WO2020237952A1 - 双面显示面板及其制备方法、显示装置 - Google Patents

双面显示面板及其制备方法、显示装置 Download PDF

Info

Publication number
WO2020237952A1
WO2020237952A1 PCT/CN2019/108927 CN2019108927W WO2020237952A1 WO 2020237952 A1 WO2020237952 A1 WO 2020237952A1 CN 2019108927 W CN2019108927 W CN 2019108927W WO 2020237952 A1 WO2020237952 A1 WO 2020237952A1
Authority
WO
WIPO (PCT)
Prior art keywords
cathode
anode
double
display panel
organic layer
Prior art date
Application number
PCT/CN2019/108927
Other languages
English (en)
French (fr)
Inventor
曾维静
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Priority to US16/605,211 priority Critical patent/US10991785B2/en
Publication of WO2020237952A1 publication Critical patent/WO2020237952A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/128Active-matrix OLED [AMOLED] displays comprising two independent displays, e.g. for emitting information from two major sides of the display
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays
    • H10K59/176Passive-matrix OLED displays comprising two independent displays, e.g. for emitting information from two major sides of the display
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • H10K2102/3023Direction of light emission
    • H10K2102/3026Top emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • H10K2102/3023Direction of light emission
    • H10K2102/3035Edge emission

Definitions

  • the present invention relates to the field of OLED display technology, in particular to a double-sided display panel, a preparation method thereof, and a display device.
  • OLED Organic Light-Emitting Diode
  • LCD Liquid Crystal Display
  • OLEDs can be divided into top-emission and bottom-emission types according to their light-emitting characteristics, and OLEDs are light and thin.
  • the purpose of the present invention is to provide a double-sided display panel and a preparation method thereof.
  • the double-sided display panel is formed on a single TFT substrate to form bottom-emitting and top-emitting OLED devices, combined with active-matrix organic light-emitting diodes (Active-matrix Organic light emitting diode (AMOLED for short) and Passive Matrix organic light emitting diode (PMOLED for short) are two OLED display modes with different drive structures, enabling the OLED display to achieve a double-sided display function with high resolution on one side Rate function, the other side has basic display function.
  • AMOLED Active-matrix Organic light emitting diode
  • PMOLED Passive Matrix organic light emitting diode
  • the double-sided display panel utilizes top-emission and bottom-emission OLED device structures, and the thickness of each film layer of the OLED device is small, so that the double-sided display panel does not increase its panel thickness to achieve ultra-thin display.
  • the present invention provides a double-sided display panel, which includes: a base substrate; a thin film transistor array disposed on the base substrate; a first anode disposed on the thin film On the transistor array; a first organic layer arranged on the first anode; a first cathode arranged on the first organic layer; an interlayer insulating layer arranged on the first cathode; The second cathode is in the interlayer insulating layer, and the second cathode is in a strip shape; a second organic layer is disposed on the second cathode; a second anode is disposed on the second organic layer And the second anode is strip-shaped, and the projection of the second anode on the second cathode is perpendicular to the second cathode; the first cathode and the second cathode are both non-transparent And the first anode and the second anode are both made of light-transmitting material.
  • the present invention provides a double-sided display panel, which includes: a base substrate; a thin film transistor array disposed on the base substrate; and a first anode , The first anode is arranged on the thin film transistor array; a first organic layer is arranged on the first anode; a first cathode is arranged on the first cathode On the first organic layer; an interlayer insulating layer, the interlayer insulating layer is disposed on the first cathode; a second cathode, the second cathode is disposed on the interlayer insulating layer, and the first Two cathodes are in the form of stripes; a second organic layer, the second organic layer is disposed on the second cathode; and a second anode, the second anode is disposed on the second organic layer, and The second anode is in a strip shape, and the projection of the second anode on the second cathode is perpendicular to the second cathode
  • the double-sided display panel further includes: a packaging structure, and the packaging structure is disposed on the second anode.
  • the double-sided display panel further includes: a pixel definition layer, and the pixel definition layer is disposed between the second cathode and the second organic layer.
  • both the first cathode and the second cathode are made of a non-light-transmissive metal material.
  • both the first anode and the second anode are made of light-transmitting materials.
  • the packaging structure is an inorganic/organic laminated film packaging structure, or a glass/glass packaging structure.
  • the base substrate is a flexible base.
  • a manufacturing method using the above-mentioned double-sided display panel includes the steps of: providing a base substrate, and forming a thin film transistor on the base substrate; A first anode is formed on the first anode; a first organic layer and a first cathode located on the first organic layer are formed on the first anode and the thin film transistor by vacuum evaporation or solution film formation; An interlayer insulating layer is formed on a cathode by chemical vapor deposition; and a second cathode and a second organic layer disposed on the second cathode are formed on the interlayer insulating layer by vacuum evaporation, and A second anode is formed by vacuum sputtering, wherein the second cathode is strip-shaped, the second anode is strip-shaped, and the projection of the second anode on the second cathode is perpendicular to the first Two cathodes.
  • the method further includes: forming a packaging structure on the second anode.
  • the packaging structure is an inorganic/organic laminated thin film packaging structure; when the packaging structure is an inorganic/organic laminated thin film packaging structure, it is formed by chemical vapor deposition.
  • the packaging structure is a glass/glass packaging structure; when the packaging structure is a glass/glass packaging structure, it is formed by a frame/desiccant filling method.
  • the step of preparing the second cathode and preparing the second organic layer further includes: forming a pixel on the second cathode by evaporation or jet printing. Define the layer.
  • a display device including the above-mentioned double-sided display panel.
  • the advantage of the present invention is that the double-sided display panel of the present invention is formed on a single TFT substrate to form OLED devices with two structures of bottom emission and top emission, combined with active matrix organic light-emitting diodes and passive matrix organic light-emitting diodes.
  • the structure of the OLED display mode enables the OLED display to achieve a double-sided display function, with a high resolution function on one side and a basic display function on the other side.
  • an inverted OLED device structure is adopted, which can effectively reduce the IR Drop displayed on this side.
  • the double-sided display panel utilizes top-emission and bottom-emission OLED device structures, and the thickness of each film layer of the OLED device is small, so that the double-sided display panel does not increase its panel thickness to achieve ultra-thin display.
  • the dual display panel adopts a combined design of active matrix organic light emitting diodes and passive matrix organic light emitting diodes, which is easy to manufacture and has the operability of mass production.
  • FIG. 1 is a schematic structural diagram of a double-sided display panel in the first embodiment of the present invention.
  • FIG. 2 is a schematic diagram of the structure of the double-sided display panel in the second embodiment of the present invention.
  • FIG. 3 is a flow chart of the steps of the manufacturing method of the double-sided display panel in the first embodiment of the present invention.
  • FIG. 4 is a flow chart of the steps of the method for manufacturing the double-sided display panel in the second embodiment of the present invention.
  • the embodiment of the present invention provides a double-sided display panel, a manufacturing method thereof, and a display device. The detailed description will be given below.
  • the present invention provides a double-sided display panel.
  • the double-sided display panel is a double-sided display OLED display panel.
  • the panel includes: a base substrate 11; a thin film transistor array (not marked in the figure), the thin film transistor array is arranged on the base substrate 11; a first anode 21, the first anode 21 is arranged on On the thin film transistor array; a first organic layer 23, the first organic layer 23 is disposed on the first anode 21; a first cathode 24, the first cathode 24 is disposed on the first organic Layer 23; an interlayer insulating layer, the interlayer insulating layer 25 is disposed on the first cathode 24; a second cathode 26, the second cathode 26 is disposed on the interlayer insulating layer 25, and
  • the second cathode 26 is strip-shaped; a second organic layer 28 is disposed on the second cathode 26; a second anode 29 is disposed on the
  • the base substrate 11 is a flexible base, such as a PI substrate.
  • the base substrate 11 may also be a glass substrate or a plastic substrate.
  • a buffer layer (not shown in the figure) is provided on the base substrate 11.
  • a thin film transistor array is arranged on the buffer layer.
  • the thin film transistor array includes: a gate electrode 12, a gate insulating layer 13, an active layer 14, an etching stop layer 15, a source and drain (ie, a source 16 and a drain 17), and a passivation layer 18 stacked in sequence. And organic flat layer 19.
  • a first anode 21 is further provided on the thin film transistor array.
  • the first anode 21 is made of a light-transmitting material, such as indium tin oxide ITO or indium zinc oxide IZO.
  • a pixel definition layer 22 is provided on the first anode 21.
  • a first organic layer 23 is provided in the opening of the pixel defining layer 22 and on the first anode 21.
  • the first organic layer 23 serves as a first light-emitting unit, which includes: a hole injection layer HIL, a hole transport layer HTL, an organic light-emitting layer EML, an electron transport layer ETL, and an electron injection layer EIL. Show.
  • a first cathode 24 is provided on the first organic layer 23.
  • the first cathode 24 is arranged on the entire surface, and is made of an opaque metal material, such as aluminum and silver.
  • An interlayer insulating layer 25 is provided on the first cathode 24.
  • a second cathode 26, a second organic layer 28, and a second anode 29 are sequentially stacked on the interlayer insulating layer 25.
  • the second cathode 26 is made of an opaque material, such as aluminum and silver.
  • the second organic layer 28 serves as a second light-emitting unit, which includes a hole injection layer HIL, a hole transport layer HTL, an organic light emitting layer EML, an electron transport layer ETL, and an electron injection layer EIL.
  • the second anode 29 is made of a light-transmitting material, such as indium tin oxide ITO or indium zinc oxide IZO.
  • the second cathode 26 has a strip shape, the second anode 29 has a strip shape, and the projection of the second anode 29 on the second cathode 26 is perpendicular to the second cathode 26.
  • the double-sided display panel further includes: a pixel definition layer 27, and the pixel definition layer 27 is disposed on the second cathode 26 and the second cathode 26 Between the organic layer 28.
  • the structure of the double-sided display panel in the second embodiment is the same as the structure of the double-sided display panel in the first embodiment, except that the second embodiment adds the pixel definition between the second cathode 26 and the second organic layer 28 Layer 27.
  • the double-sided display panel further includes: an encapsulation structure 31, and the encapsulation structure 31 is disposed on the second anode 29.
  • the packaging structure 31 is an inorganic/organic laminated film packaging structure or a glass/glass packaging structure.
  • the thin film transistor array, the first anode 21, the first organic layer 23 and the first cathode 24 form an AMOLED structure
  • the second cathode 26, the second organic layer 28 and The second anode 29 forms a PMOLED structure.
  • the AMOLED structure is an OLED device with a bottom emission structure
  • the PMOLED structure is an OLED device with a top emission structure.
  • the double-sided display panel is formed on a single TFT substrate to form bottom-emitting and top-emitting OLED devices, and combines two different drive structures of active matrix organic light emitting diodes and passive matrix organic light emitting diodes
  • the OLED display mode enables the OLED display device adopting the double-sided display panel to realize the double-sided display function, wherein the AMOLED side has a high-resolution function, and the PMOLED side has a basic display function.
  • the AMOLED side is driven by a thin-film transistor array to display light, and thus has a high-resolution function.
  • the PMOLED side is driven and displayed by the second cathode 26 and the second anode 29 arranged vertically in strips, so it can Play a basic display function.
  • top-emission structure side ie, PMOLED structure
  • an inverted OLED device structure is adopted, so the DC voltage drop (ie IR drop) displayed on this side can be effectively reduced.
  • the double-sided display panel of the present invention only needs to provide a TFT-carrying substrate and utilizes top-emitting and bottom-emitting OLEDs.
  • the device structure, and the thickness of each film layer of the OLED device is small, so that the double-sided display panel does not increase its panel thickness to realize ultra-thin display.
  • FIG. 3 is a flow chart of the steps of the method for manufacturing the double-sided display panel in the first embodiment of the present invention.
  • Step S310 Provide a base substrate, and form a thin film transistor on the base substrate.
  • the base substrate 11 is a flexible substrate, such as a PI substrate.
  • the base substrate 11 may also be a glass substrate or a plastic substrate.
  • a buffer layer is provided on the substrate.
  • a thin film transistor array is arranged on the buffer layer.
  • the thin film transistor array includes: a gate electrode 12, a gate insulating layer 13, an active layer 14, an etching stop layer 15, a source and drain (source 16, drain 17), a passivation layer 18 and Organic flat layer 19.
  • Step S320 forming a first anode on the thin film transistor.
  • the first anode 21 is made of a light-transmitting material, such as indium tin oxide ITO or indium zinc oxide IZO.
  • Step S330 forming a first organic layer and a first cathode on the first organic layer by vacuum evaporation or solution film formation on the first anode and the thin film transistor.
  • a first organic layer 23 is provided on the first anode 21.
  • the first organic layer 23 serves as a first light-emitting unit and includes: a hole injection layer HIL, a hole transport layer HTL, an organic light-emitting layer EML, an electron transport layer ETL, and an electron injection layer EIL.
  • a first cathode 24 is provided on the first organic layer 23.
  • the first cathode 24 is arranged on the entire surface, and is made of an opaque metal material, such as aluminum and silver.
  • Step S340 forming an interlayer insulating layer on the first cathode by chemical vapor deposition.
  • Step S350 forming a second cathode and a second organic layer disposed on the second cathode by vacuum evaporation on the interlayer insulating layer, and forming a second anode by vacuum sputtering, wherein The second cathode is in a strip shape, the second anode is in a strip shape, and the projection of the second anode on the second cathode is perpendicular to the second cathode.
  • An interlayer insulating layer 25 is provided on the first cathode 24.
  • a second cathode 26, a second organic layer 28, and a second anode 29 are sequentially stacked on the interlayer insulating layer 25.
  • the second cathode 26 is made of an opaque material, such as aluminum and silver.
  • the second organic layer 28 serves as a second light-emitting unit, which includes a hole injection layer HIL, a hole transport layer HTL, an organic light emitting layer EML, an electron transport layer ETL, and an electron injection layer EIL.
  • the second anode 29 is made of a light-transmitting material, such as indium tin oxide ITO or indium zinc oxide IZO.
  • the second cathode 26 has a strip shape, the second anode 29 has a strip shape, and the projection of the second anode 29 on the second cathode 26 is perpendicular to the second cathode 26.
  • FIG. 4 is a flow chart of the manufacturing method of the double-sided display panel described in the second embodiment of the present invention.
  • the steps of the second embodiment are basically the same as the steps of the first embodiment, except for step S350.
  • steps S410 to S440 and step S460 of the second embodiment are the same as steps S310 to S340 and step S360 of the first embodiment, except that step S450 is different from step S350.
  • the pixel definition layer is added, mainly for the corresponding structure of the organic film layer formed by the IJP (inject printing, inkjet printing) film forming method.
  • step S350 of the second embodiment in the process of preparing the second cathode and the second organic layer to be prepared, the method further includes: using evaporation or jet printing on the second cathode A pixel definition layer is formed. That is, step S450 is: forming a second cathode on the interlayer insulating layer by vacuum evaporation, forming a pixel definition layer on the second cathode by evaporation or jet printing, and setting it on the second cathode.
  • the second organic layer on the pixel defines the layer, and a second anode is formed by vacuum sputtering, wherein the second cathode is in a strip shape, the second anode is in a strip shape, and the second anode is in the The projection on the second cathode is perpendicular to the second cathode.
  • the method further includes a step after step S350: step S360: forming a package structure on the second anode.
  • the packaging structure 31 may be an inorganic/organic laminated thin film packaging structure.
  • the packaging structure 31 is an inorganic/organic laminated thin film packaging structure, it is formed by chemical vapor deposition.
  • the packaging structure 31 is a glass/glass packaging structure; when the packaging structure is a glass/glass packaging structure, it is formed by a frame/desiccant filling method.
  • a display device (not shown in the figure) is provided, the display device including the above-mentioned double-sided display panel.
  • the specific structure of the double-sided display panel will not be repeated here. Since the double-sided display panel adopts two different driving structures, AMOLED and PMOLED, and can simplify the process, it has the operability of mass production.
  • the display device can be used in display devices such as liquid crystal televisions, liquid crystal displays, mobile phones, and tablet computers.
  • the advantage of the present invention is that the double-sided display panel of the present invention is formed on a single TFT substrate to form OLED devices with two structures of bottom emission and top emission, combined with active matrix organic light-emitting diodes and passive matrix organic light-emitting diodes.
  • the structure of the OLED display mode enables the OLED display to achieve a double-sided display function, with a high-resolution function on one side and a basic display function on the other side.
  • an inverted OLED device structure is adopted, which can effectively reduce the IR Drop displayed on this side.
  • the double-sided display panel utilizes top-emission and bottom-emission OLED device structures, and the thickness of each film layer of the OLED device is small, so that the double-sided display panel does not increase its panel thickness to achieve ultra-thin display.
  • the dual display panel adopts a design combining active matrix organic light emitting diodes and passive matrix organic light emitting diodes, which is easy to manufacture and has the operability of mass production.
  • the subject of this application can be manufactured and used in industry and has industrial applicability.

Abstract

一种双面显示面板及其制备方法。所述双面显示面板是在单个TFT基板上,形成底发射及顶发射两种结构的OLED器件,结合主动矩阵有机发光二极管以及被动矩阵有机发光二极管两种不同驱动结构的OLED显示方式,使OLED显示器实现双面显示功能,其一侧具有高分辨率功能,另一侧具有基本显示功能。

Description

双面显示面板及其制备方法、显示装置 技术领域
本发明涉及OLED显示技术领域,尤其涉及一种双面显示面板及其制备方法、显示装置。
背景技术
OLED 即有机发光二极管(Organic Light-Emitting Diode),具备自发光、高亮度、宽视角、高对比度、可挠曲、低能耗等特性,因此受到广泛的关注,并作为新一代的显示方式,已开始逐渐取代传统LCD( 液晶显示器,Liquid Crystal Display),被广泛应用在手机屏幕、电脑显示器、全彩电视等。OLED根据发光特点,可以分为顶发射型和底发射型,且OLED具有轻薄的特点。
技术问题
如何最大限度发挥OLED特点,使OLED产品更具吸引力是目前OLED业者所思考的问题。
技术解决方案
本发明的目的在于,提供一种双面显示面板及其制备方法。所述双面显示面板是在单个TFT基板上,形成底发射及顶发射两种结构的OLED器件,结合主动矩阵有机发光二极管(Active-matrix organic light emitting diode,简称AMOLED)以及被动矩阵有机发光二极管 (Passive Matrix organic light emitting diode,简称PMOLED)两种不同驱动结构的OLED显示方式,使OLED显示器实现双面显示功能,其一侧具有高分辨率功能,另一侧具有基本显示显示功能。另外,由于位于所述双面显示面板的顶发射结构侧,采用倒置OLED器件结构,从而能够有效降低该侧显示的IR Drop。再者,所述双面显示面板利用顶发射及底发射的OLED器件结构,且OLED器件各膜层厚度较小,使得所述双面显示面板不会增加其面板厚度,以实现超薄显示。
根据本发明的一方面,本发明提供了一种双面显示面板,其包括:一衬底基板;一薄膜晶体管阵列,设置在所述衬底基板上;一第一阳极,设置在所述薄膜晶体管阵列上;一第一有机层,设置在所述第一阳极上;一第一阴极,设置在所述第一有机层上;一层间绝缘层,设置在所述第一阴极上;一第二阴极,在所述层间绝缘层,且所述第二阴极呈条状;一第二有机层,设置在所述第二阴极上;一第二阳极,设置在所述第二有机层上,且所述第二阳极呈条状,所述第二阳极在所述第二阴极上的投影为垂直于所述第二阴极;所述第一阴极和所述第二阴极均由非透光的金属材料制成;以及所述第一阳极和所述第二阳极均由透光材料制成。
根据本发明的另一方面,本发明提供了一种双面显示面板,其包括:一衬底基板;一薄膜晶体管阵列,所述薄膜晶体管阵列设置在所述衬底基板上;一第一阳极,所述第一阳极设置在所述薄膜晶体管阵列上;一第一有机层,所述第一有机层设置在所述第一阳极上;一第一阴极,所述第一阴极设置在所述第一有机层上;一层间绝缘层,所述层间绝缘层设置在所述第一阴极上;一第二阴极,所述第二阴极设置在所述层间绝缘层,且所述第二阴极呈条状;一第二有机层,所述第二有机层设置在所述第二阴极上;以及一第二阳极,所述第二阳极设置在所述第二有机层上,且所述第二阳极呈条状,所述第二阳极在所述第二阴极上的投影为垂直于所述第二阴极。
在本发明的一实施例中,所述双面显示面板还包括:一封装结构,所述封装结构设置在所述第二阳极上。
在本发明的一实施例中,所述双面显示面板还包括:一像素定义层,所述像素定义层设置在所述第二阴极和所述第二有机层之间。
在本发明的一实施例中,所述第一阴极和所述第二阴极均由非透光的金属材料制成。
在本发明的一实施例中,所述第一阳极和所述第二阳极均由透光材料制成。
在本发明的一实施例中,所述封装结构为无机/有机层叠的薄膜封装结构,或玻璃/玻璃的封装结构。
在本发明的一实施例中,所述衬底基板为柔性基底。
根据本发明的又一方面,提供一种采用上述双面显示面板的制备方法,所述方法包括步骤:提供一衬底基板,在所述衬底基板上形成一薄膜晶体管;在所述薄膜晶体管上形成一第一阳极;在所述第一阳极和所述薄膜晶体管上通过真空蒸镀或溶液成膜方式形成一第一有机层及位于第一有机层上的第一阴极;在所述第一阴极上通过化学气相沉积方式形成一层间绝缘层;以及在所述层间绝缘层上通过真空蒸镀方式形成一第二阴极以及设置在所述第二阴极上的第二有机层,并且通过真空溅射方式形成一第二阳极,其中所述第二阴极呈条状,所述第二阳极呈条状,所述第二阳极在所述第二阴极上的投影为垂直于所述第二阴极。
在本发明的一实施例中,在形成第二阴极、第二有机层和第二阳极的步骤之后还包括:在所述第二阳极上形成一封装结构。
在本发明的一实施例中,所述封装结构为无机/有机层叠的薄膜封装结构;当所述封装结构为无机/有机层叠的薄膜封装结构时,通过化学气相沉积方式形成。
在本发明的一实施例中,所述封装结构为玻璃/玻璃的封装结构;当所述封装结构为玻璃/玻璃的封装结构时,通过框架/干燥剂填充方式形成。
在本发明的一实施例中,在制备完所述第二阴极和待制备所述第二有机层的步骤中,进一步包括:在所述第二阴极上通过蒸镀或喷射打印方式形成一像素定义层。
根据本发明的又一方面,提供一种显示装置,所述显示装置包括上述双面显示面板。
有益效果
本发明的优点在于,本发明所述双面显示面板是在单个TFT基板上,形成底发射及顶发射两种结构的OLED器件,结合主动矩阵有机发光二极管以及被动矩阵有机发光二极管两种不同驱动结构的OLED显示方式,使OLED显示器实现双面显示功能,其一侧具有高分辨率功能,另一侧具有基本显示显示功能。另外,由于位于所述双面显示面板的顶发射结构侧,采用倒置OLED器件结构,从而能够有效降低该侧显示的IR Drop。再者,所述双面显示面板利用顶发射及底发射的OLED器件结构,且OLED器件各膜层厚度较小,使得所述双面显示面板不会增加其面板厚度,以实现超薄显示。另外,所述双显示面板采用主动矩阵有机发光二极管和被动矩阵有机发光二极管相结合的设计,便于制备,而且具有量产的可操作性。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例一中的双面显示面板的结构示意图。
图2是本发明实施例二中的双面显示面板的结构示意图。
图3是本发明实施例一中所述双面显示面板的制备方法的步骤流程图。
图4是本发明实施例二中所述双面显示面板的制备方法的步骤流程图。
本发明的实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的说明书和权利要求书以及上述附图中的术语“第一”、“第二”、“第三”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应当理解,这样描述的对象在适当情况下可以互换。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含。
在本专利文档中,下文论述的附图以及用来描述本发明公开的原理的各实施例仅用于说明,而不应解释为限制本发明公开的范围。所属领域的技术人员将理解,本发明的原理可在任何适当布置的系统中实施。将详细说明示例性实施方式,在附图中示出了这些实施方式的实例。此外,将参考附图详细描述根据示例性实施例的终端。附图中的相同附图标号指代相同的元件。
本发明说明书中使用的术语仅用来描述特定实施方式,而并不意图显示本发明的概念。除非上下文中有明确不同的意义,否则,以单数形式使用的表达涵盖复数形式的表达。在本发明说明书中,应理解,诸如“包括”、“具有”以及“含有”等术语意图说明存在本发明说明书中揭示的特征、数字、步骤、动作或其组合的可能性,而并不意图排除可存在或可添加一个或多个其他特征、数字、步骤、动作或其组合的可能性。附图中的相同参考标号指代相同部分。
本发明实施例提供一种双面显示面板及其制备方法、显示装置。以下将分别进行详细说明。
参阅图1所示,根据本发明的一方面,本发明提供了一种双面显示面板。在本实施例中,所述双面显示面板为双面显示OLED显示面板。该面板包括:一衬底基板11;一薄膜晶体管阵列(图中未标注),所述薄膜晶体管阵列设置在所述衬底基板11上;一第一阳极21,所述第一阳极21设置在所述薄膜晶体管阵列上;一第一有机层23,所述第一有机层23设置在所述第一阳极21上;一第一阴极24,所述第一阴极24设置在所述第一有机层23上;一层间绝缘层,所述层间绝缘层25设置在所述第一阴极24上;一第二阴极26,所述第二阴极26设置在所述层间绝缘层25,且所述第二阴极26呈条状;一第二有机层28,所述第二有机层28设置在所述第二阴极26上;一第二阳极29,所述第二阳极29设置在所述第二有机层28上,且所述第二阳极29呈条状,所述第二阳极29在所述第二阴极26上的投影为垂直于所述第二阴极26。
具体地,所述衬底基板11为一柔性基底,例如为PI基板。当然在其他部分实施例中,所述衬底基板11也可以为玻璃基板或塑料基板。
在所述衬底基板11上设置一缓冲层(图中未示)。在所述缓冲层上设置一薄膜晶体管阵列。所述薄膜晶体管阵列包括:依次层叠设置的栅极12、栅极绝缘层13、有源层14、刻蚀阻挡层15、源漏极(即源极16和漏极17)、钝化层18和有机平坦层19。
在所述薄膜晶体管阵列上进一步设置一第一阳极21。所述第一阳极21采用透光材料制成,例如氧化铟锡ITO或氧化铟锌IZO等。
在所述第一阳极21上设置像素定义层22。在像素定义层22的开口部且在所述第一阳极21上设置第一有机层23。所述第一有机层23作为第一发光单元,其包括:空穴注入层HIL、空穴传输层HTL、有机发光层EML、电子传输层ETL、电子注入层EIL,该些膜层图中未示。
在所述第一有机层23上设置第一阴极24。所述第一阴极24为整面设置,且由不透光的金属材料制成,例如铝、银等。
在所述第一阴极24上设置层间绝缘层25。在所述层间绝缘层25上依次层叠设置第二阴极26、第二有机层28和第二阳极29。其中,第二阴极26由不透光的材料制成,例如铝、银等。所述第二有机层28作为第二发光单元,其包括:空穴注入层HIL、空穴传输层HTL、有机发光层EML、电子传输层ETL、电子注入层EIL。所述第二阳极29采用透光材料制成,例如氧化铟锡ITO或氧化铟锌IZO等。其中,所述第二阴极26呈条状,所述第二阳极29呈条状,所述第二阳极29在所述第二阴极26上的投影为垂直于所述第二阴极26。
参阅图2所示,可选的,在实施例二中,所述双面显示面板还包括:一像素定义层27,所述像素定义层27设置在所述第二阴极26和所述第二有机层28之间。在实施例二中的双面显示面板的结构与实施例一中的双面显示面板的结构相同,除了实施例二中多了介于第二阴极26和第二有机层28之间的像素定义层27。
参阅图1,在实施例一中,所述双面显示面板还包括:一封装结构31,所述封装结构31设置在所述第二阳极上29。所述封装结构31为无机/有机层叠的薄膜封装结构,或玻璃/玻璃的封装结构。
继续参阅图1,在所述双面显示面板中,薄膜晶体管阵列、第一阳极21、第一有机层23和第一阴极24形成一AMOLED结构,而第二阴极26、第二有机层28和第二阳极29形成一PMOLED结构。且,所述AMOLED结构为一底发射结构的OLED器件,所述PMOLED结构为一顶发射结构的OLED器件。在本实施例中,所述双面显示面板是在单个TFT基板上,形成底发射及顶发射两种结构的OLED器件,并且结合主动矩阵有机发光二极管以及被动矩阵有机发光二极管两种不同驱动结构的OLED显示方式,使得采用该双面显示面板的OLED显示装置能够实现双面显示功能,其中AMOLED一侧具有高分辨率功能,而PMOLED一侧具有基本显示显示功能。所述AMOLED一侧是通过薄膜晶体管阵列驱动并显示发光,因而具有高分辨率功能,所述PMOLED一侧是通过条状且垂直设置的第二阴极26和第二阳极29而驱动显示,因此能够起到基本显示功能。
另外,在顶发射结构侧(即PMOLED结构),采用倒置OLED器件结构,因此能够有效地降低该侧显示的直流压降(即IR drop)。
另外,相较于现有利用上下两个承载TFT的基板而形成的双面显示面板结构,本发明所述双面显示面板仅需提供一个承载TFT的基板,并利用顶发射及底发射的OLED器件结构,且OLED器件各膜层厚度较小,使得所述双面显示面板不会增加其面板厚度,以实现超薄显示。
图3是本发明实施例一中所述双面显示面板的制备方法的步骤流程图。
根据本发明的另一方面,提供一种采用上述双面显示面板的制备方法,所述方法包括步骤:
步骤S310:提供一衬底基板,在所述衬底基板上形成一薄膜晶体管。
具体地,所述衬底基板11为一柔性基底,例如PI基板。当然在其他部分实施例中,所述衬底基板11也可以为玻璃基板或塑料基板。在所述基板上设置一缓冲层。在所述缓冲层上设置一薄膜晶体管阵列。所述薄膜晶体管阵列包括:依次层叠设置的栅极12、栅极绝缘层13、有源层14、刻蚀阻挡层15、源漏极(源极16、漏极17)、钝化层18和有机平坦层19。
步骤S320:在所述薄膜晶体管上形成一第一阳极。
所述第一阳极21采用透光材料制成,例如氧化铟锡ITO或氧化铟锌IZO等。
步骤S330:在所述第一阳极和所述薄膜晶体管上通过真空蒸镀或溶液成膜方式形成一第一有机层及位于第一有机层上的第一阴极。
在所述第一阳极21上设置第一有机层23。所述第一有机层23作为第一发光单元,其包括:空穴注入层HIL、空穴传输层HTL、有机发光层EML、电子传输层ETL、电子注入层EIL。
在所述第一有机层23上设置第一阴极24。所述第一阴极24为整面设置,且由不透光的金属材料制成,例如铝、银等。
步骤S340:在所述第一阴极上通过化学气相沉积方式形成一层间绝缘层。
步骤S350:在所述层间绝缘层上通过真空蒸镀方式形成一第二阴极以及设置在所述第二阴极上的第二有机层,并且通过真空溅射方式形成一第二阳极,其中所述第二阴极呈条状,所述第二阳极呈条状,所述第二阳极在所述第二阴极上的投影为垂直于所述第二阴极。
在所述第一阴极24上设置层间绝缘层25。在所述层间绝缘层25上依次层叠设置第二阴极26、第二有机层28和第二阳极29。其中,第二阴极26由不透光的材料制成,例如铝、银等。所述第二有机层28作为第二发光单元,其包括:空穴注入层HIL、空穴传输层HTL、有机发光层EML、电子传输层ETL、电子注入层EIL。所述第二阳极29采用透光材料制成,例如氧化铟锡ITO或氧化铟锌IZO等。其中,所述第二阴极26呈条状,所述第二阳极29呈条状,所述第二阳极29在所述第二阴极26上的投影为垂直于所述第二阴极26。
参阅图4,图4是本发明实施例二中所述双面显示面板的制备方法的步骤流程图。实施例二的步骤与实施例一的步骤基本相同,除了步骤S350。也就是说,实施例二的步骤S410至步骤S440以及步骤S460与实施一的步骤S310至步骤S340以及步骤S360相同,除了步骤S450与步骤S350不同。在实施例二中,增加像素定义层,主要针对采用IJP(inject printing,喷墨打印)成膜方式所形成的有机膜层的对应结构。
具体地,在实施例二的步骤S350中,在制备完所述第二阴极和待制备所述第二有机层的过程中,进一步包括:在所述第二阴极上通过蒸镀或喷射打印方式形成一像素定义层。也就是说,步骤S450为:在所述层间绝缘层上通过真空蒸镀方式形成一第二阴极,在所述第二阴极上通过蒸镀或喷射打印方式形成一像素定义层以及设置在所述像素定义层上的第二有机层,并且通过真空溅射方式形成一第二阳极,其中所述第二阴极呈条状,所述第二阳极呈条状,所述第二阳极在所述第二阴极上的投影为垂直于所述第二阴极。
继续参见图3,可选的,所述方法在步骤S350之后还包括步骤:步骤S360:在所述第二阳极上形成一封装结构。
其中,所述封装结构31可以为无机/有机层叠的薄膜封装结构。当所述封装结构31为无机/有机层叠的薄膜封装结构时,通过化学气相沉积方式形成。当然,在其他部分实施例中,所述封装结构31为玻璃/玻璃的封装结构;当所述封装结构为玻璃/玻璃的封装结构时,通过框架/干燥剂填充方式形成。
根据本发明的又一方面,提供一种显示装置(图中未示),所述显示装置包括上述双面显示面板。所述双面显示面板的具体结构在此不再赘述。由于所述双面显示面板采用AMOLED和PMOLED两种不同驱动结构,且能够实现工艺简单化,因此,具有大规模量产的可操作性。所述显示装置可以用于液晶电视、液晶显示器、手机、平板电脑等显示装置。
本发明的优点在于,本发明所述双面显示面板是在单个TFT基板上,形成底发射及顶发射两种结构的OLED器件,结合主动矩阵有机发光二极管以及被动矩阵有机发光二极管两种不同驱动结构的OLED显示方式,使OLED显示器实现双面显示功能,其一侧具有高分辨率功能,另一侧具有基本显示显示功能。另外,由于位于所述双面显示面板的顶发射结构侧,采用倒置OLED器件结构,从而能够有效降低该侧显示的IR Drop。再者,所述双面显示面板利用顶发射及底发射的OLED器件结构,且OLED器件各膜层厚度较小,使得所述双面显示面板不会增加其面板厚度,以实现超薄显示。另外,所述双显示面板采用主动矩阵有机发光二极管和被动矩阵有机发光二极管相结合的设计,便于制备,而且具有量产的可操作性。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
工业实用性
本申请的主题可以在工业中制造和使用,具备工业实用性。

Claims (11)

  1. 一种双面显示面板,其包括:
    一衬底基板;
    一薄膜晶体管阵列,设置在所述衬底基板上;
    一第一阳极,设置在所述薄膜晶体管阵列上;
    一第一有机层,设置在所述第一阳极上;
    一第一阴极,设置在所述第一有机层上;
    一层间绝缘层,设置在所述第一阴极上;
    一第二阴极,在所述层间绝缘层,且所述第二阴极呈条状;
    一第二有机层,设置在所述第二阴极上;
    一第二阳极,设置在所述第二有机层上,且所述第二阳极呈条状,
    所述第二阳极在所述第二阴极上的投影为垂直于所述第二阴极;
    所述第一阴极和所述第二阴极均由非透光的金属材料制成;以及
    所述第一阳极和所述第二阳极均由透光材料制成。
  2. 一种双面显示面板,其包括:
    一衬底基板;
    一薄膜晶体管阵列,设置在所述衬底基板上;
    一第一阳极,设置在所述薄膜晶体管阵列上;
    一第一有机层,设置在所述第一阳极上;
    一第一阴极,设置在所述第一有机层上;
    一层间绝缘层,设置在所述第一阴极上;
    一第二阴极,在所述层间绝缘层,且所述第二阴极呈条状;
    一第二有机层,设置在所述第二阴极上;以及
    一第二阳极,设置在所述第二有机层上,且所述第二阳极呈条状,所述第二阳极在所述第二阴极上的投影为垂直于所述第二阴极。
  3. 根据权利要求2所述的双面显示面板,其中所述双面显示面板还包括:一封装结构,设置在所述第二阳极上。
  4. 根据权利要求2所述的双面显示面板,其中所述双面显示面板还包括:一像素定义层,设置在所述第二阴极和所述第二有机层之间。
  5. 根据权利要求2所述的双面显示面板,其中所述第一阴极和所述第二阴极均由非透光的金属材料制成。
  6. 根据权利要求2所述的双面显示面板,其中所述第一阳极和所述第二阳极均由透光材料制成。
  7. 一种采用权利要求2所述双面显示面板的制备方法,其中所述方法包括步骤:
    提供一衬底基板,在所述衬底基板上形成一薄膜晶体管;
    在所述薄膜晶体管上形成一第一阳极;
    在所述第一阳极和所述薄膜晶体管上通过真空蒸镀或溶液成膜方式形成一第一有机层及位于第一有机层上的第一阴极;
    在所述第一阴极上通过化学气相沉积方式形成一层间绝缘层;以及
    在所述层间绝缘层上通过真空蒸镀方式形成一第二阴极以及设置在所述第二阴极上的第二有机层,并且通过真空溅射方式形成一第二阳极,其中所述第二阴极呈条状,所述第二阳极呈条状,所述第二阳极在所述第二阴极上的投影为垂直于所述第二阴极。
  8. 根据权利要求7所述的制备方法,其中在形成第二阴极、第二有机层和第二阳极的步骤之后还包括:在所述第二阳极上形成一封装结构。
  9. 根据权利要求8所述的制备方法,其中所述封装结构为无机/有机层叠的薄膜封装结构;当所述封装结构为无机/有机层叠的薄膜封装结构时,通过化学气相沉积方式形成。
  10. 根据权利要求8所述的制备方法,其中所述封装结构为玻璃/玻璃的封装结构;当所述封装结构为玻璃/玻璃的封装结构时,通过框架/干燥剂填充方式形成。
  11. 根据权利要求7所述的制备方法,其中在制备完所述第二阴极和待制备所述第二有机层的步骤中,进一步包括:在所述第二阴极上通过蒸镀或喷射打印方式形成一像素定义层。
PCT/CN2019/108927 2019-05-31 2019-09-29 双面显示面板及其制备方法、显示装置 WO2020237952A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/605,211 US10991785B2 (en) 2019-05-31 2019-09-29 Double-sided display panel, fabricating method of same, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910469452.7A CN110265437A (zh) 2019-05-31 2019-05-31 双面显示面板及其制备方法、显示装置
CN201910469452.7 2019-05-31

Publications (1)

Publication Number Publication Date
WO2020237952A1 true WO2020237952A1 (zh) 2020-12-03

Family

ID=67916469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/108927 WO2020237952A1 (zh) 2019-05-31 2019-09-29 双面显示面板及其制备方法、显示装置

Country Status (2)

Country Link
CN (1) CN110265437A (zh)
WO (1) WO2020237952A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110265437A (zh) * 2019-05-31 2019-09-20 深圳市华星光电半导体显示技术有限公司 双面显示面板及其制备方法、显示装置
CN111489658B (zh) * 2020-04-23 2022-04-08 上海天马微电子有限公司 双面显示面板及其制作方法、双面显示装置
CN114170919A (zh) * 2021-12-13 2022-03-11 Tcl华星光电技术有限公司 双面显示面板及双面显示拼接屏

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101009313A (zh) * 2006-01-25 2007-08-01 三星Sdi株式会社 有接合到框架的熔料密封和增强结构的有机发光显示装置
CN101729488A (zh) * 2009-11-13 2010-06-09 四川虹视显示技术有限公司 一种双面oled显示器
US20170365820A1 (en) * 2016-06-17 2017-12-21 Samsung Display Co., Ltd. Organic light emitting diode display
CN108364990A (zh) * 2018-02-27 2018-08-03 武汉华星光电半导体显示技术有限公司 双面显示面板及双面显示装置
CN109065752A (zh) * 2018-08-02 2018-12-21 上海天马有机发光显示技术有限公司 有机发光显示面板和显示装置
CN110265437A (zh) * 2019-05-31 2019-09-20 深圳市华星光电半导体显示技术有限公司 双面显示面板及其制备方法、显示装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004014316A (ja) * 2002-06-07 2004-01-15 Rohm Co Ltd 両面表示有機エレクトロルミネセンスディスプレイモジュール及び情報端末
US7622863B2 (en) * 2003-06-30 2009-11-24 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and electronic device including first and second light emitting elements
KR101221352B1 (ko) * 2005-12-30 2013-01-11 엘지디스플레이 주식회사 표시장치 및 그 제조방법
CN201812823U (zh) * 2010-08-13 2011-04-27 苏州瀚瑞微电子有限公司 双面有机发光显示装置
CN105789256A (zh) * 2016-03-18 2016-07-20 京东方科技集团股份有限公司 一种 oled 双面显示基板、制作方法及显示器
CN205645816U (zh) * 2016-05-04 2016-10-12 武汉华星光电技术有限公司 双面oled显示器
CN107331687A (zh) * 2017-07-11 2017-11-07 武汉华星光电半导体显示技术有限公司 Oled双面显示器及其制作方法
CN109585507B (zh) * 2018-11-26 2021-05-28 武汉华星光电半导体显示技术有限公司 显示装置及其制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101009313A (zh) * 2006-01-25 2007-08-01 三星Sdi株式会社 有接合到框架的熔料密封和增强结构的有机发光显示装置
CN101729488A (zh) * 2009-11-13 2010-06-09 四川虹视显示技术有限公司 一种双面oled显示器
US20170365820A1 (en) * 2016-06-17 2017-12-21 Samsung Display Co., Ltd. Organic light emitting diode display
CN108364990A (zh) * 2018-02-27 2018-08-03 武汉华星光电半导体显示技术有限公司 双面显示面板及双面显示装置
CN109065752A (zh) * 2018-08-02 2018-12-21 上海天马有机发光显示技术有限公司 有机发光显示面板和显示装置
CN110265437A (zh) * 2019-05-31 2019-09-20 深圳市华星光电半导体显示技术有限公司 双面显示面板及其制备方法、显示装置

Also Published As

Publication number Publication date
CN110265437A (zh) 2019-09-20

Similar Documents

Publication Publication Date Title
TWI231153B (en) Organic electroluminescence display device and its fabrication method
WO2018113018A1 (zh) Oled显示面板及其制作方法
EP3528299B1 (en) Manufacturing method of a transparent oled display
WO2018045658A1 (zh) Amoled显示装置
WO2020220463A1 (zh) Tft阵列基板及oled显示面板
JP2016006516A (ja) 有機発光ダイオード表示装置およびその製造方法
US8927327B2 (en) Method of manufacturing organic light emitting display device having polarizable particles in sealant
WO2020237952A1 (zh) 双面显示面板及其制备方法、显示装置
CN104779268B (zh) Oled显示器件
TW200536433A (en) Organic light-emitting diode, display device, and telecommunication employing the same
CN104779269A (zh) Oled显示器件
WO2019085030A1 (zh) 有机电致发光显示装置及制作方法
WO2015027532A1 (zh) 有机发光二极管阳极连接结构及其制作方法
KR101352237B1 (ko) 유기전계발광표시장치의 제조방법
US10991785B2 (en) Double-sided display panel, fabricating method of same, and display device
KR20110001180A (ko) 유기전계발광소자 및 그 제조방법
WO2020103224A1 (zh) 显示面板及显示装置
KR101908512B1 (ko) 유기 전계 발광 표시 패널 및 그의 제조 방법
KR101358393B1 (ko) 애드-온 방식으로 터치 패널을 구비한 플렉서블 표시장치 및 그 제조 방법
KR101889333B1 (ko) 유기전계 발광표시장치 및 그 제조방법
JP2005243604A (ja) 有機エレクトロルミネセンス装置及びそれを製造する方法
CN104795429A (zh) Oled显示器件
KR101446344B1 (ko) 유기전계발광표시장치 및 그 제조방법
KR100961954B1 (ko) 유기발광디스플레이 제조방법
Zhu OLED activity and technology development

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19931387

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19931387

Country of ref document: EP

Kind code of ref document: A1