WO2020238100A1 - 接收基板、显示面板及显示面板的制备方法 - Google Patents
接收基板、显示面板及显示面板的制备方法 Download PDFInfo
- Publication number
- WO2020238100A1 WO2020238100A1 PCT/CN2019/121176 CN2019121176W WO2020238100A1 WO 2020238100 A1 WO2020238100 A1 WO 2020238100A1 CN 2019121176 W CN2019121176 W CN 2019121176W WO 2020238100 A1 WO2020238100 A1 WO 2020238100A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- receiving substrate
- emitting diode
- diode chip
- supporting boss
- micro
- Prior art date
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 152
- 238000002360 preparation method Methods 0.000 title abstract description 3
- 229910000679 solder Inorganic materials 0.000 claims abstract description 81
- 238000000034 method Methods 0.000 claims description 14
- 239000000463 material Substances 0.000 claims description 9
- 230000007423 decrease Effects 0.000 claims description 8
- 238000003466 welding Methods 0.000 claims description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 4
- -1 polyethylene terephthalate Polymers 0.000 claims description 4
- 239000004642 Polyimide Substances 0.000 claims description 3
- 229910001128 Sn alloy Inorganic materials 0.000 claims description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 3
- 239000004020 conductor Substances 0.000 claims description 3
- JVPLOXQKFGYFMN-UHFFFAOYSA-N gold tin Chemical compound [Sn].[Au] JVPLOXQKFGYFMN-UHFFFAOYSA-N 0.000 claims description 3
- 229910052738 indium Inorganic materials 0.000 claims description 3
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 3
- 239000011810 insulating material Substances 0.000 claims description 3
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 3
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 3
- 229920001721 polyimide Polymers 0.000 claims description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 2
- 229910052782 aluminium Inorganic materials 0.000 claims description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 2
- 229910052804 chromium Inorganic materials 0.000 claims description 2
- 239000011651 chromium Substances 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 239000010949 copper Substances 0.000 claims description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 2
- 229910052737 gold Inorganic materials 0.000 claims description 2
- 239000010931 gold Substances 0.000 claims description 2
- 229910052750 molybdenum Inorganic materials 0.000 claims description 2
- 239000011733 molybdenum Substances 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 229920000515 polycarbonate Polymers 0.000 claims description 2
- 239000004417 polycarbonate Substances 0.000 claims description 2
- 239000004814 polyurethane Substances 0.000 claims description 2
- 229910052709 silver Inorganic materials 0.000 claims description 2
- 239000004332 silver Substances 0.000 claims description 2
- 239000010936 titanium Substances 0.000 claims description 2
- 229910052719 titanium Inorganic materials 0.000 claims description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 2
- 229910052721 tungsten Inorganic materials 0.000 claims description 2
- 239000010937 tungsten Substances 0.000 claims description 2
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 claims 1
- 239000011112 polyethylene naphthalate Substances 0.000 claims 1
- 229920002635 polyurethane Polymers 0.000 claims 1
- 238000005476 soldering Methods 0.000 abstract description 5
- 230000009286 beneficial effect Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000003825 pressing Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 238000009827 uniform distribution Methods 0.000 description 2
- 239000004820 Pressure-sensitive adhesive Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 238000012858 packaging process Methods 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/15—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
- H01L27/153—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
- H01L27/156—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09F—DISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
- G09F9/00—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
- G09F9/30—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
- G09F9/33—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/12—Mountings, e.g. non-detachable insulating substrates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
- H01L25/03—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
- H01L25/04—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L25/075—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
- H01L25/0753—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/15—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/483—Containers
- H01L33/486—Containers adapted for surface mounting
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2933/00—Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
- H01L2933/0008—Processes
- H01L2933/0033—Processes relating to semiconductor body packages
Definitions
- the present disclosure relates to the field of display technology, and in particular to a method for preparing a receiving substrate, a display panel, and a display panel.
- Micro Light Emitting Diode (Micro LED) display is a display that integrates LED chips with a size of less than 100 microns on a substrate as display pixels to realize image display. It is a self-luminous display.
- micro-light-emitting diode display panels generally requires temporary bonding and de-bonding of the micro-light-emitting diode chip and the process substrate. After de-bonding, the micro-light-emitting diode chip is grabbed by the transfer head and the micro-light-emitting diode chip is bonded to the receiving substrate. . During this process, two adjacent electrodes of the micro-light-emitting diode chip are likely to be turned on, causing short-circuit and other problems, affecting the normal display of the micro-light-emitting diode display panel.
- the purpose of the present disclosure is to provide a receiving substrate and a display panel.
- the receiving substrate of the present disclosure can prevent the problem of short circuit between adjacent electrodes of the micro-light-emitting diode chip, and ensure the micro-light-emitting diode display panel The normal display.
- An embodiment of the present disclosure provides a receiving substrate including a plurality of solder joints for welding and fixing with a micro light emitting diode chip, the solder joints including a first supporting boss and a solder layer provided on the surface of the receiving substrate, so The first supporting boss is a conductive boss, the first supporting boss includes a first surface connected to the receiving substrate and a second surface away from the receiving substrate, and the solder layer is disposed on the second Surface.
- the solder joints are arranged in the structure of the first supporting boss and the solder layer, and the first supporting boss is a conductive boss to ensure the normal electrical connection between the micro light emitting diode chip and the receiving substrate, and The solder layer is arranged on the second surface of the first supporting boss away from the receiving substrate.
- the supporting function of the first supporting boss limits the pressing distance of the micro-light-emitting diode chip, and prevents the solder layer from being excessively expanded due to excessive depression of the micro-light-emitting diode chip That is, the problem of short circuit between adjacent electrodes of the micro light emitting diode chip is prevented, and the normal display of the micro light emitting diode display panel is ensured.
- the first support boss reduces the expansion range of the solder layer, it is beneficial to further reduce the distance between adjacent solder joints on the receiving substrate, so that the receiving substrate of the same area can accommodate more micro-light-emitting diode chips, which is beneficial to improve micro-luminescence
- the area of the second surface is larger than the area of the electrode of the micro light emitting diode chip to be soldered.
- the area of the second surface is set to be greater than the area of the electrode of the micro-light-emitting diode chip, so that when the micro-light-emitting diode chip is bonded to the receiving substrate, the second surface can provide a stable supporting force for the electrode of the micro-light-emitting diode chip, and also The electrodes of the micro-light-emitting diode chip are fully contacted with the second surface to ensure the bonding quality of the micro-light-emitting diode chip and the receiving substrate.
- the cross-sectional area of the first supporting boss gradually decreases from the first surface to the second surface.
- the solder layer covers the outer surface of the first supporting boss.
- Coating the solder layer on the outer surface of the first supporting boss can ensure sufficient contact between the electrodes of the micro light emitting diode chip and the solder layer, thereby ensuring the quality of soldering.
- the vertical cross-sectional profile of the solder layer is similar to the vertical cross-sectional profile of the first supporting boss.
- the vertical cross-sectional profile of the solder layer and the vertical cross-sectional profile of the first supporting boss are arranged in a similar structure, which can ensure the uniform distribution of the solder layer, thereby improving the welding quality.
- the receiving substrate as described above is further provided with a plurality of second supporting bosses, the solder joints are arranged around the second supporting bosses, and in a direction perpendicular to the receiving substrate, the first The height of the second supporting boss is greater than the height of the first supporting boss and less than the sum of the height of the first supporting boss and the solder layer.
- the transfer head drives the micro-light-emitting diode chip to press down, so that the electrodes of the micro-light-emitting diode chip first contact the solder layer; in the process of continuing to press down, the transfer head abuts on the second supporting boss, By providing the second supporting boss, it is beneficial to limit the pressing displacement of the transfer head, and prevent the transfer head from being excessively pressed down to damage the solder joints.
- the projected area of the second supporting boss on the receiving substrate is larger than that of the first supporting boss on the receiving substrate.
- the projected area on the substrate and the cross-sectional area of the second supporting boss gradually decrease in a direction away from the receiving substrate.
- the solder layer material includes one or more of indium, tin, and gold-tin alloy. Selecting the solder layer as the low-temperature solder layer can reduce the temperature during soldering, prevent excessive temperature from causing damage to the micro light emitting diode chip, and improve the production yield.
- Another embodiment of the present disclosure provides a display panel including the receiving substrate as described above.
- the display panel provided in this embodiment has a lower failure rate and a better display effect due to the above-mentioned receiving substrate provided therein.
- Another embodiment of the present disclosure provides a method for preparing a display panel, including: forming a micro-light-emitting diode chip on a growth substrate; using a transfer head to transfer the micro-light-emitting diode chip to the receiving substrate as described above ; To encapsulate.
- the method further includes: temporarily bonding the micro light emitting diode chip and a temporary substrate, and separating the micro light emitting diode chip from the growth substrate.
- the display panel prepared by the preparation method of this embodiment has a lower failure rate and a better display effect as described above.
- FIG. 1 is a schematic diagram of a top view structure of a receiving substrate provided by an embodiment of the disclosure
- FIG. 2 is a schematic diagram of the front structure of a receiving substrate provided by an embodiment of the disclosure.
- Fig. 3 is a schematic structural diagram of the first supporting boss in Fig. 1;
- Figure 4 is a schematic diagram of the structure of the solder layer in Figure 1;
- Figure 5 is a schematic diagram of another structure of the solder layer in Figure 1;
- Fig. 6 is a schematic top view of a receiving substrate provided by another embodiment of the present disclosure.
- FIG. 7 is a schematic front view of the structure of a receiving substrate provided by another embodiment of the present disclosure.
- FIG. 8 is a schematic front view of the structure of a receiving substrate provided by an embodiment of the disclosure.
- micro-light-emitting diode display panels generally requires temporary bonding and de-bonding of the micro-light-emitting diode chip and the process substrate. After de-bonding, the micro-light-emitting diode chip is grabbed by the transfer head and the micro-light-emitting diode chip is bonded to the receiving substrate. .
- the receiving substrate is provided with solder joints corresponding to the electrodes of each micro-light-emitting diode chip, and solder is provided on the surface of the solder joints. The solder is connected to the electrodes of the micro-LED chip at high temperature. Welding and fixing, so that the micro-light-emitting diode chip is connected to the electrode layer on the receiving substrate, and then through the packaging process to complete the production of the micro-light-emitting diode display panel.
- the solder when the micro-light-emitting diode chip is bonded to the receiving substrate, the solder will extend in a direction parallel to the receiving substrate under the pressure of the micro-light-emitting diode chip. If the extension is too large, it will contact the surface of the adjacent solder joint. The solder connection causes the two adjacent electrodes to be turned on, causing short circuit and other problems, which affects the normal display of the micro light emitting diode display panel. In order to solve the above problems, the present disclosure proposes the following technical solutions.
- Figure 1 is a schematic top view of a receiving substrate provided by an embodiment of the present disclosure
- Figure 2 is a schematic front view of a receiving substrate provided by an embodiment of the present disclosure
- Figure 3 is a structure of the first supporting boss in Figure 1 Sketch; please refer to Figure 1 to Figure 3.
- This embodiment provides a receiving substrate 100, which includes a plurality of solder joints for welding and fixing the micro light emitting diode chip.
- the solder joints include a first support boss 110 and a solder layer 120 provided on the surface of the receiving substrate 100.
- the first support The boss 110 is a conductive boss.
- the first supporting boss 110 includes a first surface 111 connected to the receiving substrate 100 and a second surface 112 away from the receiving substrate 100.
- the solder layer 120 is disposed on the second surface 112.
- the receiving substrate 100 of this embodiment refers to the substrate that is finally bonded with the micro-light-emitting diode on the transfer head when the micro-light-emitting diode display panel is produced by the batch transfer technology, and the micro-light is formed through the packaging operation after the bonding. Diode display panel.
- the material of the receiving substrate 100 may be a rigid material, such as a glass substrate, or a flexible material.
- the receiving substrate 100 shown in FIG. 1 further includes a back plate 101 for driving the micro light-emitting diode chip to emit light and a protection component 102 made on the receiving substrate 100, and the protection component 102 is located far from the back of the receiving substrate 100.
- the back board 101 may be an LTPS (Low Temperature Poly-silicon) back board, an oxide (Oxide) back board, or an organic TFT (thin film transistor) back board.
- the protective component 102 is bonded to the receiving substrate 100 by pressure-sensitive adhesive or optical transparent glue.
- the material of the protective component 102 can be polyimide (PI), polyethylene terephthalate (PET), poly Ethylene naphthoate (PEN), polyurethane (PU), polycarbonate (PC), or any combination thereof.
- the solder joint includes a first supporting boss 110 and a solder layer 120.
- the first supporting boss 110 is a boss made of a conductive material, so as to realize a normal electrical connection.
- the first supporting boss 110 is a metal boss formed by a combination of one or more of copper, chromium, titanium, aluminum, gold, nickel, silver, tungsten, and molybdenum.
- the structure of the first supporting boss 110 in this embodiment may be, for example, a cylindrical boss, a prismatic boss, or the like.
- the first supporting boss 110 includes a first surface 111 connected to the receiving substrate 100 and a second surface 112 away from the receiving substrate 100, and the solder layer 120 is disposed on the second surface 112.
- the solder layer 120 can be made of any suitable material.
- the solder layer 120 is a low temperature solder layer formed by a combination of one or more of indium, tin, and gold-tin alloy. Selecting the solder layer 120 as a low-temperature solder layer can reduce the temperature during soldering, prevent excessive temperature from causing damage to the micro light-emitting diode chip, thereby improving the production yield.
- each micro-light-emitting diode chip When the micro light-emitting diode chip is bonded to the receiving substrate 100, the method of front mounting, flip mounting or vertical mounting can be adopted.
- each micro-light-emitting diode chip When the micro-light-emitting diode chip is bonded to the receiving substrate 100 in a front-mounted or flip-chip manner, each micro-light-emitting diode will have two electrodes to be bonded to the receiving substrate 100; when the micro-light-emitting diode chip is vertically mounted When bonding with the receiving substrate 100, each micro-light emitting diode will have only one electrode to be bonded with the receiving substrate 100.
- the receiving substrate 100 provided in this embodiment has the following advantages:
- the solder joints are arranged in the structure of the first supporting boss 110 and the solder layer 120, and the first supporting boss 110 is a conductive boss to ensure that the micro light emitting diode chip and the receiving substrate 100
- the electrical connection is normal, and the solder layer 120 is disposed on the second surface 112 of the first supporting boss 110 away from the receiving substrate 100. Therefore, when the micro light emitting diode chip is bonded to the receiving substrate 100, the supporting function of the first supporting boss 110 limits the pressing distance of the micro light emitting diode chip, and prevents the solder layer from being excessively pressed down by the micro light emitting diode chip.
- the first supporting boss 110 reduces the extension range of the solder layer 120, it is beneficial to further reduce the distance between adjacent solder joints on the receiving substrate 100, so that the receiving substrate 100 of the same area can accommodate more micro-light emitting diode chips. , It is beneficial to increase the PPI of the micro-light-emitting diode display screen or reduce the size of the micro-light-emitting diode chip.
- the flatness of the receiving substrate 100 is also improved, and the flatness after welding can be improved.
- the area of the second surface 112 is larger than the area of the electrode of the micro light emitting diode chip.
- the area of the second surface 112 is set to be larger than the area of the electrode of the micro light emitting diode chip, so that when the micro light emitting diode chip is bonded to the receiving substrate 100, the second surface 112 can provide a stable supporting force to the electrode of the micro light emitting diode chip At the same time, the electrodes of the micro light emitting diode chip are fully contacted with the second surface 112 to ensure the bonding quality of the micro light emitting diode chip and the receiving substrate 100.
- both the first surface 111 and the second surface 112 are flat surfaces.
- the cross-sectional area of the first supporting boss 110 gradually decreases from the first surface 111 to the second surface 112.
- Both the first surface 111 and the second surface 112 are flat, which facilitates the connection of the first supporting boss 100 with the receiving substrate 100 and the micro light emitting diode chip. Setting the first support boss 110 into a structure in which the cross-sectional area gradually decreases from the first surface 111 to the second surface 112 is beneficial to provide a stable supporting force.
- Fig. 4 is a schematic diagram of the structure of the solder layer in Fig. 1;
- Fig. 5 is a schematic diagram of another structure of the solder layer in Fig. 1; please refer to Figs. 4 to 5.
- the solder layer 120 of this embodiment may be coated on the outer surface of the first supporting boss 110.
- Coating the solder layer 120 on the outer surface of the first supporting boss 110 can ensure sufficient contact between the electrodes of the micro light emitting diode chip and the solder layer 120, thereby ensuring the quality of soldering.
- the vertical cross-sectional profile of the solder layer 120 is the same as the vertical cross-sectional profile of the first support boss 110.
- the vertical cross-sectional profile of the solder layer 120 may be semicircular (as shown in FIG. 4) or trapezoidal (as shown in FIG. 5), which is not further limited in this embodiment.
- FIG. 6 is a schematic top view of a receiving substrate provided by another embodiment of the present disclosure
- FIG. 7 is a schematic front view of a receiving substrate provided by another embodiment of the present disclosure; please refer to FIGS. 6-7.
- This embodiment provides a receiving substrate 100.
- the receiving substrate 100 of this embodiment is further provided with a plurality of second support bosses 130, and solder joints are arranged around the second support bosses 130.
- the height of the second supporting boss 130 is greater than the height of the first supporting boss 110 and smaller than the sum of the heights of the solder layer 120 and the first supporting boss 110.
- this embodiment does not specifically limit the structure of the second supporting boss 130, and any suitable structure can be adopted.
- the number of the second supporting bosses 130 can be selected according to needs, and they can be uniformly arranged on the receiving substrate 100.
- the second supporting boss 130 may be made of a conductive material or an insulating material.
- the second supporting boss 130 may be made of an insulating material, and the structure of the second supporting boss 130 is the same as that of the first supporting boss 110.
- the projected area of the second supporting boss 130 on the receiving substrate 100 is larger than the projected area of the first supporting boss 110 on the receiving substrate 100, and in the direction parallel to the receiving substrate 100, The cross-sectional area of the second supporting boss 130 gradually decreases in a direction away from the receiving substrate 100.
- the second supporting boss 130 can provide greater supporting force than the first supporting boss 110.
- the transfer head drives the micro-light-emitting diode chip to press down, so that the electrodes of the micro-light-emitting diode chip first contact the solder layer 120; in the process of continuing to press down, the transfer head abuts
- the second supporting boss 130 is provided on the second supporting boss 130 to help limit the pressing displacement of the transfer head and prevent the transfer head from being excessively pressed down to damage the solder joints.
- This embodiment provides a display panel including the receiving substrate as described in the first embodiment or the second embodiment.
- the display panel of this embodiment is a micro light-emitting diode display panel manufactured by batch transfer technology.
- the micro-light-emitting diode chip it is necessary to prepare the micro-light-emitting diode chip on the growth substrate first, then temporarily bond the micro-light-emitting diode chip and the temporary substrate, and separate the micro-light-emitting diode chip from the growth substrate, and use the transfer head to separate the micro-light-emitting diode
- the chip is separated from the temporary substrate, and the required number of micro light-emitting diode chips are transferred to the receiving substrate, and finally packaged.
- the display panel provided by this embodiment has a lower failure rate and a better display effect due to the above-mentioned receiving substrate.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Theoretical Computer Science (AREA)
- Led Device Packages (AREA)
- Structures For Mounting Electric Components On Printed Circuit Boards (AREA)
Abstract
本公开提供一种接收基板、显示面板及显示面板的制备方法。所述接收基板包括多个用于与微发光二极管芯片焊接固定的焊点,所述焊点包括设置在所述接收基板表面的第一支撑凸台和焊料层,所述第一支撑凸台为导电凸台,所述第一支撑凸台包括与所述接收基板连接的第一面和远离所述接收基板的第二面,所述焊料层设置在所述第二面上。本公开能够防止因微发光二极管芯片的过分下压而造成焊料层过分扩张的问题,也即防止了微发光二极管芯片相邻电极之间短路的问题,保证了微发光二极管显示面板的正常显示。
Description
本公开涉及显示技术领域,尤其涉及一种接收基板、显示面板及显示面板的制备方法。
微发光二极管(Micro Light Emitting Diode;Micro LED)显示器是在一个基板上集成百微米以下尺寸的LED芯片作为显示像素,实现图像显示的显示器,属于自发光显示器。
微发光二极管显示面板的制作一般需要先将微发光二极管芯片与过程基板进行临时键合和解键合,解键合后利用转印头抓取微发光二极管芯片并将微发光二极管芯片与接收基板进行键合。在此过程中,易出现微发光二极管芯片两个相邻的电极导通,造成短路等问题,影响微发光二极管显示面板的正常显示。
发明内容
为了克服上述缺陷,本公开的目的在于提供一种接收基板及显示面板,本公开的接收基板在使用时,能够防止微发光二极管芯片相邻电极之间短路的问题,保证了微发光二极管显示面板的正常显示。
本公开一实施例提供一种接收基板,包括多个用于与微发光二极管芯片焊接固定的焊点,所述焊点包括设置在所述接收基板表面的第一支撑凸台和焊料层,所述第一支撑凸台为导电凸台,所述第一支撑凸台包括与所述接收基板连接的第一面和远离所述接收基板的第二面,所述焊料层设置在所述第 二面上。
本实施例提供的接收基板具有如下优点:
本实施例提供的接收基板,通过将焊点设置成第一支撑凸台和焊料层的结构,第一支撑凸台为导电凸台,以保证微发光二极管芯片与接收基板的正常电连接,且焊料层设置在第一支撑凸台远离接收基板的第二面。由此,在微发光二极管芯片与接收基板进行键合时,第一支撑凸台的支撑作用限制微发光二极管芯片的下压距离,防止因微发光二极管芯片的过分下压而造成焊料层过分扩张的问题,也即防止了微发光二极管芯片相邻电极之间短路的问题,保证了微发光二极管显示面板的正常显示。
由于第一支撑凸台降低了焊料层的扩展范围,有利于进一步缩小接收基板上相邻焊点的间距,从而使得同样面积的接收基板能够容纳更多的微发光二极管芯片,有利于提高微发光二极管显示器屏幕的PPI或者缩小微发光二极管芯片尺寸。
如上所述的接收基板,可选地,在平行于所述接收基板的方向上,所述第二面的面积大于待焊接的微发光二极管芯片的电极的面积。将第二面的面积设置成大于微发光二极管芯片的电极的面积,使得微发光二极管芯片与接收基板进行键合时,第二面能够对微发光二极管芯片的电极提供稳定的支撑力,同时也使微发光二极管芯片的电极与第二面充分接触,保证微发光二极管芯片与接收基板的键合质量。
如上所述的接收基板,可选地,在平行于所述接收基板的方向上,所述第一支撑凸台的横截面面积由所述第一面向所述第二面逐渐减小。
将第一支撑凸台设置成横截面面积由第一面向第二面逐渐减小的结构,有利于提供稳定的支撑力。
如上所述的接收基板,可选地,所述焊料层包覆在所述第一支撑凸台的外表面。
将焊料层包覆在第一支撑凸台的外表面,能够保证微发光二极管芯片的电极与焊料层的充分接触,从而保证焊接质量。
如上所述的接收基板,可选地,在垂直于所述接收基板的方向上,所述焊料层的竖截面轮廓与所述第一支撑凸台的竖截面轮廓相似。
将焊料层的竖截面轮廓与第一支撑凸台的竖截面轮廓设置成相似结构,能够保证焊料层的均匀分布,从而提高焊接质量。
如上所述的接收基板,可选地,还设有多个第二支撑凸台,所述焊点围绕所述第二支撑凸台设置,在垂直于所述接收基板的方向上,所述第二支撑凸台的高度大于所述第一支撑凸台的高度且小于所述第一支撑凸台和所述焊料层的高度之和。
在进行键合时,转印头带动微发光二极管芯片下压,使得微发光二极管芯片的电极先与焊料层接触;继续下压的过程中,转印头抵接在第二支撑凸台上,通过设置第二支撑凸台,有利于限制转印头的下压位移,防止转印头过分下压而对焊点造成破坏。
如上所述的接收基板,可选地,在平行于所述接收基板的方向上,所述第二支撑凸台在所述接收基板上的投影面积大于所述第一支撑凸台在所述接收基板上的投影面积,所述第二支撑凸台的横截面面积沿背离所述接收基板的方向逐渐减小。通过上述设置使得第二支撑凸台能够比第一支撑凸台提供更大的支撑力。
如上所述的接收基板,可选地,所述焊料层材料包括铟、锡、金锡合金中的一种或多种。将焊料层选为低温焊料层,能够降低焊接时的温度,防止温度过高对微发光二极管芯片造成损伤,提高生产良率。本公开另一实施例提供一种显示面板,包括如上任一所述的接收基板。
本实施例提供的显示面板,由于其中设置了上述接收基板,因此具有较低的故障率及较好的显示效果。
本公开再一实施例提供一种制备显示面板的方法,包括:在生长衬底上形成微发光二极管芯片;利用转印头将所述微发光二极管芯片转印到如上文所述的接收基板上;进行封装。可选地,在实施转印之前,所述方法还包括:将所述微发光二极管芯片与临时基板进行临时键合,和将所述微发光二极管芯片与所述生长衬底分离。
本实施例的制备方法所制备的显示面板如上所述具有较低的故障率及较好的显示效果。
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍。
图1为本公开一实施例提供的接收基板的俯视结构简图;
图2为本公开一实施例提供的接收基板的主视结构简图;
图3为图1中第一支撑凸台的结构简图;
图4为图1中的焊料层的结构简图;
图5为图1中的焊料层的又一结构简图;
图6为本公开另一实施例提供的接收基板的俯视结构简图;
图7为本公开另一实施例提供的接收基板的主视结构简图;
图8为本公开一实施例提供的接收基板的主视结构简图。
微发光二极管显示面板的制作一般需要先将微发光二极管芯片与过程基板进行临时键合和解键合,解键合后利用转印头抓取微发光二极管芯片并将微发光二极管芯片与接收基板进行键合。在微发光二极管芯片与接收基板进 行键合时,接收基板上设有与每个微发光二极管芯片的电极对应的焊点,焊点表面设有焊料,焊料在高温下与微发光二极管芯片的电极焊接固定,从而使微发光二极管芯片与接收基板上的电极层导通,再经过封装工序即完成微发光二极管显示面板的制作。
但是,在微发光二极管芯片与接收基板进行键合时,焊料在微发光二极管芯片下压力的作用下会向平行于接收基板的方向延伸,若延伸过大,则会与相邻焊点表面的焊料连接,从而使两个相邻的电极导通,造成短路等问题,影响微发光二极管显示面板的正常显示。为了解决上述问题,本公开提出了如下技术方案。
基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
图1为本公开一实施例提供的接收基板的俯视结构简图;图2为本公开一实施例提供的接收基板的主视结构简图;图3为图1中第一支撑凸台的结构简图;请参照图1-图3。
本实施例提供一种接收基板100,包括多个用于与微发光二极管芯片焊接固定的焊点,焊点包括设置在接收基板100表面的第一支撑凸台110和焊料层120,第一支撑凸台110为导电凸台,第一支撑凸台110包括与接收基板100连接的第一面111和远离接收基板100的第二面112,焊料层120设置在第二面112上。
具体地,本实施例的接收基板100是指采用批量转移技术生产微发光二极管显示面板时,最后与转印头上的微发光二极管进行键合的基板,键合后再通过封装作业形成微发光二极管显示面板。
本实施例中,接收基板100的材质可以为硬性材料例如,玻璃基板,也可以为柔性材料。当接收基板100为柔性基板时,可以便于实现弯折甚至折 叠的功能。其中,如图1所示的接收基板100还包括制作在接收基板100上的用于驱动微发光二极管芯片发光的背板101及其保护组件102,所述保护组件102位于接收基板100的远离背板101的一侧,如图8所示,其中,示例地,背板101可以为LTPS(Low Temperature Poly-silicon)背板、氧化物(Oxide)背板或有机TFT(thin film transistor)背板等,保护组件102通过压敏胶或光学透明胶与接收基板100粘合,保护组件102的制作材料可以为聚酰亚胺(PI)、聚对苯二甲酸乙二醇酯(PET)、聚萘甲酸乙二醇酯(PEN)、聚氨酯(PU)、聚碳酸酯(PC),或其任意组合。
接收基板100上设有多个焊点,焊点与背板101电连接。焊点包括第一支撑凸台110和焊料层120,第一支撑凸台110为可导电材料制成的凸台,以便实现正常的电连接。在一个可选的实施方式中,第一支撑凸台110是由铜、铬、钛、铝、金、镍、银、钨、钼中的一种或多种组合而成的金属凸台。此外,本实施例对中第一支撑凸台110的结构,例如可以是圆柱凸台、棱柱凸台等。第一支撑凸台110包括与接收基板100连接的第一面111和远离接收基板100的第二面112,焊料层120设置在第二面112上。焊料层120可由任意适宜的材料制成,在一个可选的实施方式中,焊料层120为铟、锡、金锡合金中的一种或多种组合而成的低温焊料层。将焊料层120选为低温焊料层,能够降低焊接时的温度,防止温度过高对微发光二极管芯片造成损伤,从而提高生产良率。
微发光二极管芯片与接收基板100进行键合时,可以采用正装、倒装或垂直安装的方式。当微发光二极管芯片采用正装或倒装的方式与接收基板100进行键合时,每一个微发光二极管将有两个电极需要与接收基板100进行键合;当微发光二极管芯片采用垂直安装的方式与接收基板100进行键合时,每一个微发光二极管将只有一个电极需要与接收基板100进行键合。
本实施例提供的接收基板100具有如下优点:
本实施例提供的接收基板100,通过将焊点设置成第一支撑凸台110和焊料层120的结构,第一支撑凸台110为导电凸台,以保证微发光二极管芯片与接收基板100的正常电连接,且焊料层120设置在第一支撑凸台110远离接收基板100的第二面112。由此,在微发光二极管芯片与接收基板100进行键合时,第一支撑凸台110的支撑作用限制微发光二极管芯片的下压距离,防止因微发光二极管芯片的过分下压而造成焊料层120过分扩张的问题,也即防止了微发光二极管芯片相邻电极(当采用正装或倒装方式时为同一微发光二极管上的两个电极,当采用垂直安装的方式时为相邻的两个微发光二极管的电极)之间短路的问题,保证了微发光二极管显示面板的正常显示。
并且,由于第一支撑凸台110降低了焊料层120的扩展范围,有利于进一步缩小接收基板100上相邻焊点的间距,从而使得同样面积的接收基板100能够容纳更多的微发光二极管芯片,有利于提高微发光二极管显示器屏幕的PPI或者缩小微发光二极管芯片尺寸。
通过设置第一支撑凸台110,还提高了接收基板100的平整度,能够改善焊接后的平整性。
请继续参照图1-图3,进一步地,在平行于接收基板100的方向上,第二面112的面积大于微发光二极管芯片的电极的面积。
将第二面112的面积设置成大于微发光二极管芯片的电极的面积,使得微发光二极管芯片与接收基板100进行键合时,第二面112能够对微发光二极管芯片的电极提供稳定的支撑力,同时也使微发光二极管芯片的电极与第二面112充分接触,保证微发光二极管芯片与接收基板100的键合质量。
进一步地,在一个实施例中,第一面111和第二面112均为平面。可选地,在平行于接收基板100的方向上,第一支撑凸台110的横截面面积由第一面111向第二面112逐渐减小。
第一面111和第二面112均为平面,有利于第一支撑凸台100与接收基 板100和微发光二极管芯片的连接。将第一支撑凸台110设置成横截面面积由第一面111向第二面112逐渐减小的结构,有利于提供稳定的支撑力。
图4为图1中的焊料层的结构简图;图5为图1中的焊料层又一结构简图;请参照图4-图5。进一步地,本实施例的焊料层120可以包覆在第一支撑凸台110的外表面。
将焊料层120包覆在第一支撑凸台110的外表面,能够保证微发光二极管芯片的电极与焊料层120的充分接触,从而保证焊接质量。
可选地,在垂直于接收基板100的方向上,焊料层120的竖截面轮廓与第一支撑凸台110的竖截面轮廓相同。
将焊料层120的竖截面轮廓与第一支撑凸台110的竖截面轮廓设置成相同结构,能够保证焊料层120的均匀分布,从而提高焊接质量。
可选地,焊料层120的竖截面轮廓可以呈半圆形(如图4所示)或梯形(如图5所示),本实施例对此不作进一步限定。
图6为本公开另一实施例提供的接收基板的俯视结构简图;图7为本公开另一实施例提供的接收基板的主视结构简图;请参照图6-图7。本实施例提供一种接收基板100,与上述实施例一不同的是,本实施例的接收基板100上还设有多个第二支撑凸台130,焊点围绕第二支撑凸台130设置,在垂直于接收基板的方向上,第二支撑凸台130的高度大于第一支撑凸台110的高度且小于焊料层120和第一支撑凸台110的高度之和。
具体地,本实施例对第二支撑凸台130的结构不作具体限定,可采用任意适宜的结构。第二支撑凸台130的数量可以根据需要进行选择,其可以均匀设置在接收基板100上。第二支撑凸台130可由导电材料制成,也可由绝缘材料制成。在一个可选的实施方式中,第二支撑凸台130可由绝缘材料制成,且第二支撑凸台130的结构与第一支撑凸台110的结构相同。在平行于接收基板100的方向上,第二支撑凸台130在接收基板100上的投影面积大 于第一支撑凸台110在接收基板100上的投影面积,在平行于接收基板100的方向上,第二支撑凸台130的横截面面积沿背离接收基板100的方向逐渐减小。通过上述设置使得第二支撑凸台130能够比第一支撑凸台110提供更大的支撑力。
采用本实施例的接收基板100进行键合时,转印头带动微发光二极管芯片下压,使得微发光二极管芯片的电极先与焊料层120接触;继续下压的过程中,转印头抵接在第二支撑凸台130上,通过设置第二支撑凸台130,有利于限制转印头的下压位移,防止转印头过分下压而对焊点造成破坏。
本实施例的其他特征和优点与上述实施例一所述相同,在此不再赘述。
本实施例提供一种显示面板,包括如上实施例一或实施例二所述的接收基板。
具体地,本实施例的显示面板为采用批量转移技术制成的微发光二极管显示面板。制造时,需要先在生长衬底上制备微发光二极管芯片,然后将微发光二极管芯片与临时基板进行临时键合,并将微发光二极管芯片与生长衬底分离,利用转印头将微发光二极管芯片与临时基板分离,将需要数量的微发光二极管芯片转印到接收基板上,最后再进行封装。
本实施例提供的显示面板,由于设置了上述接收基板,因此具有较低的故障率及较好的显示效果。
以上各实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述各实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的范围。
Claims (19)
- 一种接收基板,包括多个用于与微发光二极管芯片焊接固定的焊点,所述焊点包括设置在所述接收基板表面的第一支撑凸台和焊料层,所述第一支撑凸台为导电凸台,所述第一支撑凸台包括与所述接收基板连接的第一面和远离所述接收基板的第二面,所述焊料层设置在所述第二面上。
- 根据权利要求1所述的接收基板,其中,在平行于所述接收基板的方向上,所述第二面的面积大于待焊接的微发光二极管芯片的电极的面积。
- 根据权利要求1所述的接收基板,其中,在平行于所述接收基板的方向上,所述第一支撑凸台的横截面面积由所述第一面向所述第二面逐渐减小。
- 根据权利要求1所述的接收基板,其中,所述第一面和所述第二面均为平面。
- 根据权利要求1所述的接收基板,其中,所述焊料层包覆在所述第一支撑凸台的外表面。
- 根据权利要求5所述的接收基板,其中,在垂直于所述接收基板的方向上,所述焊料层的竖截面轮廓与所述第一支撑凸台的竖截面轮廓相同。
- 根据权利要求6所述的接收基板,其中,所述焊料层的竖截面轮廓呈半圆形或梯形。
- 根据权利要求1所述的接收基板,其中,所述第一支撑凸台的材料包括铜、铬、钛、铝、金、镍、银、钨、钼中的一种或多种。
- 根据权利要求1-8中任一所述的接收基板,还设有多个第二支撑凸台,所述焊点围绕所述第二支撑凸台设置,在垂直于所述接收基板的方向上,所述第二支撑凸台的高度大于所述第一支撑凸台的高度且小于所述第一支撑凸台和所述焊料层的高度之和。
- 根据权利要求9所述的接收基板,其中,在平行于所述接收基板的方向上,所述第二支撑凸台在所述接收基板上的投影面积大于所述第一支撑凸台在所述接收基板上的投影面积,所述第二支撑凸台的横截面面积沿背离所述接收基板的方向逐渐减小。
- 根据权利要求9所述的接收基板,其中,所述第二支撑凸台的结构与所述第一支撑凸台的结构相同。
- 根据权利要求9所述的接收基板,其中,所述第二支撑凸台由导电材料或绝缘材料制成。
- 根据权利要求1所述的接收基板,其中,所述焊料层的材料包括铟、锡、金锡合金中的一种或多种。
- 根据权利要求1所述的接收基板,还包括制作在所述接收基板上的用于驱动所述微发光二极管芯片发光的背板及其保护组件,所述保护组件位于所述接收基板的远离所述背板的一侧。
- 根据权利要求14所述的接收基板,其中,所述保护组件的材料为聚酰亚胺、聚对苯二甲酸乙二醇酯、聚萘甲酸乙二醇酯、聚氨酯、聚碳酸酯,或其任意组合。
- 根据权利要求14所述的接收基板,其中,所述焊点与所述背板电连接。
- 一种显示面板,包括如权利要求1-16中任一所述的接收基板。
- 一种制备显示面板的方法,包括:在生长衬底上形成微发光二极管芯片;利用转印头将所述微发光二极管芯片转印到如权利要求1-17中任一项所述的接收基板上;对接收基板进行封装。
- 根据权利要求所述的方法,在实施转印之前,所述方法还包括:将所述微发光二极管芯片与临时基板进行临时键合,和将所述微发光二极管芯片与所述生长衬底分离。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020217035352A KR102653995B1 (ko) | 2019-05-30 | 2019-11-27 | 수용 기판, 디스플레이 패널 및 디스플레이 패널의 제조 방법 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910464217.0 | 2019-05-30 | ||
CN201910464217.0A CN112018044B (zh) | 2019-05-30 | 2019-05-30 | 接收基板及显示面板 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020238100A1 true WO2020238100A1 (zh) | 2020-12-03 |
Family
ID=73501225
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/121176 WO2020238100A1 (zh) | 2019-05-30 | 2019-11-27 | 接收基板、显示面板及显示面板的制备方法 |
Country Status (3)
Country | Link |
---|---|
KR (1) | KR102653995B1 (zh) |
CN (1) | CN112018044B (zh) |
WO (1) | WO2020238100A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114373690A (zh) * | 2022-01-10 | 2022-04-19 | 颀中科技(苏州)有限公司 | 一种芯片焊点结构及其制备方法、封装结构 |
CN114709202A (zh) * | 2022-04-24 | 2022-07-05 | 苏州华星光电技术有限公司 | 发光面板及其制作方法 |
WO2023283999A1 (zh) * | 2021-07-14 | 2023-01-19 | 深圳市华星光电半导体显示技术有限公司 | 微发光二极管显示面板及其制备方法、显示装置 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070048901A1 (en) * | 2005-08-30 | 2007-03-01 | Lu-Chen Hwan | Wafer-level package and IC module assembly method for the wafer-level package |
CN102130280A (zh) * | 2010-12-31 | 2011-07-20 | 浙江名芯半导体科技有限公司 | 一种led封装焊点结构及工艺 |
CN104659002A (zh) * | 2013-11-25 | 2015-05-27 | 台湾积体电路制造股份有限公司 | 半导体封装件及其制造方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050148111A1 (en) * | 2003-12-30 | 2005-07-07 | Texas Instruments Incorporated | Method and system for producing resilient solder joints |
JP4920330B2 (ja) | 2006-07-18 | 2012-04-18 | ソニー株式会社 | 実装構造体の実装方法、発光ダイオードディスプレイの実装方法、発光ダイオードバックライトの実装方法および電子機器の実装方法 |
US8669137B2 (en) * | 2011-04-01 | 2014-03-11 | International Business Machines Corporation | Copper post solder bumps on substrate |
US8828860B2 (en) * | 2012-08-30 | 2014-09-09 | International Business Machines Corporation | Double solder bumps on substrates for low temperature flip chip bonding |
US20170227816A1 (en) * | 2016-02-10 | 2017-08-10 | Glo Ab | Led backlight unit with separately and independently dimmable zones for a liquid crystal display |
-
2019
- 2019-05-30 CN CN201910464217.0A patent/CN112018044B/zh active Active
- 2019-11-27 WO PCT/CN2019/121176 patent/WO2020238100A1/zh active Application Filing
- 2019-11-27 KR KR1020217035352A patent/KR102653995B1/ko active IP Right Grant
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070048901A1 (en) * | 2005-08-30 | 2007-03-01 | Lu-Chen Hwan | Wafer-level package and IC module assembly method for the wafer-level package |
CN102130280A (zh) * | 2010-12-31 | 2011-07-20 | 浙江名芯半导体科技有限公司 | 一种led封装焊点结构及工艺 |
CN104659002A (zh) * | 2013-11-25 | 2015-05-27 | 台湾积体电路制造股份有限公司 | 半导体封装件及其制造方法 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023283999A1 (zh) * | 2021-07-14 | 2023-01-19 | 深圳市华星光电半导体显示技术有限公司 | 微发光二极管显示面板及其制备方法、显示装置 |
US11978840B2 (en) | 2021-07-14 | 2024-05-07 | Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. | Micro light emitting diode display panel, manufacturing method thereof and display device |
CN114373690A (zh) * | 2022-01-10 | 2022-04-19 | 颀中科技(苏州)有限公司 | 一种芯片焊点结构及其制备方法、封装结构 |
CN114709202A (zh) * | 2022-04-24 | 2022-07-05 | 苏州华星光电技术有限公司 | 发光面板及其制作方法 |
Also Published As
Publication number | Publication date |
---|---|
CN112018044A (zh) | 2020-12-01 |
KR20210143911A (ko) | 2021-11-29 |
CN112018044B (zh) | 2023-01-24 |
KR102653995B1 (ko) | 2024-04-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI717642B (zh) | 顯示面板 | |
US10867971B2 (en) | Light emitting diode panel | |
WO2020238100A1 (zh) | 接收基板、显示面板及显示面板的制备方法 | |
US12046591B2 (en) | Light-emitting substrate, method of manufacturing light-emitting substrate, and display device | |
US20230077996A1 (en) | Chip-on-film packages and display apparatuses including the same | |
JP7029053B2 (ja) | 発光モジュール | |
US20130105852A1 (en) | Package structure and manufacturing method for the same | |
WO2021063035A1 (zh) | 微发光二极管芯片及显示面板 | |
WO2017156890A1 (zh) | 一种发光二极管、发光装置及显示装置 | |
CN111430522A (zh) | Led芯片、led显示屏模组及制作方法 | |
US20240072230A1 (en) | Electronic device | |
US20220075430A1 (en) | Flexible printed circuit board and display device including the same | |
CN111722745A (zh) | 显示装置 | |
US10614988B2 (en) | Package structure of display panel, connecting board, package method and display device | |
US20210356649A1 (en) | Light emitting diode and backlight module using same | |
WO2022267008A1 (zh) | 显示基板、拼接显示面板和显示装置 | |
CN115101650A (zh) | 显示面板和显示装置 | |
CN114446805A (zh) | 电子元件的接合方法 | |
US20230369555A1 (en) | Electronic device | |
US20240038947A1 (en) | Display panel | |
CN114256397B (zh) | 显示面板及其制备方法和显示装置 | |
US20240213268A1 (en) | Chip on film package and display apparatus including the same | |
US20230335700A1 (en) | Light-emitting diode package structure, display panel and tiling-type display device | |
CN117218961A (zh) | Micro LED显示面板及拼接显示屏 | |
TW202345313A (zh) | 電子裝置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19931040 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20217035352 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19931040 Country of ref document: EP Kind code of ref document: A1 |