度方向靠近正极端子5的一侧并沿宽度方向延伸,支撑板32连接在第二导引板31沿宽度方向的端部,正极极耳13从外侧连接于支撑板32并整体弯折到第二导引板31远离主体部11的一侧。在正极极耳13折回后,正极极耳13在宽度方向上覆盖支撑板32,支撑板32在高度方向上的两端可超出正极极耳13或齐平,由此为硬度较低的第二集流构件3提供更为稳固的支撑作用并提供连接的牢固性。
其中,第二导引板31、第二转接板和支撑板32一体成型,此种结构可降低加工难度,提高结构强度。
该实施例考虑到第二集流构件3的材料硬度较低,在将正极极耳13连同支撑板32弯折的过程中,变形量较小,对电池单元的电化学性能、安全性能以及装配的影响较小,因此,仍采用了带有支撑板32的第二集流构件3。此种结构的优点在于,易于在支撑板32的内侧设置支撑件,在弯折前可通过施加预压力将支撑板32和各片正极极耳13通过超声波焊接在一起,可提高支撑板32与正极极耳13连接的牢 固性。
如图3和图4所示的A-A剖视图,第二导引板31沿宽度方向的两端均设有支撑板32,两个支撑板32相对折回。此种结构中,沿宽度方向两侧的正极极耳13与第二集流构件3可采用相同的连接和弯折方式,可简化工艺流程,降低电池单元的制造难度。
如图2所示,支撑板32在未折回的状态下可与第二导引板31呈夹角设置,以便于生产制造以及与正极极耳的焊接操作,例如呈90°设置,两个电极组件1对应的正极极耳13与支撑板32的外侧贴合。各片正极极耳13和支撑板32需要先通过焊接等方式固定连接,再整体折回至支撑板32与第二导引板31贴合。在将两侧的正极极耳13连同支撑板32相对向内弯折的过程中,首先需要通过滚轮在支撑板32外侧施力使其逐渐向内折回,在大致折回到位后,使第二导引板31远离电极组件主体部11的侧面朝上放置,再通过平板工装将两侧正极极耳13压平,平板工装覆盖两个正极极耳13对应的区域。
图3为图1所示电池单元的主视图,图4为图3的A-A剖视图,示意出了极耳折回后的结构示意图。电池单元包括两个电极组件1,两个电极组件1的极耳分别从主体部11沿宽度方向的两侧引出。第一集流构件2的第一导引板21采用平板结构,不设置支撑板,两侧的负极极耳12相对弯折到第一导引板21远离主体部11的一侧,且负极极耳12与第一导引板21连接。第二集流构件3的第二导引板31沿宽度方向的两端均设置支撑板32,两侧的正极极耳13均从外侧连接于相应的支撑板32并相对弯折到第二导引板31远离主体部11的一侧。
位于主体部11沿长度方向同侧的极耳相对折回后,在宽度方向上无交叠部分,两个极耳的端部在折回后可接触或具有间隙。此种结构使主体部11沿宽度方向两侧的极耳相互独立,可进一步减小极耳和集流构件的连接部分在长度方向占用的空间,以增加卷绕空间,提高电池的能量密度。
可选地,第二导引板31沿宽度方向的其中一端设有支撑板32,设有支撑板32侧的正极极耳13与支撑板32的外侧贴合,正极极耳 13和支撑板32通过焊接等方式固定连接后,再整体折回至支撑板32与第二导引板31贴合;未设支撑板32侧的正极极耳13直接弯折到第二导引板31远离主体部11的一侧,并与第二导引板31连接。此种结构可减小正极极耳13和第二集流构件3连接结构在长度方向局部占用的空间,以电极组件1设置为局部凸出的结构,以进一步增加电池单元的能量密度。
如果极耳较厚,对于第二集流构件3包括支撑板32的结构,则支撑板32的根部相对于第二导引板31沿宽度方向的端部边缘向内缩回预设距离。此种结构同时适用于单个和多个电极组件1的电池单元。
该实施例在正极极耳13层叠厚度较大时,易于将正极极耳13弯折,并减小正极极耳13绕过支撑板32时的包覆长度,由此可减小正极极耳13的总长度,节约材料。而且利于使正极极耳13与支撑板32贴合,从而进一步减小电池单元在长度方向的尺寸。
如果极耳较厚,对于第一导引板21和第二导引板31不设置支撑板32的端部,第一导引板21和/或第二导引板31沿宽度方向为自由端的端部边缘在至少部分高度上向内缩回预设距离,以形成第一缺口,负极极耳12和/或正极极耳13穿过第一缺口,以此便于极耳向宽度方向上的弯折。例如,第一缺口可呈矩形。
该实施例在极耳层叠厚度较大时,易于将极耳弯折,并减小极耳绕过导引板时的包覆长度,极耳根部也无需弯折形成圆弧状结构,而是形成斜坡状结构,由此可减小极耳的总长度,节约材料。而且利于使极耳弯折后与导引板更好地贴合,从而进一步减小电池单元在长度方向的尺寸。
如图2所示,第二集流构件3还包括第二转接板,正极端子5固定在第二转接板上,支撑板32的顶面与第二转接板间隔设置,第二导引板31与支撑板32相连位置的顶部设有第二缺口311。通过设置第二缺口311,易于在正极极耳13与支撑板32焊接后一起折回,而且在折回的状态下可避免弯折处产生应力集中,防止开裂。例如,第二缺口311可以为通过冲压形成的工艺孔。
在一些实施例中,如图5A所示的B处放大图,负极极耳12为层状结构,负极极耳12包括第一连接部121和第一集合部122,第一连接部121位于第一导引板21沿长度方向远离主体部11的一侧,并与第一导引板21固定连接,第一集合部122位于第一导引板21沿长度方向靠近主体部11的一侧,第一导引板21与第一集合部122贴合设置。
该结构能够进一步减小极耳和集流构件连接部分在主体部11侧端占用的空间,可增加卷绕空间,从而有效提高电池单元的能量密度。
如图5A所示,负极极耳12从单个电极组件1的主体部沿宽度方向的中间位置开始引出,由于第一导引板21与第一集合部122贴合设置,为了增加第一导引板21与主体部11的绝缘性,第一导引板21包括基板层和绝缘层,绝缘层贴设在基板层靠近第一集合部122的侧面上,绝缘层与第一集合部122贴合。例如,绝缘层可采用粘接的方式贴在基板层上。
可选地,在能够保证第一导引板21与主体部11的绝缘性的基础上,第一导引板21包括基板层,基板层上不贴设绝缘层,基板层直接与第一集合部122贴合。
在一些实施例中,如图5B所示的C处放大图,正极极耳13为层状结构,正极极耳13包括第二连接部131和第二集合部132,第二连接部131位于第二导引板31沿长度方向远离主体部11的一侧,并与支撑板32固定连接,第二集合部132位于第二导引板31沿长度方向靠近主体部11的一侧,第二导引板31与第二集合部132贴合设置。
为了增加第二导引板31与主体部11的绝缘性,第二导引板31包括基板层和绝缘层,绝缘层贴设在基板层靠近第二集合部132的侧面上,绝缘层与第二集合部132贴合。例如,绝缘层可采用粘接的方式贴在基板层上。
可选地,在能够保证第二导引板31与主体部11的绝缘性的基础上,第二导引板31包括基板层,基板层上不贴设绝缘层,基板层直接与第二集合部132贴合。
在实际中,虽然第一导引板21的内侧面与第一集合部122之间、第二导引板31的内侧面与第二集合部132之间可能会存在间隙,但是在极耳弯折到位后,会在主体部11沿长度方向两侧极耳的外侧采用工装进行夹紧,以使第一导引板21的两侧分别与负极极耳12和第一集合部122贴合,第二导引板31的两侧分别与正极极耳13和第二集合部132贴合。同时,在压紧力的作用下,支撑板32也与第二导引板31接触,支撑板32可整体与第二导引板31贴合,或者支撑板32的自由端与第二导引板31接触。
对于集流构件中直接将极耳弯折与导引板连接的端部,如果直接将各层极耳折回后与导引板采用激光焊接,由于无法施加压力,各层极耳之间难以压实并出现虚焊,而且在激光焊接过程中容易产生杂质;而且在各层极耳折回后无法设置支撑件,也就不能采用超声波焊接。
为此,本发明采用的焊接方式为:首先,在极耳的内侧设置支撑件,通过超声波焊接将电极组件中极片的各层极耳焊接形成一体;其次,将形成一体的极耳弯折至导引板远离主体部11的一侧;再次,将极耳与导引板通过激光焊接进行固定连接。
该实施例先采用超声波焊接能够通过施加压力将各层极耳压实,防止出现虚焊,提高各层极耳焊接后的牢固性,在极耳弯折后与导引板通过激光焊接能够解决无法设置支撑件的问题,而且由于极耳已经焊接形成一体,也能保证焊接后的可靠性,并减少产生杂质。此种焊接方式结合了超声波焊接和激光焊接的优点。
优选地,如图6所示,在垂直于长度方向的平面内,激光焊接形成的第二熔接区W2的投影完全位于超声波焊接形成的第一熔接区W1的投影区域内。熔接区可以呈矩形或者矩形环状结构,当然也可以呈圆形、三角形或其它多边形。该结构能够最大限度地避免产生虚焊,并减少激光焊接过程中产生的杂质。而且,第一熔接区W1最好整体位于极耳弯折区域以外的位置,有利于极耳弯折。
对于负极极耳12,如图6所示,第一连接部121的每层之间通过超声波焊接形成为一体并形成第一熔接区W1,第一连接部121与第 一导引板21通过激光焊接固定并形成第二熔接区W2,第一熔接区W1全部覆盖第二熔接区W2。对于正极极耳13,第二连接部131的每层之间通过超声波焊接形成为一体并形成第一熔接区W1,第二连接部131与第二导引板31通过激光焊接固定并形成第二熔接区W2,在垂直于长度方向的平面内,第二熔接区W2的投影完全位于第一熔接区W1的投影区域内。
其次,本发明还提供了一种基于上述实施例电池单元的制造方法,在一些实施例中,如图7所示的流程示意图,该制造方法包括:
步骤101、制备电极组件1;
步骤102、将负极端子4和正极端子5分别固定在第一集流构件2和第二集流构件3上;
步骤103、将负极极耳12弯折并与第一导引板21连接,例如通过焊接等方式固定连接;
步骤104、将正极极耳13弯折并与第二集流构件3连接,例如通过焊接等方式固定连接。
其中,步骤101和102顺序执行,步骤103和104在步骤102之后执行,且步骤103和104的执行顺序不作限制。
本发明的实施例在弯折负极极耳12时,直接将硬度较低的负极极耳12单独折回并与第一导引板21连接,不涉及支撑板的弯折,可减小弯折过程中需要施加的外力,并减小第一集流构件2的第一导引板21的变形,保证电池单元的电化学性能及安全性能,并防止第一导引板21向外凸出,可使电极组件顺利装配到壳体内。
在一些实施例中,如图8所示的流程示意图,步骤103将负极极耳12弯折并与第一导引板21连接具体包括:
步骤201、将各片负极极耳12的部分区域预先通过超声波焊接形成一体,形成第一熔接区W1,在焊接时,可在负极极耳12内侧放置支撑件,以便超声波焊接时施加压力;
步骤202、再将焊接后的负极极耳12弯折到第一导引板21远离主体部11的一侧,且与第一导引板21贴合;
步骤203、从负极极耳12的外侧将负极极耳12与第一导引板21激光焊接,形成第二熔接区W2,优选地,第一熔接区W1整体覆盖第二熔接区W2。
其中,步骤201~203顺序执行。该实施例先采用超声波焊接能够通过施加压力将各层极耳压实,防止出现虚焊,提高各层极耳焊接后的牢固性,在极耳弯折后与导引板通过激光焊接能够解决无法设置支撑件的问题,而且由于极耳已经焊接形成一体,也能保证焊接后的可靠性,并减少产生杂质,优化焊接质量。
在另一些实施例中,如图9所示的流程示意图,步骤103将负极极耳12弯折并与第一导引板21连接具体包括:
步骤301、将主体部11垂直于宽度方向的面与第一导引板21平行摆放,且负极极耳12内侧面与第一导引板21的外侧面贴合,例如第一导引板21可呈竖直状态;
步骤302、在第一导引板21的内侧放置支撑件,例如垫块等;
步骤303、从负极极耳12的外侧将负极极耳12与第一导引板21超声波焊接;
步骤304、焊接后将主体部11绕负极极耳12的根部旋转90°,实现负极极耳12的弯折。
其中,步骤301~304顺序执行。在通过步骤303焊接过程中,可对主体部11进行辅助限位,以防主体部11发生位置错动而影响焊接效果。
该实施例能够直接通过超声波焊接负极极耳12和第一导引板21,并通过主体部11的旋转实现负极极耳12的弯折,可通过施加压力提高焊接牢固性,防止虚焊,也可减少杂质产生。以图2为例,所有极耳均采用超声波焊接,可降低对焊接设备种类的要求,并简化工艺流转过程,提高焊接效率。
在一些实施例中,如图2所示,第二集流构件3包括第二导引板31和支撑板32,支撑板32连接在第二导引板31沿宽度方向的端部。如图10所示的流程示意图,步骤104将正极极耳13弯折并与第二集 流构件3连接具体包括:
步骤401、在支撑板32的内侧放置支撑件,以为超声波焊接提供支撑力;
步骤402、从正极极耳13的外侧将正极极耳13与支撑板32超声波焊接;
步骤403、将焊接后的正极极耳13与支撑板32整体弯折到第二导引板31远离主体部11的一侧。
其中,步骤401~403顺序执行。该实施例适用于设有支撑板32的正极极耳13的焊接,支撑板32和第二导引板31形成L形结构,在弯折前形成放置支撑件的空间,因此适合于采用超声波焊接,可通过施加压力提高焊接牢固性,防止虚焊,也可减少杂质产生。
对于图2的结构,若负极极耳12与第一导引板21采用超声波焊接,正极极耳13与支撑板32也采用超声波焊接,由于负极极耳12与第一导引板21超声波焊接过程中涉及到主体部11的旋转,因此负极极耳12焊接的步骤应该在正极极耳13焊接的步骤之前执行。
若负极极耳12的各层先采用超声波焊接形成一体,再弯折后与第一导引板21采用激光焊接,正极极耳13与支撑板32也采用超声波焊接,则负极极耳12与正极极耳13焊接的先后顺序不作限制。本申请通过采用极耳与导引板直接焊接的结构,可提高各极耳焊接的灵活性,在焊接过程中也不需要对主体部11进行旋转,可降低操作难度。
在另一些实施例中,第二集流构件3包括第二导引板31,正极极耳13为平板结构,正极极耳13弯折到第二导引板31远离主体部11的一侧,并与第二导引板31固定连接,即第一集流构件2和第二集流构件3均不设置支撑板。
对于此种结构,可采用两种焊接方式:
其一,负极极耳12与第一导引板21之间和正极极耳13与第二导引板31之间均采用激光焊接,在激光焊接之前仍然是将各层负极极耳12或正极极耳13焊接成一体。
其二,负极极耳12与第一导引板21之间和正极极耳13与第二导 引板31之间的其中一处采用激光焊接,另一处采用超声波焊接。由于超声波焊接涉及到主体部11的旋转,因此超声波焊接在激光焊接之前执行。
以上对本发明所提供的一种电池单元及其制造方法、电池模组进行了详细介绍。本文中应用了具体的实施例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

Claims (23)

  1. 一种电池单元,其特征在于,包括:
    至少一个电极组件(1),所述电极组件包括主体部(11)和从所述主体部(11)沿长度方向的两端分别延伸出的负极极耳(12)和正极极耳(13);
    负极端子(4)和正极端子(5),设在所述电极组件(1)顶部;和
    第一集流构件(2)和第二集流构件(3),所述第一集流构件(2)将所述负极极耳(12)与所述负极端子(4)电联接,所述第二集流构件(3)将所述正极极耳(13)与所述正极端子(5)电联接;
    其中,所述第一集流构件(2)包括第一导引板(21),所述第一导引板(21)为平板结构,所述第一导引板(21)位于所述主体部(11)沿长度方向靠近所述负极端子(4)的一侧并沿宽度方向延伸,所述负极极耳(12)弯折到所述第一导引板(21)远离所述主体部(11)的一侧,并与所述第一导引板(21)连接。
  2. 根据权利要求1所述的电池单元,其特征在于,所述电池单元包括两个电极组件(1),一个电极组件(1)的负极极耳(12)从所述主体部(11)沿宽度方向远离另一个电极组件(1)的一侧引出,并且这两个电极组件(1)的负极极耳(12)分别从所述第一导引板(21)沿宽度方向的两端相对弯折。
  3. 根据权利要求1所述的电池单元,其特征在于,所述第二集流构件(3)包括第二导引板(31),所述第二导引板(31)为平板结构,所述第二导引板(31)位于所述主体部(11)沿长度方向靠近所述正极端子(5)的一侧并沿所述宽度方向延伸,所述正极极耳(13)弯折到所述第二导引板(31)远离所述主体部(11)的一侧,并与所述第二导引板(31)连接。
  4. 根据权利要求1所述的电池单元,其特征在于,所述第二集流构件(3)包括第二导引板(31)和支撑板(32),所述第二导引板(31) 位于所述主体部(11)沿长度方向靠近所述正极端子(5)的一侧并沿宽度方向延伸,所述支撑板(32)连接在所述第二导引板(31)沿所述宽度方向的端部,所述正极极耳(13)从外侧连接于所述支撑板(32)并整体弯折到所述第二导引板(31)远离所述主体部(11)的一侧。
  5. 根据权利要求4所述的电池单元,其特征在于,所述第二导引板(31)沿所述宽度方向的两端均设有所述支撑板(32),两个所述支撑板(32)沿所述宽度方向相对折回。
  6. 根据权利要求4所述的电池单元,其特征在于,
    所述支撑板(32)的根部相对于所述第二导引板(31)沿宽度方向的端部边缘向内缩回预设距离;和/或
    所述第一导引板(21)和/或所述第二导引板(31)沿宽度方向为自由端的端部边缘在至少部分高度上向内缩回预设距离,以形成第一缺口,所述负极极耳(12)和/或正极极耳(13)穿过所述第一缺口。
  7. 根据权利要求4所述的电池单元,其特征在于,所述第二集流构件(3)还包括第二转接板,所述正极端子(5)固定在所述第二转接板上,所述支撑板(32)的顶面与所述第二转接板间隔设置,所述第二导引板(31)与所述支撑板(32)相连位置的顶部设有第二缺口(311)。
  8. 根据权利要求1所述的电池单元,其特征在于,所述负极极耳(12)和所述正极极耳(13)均为层状结构;
    所述负极极耳(12)包括第一连接部(121)和第一集合部(122),所述第一连接部(121)位于所述第一导引板(21)沿长度方向远离所述主体部(11)的一侧,并与所述第一导引板(21)连接,所述第一集合部(122)位于所述第一导引板(21)沿长度方向靠近所述主体部(11)的一侧,所述第一导引板(21)与所述第一集合部(122)贴合设置。
  9. 根据权利要求8所述的电池单元,其特征在于,
    所述第一导引板(21)包括基板层,所述基板层与所述第一集合部(122)贴合;或者
    所述第一导引板(21)包括基板层和绝缘层,所述绝缘层贴设在所述基板层靠近所述第一集合部(122)的侧面上,所述绝缘层与所述第一集合部(122)贴合。
  10. 根据权利要求8所述的电池单元,其特征在于,所述第一连接部(121)的每层之间通过超声波焊接形成为一体并形成第一熔接区(W1),所述第一连接部(121)与所述第一导引板(21)通过激光焊接固定并形成第二熔接区(W2),在垂直于长度方向的平面内,所述第二熔接区(W2)的投影完全位于所述第一熔接区(W1)的投影区域内。
  11. 根据权利要求1所述的电池单元,其特征在于,所述第一集流构件(2)的硬度大于所述第二集流构件(3)的硬度。
  12. 根据权利要求1所述的电池单元,其特征在于,所述第一集流构件还包括第一转接板,所述负极端子固定在该第一转接板上,且该第一转接板连接在所述第一导引板的顶端,使得该第一集流构件整体形成L形结构。
  13. 根据权利要求1所述的电池单元,其特征在于,所述负极极耳或正极极耳的外表面设置有保护片。
  14. 根据权利要求4所述的电池单元,其特征在于,在所述正极极耳折回后,该正极极耳在宽度方向上覆盖所述支撑板,该支撑板在高度方向上的两端超出所述正极极耳或与正极极耳齐平。
  15. 根据权利要求4所述的电池单元,其特征在于,在未折回的状态下,所述支撑板与所述第二导引板呈夹角设置,例如呈90度设置,且所述正极极耳与所述支撑板的外侧贴合。
  16. 根据权利要求2所述的电池单元,其特征在于,两个电极组件的负极极耳在相对弯折后在宽度方向上无交叠部分。
  17. 一种电池模组,其特征在于,包括:
    固定框架;和
    多个权利要求1~16任一所述的电池单元,各个所述电池单元设在所述固定框架内且沿所述宽度方向并排设置。
  18. 一种基于权利要求1~16任一所述电池单元的制造方法,其特征在于,包括:
    制备所述电极组件(1);
    将所述负极端子(4)和正极端子(5)分别固定在所述第一集流构件(2)和第二集流构件(3)上;
    将所述负极极耳(12)弯折并与所述第一导引板(21)连接;
    将所述正极极耳(13)弯折并与所述第二集流构件(3)连接。
  19. 根据权利要求18所述的电池单元的制造方法,其特征在于,将所述负极极耳(12)弯折并与所述第一导引板(21)连接的步骤具体包括:
    将所述电极组件中负极极片的各层所述负极极耳(12)的部分区域预先通过超声波焊接形成一体;
    再将焊接后的负极极耳(12)弯折到所述第一导引板(21)远离所述主体部(11)的一侧,且与所述第一导引板(21)贴合;
    从所述负极极耳(12)的外侧将所述负极极耳(12)与所述第一导引板(21)激光焊接。
  20. 根据权利要求18所述的电池单元的制造方法,其特征在于,将所述负极极耳(12)弯折并与所述第一导引板(21)连接的步骤具体包括:
    将所述主体部(11)垂直于宽度方向的面与所述第一导引板(21)平行摆放,且所述负极极耳(12)内侧面与第一导引板(21)的外侧面贴合;
    在所述第一导引板(21)的内侧放置支撑件;
    从所述负极极耳(12)的外侧将所述负极极耳(12)与所述第一导引板(21)超声波焊接;
    焊接后将所述主体部(11)绕所述负极极耳(12)的根部旋转90°,实现所述负极极耳(12)的弯折。
  21. 根据权利要求18所述的电池单元的制造方法,其特征在于,所述第二集流构件(3)包括第二导引板(31)和支撑板(32),所述 支撑板(32)连接在所述第二导引板(31)沿所述宽度方向的端部,将所述正极极耳(13)弯折并与第二集流构件(3)连接的步骤具体包括:
    在所述支撑板(32)的内侧放置支撑件;
    从所述正极极耳(13)的外侧将所述正极极耳(13)与所述支撑板(32)超声波焊接;
    将焊接后的所述正极极耳(13)与支撑板(32)整体弯折到所述第二导引板(31)远离所述主体部(11)的一侧。
  22. 根据权利要求21所述的电池单元的制造方法,其特征在于,所述负极极耳(12)与所述第一导引板(21)采用超声波焊接,所述负极极耳(12)焊接的步骤在所述正极极耳(13)焊接的步骤之前执行。
  23. 根据权利要求18所述的电池单元的制造方法,其特征在于,所述第二集流构件(3)包括第二导引板(31),所述正极极耳(13)为平板结构,所述正极极耳(13)弯折到所述第二导引板(31)远离所述主体部(11)的一侧,并与所述第二导引板(31)固定连接;
    所述负极极耳(12)与第一导引板(21)之间和所述正极极耳(13)与第二导引板(31)之间均采用激光焊接;或者
    所述负极极耳(12)与第一导引板(21)之间和所述正极极耳(13)与第二导引板(31)之间的其中一处采用激光焊接,另一处采用超声波焊接,超声波焊接在激光焊接之前执行。
PCT/CN2020/090694 2019-05-24 2020-05-15 电池单元及其制造方法、电池模组 WO2020238660A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910437844.5A CN111987340A (zh) 2019-05-24 2019-05-24 电池单元及其制造方法、电池模组
CN201910437844.5 2019-05-24

Publications (1)

Publication Number Publication Date
WO2020238660A1 true WO2020238660A1 (zh) 2020-12-03

Family

ID=70295069

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/090694 WO2020238660A1 (zh) 2019-05-24 2020-05-15 电池单元及其制造方法、电池模组

Country Status (4)

Country Link
US (1) US11469481B2 (zh)
EP (1) EP3742525A1 (zh)
CN (1) CN111987340A (zh)
WO (1) WO2020238660A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111864172A (zh) * 2019-04-25 2020-10-30 宁德时代新能源科技股份有限公司 电池单元和电池模组
CN113904037A (zh) * 2021-10-27 2022-01-07 厦门海辰新能源科技有限公司 电池单体和电池包
CN114243230B (zh) * 2022-02-23 2022-05-31 深圳市格林晟科技有限公司 一种电芯极耳焊接汇流方法及设备
CN217134598U (zh) * 2022-04-07 2022-08-05 远景动力技术(江苏)有限公司 一种转接片、电池单元及电子设备
CN114865239B (zh) * 2022-04-18 2024-04-09 远景动力技术(江苏)有限公司 一种电池装配方法及电池用装配工装
CN114976183B (zh) * 2022-05-18 2023-05-02 佛山市天劲新能源科技有限公司 一种软包电池滚压控制方法、装置、电子设备及存储介质
CN115064701A (zh) * 2022-05-20 2022-09-16 远景动力技术(江苏)有限公司 一种集流构件和电池制造方法
CN114824676A (zh) * 2022-05-31 2022-07-29 江苏正力新能电池技术有限公司 二次电池
CN115377619B (zh) * 2022-08-09 2024-04-16 合肥国轩高科动力能源有限公司 一种双侧出极耳的电池及装配方法
CN116365181B (zh) * 2023-05-31 2023-08-04 深圳海辰储能控制技术有限公司 储能装置及用电设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106159179A (zh) * 2015-04-21 2016-11-23 宁德时代新能源科技股份有限公司 金属锂电池
CN108258180A (zh) * 2018-01-16 2018-07-06 宁德时代新能源科技股份有限公司 集流构件和电池

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102569681B (zh) 2010-12-10 2015-11-25 比亚迪股份有限公司 一种锂离子电池
US8722237B2 (en) * 2011-03-29 2014-05-13 Samsung Sdi Co., Ltd. Secondary battery
US9287550B2 (en) 2012-06-11 2016-03-15 Samsung Sdi Co., Ltd. Rechargeable battery
WO2015061443A1 (en) * 2013-10-25 2015-04-30 Quantumscape Corporation Thermal and electrical management of battery packs
CN104577025B (zh) 2014-12-29 2017-02-08 山东精工电子科技有限公司 一种软包电池极耳焊接方法
JP2017050069A (ja) * 2015-08-31 2017-03-09 株式会社豊田自動織機 蓄電装置
CN105762322A (zh) * 2016-03-18 2016-07-13 宁德时代新能源科技股份有限公司 二次电池
CN205846092U (zh) 2016-07-25 2016-12-28 深圳塔菲尔新能源科技有限公司 一种双向极柱的动力电池
KR102571487B1 (ko) 2017-08-31 2023-08-28 삼성에스디아이 주식회사 이차 전지 및 그 조립 방법
CN207690902U (zh) 2017-12-14 2018-08-03 比亚迪股份有限公司 电池和具有其的电池包、电动汽车
CN108598353B (zh) * 2018-01-16 2020-10-23 宁德时代新能源科技股份有限公司 充电电池
CN208014793U (zh) * 2018-01-16 2018-10-26 宁德时代新能源科技股份有限公司 连接构件和充电电池
CN208819970U (zh) * 2018-10-26 2019-05-03 宁德时代新能源科技股份有限公司 二次电池
CN111106300B (zh) 2019-01-30 2021-05-11 宁德时代新能源科技股份有限公司 电池单元及电池模组
CN209658320U (zh) * 2019-05-24 2019-11-19 宁德时代新能源科技股份有限公司 电池单元及电池模组

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106159179A (zh) * 2015-04-21 2016-11-23 宁德时代新能源科技股份有限公司 金属锂电池
CN108258180A (zh) * 2018-01-16 2018-07-06 宁德时代新能源科技股份有限公司 集流构件和电池

Also Published As

Publication number Publication date
US11469481B2 (en) 2022-10-11
US20200373547A1 (en) 2020-11-26
EP3742525A1 (en) 2020-11-25
CN111987340A (zh) 2020-11-24

Similar Documents

Publication Publication Date Title
WO2020238660A1 (zh) 电池单元及其制造方法、电池模组
WO2021184491A1 (zh) 二次电池、电池模块以及使用二次电池作为电源的装置
WO2020156198A1 (zh) 电池单元及电池模组
JP4554565B2 (ja) 二次電池
JP5825436B2 (ja) 電極タブ接合性に優れた電極組立体、これを含む電池セル、デバイス及びその製造方法
US7498099B2 (en) Film covered battery
US9017852B2 (en) Secondary battery
WO2020083278A1 (zh) 集流构件、二次电池和二次电池的制造方法
JP2005222701A (ja) 組電池
CN102208591A (zh) 二次电池和二次电池模块
CN113675535B (zh) 电芯及电子装置
WO2021143481A1 (zh) 二次电池、电池模块以及使用电池作为电源的装置
CN113270671A (zh) 电芯及用电装置
WO2024045738A1 (zh) 电池和电池的制备方法
US20200235370A1 (en) Secondary battery and battery module
KR20070110566A (ko) 고용량 및 우수한 안전성의 이차전지
WO2021226756A1 (zh) 二次电池及其制造方法、电池模块以及装置
JP3628899B2 (ja) 積層型電池
JP3686242B2 (ja) 電池用積層電極の接続方法と電池
JP2006079909A (ja) 蓄電モジュール及びその製造方法
CN113410528A (zh) 一种全极耳锂电池及其封装制备工艺
JP4637305B2 (ja) 電池パック
KR101590991B1 (ko) 분리막들이 상호 접합된 전극조립체 및 이를 포함하는 이차전지
JP3869668B2 (ja) 電気化学デバイスおよびその製造方法
JP2019036565A (ja) 電気化学デバイスおよびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20812842

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20812842

Country of ref document: EP

Kind code of ref document: A1