WO2020237624A1 - 一种激光器二极管驱动电路、方法及激光扫描装置 - Google Patents

一种激光器二极管驱动电路、方法及激光扫描装置 Download PDF

Info

Publication number
WO2020237624A1
WO2020237624A1 PCT/CN2019/089515 CN2019089515W WO2020237624A1 WO 2020237624 A1 WO2020237624 A1 WO 2020237624A1 CN 2019089515 W CN2019089515 W CN 2019089515W WO 2020237624 A1 WO2020237624 A1 WO 2020237624A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser diode
transistor
digital
coupled
current
Prior art date
Application number
PCT/CN2019/089515
Other languages
English (en)
French (fr)
Inventor
郑健华
卫宝跃
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201980097049.4A priority Critical patent/CN113906642B/zh
Priority to PCT/CN2019/089515 priority patent/WO2020237624A1/zh
Publication of WO2020237624A1 publication Critical patent/WO2020237624A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor

Definitions

  • This application relates to the field of drive circuits, and in particular to a laser diode drive circuit, method and laser scanning device.
  • the laser diode of the laser scanning projection system when the passing current reaches a certain threshold, it will emit light and the optical power has a linear relationship with its conduction current.
  • the laser diode drive circuit In high-speed scanning applications, in order to speed up the light-emitting response of the laser diode, the laser diode drive circuit will provide it with a light-emitting threshold current to make it in the critical state to be turned on. When a certain light-emitting intensity is needed, the signal current is superimposed. The signal current can adjust the brightness of the laser diode.
  • the laser diode drive circuit of the laser scanning projection system is usually composed of two digital-to-analog converters, as shown in Figure 1, where the digital-to-analog converter MN' is used to provide the light-emitting threshold current of the laser diode, and the digital-to-analog converter MN is used to The external digital signal provides the current used to control the brightness of the laser diode, and the current sink NN is used to control the sink current of the negative electrode of the laser diode through the mirror circuit connected to its gate.
  • the current sink NN of the digital-to-analog converter MN in the laser diode drive circuit needs to use a high-voltage tube that can withstand very high voltages.
  • Ca* ⁇ V remains unchanged, due to the The current IN is close to 0, so the transition time t of the node netAN to complete the ⁇ V is very large, which limits the application in the scene of high-speed scanning.
  • the embodiments of the present application disclose a laser diode driving circuit, method, and laser scanning device, which can be applied to scenes in the field of high-speed scanning.
  • an embodiment of the present application discloses a laser diode drive circuit
  • the laser diode drive circuit includes: a first branch, the first branch includes: a first current sink module, a first digital-to-analog conversion module And a second digital-to-analog conversion module; the output terminal of the first digital-to-analog conversion module and the output terminal of the second digital-to-analog conversion module are coupled to the input terminal of the first current sink module; the first digital-to-analog conversion module The conversion module is configured to input a first current to the first current sink module according to a digital signal; the second digital-to-analog conversion module is configured to input a second current to the first current sink module according to a digital signal; The output terminal of the first current sink module is coupled to the cathode of the laser diode, and is used to output the first driving current to the laser diode.
  • the first digital-to-analog conversion module array includes: a first transistor
  • the second digital-to-analog conversion array includes: a second transistor; the drain of the first transistor And the drain stage of the second transistor is coupled to the input terminal of the first current sink module, the gate stage of the first transistor is used for inputting digital signals, and the gate stage of the second transistor is used for inputting digital signals, The source of the first transistor and the source of the second transistor are grounded.
  • the first current sink module includes: a third transistor; the source of the third transistor is coupled to the drain of the first transistor and the second transistor The drain stage of the third transistor is coupled to the cathode of the laser diode.
  • the first current sink module includes: a third transistor and a first resistor; wherein the source of the third transistor is coupled to the drain of the first transistor And the drain of the second transistor; the drain of the third transistor is coupled to one end of the first resistor, and the other end of the first resistor is coupled to the cathode of the laser diode.
  • a first resistor can be coupled to the drain stage of the third transistor to control the current of the drain stage to achieve noise reduction.
  • the first current sink module includes: a third transistor and a second resistor; wherein the source of the third transistor is coupled to one end of the second resistor; The drain of the third transistor is coupled to the cathode of the laser diode; the other end of the second resistor is coupled to the drain of the first transistor and the drain of the second transistor.
  • a second resistor can be coupled to the source of the third transistor to control the current of the source to achieve noise reduction.
  • the laser diode drive circuit further includes: a mirror circuit; the gate output terminal of the mirror circuit is coupled to the gate of the third transistor for The third transistor provides a bias voltage.
  • a bias voltage can be provided for the gate of the third transistor 403 by mirroring, and the laser diode 210 can be controlled by controlling the bias voltage of the gate of the third transistor 403.
  • the negative electrode flows into the sink current of the drain stage of the third transistor.
  • the first transistor and the second transistor are N-channel metal oxide semiconductor field effect transistors NMOS.
  • the third transistor is NMOS.
  • the present application provides a laser diode drive circuit.
  • the laser diode drive circuit includes: a plurality of the first branches of the first aspect connected in parallel; wherein the output of a plurality of the current sink modules The terminal is coupled to the cathode of the laser diode for outputting the first driving current to the laser diode.
  • the laser diode driving circuit further includes: at least one second branch, a plurality of the first branch and the at least one second branch are connected in parallel; the second branch includes: a second current sink module and The third digital-to-analog conversion module; the output terminal of the third digital-to-analog conversion module is coupled to the input terminal of the second current sink module; the third digital-to-analog conversion module is configured to send a digital signal to the second
  • the current sink module inputs the first current; the output end of the second current sink module is coupled to the cathode of the laser diode for outputting a second driving current to the laser diode.
  • the third digital-to-analog conversion module includes:
  • the laser diode driving circuit further includes: at least one second branch, and a plurality of the first branch and the at least one second branch are connected in parallel;
  • the second branch includes: a second current sink module and a third digital-to-analog conversion module;
  • the output terminal of the third digital-to-analog conversion module is coupled to the input terminal of the second current sink module;
  • the third digital-to-analog conversion module is configured to input a first current to the second current sink module according to a digital signal
  • the output end of the second current sink module is coupled to the cathode of the laser diode, and is used to output a second driving current to the laser diode.
  • the laser diode drive circuit may include a second branch in addition to the first branch, which is equivalent to that only a part of the branches in the laser diode drive circuit are the first branch, which improves the flexibility of the solution.
  • the first current sink module may flow through the sum of the current output by the first digital-to-analog conversion module and the current output by the second digital-to-analog conversion module, for a part of the first current sink module, If the current value it can bear exceeds the sum of the current output by the first digital-to-analog conversion module and the current output by the second digital-to-analog conversion module, it can be set according to the structure of the first branch.
  • the current value it can bear does not exceed the sum of the current output by the first digital-to-analog conversion module and the current output by the second digital-to-analog conversion module, if it is set according to the structure of the first branch ,
  • the first current sink module may fail, so it needs to be configured according to the structure of the second branch.
  • the embodiment of the present application further improves the reliability of the solution.
  • the fourth transistor and the fifth transistor are NMOS.
  • the present application provides a laser diode driving method, the method is applied to a laser diode driving circuit, the laser diode driving circuit includes a first branch, the first branch includes a first current sink module, A first digital-to-analog conversion module and a second digital-to-analog conversion module, the output terminal of the first digital-to-analog conversion module and the output terminal of the second digital-to-analog conversion module are coupled to the input terminal of the first current sink module, The output terminal of the first current sink module is coupled to the cathode of the laser diode; the method includes: the first digital-to-analog conversion module inputs a first current to the first current sink module according to a digital signal; the second The digital-to-analog conversion module inputs a second current to the first current sink module according to a digital signal; the output terminal of the first current sink module outputs a first driving current to the laser diode.
  • the present application provides a laser scanning device, including: a laser diode, a power module, and the laser diode driving circuit as described in the first aspect; the output terminal of the power module is coupled to the anode of the laser diode, One end of the laser diode driving circuit is coupled to the cathode of the laser diode.
  • the present application provides an augmented reality AR device, including: a display module, a plurality of laser diode drive circuits as described in the first aspect, and a power supply module; the display module includes a plurality of laser diodes; the power supply The output terminal of the module is coupled to the anode of the plurality of laser diodes, and the cathode of each of the plurality of laser diodes is coupled to one of the plurality of laser diode driving circuits.
  • the multiple laser diode drive circuits are used to control the multiple laser diodes to emit light, so that the display module displays augmented reality images.
  • the digital signal controls the first digital-to-analog conversion module to be turned off
  • the voltage of the node netAN will rise by ⁇ V.
  • the transition time t for the node netAN to complete ⁇ V is relatively small.
  • Figure 1 is a schematic structural diagram of a laser diode drive circuit
  • 2a is a schematic structural diagram of a laser scanning device provided by an embodiment of the present application.
  • Figure 2b is a schematic structural diagram of an augmented reality AR device provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a laser diode drive circuit provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of another laser diode driving circuit provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of another laser diode driving circuit provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of another laser diode drive circuit provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of another laser diode driving circuit provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of another laser diode drive circuit provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of another laser diode driving circuit provided by an embodiment of the present application.
  • FIG. 10 is a schematic flowchart of a laser diode driving method provided by an embodiment of the present application.
  • the embodiments of the present application disclose a laser diode driving circuit, method, and laser scanning device, which can be applied to scenes in the field of high-speed scanning.
  • Fig. 2a is a schematic block diagram showing the structure of a laser scanning device according to an exemplary embodiment of the present invention.
  • the laser scanning device is included in an imaging device such as a laser printer, a fax machine, a photocopier, or a multifunctional product.
  • the laser scanning device includes a laser diode 210, a power module 220, and a laser diode drive circuit 230.
  • the details of the mirror, lens, sensor, etc. used in the laser scanning device are not shown in Figure 2a. structure.
  • the laser scanning device may include other devices according to actual needs, which is not limited here.
  • the power module 220 may be a power management integrated circuit or an external power supply.
  • the laser diode 210 scans the laser signal onto the surface of the photoreceptor or the like.
  • the laser diode 210 is driven by the laser diode driving circuit 230.
  • the laser diode drive circuit 230 provides a drive current to the laser diode 210 so that the laser diode 210 emits a laser signal, where the intensity of the laser signal, that is, the intensity of the optical power corresponds to the size of the drive current, and the increase of the drive current, the laser signal The intensity increases accordingly, reducing the drive current, and the intensity of the laser signal decreases accordingly.
  • the driving current passing through the laser diode 210 reaches a certain critical threshold, the laser diode 210 will emit a laser signal, and the intensity of the laser signal may have a linear relationship with the driving current passing through it.
  • the laser diode drive circuit 230 will provide the laser diode 210 with a light-emitting threshold current to make it in a critical state where it will emit light. When a certain laser signal intensity is required , And then provide the current used to adjust the intensity of the laser signal.
  • FIG. 2b is a schematic block diagram showing the structure of an augmented reality AR device 250 according to an exemplary embodiment of the present invention. It should be noted that Fig. 2b only shows the structure related to the present invention, but does not constitute a limitation to the present invention.
  • the augmented reality AR device may include:
  • the display module 240 includes a plurality of laser diodes 210;
  • the output end of the power module 220 is coupled to the anode of the multiple laser diodes 210, and the cathode of each laser diode 210 of the multiple laser diodes 210 is coupled to one end of one laser diode drive circuit 230 of the multiple laser diode drive circuits 230.
  • One laser diode driving circuit 230 is used to control the multiple laser diodes 210 to emit light, so that the display module 240 displays augmented reality images.
  • FIG. 1 is a schematic diagram of a laser diode driving circuit 230 in the prior art.
  • the second digital-to-analog converter MN' is used to provide a light-emitting threshold current to the laser diode 210 according to the digital signal input by the digital code DN'
  • the first digital-to-analog converter MN is used to provide a current for controlling the intensity of the laser signal emitted by the laser diode 210 according to the digital signal input by the digital code DN.
  • the current sink NN of the first digital-to-analog converter MN and the current sink NN' of the second digital-to-analog converter MN' need to be able to withstand high voltages.
  • the high-voltage tube has a large parasitic capacitance Ca.
  • FIG. 3 is a schematic diagram of a laser diode driving circuit 230 provided by an embodiment of the present application.
  • the laser diode driving circuit 230 may include a first branch 301, and the first branch 301 includes a first current sink module 302, a first digital-to-analog conversion module 303 and a second digital-to-analog conversion module 304.
  • the output terminal of the first digital-to-analog conversion module 303 and the output terminal of the second digital-to-analog conversion module 304 are coupled to the input terminal of the first current sink module 302, and the output terminal of the first current sink module 302 is coupled to a laser diode The negative pole of 210.
  • the output of the second digital-to-analog conversion module 304 is also The terminal is coupled to the input terminal of the first current sink module 302.
  • the first digital-to-analog conversion module 303 is used to input a digital signal, and a first current is input to the first current sink module 302, and the first current is used to adjust the intensity of the laser signal emitted by the laser diode 210, in other words In this way, the first current is used to adjust the brightness of the laser diode 210.
  • the first digital-to-analog conversion module 303 may include an input terminal that may input a digital signal, and the first digital-to-analog conversion module 303 may send a digital signal to the first current sink module 302 according to the digital signal input from the input terminal. Enter the first current.
  • the second digital-to-analog conversion module 304 is configured to input a digital signal and input a second current to the first current sink module 302, the second current being the light-emitting threshold current of the laser diode 210.
  • the second digital-to-analog conversion module 304 may include an input terminal that may input a digital signal, and the second digital-to-analog conversion module 304 may send a digital signal to the first current sink module 302 according to the digital signal input from the input terminal. Enter the second current.
  • the digital signal controls the first digital-to-analog conversion module 303 to turn off
  • the voltage of the node netAN will rise by ⁇ V.
  • the laser diode driving circuit 230 shown in FIG. 3 may adopt the structure shown in FIG. 4, which is a structural diagram of a laser diode driving circuit 230 provided by an embodiment of the present application.
  • the first branch 301 shown in FIG. 4 includes a first transistor 401
  • the second digital-to-analog conversion module 304 includes a second transistor 402
  • the first current sink module 302 includes a third transistor 403.
  • the drain of the first transistor 401 and the drain of the second transistor 402 are coupled to the source of the third transistor 403, the gate of the first transistor 401 is used to input digital signals, and the gate of the second transistor 402 It is also used to input digital signals.
  • the source of the first transistor 401 and the source of the second transistor 402 are grounded, and the drain of the third transistor 403 is coupled to the cathode of the laser diode 210.
  • the drain of the first transistor 401 and the drain of the second transistor 402 are coupled to the source of the third transistor 403, when the digital signal input to the gate of the first transistor 401 controls the first transistor
  • the voltage of the node netAN located at the drain of the first transistor 401 will rise by ⁇ V.
  • the voltage of the second transistor 402 can be adjusted according to the gate
  • the input digital signal inputs the second current through the drain stage to the source stage of the third transistor 403, that is, the current I flowing through the node netAN is not close to 0 at this time.
  • the first transistor 401, the second transistor 402, and the third transistor 403 are N-channel metal oxide semiconductor field effect transistors NMOS.
  • n-channel MOS tube composed of a p-type substrate and two high-concentration n diffusion regions.
  • the n-channel enhancement mode MOS tube must be forward biased on the gate, and only when the gate-source voltage is greater than the threshold voltage can there be an n-channel MOS tube generated by the conductive channel.
  • the n-channel depletion MOS tube refers to an n-channel MOS tube that has a conductive channel when the gate voltage is not applied (the gate-source voltage is zero).
  • Fig. 5 is a structural diagram of another laser diode drive circuit provided by an embodiment of the present application.
  • the third transistor 403 in FIG. 4 is replaced with a third transistor 403 and a first resistor 501.
  • the source of the third transistor 403 is coupled to the drain of the first transistor 401 and the drain of the second transistor 402; the drain of the third transistor 403 is coupled to the first transistor.
  • One end of the resistor 501 and the other end of the first resistor 501 are coupled to the cathode of the laser diode 210.
  • the first resistor 501 may be coupled to the drain stage of the third transistor 403 to control the current of the drain stage to achieve noise reduction.
  • Fig. 6 is a structural diagram of another laser diode drive circuit provided by an embodiment of the present application.
  • the third transistor 403 in FIG. 4 is replaced with a third transistor 403 and a second resistor 501.
  • the source of the third transistor 403 is coupled to one end of the second resistor 502; the drain of the third transistor 403 is coupled to the cathode of the laser diode 210; the second resistor The other end of 502 is coupled to the drain of the first transistor 401 and the drain of the second transistor 402.
  • the second resistor 502 can be coupled to the source of the third transistor 403 to control the current of the source to achieve noise reduction.
  • the first current sink module 302 may include a plurality of third transistors 403, and the plurality of third transistors 403 are connected in series.
  • the first current sink module 302 includes a plurality of third transistors 403 and a first resistor 501, and the plurality of third transistors 403 and the first resistor 501 are connected in series.
  • the first current sink module 302 includes a plurality of third transistors 403 and a second resistor 502, and the plurality of third transistors 403 and the second resistor 502 are connected in series.
  • FIG. 7 is a structural diagram of a laser diode driving circuit 230 provided by an embodiment of the present application.
  • the laser diode driving circuit 230 includes a plurality of first branches 301 shown in FIG. 4 connected in parallel, and the output ends of a plurality of current sink modules 302 in the plurality of first branches 301 are coupled To the cathode of the laser diode 210, that is, the drains of the plurality of third transistors 403 are coupled to the cathode of the laser diode 210 for outputting the first driving current to the laser diode 210.
  • the first branch 301 may include a first transistor 401, a second transistor 402, and a third transistor.
  • the digital signal can control the on and off of each first transistor 401 in the plurality of first branches 301. , And then input to the corresponding third transistor 403 a first current for adjusting the intensity of the laser signal emitted by the laser diode 210.
  • the digital signal can control the on and off of each second transistor 402 in the plurality of first branches 301, and then input the second current for providing the light-emitting threshold current of the laser diode 210 to the corresponding third transistor 403.
  • the laser diode drive circuit 230 further includes: a mirror circuit 404;
  • the gate output terminal of the mirror circuit 404 is coupled to the gate of the third transistor 403 for providing a bias voltage for the gate of the third transistor 403.
  • a bias voltage can be provided for the gate of the third transistor 403 by mirroring, and the laser diode 210 can be controlled by controlling the bias voltage of the gate of the third transistor 403.
  • the negative electrode flows into the sink current of the drain stage of the third transistor.
  • FIG. 8 is a structural diagram of a laser diode driving circuit 230 provided by an embodiment of the present application.
  • the laser diode driving circuit 230 includes: at least one first branch 301 and at least one second branch 801, wherein at least one first branch 301 and at least one second branch 801 are connected in parallel.
  • the second branch 801 includes: a second current sink module 803 and a third digital-to-analog conversion module 804.
  • the output terminal of the third digital-to-analog conversion module 804 is coupled to the input terminal of the second current sink module 803.
  • the third digital-to-analog conversion module 804 is configured to input a first current to the second current sink module 803 according to the digital signal, and the first current can be used to adjust the intensity of the laser signal emitted by the laser diode 210. In another way, the The first current is used to adjust the brightness of the laser diode 210. The first current can also be used to provide the light-emitting threshold current of the laser diode 210.
  • the output terminal of the second current sink module 803 is coupled to the cathode of the laser diode 210 for outputting the second driving current to the laser diode 210.
  • the laser diode drive circuit 230 may include the second branch 801 in addition to the first branch 301, which is equivalent to that only a part of the branches in the laser diode drive circuit 230 are the first branch 301, which improves The flexibility of the solution.
  • the first current sink module 302 may flow through the sum of the current output by the first digital-to-analog conversion module 303 and the current output by the second digital-to-analog conversion module 304, For a part of the first current sink module 302, the current value that it can bear exceeds the sum of the current output by the first digital-to-analog conversion module 303 and the current output by the second digital-to-analog conversion module 304, then it can be adjusted according to the first branch 301 structure settings.
  • the current value that it can bear does not exceed the sum of the current output by the first digital-to-analog conversion module 303 and the current output by the second digital-to-analog conversion module 304, then it can be calculated as the second
  • the number of the first branch and the second branch can be selected according to the actual situation, which is not limited here.
  • FIG. 9 is a structural diagram of a laser diode driving circuit 230 provided by an embodiment of the present application.
  • the laser diode driving circuit 230 may include: at least one first branch 301 and at least one second branch 801, and at least one first branch 301 and at least one second branch 801 are connected in parallel.
  • the second branch 801 includes: a second current sink module 803 and a third digital-to-analog conversion module 804;
  • the third digital-to-analog conversion module 804 includes a fourth transistor 901
  • the second current sink module 803 includes a fifth transistor 903.
  • the drain of the fourth transistor 901 is coupled to the source of the fifth transistor 903;
  • the gate of the fourth transistor 901 is used to input a digital signal
  • the drain of the fifth transistor 903 is coupled to the cathode of the laser diode 210.
  • the fourth transistor 901 and the fifth transistor 903 are NMOS.
  • the laser diode driving circuit 230 described in the above embodiments of the present application can be applied to the laser scanning device shown in FIG. 2a, and can also be applied to the augmented reality AR device 250 shown in FIG. 2b. Not limited.
  • the embodiment of the present application also provides a laser diode driving method, which is applied to the laser diode driving circuit 230 described in FIG. 2 to FIG. 9.
  • the laser diode driving circuit 230 includes a first branch, and the first branch includes a first branch.
  • the current sink module, the first digital-to-analog conversion module and the second digital-to-analog conversion module, the output terminal of the first digital-to-analog conversion module and the output terminal of the second digital-to-analog conversion module are coupled to the input terminal of the first current sink module, the first The output terminal of the current sink module is coupled to the cathode of the laser diode. See FIG. 10, which is a schematic flowchart of a laser diode driving method provided by an embodiment of the application.
  • the method may include:
  • the first digital-to-analog conversion module inputs a first current to the first current sink module according to a digital signal.
  • the first digital-to-analog conversion module array includes: a first transistor; the drain of the first transistor is coupled to the input terminal of the first current sink module, the gate of the first transistor is used to input digital signals, The source of the transistor is grounded.
  • the second digital-to-analog conversion module inputs a second current to the first current sink module according to the digital signal.
  • the second digital-to-analog conversion array includes: a second transistor; the drain of the second transistor is coupled to the input terminal of the first current sink module; the gate of the second transistor is used to input digital signals; the second transistor The source level is grounded.
  • the output terminal of the first current sink module outputs the first driving current to the laser diode.
  • the first current sink module may include: a third transistor; the source of the third transistor is coupled to the drain of the first transistor and the drain of the second transistor; the drain of the third transistor is coupled to the laser diode The negative electrode.
  • the present application also provides a laser scanning device, including: a laser diode 210, a power module 220, and any laser diode drive circuit 230 described in the above embodiments; the output end of the power module 220 is coupled to the laser diode 210 Anode, one end of the laser diode driving circuit 230 is coupled to the cathode of the laser diode 210.
  • one embodiment or “an embodiment” mentioned throughout the specification means that a specific feature, structure, or characteristic related to the embodiment is included in at least one embodiment of the present application. Therefore, the appearance of "in one embodiment” or “in an embodiment” in various places throughout the specification does not necessarily refer to the same embodiment. In addition, these specific features, structures, or characteristics can be combined in one or more embodiments in any suitable manner. It should be understood that, in the various embodiments of the present application, the size of the sequence number of the above-mentioned processes does not mean the order of execution, and the execution order of each process should be determined by its function and internal logic, rather than corresponding to the embodiments of the present application. The implementation process constitutes any limitation.
  • system and “network” in this article are often used interchangeably in this article.
  • the term “and/or” in this article is only an association relationship describing associated objects, which means that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, exist alone B these three situations.
  • the character "/" in this text generally indicates that the associated objects before and after are in an "or” relationship.
  • B corresponding to A means that B is associated with A, and B can be determined according to A.
  • determining B according to A does not mean that B is determined only according to A, and B can also be determined according to A and/or other information.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of modules is only a logical function division, and there may be other divisions in actual implementation, for example, multiple modules or components can be combined or integrated. To another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or modules, and may also be electrical, mechanical or other forms of connection.
  • modules described as separate components may or may not be physically separate, and the components displayed as modules may or may not be physical modules, that is, they may be located in one place, or they may be distributed on multiple network modules. Some or all of the modules may be selected according to actual needs to achieve the objectives of the solutions of the embodiments of the present application.
  • each functional module in each embodiment of the present application may be integrated into one processing module, or each module may exist alone physically, or two or more modules may be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

一种激光器二极管驱动电路、方法及激光扫描装置,能够应用在高速扫描领域的场景中。激光器二极管驱动电路包括:第一支路,第一支路包括:第一电流沉模块、第一数模转换模块和第二数模转换模块;第一数模转换模块的输出端和第二数模转换模块的输出端耦合至第一电流沉模块的输入端;第一数模转换模块,用于根据数字信号向第一电流沉模块输入第一电流;第二数模转换模块,用于根据数字信号向第一电流沉模块输入第二电流;第一电流沉模块的输出端耦合至激光器二极管的负极,用于向激光器二极管输出第一驱动电流。

Description

一种激光器二极管驱动电路、方法及激光扫描装置 技术领域
本申请涉及驱动电路领域,尤其涉及一种激光器二极管驱动电路、方法及激光扫描装置。
背景技术
针对于激光扫描投影系统的激光器二极管,当通过的电流达到某个阈值后,将会发光且光功率与其导通电流呈线性关系。在高速扫描应用中,为了加快激光器二极管的发光响应速度,激光器二极管驱动电路会给其提供一个发光阈值电流,使其处于将要开启的临界状态,待需要一定的发光强度时,再叠加信号电流,该信号电流可以调整激光器二极管的亮度。
激光扫描投影系统的激光器二极管驱动电路通常由两个数模转换器组成,如图1所示,其中数模转换器MN’用于提供激光器二极管的发光阈值电流,数模转换器MN用于根据外部数字信号提供用于控制激光器二极管发光亮度的电流,电流沉NN用于通过与其栅极相连的镜像电路来控制激光器二极管负极的灌电流大小。由于激光器二极管的负极在工作或关断时可能呈高压,因此激光器二极管驱动电路中数模转换器MN的电流沉NN需要采用能承受很高电压的高压管,当外部数字信号控制数模转换器MN关断时,位于数模转换器MN漏级和电流沉模块NN源级之间的节点netAN的电压会抬升ΔV,而流过节点netAN的电流IN接近于0,根据公式I*t=Ca*ΔV,此时节点netAN的寄生电容为电流沉NN源级的寄生电容与数模转换器MN漏级的寄生电容之和,在Ca*ΔV保持不变的前提下,由于流过节点netAN的电流IN接近于0,因此,节点netAN完成ΔV的跳变时间t很大,进而限制了在高速扫描领域的场景中的应用。
发明内容
本申请实施例公开了一种激光器二极管驱动电路、方法及激光扫描装置,能够应用在高速扫描领域的场景中。
第一方面,本申请实施例公开了一种激光器二极管驱动电路,所述激光器二极管驱动电路包括:第一支路,所述第一支路包括:第一电流沉模块、第一数模转换模块和第二数模转换模块;所述第一数模转换模块的输出端和所述第二数模转换模块的输出端耦合至所述第一电流沉模块的输入端;所述第一数模转换模块,用于根据数字信号向所述第一电流沉模块输入第一电流;所述第二数模转换模块,用于根据数字信号向所述第一电流沉模块输入第二电流;所述第一电流沉模块的输出端耦合至所述激光器二极管的负极,用于向所述激光器二极管输出第一驱动电流。
在第一方面的一种可选实施例中,所述第一数模转换模块阵列包括:第一晶体管,所述第二数模转换阵列包括:第二晶体管;所述第一晶体管的漏级和所述第二晶体管的漏级耦合至所述第一电流沉模块的输入端,所述第一晶体管的栅级用于输入数字信号,所述第二晶体管的栅级用于输入数字信号,所述第一晶体管的源级和所述第二晶体管的源级接地。
在第一方面的一种可选实施例中,所述第一电流沉模块包括:第三晶体管;所述第三晶体管的源级耦合至所述第一晶体管的漏级和所述第二晶体管的漏级;所述第三晶体管的漏级耦合至所述激光器二极管的负极。
在第一方面的一种可选实施例中,所述第一电流沉模块包括:第三晶体管和第一电阻;其中,所述第三晶体管的源级耦合至所述第一晶体管的漏级和所述第二晶体管的漏级;所述第三晶体管的漏级耦合至所述第一电阻一端,所述第一电阻的另一端耦合至所述激光器二极管的负极。
本申请实施例中,可以通过在所述第三晶体管的漏级耦合第一电阻,进而控制漏级的电流,实现降噪。
在第一方面的一种可选实施例中,所述第一电流沉模块包括:第三晶体管和第二电阻;其中,所述第三晶体管的源级耦合至所述第二电阻的一端;所述第三晶体管的漏级耦合至所述激光器二极管的负极;所述第二电阻的另一端耦合至所述第一晶体管的漏级和所述第二晶体管的漏级。
本申请实施例中,可以通过在所述第三晶体管的源级耦合第二电阻,进而控制源级的电流,实现降噪。
在第一方面的一种可选实施例中,所述激光器二极管驱动电路还包括:镜像电路;所述镜像电路的栅极输出端耦合至所述第三晶体管的栅极,用于为所述第三晶体管提供偏置电压。
本申请实施例中,通过镜像电路的设置,可以通过镜像来为该第三晶体管403的栅极提供偏置电压,进而实现通过控制第三晶体管403栅极的偏置电压,来控制激光器二极管210负极流入第三晶体管的漏级的灌电流。
在第一方面的一种可选实施例中,所述第一晶体管和所述第二晶体管为N沟道金属氧化物半导体场效应晶体管NMOS。
在第一方面的一种可选实施例中,所述第三晶体管为NMOS。
第二方面,本申请提供了一种激光器二极管驱动电路,所述激光器二极管驱动电路包括:并联连接的多个第一方面所述的第一支路;其中,多个所述电流沉模块的输出端耦合至激光器二极管的负极,用于向所述激光器二极管输出第一驱动电流。
在第二方面的一种可选实施例中,
所述激光器二极管驱动电路还包括:至少一个第二支路,多个所述第一支路和所述至少一个第二支路并联连接;所述第二支路包括:第二电流沉模块和第三数模转换模块;所述第三数模转换模块的输出端耦合至所述第二电流沉模块的输入端;所述第三数模转换模块,用于根据数字信号向所述第二电流沉模块输入第一电流;所述第二电流沉模块的输出端耦合至激光器二极管的负极,用于向所述激光器二极管输出第二驱动电流。
在第二方面的一种可选实施例中,所述第三数模转换模块包括:
所述激光器二极管驱动电路还包括:至少一个第二支路,多个所述第一支路和所述至少一个第二支路并联连接;
所述第二支路包括:第二电流沉模块和第三数模转换模块;
所述第三数模转换模块的输出端耦合至所述第二电流沉模块的输入端;
所述第三数模转换模块,用于根据数字信号向所述第二电流沉模块输入第一电流;
所述第二电流沉模块的输出端耦合至激光器二极管的负极,用于向所述激光器二极管输出第二驱动电流。
本申请实施例中,激光器二极管驱动电路除了包括第一支路,还可以包括第二支路,相当于,激光器二极管驱动电路中只有一部分支路为第一支路,提高了方案的灵活性,此外,由于在第一支路中,第一电流沉模块可能会流过第一数模转换模块输出的电流以及第二数模转换模块输出的电流之和,针对于一部分第一电流沉模块,其可以承受的电流值超过第一数模转换模块输出的电流以及第二数模转换模块输出的电流之和,则可以将其按照第一支路的结构设置。针对于一部分第一电流沉模块,其可以承受的电流值不超过第一数模转换模块输出的电流以及第二数模转换模块输出的电流之和,如果将其按照第一支路的结构设置,则第一电流沉模块可能会出现故障,因此需要将其按照第二支路的结构设置,本申请实施例进一步提高了方案的可靠性。
在第二方面的一种可选实施例中,所述第四晶体管和所述第五晶体管为NMOS。
第三方面,本申请提供了一种激光器二极管驱动方法,所述方法应用于激光器二极管驱动电路,所述激光器二极管驱动电路包括第一支路,所述第一支路包括第一电流沉模块、第一数模转换模块和第二数模转换模块,所述第一数模转换模块的输出端和所述第二数模转换模块的输出端耦合至所述第一电流沉模块的输入端,所述第一电流沉模块的输出端耦合至激光器二极管的负极;所述方法包括:所述第一数模转换模块根据数字信号向所述第一电流沉模块输入第一电流;所述第二数模转换模块根据数字信号向所述第一电流沉模块输入第二电流;所述第一电流沉模块的输出端向所述激光器二极管输出第一驱动电流。
第四方面,本申请提供了一种激光扫描装置,包括:激光器二极管、电源模块和如第一方面所述的激光器二极管驱动电路;所述电源模块的输出端耦合至所述激光器二极管的正极,所述激光器二极管驱动电路的一端耦合至所述激光器二极管的负极。
第五方面,本申请提供了一种增强现实AR设备,包括:显示模块,多个如第一方面所述的激光器二极管驱动电路以及电源模块;所述显示模块包括多个激光器二极管;所述电源模块的输出端耦合至所述多个激光器二极管的正极,所述多个激光器二极管中的每个所述激光器二极管的负极的耦合至所述多个激光器二极管驱动电路中的一个激光器二极管驱动电路的一端,所述多个激光器二极管驱动电路用于控制所述多个激光器二极管发光,以使得所述显示模块显示增强现实影像。
本申请实施例提供的方案,当数字信号控制第一数模转换模块关断时,节点netAN的电压会抬升ΔV,然而,由于此时节点netAN还耦合有第二数模转换模块,此时第二数模转换模块304可以根据输入的数字信号向所述第一电流沉模块输入第二电流,即,此时流过节点netAN的电流I并不接近于0,根据公式I*t=Ca*ΔV,此时,在Ca*ΔV保持不变的前提下,由于节点netAN的电流I并不接近于0,因此,节点netAN完成ΔV的跳变时间t较小,相比于现有技术,本申请可以应用在高速扫描领域的场景中。
附图说明
图1是一种激光器二极管驱动电路的结构示意图;
图2a是本申请实施例提供的一种激光扫描装置的结构示意图;
图2b是本申请实施例提供的一种增强现实AR设备的结构示意图;
图3是本申请实施例提供的一种激光器二极管驱动电路的结构示意图;
图4是本申请实施例提供的另一种激光器二极管驱动电路的结构示意图;
图5是本申请实施例提供的另一种激光器二极管驱动电路的结构示意图;
图6是本申请实施例提供的另一种激光器二极管驱动电路的结构示意图;
图7是本申请实施例提供的另一种激光器二极管驱动电路的结构示意图;
图8是本申请实施例提供的另一种激光器二极管驱动电路的结构示意图;
图9是本申请实施例提供的另一种激光器二极管驱动电路的结构示意图;
图10是本申请实施例提供的一种激光器二极管驱动方法的流程示意图。
具体实施方式
本申请实施例公开了一种激光器二极管驱动电路、方法及激光扫描装置,能够应用在高速扫描领域的场景中。
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。基于本申请中的实施例,都应当属于本申请保护的范围。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
图2a是示出根据本发明示例性实施例的激光扫描装置的结构的示意性框图。该激光扫描装置被包括在诸如激光打印机、传真机、影印机或多功能产品的成像装置中。
参照图2a,该激光扫描装置包括激光器二极管210、电源模块220和激光器二极管驱动电路230,为了简明起见,图2a中没有示出激光扫描装置中所使用的诸如反射镜、透镜、传感器等的详细结构。然而,在实际应用中,激光扫描装置可根据实际需要包括其他器件,这里并不限定。
电源模块220可以是电源管理集成电路或者是外置电源。
激光器二极管210将激光信号扫描到感光体等的表面上。激光器二极管210由激光器二极管驱动电路230驱动。激光器二极管驱动电路230向激光器二极管210提供驱动电流,以使得激光器二极管210发出激光信号,其中,激光信号的强度,即光功率的强度与驱动电流的大小对应,增大驱动电流,则激光信号的强度随之增加,减小驱动电流,则激光信号的强度随之减小。具体的,当通过激光器二极管210的驱动电流达到某个临界阈值后,激光器二极管210将会发出激光信号,且激光信号的强度与其通过的驱动电流大小可以呈 线性关系。
在高速扫描的应用场景中,为了加快激光器二极管210的响应速度,激光器二极管驱动电路230会给激光器二极管210提供发光阈值电流,使其处于将要发光的临界状态,待需要一定的激光信号的强度时,再提供用于调整激光信号强度的电流。
图2b是示出根据本发明示例性实施例的增强现实AR设备250的结构的示意性框图。需要说明的是,图2b仅示出了和本发明相关的结构,但并不构成对本发明的限定。
如图2b示出的那样,增强现实AR设备可以包括:
显示模块240,多个激光器二极管驱动电路230以及电源模块220;
显示模块240包括多个激光器二极管210;
电源模块220的输出端耦合至多个激光器二极管210的正极,多个激光器二极管210中的每个激光器二极管210的负极的耦合至多个激光器二极管驱动电路230中的一个激光器二极管驱动电路230的一端,多个激光器二极管驱动电路230用于控制多个激光器二极管210发光,以使得显示模块240显示增强现实影像。
图1为现有技术中一种激光器二极管驱动电路230的示意,如图1所示,第二数模转换器MN’用于根据数字码DN’输入的数字信号向激光器二极管210提供发光阈值电流,第一数模转换器MN用于根据数字码DN输入的数字信号提供用于控制激光器二极管210发出的激光信号强度的电流。由于激光器二极管210的负极在激光器二极管210工作或关断时可能呈高压,因此第一数模转换器MN的电流沉NN和第二数模转换器MN’的电流沉NN’需要采用能承受高电压的高压管,然而高压管具有很大的寄生电容Ca。
当数字码DN通过输入数字信号控制第一数模转换器MN关断时,节点netAN的电压会抬升ΔV,节点netAN的电流IN接近于0,根据公式I*t=Ca*ΔV,其中,I为流过节点netAN的电流;Ca为节点netAN的寄生电容,此时,节点netAN的寄生电容Ca为电流沉NN源级的寄生电容和第一数模转换器MN漏级的寄生电容之和,ΔV为节点netAN的电压改变量,t为节点netAN完成ΔV的跳变时间。在Ca*ΔV保持不变的前提下,由于流过节点netAN的电流I接近于0,因此,节点netAN完成ΔV的跳变时间t很大,限制了在高速扫描领域的场景中的应用。
为解决上述问题,本申请实施例提供了一种激光器二极管驱动电路,参照图3,图3是本申请实施例提供的一种激光器二极管驱动电路230的示意图。
如图3所示,该激光器二极管驱动电路230可以包括第一支路301,该第一支路301包括第一电流沉模块302、第一数模转换模块303和第二数模转换模块304。
该第一数模转换模块303的输出端和该第二数模转换模块304的输出端耦合至该第一电流沉模块302的输入端,该第一电流沉模块302的输出端耦合至激光器二极管210的负极。
本申请实施例中,和现有技术不同的是,除了将第一数模转换模块303的输出端耦合至该第一电流沉模块302的输入端,还将第二数模转换模块304的输出端耦合至该第一电流沉模块302的输入端。
该第一数模转换模块303,用于输入数字信号,并向该第一电流沉模块302输入第一电流,该第一电流用于调整该激光器二极管210发出的激光信号强度,换一种表述方式, 该第一电流用于调整该激光器二极管210的亮度。
本申请实施例中,第一数模转换模块303可以包括输入端,该输入端可以输入数字信号,第一数模转换模块303可以根据输入端输入的数字信号,向该第一电流沉模块302输入第一电流。
该第二数模转换模块304,用于输入数字信号,并向该第一电流沉模块302输入第二电流,该第二电流为该激光器二极管210的发光阈值电流。
本申请实施例中,第二数模转换模块304可以包括输入端,该输入端可以输入数字信号,第二数模转换模块304可以根据输入端输入的数字信号,向该第一电流沉模块302输入第二电流。
本申请实施例中,当数字信号控制第一数模转换模块303关断时,节点netAN的电压会抬升ΔV,然而,由于此时节点netAN还耦合有第二数模转换模块304,此时第二数模转换模块304可以根据数字码DN’输入的数字信号向所述第一电流沉模块302输入第二电流,即,此时流过节点netAN的电流I并不接近于0,根据公式I*t=Ca*ΔV,此时,在Ca*ΔV保持不变的前提下,由于节点netAN的电流I并不接近于0,因此,节点netAN完成ΔV的跳变时间t较小,相比于现有技术,本申请可以应用在高速扫描领域的场景中。
在一种可能的电路结构中,图3所示的激光器二极管驱动电路230可以采用如图4所示的结构,图4是本申请实施例提供的一种激光器二极管驱动电路230的结构图。
图4中所示的该第一支路301包括:第一晶体管401,该第二数模转换模块304包括:第二晶体管402,该第一电流沉模块302包括:第三晶体管403。
该第一晶体管401的漏级和该第二晶体管402的漏级耦合至该第三晶体管403的源级,该第一晶体管401的栅级用于输入数字信号,该第二晶体管402的栅级也用于输入数字信号,该第一晶体管401的源级和该第二晶体管402的源级接地,该第三晶体管403的漏级耦合至该激光器二极管210的负极。
本申请实施例中,该第一晶体管401的漏级和该第二晶体管402的漏级耦合至该第三晶体管403的源级,当输入到第一晶体管401栅极的数字信号控制第一晶体管401关断时,位于第一晶体管401漏级的节点netAN的电压会抬升ΔV,然而,由于此时节点netAN还耦合有第二晶体管402的漏级,此时第二晶体管402的可以根据栅极输入的数字信号通过漏级向所述第三晶体管403的源级输入第二电流,即,此时流过节点netAN的电流I并不接近于0,根据公式I*t=Ca*ΔV,此时,在Ca*ΔV保持不变的前提下,由于节点netAN的电流I并不接近于0,因此,节点netAN完成ΔV的跳变时间t较小,相比于现有技术,本申请可以应用在高速扫描领域的场景中。
在一种实施例中,第一晶体管401、第二晶体管402和第三晶体管403为N沟道金属氧化物半导体场效应晶体管NMOS。
其中,由p型衬底和两个高浓度n扩散区构成的MOS管叫作n沟道MOS管,该管导通时在两个高浓度n扩散区间形成n型导电沟道。n沟道增强型MOS管必须在栅极上施加正向偏压,且只有栅源电压大于阈值电压时才有导电沟道产生的n沟道MOS管。n沟道耗尽型MOS管是指在不加栅压(栅源电压为零)时,就有导电沟道产生的n沟道MOS管。统称为NMOS晶体管。
图5是本申请实施例提供的另一种激光器二极管驱动电路的结构图。
与图4相比,图5所示的实施例中,将图4中的第三晶体管403替换为了第三晶体管403和第一电阻501。
本申请实施例中,第三晶体管403的源级耦合至所述第一晶体管401的漏级和所述第二晶体管402的漏级;所述第三晶体管403的漏级耦合至所述第一电阻501的一端,所述第一电阻501的另一端耦合至所述激光器二极管210的负极。
本申请实施例中,可以通过在所述第三晶体管403的漏级耦合第一电阻501,进而控制漏级的电流,实现降噪。
图6是本申请实施例提供的另一种激光器二极管驱动电路的结构图。
与图4相比,图6所示的实施例中,将图4中的第三晶体管403替换为了第三晶体管403和第二电阻501。
本申请实施例中,所述第三晶体管403的源级耦合至所述第二电阻502的一端;所述第三晶体管403的漏级耦合至所述激光器二极管210的负极;所述第二电阻502的另一端耦合至所述第一晶体管401的漏级和所述第二晶体管402的漏级。
本申请实施例中,可以通过在所述第三晶体管403的源级耦合第二电阻502,进而控制源级的电流,实现降噪。
需要说明的是,在另一种实施例中,第一电流沉模块302可以包括多个第三晶体管403,多个第三晶体管403串联连接。
在另一种实施例中,第一电流沉模块302包括多个第三晶体管403和第一电阻501,多个第三晶体管403和第一电阻501串联连接。
在另一种实施例中,第一电流沉模块302包括多个第三晶体管403和第二电阻502,多个第三晶体管403和第二电阻502串联连接。
参照图7,图,7是本申请实施例提供的一种激光器二极管驱动电路230的结构图。
如图7所示,该激光器二极管驱动电路230包括:并联连接的多个图4中示出的第一支路301,多个第一支路301中的多个电流沉模块302的输出端耦合至激光器二极管210的负极,即,多个第三晶体管403的漏级耦合至激光器二极管210的负极,用于向该激光器二极管210输出第一驱动电流。
本申请实施例中,第一支路301可以包括第一晶体管401、第二晶体管402和第三晶体管,其中,数字信号可以控制多个第一支路301中每个第一晶体管401的通断,进而向对应的第三晶体管403输入用于调整激光器二极管210发出的激光信号强度的第一电流。数字信号可以控制多个第一支路301中每个第二晶体管402的通断,进而向对应的第三晶体管403输入用于提供该激光器二极管210的发光阈值电流的第二电流。
可选的,该激光器二极管驱动电路230还包括:镜像电路404;
该镜像电路404的栅极输出端耦合至该第三晶体管403的栅极,用于为该第三晶体管403的栅极提供偏置电压。
本申请实施例中,通过镜像电路的设置,可以通过镜像来为该第三晶体管403的栅极提供偏置电压,进而实现通过控制第三晶体管403栅极的偏置电压,来控制激光器二极管210负极流入第三晶体管的漏级的灌电流。
参照图8,图8是本申请实施例提供的一种激光器二极管驱动电路230的结构图。
该激光器二极管驱动电路230包括:至少一个第一支路301和至少一个第二支路801,其中,至少一个第一支路301和至少一个第二支路801并联连接。
具体的,第二支路801包括:第二电流沉模块803和第三数模转换模块804。
第三数模转换模块804的输出端耦合至第二电流沉模块803的输入端。
第三数模转换模块804,用于根据数字信号向第二电流沉模块803输入第一电流,该第一电流可以用于调整该激光器二极管210发出的激光信号强度,换一种表述方式,该第一电流用于调整该激光器二极管210的亮度。,该第一电流还可以用于提供该激光器二极管210的发光阈值电流。
第二电流沉模块803的输出端耦合至激光器二极管210的负极,用于向激光器二极管210输出第二驱动电流。
本申请实施例中,激光器二极管驱动电路230除了包括第一支路301,还可以包括第二支路801,相当于,激光器二极管驱动电路230中只有一部分支路为第一支路301,提高了方案的灵活性,此外,由于在第一支路301中,第一电流沉模块302可能会流过第一数模转换模块303输出的电流以及第二数模转换模块304输出的电流之和,针对于一部分第一电流沉模块302,其可以承受的电流值超过第一数模转换模块303输出的电流以及第二数模转换模块304输出的电流之和,则可以将其按照第一支路301的结构设置。针对于一部分第一电流沉模块302,其可以承受的电流值不超过第一数模转换模块303输出的电流以及第二数模转换模块304输出的电流之和,则可以将其按照第二支路801的结构设置,需要说明的是,第一支路和第二支路的数量可以按照实际情况进行选择,这里并不限定。
参照图9,图9是本申请实施例提供的一种激光器二极管驱动电路230的结构图。
如图9示出的那样,激光器二极管驱动电路230可以包括:至少一个第一支路301和至少一个第二支路801,至少一个第一支路301和至少一个第二支路801并联连接。
第二支路801包括:第二电流沉模块803和第三数模转换模块804;
具体的,该第三数模转换模块804包括:第四晶体管901,该第二电流沉模块803包括:第五晶体管903。
该第四晶体管901的漏级耦合至该第五晶体管903的源级;
该第四晶体管901的栅级用于输入数字信号;
该第五晶体管903的漏级耦合至该激光器二极管210的负极。
在一种实施例中,该第四晶体管901、该第五晶体管903为NMOS。
需要说明的是,本申请上述实施例中描述的激光器二极管驱动电路230可以应用在图2a中示出的激光扫描装置中,也可以应用在图2b中示出的增强现实AR设备250,本申请并不限定。
本申请实施例还提供了一种激光器二极管驱动方法,方法应用于图2至图9所描述的激光器二极管驱动电路230中,激光器二极管驱动电路230包括第一支路,第一支路包括第一电流沉模块、第一数模转换模块和第二数模转换模块,第一数模转换模块的输出端和第二数模转换模块的输出端耦合至第一电流沉模块的输入端,第一电流沉模块的输出端耦合至激光器二极管的负极,参见图10,图10为本申请实施例提供的激光器二极管驱动方 法的一种流程示意图,方法可以包括:
1001、第一数模转换模块根据数字信号向第一电流沉模块输入第一电流。
本申请实施例中,第一数模转换模块阵列包括:第一晶体管;第一晶体管的漏级耦合至第一电流沉模块的输入端,第一晶体管的栅级用于输入数字信号,第一晶体管的源级接地。
1002、第二数模转换模块根据数字信号向第一电流沉模块输入第二电流。
本申请实施例中,第二数模转换阵列包括:第二晶体管;第二晶体管的漏级耦合至第一电流沉模块的输入端;第二晶体管的栅级用于输入数字信号;第二晶体管的源级接地。
1003、第一电流沉模块的输出端向激光器二极管输出第一驱动电流。
本申请实施例中,第一电流沉模块可以包括:第三晶体管;第三晶体管的源级耦合至第一晶体管的漏级和第二晶体管的漏级;第三晶体管的漏级耦合至激光器二极管的负极。
本申请还提供了一种激光扫描装置,包括:激光器二极管210、电源模块220和上述实施例描述的任一激光器二极管驱动电路230;所述电源模块220的输出端耦合至所述激光器二极管210的正极,所述激光器二极管驱动电路230的一端耦合至所述激光器二极管210的负极。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
另外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,模块的划 分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个模块或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或模块的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的部分或者全部模块来实现本申请实施例方案的目的。
另外,在本申请各个实施例中的各功能模块可以集成在一个处理模块中,也可以是各个模块单独物理存在,也可以是两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
总之,以上所述仅为本申请技术方案的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
以上对本申请进行了详细介绍,本文中应用了具体个例对本申请的具体实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (15)

  1. 一种激光器二极管驱动电路,其特征在于,所述激光器二极管驱动电路包括:第一支路,所述第一支路包括:第一电流沉模块、第一数模转换模块和第二数模转换模块;
    所述第一数模转换模块的输出端和所述第二数模转换模块的输出端耦合至所述第一电流沉模块的输入端;
    所述第一数模转换模块,用于根据数字信号向所述第一电流沉模块输入第一电流;
    所述第二数模转换模块,用于根据数字信号向所述第一电流沉模块输入第二电流;
    所述第一电流沉模块的输出端耦合至所述激光器二极管的负极,用于向所述激光器二极管输出第一驱动电流。
  2. 根据权利要求1所述的激光器二极管驱动电路,其特征在于,所述第一数模转换模块阵列包括:第一晶体管,所述第二数模转换阵列包括:第二晶体管;
    所述第一晶体管的漏级和所述第二晶体管的漏级耦合至所述第一电流沉模块的输入端,所述第一晶体管的栅级用于输入数字信号,所述第二晶体管的栅级用于输入数字信号,所述第一晶体管的源级和所述第二晶体管的源级接地。
  3. 根据权利要求2所述的激光器二极管驱动电路,其特征在于,所述第一电流沉模块包括:第三晶体管;
    所述第三晶体管的源级耦合至所述第一晶体管的漏级和所述第二晶体管的漏级;
    所述第三晶体管的漏级耦合至所述激光器二极管的负极。
  4. 根据权利要求2所述的激光器二极管驱动电路,其特征在于,所述第一电流沉模块包括:第三晶体管和第一电阻;其中,
    所述第三晶体管的源级耦合至所述第一晶体管的漏级和所述第二晶体管的漏级;
    所述第三晶体管的漏级耦合至所述第一电阻一端,所述第一电阻的另一端耦合至所述激光器二极管的负极。
  5. 根据权利要求2所述的激光器二极管驱动电路,其特征在于,所述第一电流沉模块包括:第三晶体管和第二电阻;其中,
    所述第三晶体管的源级耦合至所述第二电阻的一端;
    所述第三晶体管的漏级耦合至所述激光器二极管的负极;
    所述第二电阻的另一端耦合至所述第一晶体管的漏级和所述第二晶体管的漏级。
  6. 根据权利要求3至5任一所述的激光器二极管驱动电路,其特征在于,所述激光器二极管驱动电路还包括:镜像电路;
    所述镜像电路的栅极输出端耦合至所述第三晶体管的栅极,用于为所述第三晶体管提供偏置电压。
  7. 根据权利要求2至6任一所述的激光器二极管驱动电路,其特征在于,所述第一晶体管和所述第二晶体管为N沟道金属氧化物半导体场效应晶体管NMOS。
  8. 根据权利要求3至6任一所述的激光器二极管驱动电路,其特征在于,所述第三晶体管为NMOS。
  9. 一种激光器二极管驱动电路,其特征在于,所述激光器二极管驱动电路包括:并联连接的多个如权利要求1至8中所述的第一支路;其中,
    多个所述电流沉模块的输出端耦合至激光器二极管的负极,用于向所述激光器二极管输出第一驱动电流。
  10. 根据权利要求9所述的激光器二极管驱动电路,其特征在于,所述激光器二极管驱动电路还包括:至少一个第二支路,多个所述第一支路和所述至少一个第二支路并联连接;
    所述第二支路包括:第二电流沉模块和第三数模转换模块;
    所述第三数模转换模块的输出端耦合至所述第二电流沉模块的输入端;
    所述第三数模转换模块,用于根据数字信号向所述第二电流沉模块输入第一电流;
    所述第二电流沉模块的输出端耦合至激光器二极管的负极,用于向所述激光器二极管输出第二驱动电流。
  11. 根据权利要求10所述的激光器二极管驱动电路,其特征在于,所述第三数模转换模块包括:第四晶体管,所述第二电流沉模块包括:第五晶体管;
    所述第四晶体管的漏级耦合至所述第五晶体管的源级;
    所述第四晶体管的栅级用于输入数字信号;
    所述第五晶体管的漏级耦合至所述激光器二极管的负极。
  12. 根据权利要求11所述的激光器二极管驱动电路,其特征在于,所述第四晶体管和所述第五晶体管为NMOS。
  13. 一种激光器二极管驱动方法,其特征在于,所述方法应用于激光器二极管驱动电路,所述激光器二极管驱动电路包括第一支路,所述第一支路包括第一电流沉模块、第一数模转换模块和第二数模转换模块,所述第一数模转换模块的输出端和所述第二数模转换模块的输出端耦合至所述第一电流沉模块的输入端,所述第一电流沉模块的输出端耦合至激光器二极管的负极;
    所述方法包括:
    所述第一数模转换模块根据数字信号向所述第一电流沉模块输入第一电流;
    所述第二数模转换模块根据数字信号向所述第一电流沉模块输入第二电流;
    所述第一电流沉模块的输出端向所述激光器二极管输出第一驱动电流。
  14. 一种激光扫描装置,其特征在于,包括:
    激光器二极管、电源模块和如权利要求1至12任一所述的激光器二极管驱动电路;
    所述电源模块的输出端耦合至所述激光器二极管的正极,所述激光器二极管驱动电路的一端耦合至所述激光器二极管的负极。
  15. 一种增强现实AR设备,其特征在于,包括:
    显示模块,多个如权利要求1至12任一所述的激光器二极管驱动电路以及电源模块;
    所述显示模块包括多个激光器二极管;
    所述电源模块的输出端耦合至所述多个激光器二极管的正极,所述多个激光器二极管中的每个所述激光器二极管的负极的耦合至所述多个激光器二极管驱动电路中的一个激光器二极管驱动电路的一端,所述多个激光器二极管驱动电路用于控制所述多个激光器二极管发光,以使得所述显示模块显示增强现实影像。
PCT/CN2019/089515 2019-05-31 2019-05-31 一种激光器二极管驱动电路、方法及激光扫描装置 WO2020237624A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980097049.4A CN113906642B (zh) 2019-05-31 2019-05-31 一种激光器二极管驱动电路、方法及激光扫描装置
PCT/CN2019/089515 WO2020237624A1 (zh) 2019-05-31 2019-05-31 一种激光器二极管驱动电路、方法及激光扫描装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/089515 WO2020237624A1 (zh) 2019-05-31 2019-05-31 一种激光器二极管驱动电路、方法及激光扫描装置

Publications (1)

Publication Number Publication Date
WO2020237624A1 true WO2020237624A1 (zh) 2020-12-03

Family

ID=73551960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/089515 WO2020237624A1 (zh) 2019-05-31 2019-05-31 一种激光器二极管驱动电路、方法及激光扫描装置

Country Status (2)

Country Link
CN (1) CN113906642B (zh)
WO (1) WO2020237624A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114152857A (zh) * 2021-12-07 2022-03-08 华东师范大学 一种二维材料场效应晶体管失效样品的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1649221A (zh) * 2004-01-29 2005-08-03 住友电气工业株式会社 激光二极管驱动电路
CN102820009A (zh) * 2011-06-07 2012-12-12 友达光电股份有限公司 显示器背光单元
US20130016745A1 (en) * 2011-07-13 2013-01-17 Sumitomo Electric Industries, Ltd. Driver for laser diode integrated with external modulator
EP2562935A2 (en) * 2011-08-23 2013-02-27 Raytheon Company High-efficiency, dual current sink laser diode driver
CN104682190A (zh) * 2014-09-17 2015-06-03 香港应用科技研究院有限公司 激光二极管驱动器
CN106549301A (zh) * 2015-09-22 2017-03-29 美国亚德诺半导体公司 脉冲激光二极管驱动器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11126935A (ja) * 1997-10-23 1999-05-11 Nippon Telegr & Teleph Corp <Ntt> レーザーダイオード駆動回路
JP3843666B2 (ja) * 1999-10-06 2006-11-08 富士ゼロックス株式会社 レーザダイオード駆動回路及び画像記録装置
US6931040B2 (en) * 2003-06-20 2005-08-16 Maxim Integrated Products, Inc. System and method for using an output transformer for laser diode drivers
CN101692521B (zh) * 2009-10-16 2012-04-18 上海博为光电科技有限公司 用于光通信发送机的激光二极管驱动器
WO2012083694A1 (zh) * 2011-07-27 2012-06-28 华为技术有限公司 自种子光纤激光器及其驱动方法、无源光网络系统及设备
US9407259B2 (en) * 2014-06-27 2016-08-02 Finisar Corporation Driver circuit
CN208189975U (zh) * 2018-04-24 2018-12-04 杭州科雷机电工业有限公司 一种大电流高频调制激光恒功率驱动电路

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1649221A (zh) * 2004-01-29 2005-08-03 住友电气工业株式会社 激光二极管驱动电路
CN102820009A (zh) * 2011-06-07 2012-12-12 友达光电股份有限公司 显示器背光单元
US20130016745A1 (en) * 2011-07-13 2013-01-17 Sumitomo Electric Industries, Ltd. Driver for laser diode integrated with external modulator
EP2562935A2 (en) * 2011-08-23 2013-02-27 Raytheon Company High-efficiency, dual current sink laser diode driver
CN104682190A (zh) * 2014-09-17 2015-06-03 香港应用科技研究院有限公司 激光二极管驱动器
CN106549301A (zh) * 2015-09-22 2017-03-29 美国亚德诺半导体公司 脉冲激光二极管驱动器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114152857A (zh) * 2021-12-07 2022-03-08 华东师范大学 一种二维材料场效应晶体管失效样品的制备方法

Also Published As

Publication number Publication date
CN113906642B (zh) 2023-06-27
CN113906642A (zh) 2022-01-07

Similar Documents

Publication Publication Date Title
US8471633B2 (en) Differential amplifier and data driver
TWI639993B (zh) 具有強化轉動率之緩衝電路以及具有該電路的源極驅動電路
US20190221153A1 (en) Semiconductor device
US10580360B2 (en) Pixel circuit and driving method thereof, display device
US7429873B2 (en) High voltage digital driver with dynamically biased cascode transistors
JP6914239B2 (ja) 画素回路、画素の駆動方法及び表示装置
TWI491180B (zh) 具高輸出電壓的低電壓傳輸裝置
US11217183B2 (en) Pixel circuit and driving method thereof and display apparatus
CN113129817A (zh) 电力管理驱动器和显示装置
TWI674566B (zh) 畫素電路與高亮度顯示器
US7898321B2 (en) Driver circuit
CN111312173A (zh) 一种像素电路及像素驱动的方法
KR20110095141A (ko) 전류 미러 회로
WO2020237624A1 (zh) 一种激光器二极管驱动电路、方法及激光扫描装置
KR20230037634A (ko) 전원 공급 회로, 칩 및 디스플레이 스크린
KR102609645B1 (ko) 샘플 홀드 회로, 및 표시 장치
US7755684B2 (en) Row driver circuitry for imaging devices and related method of operation
US8547301B2 (en) Light emitting display apparatus and driving method thereof
US11335251B2 (en) LED driving apparatus having mitigated common impedance effect
US20040141270A1 (en) Semiconductor integrated circuit with electrostatic discharge protection
CN112270909B (zh) 像素驱动电路
US20210191441A1 (en) Constant Voltage Generation Circuit
JP4371645B2 (ja) 半導体装置
JP2022531197A (ja) ゲート電流再使用を伴うGaNレーザダイオード駆動FET
JP2008218825A (ja) 集積回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19930926

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19930926

Country of ref document: EP

Kind code of ref document: A1