WO2020235891A1 - 공기압축기 - Google Patents

공기압축기 Download PDF

Info

Publication number
WO2020235891A1
WO2020235891A1 PCT/KR2020/006454 KR2020006454W WO2020235891A1 WO 2020235891 A1 WO2020235891 A1 WO 2020235891A1 KR 2020006454 W KR2020006454 W KR 2020006454W WO 2020235891 A1 WO2020235891 A1 WO 2020235891A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
vanes
disposed
vane
air
Prior art date
Application number
PCT/KR2020/006454
Other languages
English (en)
French (fr)
Inventor
김재호
Original Assignee
Kim Jae Ho
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kim Jae Ho filed Critical Kim Jae Ho
Priority to CN202080048625.9A priority Critical patent/CN114174682B/zh
Publication of WO2020235891A1 publication Critical patent/WO2020235891A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/344Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/02Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/10Fluid working
    • F04C2210/1005Air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/22Fluid gaseous, i.e. compressible
    • F04C2210/221Air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/20Rotors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to an air compressor, and more particularly, to a vane type air compressor.
  • the vane motor and the air compressor have the same structure, but they can be classified into their main uses.
  • the air compressor is configured to inject high-pressure air to obtain rotational force through the expansion force of the air.
  • the problem to be solved by the present invention is to provide an air compressor having high efficiency by reducing friction that may occur on the inner surfaces of the vane and the rotor and the vane and the body.
  • the air compressor according to an embodiment of the present invention has a cylindrical shape, and an inlet and an outlet are formed on the outer circumferential surface to inhale external air to compress the air and discharge it to the outside, and both ends are open to have a hollow inside.
  • Compressor body Two main covers respectively installed at both open ends of the compressor body;
  • a plurality of rotor grooves disposed inside the compressor body in an eccentric state with a cylindrical central axis of the compressor body, rotated based on a rotor shaft installed on the two main covers, and outwardly from the rotor shaft A rotor formed therein;
  • a plurality of vanes respectively disposed in the plurality of rotor grooves formed in the rotor and disposed to move in the plurality of rotor grooves;
  • a plurality of rotor bearings installed on the rotor and installed on the rotor so that the rotor and the vanes do not contact when the plurality of vanes move in the plurality of rotor grooves.
  • the air compressor according to an embodiment of the present invention has a cylindrical shape, and inlet and outlet are formed on the outer circumferential surface to suck in external air to compress the air and discharge it to the outside, and both ends are open to be hollow inside.
  • a compressor body having a; Two main covers respectively installed at both open ends of the compressor body; A plurality of rotor grooves disposed inside the compressor body in an eccentric state with a cylindrical central axis of the compressor body, rotated based on a rotor shaft installed on the two main covers, and outwardly from the rotor shaft A rotor formed therein; A plurality of vanes respectively disposed in the plurality of rotor grooves formed in the rotor and disposed to move in the plurality of rotor grooves; And a plurality of rotor bearings installed on the vanes so that when the plurality of vanes move in the plurality of rotor grooves, the rotor and the vanes do not contact each other.
  • the plurality of rotor grooves formed in the rotor are disposed at positions opposite to each other, have a predetermined length, and positions facing each other so as to move in a longitudinal direction between vanes disposed at positions opposite to each other among the plurality of vanes
  • a plurality of vane connecting bars connecting between the vanes disposed on may be further included.
  • Each of the plurality of vanes may have vane bearings disposed at both ends of the compressor body in the longitudinal direction, and bearing grooves forming a path through which the vane bearings move may be formed on each inner surface of the two main covers.
  • a plurality of rotors are provided, and the plurality of rotors may be coupled to each other in parallel.
  • a connecting bar groove is formed in a plurality of rotor grooves formed in the rotor to allow the vanes to be connected to the vane connecting bar, and accordingly, the vanes and the rotor are arranged so that the vanes can move freely in the rotor groove. Air compression efficiency can be increased by minimizing the friction between them.
  • the vanes are not in close contact with the rotor even when used in a steam motor that rotates with high-pressure steam power, which is a situation in which the vanes are subjected to excessive loads, thereby distributing the load.
  • FIG. 1 is a perspective view showing an air compressor according to an embodiment of the present invention.
  • FIG. 2 is a view for explaining the interior of the air compressor according to an embodiment of the present invention.
  • FIG. 3 is a diagram illustrating a configuration in which vanes of an air compressor are connected according to an embodiment of the present invention.
  • FIG. 4 is a diagram illustrating an area A of FIG. 3.
  • FIG. 5 is a diagram illustrating an area B of FIG. 4.
  • FIG. 6 is a view for explaining a rotor of an air compressor according to an embodiment of the present invention.
  • FIG. 7 is a view for explaining a detailed configuration of the rotor of the air compressor according to an embodiment of the present invention.
  • FIG. 8 is a view for explaining the configuration of the main cover of the air compressor according to an embodiment of the present invention.
  • FIG. 9 is a view for explaining the detailed configuration of the main cover of the air compressor according to an embodiment of the present invention.
  • FIG. 10 is a view for explaining a vane of an air compressor according to an embodiment of the present invention.
  • FIG. 11 is a perspective view showing an air compressor according to another embodiment of the present invention.
  • FIG. 12 is a view for explaining the interior of an air compressor according to another embodiment of the present invention.
  • FIG. 13 is a view for explaining a configuration in which vanes of an air compressor are connected according to another embodiment of the present invention.
  • FIG. 1 is a perspective view showing an air compressor according to an embodiment of the present invention.
  • 2 is a view for explaining the interior of the air compressor according to an embodiment of the present invention.
  • 3 is a diagram illustrating a configuration in which vanes of an air compressor are connected according to an embodiment of the present invention.
  • 4 is a diagram illustrating an area A of FIG. 3.
  • 5 is a diagram illustrating an area B of FIG. 4.
  • 6 is a view for explaining a rotor of an air compressor according to an embodiment of the present invention.
  • 7 is a view for explaining a detailed configuration of the rotor of the air compressor according to an embodiment of the present invention.
  • 8 is a view for explaining the configuration of the main cover of the air compressor according to an embodiment of the present invention.
  • 9 is a view for explaining the detailed configuration of the main cover of the air compressor according to an embodiment of the present invention.
  • 10 is a view for explaining a vane of an air compressor according to an embodiment of the present invention.
  • the air compressor 100 compresses air supplied from the outside.
  • the air compressor 100 may have the same structure as an air motor and a vane type air motor used in a pump.
  • the air compressor 100 includes a compressor body 110, a support 120, a main cover 130, a rotor 140, a vane 150, and a vane connection bar 160.
  • the compressor body 110 may have a cylindrical shape in which a hollow is formed, and both sides may have an open shape.
  • An inlet 112 may be formed on the outer circumferential surface of the compressor body 110 to allow air to be introduced therein, and an outlet 114 for discharging compressed air from the hollow inside of the compressor body 110 may be formed.
  • the suction port 112 may have a plurality of through holes formed as shown, and air may be sucked into the compressor body 110.
  • the outlet 114 is disposed below the inlet 112, and compressed air may be discharged to the outside.
  • One or more outlets 114 may be formed.
  • the support 120 serves to support the air compressor 100 so as not to shake due to vibrations generated as the rotor 140 rotates inside the compressor body 110.
  • the support 120 may be fixed to the rotor shaft 141.
  • Two main covers 130 may be provided to cover each of the open surfaces of the compressor body 110. These two main covers 130 may have a shape opposite to each other.
  • a plurality of holes may be formed in the main cover 130.
  • a bearing groove 130a may be formed on the inner surface of the main cover 130.
  • the bearing groove 130a may be formed in an approximately circular shape around a predetermined position on one surface of the main cover 130.
  • the bearing groove 130a formed in the main cover 130 provides a path through which the vane bearing 151 moves, and may have a width and a depth through which the vane bearing 151 can pass. That is, the bearing groove 130a forms one path by two partition walls protruding at a predetermined height on the inner surface of the main cover 130, and the path formed by the bearing groove 130a may have a circular shape. .
  • the main cover 130 may be provided with an auxiliary suction port 132 for connecting with another machine.
  • a first oil injection port 134 and a second oil injection port 136 for injecting oil may be formed in the main cover 130 so that the rotor 140 and the vanes 150 rotate smoothly.
  • the first oil inlet 134 is provided to inject oil between the vane 150 and the rotor 140, and the second oil inlet 136 injects oil into the rotor bearing 145 or vane bearing 151 It can be provided to do.
  • a rotor shaft hole 138 through which the rotor shaft 141 may pass may be formed in the main cover 130. Accordingly, the support 120 may be coupled to the rotor shaft 141 protruding to the outside of the main cover 130 through the rotor shaft hole 138.
  • the rotor 140 is disposed inside the compressor body 110 and may rotate based on the rotor shaft 141. As shown, a plurality of rotors 140 may be provided, and rotor covers 143 may be disposed at both ends of the plurality of rotors 140.
  • the rotor 140 may have an approximately circular shape, such as an approximately disk.
  • the rotor 140 may have a shape in which a plurality of support bars 140a extend in an outward direction from the center, and ends of the plurality of support bars 140a are connected to form a circular shape. Accordingly, a rotor hole may be formed between the plurality of support bars 140a, or a through hole surrounded by an arc connecting the two support bars 140a and the support bar 140a may be formed. The rotor hole may be formed between the two support bars 140a arranged in parallel.
  • a plurality of rotors 140 having the above shape may be disposed so as to overlap each other, and may be disposed as shown in FIG. 6.
  • rotor covers 143 may be disposed at both ends of the plurality of rotors 140, respectively.
  • the plurality of rotors 140 and the two rotor covers 143 may be coupled to each other by a plurality of bars having a predetermined length.
  • the rotor cover 143 may have a shape similar to the shape of the rotor 140, but may have a shape in which a through hole surrounded by two support bars 140a and an arc shape is closed. In this case, a rotor hole may be formed in the rotor cover 143 between the two support bars 140a arranged in parallel.
  • a plurality of rotor bearings 145 may be disposed on each rotor 140 and rotor cover 143.
  • the rotor bearing 145 may be disposed on the support bar 140a as shown in FIGS. 4 and 5, and may be disposed at a position adjacent to the outer peripheral surface of the rotor 140.
  • the plurality of rotor bearings 145 may be disposed on the support bar 140a so that a portion of the rotor bearings 145 is exposed on the rotor hole side. Accordingly, the rotor bearing 145 may be in contact with the vane 150 and may be rotated according to the movement of the vane 150.
  • the rotor bearing 145 may have a rotor bearing shaft 145a disposed at the center thereof, and may be rotated based on the rotor bearing shaft 145a.
  • the rotor bearing 145 may be in contact with one surface of the vane 150, and accordingly, the vane 150 may be moved in a state spaced apart from the rotor 140 by a predetermined distance.
  • a plurality of vanes 150 are provided, and are disposed inside the compressor body 110.
  • the vane 150 is disposed in the rotor groove 147 so as to reciprocate within the rotor groove 147 as the rotor 140 rotates.
  • a plurality of rotor grooves 147 are formed in the rotor 140 and may be formed at positions opposite to each other.
  • the six rotor grooves 147 are formed in the rotor 140. do.
  • vanes 150 are provided, and the six vanes 150 are spaced apart from each other by a predetermined distance (six vanes 150 at the same angle with respect to the rotor shaft 141). It may be disposed in the groove 147.
  • vanes 150 may be connected to other vanes 150 disposed at opposite positions by a main connection bar.
  • the vanes 150 may have a predetermined length and width, as shown in FIG. 10. Further, the vane 150 includes two vane covers 150a and 150b, and a plurality of grooves may be formed in each of the two vane covers 150a and 150b in the width direction. The main bush 155 and the auxiliary bush 157 may be disposed one by one in the groove formed in the two vane covers 150a and 150b.
  • the main bush 155 and the auxiliary bush 157 may have a cylindrical shape having a predetermined length, and the vane connecting bar 160 may pass through the cylindrical hollow. That is, as illustrated in FIG. 10, five grooves are formed in one vane 150 so that five vane connection bars 160 may be disposed.
  • the vane connecting bar 160 is arranged to connect the two vanes 150 disposed at opposite positions, and as shown in FIG. 3, the connecting bar bush 162 is connected to the vane connecting bar 160 Can be placed.
  • the connecting bar bush 162 may be formed in a cylindrical shape, and the vane connecting bar 160 may be disposed to penetrate the hollow of the connecting bar bush 162.
  • the vane connecting bar 160 may be moved in the longitudinal direction from the connecting bar bush 162, the main bush 155, and the auxiliary bush 157. That is, the vane connection bar 160 can be moved in both directions in the longitudinal direction independently from the movement of the vane 150, and when the vane 150 is moved to the outermost side, the vane 150 and the rotor 140 are in contact with each other. Can be prevented.
  • the vane connecting bar 160 penetrates the connecting bar groove 164 formed in the rotor groove 147 to connect the two vanes 150.
  • the vane connecting bar 160 may be bent by an external force applied from the outside. Even if the vane connecting bar 160 is bent, the vane 150 is supported by the rotor bearing 145 The bar 140a and a predetermined distance may be maintained in a state of being spaced apart. An external force applied to the vane connecting bar 160 may occur when the vane connecting bar 160 is moved outward from the vane 150 as much as possible.
  • vane bearings 151 may be disposed at both ends of the vane 150 in the longitudinal direction, respectively.
  • the vane bearing 151 may move along the bearing groove 130a of the main cover 130 and may be disposed at one end of both ends of the vane 150 in the longitudinal direction.
  • the vane auxiliary part 153 formed at the other end of the vane 150 is the main body of the compressor body 110 Without contacting the inner surface 116, it may be rotated with a predetermined distance apart.
  • 11 is a perspective view showing an air compressor according to another embodiment of the present invention.
  • 12 is a view for explaining the interior of an air compressor according to another embodiment of the present invention.
  • 13 is a view for explaining a configuration in which vanes of an air compressor are connected according to another embodiment of the present invention.
  • FIGS. 11 to 13 An air compressor 100 according to another embodiment of the present invention will be described with reference to FIGS. 11 to 13.
  • the air compressor 100 according to the present exemplary embodiment may have some different shapes as described in the exemplary embodiment, but operates almost the same. While describing the air compressor 100 according to the present embodiment, the same description as in the embodiment will be omitted.
  • the inlet 112 formed in the compressor body 110 of the air compressor 100 may have a shape of a plurality of tubes, not a shape of a plurality of through holes.
  • a rotor reinforcing ring 149 may be disposed on the outer surface of the rotor cover 143 to prevent the rotor 140 from being damaged by a force applied from the vane 150. Accordingly, as the rotor reinforcing ring 149 is disposed, the vane bearing 151 can be rotated and operated inside the rotor reinforcing ring 149.
  • the rotor bearing 145 is installed on the vane 150 rather than the rotor 140.
  • the rotor bearings 145 are installed at both ends of the vane 150 in the longitudinal direction and may be disposed adjacent to the vane bearing 151.
  • the vane bearing 151 may move along the bearing groove 130a of the main cover 130.
  • This rotor bearing 145 is disposed on the vane 150, when the vane 150 moves in the width direction of the vane 150 from the rotor groove 147 of the rotor 140, the vane 150 and the rotor 140 ) Can be moved in a state spaced apart by a predetermined distance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

본 발명은 공기압축기에 관한 것으로, 본 발명의 일 실시예에 따른 공기압축기는, 원통 형상을 가지며, 외부의 공기를 흡입하여 공기를 압축하여 외부로 배출하기 위해 흡입구 및 배출구가 외주면에 형성되고, 양단이 개방되어 내부에 중공을 갖는 압축기 본체; 상기 압축기 본체의 개방된 양단에 각각 설치되는 두 개의 메인 커버; 상기 압축기 본체의 내부에 상기 압축기 본체의 원통 형상의 중심축과 편심된 상태로 배치되고, 상기 두 개의 메인 커버에 설치되는 로터축을 기준으로 회전하며, 상기 로터축에서 외측으로 방향으로 복수 개의 로터홈이 형성된 로터; 상기 로터에 형성된 상기 복수 개의 로터홈에 각각 배치되며, 상기 복수 개의 로터홈에서 이동하도록 배치된 복수 개의 베인; 및 상기 로터에 설치되고, 상기 복수 개의 베인이 상기 복수 개의 로터홈에서 이동할 때, 상기 로터와 베인이 접촉하지 않도록 상기 로터에 설치된 복수 개의 로터 베어링을 포함할 수 있다.

Description

공기압축기
본 발명은 공기압축기에 관한 것으로, 더욱 상세하게는 베인 타입의 공기 압축기에 관한 것이다.
통상 베인 모터와 공기압축기는 동일한 구조로 이루어지지만 주된 용도에 구분할 수 있다. 공기압축기는 고압의 공기를 주입하여 공기의 팽창력으로 회전력을 얻을 수 있게 구성된다.
이러한 공기압축기는 내부에 베인(vane)이 배치되는 경우, 베인이 회전할 때 베인과 본체 내면에서 마찰이 발생할 수 있고, 공기압축기가 대형화될수록 베인과 로터 사이의 마찰이 커질 수 있다. 이렇게 발생된 마찰에 의해 공기압축기의 효율이 떨어질 수 있다.
본 발명이 해결하고자 하는 과제는, 베인과 로터 및 베인과 본체의 내면에서 발생할 수 있는 마찰을 줄여 높은 효율을 갖는 공기압축기를 제공하는 것이다.
본 발명의 일 실시예에 따른 공기압축기는, 원통 형상을 가지며, 외부의 공기를 흡입하여 공기를 압축하여 외부로 배출하기 위해 흡입구 및 배출구가 외주면에 형성되고, 양단이 개방되어 내부에 중공을 갖는 압축기 본체; 상기 압축기 본체의 개방된 양단에 각각 설치되는 두 개의 메인 커버; 상기 압축기 본체의 내부에 상기 압축기 본체의 원통 형상의 중심축과 편심된 상태로 배치되고, 상기 두 개의 메인 커버에 설치되는 로터축을 기준으로 회전하며, 상기 로터축에서 외측으로 방향으로 복수 개의 로터홈이 형성된 로터; 상기 로터에 형성된 상기 복수 개의 로터홈에 각각 배치되며, 상기 복수 개의 로터홈에서 이동하도록 배치된 복수 개의 베인; 및 상기 로터에 설치되고, 상기 복수 개의 베인이 상기 복수 개의 로터홈에서 이동할 때, 상기 로터와 베인이 접촉하지 않도록 상기 로터에 설치된 복수 개의 로터 베어링을 포함할 수 있다.
한편, 본 발명의 일 실시예에 따른 공기압축기는, 원통 형상을 가지며, 외부의 공기를 흡입하여 공기를 압축하여 외부로 배출하기 위해 흡입구 및 배출구가 외주면에 형성되고, 양단이 개방되어 내부에 중공을 갖는 압축기 본체; 상기 압축기 본체의 개방된 양단에 각각 설치되는 두 개의 메인 커버; 상기 압축기 본체의 내부에 상기 압축기 본체의 원통 형상의 중심축과 편심된 상태로 배치되고, 상기 두 개의 메인 커버에 설치되는 로터축을 기준으로 회전하며, 상기 로터축에서 외측으로 방향으로 복수 개의 로터홈이 형성된 로터; 상기 로터에 형성된 상기 복수 개의 로터홈에 각각 배치되며, 상기 복수 개의 로터홈에서 이동하도록 배치된 복수 개의 베인; 및 상기 베인에 설치되고, 상기 복수 개의 베인이 상기 복수 개의 로터홈에서 이동할 때, 상기 로터와 베인이 접촉하지 않도록 상기 로터에 설치된 복수 개의 로터 베어링을 포함될 수 있다.
상기 로터에 형성된 상기 복수 개의 로터홈은 서로 대향된 위치에 배치되고, 소정의 길이를 가지며, 상기 복수 개의 베인 중 서로 대향된 위치에 배치된 베인 사이에서 길이 방향으로 이동할 수 있게 상기 서로 대향된 위치에 배치된 베인 사이를 연결하는 복수 개의 베인 연결바를 더 포함될 수 있다.
상기 복수 개의 베인 각각은 상기 압축기 본체의 길이 방향의 양단에 각각 베인 베어링이 배치되고, 상기 두 개의 메인 커버의 내면 각각에 상기 베인 베어링이 이동하는 경로를 형성하는 베어링 홈이 형성일 수 있다.
상기 로터는 복수 개가 구비되며, 상기 복수 개의 로터는 서로 나란하게 결합될 수 있다.
본 발명에 의하면, 로터에 형성된 다수의 로터홈 내에 베인이 베인 연결바로 연결될 수 있는 연결바 홈이 형성되고, 그에 따라 베인이 자유롭게 로터홈 내에서 이동할 수 있도록 부시나 베어링이 배치됨에 따라 베인과 로터 사이의 마찰을 최소화하여 공기 압축 효율을 높일 수 있다.
또한, 로터에 다수의 로터 베어링을 설치함에 따라 베인이 과도한 하중을 받는 상황인, 고압의 증기 힘으로 회전하는 증기 모터에 사용될 때에도 베인이 로터에 밀착되지 않아 하중을 분산할 수 있는 효과가 있다.
도 1은 본 발명의 일 실시예에 따른 공기압축기를 도시한 사시도이다.
도 2는 본 발명의 일 실시예에 따른 공기압축기의 내부를 설명하기 위한 도면이다.
도 3은 본 발명의 일 실시예에 따른 공기압축기의 베인이 연결되는 구성을 설명하기 위한 도면이다.
도 4는 도 3의 영역 A를 도시한 도면이다.
도 5는 도 4의 영역 B를 도시한 도면이다.
도 6은 본 발명의 일 실시예에 따른 공기압축기의 로터를 설명하기 위한 도면이다.
도 7은 본 발명의 일 실시예에 따른 공기압축기의 로터의 세부 구성을 설명하기 위한 도면이다.
도 8은 본 발명의 일 실시예에 따른 공기압축기의 메인 커버의 구성을 설명하기 위한 도면이다.
도 9는 본 발명의 일 실시예에 따른 공기압축기의 메인 커버의 세부 구성을 설명하기 위한 도면이다.
도 10은 본 발명의 일 실시예에 따른 공기압축기의 베인을 설명하기 위한 도면이다.
도 11은 본 발명의 다른 실시예에 따른 공기압축기를 도시한 사시도이다.
도 12는 본 발명의 다른 실시예에 따른 공기압축기의 내부를 설명하기 위한 도면이다.
도 13은 본 발명의 다른 실시예에 따른 공기압축기의 베인이 연결되는 구성을 설명하기 위한 도면이다.
본 발명의 바람직한 실시예에 대하여 첨부된 도면을 참조하여 더 구체적으로 설명한다.
도 1은 본 발명의 일 실시예에 따른 공기압축기를 도시한 사시도이다. 도 2는 본 발명의 일 실시예에 따른 공기압축기의 내부를 설명하기 위한 도면이다. 도 3은 본 발명의 일 실시예에 따른 공기압축기의 베인이 연결되는 구성을 설명하기 위한 도면이다. 도 4는 도 3의 영역 A를 도시한 도면이다. 도 5는 도 4의 영역 B를 도시한 도면이다. 도 6은 본 발명의 일 실시예에 따른 공기압축기의 로터를 설명하기 위한 도면이다. 도 7은 본 발명의 일 실시예에 따른 공기압축기의 로터의 세부 구성을 설명하기 위한 도면이다. 도 8은 본 발명의 일 실시예에 따른 공기압축기의 메인 커버의 구성을 설명하기 위한 도면이다. 도 9는 본 발명의 일 실시예에 따른 공기압축기의 메인 커버의 세부 구성을 설명하기 위한 도면이다. 도 10은 본 발명의 일 실시예에 따른 공기압축기의 베인을 설명하기 위한 도면이다.
도 1 내지 도 10을 참조하여, 본 발명의 일 실시예에 따른 공기압축기(100)에 대해 설명한다. 본 실시예에 따른 공기압축기(100)는, 외부에서 공급된 공기를 압축한다. 이때, 공기압축기(100)는 에어 모터, 펌프에 사용되는 베인 타입의 에어모터와 동일한 구조를 가질 수 있다. 이러한 공기압축기(100)는, 압축기 본체(110), 지지대(120), 메인 커버(130), 로터(140), 베인(150) 및 베인 연결바(160)를 포함한다.
압축기 본체(110)는 내부에 중공이 형성된 원통 형상을 가지며, 양면이 개방된 형상을 가질 수 있다. 이러한 압축기 본체(110)의 외주면에는 공기가 유입될 수 있도록 흡입구(112)가 형성되고, 압축기 본체(110) 내부 중공에서 압축된 공기가 배출될 수 있는 배출구(114)가 형성될 수 있다.
본 실시예에서, 흡입구(112)는 도시된 바와 같이, 복수의 관통공이 형성될 수 있으며, 압축기 본체(110) 내부에 공기가 흡입될 수 있다.
배출구(114)는 흡입구(112)보다 하부에 배치되고, 압축된 공기가 외부로 배출될 수 있다. 배출구(114)는 하나 이상이 형성될 수 있다.
지지대(120)는 압축기 본체(110)의 내부에서 로터(140)가 회전함에 따라 발생하는 진동으로 인해 공기압축기(100)가 흔들리지 않도록 지지하는 역할을 한다. 본 실시예에서, 지지대(120)는 로터축(141)에 고정될 수 있다.
메인 커버(130)는 압축기 본체(110)의 개방된 양면을 각각 덮을 수 있도록 두 개가 구비될 수 있다. 이러한 두 개의 메인 커버(130)는 서로 대향된 형상을 가질 수 있다.
메인 커버(130)에는 다수의 홀이 형성될 수 있는데, 도 8에 도시된 바와 같이, 메인 커버(130)의 내면에 베어링 홈(130a)이 형성될 수 있다. 베어링 홈(130a)은 메인 커버(130)의 일면에서 소정의 위치를 중심으로 대략 원형 형상으로 형성될 수 있다.
이때, 메인 커버(130)에 형성된 베어링 홈(130a)은 베인 베어링(151)이 이동하는 경로를 제공하며, 이를 위해 베인 베어링(151)이 지날 수 있는 너비와 깊이를 가질 수 있다. 즉, 베어링 홈(130a)은 메인 커버(130)의 내면에 소정의 높이로 돌출된 두 개의 격벽에 의해 하나의 경로를 형성하며, 대략 베어링 홈(130a)에 의해 형성된 경로는 원형 형상일 수 있다.
또한, 메인 커버(130)에는 흡입구(112)를 통해 공기가 흡입될 때, 다른 기계와 연결하기 위한 보조흡입구(132)가 형성될 수 있다. 그리고 메인 커버(130)에는 로터(140)와 베인(150)의 회전이 원활하게 이루어질 수 있도록 오일을 주입하기 위한 제1 오일주입구(134) 및 제2 오일주입구(136)가 형성될 수 있다. 제1 오일주입구(134)는 베인(150)과 로터(140) 사이에 오일을 주입하기 위해 구비되고, 제2 오일주입구(136)는 로터 베어링(145) 또는 베인 베어링(151)에 오일을 주입하기 위해 구비될 수 있다.
그리고 메인 커버(130)에는 로터축(141)이 관통할 수 있는 로터축 홀(138)이 형성될 수 있다. 따라서 지지대(120)는 로터축 홀(138)을 통해 메인 커버(130)의 외부로 돌출된 로터축(141)과 결합될 수 있다.
로터(140)는, 압축기 본체(110)의 내부에 배치되고, 로터축(141)을 기준으로 회전할 수 있다. 로터(140)는 도시된 바와 같이, 복수 개가 구비될 수 있으며, 복수 개의 로터(140) 양단에 로터커버(143)가 배치될 수 있다.
로터(140)는 대략 원반과 같이, 대략 원형 형상을 가질 수 있다. 이때, 로터(140)는 중심에서 외측 방향으로 복수 개의 지지바(140a)가 연장되고, 복수 개의 지지바(140a)들의 끝단이 원형을 이루도록 연결된 형상을 가질 수 있다. 그에 따라 복수 개의 지지바(140a)들 사이에 로터홀이 형성되거나 두 개의 지지바(140a)와 지지바(140a)를 연결하는 호 형상으로 둘러싸인 관통홀이 형성될 수 있다. 로터홀은 두 개의 지지바(140a)가 평행하게 배치된 사이에 형성될 수 있다.
상기와 같은 형상을 갖는 로터(140)가 복수 개가 서로 겹쳐지도록 배치되어 도 6에 도시된 바와 같이 배치될 수 있다. 그리고 복수 개의 로터(140) 양끝단에 각각 로터커버(143)가 배치될 수 있다. 이때, 복수 개의 로터(140)와 두 개의 로터커버(143)는 소정의 길이를 갖는 복수 개의 바(bar)에 의해 서로 결합될 수 있다.
로터커버(143)는 로터(140)의 형상과 유사한 형상을 가질 수 있고, 다만, 두 개의 지지바(140a)와 호 형상으로 둘러싸인 관통홀이 폐쇄된 형상을 가질 수 있다. 이때, 로터커버(143)에도 두 개의 지지바(140a)가 평행하게 배치된 사이에 로터홀이 형성될 수 있다.
그리고 각 로터(140) 및 로터커버(143)에는 복수 개의 로터 베어링(145)이 배치될 수 있다. 로터 베어링(145)은 도 4 및 도 5에 도시된 바와 같이, 지지바(140a)에 배치될 수 있으며, 로터(140)의 외주면에 인접한 위치에 배치될 수 있다. 또한, 복수 개의 로터 베어링(145)은 로터홀 측에 일부가 노출되도록 지지바(140a)에 배치될 수 있다. 그에 따라 로터 베어링(145)은 베인(150)과 접촉될 수 있으며, 베인(150)의 움직임에 따라 회전될 수 있다.
이러한 로터 베어링(145)은 중심에 로터 베어링 축(145a)이 배치될 수 있으며, 로터 베어링 축(145a)을 기준으로 회전될 수 있다. 로터 베어링(145)은 베인(150)의 일면과 접촉될 수 있으며, 그에 따라 베인(150)은 로터(140)와 소정의 거리만큼 이격된 상태로 이동될 수 있다.
베인(150)은, 복수 개가 구비되며, 압축기 본체(110)의 내부에 배치된다. 베인(150)은, 로터(140)가 회전함에 따라 로터홈(147) 내에서 왕복 이동할 수 있게 로터홈(147) 내에 배치된다. 이때, 로터홈(147)은 로터(140)에 복수 개가 형성되며, 서로 대향된 위치에 형성될 수 있는데, 본 실시예에서, 여섯 개의 로터홈(147)이 로터(140)에 형성된 것에 대해 설명한다.
따라서 베인(150)은 여섯 개가 구비되며, 여섯 개의 베인(150)은 서로 소정의 거리가 이격된 상태(여섯 개의 베인(150)이 로터축(141)을 기준으로 동일한 각도를 이룬 상태)로 로터홈(147) 내에 배치될 수 있다.
그리고 베인(150)은 대향된 위치에 배치된 다른 베인(150)과 메인 연결바에 의해 연결될 수 있다.
베인(150)은 도 10에 도시된 바와 같이, 소정의 길이와 너비를 가질 수 있다. 그리고 베인(150)은 두 개의 베인 커버(150a, 150b)를 포함하고, 두 개의 베인 커버(150a, 150b)에는 각각 너비 방향으로 복수 개의 홈이 형성될 수 있다. 두 개의 베인 커버(150a, 150b)에 형성된 홈 내에 메인부시(155) 및 보조부시(157)가 하나 씩 각각 배치될 수 있다.
메인부시(155) 및 보조부시(157)는 소정의 길이를 가지는 원통 형상을 가지며, 원통 형상의 중공에 베인 연결바(160)가 관통하여 배치될 수 있다. 즉, 도 10에 도시된 바와 같이, 하나의 베인(150)에 다섯 개의 홈이 형성되어 다섯 개의 베인 연결바(160)가 배치될 수 있다.
이때, 베인 연결바(160)는, 대향된 위치에 배치된 두 개의 베인(150)을 연결하도록 배치되는데, 도 3에 도시된 바와 같이, 베인 연결바(160)에 연결바 부시(162)가 배치될 수 있다. 연결바 부시(162)는 원통 형상으로 형성되고, 베인 연결바(160)가 연결바 부시(162)의 중공을 관통하도록 배치될 수 있다.
따라서 베인 연결바(160)는 연결바 부시(162), 메인부시(155) 및 보조부시(157)에서 베인 연결바(160)는 길이 방향으로 이동될 수 있다. 즉, 베인 연결바(160)는 베인(150)의 움직임과 독립적으로 길이 방향으로 양방향 이동될 수 있으며, 베인(150)에서 최대한 외측으로 이동되었을 때 베인(150)과 로터(140)가 맞닿는 것을 방지할 수 있다.
이러한 베인 연결바(160)는 도 6에 도시된 바와 같이, 로터홈(147) 내에 형성된 연결바 홈(164)을 관통하여 두 개의 베인(150) 사이를 연결한다.
여기서, 베인 연결바(160)가 외부에서 가해진 외력에 의해 휘어지는 경우가 발생할 수 있는데, 베인 연결바(160)가 휘어진다 하더라도 로터 베어링(145)에 의해 베인(150)이 로터(140)의 지지바(140a)와 소정의 거리가 이격된 상태가 유지될 수 있다. 베인 연결바(160)에 가해지는 외력은 베인 연결바(160)가 베인(150)에서 최대한 외측으로 이동된 경우에 발생할 수 있다.
또한, 베인(150)의 길이 방향의 양단에 베인 베어링(151)이 각각 배치될 수 있다. 베인 베어링(151)은 메인 커버(130)의 베어링 홈(130a)을 따라 이동할 수 있으며, 베인(150)의 길이 방향 양단의 일 측 끝단에 배치될 수 있다. 본 실시예에서, 베인 베어링(151)이 메인 커버(130)의 베어링 홈(130a)을 따라 이동함으로써, 베인(150)의 타 측 끝단에 형성된 베인 보조부(153)가 압축기 본체(110)의 본체 내면(116)과 접촉하지 않고 소정의 거리가 이격된 상태로 회전될 수 있다.
도 11은 본 발명의 다른 실시예에 따른 공기압축기를 도시한 사시도이다. 도 12는 본 발명의 다른 실시예에 따른 공기압축기의 내부를 설명하기 위한 도면이다. 도 13은 본 발명의 다른 실시예에 따른 공기압축기의 베인이 연결되는 구성을 설명하기 위한 도면이다.
도 11 내지 도 13을 참조하여, 본 발명의 다른 실시예에 따른 공기압축기(100)에 대해 설명한다. 본 실시예에 따른 공기압축기(100)는, 일 실시예에서 설명한 바와 형상을 일부 다를 수 있지만, 거의 동일하게 동작한다. 본 실시예에 따른 공기압축기(100)를 설명하면서, 일 실시예에서와 동일한 설명은 생략한다.
본 실시예에서, 공기압축기(100)의 압축기 본체(110)에 형성된 흡입구(112)는 복수 개의 관통공의 형상이 아닌, 복수 개의 관의 형상을 가질 수 있다.
그리고 로터커버(143)의 외면에 로터(140)가 베인(150)에서 가해지는 힘에 의해 손상되는 것을 방지하기 위해 로터보강링(149)이 배치될 수 있다. 따라서 로터보강링(149)이 배치됨에 따라 베인 베어링(151)은 로터보강링(149)의 내측에서 회전되어 동작할 수 있다.
또한, 본 실시예에서, 로터 베어링(145)은 로터(140)가 아닌 베인(150)에 설치된다. 로터 베어링(145)은 베인(150)의 길이 방향 양단에 설치되며, 베인 베어링(151)에 인접하게 배치될 수 있다. 베인 베어링(151)은 일 실시예에서와 같이, 메인 커버(130)의 베어링 홈(130a)을 따라 이동할 수 있다.
이러한 로터 베어링(145)은 베인(150)에 배치되며, 로터(140)의 로터홈(147)에서 베인(150)의 너비 방향으로 베인(150)이 이동할 때, 베인(150)과 로토(140)의 사이가 소정의 거리만큼 이격된 상태로 이동하도록 할 수 있다.
위에서 설명한 바와 같이 본 발명에 대한 구체적인 설명은 첨부된 도면을 참조한 실시예에 의해서 이루어졌지만, 상술한 실시예는 본 발명의 바람직한 예를 들어 설명하였을 뿐이므로, 본 발명이 상기 실시예에만 국한되는 것으로 이해돼서는 안 되며, 본 발명의 권리범위는 후술하는 청구범위 및 그 등가개념으로 이해되어야 할 것이다.
또한, 복수 개의 실시예에 대해 설명하였으나, 복수 개의 실시예는 각각 독립적으로 실시될 수 있지만, 이에 한정되는 것은 아니다. 복수 개의 실시예에서 각각 설명되었으나, 설명되지 않은 실시예에 이용되더라도 다른 구성들과 배치되지 않는 경우에는 필요에 따라 적용될 수 있다.
* 부호의 설명
100: 공기압축기
110: 압축기 본체
112: 흡입구
114: 배출구
116: 본체 내면
120: 지지대
130: 메인 커버
130a: 베어링 홈
132: 보조흡입구
134: 제1 오일주입구
136: 제2 오일주입구
138: 로터축 홀
140: 로터
140a: 지지바
141: 로터축
143: 로터커버
145: 로터 베어링
145a: 로터 베어링 축
147: 로터홈
149: 로터보강링
150: 베인
150a, 150b: 베인 커버
151: 베인 베어링
153: 베인 보조부
155: 메인부시
157: 보조부시
160: 베인 연결바
162: 연결바 부시
164: 연결바 홈

Claims (5)

  1. 원통 형상을 가지며, 외부의 공기를 흡입하여 공기를 압축하여 외부로 배출하기 위해 흡입구 및 배출구가 외주면에 형성되고, 양단이 개방되어 내부에 중공을 갖는 압축기 본체;
    상기 압축기 본체의 개방된 양단에 각각 설치되는 두 개의 메인 커버;
    상기 압축기 본체의 내부에 상기 압축기 본체의 원통 형상의 중심축과 편심된 상태로 배치되고, 상기 두 개의 메인 커버에 설치되는 로터축을 기준으로 회전하며, 상기 로터축에서 외측으로 방향으로 복수 개의 로터홈이 형성된 로터;
    상기 로터에 형성된 상기 복수 개의 로터홈에 각각 배치되며, 상기 복수 개의 로터홈에서 이동하도록 배치된 복수 개의 베인; 및
    상기 로터에 설치되고, 상기 복수 개의 베인이 상기 복수 개의 로터홈에서 이동할 때, 상기 로터와 베인이 접촉하지 않도록 상기 로터에 설치된 복수 개의 로터 베어링을 포함하는, 공기압축기.
  2. 원통 형상을 가지며, 외부의 공기를 흡입하여 공기를 압축하여 외부로 배출하기 위해 흡입구 및 배출구가 외주면에 형성되고, 양단이 개방되어 내부에 중공을 갖는 압축기 본체;
    상기 압축기 본체의 개방된 양단에 각각 설치되는 두 개의 메인 커버;
    상기 압축기 본체의 내부에 상기 압축기 본체의 원통 형상의 중심축과 편심된 상태로 배치되고, 상기 두 개의 메인 커버에 설치되는 로터축을 기준으로 회전하며, 상기 로터축에서 외측으로 방향으로 복수 개의 로터홈이 형성된 로터;
    상기 로터에 형성된 상기 복수 개의 로터홈에 각각 배치되며, 상기 복수 개의 로터홈에서 이동하도록 배치된 복수 개의 베인; 및
    상기 베인에 설치되고, 상기 복수 개의 베인이 상기 복수 개의 로터홈에서 이동할 때, 상기 로터와 베인이 접촉하지 않도록 상기 로터에 설치된 복수 개의 로터 베어링을 포함하는, 공기압축기.
  3. 청구항 1 또는 청구항 2에 있어서,
    상기 로터에 형성된 상기 복수 개의 로터홈은 서로 대향된 위치에 배치되고,
    소정의 길이를 가지며, 상기 복수 개의 베인 중 서로 대향된 위치에 배치된 베인 사이에서 길이 방향으로 이동할 수 있게 상기 서로 대향된 위치에 배치된 베인 사이를 연결하는 복수 개의 베인 연결바를 더 포함하는, 공기압축기.
  4. 청구항 1 또는 청구항 2에 있어서,
    상기 복수 개의 베인 각각은 상기 압축기 본체의 길이 방향의 양단에 각각 베인 베어링이 배치되고,
    상기 두 개의 메인 커버의 내면 각각에 상기 베인 베어링이 이동하는 경로를 형성하는 베어링 홈이 형성된, 공기압축기.
  5. 청구항 1 또는 청구항 2에 있어서,
    상기 로터는 복수 개가 구비되며,
    상기 복수 개의 로터는 서로 나란하게 결합되는, 공기압축기.
PCT/KR2020/006454 2019-05-17 2020-05-15 공기압축기 WO2020235891A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080048625.9A CN114174682B (zh) 2019-05-17 2020-05-15 一种空气压缩机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0057963 2019-05-17
KR20190057963 2019-05-17

Publications (1)

Publication Number Publication Date
WO2020235891A1 true WO2020235891A1 (ko) 2020-11-26

Family

ID=73458691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/006454 WO2020235891A1 (ko) 2019-05-17 2020-05-15 공기압축기

Country Status (3)

Country Link
KR (1) KR102422215B1 (ko)
CN (1) CN114174682B (ko)
WO (1) WO2020235891A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114810595A (zh) * 2022-03-28 2022-07-29 威海海洋职业学院 一种用于空气压缩机或叶片发动机的动力转换装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010041305A (ko) * 1998-02-25 2001-05-15 바딩 모터 에이에스 로터리피스톤 장치
US20060083618A1 (en) * 2002-12-12 2006-04-20 Corneliu Holt Hydraulic or pneumatic machine with tilting blades
JP2006226117A (ja) * 2005-02-15 2006-08-31 Calsonic Compressor Inc 気体圧縮機
JP2014185596A (ja) * 2013-03-25 2014-10-02 Toyota Industries Corp ベーン型圧縮機
KR20180126301A (ko) * 2017-05-17 2018-11-27 엘지전자 주식회사 로터리 압축기

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0951958A (ja) * 1995-08-14 1997-02-25 Nippon Kikai Kogyo Kk 消防ポンプ呼水用の真空ポンプ
KR19990014251U (ko) * 1998-12-23 1999-04-26 최용수 가동날개 압축기의 구조
BR0114052A (pt) * 2000-09-04 2003-07-22 Honda Motor Co Ltd Máquina de fluido rotativa
KR20020090939A (ko) 2002-09-13 2002-12-05 김교윤 공기압축펌프
WO2008004983A1 (en) * 2006-07-07 2008-01-10 Nanyang Technological University Revolving vane compressor
DE102009017332A1 (de) * 2009-04-14 2010-10-21 Eggert, Günther Steuerung der Flügel einer Flügelzellenmaschine
EP2803864B1 (en) * 2012-01-11 2020-08-12 Mitsubishi Electric Corporation Vane-type compressor
CN105257538A (zh) * 2014-07-14 2016-01-20 天津市盛鑫隆粉末涂料有限公司 一种静止叶片式空气压缩机
CN206874477U (zh) * 2017-06-21 2018-01-12 邓远明 带滚轴结构的叶片泵

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010041305A (ko) * 1998-02-25 2001-05-15 바딩 모터 에이에스 로터리피스톤 장치
US20060083618A1 (en) * 2002-12-12 2006-04-20 Corneliu Holt Hydraulic or pneumatic machine with tilting blades
JP2006226117A (ja) * 2005-02-15 2006-08-31 Calsonic Compressor Inc 気体圧縮機
JP2014185596A (ja) * 2013-03-25 2014-10-02 Toyota Industries Corp ベーン型圧縮機
KR20180126301A (ko) * 2017-05-17 2018-11-27 엘지전자 주식회사 로터리 압축기

Also Published As

Publication number Publication date
CN114174682A (zh) 2022-03-11
CN114174682B (zh) 2023-07-18
KR102422215B1 (ko) 2022-07-18
KR20200132767A (ko) 2020-11-25

Similar Documents

Publication Publication Date Title
WO2020235891A1 (ko) 공기압축기
WO2018048086A1 (ko) 압축기
WO2017039330A1 (ko) 흡입 유닛
WO2017105147A1 (ko) 영구자석 매립형 전동기를 위한 로터 및 그를 이용한 전동기
WO2014116017A1 (en) Balancer and washing machine having the same
WO2018194294A1 (ko) 로터리 압축기
WO2016208952A1 (ko) 실링구조를 포함하는 연료공급노즐
WO2014171631A1 (en) Air blower for fuel cell vehicle
WO2016043455A1 (en) Compressor
WO2020116781A1 (ko) 고압식 스크롤 압축기
WO2017069391A1 (ko) 터빈의 실링 조립체
WO2010079885A2 (en) Reciprocating compressor and refrigerating machine having the same
WO2019093647A1 (ko) 압축기
WO2015178636A1 (ko) 모터 유닛, 펌프 유닛, 및 이를 이용한 전동식 오일펌프
WO2016159562A1 (en) Gas foil journal bearing
WO2017007195A1 (ko) 자유 회전식 유체 기계
WO2018009005A1 (ko) 압축 장치
WO2018124353A1 (ko) 틸팅형 로터
WO2023163266A1 (ko) 에어포일 저널 베어링
WO2021172680A1 (ko) 직렬배치형 흡인세척장치
WO2024080465A1 (ko) 전동 압축기
WO2014168381A1 (ko) 압축기
WO2022196907A1 (ko) 에어포일 저널 베어링의 하우징 고정 구조
WO2024063236A1 (ko) 전동 압축기
WO2023113259A1 (ko) 펌프

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20808651

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20808651

Country of ref document: EP

Kind code of ref document: A1