WO2020235943A1 - 암의 진단용 조성물 - Google Patents

암의 진단용 조성물 Download PDF

Info

Publication number
WO2020235943A1
WO2020235943A1 PCT/KR2020/006637 KR2020006637W WO2020235943A1 WO 2020235943 A1 WO2020235943 A1 WO 2020235943A1 KR 2020006637 W KR2020006637 W KR 2020006637W WO 2020235943 A1 WO2020235943 A1 WO 2020235943A1
Authority
WO
WIPO (PCT)
Prior art keywords
pancreatic cancer
interleukin
expression level
flt3lg
protein
Prior art date
Application number
PCT/KR2020/006637
Other languages
English (en)
French (fr)
Inventor
이형근
이동기
장성일
김소영
여아름
Original Assignee
(주)아큐레시스바이오
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190059625A external-priority patent/KR20200134071A/ko
Application filed by (주)아큐레시스바이오 filed Critical (주)아큐레시스바이오
Priority to EP20810070.1A priority Critical patent/EP3974541A4/en
Priority to US17/595,665 priority patent/US20220326243A1/en
Publication of WO2020235943A1 publication Critical patent/WO2020235943A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57438Specifically defined cancers of liver, pancreas or kidney
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/24Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against cytokines, lymphokines or interferons
    • C07K16/241Tumor Necrosis Factors
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/24Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against cytokines, lymphokines or interferons
    • C07K16/244Interleukins [IL]
    • C07K16/246IL-2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/24Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against cytokines, lymphokines or interferons
    • C07K16/244Interleukins [IL]
    • C07K16/248IL-6
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/24Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against cytokines, lymphokines or interferons
    • C07K16/249Interferons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2866Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against receptors for cytokines, lymphokines, interferons
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/49Blood
    • G01N33/492Determining multiple analytes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/566Immunoassay; Biospecific binding assay; Materials therefor using specific carrier or receptor proteins as ligand binding reagents where possible specific carrier or receptor proteins are classified with their target compounds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6863Cytokines, i.e. immune system proteins modifying a biological response such as cell growth proliferation or differentiation, e.g. TNF, CNF, GM-CSF, lymphotoxin, MIF or their receptors
    • G01N33/6869Interleukin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • A61K39/001102Receptors, cell surface antigens or cell surface determinants
    • A61K39/001116Receptors for cytokines
    • A61K39/001119Receptors for interleukins [IL]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/705Assays involving receptors, cell surface antigens or cell surface determinants
    • G01N2333/70578NGF-receptor/TNF-receptor superfamily, e.g. CD27, CD30 CD40 or CD95
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/705Assays involving receptors, cell surface antigens or cell surface determinants
    • G01N2333/715Assays involving receptors, cell surface antigens or cell surface determinants for cytokines; for lymphokines; for interferons
    • G01N2333/7155Assays involving receptors, cell surface antigens or cell surface determinants for cytokines; for lymphokines; for interferons for interleukins [IL]

Definitions

  • the present invention relates to a composition capable of diagnosing cancer, in particular pancreatic cancer, etc., a diagnostic kit including the same, and a method of providing information for diagnosis using the composition.
  • This patent application is based on Korean Patent Application No. 10-2019-0059625 filed with the Korean Intellectual Property Office on May 21, 2019, and Korean Patent Application No. 10-2019-0169813 filed with the Korean Intellectual Property Office on December 18, 2019. Priority is claimed, and the disclosure of the patent application is incorporated herein by reference.
  • pancreatic cancer does not feel any symptoms at an early stage, and symptoms such as pain and weight loss usually appear after systemic metastasis has already occurred, so the healing rate is lower, so regular diagnosis is very important. Most of the clinical symptoms are onset slowly and are prone to weakness, and loss of appetite and weight loss are the most common symptoms. Pancreatic cancer is a fatal cancer with a 5-year survival rate of 1-4% and a median survival period of 5 months, and has the poorest prognosis among human cancers. In addition, since 80-90% of patients are found in a state where curative resection is not possible to expect cure at diagnosis, the prognosis is poor and treatment is mainly dependent on chemotherapy. Therefore, the development of an early diagnosis method is urgently desired than any other human cancer. have.
  • pancreatic cancer progenitor lesions which are the stage before fatal pancreatic cancer progresses, is very important in improving the results of pancreatic cancer treatment.
  • pancreatic cancer or pancreatic cancer progenitor lesions For the diagnosis of pancreatic cancer or pancreatic cancer progenitor lesions, blood tests (CA19-9), gastric and duodenal x-rays, skin and liver biliary tract, and retrograde endoscopic cholangiography are used. Disease lesions were discovered by these methods, but ultrasonography and computed tomography are most commonly used in recent years. It is also possible to obtain a relatively accurate test result by performing a more precise biopsy. However, the method of performing the diagnosis method is very inconvenient, such as inferior accuracy or pain to the patient, and thus subjects are reluctant to do so. Therefore, there has been a demand for the development of a test method that can easily and quickly diagnose pancreatic cancer or pancreatic cancer progenitor lesions.
  • Korean Patent No. 10-0819122 and Korean Patent Publication No. 2012-0082372 disclose techniques using various pancreatic cancer markers including matrilin, transthyretin, and stratifin. , Since each marker shows a large difference in its diagnostic efficiency and accuracy, there is a need to discover a marker with better effect and develop a diagnostic method using the same.
  • An object of the present invention is to provide a composition or kit that can easily and accurately diagnose pancreatic cancer.
  • Another object of the present invention is to provide a method of providing information for diagnosing pancreatic cancer.
  • Another object of the present invention is to provide a pharmaceutical composition capable of preventing or treating pancreatic cancer.
  • Another object of the present invention is to provide an apparatus for diagnosing pancreatic cancer.
  • CD27 fms-like tyrosine kinase 3 ligand (FLT3LG); It relates to a biomarker composition for diagnosing pancreatic cancer comprising at least one protein selected from the group consisting of interleukin-7 receptor, IL-7R (IL7R), or a gene encoding the same.
  • IL-7R interleukin-7 receptor
  • IL7R IL-7R
  • the "CD27” belongs to the tumor necrosis factor receptor superfamily, and is related to the generation and long-term maintenance of T cell immunity.
  • the CD27 may be represented by SEQ ID NO: 1, but is not limited thereto.
  • the "fms-like tyrosine kinase 3 ligand (FLT3LG)" is encoded by the FLT3LG gene, and corresponds to the four hematopoietic bundle cytokines. It is structurally similar to stem cell factor (SCF) or colony stimulating factor 1 (CSF-1).
  • SCF stem cell factor
  • CSF-1 colony stimulating factor 1
  • the fms-like tyrosine kinase 3 ligand may be represented by SEQ ID NO: 2, but is not limited thereto.
  • the "interleukin-7 receptor (IL-7R (IL7R))” is expressed on the surface of naive and memory T cells, and interleukin-7 receptor- ⁇ (CD127) and a common- ⁇ chain receptor It consists of two subunits of (CD132).
  • the interleukin-7 receptor may be represented by SEQ ID NO: 3, but is not limited thereto.
  • the biomarker composition further comprises at least one protein selected from interleukin-32 (interleukin-32, IL-32 (IL32)) and interleukin-10 receptor alpha (IL-10RA (IL10RA)) can do.
  • interleukin-32 interleukin-32, IL-32 (IL32)
  • IL-10RA interleukin-10 receptor alpha
  • the biomarker composition may be a combination of, for example, an interleukin-7 receptor (IL-7R) protein or a gene encoding it, and an interleukin-10RA (IL-10RA) protein or a gene encoding the same, ;
  • interleukin-7 receptor (IL-7R) protein or a gene encoding it fms-like tyrosine kinase 3 ligand (FLT3LG) protein or a gene encoding it
  • FLT3LG fms-like tyrosine kinase 3 ligand
  • IL-10RA interleukin-10RA
  • the biomarker composition may be obtained from a biological sample derived from an individual, and the "biological sample” is any material obtained from or derived from an individual, for example, means a liquid biopsy, and , For example blood, serum or plasma.
  • the biological sample may be a monocyte isolated from the blood, serum or plasma, in particular, a peripheral blood mononuclear cell (PBMC).
  • PBMC peripheral blood mononuclear cell
  • the "interleukin-32 (IL-32 (IL32)) is a tumor necrosis factor-alpha (TNF- ⁇ ) or interleukin-6 (IL-6).
  • TNF- ⁇ tumor necrosis factor-alpha
  • IL-6 interleukin-6
  • the interleukin-32 may be represented by SEQ ID NO: 4, but is not limited thereto.
  • the "interleukin-10 receptor alpha (IL-10RA (IL10RA))" is one of the inflammatory cytokines, and is known to be closely related to pain.
  • sequence information of Interleukin-10RA can be obtained from a previously published database such as https://www.ncbi.nlm.nih.gov/.
  • CD27 in the present invention fms-like tyrosine kinase 3 ligand (FLT3LG); Or interleukin-7 receptor (IL-7R (IL7R)) is a biological sample of an individual, that is, an individual who has developed or is likely to develop pancreatic cancer.
  • Liquid biopsy such as blood, serum, or Plasma, for example, the blood, serum or plasma-derived monocytes, in particular, can be measured to be expressed in peripheral blood mononuclear cells (PBMC).
  • PBMC peripheral blood mononuclear cells
  • the "diagnosis” refers to determining the susceptibility of a subject to a specific disease or disease, determining whether the subject currently has a specific disease or disease, or having a specific disease or disease. Determining the subject's prognosis (e.g., identification of a pre-metastatic or metastatic cancer state, determining the stage of the cancer or determining the responsiveness of the cancer to treatment), or therametrics (e.g., for treatment efficacy Monitoring the state of an object to provide information). For the purposes of the present invention, the diagnosis is to determine the onset or possibility (risk) of pancreatic cancer, the stage or degree of differentiation of the pancreatic cancer, or the survival rate or treatment responsiveness of the pancreatic cancer patient.
  • prognosis e.g., identification of a pre-metastatic or metastatic cancer state, determining the stage of the cancer or determining the responsiveness of the cancer to treatment
  • therametrics e.g., for treatment efficacy Monitoring the state of an object to
  • the "stage” refers to the degree of spread of cancer cells and the stage of progression of cancer
  • the international classification according to the progression of pancreatic cancer generally follows the TNM stage classification.
  • T Tumor Size
  • N Lymph Node
  • M Metalastasis
  • the "cancer grade” refers to the degree of maturation or differentiation of cancer cells, and can be classified into Grade 1, Grade 2, and Grade 3 as shown in Table 3 below according to the degree of differentiation. Compared to Grade 2 or 1 hyperdifferentiated or medium-differentiated cancers of 3 graded cancers, metastasis is fast, treatment effects are insufficient, and the prognosis is poor even after treatment because the boundaries of the tumor are unclear (Histopathology. 2002 Sep. 2002) ;41(3A):154-61, Nat Genet. 2008 May; 40(5):499-507 et al.).
  • CD27 fms-like tyrosine kinase 3 ligand (FLT3LG); And it relates to a composition for diagnosis of pancreatic cancer comprising an agent for measuring the expression level of one or more proteins selected from the group consisting of interleukin-7 receptor (IL-7R) or a gene encoding the same.
  • IL-7R interleukin-7 receptor
  • the composition for diagnosis of pancreatic cancer may further include an agent for measuring the expression level of one or more proteins selected from interleukin-32 (IL-32) and interleukin-10RA (IL-10RA) or a gene encoding the same. .
  • IL-32 interleukin-32
  • IL-10RA interleukin-10RA
  • the composition for diagnosis of pancreatic cancer is, for example, an agent for measuring the expression level of an interleukin-7 receptor (IL-7R) protein or a gene encoding the same, and an interleukin-10RA (IL-10RA) protein or It may be a combination of agents measuring the expression level of the encoding gene; For example, an agent measuring the expression level of an interleukin-7 receptor (IL-7R) protein or a gene encoding the same, an fms-like tyrosine kinase 3 ligand (FLT3LG) protein or an agent measuring the expression level of a gene encoding the same , And interleukin-10RA (IL-10RA) protein or an agent for measuring the expression level of a gene encoding the same.
  • IL-7R interleukin-7 receptor
  • IL-10RA interleukin-10RA
  • the composition for diagnosing pancreatic cancer is intended for a biological sample derived from an individual
  • the "biological sample” is any material obtained from or derived from an individual, for example, means a liquid biopsy,
  • it may be blood, serum or plasma.
  • it may be a monocyte isolated from the blood, serum or plasma, in particular, a peripheral blood mononuclear cell (PBMC).
  • PBMC peripheral blood mononuclear cell
  • the agent to be measured is not particularly limited, but includes, for example, one or more selected from the group consisting of antibodies, oligopeptides, ligands, peptide nucleic acids (PNA) and aptamers that specifically bind to the protein. I can.
  • the "antibody” refers to a substance that specifically binds to an antigen and causes an antigen-antibody reaction.
  • an antibody refers to an antibody that specifically binds to the biomarker protein.
  • the antibodies of the present invention include polyclonal antibodies, monoclonal antibodies and recombinant antibodies.
  • the antibody can be easily prepared using techniques well known in the art.
  • polyclonal antibodies can be produced by methods well known in the art, including the process of injecting an antigen of the protein into an animal and collecting blood from the animal to obtain serum containing the antibody.
  • Such polyclonal antibodies can be prepared from any animal such as goat, rabbit, sheep, monkey, horse, pig, cow, dog.
  • the monoclonal antibody is a hybridoma method well known in the art (hybridoma method; see Kohler and Milstein (1976) European Journal of Immunology 6:511-519), or phage antibody library technology (Clackson et al, Nature, 352 :624-628, 1991; Marks et al, J. Mol. Biol., 222:58, 1-597, 1991).
  • the antibody prepared by the above method may be separated and purified using a method such as gel electrophoresis, dialysis, salt precipitation, ion exchange chromatography, and affinity chromatography.
  • the antibody of the present invention includes a complete form having two full-length light chains and two full-length heavy chains, as well as functional fragments of antibody molecules.
  • the functional fragment of an antibody molecule means a fragment that has at least an antigen-binding function, and includes Fab, F(ab'), F(ab')2, and Fv.
  • PNA Peptide Nucleic Acid
  • DNA has a phosphate-ribose sugar backbone
  • PNA has a repeated N-(2-aminoethyl)-glycine backbone linked by a peptide bond, which greatly increases the binding power and stability to DNA or RNA, resulting in molecular biology. , Diagnostic analysis and antisense therapy.
  • PNA is described in Nielsen PE, Egholm M, Berg RH, Buchardt O (December 1991). "Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide". Science 254(5037): 1497-1500.
  • the "aptamer” is an oligonucleotide or a peptide molecule, and general information of the aptamer is described in Bock LC et al., Nature 355(6360):5646(1992); Hoppe-Seyler F, Butz K "Peptide aptamers: powerful new tools for molecular medicine”. J Mol Med. 78(8):42630(2000); Cohen BA, Colas P, Brent R. "An artificial cell-cycle inhibitor isolated from a combinatorial library”. Proc Natl Acad Sci USA. 95(24): 142727(1998)].
  • the agent for measuring the expression level may include at least one selected from the group consisting of primers, probes, and antisense nucleotides that specifically bind to the gene.
  • the "primer” is a fragment that recognizes a target gene sequence, and includes forward and reverse primer pairs, for example, a primer pair that provides an analysis result having specificity and sensitivity.
  • a primer that amplifies only the target gene sequence containing the complementary primer binding site and does not induce non-specific amplification can give high specificity. .
  • the "probe” means a substance capable of specifically binding to a target substance to be detected in a sample, and refers to a substance capable of specifically confirming the presence of a target substance in a sample through the binding.
  • the type of probe is a material commonly used in the art and is not limited, but may be, for example, peptide nucleic acid (PNA), locked nucleic acid (LNA), peptide, polypeptide, protein, RNA, or DNA.
  • PNA peptide nucleic acid
  • LNA locked nucleic acid
  • peptide polypeptide
  • polypeptide polypeptide
  • protein protein
  • RNA DNA
  • DNA DNA
  • the probe is a biomaterial that includes an organism-derived or similar thing or a thing produced in vitro, for example, enzymes, proteins, antibodies, microorganisms, animal and plant cells and organs, neurons, DNA, and It may be RNA, DNA includes cDNA, genomic DNA, and oligonucleotides, RNA includes genomic RNA, mRNA, and oligonucleotides, and examples of proteins may include antibodies, antigens, enzymes, peptides, and the like.
  • LNA Locked nucleic acids
  • LNA nucleosides contain common nucleic acid bases of DNA and RNA, and can form base pairs according to the Watson-Crick base pairing rules. However, due to the'locking' of the molecule due to the methylene bridge, the LNA cannot form an ideal shape in the Watson-Crick bond.
  • LNA When LNA is included in a DNA or RNA oligonucleotide, the LNA can more quickly pair with a complementary nucleotide chain to increase the stability of the double helix.
  • the "antisense” refers to a sequence of nucleotide bases in which the antisense oligomer is hybridized with the target sequence in RNA by Watson-Crick base pairing, and typically allows the formation of mRNA and RNA: oligomer heterodimer within the target sequence. And an oligomer having a backbone between subunits. Oligomers may have exact sequence complementarity or approximate complementarity to the target sequence.
  • FLT3LG fms-like tyrosine kinase 3 ligand
  • IL-7R interleukin-7 receptor
  • IL-10RA interleukin-10RA
  • IL-32 interleukin-32
  • 1 selected from the group consisting of the CD27, fms-like tyrosine kinase 3 ligand (FLT3LG), interleukin-7 receptor (IL-7R), interleukin-10RA (IL-10RA), and interleukin-32 (IL-32)
  • FLT3LG fms-like tyrosine kinase 3 ligand
  • IL-7R interleukin-7 receptor
  • IL-10RA interleukin-10RA
  • IL-32 interleukin-32
  • PBMC mononuclear cells
  • kits for diagnosing pancreatic cancer comprising a composition for diagnosing pancreatic cancer according to the present invention.
  • pancreatic cancer the onset or possibility of pancreatic cancer can be predicted using the diagnostic kit, and further, the course, prognosis, or therapeutic effect of the pancreatic cancer can be diagnosed.
  • the kit may be an RT-PCR kit, a DNA chip kit, an ELISA kit, a protein chip kit, a rapid kit, or a multiple reaction monitoring (MRM) kit, but is not limited thereto.
  • MRM multiple reaction monitoring
  • the diagnostic kit of the present invention may further include one kind or more other component compositions, solutions, or devices suitable for the analysis method.
  • the diagnostic kit of the present invention may further include essential elements necessary to perform a reverse transcription polymerase reaction.
  • the reverse transcription polymerase reaction kit contains a pair of primers specific for the gene encoding the marker protein.
  • the primer is a nucleotide having a sequence specific to the nucleic acid sequence of the gene, and may have a length of about 7 bp to 50 bp, for example, about 10 bp to 30 bp.
  • a primer specific to the nucleic acid sequence of the control gene may be included.
  • reverse transcription polymerase reaction kits include test tubes or other suitable containers, reaction buffers (various pH and magnesium concentration), deoxynucleotides (dNTPs), enzymes such as Taq-polymerase and reverse transcriptase, DNase, RNase inhibitor DEPC. - May include DEPC-water, sterilized water, etc.
  • the diagnostic kit of the present invention may include essential elements necessary to perform a DNA chip.
  • the DNA chip kit may include a substrate to which cDNA or oligonucleotide corresponding to a gene or fragment thereof is attached, and reagents, agents, enzymes, etc. for preparing a fluorescently labeled probe.
  • the substrate may include a cDNA or oligonucleotide corresponding to a control gene or a fragment thereof.
  • the diagnostic kit of the present invention may contain essential elements necessary for performing ELISA.
  • ELISA kits contain antibodies specific for the protein. Antibodies are antibodies that have high specificity and affinity for a marker protein and have little cross-reactivity with other proteins, and are monoclonal, polyclonal, or recombinant antibodies.
  • the ELISA kit may contain an antibody specific for a control protein.
  • Other ELISA kits include reagents capable of detecting bound antibodies, such as labeled secondary antibodies, chromophores, enzymes (e.g., conjugated with antibodies) and their substrates or antibodies capable of binding. Other materials may be included.
  • CD27 in a biological sample isolated from an individual fms-like tyrosine kinase 3 ligand (FLT3LG); And measuring the expression level of at least one protein selected from the group consisting of interleukin-7 receptor (IL-7R) or a gene encoding the same.
  • FLT3LG fms-like tyrosine kinase 3 ligand
  • the term "individual” refers to an individual whose onset of pancreatic cancer is uncertain and has a high probability of developing pancreatic cancer.
  • the "biological sample” is any material obtained from or derived from an individual, for example, means a liquid biopsy, and may be, for example, blood, serum, or plasma.
  • a monocyte isolated from the blood, serum or plasma in particular, a peripheral blood mononuclear cell (PBMC).
  • PBMC peripheral blood mononuclear cell
  • the expression level of the biomarkers in the cells was measured after separating cells from tissues where the occurrence of the disease is predicted (eg, pancreatic tissue).
  • tissues where the occurrence of the disease is predicted eg, pancreatic tissue.
  • PBMC peripheral blood mononuclear cells
  • the step of measuring the expression level further comprises measuring the expression level of one or more proteins selected from interleukin-32 (IL-32) and interleukin-10RA (IL-10RA) or a gene encoding the same.
  • IL-32 interleukin-32
  • IL-10RA interleukin-10RA
  • the expression level of the CD27, fms-like tyrosine kinase 3 ligand (FLT3LG), interleukin-7 receptor (IL-7R), interleukin-10RA (IL-10RA) or interleukin-32 (IL-32) protein is measured.
  • the agent is not particularly limited, for example, one or more selected from the group consisting of antibodies, oligopeptides, ligands, peptide nucleic acids (PNA) and aptamers that specifically bind to the biomarker protein. Can include.
  • the expression level of the CD27, fms-like tyrosine kinase 3 ligand (FLT3LG), interleukin-7 receptor (IL-7R), interleukin-10RA (IL-10RA) or interleukin-32 (IL-32) protein was measured.
  • comparative analysis methods include protein chip analysis, immunoassay, ligand binding assay, MALDI-TOF (Matrix Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry) analysis, and SELDI-TOF (Sulface Enhanced Laser Desorption/Ionization Time of Flight Mass).
  • Spectrometry analysis, radioimmunoassay, radioactive immunodiffusion, okteroni immunodiffusion, rocket immunoelectrophoresis, tissue immunostaining, complement fixation assay, two-dimensional electrophoresis analysis, liquid chromatography-Mass Spectrometry , LC-MS), LC-MS/MS (liquid chromatography-Mass Spectrometry/ Mass Spectrometry), Western blotting, or ELISA (enzyme linked immunosorbentassay), but are not limited thereto.
  • the agent for measuring the expression level may include at least one selected from the group consisting of primers, probes and antisense nucleotides that specifically bind to the gene encoding the protein.
  • FLT3LG fms-like tyrosine kinase 3 ligand
  • IL-7R interleukin-7 receptor
  • IL-10RA interleukin-10RA
  • IL-32 interleukin-32
  • the analysis methods for measuring the expression level of the gene include reverse transcription polymerase reaction (RT-PCR), competitive reverse transcription polymerase reaction (Competitive RT-PCR), and real-time reverse transcription polymerase reaction. (Real-time RT-PCR), RNase protection assay (RPA), Northern blotting, or DNA chip, but are not limited thereto.
  • the CD27 measured on a biological sample of an individual in the present invention fms-like tyrosine kinase 3 ligand (FLT3LG); And when the expression level of one or more proteins selected from the group consisting of interleukin-7 receptor (IL-7R) or a gene encoding the same is increased compared to the normal control group, predicting that pancreatic cancer has occurred or that there is a high possibility of developing pancreatic cancer. It may further include.
  • IL-7R interleukin-7 receptor
  • the expression level of one or more proteins selected from interleukin-32 (IL-32) and interleukin-10RA (IL-10RA) or a gene encoding the same measured for a biological sample of an individual in the present invention is compared to the normal control group. In the case where it is increased, it may include predicting that the onset of pancreatic cancer or the likelihood of developing pancreatic cancer is high.
  • the measured protein or the expression level of the encoding gene is 1.2 to 20 fold or more, for example, 1.2 to 20 fold or more, for example, 1.2 or more, 2 or more, 3 or more, 4 or more, 5 or more, 6 If it is more than times, more than 7 times, or more than 8 times, it can be predicted that the possibility of the invention of pancreatic cancer is high.
  • the CD27 measured on a biological sample of an individual fms-like tyrosine kinase 3 ligand (FLT3LG); And by substituting the expression level of the interleukin-7 receptor (IL-7R) in the following equation 1, the LP value obtained in the following equation 2 may further include the step of predicting the likelihood of developing pancreatic cancer:
  • pancreatic cancer 1 / (1+exp(-LP))
  • A is a value of 3 to 4; B is a value of 0.5 to 1.5; C is a value of 0.1 to 0.7; And D is a value greater than 0 and less than or equal to 0.4,
  • IL-7R is the value of the relative expression level of the IL-7R protein or the gene encoding the same for the housekeeping protein or gene measured on the biological sample of the individual
  • FLT3LG is a value of the relative expression level of the FLT3LG protein or a gene encoding the same for a housekeeping protein or gene measured on a biological sample of an individual
  • CD27 may be a value of a relative expression level of a housekeeping protein or a CD27 protein for a gene or a gene encoding the same measured for a biological sample of an individual.
  • A is a value of 3 to 4, for example, a value of 3.5 to 4, for example, a value of 3.7 to 4.0, and may be, for example, 3.8688.
  • B is a value of 0.5 to 1.5, for example, a value of 0.8 to 1.3, for example, a value of 0.9 to 1.1, and may be, for example, 1.0342.
  • C may be a value of 0.1 to 0.7, for example, 0.1 to 0.5, for example, a value of 0.2 to 0.4, and for example, 0.3365.
  • D is a value greater than 0 and less than or equal to 0.4, for example, a value of 0.01 to 0.3, for example, a value of 0.02 to 0.1, and, for example, may be 0.0526. .
  • the IL-7R is a ⁇ Ct value, which is a value of the relative expression level of the standardized housekeeping protein or the IL-7R protein for a gene or a gene encoding the same measured for a biological sample of an individual. I can.
  • the FLT3LG may be a ⁇ Ct value, which is a value of the relative expression level of the standardized housekeeping protein or the FLT3LG protein for the gene or the gene encoding the standardized housekeeping protein measured for a biological sample of an individual.
  • the CD27 may be a ⁇ Ct value, which is a value of a relative expression level of a standardized housekeeping protein or a CD27 protein for a gene or a gene encoding the standardized housekeeping protein measured for a biological sample of an individual.
  • GPDH glyceraldehyde-3-phosphate dehydrogenase
  • CypI Cyclophilin I
  • HPRT cyclophilin hypoxantine phosphoribosyltransferase
  • L32, 28S, or It may be 18S or the like, but is not limited thereto.
  • the LP value obtained in Equation 1 is substituted into Equation 2 to predict or determine the probability of developing pancreatic cancer.
  • the value obtained in Equation 2 is of 0 to 1, and the closer to 1, the higher the likelihood of developing pancreatic cancer can be predicted.
  • the value obtained in Formula 2 is 0.5 or more and 1 or less, 0.55 or more and 1 or less, 0.6 or more and 1 or less, 0.65 or more and 1 or less, 0.7 or more and 1 or less, 0.75 or more and 1 or less, 0.8 or more and 1 or less, 0.85 or more and 1 or less , 0.9 or more and 1 or less, or 0.95 or more and 1 or less, the likelihood of developing pancreatic cancer may be high or the development of pancreatic cancer may be predicted.
  • a drug anticancer agent for pancreatic cancer, etc.
  • CD27 measured on a biological sample of an individual fms-like tyrosine kinase 3 ligand (FLT3LG); And it relates to a pancreatic cancer diagnosis apparatus comprising a diagnostic unit for determining pancreatic cancer diagnosis information on data including the expression level of one or more proteins selected from the group consisting of interleukin-7 receptor (IL-7R) or a gene encoding the same.
  • IL-7R interleukin-7 receptor
  • FIG. 1 schematically illustrates the structure of an apparatus for diagnosing pancreatic cancer according to an embodiment of the present invention.
  • the apparatus for diagnosing pancreatic cancer of the present invention may further include a sample receiving unit 100 for receiving a biological sample of an individual.
  • the biological sample is any material obtained from or derived from an individual, for example, means a liquid biopsy, and may be, for example, blood, serum or plasma.
  • a monocyte isolated from the blood, serum or plasma in particular, a peripheral blood mononuclear cell (PBMC).
  • PBMC peripheral blood mononuclear cell
  • the apparatus for diagnosing pancreatic cancer of the present invention comprises: CD27 measured for a biological sample accommodated in the sample receiving unit; fms-like tyrosine kinase 3 ligand (FLT3LG); And an input unit 200 for inputting an expression level (diagnosis target data) of at least one protein selected from the group consisting of interleukin-7 receptor (IL-7R) or a gene encoding the same.
  • CD27 measured for a biological sample accommodated in the sample receiving unit
  • FLT3LG fms-like tyrosine kinase 3 ligand
  • an input unit 200 for inputting an expression level (diagnosis target data) of at least one protein selected from the group consisting of interleukin-7 receptor (IL-7R) or a gene encoding the same.
  • IL-7R interleukin-7 receptor
  • the input unit 200 includes, as the diagnosis target data, for example, CD27 for a standardized housekeeping protein or gene measured for a biological sample of an individual; fms-like tyrosine kinase 3 ligand (FLT3LG); And an interleukin-7 receptor (IL-7R), which is a value of the relative expression level of one or more proteins selected from the group consisting of or a gene encoding the same may be input.
  • CD27 for a standardized housekeeping protein or gene measured for a biological sample of an individual
  • FLT3LG fms-like tyrosine kinase 3 ligand
  • IL-7R interleukin-7 receptor
  • the input unit 200 may undergo a pre-processing process such as alignment, normalization, and/or scaling with respect to the diagnosis subject data, or may input diagnosis subject data that has been pre-processed to the input unit.
  • a pre-processing process such as alignment, normalization, and/or scaling with respect to the diagnosis subject data, or may input diagnosis subject data that has been pre-processed to the input unit.
  • a plurality of diagnosis target data may be input to the input unit 200 for one individual.
  • FLT3LG fms-like tyrosine kinase 3 ligand
  • IL-7R interleukin-7 receptor
  • the apparatus for diagnosing pancreatic cancer according to the present invention may include a diagnosis unit 300 that determines pancreatic cancer diagnosis information with respect to diagnosis target data input from the input unit 200.
  • the diagnosis unit 300 may determine whether or not pancreatic cancer is positive or negative based on the possibility of developing pancreatic cancer or pancreatic cancer with respect to the data to be diagnosed.
  • the diagnosis unit 300 may include the CD27, which is the diagnosis target data input to the input unit 200, and is measured for a biological sample of an individual; fms-like tyrosine kinase 3 ligand (FLT3LG); And when the expression level of one or more proteins selected from the group consisting of interleukin-7 receptor (IL-7R) or a gene encoding the same is increased compared to the normal control, the likelihood of developing pancreatic cancer is high or it can be determined as positive for pancreatic cancer. have.
  • the CD27 is the diagnosis target data input to the input unit 200, and is measured for a biological sample of an individual
  • FLT3LG fms-like tyrosine kinase 3 ligand
  • the diagnosis unit 300 may include the CD27, which is the diagnosis target data input to the input unit 200, and is measured for a biological sample of an individual; fms-like tyrosine kinase 3 ligand (FLT3LG); And the LP value obtained by substituting the expression level of the interleukin-7 receptor (IL-7R) into the following Equation 1 and substituting the obtained LP value into the following Equation 2, the probability of developing pancreatic cancer can be determined:
  • pancreatic cancer 1 / (1+exp(-LP))
  • A is a value of 3 to 4; B is a value of 0.5 to 1.5; C is a value of 0.1 to 0.7; And D is a value greater than 0 and less than or equal to 0.4,
  • IL-7R is the value of the relative expression level of the IL-7R protein or the gene encoding the same for the housekeeping protein or gene measured on the biological sample of the individual
  • FLT3LG is a value of the relative expression level of the FLT3LG protein or a gene encoding the same for a housekeeping protein or gene measured on a biological sample of an individual
  • CD27 may be a value of a relative expression level of a housekeeping protein or a CD27 protein for a gene or a gene encoding the same measured for a biological sample of an individual.
  • A is a value of 3 to 4, for example, a value of 3.5 to 4, for example, a value of 3.7 to 4.0, and may be, for example, 3.8688.
  • B is a value of 0.5 to 1.5, for example, a value of 0.8 to 1.3, for example, a value of 0.9 to 1.1, and may be, for example, 1.0342.
  • C may be a value of 0.1 to 0.7, for example, 0.1 to 0.5, for example, a value of 0.2 to 0.4, and for example, 0.3365.
  • D is a value greater than 0 and less than or equal to 0.4, for example, a value of 0.01 to 0.3, for example, a value of 0.02 to 0.1, and, for example, may be 0.0526. .
  • the IL-7R is a ⁇ Ct value, which is a value of the relative expression level of the standardized housekeeping protein or the IL-7R protein for a gene or a gene encoding the same measured for a biological sample of an individual. I can.
  • the FLT3LG may be a ⁇ Ct value, which is a value of the relative expression level of the standardized housekeeping protein or the FLT3LG protein for the gene or the gene encoding the standardized housekeeping protein measured for a biological sample of an individual.
  • the CD27 may be a ⁇ Ct value, which is a value of a relative expression level of a standardized housekeeping protein or a CD27 protein for a gene or a gene encoding the standardized housekeeping protein measured for a biological sample of an individual.
  • GPDH glyceraldehyde-3-phosphate dehydrogenase
  • CypI Cyclophilin I
  • HPRT cyclophilin hypoxantine phosphoribosyltransferase
  • L32, 28S, or It may be 18S or the like, but is not limited thereto.
  • the LP value obtained in Equation 1 is substituted into Equation 2 to predict or determine the probability of developing pancreatic cancer.
  • the value obtained in Equation 2 is 0 to 1, and the closer to 1, the higher the likelihood of developing pancreatic cancer can be determined.
  • the value obtained in Formula 2 is 0.5 or more and 1 or less, 0.55 or more and 1 or less, 0.6 or more and 1 or less, 0.65 or more and 1 or less, 0.7 or more and 1 or less, 0.75 or more and 1 or less, 0.8 or more and 1 or less, 0.85 or more and 1 or less , 0.9 or more and 1 or less, or 0.95 or more and 1 or less, the likelihood of developing pancreatic cancer may be high or pancreatic cancer may be positive.
  • the apparatus for diagnosing pancreatic cancer of the present invention may further include an output unit 400 for outputting a diagnosis result of the diagnosis unit 300.
  • the output unit 400 may be configured as an output means such as a display or a speaker, but is not limited thereto.
  • the apparatus for diagnosing pancreatic cancer may be performed on a computer system.
  • the step of treating a candidate substance expected to induce pancreatic cancer in the isolated biological sample and CD27 in the biological sample treated with the candidate material.
  • FLT3LG fms-like tyrosine kinase 3 ligand
  • IL-7R interleukin-7 receptor
  • the isolated biological sample may be a biological sample isolated from an individual with or without pancreatic cancer.
  • any substance obtained from or derived from the subject for example, means a liquid biopsy, and may be, for example, blood, serum or plasma.
  • it may be a monocyte isolated from the blood, serum or plasma, in particular, a peripheral blood mononuclear cell (PBMC).
  • PBMC peripheral blood mononuclear cell
  • candidate substances in the present invention include any substance, molecule, element, compound, entity, or a combination thereof.
  • examples include, but are not limited to, proteins, polypeptides, small organic molecules, polysaccharides, polynucleotides, and the like. It may also be a natural product, a synthetic compound, or a combination of two or more substances.
  • the step of measuring the expression level further comprises measuring the expression level of one or more proteins selected from interleukin-32 (IL-32) protein and interleukin-10RA (IL-10RA) or a gene encoding the same. can do.
  • IL-32 interleukin-32
  • IL-10RA interleukin-10RA
  • CD27 in the biological sample after treatment of the candidate material in the present invention fms-like tyrosine kinase 3 ligand (FLT3LG); And when the expression level of one or more proteins selected from the group consisting of interleukin-7 receptor (IL-7R) or a gene encoding the same is increased compared to before treatment of the candidate substance, the candidate substance is determined as an inducer of pancreatic cancer. It may further include a step.
  • IL-7R interleukin-7 receptor
  • the expression level of one or more proteins selected from interleukin-32 (IL-32) and interleukin-10RA (IL-10RA) or a gene encoding the same in the biological sample after treatment of the candidate material in the present invention When the amount is increased compared to before treatment of the candidate substance, the step of determining the candidate substance as an inducing agent of pancreatic cancer may be further included.
  • the method of measuring the expression level of the biomarker protein of the present invention or the gene encoding the same, and the definition of pancreatic cancer and diagnosis are overlapped with those described in the method for providing information for diagnosis of pancreatic cancer of the present invention to avoid excessive congestion in the specification. For this reason, the description is omitted below.
  • a pharmaceutical for the prevention or treatment of pancreatic cancer comprising an agent that inhibits the expression or activity of interleukin-10 receptor beta (IL-10RB (IL10RB)) as an active ingredient It relates to the composition.
  • IL-10RB interleukin-10 receptor beta
  • interleukin-10RB may be used interchangeably with “IL-10RB”, “IL10RB”, “IL-10R2”, and “IL10R2”.
  • prevention may mean any action that suppresses or delays the onset of pancreatic cancer by administration of the pharmaceutical composition according to the present invention.
  • treatment used in the present invention may mean any action in which symptoms for pancreatic cancer are improved or advantageously changed by administration of the pharmaceutical composition according to the present invention.
  • the expression inhibitor may be an antisense oligonucleotide for a gene encoding an interleukin-10RB protein, siRNA, shRNA, miRNA, or a vector including the same.
  • antisense oligonucleotides, siRNAs, shRNAs, miRNAs, or vectors containing them can be prepared using methods known in the art.
  • the "vector" refers to a genetic construct comprising an external DNA inserted into a genome encoding a polypeptide.
  • the vector related to the present invention is a vector in which a nucleic acid sequence that inhibits the gene is inserted into the genome, and these vectors include a DNA vector, a plasmid vector, a cosmid vector, a bacteriophage vector, a yeast vector, or a viral vector.
  • the activity inhibitor refers to a substance that reduces the function of the interleukin-10RB protein, preferably, makes the detection of the protein function impossible or makes it present at an insignificant level. More specifically, the inhibitor of activity is an antibody that specifically binds to interleukin-10RB protein; It may be an antisense oligonucleotide for a gene encoding a specific fragment in the interleukin-10RB protein, siRNA, shRNA, miRNA, or a vector including the same, but is not limited thereto.
  • the agent that inhibits the expression or activity of the interleukin-10RB may be, for example, an IL-10RB protein or a substance that specifically binds to the mRNA encoding the protein, for example, IL -10RB protein or primers, probes, oligonucleotides, antibodies or antigen-binding fragments thereof that specifically bind to the mRNA encoding the protein, ligands, receptors, agonists or antagonists, or combinations thereof.
  • the composition may be one to inhibit the expression or activity of IL-10RB in peripheral blood mononuclear cells (PBMC).
  • PBMC peripheral blood mononuclear cells
  • the composition may reduce the growth or proliferation of pancreatic cancer cells, or activate lymph nodes around pancreatic cancer cells.
  • the pharmaceutical composition is administered in a pharmaceutically effective amount.
  • pharmaceutically effective amount means an amount sufficient to treat a disease with a reasonable benefit/risk ratio applicable to medical treatment, and the effective dose level is the type of disease, severity, activity of the drug, and Sensitivity, time of administration, route of administration and rate of excretion, duration of treatment, factors including drugs used concurrently, and other factors well known in the medical field.
  • the pharmaceutical composition according to the present invention may be administered as an individual therapeutic agent or administered in combination with other therapeutic agents, may be administered sequentially or simultaneously with a conventional therapeutic agent, and may be administered single or multiple. It is important to administer an amount capable of obtaining the maximum effect in a minimum amount without side effects in consideration of all the above factors, and this can be easily determined by a person skilled in the art.
  • the effective amount of the pharmaceutical composition of the present invention may vary depending on the patient's age, sex, condition, weight, absorption of the active ingredient in the body, inactivation rate and excretion rate, the type of disease, and the drug to be used in combination. 0.01 to 500 mg per 1 kg of body weight may be administered daily or every other day, or divided into 1 to 5 times a day. However, since it may increase or decrease according to the route of administration, the severity of obesity, sex, weight, age, etc., the dosage amount is not limited in any way.
  • the present invention provides a method of treating pancreatic cancer comprising administering the pharmaceutical composition to an individual.
  • “individual” refers to a subject in need of treatment of a disease, and more specifically, refers to mammals such as human or non-human primates, mice, dogs, cats, horses and cattle. .
  • composition or method according to the present invention it is possible to diagnose pancreatic cancer very accurately, although simple and quick in a non-invasive method compared to the conventional technique.
  • composition or method according to the present invention enables early diagnosis of pancreatic cancer, so that it can be utilized for appropriate diagnosis and treatment of progenitor lesions of pancreatic cancer.
  • FIG. 1 schematically illustrates the structure of an apparatus for diagnosing pancreatic cancer according to an embodiment of the present invention.
  • FIG. 2 is a graph showing the result of comparing the expression level of IL-7R in peripheral blood mononuclear cells derived from a normal control and a pancreatic cancer patient in an embodiment of the present invention.
  • FIG. 3 is a graph showing the result of comparing the expression level of IL-32 in peripheral blood mononuclear cells derived from a normal control group and a pancreatic cancer patient in an embodiment of the present invention.
  • FIG. 4 is a graph showing the result of comparing the expression level of FLT3LG in peripheral blood mononuclear cells derived from a normal control group and a pancreatic cancer patient in an embodiment of the present invention.
  • FIG. 5 is a graph showing the result of comparing the expression level of IL-10RA in peripheral blood mononuclear cells derived from a normal control group and a pancreatic cancer patient in an embodiment of the present invention.
  • FIG. 6 shows an analysis of an ROC curve for an IL-7R biomarker in the diagnosis of pancreatic cancer in an embodiment of the present invention.
  • FIG. 7 shows an analysis of an ROC curve for an IL-32 biomarker in diagnosing pancreatic cancer in an embodiment of the present invention.
  • FIG. 8 shows an analysis of an ROC curve for a FLT3LG biomarker in the diagnosis of pancreatic cancer in an embodiment of the present invention.
  • FIG. 9 shows an analysis of an ROC curve for an IL-10RA biomarker in the diagnosis of pancreatic cancer in an embodiment of the present invention.
  • FIG. 10 is a graph showing the result of comparing the expression level of IL-7R in peripheral blood mononuclear cells derived from a normal control group and a pancreatic cancer patient in an embodiment of the present invention.
  • FIG. 11 is a graph showing the result of comparing the expression level of FLT3LG in peripheral blood mononuclear cells derived from a normal control group and a pancreatic cancer patient in an embodiment of the present invention.
  • FIG. 12 is a graph showing the result of comparing the expression level of CD27 in peripheral blood mononuclear cells derived from a normal control group and a pancreatic cancer patient in an embodiment of the present invention.
  • FIG. 13 shows an analysis of an ROC curve for an IL-7R biomarker in the diagnosis of pancreatic cancer in an embodiment of the present invention.
  • FIG. 14 shows an analysis of an ROC curve for a FLT3LG biomarker in the diagnosis of pancreatic cancer in an embodiment of the present invention.
  • FIG. 15 shows an analysis of an ROC curve for a CD27 biomarker in the diagnosis of pancreatic cancer in an embodiment of the present invention.
  • FIG. 16 schematically illustrates a process of evaluating the efficacy of a pancreatic cancer-specific biomarker using a pancreatic cancer animal model according to an embodiment of the present invention.
  • 17 shows the change in weight of tumor tissue and spleen over time in the pancreatic cancer animal model of the present invention.
  • FIG. 18 shows the change in the expression level of IL-7R, IL-22R1, or IL-10RB over time in peripheral blood mononuclear cells derived from a normal control group and a pancreatic cancer animal model in an embodiment of the present invention.
  • CM 19 is a IL-10RB + PBMC culture medium (CM) after, IL-10RB, by culture Day 1 in, CCK-8 black analysis inoculating the pancreatic cell culture - in contrast pancreatic cancer cells when inoculated with PBMC culture medium (CM) It is a graph analyzing the proliferation level.
  • Figure 20 shows the pancreatic cancer cells inoculated with IL-10RB + PBMC culture medium (CM) in the pancreatic cancer cell culture medium, compared to the case of inoculating IL-10RB - PBMC culture medium (CM) by CCK-8 assay on the second day of culture. It is a graph analyzing the proliferation level.
  • Figure 21 is a culture Day 3 after inoculation of IL-10RB + PBMC culture medium (CM) in the pancreatic cancer cell cultures, by CCK-8 test analysis, IL-10RB - in contrast pancreatic cancer cells when inoculated with PBMC culture medium (CM) It is a graph analyzing the proliferation level.
  • CM PBMC culture medium
  • CM PBMC culture medium
  • Figure 23 is a culture Day 3 after inoculation of IL-10RB + PBMC culture medium (CM) in the pancreatic cancer cell cultures, by FACS analysis, IL-10RB - proliferation levels compared to pancreatic cancer cells when inoculated with PBMC culture medium (CM) This is the analyzed graph.
  • CM PBMC culture medium
  • pancreatic cancer cell culture medium inoculated with IL-10RB + PBMC medium (CM) or IL-10RB - PBMC medium (CM), and additionally inoculated with anti-IL-10RB inhibitory antibody (R&D) to some experimental groups, culture 1 It is a graph in which the proliferation level of pancreatic cancer cells was analyzed by the CCK-8 assay analysis on the primary.
  • CM IL-10RB + PBMC medium
  • CM IL-10RB - PBMC medium
  • R&D anti-IL-10RB inhibitory antibody
  • pancreatic cancer cell culture medium inoculated with IL-10RB + PBMC medium (CM) or IL-10RB - PBMC medium (CM), and additionally inoculated with anti-IL-10RB inhibitory antibody (Novus) to some experimental groups, culture 1 It is a graph in which the proliferation level of pancreatic cancer cells was analyzed by the CCK-8 assay analysis on the primary.
  • pancreatic cancer cell culture medium inoculated with IL-10RB + PBMC medium (CM) or IL-10RB - PBMC medium (CM), and inoculated with an anti-IL-10RB inhibitory antibody (R&D) to some experimental groups, culture 2 It is a graph in which the proliferation level of pancreatic cancer cells was analyzed by the CCK-8 assay analysis on the primary.
  • CM IL-10RB + PBMC medium
  • CM IL-10RB - PBMC medium
  • R&D anti-IL-10RB inhibitory antibody
  • Figure 27 is a pancreatic cancer cell culture medium inoculated with IL-10RB + PBMC medium (CM) or IL-10RB - PBMC medium (CM), and inoculated with an anti-IL-10RB inhibitory antibody (Novus) to some experimental groups, culture 2 It is a graph in which the proliferation level of pancreatic cancer cells was analyzed by the CCK-8 assay analysis on the primary.
  • CM IL-10RB + PBMC medium
  • CM IL-10RB - PBMC medium
  • Novus anti-IL-10RB inhibitory antibody
  • Figure 28 is a pancreatic cancer cell culture medium inoculated with IL-10RB + PBMC medium (CM) or IL-10RB - PBMC medium (CM), and additionally inoculated with anti-IL-10RB inhibitory antibody (R&D) to some experimental groups, culture 3 It is a graph in which the proliferation level of pancreatic cancer cells was analyzed by the CCK-8 assay analysis on the primary.
  • CM IL-10RB + PBMC medium
  • CM IL-10RB - PBMC medium
  • R&D anti-IL-10RB inhibitory antibody
  • pancreatic cancer cell culture medium inoculated with IL-10RB + PBMC medium (CM) or IL-10RB - PBMC medium (CM), and inoculated with an anti-IL-10RB inhibitory antibody (Novus) to some experimental groups, culture 3 It is a graph in which the proliferation level of pancreatic cancer cells was analyzed by the CCK-8 assay analysis on the primary.
  • CM IL-10RB + PBMC medium
  • CM IL-10RB - PBMC medium
  • Novus anti-IL-10RB inhibitory antibody
  • Figure 30 is a pancreatic cancer cell culture medium inoculated with IL-10RB + PBMC medium (CM) or IL-10RB - PBMC medium (CM), and additionally inoculated with anti-IL-10RB inhibitory antibody (R&D) to some experimental groups, culture 2
  • CM IL-10RB + PBMC medium
  • CM IL-10RB - PBMC medium
  • R&D anti-IL-10RB inhibitory antibody
  • Figure 31 is a pancreatic cancer cell culture medium inoculated with IL-10RB + PBMC medium (CM) or IL-10RB - PBMC medium (CM), and inoculated with an anti-IL-10RB inhibitory antibody (Novus) to some experimental groups, culture 2
  • CM IL-10RB + PBMC medium
  • CM IL-10RB - PBMC medium
  • Novus anti-IL-10RB inhibitory antibody
  • Figure 32 is a pancreatic cancer cell culture medium inoculated with IL-10RB + PBMC medium (CM) or IL-10RB - PBMC medium (CM), and inoculated with anti-IL-10RB inhibitory antibody (R&D) to some experimental groups, culture 3
  • CM IL-10RB + PBMC medium
  • CM IL-10RB - PBMC medium
  • R&D anti-IL-10RB inhibitory antibody
  • Figure 33 is a pancreatic cancer cell culture medium inoculated with IL-10RB + PBMC medium (CM) or IL-10RB - PBMC medium (CM), and inoculated with an anti-IL-10RB inhibitory antibody (Novus) to some experimental groups, culture 3 First, it is a graph in which the level of proliferation of pancreatic cancer cells was analyzed by FACS analysis.
  • CM IL-10RB + PBMC medium
  • CM IL-10RB - PBMC medium
  • Novus anti-IL-10RB inhibitory antibody
  • 34 is a graph analyzing changes in the expression level of IL-10RB in PBMCs isolated from IL-22 KO mice.
  • 35 is a graph analyzing changes in the expression level of IL-10RB in PBMCs infiltrated into pancreatic cancer cells isolated from IL-22 KO mice.
  • FIG. 36 is a result of FACS analysis comparing the number of IL-10RB + PBMC cells among the cells stained with CD11b among PBMCs isolated from IL-22 KO mice and B6 mice (WT).
  • Figure 37 is a result of FACS analysis comparing the number of IL-10RB + PBMC cells among the cells stained with CD11b among PBMCs isolated from each mouse after injection of pancreatic cancer cells into IL-22 KO mice and B6 mice (WT). to be.
  • Fig. 38 is an image showing a change in size of pancreatic cancer cells obtained from each mouse after injecting pancreatic cancer cells into IL-22 KO mice and B6 mice (WT).
  • 39 is a graph showing changes in weight (g) of pancreatic cancer cells obtained from each mouse after injecting pancreatic cancer cells into IL-22 KO mice and B6 mice (WT).
  • FIG. 40 is a graph showing changes in the size of lymph nodes around pancreatic cancer cells after injection of pancreatic cancer cells into IL-22 KO mice and B6 mice (WT).
  • Fig. 41 is an image showing the state of the lymph nodes in which the degree of recovery of the lymph nodes around the pancreatic cancer cells can be determined after injecting pancreatic cancer cells into IL-22 KO mice and B6 mice (WT).
  • Figure 42 is a graph analyzing the proliferation level of pancreatic cancer cells when inhibiting IL-10RB (IL10RB), IL-22R1, TNF- ⁇ , IFN- ⁇ , IL-2, IL-6, or IL-22 protein to be.
  • IL-10RB IL-10RB
  • IL-22R1 TNF- ⁇
  • IFN- ⁇ IFN- ⁇
  • IL-2 IL-2
  • IL-6 IL-6 protein
  • IL-10RB + cells were enriched from peripheral blood mononuclear cells (PBMCs) of Pancreatic Ductal Adeno Carcinoma (PDAC) patients using FACS Aria III flow cytometry (BD Biosciences).
  • PBMCs peripheral blood mononuclear cells
  • PDAC Pancreatic Ductal Adeno Carcinoma
  • FACS Aria III flow cytometry BD Biosciences
  • the isolated cells were stained with Trypan blue and diluted to a concentration of 1 ⁇ 10 5 to 2 ⁇ 10 6 cells/ml. The cell death rate was evaluated as ⁇ 90%.
  • a scRNA-seq library was formed using Chromium system (10x Genomics) together with Chromium Single Cell 3'Library & Gel Bead Kit v2. The cell suspension was loaded onto the Chromium Single Cell A Chip to capture 5,000 to 6,000 cells per channel.
  • the raw FASTQ file was processed into the Cell Ranger software suite (v2.2.0) using the default mapping options. Reads were mapped to the human reference genome (GRCh38) using STAR (v2.5.1b) and then quantified with an Ensembl GTF file (release 91). Using the emptyDrops function of the DropletUtils (v1.2.2) package of R, an FDR ⁇ 0.01 is used to match empty droplets from the gene-by-cell counting matrix. The cell barcode was filtered out. Low-quality cells with 10% or more of UMIs (unique molecular identifiers) mapped to mitochondrial genes, total UMIs of 1,000 or less, or 10 or less expressed genes were excluded.
  • UMIs unique molecular identifiers
  • the batch effect was removed using the FindIntegrationAnchors and IntegrateData functions of the Seurat package.
  • the integrated expression matrix was scaled using the Seurat package's ScaleData function, and then visualized as a 2D UMAP plot using the Seurat package's RunUMAP function in 30 principal components.
  • Genes or cell type marker genes expressed differently between P5 and P5(-) were identified with an option of a regulated P-value ⁇ 0.01 using the Wilcoxon rank sum test given in the Seurat package.
  • PBMC peripheral blood mononuclear cells
  • PBMC Peripheral blood mononuclear cells
  • RNA was isolated from this (Qiagen, USA)
  • cDNA was prepared using PrimeScript RT Master MIX (Perfect Real Time, Takara #RR036A), and PCR was performed using a StepOnePlus (AB) PCR device.
  • the primer sequence used at this time is shown in Table 6 below.
  • FIGS. 2 to 5 A decrease in ⁇ Ct means an increase in the level of mRNA expression.
  • the ⁇ Ct values of IL-7R, IL-32, FLT3LG, and IL-10RA were lower in peripheral blood mononuclear cells collected from blood samples derived from pancreatic cancer patients compared to the normal control group, That is, it can be seen that the mRNA expression levels of IL-7R, IL-32, FLT3LG, and IL-10RA were significantly increased in peripheral blood mononuclear cells derived from pancreatic cancer patients compared to the normal control group.
  • the IL-7R, IL-32, FLT3LG, and IL-10RA biomarkers showed high sensitivity and specificity in the diagnosis of pancreatic cancer, so the statistical significance of the diagnosis of pancreatic cancer You can see that there is.
  • pancreatic cancer 1 / (1+exp(-LP))
  • each of IL-7R and IL-10RA is a relative ⁇ Ct value of the expression level of IL-7R mRNA and IL-10RA mRNA for the housekeeping gene (GADPH), and the LP value derived from Equation 3 Substituting for 4 can predict the likelihood of developing pancreatic cancer.
  • variable of IL-7R is less than 2.283 and the variable of IL-10RA is greater than 1.8535;
  • the variable for IL-7R is greater than 2.283 and the variable for IL-10RA is less than 1.8535;
  • the variable of IL-7R is less than 2.283 and the variable of IL-10RA is less than 1.8535; It was confirmed that both the specificity and sensitivity of the diagnosis of pancreatic cancer were excellent.
  • PBMC Peripheral blood mononuclear cells
  • RNA was isolated from this (Qiagen, USA)
  • cDNA was prepared using PrimeScript RT Master MIX (Perfect Real Time, Takara #RR036A), and PCR was performed using a StepOnePlus (AB) PCR device.
  • the primer sequences used at this time are shown in Table 19 below.
  • FIGS. 10 to 12 A decrease in ⁇ Ct means an increase in the level of mRNA expression.
  • the ⁇ Ct values of IL-7R, FLT3LG, and CD27 were low in peripheral blood mononuclear cells collected from blood samples derived from pancreatic cancer patients compared to the normal control group, that is, derived from pancreatic cancer patients compared to the normal control group. It can be seen that the mRNA expression levels of IL-7R, FLT3LG, and CD27 were significantly increased in peripheral blood mononuclear cells.
  • the IL-7R, FLT3LG, and CD27 biomarkers showed high sensitivity and specificity in the diagnosis of pancreatic cancer, so it can be seen that there is statistical significance in the diagnosis of pancreatic cancer.
  • the IL-7R, IL-32, FLT3LG, IL-10RA and CD27 biomarkers showed high sensitivity and specificity in the diagnosis of pancreatic cancer, so it was found that there is statistical significance in the diagnosis of pancreatic cancer. I can.
  • the predictive power of pancreatic cancer diagnosis was better when the combination of IL-7R, FLT3LG, and CD27 was measured, rather than measuring the above markers alone.
  • pancreatic cancer 1 / (1+exp(-LP))
  • Equation 5 each of IL-7R, FLT3LG and CD27 is a relative ⁇ Ct value of the expression levels of IL-7R mRNA, FLT3LG mRNA, and CD27 mRNA for the housekeeping gene (GADPH), and the LP value derived from Equation 5 is Substituting into Equation 6 can predict the likelihood of developing pancreatic cancer.
  • the expression level of the biomarker was measured for a group of patients diagnosed with pancreatic cancer. Specifically, for patient A who was diagnosed as T1 stage pancreatic cancer of 0.6cm X 0.64cm size, and patient B who was diagnosed as pancreatic cancer 3 months after the diagnosis of pancreatitis, and performed surgery for it, peripheral blood. Mononuclear cells were isolated. Thereafter, RNA was isolated from the cells (Qiagen, USA), and cDNA was prepared using PrimeScript RT Master MIX (Perfect Real Time, Takara #RR036A), and then PCR was performed using a StepOnePlus (AB) PCR device. I did. Then, the expression level of the pancreatic cancer-specific biomarker was measured in the same manner as in the experimental example described above.
  • Tables 26 and 27 The experimental results for patient A are shown in Tables 26 and 27 below. Values in parentheses in Tables 26 and 27 below represent ⁇ Ct values for the expression level in the normal control group.
  • pancreatic cancer-specific biomarker according to an embodiment has a function that is distinguished from other biomarkers and can be used as a specific biomarker in the diagnosis of pancreatic cancer.
  • pancreatic cancer-specific biomarker using a pancreatic cancer animal model was performed as shown in FIG. 16. Specifically, 2x10 6 cells/20 ⁇ L of Pancreatic ductal adenocarcinoma cell line (Pan02) was directly transplanted into the pancreas of 8-week-old wild-type (WT) mice (C57BL/6, OrientBio), and an orthotopic pancreatic cancer mouse animal model was built. On the 2nd, 4th, 5th, 7th, and 11th days from the date of transplantation of Pan02 PDAC cells, the animal model was sacrificed, and the weights of tumor tissue and spleen were measured, respectively.
  • WT wild-type mice
  • peripheral blood mononuclear cells were isolated from the blood of the animal model, and then IL-7R, IL-22R1, or IL-10RB specific antibodies (mIL7R, APC (BD, Cat.564175), mAR, Percp (R&D) , Cat.FAB42941C), mBR, APC (R&D, Cat.FAB53681A)) by performing FACS analysis, comparing the level of IL-7R, IL-22R1, or IL-10RB expressed on the surface of peripheral blood mononuclear cells
  • the control group was set to a group administered with PBS to the pancreas of 8-week-old wild-type (WT) mice (C57BL/6, OrientBio).
  • pancreatic cancer animal model prepared in this experimental example As shown in FIG. 17, in the pancreatic cancer animal model prepared in this experimental example, the weight of the tumor tissue and spleen increased over time, and through this, it was confirmed that the pancreatic cancer animal model was stably established.
  • the peripheral blood mononuclear cells of the pancreatic cancer animal model significantly increased the expression of IL-7R and IL-22R compared to the control, whereas the expression of IL-10RB was significantly changed.
  • the expression pattern of IL-7R showed a significant increase from the early stage of pancreatic cancer (Day 4), and as pancreatic cancer progressed, the expression of IL-7R also showed a tendency to increase.
  • pancreatic cancer-specific biomarker according to an embodiment can be used not only for early diagnosis of pancreatic cancer, but also for evaluating the progression or prognosis of pancreatic cancer.
  • PanO2 cells pancreatic cancer cells
  • IL-10RB + PBMC culture conditioned media, CM
  • IL-10RB - PBMC culture CM
  • some experimental groups were inoculated with an anti-IL-10RB inhibitory antibody (neutralizing Ab) 2 ug/ml (R & D) or 1 ug/ml (Novus). Then, incubation was performed for 24 hours, 48 hours, or 72 hours.
  • the labeled pancreatic cancer cell culture solution of each well was inoculated with IL-10RB + PBMC culture solution (CM) or IL-10RB - PBMC culture solution (CM) at a concentration of 1 ⁇ 10 5 cells/well.
  • some experimental groups were inoculated with an anti-IL-10RB inhibitory antibody (neutralizing Ab) 2 ug/ml (R & D) or 1 ug/ml (Novus). Then, incubation was performed for 48 hours or 72 hours. Then, the labeled pancreatic cancer cells were counted using a hemocytometer.
  • pancreatic cancer cell proliferation increased due to the increase in the expression of IL-10RB in PBMCs
  • level of pancreatic cancer cell proliferation was analyzed through CCK-8 assay and FACS analysis.
  • CM IL-10RB + PBMC culture solution
  • CM pancreatic cancer cell culture solution
  • pancreatic cancer cells As shown in Figs. 22 and 23, when inoculated with IL-10RB + PBMC culture medium (CM) in pancreatic cancer cell culture medium by FACS analysis, compared to the case of inoculating IL-10RB - PBMC culture medium (CM), pancreatic cancer cells It was confirmed that the proliferation of was significantly increased.
  • CM PBMC culture medium
  • pancreatic cancer cell proliferation was inhibited by the inhibition of IL-10RB in PBMC.
  • the level of pancreatic cancer cell proliferation was analyzed through CCK-8 assay and FACS analysis.
  • pancreatic cancer cell culture medium with IL-10RB + PBMC culture medium (CM)
  • CM pancreatic cancer cell culture medium
  • IL-10RB + PBMC culture medium CM
  • neutralizing Ab an IL-10RB inhibitor anti-IL-10RB inhibitory antibody
  • pancreatic cancer cell proliferation can be inhibited.
  • inhibition of IL-10RB in PBMC may be to inhibit the activity of IL-10RB protein or to suppress the expression of a gene encoding IL-10RB.
  • the IL-10RB inhibitor is not limited to the anti-IL-10RB inhibitory antibody (neutralizing Ab) used in this experimental example, and inhibits the activity of the IL-10RB protein or suppresses the expression of the gene encoding IL-10RB. Any agent that can be used may be applicable, and such an IL-10RB inhibitor can be used as an anticancer therapeutic agent by inhibiting the proliferation of pancreatic cancer cells.
  • PBMCs of IL-22 KO mice and B6 mice were extracted, and the level of IL-10RB expression was measured.
  • PBMCs around the pancreatic cancer cells were extracted, and the IL-10RB expression level was measured.
  • IL-22 is a cytokine encoded by the IL-22 gene.
  • IL-22 stimulation shows activation of STAT1, STAT3, or STAT5, but the physiological function of IL-22 is still unknown.
  • IL-10RB can be suppressed in PBMCs when the IL-22 gene is completely removed or the expression of the IL-22 gene is suppressed. Due to this, since pancreatic cancer cell proliferation can be inhibited, such an IL-22 gene inhibitor can be utilized as an anticancer therapeutic agent, similar to an IL-10RB inhibitor.
  • PanO2 cell line pancreatic cancer cell line
  • WT B6 mice
  • pancreatic cancer cells was significantly reduced in IL-22 KO mice compared to B6 mice (WT).
  • pancreatic cancer cell proliferation was analyzed when the activity of the already expressed IL-22 protein was inhibited.
  • an anti-IL-22 blocking antibody that binds to the IL-22 protein was used.
  • pancreatic cancer cells As a result, as shown in Fig. 42, when the activity of the IL-22 protein was inhibited, the proliferation of pancreatic cancer cells did not decrease, whereas when IL-10RB was inhibited by an anti-IL-10RB inhibitory antibody, It was confirmed that the proliferation of pancreatic cancer cells was significantly reduced.
  • inhibition of IL-22 does not directly affect pancreatic cancer cells, but only when the gene of IL-22 is suppressed, inhibition of IL-10RB can be induced in PBMCs. And, as a result, it was confirmed that pancreatic cancer cell proliferation can be reduced. That is, it was confirmed that regulating IL-10RB can directly affect pancreatic cancer cells, and inhibiting the IL-22 gene can indirectly affect pancreatic cancer cells. Although indirectly inducing the effect, as an IL-10RB inhibitor, a gene inhibitor of IL-22 can be used, and eventually, the gene inhibitor of IL-22 indirectly inhibits pancreatic cancer cell proliferation and can be used as an anticancer therapeutic agent. Confirmed that there is.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Biochemistry (AREA)
  • Hematology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Cell Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Hospice & Palliative Care (AREA)
  • Oncology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • General Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Ecology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

본 발명은 암, 특히 췌장암 등을 진단할 수 있는 조성물, 이를 포함하는 진단용 키트 및 상기 조성물을 이용하여 진단을 위한 정보를 제공하는 방법에 관한 것이다. 또한, 본 발명은 췌장암을 예방 또는 치료할 수 있는 약제학적 조성물에 관한 것이다.

Description

암의 진단용 조성물
본 발명은 암, 특히 췌장암 등을 진단할 수 있는 조성물, 이를 포함하는 진단용 키트 및 상기 조성물을 이용하여 진단을 위한 정보를 제공하는 방법에 관한 것이다. 본 특허출원은 2019년 05월 21일에 대한민국 특허청에 제출된 대한민국 특허출원 제10-2019-0059625호, 2019년 12월 18일에 대한민국 특허청에 제출된 대한민국 특허출원 제10-2019-0169813호에 대하여 우선권을 주장하며, 상기 특허출원의 개시 사항은 본 명세서에 참조로서 삽입된다.
현대인의 주요 질환 중에서, 암의 치료방법과 진단방법에 관한 연구는 발병빈도가 높은 폐암, 간암, 위암 등을 중심으로 비교적 활발히 진행되고 있다. 그러나, 발병빈도가 낮은 식도암, 대장암, 췌장암 등에 대한 연구는 상대적으로 저조한 실정이다.
특히, 췌장암은 초기에는 별로 증세를 느끼지 않으며, 이미 전신전이가 일어난 후에 통증과 체중감소 등의 증세가 나타나는 것이 보통이어서, 더욱 치유율이 낮은 편이므로 정기적인 진단이 매우 중요하다. 임상증세는 대부분이 서서히 발병하고, 허약해지기 쉬우며, 식욕감퇴, 체중감소는 가장 흔한 증세이다. 췌장암은 5년 생존율이 1-4%, 중앙생존기간 5개월에 이르는 치명적인 암으로 인체의 암 중에서 가장 불량한 예후를 보이고 있다. 또한, 80-90% 환자에서 진단시 완치를 기대하는 근치적 절제가 불가능한 상태에서 발견되기 때문에 예후가 불량하고 치료는 주로 항암요법에 의존하고 있으므로, 그 어떤 인체 암보다도 조기 진단법 개발이 절실히 요망되고 있다.
현재까지 췌장암에 효과가 있다고 알려진 5-플루오로유라실, 젬시타빈(gemcitabine), 타르세바(tarceva)를 포함한 몇 가지 항암제의 치료 효과는 지극히 저조하며, 항암치료에 대한 반응율은 15% 내외에 불과하고 이러한 사실은 췌장암 환자의 예후를 향상시키기 위해서는 보다 효과적인 조기 진단법 및 치료법의 개발이 절실히 요구되고 있음을 시사한다. 치명적인 췌장암으로 진행되기 전단계인 췌장암의 전구병변에 대한 적절한 진단과 치료가 췌장암 치료 성적 향상에 매우 중요하다.
췌장암 또는 췌장암 전구병변의 진단은 혈액검사(CA19-9), 위, 십이지장의 X선 조영검사, 피부 및 간을 통한 담도촬영과 역행성 내시경 담도촬영술 사용되고 있다. 이들 방법에 의해 질병의 병변을 발견하였으나, 최근에 초음파촬영 및 전산화 단층촬영이 가장 많이 사용된다. 보다 정밀한 조직검사를 수행하여 비교적 정확한 검사결과를 얻을 수도 있다. 그러나, 상기 진단방법은 정확도가 떨어지거나, 환자에게 고통이 따르는 등 그 수행방법이 매우 불편하여 피검자들이 이를 꺼려하는 실정이다. 따라서, 간편하고 신속하게 췌장암 또는 췌장암 전구병변을 진단할 수 있는 검사방법의 개발이 요구되어 왔다.
대한민국 특허 제 10-0819122호 및 대한민국 공개특허 제 2012-0082372호에는, 마트릴린(matrilin), 트랜스티레틴(transthyretin), 스트라티핀(stratifin) 등을 포함하는 다양한 췌장암 마커를 이용한 기술을 개시하고 있지만, 마커마다 그 진단 효율 및 정확성에서 큰 차이를 나타내므로, 효과가 더 우수한 마커를 발굴하고 이를 이용한 진단방법을 개발할 필요성이 있다.
본 발명의 일 목적은 췌장암을 간편하고 정확하게 진단할 수 있는 조성물 또는 키트를 제공하고자 한다.
본 발명의 다른 목적은 췌장암을 진단하기 위한 정보를 제공하는 방법을 제공하고자 한다.
본 발명의 다른 목적은 췌장암을 예방 또는 치료할 수 있는 약제학적 조성물을 제공하고자 한다.
본 발명의 또 다른 목적은 췌장암을 진단하기 위한 장치를 제공하고자 한다.
그러나 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업계에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 구현 예에 따르면, CSF1R, CXCL16, TNFRSF1B, CX3CR1, CSF3R, TNFRSF14, TNFSF13B, TNF,PPBP, TNFSF10, FLT3LG, TNFRSF8, IL10RA, CKLF, IL12RB1, CXCL10, LTBR, PF4, CD40, IFNGR1, IFNAR1, IL2RG, IL1B, IL15, CD27, EBI3, RETN, IL7R, CCR2, IL16, IL21R, IL2RB, CCR5, IFNAR2, XCL2, IL32, TGFB1, IFNGR2, IL13RA1, CCL3, CD4, TNFSF4, EPOR, TNFRSF17, IL3RA, MIF, CXCR4, TNFRSF18, CMTM6, CMTM7, TNFSF12, IL23A, TGFB3, XCL1, IL27, CXCL3, CCL5, CCL4L2, IL7, HGF, KIT, CD40LG, IL6ST, IL6R, CD70, MST1, CXCL2, TNFSF14, FLT3, IL1R2, TGFBR2, IL6, LIF, CXCR6, CXCL1, CCR7, CXCL11, GDF15, IL1RN, TNFRSF4, CSF1, IL11RA, TNFSF8, IL15RA, CCL2, TNFRSF10A, CXCL8, CCL8, FAS, CCR4, CCL23, ACKR3, TNFSF18, LTA, CCR10, CLCF1, CCL4, IL9R, TGFBR1, TNFRSF10B, CSF2RB, TGFA, CXCL9, TNFRSF1A, OSM, IL4R, PF4V1, PDGFB, CCL20, IL12RB2, CCL25, TGFBR3, IL17RA, IL2RA, TNFRSF10C, CXCR3, IL20RB, CXCL5, IL5RA, CXCR5, TNFRSF11A, IL24, SPP1, CCL22, CCR9, CCL26, CX3CL1, CXCL12, CMTM1, TNFRSF10D, CCR3, CXCR1, CCL3L3, CXCR2, IFNL1, IL18R1, TNFSF15, CCR1, TNFRSF13B, TNFSF13, IL18, FASLG, IFNG, PDGFRB, TNFRSF25, XCR1, IL1R1, TNFRSF9, IL12A, CSF2RA, IL17C, IL2, IL26, IL4, PDGFA, TNFSF11, TNFSF9, CCR6, CCL19, MST1R, TNFRSF11B, IL23R, PDGFRA, CXCL13,EGF, 및 IL13으로 이루어진 군에서 군에서 선택된 1종 이상의 단백질; 또는 이를 코딩하는 유전자를 포함하는 췌장암의 진단용 바이오마커, 상기의 군에서 선택된 1종 이상의 단백질; 또는 이를 코딩하는 유전자의 발현 수준을 측정할 수 있는 제제를 포함하는 췌장암의 진단용 조성물; 및 상기 진단용 조성물을 포함하는 췌장암 진단용 키트에 관한 것이다.
본 발명의 일 구현 예에 따르면, CD27; fms-유사 티로신 키나아제 3 리간드(fms-like tyrosine kinase 3 ligand, FLT3LG); 인터루킨-7 수용체(interleukin-7 receptor, IL-7R(IL7R))로 이루어진 군에서 선택된 1종 이상의 단백질 또는 이를 코딩하는 유전자를 포함하는 췌장암 진단용 바이오마커 조성물에 관한 것이다.
본 발명에서 상기 "CD27"은 종양 괴사 인자 수용체 패밀리(tumor necrosis factor receptor superfamily)에 속하며, T 세포 면역의 발생 및 장기간 유지와 관련되어 있다. 본 발명에서 상기 CD27은 서열번호 1로 표시되는 것일 수 있으나, 이에 제한되는 것은 아니다.
본 발명에서 상기 "fms-유사 티로신 키나아제 3 리간드(fms-like tyrosine kinase 3 ligand, FLT3LG)"은 FLT3LG 유전자에 의해 코딩되는 것으로, 조혈의 4가지 나선형 번들 사이토카인에 해당한다. 이는 구조적으로 줄기 세포 인자(stem cell factor, SCF) 또는 콜로니 자극 인자 1(colony stimulating factor 1, CSF-1)과 유사하다. 본 발명에서 상기 fms-유사 티로신 키나아제 3 리간드는 서열번호 2로 표시되는 것일 수 있으나, 이에 제한되는 것은 아니다.
본 발명에서 상기 "인터루킨-7 수용체(interleukin-7 receptor, IL-7R(IL7R))"는 나이브 및 메모리 T 세포 표면에서 발현되는 것으로, 인터루킨-7 수용체-α(CD127) 및 공통-γ 체인 수용체(CD132)의 두 서브유닛으로 구성된다. 본 발명에서 상기 인터루킨-7 수용체는 서열번호 3으로 표시되는 것일 수 있으나, 이에 제한되는 것은 아니다.
본 발명에서 상기 바이오마커 조성물은 인터루킨-32(interleukin-32, IL-32(IL32)) 및 인터루킨-10RA(interleukin-10 receptor alpha, IL-10RA(IL10RA))에서 선택된 1종 이상의 단백질을 더 포함할 수 있다.
일 구체예에서, 상기 바이오마커 조성물은 예를 들어, 인터루킨-7 수용체(IL-7R) 단백질 또는 이를 코딩하는 유전자, 및 인터루킨-10RA(IL-10RA) 단백질 또는 이를 코딩하는 유전자의 조합일 수 있고; 예를 들어, 인터루킨-7 수용체(IL-7R) 단백질 또는 이를 코딩하는 유전자, fms-유사 티로신 키나아제 3 리간드(FLT3LG) 단백질 또는 이를 코딩하는 유전자, 및 인터루킨-10RA(IL-10RA) 단백질 또는 이를 코딩하는 유전자의 조합일 수 있다.
본 발명에서, 상기 바이오마커 조성물은 개체로부터 유래된 생물학적 시료로부터 수득할 수 있는 것이며, 상기 "생물학적 시료"는 개체로부터 얻어지거나 개체로부터 유래된 임의의 물질로, 예를 들어, 액체 생검을 의미하며, 예를 들면 혈액, 혈청 또는 혈장일 수 있다. 예를 들어, 상기 혈액, 혈청 또는 혈장으로부터 분리된 단핵구, 특히는 말초혈액 단핵세포(PBMC)일 수 있다.
본 발명에서 상기 "인터루킨-32(interleukin-32, IL-32(IL32))"는 종양 괴사 인자-알파(tumor necrosis factor-alpha, TNF-α) 또는 인터루킨-6(interleukin-6, IL-6) 등과 같은 염증성 사이토카인의 발현을 위해 면역 시스템의 세포를 유도하기 위한 전-염증성 사이토카인에 해당한다. 본 발명에서 상기 인터루킨-32는 서열번호 4로 표시되는 것일 수 있으나, 이에 제한되는 것은 아니다.
본 발명에서 상기 "인터루킨-10RA(interleukin-10 receptor alpha, IL-10RA(IL10RA))"는 염증성 사이토카인 중 하나로서, 통증과 밀접한 관련성이 있는 것으로 알려져 있다. 본 발명에서 인터루킨-10RA의 서열정보는 https://www.ncbi.nlm.nih.gov/와 같은 기 공개된 데이터베이스로부터 수득할 수 있다.
본 발명에서 상기 CD27; fms-유사 티로신 키나아제 3 리간드(fms-like tyrosine kinase 3 ligand, FLT3LG); 또는 인터루킨-7 수용체(interleukin-7 receptor, IL-7R(IL7R))는 개체, 즉 췌장암이 발병하였거나 발병 가능성이 높은 개체의 생물학적 시료로 액체 생검(liquid biopsy), 예를 들어, 혈액, 혈청 또는 혈장, 예를 들어, 상기 혈액, 혈청 또는 혈장 유래 단핵구, 특히는 말초혈액 단핵세포(peripheral blood mononuclear cell, PBMC)에서 발현되는 것을 측정할 수 있다.
본 발명에서 상기 "진단"은 특정 질병 또는 질환에 대한 대상(subject)의 감수성(susceptibility)을 판정하는 것, 대상이 특정 질병 또는 질환을 현재 가지고 있는지 여부를 판정하는 것, 특정 질병 또는 질환에 걸린 대상의 예후(prognosis)(예컨대, 전-전이성 또는 전이성 암 상태의 동정, 암의 단계 결정 또는 치료에 대한 암의 반응성 결정)를 판정하는 것, 또는 테라메트릭스(therametrics)(예컨대, 치료 효능에 대한 정보를 제공하기 위하여 객체의 상태를 모니터링하는 것)을 포함한다. 본 발명의 목적상, 상기 진단은 췌장암의 발병 여부 또는 발병 가능성(위험성)이나, 상기한 췌장암의 병기 또는 분화도, 또는 췌장암 환자의 생존율이나 치료 반응성을 확인하는 것이다.
본 발명에서 상기 "병기(stage)"란 암세포가 퍼진 정도, 암의 진행 단계를 의미하는 것으로, 췌장암의 진행 상황에 따른 국제적 분류는 일반적으로 TNM 병기 분류에 따른다. 여기서 'T(Tumor Size)'는 원발 종양의 크기에 따른 분류이고, 'N(Lymph Node)'은 림프절 전이 정도에 따른 분류이며, 'M(Metastasis)'은 다른 장기로의 전이 여부에 따른 분류에 해당한다. T, N, M에 있어서 상세 분류는 하기 표 1과 같으며 이에 따른 췌장암의 병기 분류는 하기 표 2와 같다.
[표 1]
Figure PCTKR2020006637-appb-I000001
[표 2]
Figure PCTKR2020006637-appb-I000002
본 발명에서 상기 "암의 분화도(grade)"란 암 세포의 성숙도 또는 분화한 정도를 나타내는 것으로, 그 분화 정도에 따라 하기 표 3와 같이 Grade 1, Grade 2 및 Grade 3으로 분류 가능하며, 이때 Grade 3의 저분화성 암이 Grade 2 또는 1의 고분화성 또는 중분화성 암에 비하여 종양의 경계가 불분명하므로 전이가 빠르고, 치료 효과가 미비하며, 치료 후에도 예후가 좋지 않게 나타나는 문제점이 있다(Histopathology. 2002 Sep;41(3A):154-61, Nat Genet. 2008 May;40(5):499-507 등).
[표 3]
Figure PCTKR2020006637-appb-I000003
본 발명의 다른 구현 예에 따르면, CD27; fms-유사 티로신 키나아제 3 리간드(FLT3LG); 및 인터루킨-7 수용체(IL-7R)로 이루어진 군에서 선택된 1종 이상의 단백질 또는 이를 코딩하는 유전자의 발현 수준을 측정하는 제제를 포함하는 췌장암의 진단용 조성물에 관한 것이다.
본 발명에서 상기 췌장암의 진단용 조성물은 인터루킨-32(IL-32) 및 인터루킨-10RA(IL-10RA)에서 선택된 1종 이상의 단백질 또는 이를 코딩하는 유전자의 발현 수준을 측정하는 제제를 더 포함할 수 있다.
일 구체예에서, 상기 췌장암의 진단용 조성물은 예를 들어, 인터루킨-7 수용체(IL-7R) 단백질 또는 이를 코딩하는 유전자의 발현 수준을 측정하는 제제, 및 인터루킨-10RA(IL-10RA) 단백질 또는 이를 코딩하는 유전자의 발현 수준을 측정하는 제제의 조합일 수 있고; 예를 들어, 인터루킨-7 수용체(IL-7R) 단백질 또는 이를 코딩하는 유전자의 발현 수준을 측정하는 제제, fms-유사 티로신 키나아제 3 리간드(FLT3LG) 단백질 또는 이를 코딩하는 유전자의 발현 수준을 측정하는 제제, 및 인터루킨-10RA(IL-10RA) 단백질 또는 이를 코딩하는 유전자의 발현 수준을 측정하는 제제의 조합일 수 있다.
본 발명에서, 상기 췌장암 진단용 조성물은 개체로부터 유래된 생물학적 시료를 대상으로 하는 것이며, 상기 "생물학적 시료"는 개체로부터 얻어지거나 개체로부터 유래된 임의의 물질로, 예를 들어, 액체 생검을 의미하며, 예를 들면 혈액, 혈청 또는 혈장일 수 있다. 예를 들어, 상기 혈액, 혈청 또는 혈장으로부터 분리된 단핵구, 특히는 말초혈액 단핵세포(PBMC)일 수 있다.
본 발명에서 상기 CD27, fms-유사 티로신 키나아제 3 리간드(FLT3LG), 인터루킨-7 수용체(IL-7R), 인터루킨-10RA(IL-10RA) 또는 인터루킨-32(IL-32) 단백질 등의 발현 수준을 측정하는 제제는 특별히 제한하지는 않으나, 예를 들면 상기 단백질에 특이적으로 결합하는 항체, 올리고펩타이드, 리간드, PNA(peptide nucleic acid) 및 앱타머(aptamer)로 이루어진 군에서 선택된 1종 이상을 포함할 수 있다.
본 발명에 상기 "항체"는 항원과 특이적으로 결합하여 항원-항체 반응을 일으키는 물질을 가리킨다. 본 발명의 목적상, 항체는 상기 바이오마커 단백질에 대해 특이적으로 결합하는 항체를 의미한다. 본 발명의 항체는 다클론 항체, 단클론 항체 및 재조합 항체를 모두 포함한다. 상기 항체는 당업계에 널리 공지된 기술을 이용하여 용이하게 제조될 수 있다. 예를 들어, 다클론 항체는 상기 단백질의 항원을 동물에 주사하고 동물로부터 채혈하여 항체를 포함하는 혈청을 수득하는 과정을 포함하는 당업계에 널리 공지된 방법에 의해 생산될 수 있다. 이러한 다클론 항체는 염소, 토끼, 양, 원숭이, 말, 돼지, 소, 개 등의 임의의 동물로부터 제조될 수 있다. 또한, 단클론 항체는 당업계에 널리 공지된 하이브리도마 방법(hybridoma method; Kohler 및 Milstein(1976) European Journal of Immunology 6:511-519 참조), 또는 파지 항체 라이브러리 기술(Clackson et al, Nature, 352:624-628, 1991; Marks et al, J. Mol. Biol., 222:58, 1-597, 1991 참조)을 이용하여 제조될 수 있다. 상기 방법으로 제조된 항체는 겔 전기영동, 투석, 염 침전, 이온교환 크로마토그래피, 친화성 크로마토그래피 등의 방법을 이용하여 분리, 정제될 수 있다. 또한, 본 발명의 항체는 2개의 전장의 경쇄 및 2개의 전장의 중쇄를 갖는 완전한 형태뿐만 아니라, 항체 분자의 기능적인 단편을 포함한다. 항체 분자의 기능적인 단편이란, 적어도 항원 결합 기능을 보유하고 있는 단편을 의미하며, Fab, F(ab'), F(ab')2 및 Fv 등이 있다.
본 발명에 상기 "PNA(Peptide Nucleic Acid)"는 인공적으로 합성된, DNA 또는 RNA와 비슷한 중합체를 가리키며, 1991년 덴마크 코펜하겐 대학교의 Nielsen, Egholm, Berg와 Buchardt 교수에 의해 처음으로 소개되었다. DNA는 인산-리보스당 골격을 갖는데 반해, PNA는 펩타이드 결합에 의해 연결된 반복된 N-(2-아미노에틸)-글리신 골격을 가지며, 이로 인해 DNA 또는 RNA에 대한 결합력과 안정성이 크게 증가되어 분자 생물학, 진단 분석 및 안티센스 치료법에 사용되고 있다. PNA는 문헌[Nielsen PE, Egholm M, Berg RH, Buchardt O(December 1991). "Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide". Science 254(5037): 1497-1500]에 상세하게 개시되어 있다.
본 발명에서 상기 "앱타머"는 올리고핵산 또는 펩타이드 분자이며, 앱타머의 일반적인 내용은 문헌[Bock LC et al., Nature 355(6360):5646(1992); Hoppe-Seyler F, Butz K "Peptide aptamers: powerful new tools for molecular medicine". J Mol Med. 78(8):42630(2000); Cohen BA, Colas P, Brent R. "An artificial cell-cycle inhibitor isolated from a combinatorial library". Proc Natl Acad Sci USA. 95(24): 142727(1998)]에 상세하게 개시되어 있다.
본 발명에서 상기 CD27, fms-유사 티로신 키나아제 3 리간드(FLT3LG), 인터루킨-7 수용체(IL-7R), 인터루킨-10RA(IL-10RA) 또는 인터루킨-32(IL-32) 단백질을 코딩하는 유전자의 발현 수준을 측정하는 제제는 상기 유전자에 특이적으로 결합하는 프라이머, 프로브 및 안티센스 뉴클레오티드로 이루어진 군에서 선택된 1종 이상을 포함할 수 있다.
본 발명에서 상기 "프라이머"는 표적 유전자 서열을 인지하는 단편으로서, 정방향 및 역방향의 프라이머 쌍을 포함하나, 예를 들어, 특이성 및 민감성을 가지는 분석 결과를 제공하는 프라이머 쌍이다. 프라이머의 핵산 서열이 시료 내 존재하는 비-표적 서열과 불일치하는 서열이어서, 상보적인 프라이머 결합 부위를 함유하는 표적 유전자 서열만 증폭하고 비특이적 증폭을 유발하지 않는 프라이머일 때, 높은 특이성이 부여될 수 있다.
본 발명에서 상기 "프로브"란 시료 내의 검출하고자 하는 표적 물질과 특이적으로 결합할 수 있는 물질을 의미하며, 상기 결합을 통하여 특이적으로 시료 내의 표적 물질의 존재를 확인할 수 있는 물질을 의미한다. 프로브의 종류는 당업계에서 통상적으로 사용되는 물질로서 제한은 없으나, 예를 들어, PNA(peptide nucleic acid), LNA(locked nucleic acid), 펩타이드, 폴리펩타이드, 단백질, RNA 또는 DNA일 수 있으며, 예를 들어, PNA이다. 보다 구체적으로, 상기 프로브는 바이오 물질로서 생물에서 유래되거나 이와 유사한 것 또는 생체 외에서 제조된 것을 포함하는 것으로, 예를 들어, 효소, 단백질, 항체, 미생물, 동식물 세포 및 기관, 신경세포, DNA, 및 RNA일 수 있으며, DNA는 cDNA, 게놈 DNA, 올리고뉴클레오티드를 포함하며, RNA는 게놈 RNA, mRNA, 올리고뉴클레오티드를 포함하며, 단백질의 예로는 항체, 항원, 효소, 펩타이드 등을 포함할 수 있다.
본 발명에서 상기 "LNA(Locked nucleic acids)"란, 2'-O, 4'-C 메틸렌 브릿지를 포함하는 핵산 아날로그를 의미한다 [J Weiler, J Hunziker and J Hall Gene Therapy(2006) 13, 496.502]. LNA 뉴클레오사이드는 DNA와 RNA의 일반적 핵산 염기를 포함하며, Watson-Crick 염기 쌍 규칙에 따라 염기 쌍을 형성할 수 있다. 하지만, 메틸렌 브릿지로 인한 분자의 'locking'으로 인해, LNA는 Watson-Crick 결합에서 이상적 형상을 형성하지 못하게 된다. LNA가 DNA 또는 RNA 올리고뉴클레오티드에 포함되면, LNA는 보다 빠르게 상보적 뉴클레오티드 사슬과 쌍을 이루어 이중 나선의 안정성을 높일 수 있다.
본 발명에서 상기 "안티센스"는 안티센스 올리고머가 왓슨-크릭 염기쌍 형성에 의해 RNA 내의 표적 서열과 혼성화되어, 표적서열 내에서 전형적으로 mRNA와 RNA:올리고머 헤테로이중체의 형성을 허용하는, 뉴클레오티드 염기의 서열 및 서브유닛간 백본을 갖는 올리고머를 의미한다. 올리고머는 표적 서열에 대한 정확한 서열 상보성 또는 근사 상보성을 가질 수 있다.
본 발명에 따른 상기 CD27, fms-유사 티로신 키나아제 3 리간드(FLT3LG), 인터루킨-7 수용체(IL-7R), 인터루킨-10RA(IL-10RA) 또는 인터루킨-32(IL-32) 단백질이나, 이를 코딩하는 유전자의 정보는 알려져 있으므로, 당업자라면 이를 바탕으로 상기 단백질을 암호화하는 유전자에 특이적으로 결합하는 프라이머, 프로브 또는 안티센스 뉴클레오티드를 용이하게 디자인할 수 있을 것이다.
본 발명에서 상기 CD27, fms-유사 티로신 키나아제 3 리간드(FLT3LG), 인터루킨-7 수용체(IL-7R), 인터루킨-10RA(IL-10RA) 및 인터루킨-32(IL-32)로 이루어진 군에서 선택된 1종 이상의 단백질 또는 이를 코딩하는 유전자의 발현 수준은, 개체에서 분리된 생물학적 시료로 액체 생검, 예를 들어, 혈액, 혈청 또는 혈장, 예를 들어, 상기 혈액, 혈청 또는 혈장 유래 단핵구, 특히는 말초혈액 단핵세포(PBMC)에 대하여 측정될 수 있다.
본 발명의 또 다른 구현 예에 따르면, 본 발명에 따른 췌장암의 진단용 조성물을 포함하는 췌장암의 진단용 키트에 관한 것이다.
본 발명에서는 상기 진단용 키트를 이용하여 췌장암의 발병 여부 또는 발병 가능성을 예측할 수 있고, 더 나아가서는 상기 췌장암의 경과, 예후 또는 치료 효과에 대하여도 진단할 수 있다.
본 발명에서 상기 키트는 RT-PCR 키트, DNA 칩 키트, ELISA 키트, 단백질 칩 키트, 래피드(rapid) 키트 또는 MRM(Multiple reaction monitoring) 키트일 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 진단용 키트는 분석 방법에 적합한 한 종류 또는 그 이상의 다른 구성 성분 조성물, 용액 또는 장치를 더 포함할 수 있다.
예를 들면, 본 발명의 진단용 키트는 역전사 중합효소반응을 수행하기 위해 필요한 필수 요소를 더 포함할 수 있다. 역전사 중합효소반응 키트는 마커 단백질을 코딩하는 유전자에 대해 특이적인 프라이머 쌍을 포함한다. 프라이머는 상기 유전자의 핵산서열에 특이적인 서열을 가지는 뉴클레오티드로서, 약 7 bp 내지 50 bp의 길이, 예를 들어, 약 10 bp 내지 30 bp의 길이를 가질 수 있다. 또한 대조군 유전자의 핵산 서열에 특이적인 프라이머를 포함할 수 있다. 그 외 역전사 중합효소반응 키트는 테스트 튜브 또는 다른 적절한 용기, 반응 완충액(pH 및 마그네슘 농도는 다양), 데옥시뉴클레오티드(dNTPs), Taq-폴리머라아제 및 역전사효소와 같은 효소, DNase, RNase 억제제 DEPC-수(DEPC-water), 멸균수 등을 포함할 수 있다.
또한, 본 발명의 진단용 키트는 DNA 칩을 수행하기 위해 필요한 필수 요소를 포함할 수 있다. DNA 칩 키트는 유전자 또는 그의 단편에 해당하는 cDNA 또는 올리고뉴클레오티드(oligonucleotide)가 부착되어 있는 기판, 및 형광표지 프로브를 제작하기 위한 시약, 제제, 효소 등을 포함할 수 있다. 또한 기판은 대조군 유전자 또는 그의 단편에 해당하는 cDNA 또는 올리고뉴클레오티드를 포함할 수 있다.
또한, 본 발명의 진단용 키트는 ELISA를 수행하기 위해 필요한 필수 요소를 포함할 수 있다. ELISA 키트는 상기 단백질에 대해 특이적인 항체를 포함한다. 항체는 마커 단백질에 대한 특이성 및 친화성이 높고 다른 단백질에 대한 교차 반응성이 거의 없는 항체로, 단클론 항체, 다클론 항체 또는 재조합 항체이다. 또한 ELISA 키트는 대조군 단백질에 특이적인 항체를 포함할 수 있다. 그 외 ELISA 키트는 결합된 항체를 검출할 수 있는 시약, 예를 들면, 표지된 2차 항체, 발색단(chromophores), 효소(예: 항체와 컨주게이트됨) 및 그의 기질 또는 항체와 결합할 수 있는 다른 물질 등을 포함할 수 있다.
본 발명의 또 다른 구현 예에 따르면, 개체로부터 분리된 생물학적 시료에서 CD27; fms-유사 티로신 키나아제 3 리간드(FLT3LG); 및 인터루킨-7 수용체(IL-7R)로 이루어진 군에서 선택된 1종 이상의 단백질 또는 이를 코딩하는 유전자의 발현 수준을 측정하는 단계를 포함하는 췌장암을 진단하기 위한 정보 제공 방법에 관한 것이다.
본 발명에서 상기 "개체"란 췌장암의 발병 여부가 불확실한 개체로, 췌장암의 발병 가능성이 높은 개체를 의미한다.
본 발명에서 상기 "생물학적 시료"는 개체로부터 얻어지거나 개체로부터 유래된 임의의 물질로, 예를 들어, 액체 생검을 의미하며, 예를 들면 혈액, 혈청 또는 혈장일 수 있다. 예를 들어, 상기 혈액, 혈청 또는 혈장으로부터 분리된 단핵구, 특히는 말초혈액 단핵세포(PBMC)일 수 있다.
종전에는 췌장 질환의 진단을 위하여 바이오마커의 발현 수준을 측정하기 위하여서는 주로 질환의 발생이 예측되는 조직(예를 들면, 췌장 조직)으로부터 세포를 분리한 뒤 상기 세포 내의 바이오마커의 발현 수준을 측정하여 왔다. 하지만, 본 발명에서는 개체로부터 분리된 액체 생검으로 예를 들면 혈액, 혈청 또는 혈장 내에 포함된 단핵구, 특히는 말초혈액 단핵세포(PBMC)에 대하여 본 발명에 따른 질환 바이오마커의 발현 수준을 측정함으로써 암, 특히는 췌장암의 발병 여부와 발병 가능성을 간단하고 신속하지만 매우 정확하게 예측할 수 있다.
본 발명에서 상기 발현 수준을 측정하는 단계는 인터루킨-32(IL-32) 및 인터루킨-10RA(IL-10RA)에서 선택된 어느 하나 이상의 단백질 또는 이를 코딩하는 유전자의 발현 수준을 측정하는 단계를 더 포함할 수 있다.
본 발명에서 상기 CD27, fms-유사 티로신 키나아제 3 리간드(FLT3LG), 인터루킨-7 수용체(IL-7R), 인터루킨-10RA(IL-10RA) 또는 인터루킨-32(IL-32) 단백질의 발현 수준을 측정하는 제제는 특별히 제한하지는 않으나, 예를 들어, 상기 바이오마커 단백질에 특이적으로 결합하는 항체, 올리고펩타이드, 리간드, PNA(peptide nucleic acid) 및 앱타머(aptamer)로 이루어진 군에서 선택된 1종 이상을 포함할 수 있다.
본 발명에 상기 CD27, fms-유사 티로신 키나아제 3 리간드(FLT3LG), 인터루킨-7 수용체(IL-7R), 인터루킨-10RA(IL-10RA) 또는 인터루킨-32(IL-32) 단백질의 발현 수준을 측정 또는 비교 분석 방법으로는 단백질 칩 분석, 면역측정법, 리간드 바인딩 어세이, MALDI-TOF(Matrix Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry) 분석, SELDI-TOF(Sulface Enhanced Laser Desorption/Ionization Time of Flight Mass Spectrometry) 분석, 방사선 면역 분석, 방사 면역 확산법, 오우크테로니 면역 확산법, 로케트 면역전기영동, 조직면역 염색, 보체 고정 분석법, 2차원 전기영동 분석, 액상 크로마토그래피-질량분석(liquid chromatography-Mass Spectrometry, LC-MS), LC-MS/MS(liquid chromatography-Mass Spectrometry/ Mass Spectrometry), 웨스턴 블랏팅 또는 ELISA(enzyme linked immunosorbentassay) 등이 있으나, 이에 제한되는 것은 아니다.
본 발명에서 상기 CD27, fms-유사 티로신 키나아제 3 리간드(FLT3LG), 인터루킨-7 수용체(IL-7R), 인터루킨-10RA(IL-10RA) 또는 인터루킨-32(IL-32) 단백질을 코딩하는 유전자의 발현 수준을 측정하는 제제는 상기 단백질을 코딩하는 유전자에 특이적으로 결합하는 프라이머, 프로브 및 안티센스 뉴클레오티드로 이루어진 군에서 선택된 1종 이상을 포함할 수 있다.
본 발명에 상기 CD27, fms-유사 티로신 키나아제 3 리간드(FLT3LG), 인터루킨-7 수용체(IL-7R), 인터루킨-10RA(IL-10RA) 또는 인터루킨-32(IL-32) 단백질을 코딩하는 유전자의 존재 여부와 발현 정도를 확인하는 과정으로, 상기 유전자의 발현 수준을 측정하는 분석 방법으로는 역전사 중합효소반응(RT-PCR), 경쟁적 역전사 중합효소반응(Competitive RT-PCR), 실시간 역전사 중합효소반응(Real-time RT-PCR), RNase 보호 분석법(RNase protection assay, RPA), 노던 블랏팅(Northern blotting) 또는 DNA 칩 등이 있으나 이에 제한되는 것은 아니다.
본 발명에서 개체의 생물학적 시료에 대하여 측정된 상기 CD27; fms-유사 티로신 키나아제 3 리간드(FLT3LG); 및 인터루킨-7 수용체(IL-7R)로 이루어진 군에서 선택된 1종 이상의 단백질 또는 이를 코딩하는 유전자의 발현 수준이 정상 대조군에 비하여 증가된 경우, 췌장암이 발병하였거나 췌장암의 발병 가능성이 높은 것으로 예측하는 단계를 더 포함할 수 있다.
또한, 본 발명에서 개체의 생물학적 시료에 대하여 측정된 상기 인터루킨-32(IL-32) 및 인터루킨-10RA(IL-10RA)에서 선택된 어느 하나 이상의 단백질 또는 이를 코딩하는 유전자의 발현 수준이 정상 대조군에 비하여 증가된 경우, 췌장암이 발병하였거나 췌장암의 발병 가능성이 높은 것으로 예측하는 단계를 포함할 수 있다. 상기 측정된 단백질 또는 코딩하는 유전자의 발현 수준이 정상 대조군에 비해 1.2 내지 20배(fold) 이상, 예를 들어, 1.2배 이상, 2배 이상, 3배 이상, 4배 이상, 5배 이상, 6배 이상, 7배 이상, 또는 8배 이상인 경우, 췌장암의 발명 가능성이 높은 것으로 예측할 수 있다.
또한, 본 발명에서는 개체의 생물학적 시료에 대하여 측정된 상기 CD27; fms-유사 티로신 키나아제 3 리간드(FLT3LG); 및 인터루킨-7 수용체(IL-7R)의 발현 수준을 하기 식 1에 대입하여 얻어진 LP 값을 하기 식 2에 대입함으로써 췌장암의 발병 가능성을 예측하는 단계를 추가로 더 포함할 수 있다:
[식 1]
LP = A - B X (IL-7R) - C X (FLT3LG) - D X (CD27)
[식 2]
췌장암 발병 확률 = 1 / (1+exp(-LP))
상기 식 1에서,
A는 3 내지 4의 값; B는 0.5 내지 1.5의 값; C는 0.1 내지 0.7의 값; 및 D는 0 초과 0.4 이하 값이며,
IL-7R은 개체의 생물학적 시료에 대하여 측정된 하우스 키핑 단백질 또는 유전자에 대한 IL-7R 단백질 또는 이를 코딩하는 유전자의 상대적인 발현 수준의 값이고; FLT3LG는 개체의 생물학적 시료에 대하여 측정된 하우스 키핑 단백질 또는 유전자에 대한 FLT3LG 단백질 또는 이를 코딩하는 유전자의 상대적인 발현 수준의 값이며; 및 CD27은 개체의 생물학적 시료에 대하여 측정된 하우스 키핑 단백질 또는 유전자에 대한 CD27 단백질 또는 이를 코딩하는 유전자의 상대적인 발현 수준의 값일 수 있다.
본 발명에서 상기 식 1에서, 상기 A는 3 내지 4의 값이고, 예를 들어, 3.5 내지 4의 값이며, 예를 들어, 3.7 내지 4.0의 값이고, 예를 들어, 3.8688일 수 있다.
본 발명에서 상기 식 1에서, 상기 B는 0.5 내지 1.5의 값이고, 예를 들어, 0.8 내지 1.3의 값이며, 예를 들어, 0.9 내지 1.1의 값이고, 예를 들어, 1.0342일 수 있다.
본 발명에서 상기 식 1에서, 상기 C는 0.1 내지 0.7의 값이고, 예를 들어, 0.1 내지 0.5의 값이며, 예를 들어, 0.2 내지 0.4의 값이고, 예를 들어, 0.3365일 수 있다.
본 발명에서 상기 식 1에서, 상기 D는 0 초과 0.4 이하의 값이고, 예를 들어, 0.01 내지 0.3의 값이며, 예를 들어, 0.02 내지 0.1의 값이고, 가장 예를 들어, 0.0526일 수 있다.
본 발명에서 상기 식 1에서, 상기 IL-7R은 개체의 생물학적 시료에 대하여 측정된 표준화 하우스 키핑(housekeeping) 단백질 또는 유전자에 대한 IL-7R 단백질 또는 이를 코딩하는 유전자의 상대적인 발현 수준의 값인 △Ct 값일 수 있다.
본 발명에서 상기 식 1에서, 상기 FLT3LG는 개체의 생물학적 시료에 대하여 측정된 표준화 하우스 키핑 단백질 또는 유전자에 대한 FLT3LG 단백질 또는 이를 코딩하는 유전자의 상대적인 발현 수준의 값인 △Ct 값일 수 있다.
본 발명에서 상기 식 1에서, 상기 CD27은 개체의 생물학적 시료에 대하여 측정된 표준화 하우스 키핑 단백질 또는 유전자에 대한 CD27 단백질 또는 이를 코딩하는 유전자의 상대적인 발현 수준의 값인 △Ct 값일 수 있다.
여기서 상기 표준화 하우스 키핑 단백질 또는 유전자로는 GAPDH(glyceraldehyde-3-phosphate dehydrogenase), CypI(Cyclophilin I), 알부민, 액틴(actin), 튜뷸린(tubulin), HPRT(cyclophilin hypoxantine phosphoribosyltransferase), L32, 28S 또는 18S 등일 수 있으나, 이에 제한되는 것은 아니다.
본 발명에서 상기 식 1에서 얻어진 LP 값을 상기 식 2에 대입하여 췌장암 발병 확률을 예측 또는 판정할 수 있다.
본 발명에서 상기 식 2에서 얻어지는 값은 0 내지 1의 이며, 1에 근접할수록 췌장암 발병 가능성이 높은 것으로 예측할 수 있다.
본 발명에서 상기 식 2에서 얻어지는 상기 값이 0.5 이상 1 이하, 0.55 이상 1 이하, 0.6 이상 1 이하, 0.65 이상 1 이하, 0.7 이상 1 이하, 0.75 이상 1 이하, 0.8 이상 1 이하, 0.85 이상 1 이하, 0.9 이상 1 이하, 또는 0.95 이상 1 이하인 경우 췌장암 발병 가능성이 높거나 췌장암이 발병한 것으로 예측할 수 있다.
더 나아가, 본 발명에서 상기와 같이 개체의 생물학적 시료에 대하여 측정된 상기 CD27; fms-유사 티로신 키나아제 3 리간드(FLT3LG); 및 인터루킨-7 수용체(IL-7R)로 이루어진 군에서 선택된 1종 이상의 단백질 또는 이를 코딩하는 유전자의 발현 수준을 측정하여 췌장암의 발병 가능성이 높은 것으로 예측 또는 진단하는 경우, 상기 개체에 대하여 그 질환에 대한 약제 투여(췌장암에 대한 항암제 등), 유전자 치료, 방사선 치료 또는 면역 치료 등 적절한 치료를 수행하는 단계를 추가로 포함할 수 있다.
본 발명의 또 다른 구현 예에 따르면, 개체의 생물학적 시료에 대하여 측정된 CD27; fms-유사 티로신 키나아제 3 리간드(FLT3LG); 및 인터루킨-7 수용체(IL-7R)로 이루어진 군에서 선택된 1종 이상의 단백질 또는 이를 코딩하는 유전자의 발현 수준을 포함하는 데이터에 대하여 췌장암 진단 정보를 판정하는 진단부를 포함하는, 췌장암 진단 장치에 관한 것이다.
도 1은 본 발명의 일 실시예에 따른 췌장암 진단 장치의 구조를 개략적으로 도시한 것이다.
본 발명의 췌장암 진단 장치는 개체의 생물학적 시료를 수용하는 시료 수용부(100)를 더 포함할 수 있다.
본 발명에서 상기 생물학적 시료는 개체로부터 얻어지거나 개체로부터 유래된 임의의 물질로, 예를 들어, 액체 생검을 의미하며, 예를 들면 혈액, 혈청 또는 혈장일 수 있다. 예를 들어, 상기 혈액, 혈청 또는 혈장으로부터 분리된 단핵구, 특히는 말초혈액 단핵세포(PBMC)일 수 있다.
본 발명의 췌장암 진단 장치는 상기 시료 수용부에 수용된 생물학적 시료에 대하여 측정된 CD27; fms-유사 티로신 키나아제 3 리간드(FLT3LG); 및 인터루킨-7 수용체(IL-7R)로 이루어진 군에서 선택된 1종 이상의 단백질 또는 이를 코딩하는 유전자의 발현 수준(진단 대상 데이터)을 입력하는 입력부(200)를 더 포함할 수 있다. 본 발명에서 상기 입력부(200)에서는 상기 진단 대상 데이터로, 예를 들어, 개체의 생물학적 시료에 대하여 측정된 표준화 하우스 키핑(housekeeping) 단백질 또는 유전자에 대한 CD27; fms-유사 티로신 키나아제 3 리간드(FLT3LG); 및 인터루킨-7 수용체(IL-7R)로 이루어진 군에서 선택된 1종 이상의 단백질 또는 이를 코딩하는 유전자의 상대적인 발현 수준의 값인 △Ct 값을 입력할 수 있다.
또한, 본 발명에서는 상기 입력부(200)에서 진단 대상 데이터에 대해 정렬, 정규화 및/또는 스케일링과 같은 전처리 과정을 거치게 하거나, 미리 전처리 과정을 마친 진단대상 데이터를 입력부에 입력할 수 있다.
본 발명에서는 상기 입력부(200)에 개체 한 명에 대해서도 여러 개의 진단 대상 데이터를 입력할 수 있다.
본 발명의 췌장암 진단 장치 중 특히 상기 입력부(200)에 있어서, 상기 CD27; fms-유사 티로신 키나아제 3 리간드(FLT3LG); 및 인터루킨-7 수용체(IL-7R)로 이루어진 군에서 선택된 1종 이상의 단백질 또는 이를 코딩하는 유전자의 발현 수준을 입력하기 위하여 상기 발현 수준을 측정하는 제제 및 그 방법은 상기 췌장암을 진단하기 위한 정보 제공 방법에 기재된 바와 중복되어 명세서의 과도한 복잡을 방지하기 위하여 이하 그 자세한 기재를 생략한다.
본 발명의 췌장암 진단 장치는 상기 입력부(200)에서 입력된 진단 대상 데이터에 대하여 췌장암 진단 정보를 판정하는 진단부(300)를 포함할 수 있다.
본 발명에서 상기 진단부(300)는 진단 대상 데이터에 대하여 췌장암의 발병 가능성 또는 췌장암의 발병 여부로, 췌장암 양성 또는 음성을 판정할 수 있다.
본 발명에서 상기 진단부(300)는 상기 입력부(200)에 입력된 진단 대상 데이터로, 개체의 생물학적 시료에 대하여 측정된 상기 CD27; fms-유사 티로신 키나아제 3 리간드(FLT3LG); 및 인터루킨-7 수용체(IL-7R)로 이루어진 군에서 선택된 1종 이상의 단백질 또는 이를 코딩하는 유전자의 발현 수준이 정상 대조군에 비하여 증가된 경우, 췌장암의 발병 가능성이 높거나, 췌장암 양성으로 판정할 수 있다.
본 발명에서 상기 진단부(300)는 상기 입력부(200)에 입력된 진단 대상 데이터로, 개체의 생물학적 시료에 대하여 측정된 상기 CD27; fms-유사 티로신 키나아제 3 리간드(FLT3LG); 및 인터루킨-7 수용체(IL-7R)의 발현 수준을 하기 식 1에 대입하여 얻어진 LP 값을 하기 식 2에 대입함으로써 췌장암의 발병 확률을 판정할 수 있다:
[식 1]
LP = A - B X (IL-7R) - C X (FLT3LG) - D X (CD27)
[식 2]
췌장암 발병 확률 = 1 / (1+exp(-LP))
상기 식 1에서,
A는 3 내지 4의 값; B는 0.5 내지 1.5의 값; C는 0.1 내지 0.7의 값; 및 D는 0 초과 0.4 이하 값이며,
IL-7R은 개체의 생물학적 시료에 대하여 측정된 하우스 키핑 단백질 또는 유전자에 대한 IL-7R 단백질 또는 이를 코딩하는 유전자의 상대적인 발현 수준의 값이고; FLT3LG는 개체의 생물학적 시료에 대하여 측정된 하우스 키핑 단백질 또는 유전자에 대한 FLT3LG 단백질 또는 이를 코딩하는 유전자의 상대적인 발현 수준의 값이며; 및 CD27은 개체의 생물학적 시료에 대하여 측정된 하우스 키핑 단백질 또는 유전자에 대한 CD27 단백질 또는 이를 코딩하는 유전자의 상대적인 발현 수준의 값일 수 있다.
본 발명에서 상기 식 1에서, 상기 A는 3 내지 4의 값이고, 예를 들어, 3.5 내지 4의 값이며, 예를 들어, 3.7 내지 4.0의 값이고, 예를 들어, 3.8688일 수 있다.
본 발명에서 상기 식 1에서, 상기 B는 0.5 내지 1.5의 값이고, 예를 들어, 0.8 내지 1.3의 값이며, 예를 들어, 0.9 내지 1.1의 값이고, 예를 들어, 1.0342일 수 있다.
본 발명에서 상기 식 1에서, 상기 C는 0.1 내지 0.7의 값이고, 예를 들어, 0.1 내지 0.5의 값이며, 예를 들어, 0.2 내지 0.4의 값이고, 예를 들어, 0.3365일 수 있다.
본 발명에서 상기 식 1에서, 상기 D는 0 초과 0.4 이하의 값이고, 예를 들어, 0.01 내지 0.3의 값이며, 예를 들어, 0.02 내지 0.1의 값이고, 가장 예를 들어, 0.0526일 수 있다.
본 발명에서 상기 식 1에서, 상기 IL-7R은 개체의 생물학적 시료에 대하여 측정된 표준화 하우스 키핑(housekeeping) 단백질 또는 유전자에 대한 IL-7R 단백질 또는 이를 코딩하는 유전자의 상대적인 발현 수준의 값인 △Ct 값일 수 있다.
본 발명에서 상기 식 1에서, 상기 FLT3LG는 개체의 생물학적 시료에 대하여 측정된 표준화 하우스 키핑 단백질 또는 유전자에 대한 FLT3LG 단백질 또는 이를 코딩하는 유전자의 상대적인 발현 수준의 값인 △Ct 값일 수 있다.
본 발명에서 상기 식 1에서, 상기 CD27은 개체의 생물학적 시료에 대하여 측정된 표준화 하우스 키핑 단백질 또는 유전자에 대한 CD27 단백질 또는 이를 코딩하는 유전자의 상대적인 발현 수준의 값인 △Ct 값일 수 있다.
여기서 상기 표준화 하우스 키핑 단백질 또는 유전자로는 GAPDH(glyceraldehyde-3-phosphate dehydrogenase), CypI(Cyclophilin I), 알부민, 액틴(actin), 튜뷸린(tubulin), HPRT(cyclophilin hypoxantine phosphoribosyltransferase), L32, 28S 또는 18S 등일 수 있으나, 이에 제한되는 것은 아니다.
본 발명에서 상기 식 1에서 얻어진 LP 값을 상기 식 2에 대입하여 췌장암 발병 확률을 예측 또는 판정할 수 있다. 본 발명에서 상기 식 2에서 얻어지는 값은 0 내지 1이며, 1에 근접할수록 췌장암 발병 가능성이 높은 것으로 판정할 수 있다.
본 발명에서 상기 식 2에서 얻어지는 상기 값이 0.5 이상 1 이하, 0.55 이상 1 이하, 0.6 이상 1 이하, 0.65 이상 1 이하, 0.7 이상 1 이하, 0.75 이상 1 이하, 0.8 이상 1 이하, 0.85 이상 1 이하, 0.9 이상 1 이하, 또는 0.95 이상 1 이하인 경우 췌장암 발병 가능성이 높거나 췌장암 양성으로 판정할 수 있다.
본 발명의 췌장암 진단 장치는 상기 진단부(300)의 진단 결과를 출력하는 출력부(400)를 추가로 더 포함할 수 있다.
본 발명에서 상기 출력부(400)는 디스플레이 또는 스피커 등의 출력 수단으로 구성될 수 있으나, 이에 제한되는 것은 아니다.
본 발명에서, 상기 췌장암 진단 장치는 컴퓨터 시스템 상에서 수행되는 것일 수 있다.
본 발명의 또 다른 구현 예에 따르면, 분리된 생물학적 시료에 췌장암을 유도할 것으로 예상되는 후보 물질을 처리하는 단계; 및 상기 후보 물질이 처리된 생물학적 시료에서 CD27; fms-유사 티로신 키나아제 3 리간드(FLT3LG); 및 인터루킨-7 수용체(IL-7R)로 이루어진 군에서 선택된 1종 이상의 단백질 또는 이를 코딩하는 유전자의 발현 수준을 측정하는 단계를 포함하는, 췌장암을 유도하는 약물을 스크리닝하는 방법에 관한 것이다.
본 발명에서 상기 분리된 생물학적 시료는 췌장암이 유발되었거나 유발되지 않은 개체로부터 분리된 생물학적 시료일 수 있다. 구체적으로는 상기 개체로부터 얻어지거나 개체로부터 유래된 임의의 물질로, 예를 들어, 액체 생검을 의미하며, 예를 들면 혈액, 혈청 또는 혈장일 수 있다. 보다 예를 들어, 상기 혈액, 혈청 또는 혈장으로부터 분리된 단핵구, 특히는 말초혈액 단핵세포(PBMC)일 수 있다.
또한, 본 발명에서 상기 후보 물질은 임의의 물질(substance), 분자(molecule), 원소(element), 화합물(compound), 실재물(entity) 또는 이들의 조합을 포함한다. 예를 들어, 이들로 한정되지는 않으나, 단백질, 폴리펩타이드, 소 유기분자(small organic molecule), 다당류(polysaccharide), 폴리뉴클레오티드 등을 포함한다. 또한, 천연 산물(natural product), 합성 화합물 또는 2개 이상의 물질의 조합일 수도 있다.
본 발명에서 상기 발현 수준을 측정하는 단계는 인터루킨-32(IL-32) 단백질 및 인터루킨-10RA(IL-10RA)에서 선택된 어느 하나 이상의 단백질 또는 이를 코딩하는 유전자의 발현 수준을 측정하는 단계를 더 포함할 수 있다.
본 발명에서 상기 후보 물질의 처리 후 상기 생물학적 시료에서 상기 CD27; fms-유사 티로신 키나아제 3 리간드(FLT3LG); 및 인터루킨-7 수용체(IL-7R)로 이루어진 군에서 선택된 1종 이상의 단백질 또는 이를 코딩하는 유전자의 발현 수준이, 상기 후보 물질의 처리 전에 비하여 증가된 경우, 상기 후보 물질을 췌장암의 유발제로 판별하는 단계를 더 포함할 수 있다.
또한, 본 발명에서 상기 후보 물질의 처리 후 상기 생물학적 시료에서 상기 인터루킨-32(IL-32) 및 인터루킨-10RA(IL-10RA)에서 선택된 어느 하나 이상의 단백질 또는 이를 코딩하는 유전자의 발현 수준이, 상기 후보 물질의 처리 전에 비하여 증가된 경우, 상기 후보 물질을 췌장암의 유발제로 판별하는 단계를 더 포함할 수 있다.
본 발명의 바이오마커 단백질 또는 이를 코딩하는 유전자의 발현 수준을 측정하는 방법과, 췌장암 및 진단에 관한 정의는 상기 본 발명의 췌장암의 진단을 위한 정보 제공 방법에 기재된 바와 중복되어 명세서의 과도한 혼잡을 피하기 위해 이하 그 기재를 생략한다.
본 발명의 또 다른 구현 예에 따르면, 인터루킨-10RB(interleukin-10 receptor beta, IL-10RB(IL10RB))의 발현 또는 활성을 억제시키는 제제를 유효성분으로 포함하는, 췌장암의 예방 또는 치료용 약제학적 조성물에 관한 것이다.
본 명세서에서 용어 "인터루킨-10RB"는 "IL-10RB", "IL10RB", "IL-10R2", 및 "IL10R2"와 상호교환적으로 사용될 수 있다.
본 발명에서 "예방"은 본 발명에 따른 약제학적 조성물의 투여에 의해 췌장암을 억제시키거나 발병을 지연시키는 모든 행위를 의미할 수 있다.
본 발명에서 사용되는 용어, "치료"는 본 발명에 따른 약제학적 조성물의 투여에 의해 췌장암에 대한 증세가 호전되거나 이롭게 변경되는 모든 행위를 의미할 수 있다.
본 발명에서, 상기 발현 억제제는 인터루킨-10RB 단백질을 코딩하는 유전자에 대한 안티센스 올리고뉴클레오티드, siRNA, shRNA, miRNA, 또는 이를 포함하는 벡터일 수 있다. 이러한 안티센스올리고뉴클레오티드, siRNA, shRNA, miRNA 또는 이들을 포함하는 벡터는 당업계에 공지된 방법을 이용하여 제작할 수 있다. 본 발명에 있어서, 상기 "벡터"는 폴리펩타이드를 암호화하는 게놈 내로 삽입된 외부 DNA를 포함하는 유전자 작제물을 말한다. 본 발명과 관련된 벡터는 상기 유전자를 저해하는 핵산 서열이 게놈 내로 삽입된 벡터로서, 이들 벡터는 DNA 벡터, 플라스미드 벡터, 코즈미드 벡터, 박테리오파아지 벡터, 효모 벡터, 또는 바이러스 벡터를 예로 들 수 있다.
또한, 본 발명에서, 상기 활성 억제제는 인터루킨-10RB 단백질의 기능 저하, 바람직하게, 상기 단백질 기능의 탐지가 불가능해지거나 무의미한 수준으로 존재하도록 하는 물질을 의미한다. 보다 구체적으로, 상기 활성 억제제는 인터루킨-10RB 단백질과 특이적으로 결합하는 항체; 인터루킨-10RB 단백질 내 특정 단편을 코딩하는 유전자에 대한 안티센스 올리고뉴클레오티드, siRNA, shRNA, miRNA, 또는 이를 포함하는 벡터 등일 수 있으나, 이에 제한되는 것은 아니다.
일 구체예에 있어서, 상기 인터루킨-10RB의 발현 또는 활성을 억제시키는 제제는 예를 들어, IL-10RB 단백질 또는 상기 단백질을 코딩하는 mRNA에 특이적으로 결합하는 물질일 수 있고, 예를 들어, IL-10RB 단백질 또는 상기 단백질을 코딩하는 mRNA에 특이적으로 결합하는 프라이머, 프로브, 올리고뉴클레오티드, 항체 또는 이의 항원 결합 단편, 리간드, 수용체, 작용제(agonist) 또는 길항제(antagonist), 또는 이의 조합일 수 있다.
일 구체예에 있어서, 상기 조성물은 말초 혈액 단핵세포(peripheral blood mononuclear cell, PBMC) 내 IL-10RB의 발현 또는 활성을 억제시키는 것일 수 있다.
일 구체예에 있어서, 상기 조성물은 췌장암 세포의 성장 또는 증식을 감소시키거나, 췌장암 세포 주변의 임파선을 활성화시키는 것일 수 있다.
상기 약제학적 조성물은 약제학적으로 유효한 양으로 투여한다. 용어 "약제학적으로 유효한 양"은 의학적 치료에 적용 가능한 합리적인 수혜/위험 비율로 질환을 치료하기에 충분한 양을 의미하며, 유효용량 수준은 환자의 질환의 종류, 중증도, 약물의 활성, 약물에 대한 민감도, 투여 시간, 투여 경로 및 배출 비율, 치료기간, 동시 사용되는 약물을 포함한 요소 및 기타 의학 분야에 잘 알려진 요소에 따라 결정될 수 있다. 본 발명에 따른 약제학적 조성물은 개별 치료제로 투여하거나 다른 치료제와 병용하여 투여될 수 있고 종래 의 치료제와는 순차적 또는 동시에 투여될 수 있으며, 단일 또는 다중 투여될 수 있다. 상기 요소들을 모두 고려하여 부작용 없이 최소한의 양으로 최대 효과를 얻을 수 있는 양을 투여하는 것이 중요하며, 이는 당업자에 의해 용이하게 결정될 수 있다.
구체적으로 본 발명의 약제학적 조성물의 유효량은 환자의 연령, 성별, 상태, 체중, 체내에 활성 성분의 흡수도, 불활성율 및 배설속도, 질병종류, 병용되는 약물에 따라 달라질 수 있으며, 일반적으로는 체중 1 kg 당 0.01 내지 500 mg을 매일 또는 격일 투여하거나, 1일 1 내지 5회로 나누어 투여할 수 있다. 그러나 투여 경로, 비만의 중증도, 성별, 체중, 연령 등에 따라서 증감 될 수 있으므로 상기 투여량이 어떠한 방법으로도 그 범위를 한정하는 것은 아니다.
본 발명의 다른 양태로서, 본 발명은 상기 약제학적 조성물을 개체에 투여하는 단계를 포함하는 췌장암의 치료방법을 제공한다. 본 발명에서 "개체"란 질병의 치료를 필요로 하는 대상을 의미하고, 보다 구체적으로는, 인간 또는 비-인간인 영장류, 생쥐(mouse), 개, 고양이, 말 및 소 등의 포유류를 의미한다.
본 발명에 따른 조성물 또는 방법에 따르면, 종래의 기술에 비해 비침습적인 방법으로 간단하고 신속하지만, 매우 정확하게 췌장암을 진단할 수 있다.
또한, 본 발명에 따른 조성물 또는 방법은 췌장암의 조기 진단을 가능하게 함으로써, 췌장암의 전구 병변에 대한 적절한 진단 및 치료에 활용될 수 있다.
도 1은 본 발명의 일 실시예에 따른 췌장암 진단 장치의 구조를 개략적으로 도시한 것이다.
도 2는 본 발명의 일 실시예에서, 정상 대조군과 췌장암 환자 유래 말초혈액 단핵구 세포에서 IL-7R의 발현 수준을 비교한 결과를 그래프로 나타낸 것이다.
도 3은 본 발명의 일 실시예에서, 정상 대조군과 췌장암 환자 유래 말초혈액 단핵구 세포에서 IL-32의 발현 수준을 비교한 결과를 그래프로 나타낸 것이다.
도 4는 본 발명의 일 실시예에서, 정상 대조군과 췌장암 환자 유래 말초혈액 단핵구 세포에서 FLT3LG의 발현 수준을 비교한 결과를 그래프로 나타낸 것이다.
도 5는 본 발명의 일 실시예에서, 정상 대조군과 췌장암 환자 유래 말초혈액 단핵구 세포에서 IL-10RA의 발현 수준을 비교한 결과를 그래프로 나타낸 것이다.
도 6은 본 발명의 일 실시예에서, 췌장암 진단에 있어 IL-7R 바이오마커에 대한 ROC 곡선 분석을 나타낸 것이다.
도 7은 본 발명의 일 실시예에서, 췌장암 진단에 있어 IL-32 바이오마커에 대한 ROC 곡선 분석을 나타낸 것이다.
도 8은 본 발명의 일 실시예에서, 췌장암 진단에 있어 FLT3LG 바이오마커에 대한 ROC 곡선 분석을 나타낸 것이다.
도 9는 본 발명의 일 실시예에서, 췌장암 진단에 있어 IL-10RA 바이오마커에 대한 ROC 곡선 분석을 나타낸 것이다.
도 10은 본 발명의 일 실시예에서, 정상 대조군과 췌장암 환자 유래 말초혈액 단핵구 세포에서 IL-7R의 발현 수준을 비교한 결과를 그래프로 나타낸 것이다.
도 11은 본 발명의 일 실시예에서, 정상 대조군과 췌장암 환자 유래 말초혈액 단핵구 세포에서 FLT3LG의 발현 수준을 비교한 결과를 그래프로 나타낸 것이다.
도 12는 본 발명의 일 실시예에서, 정상 대조군과 췌장암 환자 유래 말초혈액 단핵구 세포에서 CD27의 발현 수준을 비교한 결과를 그래프로 나타낸 것이다.
도 13은 본 발명의 일 실시예에서, 췌장암 진단에 있어 IL-7R 바이오마커에 대한 ROC 곡선 분석을 나타낸 것이다.
도 14는 본 발명의 일 실시예에서, 췌장암 진단에 있어 FLT3LG 바이오마커에 대한 ROC 곡선 분석을 나타낸 것이다.
도 15는 본 발명의 일 실시예에서, 췌장암 진단에 있어 CD27 바이오마커에 대한 ROC 곡선 분석을 나타낸 것이다.
도 16은 본 발명의 일 실시예에 따른 췌장암 동물모델을 이용한 췌장암 특이적 바이오마커의 효능 평가 과정을 개략적으로 도시한 것이다.
도 17은 본 발명의 췌장암 동물모델에서, 시간의 경과에 따른 종양 조직 및 비장의 중량 변화를 나타낸 것이다.
도 18은 본 발명의 일 실시예에서, 정상 대조군과 췌장암 동물모델 유래 말초혈액 단핵구 세포에서 시간의 경과에 따른 IL-7R, IL-22R1, 또는 IL-10RB의 발현 수준의 변화를 나타낸 것이다.
도 19는 췌장암 세포 배양액에 IL-10RB+ PBMC 배양액(CM)을 접종한 후 배양 1 일차에, CCK-8 검정 분석에 의하여, IL-10RB- PBMC 배양액(CM)을 접종한 경우 대비 췌장암 세포의 증식 수준을 분석한 그래프이다.
도 20은 췌장암 세포 배양액에 IL-10RB+ PBMC 배양액(CM)을 접종한 후 배양 2 일차에, CCK-8 검정 분석에 의하여, IL-10RB- PBMC 배양액(CM)을 접종한 경우 대비 췌장암 세포의 증식 수준을 분석한 그래프이다.
도 21은 췌장암 세포 배양액에 IL-10RB+ PBMC 배양액(CM)을 접종한 후 배양 3 일차에, CCK-8 검정 분석에 의하여, IL-10RB- PBMC 배양액(CM)을 접종한 경우 대비 췌장암 세포의 증식 수준을 분석한 그래프이다.
도 22는 췌장암 세포 배양액에 IL-10RB+ PBMC 배양액(CM)을 접종한 후 배양 2 일차에, FACS 분석에 의하여, IL-10RB- PBMC 배양액(CM)을 접종한 경우 대비 췌장암 세포의 증식 수준을 분석한 그래프이다.
도 23은 췌장암 세포 배양액에 IL-10RB+ PBMC 배양액(CM)을 접종한 후 배양 3 일차에, FACS 분석에 의하여, IL-10RB- PBMC 배양액(CM)을 접종한 경우 대비 췌장암 세포의 증식 수준을 분석한 그래프이다.
도 24는 췌장암 세포 배양액에 IL-10RB+ PBMC 배양액(CM) 또는 IL-10RB- PBMC 배양액(CM)을 접종하고, 일부 실험군에 항-IL-10RB 억제 항체(R&D)를 추가 접종하여, 배양 1 일차에, CCK-8 검정 분석에 의하여, 췌장암 세포의 증식 수준을 분석한 그래프이다.
도 25는 췌장암 세포 배양액에 IL-10RB+ PBMC 배양액(CM) 또는 IL-10RB- PBMC 배양액(CM)을 접종하고, 일부 실험군에 항-IL-10RB 억제 항체(Novus)를 추가 접종하여, 배양 1 일차에, CCK-8 검정 분석에 의하여, 췌장암 세포의 증식 수준을 분석한 그래프이다.
도 26은 췌장암 세포 배양액에 IL-10RB+ PBMC 배양액(CM) 또는 IL-10RB- PBMC 배양액(CM)을 접종하고, 일부 실험군에 항-IL-10RB 억제 항체(R&D)를 추가 접종하여, 배양 2 일차에, CCK-8 검정 분석에 의하여, 췌장암 세포의 증식 수준을 분석한 그래프이다.
도 27은 췌장암 세포 배양액에 IL-10RB+ PBMC 배양액(CM) 또는 IL-10RB- PBMC 배양액(CM)을 접종하고, 일부 실험군에 항-IL-10RB 억제 항체(Novus)를 추가 접종하여, 배양 2 일차에, CCK-8 검정 분석에 의하여, 췌장암 세포의 증식 수준을 분석한 그래프이다.
도 28은 췌장암 세포 배양액에 IL-10RB+ PBMC 배양액(CM) 또는 IL-10RB- PBMC 배양액(CM)을 접종하고, 일부 실험군에 항-IL-10RB 억제 항체(R&D)를 추가 접종하여, 배양 3 일차에, CCK-8 검정 분석에 의하여, 췌장암 세포의 증식 수준을 분석한 그래프이다.
도 29는 췌장암 세포 배양액에 IL-10RB+ PBMC 배양액(CM) 또는 IL-10RB- PBMC 배양액(CM)을 접종하고, 일부 실험군에 항-IL-10RB 억제 항체(Novus)를 추가 접종하여, 배양 3 일차에, CCK-8 검정 분석에 의하여, 췌장암 세포의 증식 수준을 분석한 그래프이다.
도 30은 췌장암 세포 배양액에 IL-10RB+ PBMC 배양액(CM) 또는 IL-10RB- PBMC 배양액(CM)을 접종하고, 일부 실험군에 항-IL-10RB 억제 항체(R&D)를 추가 접종하여, 배양 2 일차에, FACS 분석에 의하여, 췌장암 세포의 증식 수준을 분석한 그래프이다.
도 31는 췌장암 세포 배양액에 IL-10RB+ PBMC 배양액(CM) 또는 IL-10RB- PBMC 배양액(CM)을 접종하고, 일부 실험군에 항-IL-10RB 억제 항체(Novus)를 추가 접종하여, 배양 2 일차에, FACS 분석에 의하여, 췌장암 세포의 증식 수준을 분석한 그래프이다.
도 32는 췌장암 세포 배양액에 IL-10RB+ PBMC 배양액(CM) 또는 IL-10RB- PBMC 배양액(CM)을 접종하고, 일부 실험군에 항-IL-10RB 억제 항체(R&D)를 추가 접종하여, 배양 3 일차에, FACS 분석에 의하여, 췌장암 세포의 증식 수준을 분석한 그래프이다.
도 33은 췌장암 세포 배양액에 IL-10RB+ PBMC 배양액(CM) 또는 IL-10RB- PBMC 배양액(CM)을 접종하고, 일부 실험군에 항-IL-10RB 억제 항체(Novus)를 추가 접종하여, 배양 3 일차에, FACS 분석에 의하여, 췌장암 세포의 증식 수준을 분석한 그래프이다.
도 34는 IL-22 KO 마우스에서 분리한 PBMC의 IL-10RB 발현 수준의 변화를 분석한 그래프이다.
도 35는 IL-22 KO 마우스에서 분리한 췌장암 세포에 침윤된 PBMC의 IL-10RB 발현 수준의 변화를 분석한 그래프이다.
도 36은 IL-22 KO 마우스와 B6 마우스(WT)에서 분리한 PBMC 중, CD11b로 염색된 세포들 중에서 IL-10RB+ PBMC 세포 수를 비교한, FACS 분석 결과이다.
도 37은 IL-22 KO 마우스와 B6 마우스(WT)에 췌장암 세포을 주입한 후, 각 마우스로부터 분리한 PBMC 중, CD11b로 염색된 세포들 중에서 IL-10RB+ PBMC 세포 수를 비교한, FACS 분석 결과이다.
도 38은 IL-22 KO 마우스와 B6 마우스(WT)에 췌장암 세포을 주입한 후, 각 마우스로부터 얻어진 췌장암 세포의 크기 변화를 나타내는 이미지이다.
도 39는 IL-22 KO 마우스와 B6 마우스(WT)에 췌장암 세포을 주입한 후, 각 마우스로부터 얻어진 췌장암 세포의 중량(g) 변화를 나타내는 그래프이다.
도 40은 IL-22 KO 마우스와 B6 마우스(WT)에 췌장암 세포을 주입한 후, 췌장암 세포 주변의 임파선의 크기 변화를 나타내는 그래프이다.
도 41은 IL-22 KO 마우스와 B6 마우스(WT)에 췌장암 세포을 주입한 후, 췌장암 세포 주변의 임파선의 회복 정도를 파악할 수 있는, 임파선의 상태를 나타내는 이미지이다.
도 42는 IL-10RB(IL10RB), IL-22R1, TNF-α, IFN-γ, IL-2, IL-6, 또는 IL-22 단백질을 억제시키는 경우의, 췌장암 세포의 증식 수준을 분석한 그래프이다.
이하 본 발명을 실시예를 통하여 보다 상세하게 설명한다. 그러나, 이들 실시예는 본 발명을 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.
실시예
[실험예 1] 췌장암 특이적 바이오마커의 확인(1)
1. scRNA-seq 실험
FACS Aria III 유세포 분석기(BD Biosciences)를 이용하여 췌관 선암종(Pancreatic Ductal Adeno Carcinoma, PDAC) 환자의 말초 혈액 단핵구 세포(peripheral blood mononuclear cell, PBMCs)로부터 IL-10RB+ 세포를 농축(enrich) 하였다. 세포의 수를 측정하고 세포 사멸율을 확인하기 위하여, 분리된 세포를 트리판 블루(Trypan blue)로 염색하고 1Х105 내지 2Х106 세포/ml의 농도로 희석하였다. 세포 사멸율은 ~90%로 평가되었다. Chromium Single Cell 3' Library & Gel Bead Kit v2과 함께 Chromium system(10x Genomics)을 사용하여 scRNA-seq 라이브러리를 형성하였다. 세포 부유액을 Chromium Single Cell A Chip에 로딩하여 각 채널 당 5,000 내지 6,000 세포를 포획(capture)하도록 하였다. C1000 Touch Thermal Cycler(Bio-Rad)를 사용하여 세포 용해(cell lysis)와 역전사(reverse transcription)을 겔 비드-인-에멀젼(gel bead-in-emulsions, GEMs)에서 수행하였다. 다음의 cDNA 증폭 및 라이브러리 준비를 수행하고, 멀티플렉싱(multiplexing)을 위하여 시퀀싱 라이브러리(Sequencing libraries)를 풀링한 뒤 NovaSeq 6000 platform(Illumina) 상에서 시퀀싱 하였다.
2. scRNA-seq 데이터 분석
디폴트 맵핑 옵션(default mapping options)을 이용하여 로우 FASTQ 파일을 Cell Ranger software suite(v2.2.0)로 가공하였다. STAR(v2.5.1b)를 이용하여 리드(Reads)를 인간 레퍼런스 게놈(GRCh38)에 맵핑한 뒤 Ensembl GTF 파일(release 91)로 정량화 하였다. R의 DropletUtils(v1.2.2) 패키지(DropletUtils (v1.2.2) package of R)의 emptyDrops 기능을 이용하여 FDR < 0.01로 유전자-바이-세포(gene-by-cell) 계수 매트릭스로부터 빈 액적에 일치하는 세포 바코드를 걸러냈다. 미토콘드리아 유전자에 맵핑된 UMIs(unique molecular identifiers)의 10% 이상이거나, 총 UMIs가 1,000 이하이거나, 발현 유전자가 10개 이하인 저품질의 세포는 제외시켰다. R의 스캐터(scater) (v1.10.1) 패키지의 calculateQCMetrics 기능(the calculateQCMetrics function of the scater (v1.10.1) package of R)으로 계산된 모든 품질 관리 메트릭스(quality control metrics)에서 2차원적 주성분 분석(principal component analysis)에서 시각적으로 이상점(outlier)을 조사하여 역치값을 선택하였다. R의 Seurat 패키지의 NormalizeData 기능(the NormalizeData function of the Seurat (v3.0-alpha) package of R)은 각각의 계산 값을 각 세포의 총 계산 값으로 나눈 뒤 10,000 스케일 값을 곱하고, 1의 슈도-계산값(pseudo-count)으로 로그-변형하였다. 각 자료에서, 디폴트 옵션(default options)을 이용하여 Seurat 패키지의 FindVariableFeatures 기능을 이용해 가장 가변적인 상위 2,000개 유전자를 특징 유전자의 서브세트로 선별하였다. 30 정준 상관 벡터(canonical correlation vectors)에서 Seurat 패키지의 FindIntegrationAnchors 및 IntegrateData 기능을 이용해 배치 효과(batch effect)를 제거하였다. Seurat 패키지의 ScaleData 기능을 이용하여 통합 식 매트릭스(integrated expression matrix)를 스케일한 뒤 30 주요 구성(principal components)에서 Seurat 패키지의 RunUMAP 기능을 이용해 2차원 UMAP 플럿으로 시각화하였다. 세포 타입 주석을 위하여, 로우 UMI 계수 매트릭스에서 R의 SingleR package(v.0.2.2)의 CreateSinglerSeuratObject 기능(the CreateSinglerSeuratObject function of the SingleR package(v.0.2.2) of R)을 이용하고 npca=15, min.cells=0, min.genes=0, 및 regress.out=NULL로 설정하였다. P5와 P5(-) 사이에서 다르게 발현되는 유전자 또는 세포 타입 마커 유전자는 Seurat 패키지에서 주어지는 Wilcoxon rank sum test를 사용하여 조절된 P-value < 0.01의 옵션으로 동정하였다.
3. 분석 결과 
상기와 같은 분석을 통해 췌관 선암종 환자의 말초 혈액 단핵구 세포(PBMC) 중에서도 특히 IL-10RB+ 세포에서 정상 대조군에 비하여 유의적으로 발현되는 바이오마커를 분석하여 그 결과를 하기 표 4 및 표 5에 나타내었다. 한편, 표 5에서 각 바이오마커별 등급은 정상 대조군 대비 환자군의 발현량 변화에 기초하여 A, B, C, D 등급으로 선정하였다.
[표 4]
Figure PCTKR2020006637-appb-I000004
[표 5]
Figure PCTKR2020006637-appb-I000005
Figure PCTKR2020006637-appb-I000006
Figure PCTKR2020006637-appb-I000007
Figure PCTKR2020006637-appb-I000008
Figure PCTKR2020006637-appb-I000009
Figure PCTKR2020006637-appb-I000010
Figure PCTKR2020006637-appb-I000011
Figure PCTKR2020006637-appb-I000012
Figure PCTKR2020006637-appb-I000013
Figure PCTKR2020006637-appb-I000014
Figure PCTKR2020006637-appb-I000015
[실험예 2] 췌장암 특이적 바이오마커의 확인(2)
1. 정상 대조군과 췌장암 환자에서 바이오마커의 발현 수준 비교
정상 대조군(n=31)과 췌장암 환자군(n=38) 유래 혈액 샘플에서 말초혈액단핵세포(PBMC)를 분리하였다. 이로부터 RNA를 분리한 후(Qiagen, USA), PrimeScript RT Master MIX(Perfect Real Time, Takara #RR036A)를 이용하여 cDNA를 제조하고, StepOnePlus(AB사) PCR 기기를 사용하여 PCR을 수행하였다. 이때 사용한 프라이머 서열은 하기 표 6과 같다. 이처럼 qPCR을 이용하여 정상 대조군과 췌장암 환자군 샘플에서 IL-7R, IL-32, FLT3LG, 및 IL-10RA 의 mRNA의 발현 수준을 비교한 결과는 도 2 내지 5에 나타내었다. ΔCt의 감소는 mRNA 발현 수준의 증가를 의미한다.
각 마커별 qPCR 결과를 바탕으로 ROC 커브(Receiver Operating Characteristic curve, ROC curve) 그래프를 활용한 통계 분석을 진행한 결과는 도 6 내지 9에 나타내었고, 각 마커 별 AUC 값과 △Ct의 컷-오프(cut-off) 값에 따른 민감도 및 특이도 값은 하기 표 7 내지 14에 나타내었다.
[표 6]
Figure PCTKR2020006637-appb-I000016
[표 7]IL-7R 바이오마커
Figure PCTKR2020006637-appb-I000017
[표 8]IL-7R 바이오마커
Figure PCTKR2020006637-appb-I000018
[표 9]IL-32 바이오마커
Figure PCTKR2020006637-appb-I000019
[표 10]IL-32 바이오마커
Figure PCTKR2020006637-appb-I000020
[표 11]FLT3LG 바이오마커
Figure PCTKR2020006637-appb-I000021
[표 12]FLT3LG 바이오마커
Figure PCTKR2020006637-appb-I000022
[표 13]IL-10RA 바이오마커
Figure PCTKR2020006637-appb-I000023
[표 14]IL-10RA 바이오마커
Figure PCTKR2020006637-appb-I000024
도 2 내지 5에서 보는 바와 같이, 정상 대조군 대비 췌장암 환자 유래 혈액 샘플에서 채취된 말초혈액단핵세포에서 IL-7R, IL-32, FLT3LG, 및 IL-10RA의 △Ct 값이 낮은 값을 보였는 바, 즉 정상 대조군 대비 췌장암 환자 유래 말초혈액단핵세포에서 IL-7R, IL-32, FLT3LG, 및 IL-10RA의 mRNA 발현 수준이 현저히 증가된 것을 확인할 수 있다.
도 6 내지 9 및 표 7 내지 14에서 보는 바와 같이, 상기 IL-7R, IL-32, FLT3LG, 및 IL-10RA 바이오마커는 췌장암 진단에 있어 높은 민감도 및 특이도를 보였으므로, 췌장암 진단의 통계적 유의성이 있는 것을 알 수 있다.
2. 통계적 분석
상기 1.의 결과를 토대로 각 마커별 또는 마커의 조합별 SAS(version 9.3, SAS Inc., NC, USA), PASS(version 12, NCSS, LLC, Kaysville, Utah, USA)를 이용하여 샤피로-윌크 검정(Shapiro-Wilk test), 콜모고로프-스미르노프 검정(Kolmogorov-Smirnov test), 독립 표본 t-검정(Independent two sample t-test) 및 로지스틱 회귀분석(logistic regression)을 수행하였고, 그 결과는 하기 표 15 내지 17에 나타내었다.
[표 15]샤피로-윌크 검정(Shapiro-Wilk test) 및 콜모고로프-스미르노프 검정(Kolmogorov-Smirnov test)
Figure PCTKR2020006637-appb-I000025
[표 16]독립 표본 t-검정(Independent two sample t-test)(평균±표준편차)
Figure PCTKR2020006637-appb-I000026
[표 17]로지스틱 회귀분석(logistic regression)
Figure PCTKR2020006637-appb-I000027
상기 표 15 내지 17의 결과를 통해, 정규성 검정 결과 상기 IL-7R, IL-32, FLT3LG, 및 IL-10RA 바이오마커는 췌장암 진단에 있어 정규성을 만족하였고, 상기의 마커를 단독으로 측정하는 것보다, IL-7R 및 IL-10RA의 조합을 측정하는 경우, 췌장암 진단 예측력이 더 우수함을 확인하였다.
또한, 상기 IL-7R 및 IL-10RA의 조합의 발현 수준에 따른 췌장암의 발병 가능성을 예측하기 위한 식을 도출하였다.
[식 3]
LP= 3.7068 - 0.9077 X (IL-7R) - 0.8776 X (IL-10RA)
[식 4]
췌장암 발병 확률 = 1 / (1+exp(-LP))
상기 식 3에서, IL-7R 및 IL-10RA 각각은 하우스키핑 유전자(GADPH)에 대한 IL-7R mRNA 및 IL-10RA mRNA 발현 수준의 상대적인 △Ct 값이며, 상기 식 3에서 도출된 LP 값을 식 4에 대입하면 췌장암의 발병 가능성을 예측할 수 있다.
추가하여, 상기 표 15 내지 17의 결과를 이용하여 상기 IL-7R 및 IL-10RA의 컷-오프 값의 조합에 따른 췌장암 진단의 특이도 및 민감도를 분석하여 그 결과를 하기 표 18에 나타내었다. 이때, 환자에서 얻어진 IL-7R 및 IL-10RA의 mRNA 발현 수준에 대한 두 변수 모두 컷-오프 값 보다 클 경우는 0, 둘 중 하나만 컷-오프 값보다 작고 나머지 하나는 클 경우는 1, 두 변수 모두 컷-오프 값보다 작으면 2 점으로 점수(score)를 만든 후 그 점수의 컷-오프 값을 끊어서 각각의 특이도와 민감도를 계산하였다.
[표 18]
Figure PCTKR2020006637-appb-I000028
상기 표 18에서 보는 바와 같이, IL-7R의 변수가 2.283 미만이고, IL-10RA의 변수가 1.8535 이상인 경우; IL-7R의 변수가 2.283 이상이고, IL-10RA의 변수가 1.8535 미만인 경우; 또는 IL-7R의 변수가 2.283 미만이고, IL-10RA의 변수가 1.8535 미만인 경우; 췌장암 진단의 특이도 및 민감도가 모두 뛰어난 것을 확인할 수 있었다.
[실험예 3] 췌장암 특이적 바이오마커의 확인(3)
1. 정상 대조군과 췌장암 환자에서 바이오마커의 발현 수준 비교
정상 대조군(n=31)과 췌장암 환자군(n=38) 유래 혈액 샘플에서 말초혈액단핵세포(PBMC)를 분리하였다. 이로부터 RNA를 분리한 후(Qiagen, USA), PrimeScript RT Master MIX(Perfect Real Time, Takara #RR036A)를 이용하여 cDNA를 제조하고, StepOnePlus(AB사) PCR 기기를 사용하여 PCR을 수행하였다. 이때 사용한 프라이머 서열은 하기 표 19과 같다. 이처럼 qPCR을 이용하여 정상 대조군과 췌장암 환자군 샘플에서 IL-7R, FLT3LG 및 CD27의 mRNA의 발현 수준을 비교한 결과는 도 10 내지 12에 나타내었다. ΔCt의 감소는 mRNA 발현 수준의 증가를 의미한다.
각 마커별 qPCR 결과를 바탕으로 ROC 커브(Receiver Operating Characteristic curve, ROC curve) 그래프를 활용한 통계 분석을 진행한 결과는 도 13 내지 15에 나타내었고, 각 마커 별 AUC 값과 △Ct의 컷-오프(cut-off) 값에 따른 민감도 및 특이도 값은 하기 표 20 내지 22에 나타내었다.
[표 19]
Figure PCTKR2020006637-appb-I000029
[표 20]IL-7R 바이오마커
Figure PCTKR2020006637-appb-I000030
[표 21]FLT3LG 바이오마커
Figure PCTKR2020006637-appb-I000031
[표 22]CD27 바이오마커
Figure PCTKR2020006637-appb-I000032
도 10 내지 12에서 보는 바와 같이, 정상 대조군 대비 췌장암 환자 유래 혈액 샘플에서 채취된 말초혈액 단핵 세포에서 IL-7R, FLT3LG 및 CD27의 △Ct 값이 낮은 값을 보였는 바, 즉 정상 대조군 대비 췌장암 환자 유래 말초혈액단핵세포에서 IL-7R, FLT3LG 및 CD27의 mRNA 발현 수준이 현저히 증가된 것을 확인할 수 있다.
도 13 내지 15 및 표 20 내지 22에서 보는 바와 같이, 상기 IL-7R, FLT3LG 및 CD27 바이오마커는 췌장암 진단에 있어 높은 민감도 및 특이도를 보였으므로, 췌장암 진단의 통계적 유의성이 있는 것을 알 수 있다.
2. 통계적 분석
상기 1.의 결과를 토대로 각 마커별 또는 마커의 조합별 SAS(version 9.3, SAS Inc., NC, USA), PASS(version 12, NCSS, LLC, Kaysville, Utah, USA)를 이용하여 맨-휘트니 U 검정(Mann-Whitney U test) 및 로지스틱 회귀분석(logistic regression)을 수행하였고, 그 결과는 하기 표 23 및 24에 나타내었다. 단, 컷-오프 값은 Youden 인덱스, 즉 "민감도(sensitivity) + 특이도(specificity) - 1"이 최대가 되는 점을 적정 컷-오프로 결정하였고, P value가 0.05 미만일 때 유의하다고 판단하였다.
[표 23]맨-휘트니 U 검정(Mann-Whitney U test)
Figure PCTKR2020006637-appb-I000033
[표 24]로지스틱 회귀분석(logistic regression)
Figure PCTKR2020006637-appb-I000034
표 23 및 24에서 보는 바와 같이, 상기 IL-7R, IL-32, FLT3LG, IL-10RA 및 CD27 바이오마커는 췌장암 진단에 있어 높은 민감도 및 특이도를 보였으므로, 췌장암 진단의 통계적 유의성이 있는 것을 알 수 있다. 추가하여, 본 실험예를 통해, 상기의 마커를 단독으로 측정하는 것보다, IL-7R, FLT3LG, 및 CD27의 조합을 측정하는 경우, 췌장암 진단 예측력이 더 우수함을 확인하였다.
또한, 상기 표 23 및 24의 결과를 이용하여 상기 IL-7R, FLT3LG 및 CD27의 발현 수준에 따른 췌장암의 발병 가능성을 예측하기 위한 식을 도출하였다.
[식 5]
LP= 3.8688 - 1.0342 X (IL-7R) - 0.3365 X (FLT3LG) - 0.0526 X (CD27)
[식 6]
췌장암 발병 확률 = 1 / (1+exp(-LP))
상기 식 5에서, IL-7R, FLT3LG 및 CD27 각각은 하우스키핑 유전자(GADPH)에 대한 IL-7R mRNA, FLT3LG mRNA 및 CD27 mRNA 발현 수준의 상대적인 △Ct 값이며, 상기 식 5에서 도출된 LP 값을 식 6에 대입하면 췌장암의 발병 가능성을 예측할 수 있다.
또한, 상기 표 23 및 24의 결과를 이용하여 상기 IL-7R, FLT3LG 및 CD27의 컷-오프 값의 조합에 따른 췌장암 진단의 특이도 및 민감도를 분석하여 그 결과를 하기 표 25에 나타내었다. 이때, 환자에서 얻어진 IL-7R, FLT3LG 및 CD27 바이오마커 중 두 바이오마커의 컷-오프 값 보다 클 경우는 0, 셋 중 하나만 컷-오프 값보다 작고 나머지는 클 경우는 1, 셋 중 두 바이오마커가 컷-오프 값보다 작으면 2, 세 바이오마커 모두에 있어서 컷-오프 값보다 작을 때에는 3점으로 점수(score)를 만든 후 그 점수의 컷-오프 값을 끊어서 각각의 특이도와 민감도를 계산하였다.
[표 25]
Figure PCTKR2020006637-appb-I000035
상기 표 25에서 보는 바와 같이, IL-7R의 발현 수준이 0.7206507 미만이고, FLT3LG의 발현 수준이 0.5926827 이상이며, CD27의 발현수준이 0.7527883 이상인 경우; IL-7R의 발현 수준이 0.7206507 이상이고, FLT3LG의 발현 수준이 0.5926827 미만이며, CD27의 발현수준이 0.7527883 이상인 경우; 또는 IL-7R의 발현 수준이 0.7206507 이상이고, FLT3LG의 발현 수준이 0.5926827 이상이며, CD27의 발현수준이 0.7527883 미만인 경우; 췌장암 진단의 특이도 및 민감도가 모두 뛰어난 것을 확인할 수 있었다.
[실험예 4] 췌장암 특이적 바이오마커의 임상적 효용성 평가
상기 췌장암 특이적 바이오마커의 임상적 효용성을 평가하기 위하여, 췌장암으로 진단 받은 환자군에 대하여, 상기 바이오마커의 발현 수준을 측정하였다. 구체적으로, 0.6cm X 0.64cm 크기의 T1 단계 췌장암으로 판정받은 환자 A, 및 췌장염 진단 후, 추적 관찰에 따라 3개월 후 췌장암으로 판정받고, 이에 대한 수술을 진행한 환자 B를 대상으로, 말초혈액 단핵세포를 분리하였다. 이후, 상기 세포로부터 RNA를 분리하고(Qiagen, USA), PrimeScript RT Master MIX(Perfect Real Time, Takara #RR036A)를 이용하여 cDNA를 제조한 뒤, StepOnePlus(AB사) PCR 기기를 사용하여 PCR을 수행하였다. 이후, 전술한 실험예와 동일한 방식으로 췌장암 특이적 바이오마커의 발현 수준을 측정하였다.
환자 A에 대한 실험 결과는 하기 표 26 및 27에 나타내었다. 하기 표 26 및 27에서 괄호 안의 값은 정상 대조군에서의 발현 수준에 대한 ΔCt 값을 나타낸 것이다.
[표 26]
Figure PCTKR2020006637-appb-I000036
[표 27]
Figure PCTKR2020006637-appb-I000037
상기 표 26에서 보는 바와 같이, T1 단계 췌장암으로 판정받은 환자 A 유래 말초혈액 단핵세포에서는 정상 대조군에 비해 IL-7RA 및 FLT3LG mRNA의 발현이 증가된 반면, 그 외의 마커, 구체적으로 CA19-9, 및 IL-22RA mRNA의 발현은 정상 범위 수준이었다. 또한, 상기 표 27에서 보는 바와 같이, IL-22RA 및 IL-10RB 단백질의 발현 역시 정상 범위 수준임을 확인할 수 있었다.
환자 B에 대한 실험 결과는 하기 표 28 및 29에 나타내었다. 하기 표 28 및 29에서 괄호 안의 값은 정상 대조군에서의 발현 수준에 대한 ΔCt 값을 나타낸 것이다.
[표 28]
Figure PCTKR2020006637-appb-I000038
[표 29]
Figure PCTKR2020006637-appb-I000039
상기 표 28에서 보는 바와 같이, 췌장암 진단 시점에서, 환자 B 유래 말초혈액 단핵세포에서는 정상 대조군에 비해 IL-7RA, FLT3LG, 및 CD27 mRNA의 발현 모두가 증가되었으며, 이러한 발현 수준의 증가는 췌장암 수술 이후 모두 정상화 범위로 회복되었다. 또한, 상기 표 29에서 보는 바와 같이, 췌장암 진단 시점에서 IL-22RA 및 IL-10RB mRNA의 발현은 정상 범위 수준임을 확인할 수 있었다.
이러한 실험 결과들을 종합해 보면, 일 실시예에 따른 췌장암 특이적 바이오마커는 다른 바이오마커와는 구별되는 기능을 갖는, 췌장암 진단에 있어서 특이적인 바이오마커로 활용될 수 있음을 나타내는 것이다.
[실험예 5] 췌장암 동물모델을 통한 췌장암 특이적 바이오마커의 효능 평가
췌장암 동물모델을 이용한 상기 췌장암 특이적 바이오마커의 효능 평가는 도 16에 나타낸 바와 같이 수행하였다. 구체적으로, 8주령의 야생형(WT) 마우스(C57BL/6, OrientBio)의 췌장에 2x106 cells/20μL의 Pan02 PDAC 세포(Pancreatic ductal adenocarcinoma cell line, Pan02)를 직접 이식하여, 동소이식 췌장암 마우스 동물모델을 구축하였다. Pan02 PDAC 세포를 이식한 날로부터 2일, 4일, 5일, 7일, 및 11일째, 상기 동물모델을 희생시키고, 종양 조직 및 비장의 중량을 각각 측정하였다. 이와 함께, 상기 동물모델의 혈액으로부터 말초혈액 단핵세포를 분리한 뒤, IL-7R, IL-22R1, 또는 IL-10RB 특이적 항체(mIL7R, APC(BD, Cat.564175 ), mAR, Percp(R&D, Cat. FAB42941C), mBR, APC(R&D, Cat. FAB53681A))를 사용하여 FACS 분석을 실시함으로써, 말초혈액 단핵세포 표면에 발현된 IL-7R, IL-22R1, 또는 IL-10RB의 수준을 비교하여, 시간의 경과에 따른 발현 변화를 확인하였다. 한편, 본 실험예에서 대조군은 8주령의 야생형(WT) 마우스(C57BL/6, OrientBio)의 췌장에 PBS를 투여한 군으로 설정하였다.
도 17에서 보는 바와 같이, 본 실험예에서 제조된 췌장암 동물모델은 시간의 경과에 따라 종양 조직 및 비장의 중량이 증가하였으며, 이를 통하여, 췌장암 동물모델이 안정적으로 구축되었음을 확인할 수 있었다.
또한, 도 18에서 보는 바와 같이, 췌장암 동물모델의 말초혈액 단핵세포는 대조군에 비해 IL-7R, 및 IL-22R의 발현이 유의적으로 증가된 반면, IL-10RB의 발현은 유의적 변화가 관찰되지 않았다. 특히, IL-7R의 발현 양상은 췌장암의 초기 단계(Day 4)부터 유의적인 증가를 나타내었으며, 췌장암이 진행됨에 따라, 상기 IL-7R의 발현 역시 증가되는 경향을 보여주었다.
이러한 실험 결과들을 종합해 보면, 일 실시예에 따른 췌장암 특이적 바이오마커는 췌장암의 조기 진단뿐만 아니라, 췌장암의 진행 또는 예후를 평가하는데 활용될 수 있음을 나타내는 것이다.
[실험예 6] 말초 혈액 단핵세포(PBMC)에서 IL-10RB의 발현과 췌장암세포 증식의 상관관계 확인
1. 재료 및 방법
1-1. CCK-8 검정을 통한 췌장암 세포 증식 분석(Cell Proliferation Assay)
96-웰 플레이트(96-well plate, n=5)의 각 웰에 PanO2 세포(췌장암 세포) 배양액 100 ul(5X103 세포/웰)를 접종하여, 가습 배양기(humidified incubator)에서, 37°C, 5% CO2의 조건으로 전-배양(Pre-incubation) 하였다.
상기 각 웰의 췌장암 세포 배양액에 IL-10RB+ PBMC 배양액(conditioned media, CM) 또는 IL-10RB- PBMC 배양액(CM) 200 ul를 접종하였다. 또한, 일부 실험군에는 항-IL-10RB 억제 항체(neutralizing Ab) 2 ug/ml(R & D) 또는 1 ug/ml(Novus)를 접종하였다. 그 후, 24시간, 48시간, 또는 72시간 인큐베이션 하였다.
상기 인큐베이션 된 96-웰 플레이트의 각 웰에 CCK-8 용액 10 ul를 접종한 후, 3 시간 동안 인큐베이션 하였고, 그 후, 96-웰 플레이트는 마이크로플레이트 리더(microplate reader)를 사용하여, 450 nm에서 흡광도(absorbance)를 측정하였다. IL-10RB- PBMC 배양액(CM)을 접종한 실험군의 흡광도 값을 기준으로, IL-10RB+ PBMC 배양액(CM)을 접종한 실험군의 흡광도 값의 배수 증가를 계산하여, 췌장암 세포의 증식 수준을 분석하였다.
1-2. FACS(Fluorescence-activated cell sorting) 분석(cell-counting)을 통한 췌장암 세포 증식 분석(Cell Proliferation Assay)
CellTracker™ Green CMFDA(5-chloromethylfluorescein diacetate)로 PanO2 세포(3X106)를 라벨링 한 후, 96-웰 플레이트(n=3)의 각 웰에 PanO2 세포 배양액(1X105 세포/웰)을 접종하였다.
상기 각 웰의 라벨링 된 췌장암 세포 배양액에 IL-10RB+ PBMC 배양액(CM) 또는 IL-10RB- PBMC 배양액(CM)을 1X105 세포/웰의 농도로 접종하였다. 또한, 일부 실험군에는 항-IL-10RB 억제 항체(neutralizing Ab) 2 ug/ml(R & D) 또는 1 ug/ml(Novus)를 접종하였다. 그 후, 48시간, 또는 72시간 인큐베이션 하였다. 그 후, 혈구계수기(Hemocytometer)를 사용하여, 라벨링 된 췌장암 세포를 카운트하였다.
1-3. 통계적 분석
모든 정량 실험은 적어도 3 회(n=3 또는 n = 5) 수행되었으며, 데이터 값은 평균 ± SD로 나타내었다. 도 19 내지 23에 나타낸 데이터 값은, GraphPad Prism 8.0.2를 사용하여 양측 언 페어드 T 검정(two-tailed unpaired t test)에 의해 분석되었다. 도 24 내지 33에 나타낸 데이터 값은, GraphPad Prism 8.0.2를 사용하여 일원 분산 검정(One-way Anova test)에 의해 분석되었다.
2. PBMC에서 IL-10RB의 발현 증가에 따른 췌장암 세포 증식의 증가 확인(췌장암 세포 증식과 관련된 바이오마커로서 IL-10RB의 기능 확인)
본 실험예에서는, PBMC에서 IL-10RB의 발현 증가에 따른 췌장암 세포 증식의 증가 여부를 확인하기 위해, CCK-8 검정 및 FACS 분석을 통해 췌장암 세포 증식 수준을 분석하였다.
그 결과, 도 19 내지 21에 나타낸 바와 같이, CCK-8 검정 분석에 의하여, 췌장암 세포 배양액에 IL-10RB+ PBMC 배양액(CM)을 접종하였을 때, IL-10RB- PBMC 배양액(CM)을 접종한 경우 대비 췌장암 세포의 증식이 유의하게 증가함을 확인하였다.
마찬가지로, 도 22 및 23에 나타낸 바와 같이, FACS 분석에 의하여, 췌장암 세포 배양액에 IL-10RB+ PBMC 배양액(CM)을 접종하였을 때, IL-10RB- PBMC 배양액(CM)을 접종한 경우 대비 췌장암 세포의 증식이 유의하게 증가함을 확인하였다.
따라서, 본 실험예를 통해, PBMC에서 IL-10RB의 발현 수준을 측정함으로써, 췌장암 세포 증식능을 탐지할 수 있고, 이로 인해, IL-10RB는 췌장암 세포 증식능과 관련된 바이오마커로서 기능할 수 있음을 확인하였다.
3. PBMC에서 IL-10RB의 억제에 따른 췌장암 세포 증식의 억제 확인(IL-10RB 억제제의 췌장암 세포 증식 억제 기능 확인)
본 실험예에서는, PBMC에서 IL-10RB의 억제에 따른 췌장암 세포 증식의 억제 여부를 확인하기 위해, CCK-8 검정 및 FACS 분석을 통해 췌장암 세포 증식 수준을 분석하였다.
그 결과, 도 24 내지 33에 나타낸 바와 같이, 췌장암 세포 배양액에 IL-10RB+ PBMC 배양액(CM)을 접종한 경우, 배양 시간이 증가할수록, IL-10RB- PBMC 배양액(CM)을 접종한 경우 대비 췌장암 세포의 증식이 유의하게 증가하였다. 그러나, IL-10RB 억제제인 항-IL-10RB 억제 항체(neutralizing Ab)까지 추가로 접종한 경우, IL-10RB+ PBMC 배양액(CM)을 접종한 경우라도, 췌장암 세포의 증식의 증가가 억제되었다.
본 실험예를 통해, PBMC에서 IL-10RB를 억제함으로써, 췌장암 세포 증식을 억제할 수 있음을 확인하였다. 구체적으로, PBMC에서 IL-10RB를 억제하는 것은, IL-10RB 단백질의 활성을 억제하거나, IL-10RB를 암호화하는 유전자의 발현을 억제하는 것일 수 있다. 따라서, IL-10RB 억제제는 본 실험예에서 사용된 항-IL-10RB 억제 항체(neutralizing Ab)에 제한되지 않고, IL-10RB 단백질의 활성을 억제하거나, IL-10RB를 암호화하는 유전자의 발현을 억제할 수 있는 제제이면 어느 것이라도 해당될 수 있고, 이러한 IL-10RB 억제제는 췌장암 세포 증식을 억제하여 항암용 치료제로 활용될 수 있다.
[실험예 7] IL-10RB, IL-22, 및 췌장암 세포 증식의 상관관계 확인
1. IL-22 녹아웃(knockout, KO) 시, PBMC에서 IL-10RB 발현의 억제 확인
본 실험예에서는, IL-22 KO 마우스의 PBMC에서 IL-10RB 발현이 억제되는지 확인하기 위하여, IL-22 KO 마우스와 B6 마우스(WT)의 PBMC를 추출하여, IL-10RB 발현 수준을 측정하였다. 또한, PanO2 세포주(췌장암 세포주)를 IL-22 KO 마우스와 B6 마우스(WT)의 췌장에 주입한 뒤, 췌장암 세포 주변의 PBMC를 추출하여, IL-10RB 발현 수준을 측정하였다. 참고로 IL-22은 IL-22 유전자에 의해 암호화 되는 시토킨(cytokine)이다. IL-22 자극으로 STAT1, STAT3, 또는 STAT5의 활성화가 나타나지만 IL-22의 생리적 기능에 대해서는 아직도 불명한 것이 많다.
그 결과, 도 34에 나타낸 바와 같이, B6 마우스(WT)와 비교하여, IL-22 KO 마우스에서 IL-10RB+ PBMC의 세포 수가 현저히 감소하였음을 확인하였다. 특히, 도 35에 나타낸 바와 같이, B6 마우스(WT)에서는 췌장암 세포 주변에 IL-10RB+ PBMC의 세포 수가 현저히 증가하여 췌장암 세포 내로 침윤된 반면, IL-22 KO 마우스에서는 췌장암 세포 주변에 IL-10RB+ PBMC의 세포 수가 B6 마우스(WT)와 비교하여 현저히 감소한 것을 확인하였다.
또한, 도 36 및 37에 나타낸 바와 같이, IL-22 KO 마우스와 B6 마우스(WT)에서 추출된 PBMC 중 CD11b로 염색된 세포들 중에서, B6 마우스(WT)와 비교하여 IL-22 KO 마우스에서 IL-10RB+ PBMC의 세포 수가 유의하게 감소하였다.
본 실험예를 통해, IL-22 유전자를 완전히 제거하거나, IL-22 유전자의 발현이 억제되는 경우, PBMC에서 IL-10RB이 억제될 수 있음을 확인하였다. 이로 인해, 췌장암 세포 증식이 억제될 수 있으므로, 이러한 IL-22 유전자 억제제는 IL-10RB 억제제와 마찬가지로, 항암용 치료제로 활용될 수 있다.
2. IL-22 녹아웃(knockout, KO) 시, 췌장암 세포 크기 감소 및 정상 면역계 회복 확인
본 실험예에서는, IL-22 KO 마우스에서, 구체적인 췌장암 치료 효과를 확인하기 위하여, PanO2 세포주(췌장암 세포주)를 IL-22 KO 마우스와 B6 마우스(WT)의 췌장에 주입하여, 췌장암 세포 크기 변화 및 췌장암 세포 주변의 임파선(lymph node, LN)의 회복에 대하여 분석하였다.
그 결과, 도 38 및 39에 나타낸 바와 같이, B6 마우스(WT)와 비교하여, IL-22 KO 마우스에서 췌장암 세포의 크기가 유의하게 감소하였음을 확인하였다.
또한, 도 40 및 41에 나타낸 바와 같이, IL-22 KO 마우스에서 췌장암 세포 주변의 임파선이 활성화되어, 제 모습으로 회복되어가는 것을 확인하였다. 반면, B6 마우스(WT)에서는 임파선이 위축되어 있고, 췌장암 세포가 임파선 내로 침윤된 것을 확인하였다.
본 실험예를 통해, IL-22 유전자를 완전히 제거하거나, IL-22 유전자의 발현이 억제되는 경우, 이로 인해, 췌장암 세포 크기가 감소되고, 췌장암 세포 주변의 임파선의 회복을 유도할 수 있음을 확인하였다. 이때, IL-22 유전자가 억제됨으로써, 직접적으로 이러한 효과를 야기하는 것인지, IL-22 유전자가 억제되면, PBMC에서 IL-10RB이 억제되는 것에 의하여, 간접적으로 이러한 효과를 야기하는 것인지에 대하여는 하기에서 입증하였다.
3. IL-22의 억제가 췌장암 세포 증식에 직접적으로 영향을 미치는지 확인하여, IL-22와 IL-10RB의 상관관계 확인
본 실험예에서는, IL-22의 억제가 췌장암 세포 증식에 직접적으로 영향을 미치는지 확인하기 위하여, IL-22 KO 마우스와 같이, IL-22 유전자를 완전히 제거하거나, IL-22 유전자의 발현이 억제되는 경우가 아닌, 이미 발현된 IL-22 단백질의 활성을 억제시켰을 때의 췌장암 세포 증식을 분석하였다. 구체적으로, IL-22 단백질의 활성을 억제시키기 위하여, IL-22 단백질과 결합하는 항- IL-22 차단 항체를 사용하였다.
그 결과, 도 42에 나타낸 바와 같이, IL-22 단백질의 활성을 억제시킨 경우에는, 췌장암 세포의 증식은 감소하지 않은 반면, 항-IL-10RB 억제 항체에 의해 IL-10RB를 억제시킨 경우에는, 췌장암 세포의 증식은 유의하게 감소함을 확인하였다.
따라서, 본 실험예를 통해, IL-22의 억제가, 직접적으로 췌장암 세포에 영향을 미치는 것이 아니고, IL-22의 유전자를 억제시키는 경우에 한 해, PBMC에서 IL-10RB의 억제가 유도될 수 있고, 그 결과, 췌장암 세포 증식이 감소될 수 있음을 확인하였다. 즉, IL-10RB를 조절하는 것이 췌장암 세포에 직접적으로 영향을 미칠 수 있고, IL-22의 유전자를 억제시키는 것은 간접적으로 췌장암 세포에 영향을 미칠 수 있음을 확인하였다. 비록 간접적으로 효과를 유도할지라도, IL-10RB 억제제로서, IL-22의 유전자 억제제가 사용될 수 있고, 결국, IL-22의 유전자 억제제는 간접적으로 췌장암 세포 증식을 억제하여 항암용 치료제로 활용될 수 있음을 확인하였다.
이상으로 본 발명의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.
[부호의 설명]
100: 시료 수용부
200: 입력부
300: 진단부
400: 출력부

Claims (21)

  1. CD27; fms-유사 티로신 키나아제 3 리간드(fms-like tyrosine kinase 3 ligand, FLT3LG); 및 인터루킨-7 수용체(interleukin-7 receptor, IL-7R)로 이루어진 군에서 선택된 1종 이상의 단백질 또는 이를 코딩하는 유전자의 발현 수준을 측정하는 제제를 포함하는 췌장암의 진단용 조성물.
  2. 제1항에 있어서, 상기 췌장암의 진단용 조성물은 인터루킨-32(interleukin-32, IL-32) 및 인터루킨-10RA(interleukin-10 receptor alpha, IL-10RA)에서 선택된 1종 이상의 단백질 또는 이를 코딩하는 유전자의 발현 수준을 측정하는 제제를 더 포함하는, 췌장암의 진단용 조성물.
  3. 제1항에 있어서, 상기 단백질의 발현 수준을 측정하는 제제는 상기 CD27; fms-유사 티로신 키나아제 3 리간드(FLT3LG); 및 인터루킨-7 수용체(IL-7R)로 이루어진 군에서 선택된 1종 이상의 단백질에 특이적으로 결합하는 항체, 올리고펩타이드, 리간드, PNA(peptide nucleic acid) 및 앱타머(aptamer)로 이루어진 군에서 선택된 1종 이상을 포함하는, 췌장암의 진단용 조성물.
  4. 제1항에 있어서, 상기 유전자의 발현 수준을 측정하는 제제는 상기 CD27; fms-유사 티로신 키나아제 3 리간드(FLT3LG); 및 인터루킨-7 수용체(IL-7R)로 이루어진 군에서 선택된 1종 이상의 단백질을 코딩하는 유전자에 특이적으로 결합하는 프라이머, 프로브 및 안티센스 뉴클레오티드로 이루어진 군에서 선택된 1종 이상을 포함하는, 췌장암의 진단용 조성물.
  5. 제1항에 있어서, 상기 CD27; fms-유사 티로신 키나아제 3 리간드(FLT3LG); 및 인터루킨-7 수용체(IL-7R)로 이루어진 군에서 선택된 1종 이상의 단백질 또는 이를 코딩하는 유전자의 발현 수준은 개체의 혈액, 혈청, 혈장, 또는 혈장 유래 단핵구로부터 측정되는 것인, 췌장암의 진단용 조성물.
  6. 제1항 내지 제5항 중 어느 한 항의 췌장암의 진단용 조성물을 포함하는 췌장암의 진단용 키트.
  7. 개체로부터 분리된 생물학적 시료에서 CD27; fms-유사 티로신 키나아제 3 리간드(fms-like tyrosine kinase 3 ligand, FLT3LG); 및 인터루킨-7 수용체(interleukin-7 receptor, IL-7R)로 이루어진 군에서 선택된 1종 이상의 단백질 또는 이를 코딩하는 유전자의 발현 수준을 측정하는 단계를 포함하는 췌장암을 진단하기 위한 정보 제공 방법.
  8. 제7항에 있어서, 상기 발현 수준을 측정하는 단계는 인터루킨-32(IL-32), 및 인터루킨-10RA(interleukin-10 receptor alpha, IL-10RA)에서 선택된 1종 이상의 단백질 또는 이를 코딩하는 유전자의 발현 수준을 측정하는 단계를 더 포함하는, 췌장암을 진단하기 위한 정보 제공 방법.
  9. 제7항에 있어서, 상기 생물학적 시료는 혈액, 혈청, 혈장, 혈장 유래 단핵구를 포함하는 것인, 췌장암을 진단하기 위한 정보 제공 방법.
  10. 제7항에 있어서, 상기 췌장암을 진단하기 위한 정보 제공 방법은, 측정된 상기 CD27; fms-유사 티로신 키나아제 3 리간드(FLT3LG); 및 인터루킨-7 수용체(IL-7R)로 이루어진 군에서 선택된 1종 이상의 단백질 또는 이를 코딩하는 유전자의 발현 수준이 정상 대조군에 비하여 증가된 경우, 췌장암이 발병하였거나 췌장암의 발병 가능성이 높은 것으로 예측하는 단계를 더 포함하는, 췌장암을 진단하기 위한 정보 제공 방법.
  11. 제7항에 있어서, 상기 췌장암을 진단하기 위한 정보 제공 방법은, 측정된 상기 CD27; fms-유사 티로신 키나아제 3 리간드(FLT3LG); 및 인터루킨-7 수용체(IL-7R)의 발현 수준을 하기 식 1에 대입하여 얻어진 LP 값을 하기 식 2에 대입함으로써 췌장암의 발병 가능성을 예측하는 단계를 추가로 더 포함하는, 췌장암을 진단하기 위한 정보 제공 방법:
    [식 1]
    LP= A - B X (IL-7R) - C X (FLT3LG) - D X (CD27)
    [식 2]
    췌장암 발병 확률 = 1 / (1+exp(-LP))
    상기 식 1에서,
    A는 3 내지 4의 값; B는 0.5 내지 1.5의 값; C는 0.1 내지 0.7의 값; 및 D는 0 초과 0.4 이하 값이며,
    IL-7R은 개체의 생물학적 시료에 대하여 측정된 하우스 키핑 단백질 또는 유전자에 대한 IL-7R 단백질 또는 이를 코딩하는 유전자의 상대적인 발현 수준의 값이고; FLT3LG는 개체의 생물학적 시료에 대하여 측정된 하우스 키핑 단백질 또는 유전자에 대한 FLT3LG 단백질 또는 이를 코딩하는 유전자의 상대적인 발현 수준의 값이며; 및 CD27은 개체의 생물학적 시료에 대하여 측정된 하우스 키핑 단백질 또는 유전자에 대한 CD27 단백질 또는 이를 코딩하는 유전자의 상대적인 발현 수준의 값이다.
  12. 개체의 생물학적 시료에 대하여 측정된 CD27; fms-유사 티로신 키나아제 3 리간드(FLT3LG); 및 인터루킨-7 수용체(IL-7R)로 이루어진 군에서 선택된 1종 이상의 단백질 또는 이를 코딩하는 유전자의 발현 수준을 포함하는 데이터에 대하여 췌장암 진단 정보를 판정하는 진단부를 포함하는, 췌장암 진단 장치.
  13. 제12항에 있어서, 상기 췌장암 진단 장치는 개체의 생물학적 시료를 수용하는 시료 수용부를 더 포함하는, 췌장암 진단 장치.
  14. 제12항에 있어서, 상기 생물학적 시료는 혈액, 혈청, 혈장, 또는 혈장 유래 단핵구인, 췌장암 진단 장치.
  15. 제12항에 있어서, 상기 췌장암 진단 장치는 상기 생물학적 시료에 대하여 측정된 CD27; fms-유사 티로신 키나아제 3 리간드(FLT3LG); 및 인터루킨-7 수용체(IL-7R)로 이루어진 군에서 선택된 1종 이상의 단백질 또는 이를 코딩하는 유전자의 발현 수준을 입력하는 입력부를 더 포함하는, 췌장암 진단 장치.
  16. 제12항에 있어서, 상기 진단부는 상기 개체의 생물학적 시료에 대하여 측정된 상기 CD27; fms-유사 티로신 키나아제 3 리간드(FLT3LG); 및 인터루킨-7 수용체(IL-7R)로 이루어진 군에서 선택된 1종 이상의 단백질 또는 이를 코딩하는 유전자의 발현 수준이 정상 대조군에 비하여 증가된 경우, 췌장암의 발병 가능성이 높거나, 췌장암 양성으로 판정하는, 췌장암 진단 장치.
  17. 제12항에 있어서, 상기 진단부는 상기 개체의 생물학적 시료에 대하여 측정된 상기 CD27; fms-유사 티로신 키나아제 3 리간드(FLT3LG); 및 인터루킨-7 수용체(IL-7R)의 발현 수준을 하기 식 1에 대입하여 얻어진 LP 값을 하기 식 2에 대입함으로써 췌장암의 발병 확률을 판정하는, 췌장암 진단 장치:
    [식 1]
    LP= A - B X (IL-7R) - C X (FLT3LG) - D X (CD27)
    [식 2]
    췌장암 발병 확률 = 1 / (1+exp(-LP))
    상기 식 1에서,
    A는 3 내지 4의 값; B는 0.5 내지 1.5의 값; C는 0.1 내지 0.7의 값; 및 D는 0 초과 0.4 이하의 값이며,
    IL-7R은 개체의 생물학적 시료에 대하여 측정된 하우스 키핑 단백질 또는 유전자에 대한 IL-7R 단백질 또는 이를 코딩하는 유전자의 상대적인 발현 수준의 값이고; FLT3LG는 개체의 생물학적 시료에 대하여 측정된 하우스 키핑 단백질 또는 유전자에 대한 FLT3LG 단백질 또는 이를 코딩하는 유전자의 상대적인 발현 수준의 값이며; 및 CD27은 개체의 생물학적 시료에 대하여 측정된 하우스 키핑 단백질 또는 유전자에 대한 CD27 단백질 또는 이를 코딩하는 유전자의 상대적인 발현 수준의 값이다.
  18. CD27; fms-유사 티로신 키나아제 3 리간드(fms-like tyrosine kinase 3 ligand, FLT3LG); 및 인터루킨-7 수용체(interleukin-7 receptor, IL-7R)로 이루어진 군에서 선택된 1종 이상의 단백질 또는 이를 코딩하는 유전자를 포함하는 췌장암 진단용 바이오마커 조성물.
  19. 제18항에 있어서, 상기 단백질 또는 이를 코딩하는 유전자는, 췌장암이 발병하였거나 발병 가능성이 높은 개체의 생물학적 시료로 혈액, 혈청, 혈장, 또는 혈장 유래 단핵구에서 발현되는 것인, 췌장암 진단용 바이오마커 조성물.
  20. 인터루킨-10RB(interleukin-10 receptor beta, IL-10RB)의 발현 또는 활성을 억제시키는 제제를 유효성분으로 포함하는, 췌장암의 예방 또는 치료용 약제학적 조성물.
  21. 청구항 20에 있어서, 상기 조성물은 말초 혈액 단핵세포(peripheral blood mononuclear cell, PBMC) 내 IL-10RB의 발현 또는 활성을 억제시키는 것인, 췌장암의 예방 또는 치료용 약제학적 조성물.
PCT/KR2020/006637 2019-05-21 2020-05-21 암의 진단용 조성물 WO2020235943A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20810070.1A EP3974541A4 (en) 2019-05-21 2020-05-21 COMPOSITION FOR CANCER DIAGNOSIS
US17/595,665 US20220326243A1 (en) 2019-05-21 2020-05-21 Composition for cancer diagnosis

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020190059625A KR20200134071A (ko) 2019-05-21 2019-05-21 암의 진단용 조성물
KR10-2019-0059625 2019-05-21
KR10-2019-0169813 2019-12-18
KR20190169813 2019-12-18

Publications (1)

Publication Number Publication Date
WO2020235943A1 true WO2020235943A1 (ko) 2020-11-26

Family

ID=73458337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/006637 WO2020235943A1 (ko) 2019-05-21 2020-05-21 암의 진단용 조성물

Country Status (3)

Country Link
US (1) US20220326243A1 (ko)
EP (1) EP3974541A4 (ko)
WO (1) WO2020235943A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100819122B1 (ko) 2006-09-30 2008-04-04 남명진 췌장암 진단용 키트
KR20120082372A (ko) 2011-01-13 2012-07-23 연세대학교 산학협력단 췌장암 암줄기세포 특성을 이용한 췌장암 신규 바이오마커 및 그의 용도
KR20190050950A (ko) * 2016-11-24 2019-05-14 주식회사 휴벳바이오 질환의 진단용 조성물
KR20190059625A (ko) 2017-11-23 2019-05-31 엘지디스플레이 주식회사 감마 전압 발생장치와 이를 이용한 표시장치

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050089895A1 (en) * 2003-08-13 2005-04-28 Cheung Siu T. Compositions and methods for prognosis and therapy of liver cancer
JP2008535853A (ja) * 2005-04-07 2008-09-04 ノバルティス ヴァクシンズ アンド ダイアグノスティクス インコーポレイテッド 癌関連遺伝子
EP1777523A1 (en) * 2005-10-19 2007-04-25 INSERM (Institut National de la Santé et de la Recherche Médicale) An in vitro method for the prognosis of progression of a cancer and of the outcome in a patient and means for performing said method
WO2010001908A1 (ja) * 2008-06-30 2010-01-07 協和発酵キリン株式会社 抗cd27抗体
US20160139129A1 (en) * 2013-06-14 2016-05-19 Universidad De Granada Biomarkers for the diagnosis and the response to treatment of pancreatic cancer
GB201319878D0 (en) * 2013-11-11 2013-12-25 Immunovia Ab Method, Array and use thereof
EP3504348B1 (en) * 2016-08-24 2022-12-14 Decipher Biosciences, Inc. Use of genomic signatures to predict responsiveness of patients with prostate cancer to post-operative radiation therapy

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100819122B1 (ko) 2006-09-30 2008-04-04 남명진 췌장암 진단용 키트
KR20120082372A (ko) 2011-01-13 2012-07-23 연세대학교 산학협력단 췌장암 암줄기세포 특성을 이용한 췌장암 신규 바이오마커 및 그의 용도
KR20190050950A (ko) * 2016-11-24 2019-05-14 주식회사 휴벳바이오 질환의 진단용 조성물
KR20190059625A (ko) 2017-11-23 2019-05-31 엘지디스플레이 주식회사 감마 전압 발생장치와 이를 이용한 표시장치

Non-Patent Citations (14)

* Cited by examiner, † Cited by third party
Title
BOCK LC ET AL., NATURE, vol. 355, no. 6360, 1992, pages 5646
BORST, J.: "CD 27 and CD 70 in T cell and B cell activation", CURRENT OPINION IN IMMUNOLOGY, vol. 17, 2005, pages 275 - 281, XP025299786, DOI: 10.1016/j.coi.2005.04.004 *
CLACKSON ET AL., NATURE, vol. 352, 1991, pages 624 - 628
COHEN BACOLAS PBRENT R: "An artificial cell-cycle inhibitor isolated from a combinatorial library", PROC NATL ACAD SCI USA., vol. 95, no. 24, 1998, pages 142727
EBRAHIMI, B.: "Cytokines in Pancreatic Carcinoma", CANCER, vol. 101, no. 12, 15 December 2004 (2004-12-15), pages 2727 - 2736, XP055762866 *
GHANEH, P.: "Molecular prognostic markers in pancreatic cancer", J. HEPATOBILIARY PANCREAT. SURG., vol. 9, 2002, pages 1 - 11, XP002287858, DOI: 10.1007/s005340200000 *
HISTOPATHOLOGY, vol. 41, no. 3A, September 2002 (2002-09-01), pages 154 - 61
HOPPE-SEYLER FBUTZ K: "Peptide aptamers: powerful new tools for molecular medicine", J MOL MED, vol. 78, no. 8, 2000, pages 42630, XP002413234, DOI: 10.1007/s001090000140
KOHLERMILSTEIN, EUROPEAN JOURNAL OF IMMUNOLOGY, vol. 6, 1976, pages 511 - 519
MARKS ET AL., J. MOL. BIOL., vol. 222, no. 58, 1991, pages 1 - 597
NAT GENET, vol. 40, no. 5, May 2008 (2008-05-01), pages 499 - 507
NIELSEN PE, EGHOLM M, BERG RH, BUCHARDT O: "Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide", SCIENCE, vol. 254, no. 5037, December 1991 (1991-12-01), pages 1497 - 1500, XP002912953, DOI: 10.1126/science.1962210
NISHIDA, A.: "Interleukin-32 Expression in the Pancreas", THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 284, no. 26, 26 June 2009 (2009-06-26), pages 17868 - 17876, XP055762865 *
See also references of EP3974541A4

Also Published As

Publication number Publication date
EP3974541A4 (en) 2023-10-11
EP3974541A1 (en) 2022-03-30
US20220326243A1 (en) 2022-10-13

Similar Documents

Publication Publication Date Title
Killedar et al. Early pathogenic events associated with Sjögren's syndrome (SjS)-like disease of the NOD mouse using microarray analysis
Franzke et al. G-CSF as immune regulator in T cells expressing the G-CSF receptor: implications for transplantation and autoimmune diseases
Morrow et al. A novel role for IFN-stimulated gene factor 3II in IFN-γ signaling and induction of antiviral activity in human cells
AU2013296233B2 (en) Biomarker associated with risk of melanoma reoccurrence
CN101616689A (zh) 用于治疗纤维化的ccr2拮抗剂
WO2018097646A1 (ko) 질환의 진단용 조성물
WO2013187730A1 (ko) Slit-Robo 시스템을 이용한 골절 또는 골다공증의 예방 또는 치료용 조성물
WO2019225923A1 (ko) 질환의 진단용 조성물
WO2017082655A1 (ko) 항암 치료 내성 판단 방법 및 상기 방법에 사용되는 조성물
WO2020235943A1 (ko) 암의 진단용 조성물
WO2021177691A1 (ko) 항암제 내성 진단 또는 치료용 조성물
WO2017061818A1 (ko) 근위축성측삭경화증에 대한 진단 마커로서의 돌연변이 유전자 및 이를 이용한 진단방법
WO2021230663A1 (ko) 초기 유방암 환자의 예후 예측 방법
WO2021002735A1 (ko) T 세포의 세포 표면 항원 및 이의 다양한 용도
WO2023234659A1 (ko) 퇴행성 턱관절염의 진단 또는 예후 예측용 유전자 마커 및 이의 용도
Chen et al. STAT1 is required for IFN-γ-mediated gut-enriched Krüppel-like factor expression
WO2015108328A1 (ko) 대장암 마커로서의 신규 ntrk1 융합유전자 및 이의 용도
WO2022191566A1 (ko) 췌장암의 진단용 조성물
Tobe et al. Interleukin-1β stimulates interleukin-8 production and gene expression in synovial cells from human temporomandibular joint
KR102384933B1 (ko) 암의 진단용 조성물
KR20200134071A (ko) 암의 진단용 조성물
Cizeron-Clairac et al. Thymus and Myasthenia Gravis: what can we learn from DNA microarrays?
WO2022203314A2 (ko) 악성말초신경초종의 감별진단을 위한 조성물
WO2013100273A1 (ko) 방사선 피폭 진단용 마커 igfbp-5, 그 마커의 발현수준을 측정하는 방사선 피폭 진단용 조성물, 그 조성물을 포함하는 방사선 피폭 진단용 키트, 및 그 마커를 이용한 방사선 피폭을 진단하는 방법
WO2013133472A1 (ko) 독성 예측 및 치료 타겟으로서의 activating transcription factor 3(atf 3)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20810070

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020810070

Country of ref document: EP

Effective date: 20211221