WO2020237730A1 - 一种聚酰亚胺及其制备方法、电致变色器件 - Google Patents

一种聚酰亚胺及其制备方法、电致变色器件 Download PDF

Info

Publication number
WO2020237730A1
WO2020237730A1 PCT/CN2019/090931 CN2019090931W WO2020237730A1 WO 2020237730 A1 WO2020237730 A1 WO 2020237730A1 CN 2019090931 W CN2019090931 W CN 2019090931W WO 2020237730 A1 WO2020237730 A1 WO 2020237730A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide
polyamic acid
solution
cage silsesquioxane
polyimide material
Prior art date
Application number
PCT/CN2019/090931
Other languages
English (en)
French (fr)
Inventor
汪亚民
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US16/497,445 priority Critical patent/US20210292480A1/en
Publication of WO2020237730A1 publication Critical patent/WO2020237730A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/026Wholly aromatic polyamines
    • C08G73/0266Polyanilines or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • C08G73/1071Wholly aromatic polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • C08G73/101Preparatory processes from tetracarboxylic acids or derivatives and diamines containing chain terminating or branching agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • C08G73/105Polyimides containing oxygen in the form of ether bonds in the main chain with oxygen only in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1057Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain
    • C08G73/106Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/452Block-or graft-polymers containing polysiloxane sequences containing nitrogen-containing sequences
    • C08G77/455Block-or graft-polymers containing polysiloxane sequences containing nitrogen-containing sequences containing polyamide, polyesteramide or polyimide sequences
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K9/00Tenebrescent materials, i.e. materials for which the range of wavelengths for energy absorption is changed as a result of excitation by some form of energy
    • C09K9/02Organic tenebrescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1408Carbocyclic compounds
    • C09K2211/1425Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1441Heterocyclic
    • C09K2211/1466Heterocyclic containing nitrogen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1441Heterocyclic
    • C09K2211/1491Heterocyclic containing other combinations of heteroatoms
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1516Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising organic material
    • G02F1/15165Polymers

Definitions

  • the invention relates to the field of electroluminescence, in particular to a polyimide, a preparation method thereof, and an electrochromic device.
  • Electroluminescent materials can be roughly divided into three types: the first type: contains a molecular binary, the second type: essentially has a switchable fluorophore, and the third type: the formation of a switchable fluorescent polymer.
  • electrochromic polymers are very popular because of their fast conversion, simple molecular design and good processability.
  • polyaniline has been widely studied due to its ease of synthesis, high electroactivity and reversible acid-base doping/undoping.
  • electrochromic devices based on polyaniline are still few, mainly due to their limited solubility and poor processability. Therefore, there is an urgent need for new strategies to improve its solubility and processability.
  • the invention provides a polyimide, a preparation method thereof, and an electrochromic device to solve the problems of poor solubility and processing performance of the existing polyaniline-based electrochromic device in the prior art.
  • the present invention provides a polyimide material with cage-type silsesquioxane as the end-capping group.
  • the present invention also provides a preparation method of polyimide material, which is carried out according to the following steps: providing carboxyl-terminated polyamic acid; dissolving carboxyl-terminated polyamic acid in N,N'-dimethylacetamide to obtain the first A solution; add cage silsesquioxane to the first solution, and at a temperature of 110 °C, the polymerization reaction for 5h ⁇ 8h, after the completion of the reaction, cool to room temperature to obtain cage silsesquioxane Alkane-terminated polyimide solution; fully stir the polyimide solution for 3h-5h, remove the foam and spin-coat on a glass substrate; place the glass substrate in an oven and bake to obtain a cage Type silsesquioxane terminated polyimide material.
  • cage silsesquioxane is at least one of the following types, and its molecular structural formulas are:
  • the step of providing carboxyl-terminated polyamic acid includes mixing 1,2,4,5-cyclohexanetetracarboxylic dianhydride and electroactive diamine monomer; under an argon atmosphere, mixing 4,40- Diamino-400-N carbazolyl triphenylamine and dimethylacetamide were added to a 50mL three-necked round bottom flask; the copolymerization reaction was carried out with magnetic stirring at room temperature for 24-96 hours to obtain a polyamic acid solution; the obtained polyamide The acid solution was poured into 100mL-500mL methanol with stirring to produce a gray precipitate; the precipitate was washed and dried in vacuum to obtain carboxy-terminated polyamic acid.
  • the precipitate is washed with water and methanol; the temperature of vacuum drying is between 300°C and 475°C.
  • the molecular structural formula of the polyimide is:
  • the present invention also provides an electrochromic device, including the polyimide material.
  • the electrochromic device includes an electrochromic layer, which has an electroluminescent material, and the material used is the polyimide material.
  • the electrochromic layer is an anode electrochromic layer or a cathode electrochromic layer.
  • the polyimide of the present invention, the preparation method thereof, the electrochromic device introduces oligoaniline and fluorescent triphenylamine fragments to prepare the raw material into a polyamic acid solution, and then introduces oligomeric cage silsesquioxane to form a blocked poly Imide not only gives the material the ability of electrochromic, but also gives the material stable electroluminescence, which provides directional guidance for subsequent fluorescent displays and electrochromic devices.
  • Figure 1 is the cyclic voltammogram of carboxy-terminated polyamic acid and oligomeric cage silsesquioxane terminated polyimide in CH3CN solution.
  • Figure 2 is the fluorescence spectrum of a polyimide film terminated with a quantitative ammonium persulfate oxidation compound carboxyl-terminated polyamic acid/oligomeric cage silsesquioxane in N,N'-dimethylacetamide solution.
  • Figure 3 is a specific process condition for using the oven.
  • Figure 4 is the second specific process condition using the oven.
  • Figure 5 is the third of the specific process conditions using the oven.
  • Figure 6 is the fourth specific process condition using the oven.
  • the polyimide of the present invention is a compound based on the end-capped oligomeric cage silsesquioxane, and the end-capped oligomeric cage silsesquioxane is added to form large side groups to give the polyimide Stable electroluminescence of imide materials.
  • the oligomeric cage silsesquioxane is an inorganic-organic three-dimensional hybrid material, which is between the structures of silica and polysiloxane, and is a new type of additive that can be used for reaction and doping. Its molecular formula is:
  • a molecular structural formula of the polyimide is:
  • the specific preparation method of the polyimide includes the following steps.
  • the carboxy-terminated polyamic acid of the dried precipitate is dissolved in 8 mL-12 mL of N,N'-dimethylacetamide to obtain the first solution, wherein the molecular structure of the carboxy-terminated polyamic acid is:
  • the specific preparation method includes the following steps:
  • the copolymerization reaction is carried out under magnetic stirring at room temperature for 24-96 hours to obtain a polyamic acid solution.
  • the obtained polyamic acid solution was poured into 100 mL-500 mL methanol under stirring, resulting in a gray precipitate.
  • the precipitate was washed thoroughly with water and methanol to remove impurities, and then dried in vacuum at 300-475°C to obtain carboxy-terminated polyamic acid.
  • oligomeric cage silsesquioxane Add 0.1mmol to 1.2mmol of oligomeric cage silsesquioxane to the first solution and perform polymerization at a high temperature of 110°C for 5h-8h. After cooling to room temperature, the second solution is obtained.
  • the molecular structure of oligomeric cage silsesquioxane is:
  • the second solution is stirred for 3 to 5 hours to remove bubbles and then spin-coated on the glass substrate.
  • an oligomeric cage silsesquioxane terminated polyimide is obtained.
  • the oven forms the oligomeric cage silsesquioxane-terminated polyimide through specific process conditions (FIGS. 3 to 6), specifically, the oligomeric cage silsesquioxane-terminated polyimide
  • the formation process of polyimide lasts for 3-5h; the heating rate is 4-10°C, the maximum temperature is 420°C—500°C, the baking stage is divided into two methods: hard baking and soft baking, hard baking is directly heating up to the highest temperature The temperature is lowered at a constant temperature for about 1 hour, while the soft drying is a constant temperature platform that is divided into two or more times, and finally the temperature is lowered, so as to realize the crosslinking and solvent removal of the material in different constant temperature stages.
  • the method used in this patent includes but is not limited to the above-mentioned baking method and time interval.
  • FIG. 3 is a graph showing the temperature change of the glass substrate spin-coated with the polyimide solution during the first preliminary baking.
  • the temperature at which the oligomeric cage silsesquioxane-terminated polyimide enters the oven is 120°C and kept at a constant temperature for 30 minutes, and is raised to the maximum temperature of 450°C at a rate of 4°C/min and kept for 60 minutes, and then at a temperature of 4°C/min. The speed of °C/min is reduced to 120 °C.
  • Fig. 4 is a temperature change diagram of the glass substrate spin-coated with the polyimide solution during the second baking.
  • the temperature at which the oligomeric cage silsesquioxane-terminated polyimide enters the oven is 120°C and kept at a constant temperature for 30 minutes, and is raised to the maximum temperature of 475°C at a rate of 4°C/min and kept for 60 minutes, and then at 4°C/min. The speed of °C/min is reduced to 120 °C.
  • Fig. 5 is a temperature change diagram of the glass substrate spin-coated with the polyimide solution during the third baking.
  • the temperature at which the oligomeric cage silsesquioxane-terminated polyimide enters the oven is 120°C and kept at a constant temperature for 30 minutes, continues to be heated for 20 minutes to 180°C and kept at a constant temperature for 20 minutes, and then continues to be heated for 40 minutes to 350°C and kept at a constant temperature for 20 minutes , Reheat for 30min to 450°C and keep at constant temperature for 40min, then cool to 120°C.
  • Fig. 6 is a temperature change diagram of the glass substrate spin-coated with the polyimide solution during the fourth baking.
  • the oligomeric cage-type silsesquioxane-terminated polyimide enters the oven at a temperature of 120°C and kept at a constant temperature for 15 minutes. After heating for 35 minutes to 180°C and keeping the constant temperature for 20 minutes, heating is continued for 40 minutes to 250°C and constant temperature Keep it for 20 minutes, reheat it for 32 minutes to 470°C and keep it at constant temperature for 23 minutes, and then lower the temperature to 120°C.
  • Figure 1 is the cyclic voltammogram of the carboxyl-terminated polyamic acid and oligomeric cage silsesquioxane-terminated polyimide in CH3CN solution, and the scan rate is 100 mV/s -1 .
  • the film uses a thin film spin-coated on an indium tin oxide (ITO) substrate as a working electrode in a 0.1M tetrabutylammonium perchlorate (TBAP) CH3CN solution.
  • ITO indium tin oxide
  • TBAP tetrabutylammonium perchlorate
  • the platinum electrode and the Ag/AgCl electrode also participate in the three-electrode setup as the counter electrode and the reference electrode.
  • the CV (current-voltage) curve of the film of carboxy-terminated polyamic acid and oligomeric cage silsesquioxane-terminated polyimide showed two pairs of reversible redox peaks, which were attributed to the reduced state/oxidized state Transition (oligoaniline fragment) and neutral state/radical cationic state transition (nitrogen atom of triphenylamine fragment).
  • the CV of the polyimide capped with oligomeric cage silsesquioxane is introduced.
  • the peak area formed by the current-voltage curve is higher than the peak area formed by the CV (current-voltage) curve of the carboxy-terminated polyamic acid. It can be seen that the oligomeric cage silsesquioxane-terminated polyimide has better Electrochemical stability of carboxy-terminated polyamic acid.
  • Figure 2 shows the use of quantitative ammonium persulfate oxidation compound carboxy-terminated polyamic acid/oligomeric cage silsesquioxane terminated polyimide film in N,N'-dimethylacetamide ( DMAc)
  • DMAc N,N'-dimethylacetamide
  • the oligomeric cage silsesquioxane-terminated polyimide also has similar properties to carboxy-terminated polyamic acid, indicating that the introduction of oligomeric cage silsesquioxane has no effect on its electroluminescence performance.
  • oligoaniline and fluorescent triphenylamine fragments are introduced to prepare the raw material as a polyamic acid solution, and then oligomeric cage silsesquioxane is introduced to form a capped polyimide, which not only gives the material the ability of electrochromic , And give the material stable electroluminescence.
  • the electroluminescent material of the present invention uses the polyimide as a luminescent material, and the electroluminescent material is used for the anode electrochromic layer and the cathode electrochromic layer of the electrochromic device, wherein the electrochromic
  • the color changing device further includes a substrate; a transparent electrode layer located on the surface of the substrate, the transparent electrode layer has a metal conductive layer on the side facing or away from the substrate; the anode located on the side of the transparent electrode layer facing away from the substrate An electrochromic layer; an ion conductive layer on the side of the anode electrochromic layer facing away from the substrate; the cathode electrochromic layer on a side of the ion conductive layer facing away from the substrate, the electrochromic layer
  • the main technical features and technical effects of the device are all embodied on the electrochromic layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种聚酰胺酸及其制备方法、电致变色器件,其中聚酰胺酸材料具有笼型倍半硅氧烷为封端基团。聚酰胺酸中引入低聚苯胺和荧光三苯胺片段将其原料制备为聚酰胺酸溶液,再引入低聚笼型倍半硅氧烷形成封端的聚酰胺酸,既赋予材料电致变色的能力,又赋予材料稳定的电致发光性,这为后续的荧光显示器和电致变色设备提供方向性指导。

Description

一种聚酰亚胺及其制备方法、电致变色器件 技术领域
本发明涉及电致荧光领域,特别涉及一种聚酰亚胺及其制备方法、电致变色器件。
背景技术
电致荧光类材料大致可以分为三种类型:第一种:含有分子二元体,第二种:本质上有可切换的荧光团,第三种:形成可切换的荧光聚合物。其中,电致变色聚合物因能够快速的转换,以及简便的分子设计和良好的可加工性而非常受欢迎。在电致变色聚合物中,聚苯胺因其易于合成,高电活性和可逆酸碱掺杂/去掺杂而被广泛研究。但基于聚苯胺的电致变色器件仍然很少,主要是由于其溶解度有限和加工性差。因此,迫切需要新的改善其溶解性和可加工性的策略。
技术问题
本发明提供了一种聚酰亚胺及其制备方法、电致变色器件用以解决现有技术中由于现有基于聚苯胺的电致变色器件的溶解度和加工性能差的问题。
技术解决方案
解决上述问题的技术方案是:本发明提供了一种聚酰亚胺材料,具有笼型倍半硅氧烷为封端基团。
进一步的,所述聚酰亚胺的一种分子结构式为:
Figure PCTCN2019090931-appb-000001
本发明还提供了一种聚酰亚胺材料的制备方法,按以下步骤进行:提供端羧基聚酰胺酸;将端羧基聚酰胺酸溶解于N,N'-二甲基乙酰胺中,得到第一溶液;向所述第一溶液中添加笼型倍半硅氧烷,并在温度为110℃条件下,聚合反应5h~8h,反应完成后,冷却至室温,得到具有笼型倍半硅氧烷封端的聚酰亚胺溶液;将所述聚酰亚胺溶液充分搅拌3h~5h,除去泡沫后旋涂于玻璃基板上;将所述玻璃基板置于烤箱中后进行烘烤,得到具有笼型倍半硅氧烷封端的聚酰亚胺材料。
进一步的,所述笼型倍半硅氧烷为以下几种的至少一种,其分子结构式分别为:
Figure PCTCN2019090931-appb-000002
进一步的,在提供端羧基聚酰胺酸步骤中,包括将1,2,4,5-环己烷四羧酸二酐与电活性二胺单体混合;在氩气氛下,将4,40-二氨基-400-N咔唑基三苯胺和二甲基乙酰胺加入到50mL三口圆底烧瓶中; 在室温下磁力搅拌进行共聚反应24-96小时后得到聚酰胺酸溶液;将得到的聚酰胺酸溶液在搅拌下倒入100mL~500mL甲醇中,产生灰色沉淀;洗涤沉淀物,真空干燥得到端羧基聚酰胺酸。
进一步的,通过水和甲醇洗涤沉淀物;真空干燥的温度在300℃~475℃之间。
进一步的,所述端羧基聚酰胺酸的分子结构式为:
Figure PCTCN2019090931-appb-000003
当所述笼型倍半硅氧烷的分子结构式为
Figure PCTCN2019090931-appb-000004
所述聚酰亚胺的分子结构式为:
Figure PCTCN2019090931-appb-000005
本发明还提供了一种电致变色器件,包括所述聚酰亚胺材料。
进一步的,所述电致变色器件包括电致变色层,其中具有电致荧光材料,所用材料为所述聚酰亚胺材料。
进一步的,所述电致变色层为阳极电致变色层或阴极电致变色层。
有益效果
本发明的聚酰亚胺及其制备方法、电致变色器件引入低聚苯胺和荧光三苯胺片段将其原料制备为聚酰胺酸溶液,再引入低聚笼型倍半硅氧烷形成封端的聚酰亚胺,既赋予材料电致变色的能力,又赋予材料稳定的电致发光性,这为后续的荧光显示器和电致变色设备提供方向性指导。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是端羧基聚酰胺酸和低聚笼型倍半硅氧烷封端的聚酰亚胺在 CH3CN溶液中的循环伏安图。
图2是使用定量过硫酸铵氧化化合物端羧基聚酰胺酸/低聚笼型倍半硅氧烷封端的聚酰亚胺薄膜在N,N'-二甲基乙酰胺溶液的荧光光谱。
图3是使用烤箱的特定制程条件一。
图4是使用烤箱的特定制程条件二。
图5是使用烤箱的特定制程条件三。
图6是使用烤箱的特定制程条件四。
本发明的实施方式
以下实施例的说明是参考附加的图式,用以例示本发明可用以实施的特定实施例。本发明所提到的方向用语,例如「上」、「下」、「前」、「后」、「左」、「右」、「顶」、「底」等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本发明,而非用以限制本发明。
实施例
本实施例中,本发明的聚酰亚胺是一种基于低聚笼型倍半硅氧烷封端的化合物,添加封端的低聚笼型倍半硅氧烷形成大侧基团赋予所述聚酰亚胺材料稳定的电致发光性。
所述低聚笼型倍半硅氧烷是一种无机-有机三维杂化材料,其介于硅石和聚硅氧烷的结构之间,是一种可以用于反应和掺杂的新型添加剂,其分子式为:
Figure PCTCN2019090931-appb-000006
中的至少一种。
本发明的一实施例中,所述聚酰亚胺的一种分子结构式为:
Figure PCTCN2019090931-appb-000007
为了更加清楚的解释本发明,下面结合本发明的聚酰亚胺的制备方法对所述聚酰亚胺进行进一步的解释说明。
所述聚酰亚胺的具体制备方法包括以下步骤。
将干燥的沉淀物端羧基聚酰胺酸溶解于8mL~12mL的N,N'-二甲基乙酰胺中得到第一溶液,其中,所述端羧基聚酰胺酸的分子结构式为:
Figure PCTCN2019090931-appb-000008
其具体制备方法包括以下步骤:
将0.1mmol至1.3mmol的1,2,4,5-环己烷四羧酸二酐与0.1mmol至1.2mmol电活性二胺单体混合。
在氩气氛下,将4,40-二氨基-400-N咔唑基三苯胺和二甲基乙酰胺加入到50mL三口圆底烧瓶中,其中,所述二甲基乙酰胺从商业来源获取,并且无需进行纯化,直接使用。
在室温下磁力搅拌进行共聚反应24-96小时后得到聚酰胺酸溶液。
将得到的聚酰胺酸溶液在搅拌下倒入100mL~500mL甲醇中,产生灰色沉淀。
用水和甲醇彻底洗涤沉淀物去除杂质,然后在300-475℃下真空干燥得到端羧基聚酰胺酸。
在所述第一溶液中添加0.1mmol至1.2mmol低聚笼型倍半硅氧烷并在110℃高温下进行聚合5h~8h,冷却至室温后得到第二溶液,本实施例中,采用的低聚笼型倍半硅氧烷的分子结构式为:
Figure PCTCN2019090931-appb-000009
将所述第二溶液搅拌3h~5h除去泡沫后旋涂于玻璃基板上。
将所述玻璃基板置于烤箱中后得到低聚笼型倍半硅氧烷封端的聚酰亚胺。
所述低聚笼型倍半硅氧烷封端的聚酰亚胺的制程条件如图3至图6所示。
其中,所述烤箱通过特定的制程条件(图3至图6)形成所述低聚笼型倍半硅氧烷封端的聚酰亚胺,具体的,低聚笼型倍半硅氧烷封端的聚酰亚胺的形成过程持续3-5h;升温速度为4-10℃,最高温度420℃—500℃,烘烤阶段分为硬烘和软烘两种方式,硬烘为直接升温到最高温度恒温1h左右降温,而软烘则是分2次及2次以上的恒温平台,最后再降温,从而实现材料在不同恒温阶段的交联和溶剂去除。本专利使用的方法包含不限于上述烘烤方式及时间区间。
图3为第一次初步烘烤旋涂有所述聚酰亚胺溶液的玻璃基板的温度变化图。所述低聚笼型倍半硅氧烷封端的聚酰亚胺进入烤箱的温度为120℃并恒温保持30min,以4℃/min的速度升高至最高温度450℃并保持60min,然后以4℃/min的速度降低至120℃。
图4为第二次烘烤旋涂有所述聚酰亚胺溶液的玻璃基板的温度变化图。所述低聚笼型倍半硅氧烷封端的聚酰亚胺进入烤箱的温度为 120℃并恒温保持30min,以4℃/min的速度升高至最高温度475℃并保持60min,然后以4℃/min的速度降低至120℃。
图5为第三次烘烤旋涂有所述聚酰亚胺溶液的玻璃基板的温度变化图。所述低聚笼型倍半硅氧烷封端的聚酰亚胺进入烤箱的温度为120℃并恒温保持30min,持续加热20min至180℃并恒温保持20min后继续加热40min至350℃并恒温保持20min,再次加热30min至450℃并恒温保持40min后降温至120℃。
图6为第四次烘烤旋涂有所述聚酰亚胺溶液的玻璃基板的温度变化图。所述低聚笼型倍半硅氧烷封端的聚酰亚胺进入烤箱的温度为120℃并恒温保持15min,持续加热35min至180℃并恒温保持20min后,继续加热40min至,250℃并恒温保持20min,再次加热32min至470℃并恒温保持23min后降温至120℃。
如图1所示,图1为端羧基聚酰胺酸和低聚笼型倍半硅氧烷封端的聚酰亚胺在CH3CN溶液中的循环伏安图,扫描速率为100mV/s -1
该膜采用旋涂在氧化铟锡(ITO)基底上的薄膜作为0.1M四丁基高氯酸铵(TBAP)CH3CN溶液中的工作电极。铂电极和Ag/AgCl电极也参与三电极设置作为对电极和参比电极。
端羧基聚酰胺酸和低聚笼型倍半硅氧烷封端的聚酰亚胺的薄膜的CV(电流-电压)曲线显示出两对可逆的氧化还原峰,分别归因于还原态/氧化态转变(低聚苯胺片段)和中性状态/自由基阳离子态转变(三苯胺片段的氮原子),同时可以看出引入了低聚笼型倍半硅氧烷封端的聚酰亚胺的CV(电流-电压)曲线形成的峰面积高于端羧基聚酰 胺酸的CV(电流-电压)曲线形成的峰面积,可以看出低聚笼型倍半硅氧烷封端的聚酰亚胺具有优于端羧基聚酰胺酸的电化学稳定性。
如图2所示,图2为使用定量过硫酸铵氧化化合物端羧基聚酰胺酸/低聚笼型倍半硅氧烷封端的聚酰亚胺薄膜在N,N'-二甲基乙酰胺(DMAc)溶液的荧光光谱,其中,在462nm处观察到一个发射峰,荧光强度达到近80%。加入定量氧化剂(过硫酸铵)后,3h后氧化反应完全结束,荧光强度最终降低到其原始值的30%,峰位置没有任何明显的变化。再通过定量添加还原剂(苯肼)端羧基聚酰胺酸的溶液的荧光强度恢复到其原始值。这种氧化还原物种的荧光转换特征可归因于喹啉环在低聚苯胺片段中的荧光猝灭效应。氧化剂在低聚苯胺片段中产生更多的醌环,这将通过发生的能量迁移淬灭部分荧光。咔唑和低聚苯胺之间。当端羧基聚酰胺酸的溶液从氧化态还原为还原态时,也可能发生逆过程。低聚笼型倍半硅氧烷封端的聚酰亚胺也具有与端羧基聚酰胺酸类似的性质,说明引入的低聚笼型倍半硅氧烷对其电致发光性能没有影响。
本实施例中引入低聚苯胺和荧光三苯胺片段将其原料制备为聚酰胺酸溶液,再引入低聚笼型倍半硅氧烷形成封端的聚酰亚胺,既赋予材料电致变色的能力,又赋予材料稳定的电致发光性。
本发明的电致荧光材料使用所述聚酰亚胺作为发光材料,所述电致荧光材料电致变色器件的阳极电致变色层和阴极电致变色层的所用材料,其中,所述电致变色器件还包括基板;位于所述基板表面的透明电极层,所述透明电极层朝向或背离所述基板一侧具有金属导电 层;位于所述透明电极层背离所述基板一侧的所述阳极电致变色层;位于所述阳极电致变色层背离所述基板一侧的离子导电层;位于所述离子导电层背离所述基板一侧的所述阴极电致变色层,所述电致变色器件的主要技术特征和技术效果均体现在所述电致变色层上。
以上仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种聚酰亚胺材料,其中,具有笼型倍半硅氧烷为封端基团。
  2. 根据权利要求1所述的聚酰亚胺材料,其中,所述聚酰亚胺的一种分子结构式为:
    Figure PCTCN2019090931-appb-100001
  3. 一种聚酰亚胺材料的制备方法,其中,按以下步骤进行:提供端羧基聚酰胺酸;
    将端羧基聚酰胺酸溶解于N,N'-二甲基乙酰胺中,得到第一溶液;向所述第一溶液中添加笼型倍半硅氧烷,并在温度为110℃条件下,聚合反应5h~8h,反应完成后,冷却至室温,得到具有笼型倍半硅氧烷封端的聚酰亚胺溶液;
    将所述聚酰亚胺溶液充分搅拌3h~5h,除去泡沫后旋涂于玻璃基板上;
    将所述玻璃基板置于烤箱中后进行烘烤,得到具有笼型倍半硅氧烷封端的聚酰亚胺材料。
  4. 根据权利要求3所述的聚酰亚胺材料的制备方法,其中,
    所述笼型倍半硅氧烷为以下几种的至少一种,其分子结构式分别 为:
    Figure PCTCN2019090931-appb-100002
  5. 根据权利要求3所述的聚酰亚胺材料的制备方法,其中,
    在提供端羧基聚酰胺酸步骤中,包括
    将1,2,4,5-环己烷四羧酸二酐与电活性二胺单体混合;
    在氩气氛下,将4,40-二氨基-400-N咔唑基三苯胺和二甲基乙酰胺加入到50mL三口圆底烧瓶中;
    在室温下磁力搅拌进行共聚反应24至96小时后得到聚酰胺酸溶液;
    将得到的聚酰胺酸溶液在搅拌下倒入100mL~500mL甲醇中,产生灰色沉淀;
    洗涤沉淀物,真空干燥得到端羧基聚酰胺酸。
  6. 根据权利要求5所述的聚酰亚胺材料的制备方法,其中,
    通过水和甲醇洗涤沉淀物。
  7. 根据权利要求3所述的聚酰亚胺材料的制备方法,其中,所述端羧基聚酰胺酸的分子结构式为:
    Figure PCTCN2019090931-appb-100003
    当所述笼型倍半硅氧烷的分子结构式为
    Figure PCTCN2019090931-appb-100004
    所述聚酰亚胺的分子结构式为:
    Figure PCTCN2019090931-appb-100005
  8. 一种电致变色器件,其中,包括权利要求1所述的聚酰亚胺材料。
  9. 根据权利要求8所述的电致变色器件,其中,包括电致变色层,其中具有电致荧光材料,所用材料为所述聚酰亚胺材料。
  10. 根据权利要求9所述的电致变色器件,其中,所述电致变色层 为阳极电致变色层或阴极电致变色层。
PCT/CN2019/090931 2019-05-27 2019-06-12 一种聚酰亚胺及其制备方法、电致变色器件 WO2020237730A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/497,445 US20210292480A1 (en) 2019-05-27 2019-06-12 Polyimide material and preparation method thereof, electrochromic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910443844.6A CN110256679A (zh) 2019-05-27 2019-05-27 一种聚酰亚胺及其制备方法、电致变色器件
CN201910443844.6 2019-05-27

Publications (1)

Publication Number Publication Date
WO2020237730A1 true WO2020237730A1 (zh) 2020-12-03

Family

ID=67915485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/090931 WO2020237730A1 (zh) 2019-05-27 2019-06-12 一种聚酰亚胺及其制备方法、电致变色器件

Country Status (3)

Country Link
US (1) US20210292480A1 (zh)
CN (1) CN110256679A (zh)
WO (1) WO2020237730A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115181268B (zh) * 2022-06-29 2023-11-10 深圳市深职材料技术有限公司 光敏聚酰亚胺及其制备方法和光敏聚酰亚胺组合物

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110223404A1 (en) * 2010-03-10 2011-09-15 Xerox Corporation Intermediate transfer member
CN103819896A (zh) * 2012-11-16 2014-05-28 江南大学 一种笼型八聚(γ-氨丙基)倍半硅氧烷与聚苯胺复合物的合成方法
CN108250748A (zh) * 2018-01-19 2018-07-06 吉林大学 一种含酰亚胺侧链笼型倍半硅氧烷/聚酰亚胺纳米复合材料及其制备方法
CN109228586A (zh) * 2018-08-31 2019-01-18 株洲时代新材料科技股份有限公司 一种低介电聚酰亚胺复合薄膜及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6767930B1 (en) * 2001-09-07 2004-07-27 Steven A. Svejda Polyhedral oligomeric silsesquioxane polyimide composites

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110223404A1 (en) * 2010-03-10 2011-09-15 Xerox Corporation Intermediate transfer member
CN103819896A (zh) * 2012-11-16 2014-05-28 江南大学 一种笼型八聚(γ-氨丙基)倍半硅氧烷与聚苯胺复合物的合成方法
CN108250748A (zh) * 2018-01-19 2018-07-06 吉林大学 一种含酰亚胺侧链笼型倍半硅氧烷/聚酰亚胺纳米复合材料及其制备方法
CN109228586A (zh) * 2018-08-31 2019-01-18 株洲时代新材料科技股份有限公司 一种低介电聚酰亚胺复合薄膜及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIU, YI ET AL.: "Organic-Inorganic Hybrid Polyimides and Their Composites With High Temperature Resistance", AEROSPACE MATERIALS & TECHNOLOGY, no. 3, 31 December 2018 (2018-12-31), ISSN: 1007-2330, DOI: 20200222172119 *
YAN, YING: "Synthesis and Properties of Fluorescent Polyamic Acid Based on Oligoanilines", CHINESE MASTER’S THESES FULL-TEXT DATABASE, ENGINEERING SCIENCE & TECHNOLOGY I, no. 01, 15 January 2019 (2019-01-15), ISSN: 1674-0246, DOI: 20200222171305 *

Also Published As

Publication number Publication date
US20210292480A1 (en) 2021-09-23
CN110256679A (zh) 2019-09-20

Similar Documents

Publication Publication Date Title
CN101679714B (zh) 空穴注入层/传输层组合物及装置
KR101372135B1 (ko) 개선된 유기 발광 다이오드를 위한 폴리티오펜 제형물
JP5657250B2 (ja) エレクトロルミネセンスポリマー及びその使用
CN1875054A (zh) 电荷输送性化合物、电荷输送性材料、电荷输送性清漆、电荷输送性薄膜及有机电致发光元件
CN1651368A (zh) 螺环五菲芴基化合物及使用该化合物的有机电致发光装置
CN104059093B (zh) 一种稀土铕配合物及基于pvb基质的铕红光透明薄膜的制备方法
JP2005060571A (ja) エレクトロルミネスセンスポリマー、有機el素子及びディスプレイ装置
JP5771612B2 (ja) 電界発光材料および素子
WO2020237730A1 (zh) 一种聚酰亚胺及其制备方法、电致变色器件
CN111548785A (zh) 量子点配体、量子点发光器件及制备方法、显示装置
Yang et al. Improved electroluminescence efficiency of polyfluorenes by simultaneously incorporating dibenzothiophene-S, S-dioxide unit in main chain and oxadiazole moiety in side chain
WO2020232777A1 (zh) 电致变色聚酰胺酸材料及其制备方法、显示装置
Peng et al. Highly efficient single-layer blue polymer light-emitting diodes based on hole-transporting group substituted poly (fluorene-co-dibenzothiophene-S, S-dioxide)
Lo et al. Synthesis and electroluminescence properties of white‐light single polyfluorenes with high‐molecular weight by click reaction
Xu et al. Deep-blue emitting poly [spiro (dibenzoazasiline-10′, 9-silafluorene)] for power-efficient PLEDs
JP2006077171A (ja) ベンゾトリアゾール構造含有高分子及びその製造方法、並びに電荷輸送材料及び有機電子デバイス
Hasan et al. Solution processed multilayer red, green and blue phosphorescent organic light emitting diodes using carbazole dendrimer as a host
CN100408615C (zh) 一种含丁二炔基聚硅氮烷及其制备方法
TWI808929B (zh) 有機電子材料及其利用
Jin et al. Color-tunable electroluminescent polymers by substitutents on the poly (p-phenylenevinylene) derivatives for light-emitting diodes
Sun et al. Synthesis, characterization and device application of a novel blue-emitting copolymer incorporating fluorene and benzothiazole backbone units
Yao et al. Triphenylamine-carbazole alternating copolymers bearing thermally activated delayed fluorescent emitting and host pendant groups for solution-processable OLEDs
Hanif et al. Synthesis, characterization, electrochemistry and optical properties of a novel phenanthrenequinone‐alt‐dialkylfluorene conjugated copolymer
Neilson et al. Mixed chromophore perfluorocyclobutyl (PFCB) copolymers for tailored light emission
Yu et al. Thermally cross-linkable hyperbranched polymers containing triphenylamine moieties: Synthesis, curing and application in light-emitting diodes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19930338

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19930338

Country of ref document: EP

Kind code of ref document: A1