WO2020237512A1 - 一种激光二极管及其制作方法 - Google Patents

一种激光二极管及其制作方法 Download PDF

Info

Publication number
WO2020237512A1
WO2020237512A1 PCT/CN2019/088883 CN2019088883W WO2020237512A1 WO 2020237512 A1 WO2020237512 A1 WO 2020237512A1 CN 2019088883 W CN2019088883 W CN 2019088883W WO 2020237512 A1 WO2020237512 A1 WO 2020237512A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser diode
layer
ridge
substrate
inclined surface
Prior art date
Application number
PCT/CN2019/088883
Other languages
English (en)
French (fr)
Inventor
钟志白
李佳恩
卓昌正
徐宸科
康俊勇
Original Assignee
厦门三安光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门三安光电有限公司 filed Critical 厦门三安光电有限公司
Priority to EP19931295.0A priority Critical patent/EP3979439B1/en
Priority to CN201980004876.4A priority patent/CN111279564B/zh
Priority to JP2021527895A priority patent/JP2022507809A/ja
Priority to CN202310609482.XA priority patent/CN116865091A/zh
Priority to PCT/CN2019/088883 priority patent/WO2020237512A1/zh
Publication of WO2020237512A1 publication Critical patent/WO2020237512A1/zh
Priority to US17/493,602 priority patent/US20220059989A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/125Distributed Bragg reflector [DBR] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/028Coatings ; Treatment of the laser facets, e.g. etching, passivation layers or reflecting layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2004Confining in the direction perpendicular to the layer structure
    • H01S5/2009Confining in the direction perpendicular to the layer structure by using electron barrier layers
    • H01S5/2013MQW barrier reflection layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0201Separation of the wafer into individual elements, e.g. by dicing, cleaving, etching or directly during growth
    • H01S5/0202Cleaving
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1003Waveguide having a modified shape along the axis, e.g. branched, curved, tapered, voids
    • H01S5/1014Tapered waveguide, e.g. spotsize converter

Definitions

  • the invention relates to the field of semiconductor light-emitting diodes, in particular to a laser diode and a manufacturing method thereof.
  • GaN-based light-emitting diodes and laser diodes have achieved extensive research and market applications; especially in laser display and laser projection, such as GaN blue and green laser diodes (English as Laser Diode, LD for short), the structure of laser diodes is mainly Edge-emitting ridge waveguide structure.
  • the laser diode adopts a side-emitting ridge waveguide structure, and it needs to be coated with distributed Bragg reflection (DBR) at both ends of the Bar to make a Fabry-Perot (FP) cavity to form resonance; conventional cavity surfaces are caused by right-angle shapes
  • DBR distributed Bragg reflection
  • FP Fabry-Perot
  • the purpose of the present invention is at least to provide a laser diode and its manufacturing method, which aims to solve the problem of poor coverage of the corner DBR caused by the vertical cavity surface, and the side-plated DBR will affect the LD.
  • an embodiment of the present invention provides a laser diode, including: a substrate, and a stacked layer on the substrate, the stacked layer includes: an N-type layer, an active layer, and The P-type layer of the ridge strip and the DBR covering layer; the end surface of the ridge strip is a first inclined surface, and the contact surface between the ridge strip and the DBR covering layer includes a first inclined surface.
  • the included angle between the first inclined surface and the normal direction of the lower surface of the ridge strip is greater than 0 degrees and less than or equal to 60 degrees.
  • the end surface of the substrate is a second inclined surface
  • the contact surface between the substrate and the DBR covering layer includes a second inclined surface
  • the included angle between the second inclined surface and the normal direction of the upper surface of the substrate is between: greater than 0 degrees and less than or equal to 60 degrees.
  • the first inclined surface is located on the P-type layer.
  • the N-type layer includes an N-type metal layer.
  • the P-type layer includes a P-type metal layer.
  • the P-type layer further includes an upper waveguide layer.
  • an embodiment of the present invention is a method for manufacturing a laser diode, which is characterized in that it includes the steps:
  • N-type layer, an active layer and a P-type layer are sequentially epitaxially grown on the substrate, and a P-type layer with ridge strips is produced;
  • the DBR covering layer is grown, and the contact surface between the DBR covering layer and the ridge strip includes the first inclined surface.
  • the method further includes:
  • the substrate is split in a direction perpendicular to the length of the ridge strip to obtain an end surface of the substrate as a second inclined surface; the contact surface between the substrate and the DBR covering layer includes the second inclined surface.
  • the step of splitting the ridge strip in a direction perpendicular to the length of the ridge strip includes:
  • a V-shaped groove or an open inverted trapezoid groove or the foregoing combination is made on the ridge strip, and vertically splits along the middle of the V-shaped groove or the open inverted trapezoidal groove or the foregoing combination to form an end surface.
  • V-shaped grooves or arc-shaped grooves or open inverted trapezoidal grooves or the foregoing combination on the substrate, and split vertically along the middle of the V-shaped groove or the middle of the open inverted trapezoidal groove or the foregoing combination to form an end face .
  • the length direction of the V-shaped groove or the arc-shaped groove or the open inverted trapezoidal groove or the aforementioned combination is perpendicular to the length direction of the ridge strip.
  • the above-mentioned technical solutions provided by the embodiments of the present invention not only make it easier to manufacture LD DBR strips; but also can effectively solve the traditional right-angle cavity surface due to poor DBR coverage, high stress and easy fracture, and side-plated DBR will affect To the technical problem of poor electrical properties of LD caused by the eutectic of LD;
  • the contact layer near the end face has high resistance and poor current spreading.
  • the present invention etches off part of the contact layer on the end face, which is effective This reduces the current density near the contact surface and improves the LD’s ability to resist optical catastrophe damage.
  • Figure 1 shows the structure of the laser diode of the present invention
  • FIG. 2 shows a schematic diagram of the structure of the single-sided wedge-shaped laser diode according to the present invention
  • Fig. 3 is a schematic diagram of the structure of the double-sided wedge-shaped laser diode according to the present invention.
  • Fig. 4 shows a schematic flow chart of the manufacturing method of the laser diode according to the present invention
  • Figure 5 shows a schematic diagram of the positional relationship between the V-shaped groove and the ridge strip according to the present invention
  • FIG. 6 is a schematic diagram of the structure of the partially oblique double-sided wedge-shaped laser diode according to the present invention.
  • an embodiment of the present invention provides a laser diode, including: a substrate 3, and a stacked layer on the substrate, the stacked layer includes: an N-type layer 4, multiple quantum wells ( English multi-quantum well, MQW for short) active layer 5, the surface of which has a P-type layer 6 with ridge strips 2 and a DBR covering layer 8; the end surface of the ridge strip is the first inclined surface 7, and the ridge strip is The contact surface of the DBR covering layer includes a first inclined surface 7.
  • MQW English multi-quantum well
  • the end surface is the end surface of the two ends of the ridge strip along the length (L1) direction
  • the first inclined surface is parallel to the wide side W1 of the ridge strip 2 or the wide side of the ridge strip is located
  • the contact surface includes a first inclined surface
  • the structure is a single-sided wedge-shaped laser diode. The single side solves the problem of poor coverage of the corner DBR caused by the right-angle shape of the cavity surface, high stress and easy cracking, and the side-plated DBR will affect the eutectic of the LD and thus affect the electrical properties of the LD.
  • the included angle between the first inclined surface and the normal direction of the lower surface of the ridge strip is greater than 0 degrees and less than or equal to 60 degrees. This angle range can ensure that the DBR is well covered on the ridge strips and is not easy to fall off.
  • the end surface of the substrate is a second inclined surface
  • the contact surface between the substrate and the DBR covering layer includes a second inclined surface 9.
  • the end surface is located on the back surface of the substrate and is the end surface at both ends of the substrate along the length of the ridge strip.
  • the back side mentioned here is relative to the front side
  • the front side is the side used for the epitaxial growth of the laminate.
  • This structure is a double-sided wedge-shaped laser diode, and the first slope and the second slope form a double-sided slope structure, so that the DBR covering layer has better coverage on the substrate and is not easy to fall off, thereby ensuring the good electrical properties of the LD.
  • the included angle between the second inclined surface and the normal direction of the upper surface of the substrate is between: greater than 0 degrees and less than or equal to 60 degrees. This angle range can ensure that the DBR is well covered on the substrate and is not easy to fall off.
  • the first inclined surface is located on the P-type layer. In addition, during the manufacturing process of the first inclined surface, the first inclined surface does not extend into the MQW active layer.
  • the N-type layer includes an N-type metal layer 41.
  • the N-type metal layer is used to connect the N-type layer for conduction.
  • the P-type layer includes a P-type metal layer 62.
  • the P-type metal layer is used to connect the P-type layer for conduction.
  • the P-type layer further includes an upper waveguide layer 61.
  • P-InGaN can be selected for the upper waveguide layer.
  • the first inclined surface is formed by making a V-shaped groove or an arc-shaped groove or an open inverted trapezoid groove 1 and then splitting it; the depth of the V-shaped groove, an arc-shaped groove or an open inverted trapezoidal groove is different Will exceed the upper waveguide layer. This ensures that the cleavage will not be excessive, and the first slope is limited to the P-type layer and does not extend into the active layer.
  • an embodiment of the present invention provides a method for manufacturing a laser diode, which includes the steps:
  • the contact surface includes the first inclined surface, which directly solves the problem of poor DBR coverage at the corners due to the right-angled shape of the cavity surface, high stress and easy cracking.
  • the side-plated DBR will affect the eutectic of the LD and affect the LD Electrical.
  • the included angle between the first inclined surface and the normal direction of the lower surface of the ridge strip is greater than 0 degrees and less than or equal to 60 degrees. This angle range can ensure that the DBR is well covered on the substrate and is not easy to fall off.
  • the method further includes:
  • a double-sided wedge-shaped laser diode can be obtained.
  • the first slope and the second slope form a double-sided slope structure, so that the DBR covering layer has better coverage on the substrate and is not easy to fall off, thereby ensuring good electrical properties of the LD.
  • the included angle between the second inclined surface and the normal direction of the upper surface of the substrate is between: greater than 0 degrees and less than or equal to 60 degrees. This angle range can ensure that the DBR is well covered on the substrate and is not easy to fall off.
  • the step of splitting the ridge strip along a direction perpendicular to the length of the ridge strip includes:
  • V-shaped grooves or arc-shaped grooves or open inverted trapezoidal grooves or the combination of the foregoing are made on the ridge strips, and vertically split along the middle of the foregoing grooves to form end faces.
  • the step of splitting the substrate in a direction perpendicular to the length of the ridge strip includes:
  • a V-shaped groove or an arc-shaped groove or an open inverted trapezoid groove or the combination of the foregoing is made on the substrate, and vertically split along the middle of the foregoing groove to form an end surface.
  • the length direction of the groove body is perpendicular to the length direction of the ridge strip, that is, L2 is perpendicular to L1.
  • L2 is perpendicular to L1.
  • the V-shaped groove, the arc-shaped groove, the open inverted trapezoidal groove or the combination of the foregoing can be performed by a combination of a yellow light process and an ICP (Inductive Coupled Plasma) etching process or other methods.
  • the ridge strip and the substrate are split by using different grooves to obtain a partially oblique double-sided wedge-shaped wedge-shaped laser diode.
  • an open inverted trapezoid groove is made on the ridge strip, and a V-shaped groove is made on the substrate, and then vertically split along the middle of the groove body to form an inclined end surface. This can further increase the scope of application of the method of the present invention in practical applications.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Semiconductor Lasers (AREA)

Abstract

本发明公开了一种激光二极管及其制作方法。其中,所述激光二极管包括:衬底,以及位于衬底上的堆叠层,所述堆叠层包括:N型层,活性层,表面具有脊状条的P型层以及DBR覆盖层;其特征在于,所述脊状条的端面为第一斜面,所述脊状条与所述DBR覆盖层的接触面包括第一斜面。所述制作方法包括步骤:在衬底上依次外延生长N型层、活性层和P型层,并制作带有脊状条的P型层;沿垂直于脊状条长度的方向对所述脊状条进行劈裂,得到脊状条的端面为第一斜面;进行DBR覆盖层生长,所述DBR覆盖层与所述脊状条的接触面包括所述第一斜面。它旨在解决垂直腔面造成边角的DBR覆盖不好,侧镀的DBR又会影响到激光二极管的共晶,从而导致的激光二极管电性不良。

Description

一种激光二极管及其制作方法 技术领域
本发明涉及半导体发光二极管领域,尤其涉及一种激光二极管及其制作方法。
背景技术
GaN基的发光二极管和激光二极管已经取得了广泛研究和市场应用;特别是在激光显示和激光投影,例如GaN蓝色和绿色激光二极管(英文为Laser Diode,简称LD),激光二极管的结构主要是边发射脊波导结构。激光二极管采用边发射脊波导结构,需要在Bar两端镀上分布式布拉格反射镜(distributed Bragg reflection,DBR)制作法布里-珀罗(F-P)腔形成共振;常规腔面都是直角形状造成边角的DBR覆盖不好,应力大易破裂,侧镀的DBR又会影响到LD的共晶,从而影响电性。
发明概述
技术问题
问题的解决方案
技术解决方案
鉴于以上所述现有技术的缺点,本发明的目的至少在于提供一种激光二极管及其制作方法,旨在解决垂直腔面造成边角的DBR覆盖不好,侧镀的DBR又会影响到LD的共晶,从而导致的LD电性不良。
为实现上述目的及其他相关目的,本发明的一个实施方式提供一种激光二极管,包括:衬底,以及位于衬底上的堆叠层,所述堆叠层包括:N型层,活性层,表面具有脊状条的P型层以及DBR覆盖层;所述脊状条的端面为第一斜面,所述脊状条与所述DBR覆盖层的接触面包括第一斜面。
可选地,所述第一斜面与脊状条的下表面的法向方向之间的夹角介于:大于0度且小于等于60度。
可选地,所述衬底的端面为第二斜面,所述衬底与所述DBR覆盖层的接触面包括第二斜面。
可选地,所述第二斜面与所述衬底的上表面的法向方向之间的夹角介于:大于0度且小于等于60度。
可选地,所述第一斜面位于所述P型层上。
可选地,所述N型层包括N型金属层。
可选地,所述P型层包括P型金属层。
可选地,所述P型层还包括上波导层。
为实现上述目的及其他相关目的,本发明的一个实施方式一种激光二极管的制作方法,其特征在于,包括步骤:
在衬底上依次外延生长N型层、活性层和P型层,并制作带有脊状条的P型层;
沿垂直于脊状条长度的方向对所述脊状条进行劈裂,得到脊状条的端面为第一斜面;
进行DBR覆盖层生长,所述DBR覆盖层与所述脊状条的接触面包括所述第一斜面。
可选地,在得到所述第一斜面的步骤之后还包括:
沿垂直于脊状条长度的方向对所述衬底进行劈裂,得到所述衬底的端面为第二斜面;所述衬底与DBR覆盖层的接触面包括所述第二斜面。
可选地,所述沿垂直于脊状条长度的方向对所述脊状条进行劈裂的步骤包括:
在脊状条上制作V字型凹槽或者开口倒梯形凹槽或者前述组合,并沿V字型凹槽中间或开口倒梯形凹槽中间或者前述组合中间垂直劈裂,形成端面。
在衬底上制作V字型凹槽或弧形凹槽或者开口倒梯形凹槽或者前述组合,并沿V字型凹槽中间或开口倒梯形凹槽中间或者前述组合中间垂直劈裂,形成端面。
可选地,所述V字型凹槽或弧形凹槽或者开口倒梯形凹槽或者前述组合的槽体长度方向与所述脊状条的长度方向垂直。
发明的有益效果
有益效果
本发明实施方式提供的上述技术方案,不仅能够更简易的制作出LD的DBR陪条;而且能够有效解决传统直角腔面由于的DBR覆盖不好、应力大易断裂、侧镀的DBR又会影响到LD的共晶所导致的LD电性不良的技术问题;此外传统方案 在大电流测试中,靠近端面的接触层电阻高,电流扩展差,而本发明刻蚀掉端面的部分接触层,有效的降低了接触面附近的电流密度,改善了LD的抗光学灾变损伤能力。
对附图的简要说明
附图说明
图1显示为本发明所述的激光二极管的结构图;
图2显示为本发明所述的单边楔形的激光二极管的结构示意图;
图3显示为本发明所述的双边楔形的激光二极管的结构示意图;
图4显示为本发明所述的激光二极管的制作方法的流程示意图;
图5显示为本发明所述的V型槽与脊状条的位置关系示意图;
图6显示为本发明所述的部分斜角的双边楔形的激光二极管的结构示意图。
元件标号说明
[Table 1]
Figure PCTCN2019088883-appb-000001
发明实施例
本发明的实施方式
以下由特定的具体实施例说明本发明的实施方式,熟悉此技术的人士可由本说 明书所揭露的内容轻易地了解本发明的其他优点及功效。
须知,本说明书附图中所绘示的结构、比例、大小等,均仅用以配合说明书所揭示的内容,以供熟悉此技术的人士了解与阅读,并非用以限定本发明可实施的限定条件,故不具技术上的实质意义,任何结构的修饰、比例关系的改变或大小的调整,在不影响本发明所能产生的功效及所能达成的目的下,均应仍落在本发明所揭示的技术内容所能涵盖的范围内。同时,本说明书中所引用的如“上”、“下”、“正面”、“背面”、“中间”及“一”等的用语,亦仅为便于叙述的明了,而非用以限定本发明可实施的范围,其相对关系的改变或调整,在无实质变更技术内容下,当亦视为本发明可实施的范畴。
如图1-2所示,本发明的一个实施例提供一种激光二极管,包括:衬底3,以及位于衬底上的堆叠层,所述堆叠层包括:N型层4,多重量子阱(英文multi-quantum well,简称MQW)活性层5,表面具有脊状条2的P型层6以及DBR覆盖层8;所述脊状条的端面为第一斜面7,所述脊状条与所述DBR覆盖层的接触面包括第一斜面7。
如图5所示,所述端面是所述脊状条沿长度(L1)方向上的两端的端面,第一斜面与脊状条2的宽边W1平行或所述脊状条的宽边位于所述第一斜面上,接触面包括第一斜面,该结构为单边楔形的激光二极管。单边解决了由于现有的腔面的直角形状造成的边角的DBR覆盖不好、应力大易破裂,侧镀的DBR又会影响到LD的共晶从而影响LD的电性。
在某一实施方式中,所述第一斜面与脊状条的下表面的法向方向之间的夹角介于:大于0度且小于等于60度。这个角度范围能够保证DBR很好的覆盖在所述脊状条上且不易脱落。
如图1与3所示,在某一实施方式中,所述衬底的端面为第二斜面,所述衬底与所述DBR覆盖层的接触面包括第二斜面9。所述的端面位于所述衬底的背面、是所述衬底沿所述脊状条长度的方向上的两端的端面。此处所述的背面是相对于正面而言,而正面是用于外延生长对叠层的那一面。此结构为双边楔形激光二极管,第一斜面与第二斜面形成双边斜面结构,使得DBR覆盖层在衬底上的覆盖性更好,不易脱落,从而保证了LD的良好电性。
在某一实施方式中,所述第二斜面与所述衬底的上表面的法向方向之间的夹角介于:大于0度且小于等于60度。这个角度范围能够保证DBR很好的覆盖在衬底上且不易脱落。
在某一实施方式中,所述第一斜面位于所述P型层上。且第一斜面在制作过程中,第一斜面不延伸进入MQW活性层。
在某一实施方式中,所述N型层包括N型金属层41。N型金属层用于连接N型层,用于导电。
在某一实施方式中,所述P型层包括P型金属层62。P型金属层用于连接P型层,用于导电。
在某一实施方式中,所述P型层还包括上波导层61。上波导层可选用P-InGaN。第一斜面是通过制作V字型凹槽或者弧形凹槽或者开口倒梯形凹槽1,然后劈裂开形成的;V字型凹槽或者弧形凹槽或者开口倒梯形凹槽的深度不会超过上波导层。这保证了劈裂不会过度,第一斜面仅限于P型层,而不延伸进入活性层。
如图4所示,本发明的一个实施方式提供一种激光二极管的制作方法,包括步骤:
S1,在衬底上依次外延生长N型层、MQW活性层和P型层,并制作带有脊状条的P型层;
S2,沿垂直于脊状条长度的方向对所述脊状条进行劈裂,得到脊状条的端面为第一斜面;
S3,进行DBR覆盖层生长,所述DBR覆盖层与所述脊状条的接触面包括所述第一斜面。
接触面包括第一斜面,直接解决了由于现有的腔面的直角形状造成的边角的DBR覆盖不好、应力大易破裂,侧镀的DBR又会影响到LD的共晶从而影响LD的电性。
在某一实施方式中,所述第一斜面与脊状条的下表面的法向方向之间的夹角介于:大于0度且小于等于60度。这个角度范围能够保证DBR很好的覆盖在衬底上且不易脱落。
在某一实施方式中,在得到所述第一斜面的步骤之后还包括:
S4,沿垂直于脊状条长度的方向对所述衬底进行劈裂,得到所述衬底的端面为第二斜面;所述衬底与DBR覆盖层的接触面包括第二斜面。
通过上述步骤能够得到双边楔形激光二极管,第一斜面与第二斜面形成双边斜面结构,使得DBR覆盖层在衬底上的覆盖性更好,不易脱落,从而保证了LD的良好电性。
在某一实施方式中,所述第二斜面与所述衬底的上表面的法向方向之间的夹角介于:大于0度且小于等于60度。这个角度范围能够保证DBR很好的覆盖在衬底上且不易脱落。
如图5所示,在某一实施方式中,所述沿垂直于脊状条长度的方向对所述脊状条进行劈裂的步骤包括:
在脊状条上制作V字型凹槽或者弧形凹槽或者开口倒梯形凹槽或者前述组合,并沿前述凹槽中间垂直劈裂,形成端面。
在某一实施方式中,所述沿垂直于脊状条长度的方向对所述衬底进行劈裂的步骤包括:
在衬底上制作V字型凹槽或弧形凹槽或开口倒梯形凹槽或前述组合,并沿前述凹槽中间垂直劈裂,形成端面。
所述槽体的长度方向垂直于脊状条的长度方向,即L2垂直于L1。其中V字型凹槽或弧形凹槽或者开口倒梯形凹槽或者前述组合,可以利用黄光工艺和ICP(Inductive Coupled Plasma,感应耦合等离子体)刻蚀工艺结合或者其他方式执行。
如图6所示,在某一实施方式中,脊状条与衬底采用不同的槽体进行劈裂,得到部分斜角的双边楔形楔形激光二极管。具体来说,比如在脊状条上制作开口倒梯形凹槽,而在衬底上制作V字型凹槽,此后沿着前述槽体中间垂直劈裂,形成倾斜端面。这样可以进一步地增加本发明所述方法在实际应用中的适应范围。本发明实施方式提供的上述技术方案,不仅能够更简易的制作出LD的DBR陪条;而且能够有效解决传统垂直腔面由于的DBR覆盖不好、应力大易断裂、侧镀的DBR又会影响到LD的共晶所导致的LD电性不良的技术问题;此外由于刻蚀掉端面的部分接触层改善断面DBR的覆盖,降低接触面附近的电流密度,改善LD的抗光学灾变损伤能力。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (13)

  1. 一种激光二极管,包括:衬底,以及位于衬底上的堆叠层,所述堆叠层包括:N型层,活性层,表面具有脊状条的P型层以及DBR覆盖层;其特征在于,所述脊状条的端面为第一斜面,所述脊状条与所述DBR覆盖层的接触面包括第一斜面。
  2. 根据权利要求1所述的一种激光二极管,其特征在于,所述第一斜面与脊状条的下表面的法向方向之间的夹角介于:大于0度且小于等于60度。
  3. 根据权利要求1所述的一种激光二极管,其特征在于,所述衬底的端面为第二斜面,所述衬底与所述DBR覆盖层的接触面包括第二斜面。
  4. 根据权利要求3所述的一种激光二极管,其特征在于,所述第二斜面与所述衬底的上表面的法向方向之间的夹角介于:大于0度且小于等于60度。
  5. 根据权利要求1所述的一种激光二极管,其特征在于,所述第一斜面位于所述P型层上。
  6. 根据权利要求1所述的一种激光二极管,其特征在于,所述N型层包括N型金属层。
  7. 根据权利要求1所述的一种激光二极管,其特征在于,所述P型层包括P型金属层。
  8. 根据权利要求1所述的一种激光二极管,其特征在于,所述P型层还包括上波导层。
  9. 一种激光二极管的制作方法,其特征在于,包括步骤:
    在衬底上依次外延生长N型层、活性层和P型层,并制作带有脊状条的P型层;
    沿垂直于脊状条长度的方向对所述脊状条进行劈裂,得到脊状条的端面为第一斜面;
    进行DBR覆盖层生长,所述DBR覆盖层与所述脊状条的接触面包 括所述第一斜面。
  10. 根据权利要求9所述的一种激光二极管的制作方法,其特征在于,在得到所述第一斜面的步骤之后还包括:
    沿垂直于脊状条长度的方向对所述衬底进行劈裂,得到所述衬底的端面为第二斜面;所述衬底与DBR覆盖层的接触面包括所述第二斜面。
  11. 根据权利要求9所述的一种激光二极管的制作方法,其特征在于,所述沿垂直于脊状条长度的方向对所述脊状条进行劈裂的步骤包括:
    在脊状条上制作V字型凹槽或弧形凹槽或开口倒梯形凹槽或前述组合,并沿前述凹槽中间垂直劈裂,形成端面。
  12. 根据权利要求10所述的一种激光二极管的制作方法,其特征在于,所述沿垂直于脊状条长度的方向对所述衬底进行劈裂的步骤包括:
    在衬底上制作V字型凹槽或弧形凹槽或开口倒梯形凹槽或前述组合,并沿前述凹槽中间垂直劈裂,形成端面。
  13. 根据权利要求11或12所述的一种激光二极管的制作方法,其特征在于,所述V字型凹槽或弧形凹槽或开口倒梯形凹槽或前述组合的槽体长度方向与所述脊状条的长度方向垂直。
PCT/CN2019/088883 2019-05-28 2019-05-28 一种激光二极管及其制作方法 WO2020237512A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP19931295.0A EP3979439B1 (en) 2019-05-28 2019-05-28 Laser diode and manufacturing method therefor
CN201980004876.4A CN111279564B (zh) 2019-05-28 2019-05-28 一种激光二极管及其制作方法
JP2021527895A JP2022507809A (ja) 2019-05-28 2019-05-28 レーザーダイオードとその製造方法
CN202310609482.XA CN116865091A (zh) 2019-05-28 2019-05-28 一种激光二极管及其制作方法
PCT/CN2019/088883 WO2020237512A1 (zh) 2019-05-28 2019-05-28 一种激光二极管及其制作方法
US17/493,602 US20220059989A1 (en) 2019-05-28 2021-10-04 Laser diode and method for making the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/088883 WO2020237512A1 (zh) 2019-05-28 2019-05-28 一种激光二极管及其制作方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/493,602 Continuation-In-Part US20220059989A1 (en) 2019-05-28 2021-10-04 Laser diode and method for making the same

Publications (1)

Publication Number Publication Date
WO2020237512A1 true WO2020237512A1 (zh) 2020-12-03

Family

ID=71004177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/088883 WO2020237512A1 (zh) 2019-05-28 2019-05-28 一种激光二极管及其制作方法

Country Status (5)

Country Link
US (1) US20220059989A1 (zh)
EP (1) EP3979439B1 (zh)
JP (1) JP2022507809A (zh)
CN (2) CN111279564B (zh)
WO (1) WO2020237512A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7558036B2 (ja) * 2020-11-18 2024-09-30 シャープ福山レーザー株式会社 レーザ素子
CN112787210B (zh) * 2020-12-31 2022-05-27 厦门三安光电有限公司 一种激光二极管

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090245310A1 (en) * 2008-03-31 2009-10-01 Sanyo Electric Co., Ltd. Nitride-based semiconductor laser device and method of manufacturing the same
CN103138157A (zh) * 2011-11-23 2013-06-05 光环科技股份有限公司 边射型半导体激光元件、其制作方法及具有该元件的晶条
CN104241477A (zh) * 2013-06-18 2014-12-24 Lsi公司 带有金属化侧墙的半导体发光器件

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62254481A (ja) * 1986-04-28 1987-11-06 Matsushita Electric Ind Co Ltd 半導体レ−ザ
JPH0582901A (ja) * 1991-09-24 1993-04-02 Mitsubishi Electric Corp 半導体レーザ装置の製造方法
JP2001284291A (ja) * 2000-03-31 2001-10-12 Toyoda Gosei Co Ltd 半導体ウエハーのチップ分割方法
WO2002103866A1 (en) * 2001-06-15 2002-12-27 Nichia Corporation Semiconductor laser element, and its manufacturing method
DE10323860A1 (de) * 2003-03-28 2004-11-11 Osram Opto Semiconductors Gmbh Halbleiterlaservorrichtung und Herstellungsverfahren
US7668218B2 (en) * 2007-02-20 2010-02-23 Nichia Corporation Nitride semiconductor laser element
JP5223552B2 (ja) * 2008-05-02 2013-06-26 日亜化学工業株式会社 窒化物半導体レーザ素子の製造方法
JP5150581B2 (ja) * 2009-08-05 2013-02-20 シャープ株式会社 発光素子、発光装置及び発光素子の製造方法
JP5664627B2 (ja) * 2012-10-16 2015-02-04 住友電気工業株式会社 Iii族窒化物半導体レーザ素子、iii族窒化物半導体レーザ素子を作製する方法、iii族窒化物半導体レーザ素子の光共振器のための端面を評価する方法、スクライブ溝を評価する方法
CN103259188B (zh) * 2013-05-02 2015-06-24 中国科学院半导体研究所 低发散角单纵模边发射光子晶体激光器
JP6163080B2 (ja) * 2013-10-28 2017-07-12 浜松ホトニクス株式会社 量子カスケードレーザ
EP3304659B1 (en) * 2015-06-05 2023-03-22 Iulian Basarab Petrescu-Prahova Emitter semiconductor laser type of device
WO2018020641A1 (ja) * 2016-07-28 2018-02-01 三菱電機株式会社 平面導波路型レーザ装置
WO2019026953A1 (ja) * 2017-08-04 2019-02-07 パナソニックIpマネジメント株式会社 半導体発光素子の製造方法及び半導体発光素子

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090245310A1 (en) * 2008-03-31 2009-10-01 Sanyo Electric Co., Ltd. Nitride-based semiconductor laser device and method of manufacturing the same
CN103138157A (zh) * 2011-11-23 2013-06-05 光环科技股份有限公司 边射型半导体激光元件、其制作方法及具有该元件的晶条
CN104241477A (zh) * 2013-06-18 2014-12-24 Lsi公司 带有金属化侧墙的半导体发光器件

Also Published As

Publication number Publication date
CN111279564A (zh) 2020-06-12
EP3979439B1 (en) 2024-04-03
CN111279564B (zh) 2023-07-04
JP2022507809A (ja) 2022-01-18
CN116865091A (zh) 2023-10-10
EP3979439A4 (en) 2023-01-18
EP3979439A1 (en) 2022-04-06
US20220059989A1 (en) 2022-02-24

Similar Documents

Publication Publication Date Title
WO2018184288A1 (zh) 基于多孔DBR的GaN基VCSEL芯片及制备方法
JP3705142B2 (ja) 窒化物半導体素子及びその作製方法
CN103137803B (zh) 发光二极管
JP5229270B2 (ja) Iii族窒化物半導体発光素子の製造方法
US7903709B2 (en) Semiconductor laser device and method of manufacturing the same
US9991418B2 (en) Semiconductor light emitting element
JP5045418B2 (ja) GaN系LED素子、GaN系LED素子の製造方法およびGaN系LED素子製造用テンプレート
WO2020237512A1 (zh) 一种激光二极管及其制作方法
CN106300012B (zh) 一种含有高选择性腐蚀阻挡层的808nm半导体激光器
WO2016000583A1 (zh) 垂直型led结构及其制作方法
CN105529382A (zh) 一种红黄光的发光二极管外延片及芯片的制备方法
CN107404066A (zh) 全介质膜dbr结构氮化镓面发射激光器的制备方法
CN103137817B (zh) 发光二极管
CN204376193U (zh) 应变平衡有源区梯度势阱层半导体激光器结构
US20130148681A1 (en) Method of manufacturing semiconductor laser device and semiconductor laser device
US5465266A (en) Index-guided laser on a ridged (001) substrate
CN102130224A (zh) 发光二极管及其制造方法
CN112134143B (zh) 氮化镓基激光器及其制备方法
CN108718030A (zh) 一种低电阻、低热阻的氮化物半导体微腔激光器结构及其制备方法
CN102136532A (zh) 发光二极管及其制造方法
CN205582962U (zh) 一种量子点超辐射发光二极管
KR100867499B1 (ko) 질화물 반도체 발광소자 및 그 제조방법
JPH04257276A (ja) 半導体素子
CN209199974U (zh) 一种氮化镓基发光二极管外延片
CN204905280U (zh) 一种超辐射发光二极管芯片

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19931295

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021527895

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019931295

Country of ref document: EP

Effective date: 20220103