WO2020235822A1 - 플라즈마와 증기를 이용한 건식 세정 장치 - Google Patents

플라즈마와 증기를 이용한 건식 세정 장치 Download PDF

Info

Publication number
WO2020235822A1
WO2020235822A1 PCT/KR2020/005422 KR2020005422W WO2020235822A1 WO 2020235822 A1 WO2020235822 A1 WO 2020235822A1 KR 2020005422 W KR2020005422 W KR 2020005422W WO 2020235822 A1 WO2020235822 A1 WO 2020235822A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
chamber
steam
plasma
supply port
Prior art date
Application number
PCT/KR2020/005422
Other languages
English (en)
French (fr)
Inventor
이길광
임두호
오상룡
박재양
Original Assignee
무진전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 무진전자 주식회사 filed Critical 무진전자 주식회사
Priority to CN202080034382.3A priority Critical patent/CN113811400B/zh
Publication of WO2020235822A1 publication Critical patent/WO2020235822A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/67034Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/02Cleaning by the force of jets or sprays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B13/00Accessories or details of general applicability for machines or apparatus for cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B5/00Cleaning by methods involving the use of air flow or gas flow
    • B08B5/02Cleaning by the force of jets, e.g. blowing-out cavities
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B7/00Cleaning by methods not provided for in a single other subclass or a single group in this subclass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02043Cleaning before device manufacture, i.e. Begin-Of-Line process
    • H01L21/02046Dry cleaning only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy

Definitions

  • the present invention relates to a dry cleaning apparatus using plasma and steam. More specifically, the present invention can significantly shorten the process time by vaporizing and removing ammonium hexafluorosilicate ((NH 4 ) 2 SiF 6 ), a reactant generated in the dry cleaning process, in a short time using high-temperature steam. In the process of removing the reactants, it is possible to solve the problem that reaction by-products adhere to the inner wall of the chamber and act as a contaminant of the substrate, increase the cleaning cycle for the chamber itself, and repeatedly remove the reactants in one chamber.
  • the present invention relates to a dry cleaning apparatus using plasma and steam that can stably implement an in-situ process of generating and vaporizing and removing it using high-temperature steam and improving productivity and hardware stability.
  • the plasma dry cleaning method is a method of activating a reactant using plasma, and cleaning using a chemical or physical reaction between the reactant and a substrate.
  • Plasma dry cleaning has the advantage of having a high selectivity and is advantageous in a low-temperature process. However, since a damage layer is generated on the surface of the substrate due to ion bombardment incident on the substrate, it can be removed. There is a problem that subsequent processes are required.
  • dielectrics such as silicon oxide or nitride are reacted with gas or radical to obtain ammonium hexafluorosilicate. ((NH 4 ) 2 SiF 6 ) After generating a solid layer, a dry clean technology was introduced to remove it by heating.
  • FIG. 2 is a diagram illustrating a process of removing reactants constituting the conventional dry cleaning process disclosed in FIG. 1.
  • an annealing step of vaporizing the reactant is disclosed, and 100 Above °C, ammonium hexafluorosilicate ((NH 4 ) 2 SiF 6 ) is vaporized and some of them are adsorbed to the inner wall of the chamber schematically.
  • the reactant, ammonium hexafluorosilicate ((NH 4 ) 2 SiF 6 ) is vaporized by reacting with SiF 4 , 2NH 3 , and 2HF above 100°C, and the vaporized reactant component is sucked into the vacuum pump, but part of it is adsorbed to the inner wall of the chamber. .
  • the reaction step and the annealing step are repeated corresponding to the number of substrates to be cleaned, the components adsorbed on the inner wall of the chamber are fixed as reaction by-products according to the repetition of the process and contaminate the substrate. In addition, when the pressure of the chamber changes, these components become particles and act as a major factor contaminating the substrate.
  • fluorine atoms involved in the oxide removal reaction during dry cleaning have high electronegativity, so they have high adsorption power to the substrate surface, and dry cleaning is known to have a greater amount of fluorine remaining after cleaning compared to wet cleaning. .
  • the remaining fluorine component makes the substrate surface hydrophilic, so that other contaminants can be adsorbed to the substrate surface well and act as a factor that deteriorates the quality of the device formed on the substrate, so it must be removed, but according to the conventional annealing method. There is a problem in that it is difficult to completely remove it.
  • the chuck on which the substrate is disposed in order to vaporize the reactants in the conventional annealing step, a certain time is necessary for the chuck on which the substrate is disposed to maintain a temperature of 100°C or higher.
  • the temperature supplied to the substrate, the pressure inside the chamber, and the time required for the reactant to vaporize are important.
  • the reactants evaporate quickly, so an annealing time to raise the temperature of the substrate to 100°C or more is required, and this annealing time acts as a factor that greatly affects the productivity of the cleaning process.
  • the prior art of indirectly heating the substrate by heating the chuck has a problem in that productivity is limited due to this annealing time.
  • the technical problem of the present invention is a plasma that can significantly shorten the process time by vaporizing and removing ammonium hexafluorosilicate ((NH 4 ) 2 SiF 6 ), a reactant generated in the dry cleaning process, in a short time using steam. It is to provide a dry cleaning apparatus using steam.
  • the technical problem of the present invention is to solve the problem that reaction by-products adhere to the inner wall of the chamber in the process of removing the reactant, ammonium hexafluorosilicate ((NH 4 ) 2 SiF 6 ) It is to provide a dry cleaning apparatus using steam.
  • the technical problem of the present invention is a dry cleaning apparatus using plasma and steam that can reduce maintenance costs by increasing the cleaning cycle for the chamber itself, which is performed to remove reaction by-products that are attached to and fixed to the inner wall of the chamber. Is to provide.
  • the technical problem of the present invention is an in-situ process of repeatedly generating ammonium hexafluorosilicate ((NH 4 ) 2 SiF 6 ) in one chamber and vaporizing it using high-temperature steam to remove it. It is to provide a dry cleaning apparatus using plasma and steam that can be stably implemented and improve productivity and hardware stability.
  • an upper supply port is formed on the upper surface
  • a discharge port is formed on the lower surface
  • the side surface between the upper surface and the lower surface is A chamber having a side supply port and providing a cleaning space
  • a chuck coupled to the lower surface of the chamber and in which a single crystal silicon substrate formed of amorphous silicon or polycrystalline silicon or silicon oxide or silicon nitride is disposed, the chamber
  • An RF electrode coupled to the upper surface of the chamber to which RF power is applied
  • an upper showerhead coupled to the RF electrode and having a plurality of upper injection holes to communicate with the upper supply port formed on the upper surface of the chamber, and coupled to the side surface of the chamber And a plurality of first lower injection holes and a plurality of second lower injection holes in communication with the side supply port.
  • the lower showerhead is electrically grounded, and the reaction gas is supplied through the upper supply port formed on the upper surface of the chamber. It includes a reaction gas supply unit to supply and a steam supply unit for supplying high temperature steam through a side supply port formed on the side of the chamber.
  • a reaction gas supplied through an upper supply port formed on an upper surface of the chamber is supplied to the RF power in a plasma generating region between the RF electrode and the lower showerhead.
  • the silicon oxide or the silicon nitride is supplied to the silicon substrate through the first lower spray hole of the lower showerhead, so that the silicon oxide or the silicon nitride is a reactant containing ammonium hexafluorosilicate ((NH 4 ) 2 SiF 6 ).
  • the high-temperature steam supplied through the side supply port formed on the side of the chamber is injected into the reactant through the second lower injection hole of the lower showerhead to evaporate the reactant, and the vaporized reactant is It is characterized in that the discharge through the discharge port formed on the lower surface of the chamber together.
  • the temperature of the high-temperature steam is 100°C or more and 400°C or less.
  • the high-temperature steam is characterized in that it contains at least one of deionized water and IPA (isopropyl alcohol).
  • the high-temperature steam is characterized in that it further contains nitrogen gas or inert gas.
  • the reaction gas is characterized in that it contains at least HF and NH 3 or NF 3 and NH 3 .
  • the heating temperature of the chuck is 80°C or more and 200°C or less.
  • the heating temperature of the inner wall of the chamber is 80°C or more and 150°C or less.
  • the dry cleaning apparatus using plasma and steam includes a first valve installed in a pipe between the reaction gas supply part and the upper supply port, a second valve installed in a pipe between the steam supply part and the side supply port, and the second valve. It characterized in that it further comprises a third valve installed between the 2 valve and the steam supply part, and a fourth valve installed in the pipe between the discharge port and the discharge pump.
  • the dry cleaning apparatus using plasma and steam according to the present invention is characterized in that it further comprises a fifth valve installed in a pipe between the discharge pump and a branch point of a pipe between the second valve and the third valve.
  • the reactant gas is supplied into the chamber through the upper supply port while the first valve is open to generate the reactant, and the first When the valve is closed and the third valve is opened while the second valve is open, the high-temperature steam is supplied to the interior of the chamber through the side supply port to vaporize the reactant, and the first valve, the When the second valve and the third valve are closed and the fourth valve is opened, vaporized reactants and high-temperature steam present in the chamber are forcibly discharged through the discharge port by the discharge pump. To do.
  • the reactant gas is supplied into the chamber through the upper supply port while the first valve is open to generate the reactant, and the first When the valve is closed and the third valve is opened while the second valve is open, the high-temperature steam is supplied to the interior of the chamber through the side supply port to vaporize the reactant, and the first valve, the When the second valve and the third valve are closed and the fourth valve is opened, vaporized reactants and high-temperature steam present in the chamber are forcibly discharged through the discharge port by the discharge pump, and the When the first valve, the second valve, the third valve, and the fourth valve are closed, the fifth valve is opened, so that the vapor component remaining in the pipe is forcibly discharged by the discharge pump. .
  • plasma and steam that can greatly shorten the process time by vaporizing and removing ammonium hexafluorosilicate ((NH 4 ) 2 SiF 6 ), which is a reactant generated in the dry cleaning process, in a short time using steam.
  • ammonium hexafluorosilicate (NH 4 ) 2 SiF 6 )
  • ammonium hexafluorosilicate (NH 4 ) 2 SiF 6 )
  • a dry cleaning device using plasma and steam that can solve the problem that reaction by-products adhere to the inner wall of the chamber and act as a source of contamination of the substrate.
  • the technical problem of the present invention is a dry cleaning apparatus using plasma and steam that can reduce maintenance costs by increasing the cleaning cycle for the chamber itself, which is performed to remove reaction by-products that are attached to and fixed to the inner wall of the chamber. There is an effect provided.
  • FIG. 2 is a diagram showing a reactant removal process constituting a conventional dry cleaning process
  • FIG. 3 is a view showing a dry cleaning apparatus using plasma and steam according to an embodiment of the present invention
  • FIG. 4 is a view showing operation timing of valves constituting a dry cleaning apparatus using plasma and steam according to an embodiment of the present invention.
  • first or second may be used to describe various elements, but the elements should not be limited by the terms. The terms are only for the purpose of distinguishing one component from other components, for example, without departing from the scope of the rights according to the concept of the present invention, the first component may be named as the second component and similarly the second component. The component may also be referred to as a first component.
  • FIG 3 is a view showing a dry cleaning apparatus using plasma and steam according to an embodiment of the present invention
  • Figure 4 is a timing of operation of valves constituting the dry cleaning apparatus using plasma and steam according to an embodiment of the present invention It is a view showing.
  • a dry cleaning apparatus using plasma and steam includes a chamber 10, a chuck 20, an RF power supply 30, an RF electrode 40, and The upper showerhead 50, the lower showerhead 60, the reaction gas supply unit 70, the steam supply unit 80, the first valve 100, the second valve 200, the third valve 300, the fourth It is configured to include the valve 400 and the fifth valve 500.
  • an upper supply port 11 is formed on the upper surface
  • a discharge port 12 is formed on the lower surface
  • a side supply port 13 is formed on the side surface between the upper surface and the lower surface. It is a component that provides space.
  • the chuck 20 is coupled to the lower surface of the chamber 10 and is a component on which a single crystal silicon substrate W on which amorphous silicon or polycrystalline silicon or silicon oxide or silicon nitride is formed is disposed.
  • the RF power supply 30 is a component that supplies power for generating plasma to the RF electrode 40 to be described later.
  • the RF electrode 40 is coupled to the upper surface of the chamber 10 and is a component to which the RF power 30 is applied.
  • the upper showerhead 50 is coupled to the RF electrode 40 so as to communicate with the upper supply port 11 formed on the upper surface of the chamber 10, and the upper showerhead 50 has a plurality of first upper injection holes ( 51) is formed so as to face downward on which the substrate W is disposed.
  • the lower showerhead 60 is coupled to a side portion between the upper and lower surfaces of the chamber 10 and has a plurality of first lower injection holes 61 facing downward on which the substrate W is disposed.
  • a plurality of second lower injection holes 62 in communication with the side supply ports 13 of the chamber 10 are formed in the lower shower head 60.
  • the lower showerhead 60 is electrically grounded in common with the RF power supply 30.
  • the reaction gas supply unit 70 is a component for supplying the reaction gas into the chamber 10 through the upper supply port 11 formed on the upper surface of the chamber 10.
  • the steam supply unit 80 is a component that supplies high-temperature steam into the chamber 10 through the side supply port 13 formed on the side of the chamber 10.
  • the first valve 100 is installed in a pipe between the reaction gas supply unit 70 and the upper supply port 11.
  • the second valve 200 is installed in a pipe between the steam supply unit 80 and the side supply port 13.
  • the third valve 300 is installed in a pipe between the second valve 200 and the steam supply unit 80.
  • the fourth valve 400 is installed in a pipe between the discharge port 12 and the discharge pump 600.
  • the fifth valve 500 is installed in the pipe between the discharge pump 600 and the branch point of the pipe between the second valve 200 and the third valve.
  • the reaction product generation step 1) in the reaction product generation step, the reaction supplied through the upper supply port 11 formed on the upper surface of the chamber 10
  • the gas is plasma-treated by the RF power supply 30 in the plasma generation area between the RF electrode 40 and the lower showerhead 60 and supplied to the single crystal silicon substrate W, thereby forming on the single crystal silicon substrate W.
  • the high-temperature steam supplied through the formed side supply port 13 is injected as a reactant through the second lower injection hole 62 of the lower showerhead 60 to vaporize the reactant, and the vaporized reactant is vaporized in the chamber ( It is discharged through the discharge port 12 formed on the lower surface of 10).
  • reaction product generation step and the reaction product removal step will be described more specifically and illustratively as follows.
  • the reaction product generation step the reaction gas containing NF 3 and NH 3 is ionized in a plasma state, and among the generated ions, the ionization constant of HF 2 - is very high, so it has excellent reactivity and plays the greatest role in the oxide removal reaction. It is known.
  • HF 2 - ions are related to the generation of NH 4 F and HF, and the types and amounts of ions vary depending on the mixing ratio, pressure, and power of NF 3 and NH 3 .
  • Oxide and HF 2 - ion reaction equation is SiO 2 + HF 2- + H + ⁇ SiF 6 2- + 2H 2 O, SiF 6 2- + NH 4 + ⁇ (NH 4 ) 2 SiF 6
  • Ammonium hexafluorosilicate ((NH 4 ) 2 SiF 6 ) generated in the reaction product generation step is produced in a 1:1 reaction with SiO 2 and exists in a solid state on the surface of the substrate (W) in a volume of 3 times, and the second step is a reactant. In the removal step, it is vaporized and removed by hot steam.
  • the prior art has a problem in that a large amount of time is required to raise the substrate to a specific temperature. For example, if the temperature of the chuck on which the substrate is placed in the reactant generation step is 30°C, the annealing step needs to wait at least 1 minute before the substrate temperature of 30°C rises to 100°C or higher to remove the reactant. There was a problem that the time was lengthened and the production volume decreased.
  • one embodiment of the present invention removes the reactant by supplying high-temperature steam, the reactant on the substrate W is immediately vaporized by reaction with the steam.
  • the reaction time is only within a few seconds, and the reactants are immediately discharged out of the chamber.
  • the temperature of the hot steam supplied by the steam supply unit 80 is preferably 100°C or more and 400°C or less.
  • the temperature of the high-temperature steam is configured in this way, the vapor is prevented from being liquefied in the process of removing the reactant using steam, and the rate of removing the reactant is increased, and the characteristics of the elements formed on the substrate (W) are deteriorated due to excessive high temperature. (deterioration) can be prevented.
  • the high-temperature steam supplied by the steam supply unit 80 may include at least one of deionized water and isopropyl alcohol (IPA), and may further include nitrogen gas or an inert gas. .
  • IPA isopropyl alcohol
  • the high-temperature steam is 1) composed of vaporized deionized water alone, 2) composed of a mixture of nitrogen gas or an inert gas in vaporized deionized water, 3) composed of vaporized IPA alone, or 4 ) Either nitrogen gas or inert gas is mixed with vaporized IPA, 5) Either is composed of a mixture of vaporized deionized water and IPA, or 6) nitrogen gas or inert gas is mixed with vaporized deionized water and IPA. It can be configured to be added.
  • the reaction gas supplied by the reaction gas supply unit 70 may include at least HF and NH 3 or may include NF 3 and NH 3 .
  • the heating temperature of the chuck 20 may be configured to be 80°C or more and 200°C or less. If the heating temperature of the chuck 20 is configured in this way, it is possible to prevent the vapor from being liquefied in the process of removing the reactant using the vapor and to increase the rate of removing the reactant.
  • the heating temperature of the inner wall of the chamber 10 may be configured to be 80°C or more and 150°C or less. By configuring the heating temperature of the inner wall of the chamber 10 in this way, it is possible to reduce the adhesion of vaporized reaction by-products to the inner wall of the chamber 10.
  • the heating temperature of the inner wall of the chamber 10 is configured to be 80° C. or more and 150° C. or less to reduce the attachment of vaporized reaction by-products to the inner wall of the chamber 10, Since the reactants are vaporized by a high-temperature vapor injection method and immediately discharged to the outside, the problem of becoming a source of contamination of the substrate W after the reaction by-products are fixed to the inner wall of the chamber 10 can be prevented.
  • the reaction gas is supplied into the chamber 10 through the upper supply port 11 formed on the upper surface of the chamber, so that the reactant is The process of creation is performed.
  • the third valve 300 By opening the third valve 300 while the first valve 100 is closed and the second valve 200 is open, the high-temperature steam is formed on the side surface of the chamber 10. Through the process of vaporizing the reactant is supplied to the interior of the chamber 10 is performed.
  • the reactants on the substrate W react with the steam and are immediately vaporized.
  • the vaporization reaction time is within a few seconds, and the vaporized reactants and vapors are forcibly discharged to the outside through the discharge port 12 by the discharge pump 600 before solidifying in the chamber 10.
  • the process time is greatly shortened by vaporizing and removing the reactant hexafluorosilicate ((NH 4 ) 2 SiF 6 ) produced in the dry cleaning process in a short time using steam.
  • reactant hexafluorosilicate (NH 4 ) 2 SiF 6 ) produced in the dry cleaning process in a short time using steam.
  • ammonium hexafluorosilicate (NH 4 ) 2 SiF 6 )
  • a dry cleaning device using plasma and steam that can solve the problem that reaction by-products adhere to the inner wall of the chamber and act as a source of contamination of the substrate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

본 발명에 따른 플라즈마와 증기를 이용한 건식 세정 장치는 상면부에 상부공급포트가 형성되고 있고 하면부에 배출포트가 형성되어 있고 측면부에 측면공급포트가 형성되어 있으며 세정 공간을 제공하는 챔버, 챔버의 하면부에 결합되어 있으며 비정질 실리콘 또는 다결정 실리콘 또는 실리콘 산화물 또는 실리콘 질화물이 형성된 단결정의 실리콘 기판이 배치되는 척, 챔버의 상면부에 결합되어 있으며 RF 전원이 인가되는 RF 전극, 챔버의 상면부에 형성된 상부공급포트와 연통되도록 상기 RF 전극에 결합되고 복수의 상부 분사공이 형성된 상부 샤워헤드, 챔버의 측면부에 결합되어 있으며 복수의 제1 하부 분사공 및 측면공급포트와 연통된 복수의 제2 하부 분사공이 형성되어 있고 전기적으로 접지된 하부 샤워헤드, 챔버의 상면부에 형성된 상부공급포트를 통해 반응가스를 공급하는 반응가스 공급부 및 챔버의 측면부에 형성된 측면공급포트를 통해 고온 증기를 공급하는 증기 공급부를 포함한다.

Description

플라즈마와 증기를 이용한 건식 세정 장치
본 발명은 플라즈마와 증기를 이용한 건식 세정 장치에 관한 것이다. 보다 구체적으로, 본 발명은 건식 세정 과정에서 생성된 반응물인 헥사플루오로규산암모늄((NH4)2SiF6)을 고온의 증기를 이용하여 빠른 시간 내에 기화시켜 제거함으로써 공정 시간을 크게 단축할 수 있고, 반응물을 제거하는 과정에서 반응 부산물이 챔버 내벽에 부착되어 기판의 오염원으로 작용하는 문제를 해결할 수 있고, 챔버 자체에 대한 클리닝(cleaning) 주기를 늘릴 수 있고, 하나의 챔버에서 반응물을 반복적으로 생성시키고 고온의 증기를 이용하여 기화시켜 제거하는 인시튜(In-situ) 공정을 안정적으로 구현할 수 있고, 생산성과 하드웨어 안정성을 개선할 수 있는 플라즈마와 증기를 이용한 건식 세정 장치에 관한 것이다.
건식 세정 공정 중에서, 플라즈마(plasma) 건식 세정법은 플라즈마를 이용하여 반응물을 활성화시켜, 반응물과 기판의 화학적 또는 물리적 반응을 이용하여 세정하는 방식이다.
이러한 플라즈마 건식 세정은 고선택비를 가지고 저온 공정이 유리하다는 장점이 있는 반면, 기판에 입사되는 이온 충격(Ion Bombardment)으로 인하여, 기판 표면에 손상층(Damage layer)이 생성되기 때문에, 이를 제거하기 위한 후속 공정들이 필요하다는 문제점이 있다.
최근 들어, 이러한 문제점을 해결하는 대체 기술로, 종래의 건식 세정 공정을 나타낸 도 1에 개시된 바와 같이, 실리콘 산화물 또는 질화물 등과 같은 유전체들을 가스(Gas) 또는 라디칼(Radical)과 반응시켜 헥사플루오르규산암모늄((NH4)2SiF6) 고체층을 생성시킨 후, 이를 가열하여 제거하는 건식 세정(Dry Clean) 기술이 도입되었다.
도 2는 도 1에 개시된 종래의 건식 세정 공정을 구성하는 반응물 제거 공정을 나타낸 도면이다.
도 2를 추가로 참조하면, 헥사플루오르규산암모늄((NH4)2SiF6) 고체층, 즉, 반응물을 생성하는 반응 단계 이후에, 반응물을 기화시키는 어닐링(annealing) 단계가 개시되어 있으며, 100℃ 이상에서 헥사플루오르규산암모늄((NH4)2SiF6)이 기화되며 일부는 챔버 내벽에 흡착되는 현상이 도식적으로 표현되어 있다.
반응물인 헥사플루오르규산암모늄((NH4)2SiF6)은 100℃ 이상에서는 SiF4, 2NH3, 2HF로 반응하여 기화되며, 기화된 반응물 성분은 진공 펌프로 흡입되나 일부분은 챔버 내벽에 흡착된다.
이러한 반응 단계와 어닐링 단계는 세정 대상인 기판의 수에 대응하여 반복되기 때문에, 챔버 내벽에 흡착된 성분은 공정의 반복에 따라 반응 부산물로 고착화되어 기판을 오염시킨다. 또한 이러한 성분은 챔버의 압력 변경이 일어날 때 파티클(particle)이 되어 기판을 오염시키는 주요 요인으로 작용한다.
한편, 건식 세정시 옥사이드(oxide) 제거 반응에 관여하는 불소 원자는 전기 음성도가 높기 때문에 기판 표면에 대한 흡착력이 높으며, 건식 세정은 습식 세정에 비해 세정 후 불소가 잔류하는 양이 많은 것으로 알려져 있다.
잔류하는 불소 성분은 기판 표면을 친수성으로 만들어 다른 오염물들이 기판 표면에 잘 흡착하게 하여 기판에 형성된 소자의 품질을 저하시키는 요인으로 작용하기 때문에, 필수적으로 제거되어야 하는 요소이지만, 종래 기술인 어닐링 방식에 따르면 이를 완전하게 제거하기 어렵다는 문제점이 있다.
또한, 종래의 어닐링 단계에서 반응물을 기화시키기 위해서는 기판이 배치되는 척이 100℃ 이상의 온도를 유지하는 일정한 시간이 반드시 필요하다. 반응물 기화에서는 기판에 공급되는 온도와 챔버 내부의 압력, 반응물이 기화되는데 소요되는 시간이 중요하다. 특히, 기판의 온도가 100℃ 이상으로 올라가면 반응물은 빨리 기화되므로, 기판의 온도를 100℃ 이상으로 올려주는 어닐링 시간이 필요하며, 이 어닐링 시간은 세정 공정의 생산성에 큰 영향을 끼치는 요소로 작용하며, 척을 가열하여 기판을 간접적으로 가열하는 종래 기술은 이 어닐링 시간으로 인하여 생산성에 한계가 있다는 문제점이 있다.
[선행기술문헌]
[특허문헌]
대한민국 공개특허공보 제10-2009-0071368호(공개일자: 2009년 07월 01일, 명칭: 기판 처리 방법, 기판 처리 장치 및 기억 매체)
대한민국 등록특허공보 제10-0784661호(등록일자: 2007년 12월 05일, 명칭: 반도체 소자의 제조방법)
본 발명의 기술적 과제는 건식 세정 과정에서 생성된 반응물인 헥사플루오로규산암모늄((NH4)2SiF6)을 증기를 이용하여 빠른 시간 내에 기화시켜 제거함으로써 공정 시간을 크게 단축할 수 있는 플라즈마와 증기를 이용한 건식 세정 장치를 제공하는 것이다.
또한, 본 발명의 기술적 과제는 반응물인 헥사플루오로규산암모늄((NH4)2SiF6)을 제거하는 과정에서 반응 부산물이 챔버 내벽에 부착되어 기판의 오염원으로 작용하는 문제를 해결할 수 있는 플라즈마와 증기를 이용한 건식 세정 장치를 제공하는 것이다.
또한, 본 발명의 기술적 과제는 챔버 내벽에 부착되어 고착화되는 반응 부산물을 제거하기 위해 수행되는 챔버 자체에 대한 클리닝(cleaning) 주기를 늘려 유지 보수 비용을 저감할 수 있는 플라즈마와 증기를 이용한 건식 세정 장치를 제공하는 것이다.
또한, 본 발명의 기술적 과제는 하나의 챔버에서 헥사플루오로규산암모늄((NH4)2SiF6)을 반복적으로 생성시키고 고온의 증기를 이용하여 기화시켜 제거하는 인시튜(In-situ) 공정을 안정적으로 구현할 수 있고, 생산성과 하드웨어 안정성을 개선할 수 있는 플라즈마와 증기를 이용한 건식 세정 장치를 제공하는 것이다.
이러한 기술적 과제를 해결하기 위한 본 발명에 따른 플라즈마와 증기를 이용한 건식 세정 장치는 상면부에 상부공급포트가 형성되고 있고 하면부에 배출포트가 형성되어 있고 상기 상면부와 상기 하면부 사이의 측면부에 측면공급포트가 형성되어 있으며 세정 공간을 제공하는 챔버, 상기 챔버의 하면부에 결합되어 있으며 비정질 실리콘 또는 다결정 실리콘 또는 실리콘 산화물 또는 실리콘 질화물이 형성된 단결정의 실리콘 기판이 배치되는 척(chuck), 상기 챔버의 상면부에 결합되어 있으며 RF 전원이 인가되는 RF 전극, 상기 챔버의 상면부에 형성된 상부공급포트와 연통되도록 상기 RF 전극에 결합되고 복수의 상부 분사공이 형성된 상부 샤워헤드, 상기 챔버의 측면부에 결합되어 있으며 복수의 제1 하부 분사공 및 상기 측면공급포트와 연통된 복수의 제2 하부 분사공이 형성되어 있고 전기적으로 접지된 하부 샤워헤드, 상기 챔버의 상면부에 형성된 상부공급포트를 통해 반응가스를 공급하는 반응가스 공급부 및 상기 챔버의 측면부에 형성된 측면공급포트를 통해 고온 증기를 공급하는 증기 공급부를 포함한다.
본 발명에 따른 플라즈마와 증기를 이용한 건식 세정 장치에 있어서, 상기 챔버의 상면부에 형성된 상부공급포트를 통해 공급되는 반응가스가 상기 RF 전극과 상기 하부 샤워헤드 사이의 플라즈마 생성영역에서 상기 RF 전원에 의해 플라즈마 처리된 후 상기 하부 샤워헤드의 제1 하부 분사공을 통해 상기 실리콘 기판으로 공급됨으로써 상기 실리콘 산화물 또는 상기 실리콘 질화물이 헥사플루오로규산암모늄((NH4)2SiF6)을 포함하는 반응물로 변화하고, 상기 챔버의 측면부에 형성된 측면공급포트를 통해 공급되는 고온 증기가 상기 하부 샤워헤드의 제2 하부 분사공을 통해 상기 반응물로 분사되어 상기 반응물을 기화시키고, 기화된 반응물이 상기 고온 증기와 함께 상기 챔버의 하면부에 형성된 배출포트를 통해 배출되는 것을 특징으로 한다.
본 발명에 따른 플라즈마와 증기를 이용한 건식 세정 장치에 있어서, 상기 고온 증기의 온도는 100℃ 이상 400℃ 이하인 것을 특징으로 한다.
본 발명에 따른 플라즈마와 증기를 이용한 건식 세정 장치에 있어서, 상기 고온 증기는 탈이온수와 IPA(isopropyl alcohol, 이소프로필 알코올) 중에서 적어도 하나를 포함하는 것을 특징으로 한다.
본 발명에 따른 플라즈마와 증기를 이용한 건식 세정 장치에 있어서, 상기 고온 증기는 질소가스 또는 불활성가스를 더 포함하는 것을 특징으로 한다.
본 발명에 따른 플라즈마와 증기를 이용한 건식 세정 장치에 있어서, 상기 반응가스는 적어도 HF와 NH3를 포함하거나 NF3와 NH3를 포함하는 것을 특징으로 한다.
본 발명에 따른 플라즈마와 증기를 이용한 건식 세정 장치에 있어서, 상기 척의 가열온도는 80℃ 이상 200℃ 이하인 것을 특징으로 한다.
본 발명에 따른 플라즈마와 증기를 이용한 건식 세정 장치에 있어서, 상기 챔버의 내부 벽면의 가열온도는 80℃ 이상 150℃ 이하인 것을 특징으로 한다.
본 발명에 따른 플라즈마와 증기를 이용한 건식 세정 장치는 상기 반응가스 공급부와 상기 상부공급포트 사이의 배관에 설치된 제1 밸브, 상기 증기 공급부와 상기 측면공급포트 사이의 배관에 설치된 제2 밸브, 상기 제2 밸브와 상기 증기 공급부 사이에 설치된 제3 밸브 및 상기 배출포트와 배출펌프 사이의 배관에 설치된 제4 밸브를 더 포함하는 것을 특징으로 한다.
본 발명에 따른 플라즈마와 증기를 이용한 건식 세정 장치는 상기 제2 밸브와 상기 제3 밸브 사이의 배관의 분기지점과 상기 배출펌프 사이의 배관에 설치된 제5 밸브를 더 포함하는 것을 특징으로 한다.
본 발명에 따른 플라즈마와 증기를 이용한 건식 세정 장치에 있어서, 상기 제1 밸브가 개방된 상태에서 상기 반응가스가 상기 상부공급포트를 통해 상기 챔버의 내부로 공급되어 상기 반응물이 생성되고, 상기 제1 밸브가 폐쇄되고 상기 제2 밸브가 개방된 상태에서 상기 제3 밸브가 개방됨으로써, 상기 고온 증기가 상기 측면공급포트를 통해 상기 챔버의 내부로 공급되어 상기 반응물을 기화시키고, 상기 제1 밸브, 상기 제2 밸브, 상기 제3 밸브가 폐쇄된 상태에서 상기 제4 밸브가 개방됨으로써, 상기 챔버의 내부에 존재하는 기화된 반응물과 고온 증기가 상기 배출펌프에 의해 상기 배출포트를 통해 강제 배출되는 것을 특징으로 한다.
본 발명에 따른 플라즈마와 증기를 이용한 건식 세정 장치에 있어서, 상기 제1 밸브가 개방된 상태에서 상기 반응가스가 상기 상부공급포트를 통해 상기 챔버의 내부로 공급되어 상기 반응물이 생성되고, 상기 제1 밸브가 폐쇄되고 상기 제2 밸브가 개방된 상태에서 상기 제3 밸브가 개방됨으로써, 상기 고온 증기가 상기 측면공급포트를 통해 상기 챔버의 내부로 공급되어 상기 반응물을 기화시키고, 상기 제1 밸브, 상기 제2 밸브, 상기 제3 밸브가 폐쇄된 상태에서 상기 제4 밸브가 개방됨으로써, 상기 챔버의 내부에 존재하는 기화된 반응물과 고온 증기가 상기 배출펌프에 의해 상기 배출포트를 통해 강제 배출되고, 상기 제1 밸브, 상기 제2 밸브, 상기 제3 밸브, 상기 제4 밸브가 폐쇄된 상태에서 상기 제5 밸브가 개방됨으로써, 배관에 잔류하는 증기 성분이 상기 배출펌프에 의해 강제 배출되는 것을 특징으로 한다.
본 발명에 따르면, 건식 세정 과정에서 생성된 반응물인 헥사플루오로규산암모늄((NH4)2SiF6)을 증기를 이용하여 빠른 시간 내에 기화시켜 제거함으로써 공정 시간을 크게 단축할 수 있는 플라즈마와 증기를 이용한 건식 세정 장치가 제공되는 효과가 있다.
또한, 반응물인 헥사플루오로규산암모늄((NH4)2SiF6)을 제거하는 과정에서 반응 부산물이 챔버 내벽에 부착되어 기판의 오염원으로 작용하는 문제를 해결할 수 있는 플라즈마와 증기를 이용한 건식 세정 장치가 제공되는 효과가 있다.
또한, 본 발명의 기술적 과제는 챔버 내벽에 부착되어 고착화되는 반응 부산물을 제거하기 위해 수행되는 챔버 자체에 대한 클리닝(cleaning) 주기를 늘려 유지 보수 비용을 저감할 수 있는 플라즈마와 증기를 이용한 건식 세정 장치가 제공되는 효과가 있다.
또한, 하나의 챔버에서 헥사플루오로규산암모늄((NH4)2SiF6)을 반복적으로 생성시키고 고온의 증기를 이용하여 기화시켜 제거하는 인시튜(In-situ) 공정을 안정적으로 구현할 수 있고, 생산성과 하드웨어 안정성을 개선할 수 있는 플라즈마와 증기를 이용한 건식 세정 장치가 제공되는 효과가 있다.
도 1은 종래의 건식 세정 공정을 나타낸 도면이고,
도 2는 종래의 건식 세정 공정을 구성하는 반응물 제거 공정을 나타낸 도면이고,
도 3은 본 발명의 일 실시 예에 따른 플라즈마와 증기를 이용한 건식 세정 장치를 나타낸 도면이고,
도 4는 본 발명의 일 실시 예에 따른 플라즈마와 증기를 이용한 건식 세정 장치를 구성하는 밸브들의 동작 타이밍을 나타낸 도면이다.
본 명세서에 개시된 본 발명의 개념에 따른 실시 예들에 대해서 특정한 구조적 또는 기능적 설명은 단지 본 발명의 개념에 따른 실시 예들을 설명하기 위한 목적으로 예시된 것으로서, 본 발명의 개념에 따른 실시 예들은 다양한 형태들로 실시될 수 있으며 본 명세서에 설명된 실시 예들에 한정되지 않는다.
본 발명의 개념에 따른 실시 예들은 다양한 변경들을 가할 수 있고 여러 가지 형태들을 가질 수 있으므로 실시 예들을 도면에 예시하고 본 명세서에서 상세하게 설명하고자 한다. 그러나, 이는 본 발명의 개념에 따른 실시 예들을 특정한 개시 형태들에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물, 또는 대체물을 포함한다.
제1 또는 제2 등의 용어는 다양한 구성 요소들을 설명하는데 사용될 수 있지만, 상기 구성 요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는 목적으로만, 예컨대 본 발명의 개념에 따른 권리 범위로부터 벗어나지 않은 채, 제1 구성 요소는 제2 구성 요소로 명명될 수 있고 유사하게 제2 구성 요소는 제1 구성 요소로도 명명될 수 있다.
어떤 구성 요소가 다른 구성 요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성 요소에 직접 연결되어 있거나 접속되어 있을 수도 있지만, 중간에 다른 구성 요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성 요소가 다른 구성 요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는 중간에 다른 구성 요소가 존재하지 않는 것으로 이해되어야 할 것이다. 구성 요소간의 관계를 설명하는 다른 표현들, 즉 "~사이에" 와 "바로 ~사이에" 또는 "~에 이웃하는"과 "~에 직접 이웃하는" 등도 마찬가지로 해석되어야 한다.
본 명세서에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로서, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 본 명세서에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성 요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어는 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 나타낸다. 일반적으로 사용되는 사전에 정의된 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 갖는 것으로 해석되어야 하며, 본 명세서에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이하에서는, 첨부된 도면을 참조하여 본 발명의 바람직한 실시 예를 상세히 설명한다.
도 3은 본 발명의 일 실시 예에 따른 플라즈마와 증기를 이용한 건식 세정 장치를 나타낸 도면이고, 도 4는 본 발명의 일 실시 예에 따른 플라즈마와 증기를 이용한 건식 세정 장치를 구성하는 밸브들의 동작 타이밍을 나타낸 도면이다.
도 3 및 도 4를 참조하면, 본 발명의 일 실시 예에 따른 플라즈마와 증기를 이용한 건식 세정 장치는 챔버(10), 척(chuck, 20), RF 전원(30), RF 전극(40), 상부 샤워헤드(50), 하부 샤워헤드(60), 반응가스 공급부(70), 증기 공급부(80), 제1 밸브(100), 제2 밸브(200), 제3 밸브(300), 제4 밸브(400) 및 제5 밸브(500)를 포함하여 구성된다.
챔버(10)는 상면부에 상부공급포트(11)가 형성되어 있고 하면부에 배출포트(12)가 형성되어 있고 상면부와 하면부 사이의 측면부에는 측면공급포트(13)가 형성되어 있으며 세정 공간을 제공하는 구성요소이다.
척(20)은 챔버(10)의 하면부에 결합되어 있으며 비정질 실리콘 또는 다결정 실리콘 또는 실리콘 산화물 또는 실리콘 질화물이 형성된 단결정의 실리콘 기판(W)이 배치되는 구성요소이다.
RF 전원(30)은 플라즈마 생성을 위한 전원을 후술하는 RF 전극(40)에 공급하는 구성요소이다.
RF 전극(40)은 챔버(10)의 상면부에 결합되어 있으며 RF 전원(30)이 인가되는 구성요소이다.
상부 샤워헤드(50)는 챔버(10)의 상면부에 형성된 상부공급포트(11)와 연통되도록 RF 전극(40)에 결합되어 있으며, 상부 샤워헤드(50)에는 복수의 제1 상부 분사공(51)이 기판(W)이 배치된 하방을 향하도록 형성되어 있다.
하부 샤워헤드(60)는 챔버(10)의 상면부와 하면부 사이의 측면부에 결합되어 있으며 복수의 제1 하부 분사공(61)이 기판(W)이 배치된 하방을 향하도록 형성되어 있다. 또한, 하부 샤워헤드(60)에는 챔버(10)의 측면공급포트(13)와 연통된 복수의 제2 하부 분사공(62)이 형성되어 있다. 또한, 하부 샤워헤드(60)는 RF 전원(30)과 전기적으로 공통 접지되어 있다.
반응가스 공급부(70)는 챔버(10)의 상면부에 형성된 상부공급포트(11)를 통해 챔버(10) 내부로 반응가스를 공급하는 구성요소이다.
증기 공급부(80)는 챔버(10)의 측면부에 형성된 측면공급포트(13)를 통해 챔버(10) 내부로 고온 증기를 공급하는 구성요소이다.
제1 밸브(100)는 반응가스 공급부(70)와 상부공급포트(11) 사이의 배관에 설치되어 있다.
제2 밸브(200)는 증기 공급부(80)와 측면공급포트(13) 사이의 배관에 설치되어 있다.
제3 밸브(300)는 제2 밸브(200)와 증기 공급부(80) 사이의 배관에 설치되어 있다.
제4 밸브(400)는 배출포트(12)와 배출펌프(600) 사이의 배관에 설치되어 있다.
제5 밸브(500)는 제2 밸브(200)와 제3 밸브 사이의 배관의 분기지점과 배출펌프(600) 사이의 배관에 설치되어 있다.
이와 같이 구성되는 본 발명의 일 실시 예에 따른 플라즈마와 증기를 이용한 건식 세정 장치에 따르면, 1) 반응물 생성단계에서, 챔버(10)의 상면부에 형성된 상부공급포트(11)를 통해 공급되는 반응가스가 RF 전극(40)과 하부 샤워헤드(60) 사이의 플라즈마 생성영역에서 RF 전원(30)에 의해 플라즈마 처리되어 단결정의 실리콘 기판(W)으로 공급됨으로써 단결정의 실리콘 기판(W) 상에 형성되어 있던 비정질 실리콘 또는 다결정 실리콘 또는 실리콘 산화물 또는 실리콘 질화물이 헥사플루오로규산암모늄((NH4)2SiF6)을 포함하는 반응물로 변화하고, 2) 반응물 제거단계에서, 챔버(10)의 측면부에 형성된 측면공급포트(13)를 통해 공급되는 고온 증기가 하부 샤워헤드(60)의 제2 하부 분사공(62)을 통해 반응물로 분사되어 반응물을 기화시키고, 기화된 반응물이 고온 증기와 함께 챔버(10)의 하면부에 형성된 배출포트(12)를 통해 배출된다.
이러한 반응물 생성단계와 반응물 제거단계를 보다 구체적이고 예시적으로 설명하면 다음과 같다.
첫번째 단계인 반응물 생성단계에서, NF3와 NH3를 포함하는 반응가스가 플라즈마 상태에서 이온화되고, 생성된 이온 중에는 HF2 -의 이온화 상수가 매우 높아 반응성이 뛰어나 옥사이드 제거 반응에 가장 큰 역할을 하는 것으로 알려져 있다.
HF2 -이온은 NH4F, HF 생성과 관련이 있고, NF3, NH3의 혼합 비율, 압력, 전원 파워(power) 등에 따라 이온의 종류 및 양이 달라진다.
옥사이드와 HF2 - 이온 반응식은 SiO2 + HF2- + H+ → SiF6 2- + 2H2O, SiF6 2- + NH4 + → (NH4)2SiF6이다
반응물 생성단계에서 생성되는 헥사플루오르규산암모늄((NH4)2SiF6)은 SiO2 와 1:1 반응으로 생성되어 3배의 부피로 기판(W) 표면에 고체상으로 존재하다가, 두번째 단계인 반응물 제거단계에서, 고온 증기에 의해 기화되어 제거된다.
반응물 제거에 있어서 종래 기술은 기판을 특정한 온도까지 상승시키기 위해 많은 시간이 필요하다는 문제점이 있다. 가령 반응물 생성단계에서 기판이 배치되는 척의 온도가 30℃이면 어닐링 단계를 실행시에는 1분 이상 기다려야 30℃의 기판 온도가 100℃ 이상으로 올라가서 반응물이 제거되기 때문에, 웨이퍼 온도 상승시간이 길어져 공정처리 시간이 길어지고 생산량이 줄어들게 된다는 문제점이 있었다.
그러나 종래 기술과 달리, 본 발명의 일 실시 예는 고온의 증기를 공급하여 반응물을 제거하기 때문에, 기판(W) 상의 반응물이 증기와의 반응으로 즉시 기화된다. 반응 시간은 불과 수초 이내이고, 반응물은 챔버 외부로 즉시 배출된다.
예를 들어, 증기 공급부(80)에 의해 공급되는 고온 증기의 온도는 100℃ 이상 400℃ 이하인 것이 바람직하다. 고온 증기의 온도를 이와 같이 구성하면, 증기를 이용하여 반응물을 제거하는 과정에서 증기가 액화되는 것을 방지하고 반응물 제거속도를 높이는 동시에 지나친 고온으로 인해 기판(W)에 형성되어 있는 소자들의 특성이 열화(deterioration)되는 것을 방지할 수 있다.
예를 들어, 증기 공급부(80)에 의해 공급되는 고온 증기는 탈이온수와 IPA(isopropyl alcohol, 이소프로필 알코올) 중에서 적어도 하나를 포함할 수 있으며, 추가로 질소가스 또는 불활성가스를 더 포함할 수 있다.
구체적인 예로, 고온 증기는, 1) 증기화된 탈이온수 단독으로 구성되거나, 2) 증기화된 탈이온수에 질소가스 또는 불활성가스가 혼합되어 구성되거나, 3) 증기화된 IPA 단독으로 구성되거나, 4) 증기화된 IPA에 질소가스 또는 불활성가스가 혼합되어 구성되거나, 5) 증기화된 탈이온수와 IPA의 혼합체로 구성되거나, 6) 증기화된 탈이온수와 IPA의 혼합체에 질소가스 또는 불활성가스가 추가되도록 구성될 수 있다.
예를 들어, 반응가스 공급부(70)에 의해 공급되는 반응가스는 적어도 HF와 NH3를 포함하거나 NF3와 NH3를 포함할 수 있다.
예를 들어, 척(20)의 가열온도는 80℃ 이상 200℃ 이하가 되도록 구성될 수 있다. 척(20)의 가열온도를 이와 같이 구성하면, 증기를 이용하여 반응물을 제거하는 과정에서 증기가 액화되는 것을 방지하고 반응물 제거속도를 높일 수 있다.
예를 들어, 챔버(10)의 내부 벽면의 가열온도는 80℃ 이상 150℃ 이하가 되도록 구성될 수 있다. 챔버(10)의 내부 벽면의 가열온도를 이와 같이 구성하면, 기화된 반응 부산물이 챔버(10)의 내부 벽면에 부착되는 것을 줄일 수 있다.
만약, 기화된 반응 부산물이 챔버(10)의 내부 벽면에 부착되는 것을 방치한다면, 동일한 공정 작업을 반복 진행함에 따라 챔버(10) 내벽에 부착된 반응 부산물은 점차 두꺼운 형태의 파티클이 되어 차후 기판(W) 표면을 오염시키는 요인으로 작용한다.
그러나 본 발명의 일 실시 예에 따르면, 챔버(10)의 내부 벽면의 가열온도는 80℃ 이상 150℃ 이하가 되도록 구성하여 기화된 반응 부산물이 챔버(10)의 내부 벽면에 부착되는 것을 줄이는 동시에, 고온 증기 분사 방식으로 반응물을 기화시킨 후 즉시 외부로 배출시키기 때문에, 반응 부산물이 챔버(10) 내부 벽면에 고착화된 후 차후 기판(W) 오염원이 되는 문제를 방지할 수 있다.
이하에서는 도 4를 추가로 참조하여 플라즈마와 증기를 이용한 건식 세정 장치의 구체적인 동작을 예시적으로 설명한다.
도 4를 추가로 참조하면, 먼저, 제1 밸브(100)가 개방된 상태에서, 반응가스가 챔버의 상면부에 형성된 상부공급포트(11)를 통해 챔버(10)의 내부로 공급되어 반응물이 생성되는 과정이 수행된다.
다음으로, 제1 밸브(100)가 폐쇄되고 제2 밸브(200)가 개방된 상태에서 제3 밸브(300)가 개방됨으로써, 고온 증기가 챔버(10)의 측면부에 형성된 측면공급포트(13)를 통해 챔버(10)의 내부로 공급되어 반응물을 기화시키는 과정이 수행된다.
제1 밸브(100), 제2 밸브(200), 제3 밸브(300)가 폐쇄된 상태에서 제4 밸브(400)가 개방됨으로써, 챔버(10)의 내부에 존재하는 기화된 반응물과 고온 증기가 배출펌프(600)에 의해 배출포트(12)를 통해 외부로 강제 배출되는 과정이 수행된다.
이와 같이 종래 기술과 달리 반응물 제거를 위하여 고온 증기를 이용하면 기판(W) 상의 반응물은 증기와 반응하여 즉시 기화된다. 기화 반응 시간은 수초 이내이고 기화된 반응물과 증기는 챔버(10) 내부에서 응고되기 전에 배출펌프(600)에 의해 배출포트(12)를 통해 외부로 강제 배출된다.
다음으로, 제1 밸브(100), 제2 밸브(200), 제3 밸브(300), 제4 밸브(400)가 폐쇄된 상태에서 제5 밸브(500)가 개방됨으로써, 배관에 잔류하는 증기 성분이 배출펌프(600)에 의해 외부로 강제 배출되는 과정이 수행된다. 이 과정을 통해 배관 내부의 증기 성분이 응고하여 배관이 부식되는 문제를 방지할 수 있다.
이상에서 상세히 설명한 바와 같이 본 발명에 따르면, 건식 세정 과정에서 생성된 반응물인 헥사플루오로규산암모늄((NH4)2SiF6)을 증기를 이용하여 빠른 시간 내에 기화시켜 제거함으로써 공정 시간을 크게 단축할 수 있는 플라즈마와 증기를 이용한 건식 세정 장치가 제공되는 효과가 있다.
또한, 반응물인 헥사플루오로규산암모늄((NH4)2SiF6)을 제거하는 과정에서 반응 부산물이 챔버 내벽에 부착되어 기판의 오염원으로 작용하는 문제를 해결할 수 있는 플라즈마와 증기를 이용한 건식 세정 장치가 제공되는 효과가 있다.
또한, 챔버 내벽에 부착되어 고착화되는 반응 부산물을 제거하기 위해 수행되는 챔버 자체에 대한 클리닝(cleaning) 주기를 늘려 유지 보수 비용을 저감할 수 있는 플라즈마와 증기를 이용한 건식 세정 장치가 제공되는 효과가 있다.
또한, 하나의 챔버에서 헥사플루오로규산암모늄((NH4)2SiF6)을 반복적으로 생성시키고 고온의 증기를 이용하여 기화시켜 제거하는 인시튜(In-situ) 공정을 안정적으로 구현할 수 있고, 생산성과 하드웨어 안정성을 개선할 수 있는 플라즈마와 증기를 이용한 건식 세정 장치가 제공되는 효과가 있다.
[부호의 설명]
10: 챔버
11: 상부공급포트
12: 배출포트
13: 측면공급포트
20: 척(chuck)
30: RF 전원
40: RF 전극
50: 상부 샤워헤드
51: 제1 상부 분사공
60: 하부 샤워헤드
61: 제1 하부 분사공
62: 제2 하부 분사공
70: 반응가스 공급부
80: 증기 공급부
100: 제1 밸브
200: 제2 밸브
300: 제3 밸브
400: 제4 밸브
500: 제5 밸브
600: 배출펌프
W: 실리콘 기판

Claims (12)

  1. 상면부에 상부공급포트가 형성되고 있고 하면부에 배출포트가 형성되어 있고 상기 상면부와 상기 하면부 사이의 측면부에 측면공급포트가 형성되어 있으며 세정 공간을 제공하는 챔버;
    상기 챔버의 하면부에 결합되어 있으며 비정질 실리콘 또는 다결정 실리콘 또는 실리콘 산화물 또는 실리콘 질화물이 형성된 단결정의 실리콘 기판이 배치되는 척(chuck);
    상기 챔버의 상면부에 결합되어 있으며 RF 전원이 인가되는 RF 전극;
    상기 챔버의 상면부에 형성된 상부공급포트와 연통되도록 상기 RF 전극에 결합되고 복수의 상부 분사공이 형성된 상부 샤워헤드;
    상기 챔버의 측면부에 결합되어 있으며 복수의 제1 하부 분사공 및 상기 측면공급포트와 연통된 제2 하부 분사공이 형성되어 있고 전기적으로 접지된 하부 샤워헤드;
    상기 챔버의 상면부에 형성된 상부공급포트를 통해 반응가스를 공급하는 반응가스 공급부; 및
    상기 챔버의 측면부에 형성된 측면공급포트를 통해 고온 증기를 공급하는 증기 공급부를 포함하는, 플라즈마와 증기를 이용한 건식 세정 장치.
  2. 제1항에 있어서,
    상기 챔버의 상면부에 형성된 상부공급포트를 통해 공급되는 반응가스가 상기 RF 전극과 상기 하부 샤워헤드 사이의 플라즈마 생성영역에서 상기 RF 전원에 의해 플라즈마 처리된 후 상기 하부 샤워헤드의 제1 하부 분사공을 통해 상기 실리콘 기판으로 공급됨으로써 상기 실리콘 산화물 또는 상기 실리콘 질화물이 헥사플루오로규산암모늄((NH4)2SiF6)을 포함하는 반응물로 변화하고,
    상기 챔버의 측면부에 형성된 측면공급포트를 통해 공급되는 고온 증기가 상기 하부 샤워헤드의 제2 하부 분사공을 통해 상기 반응물로 분사되어 상기 반응물을 기화시키고, 기화된 반응물이 상기 고온 증기와 함께 상기 챔버의 하면부에 형성된 배출포트를 통해 배출되는 것을 특징으로 하는, 플라즈마와 증기를 이용한 건식 세정 장치.
  3. 제2항에 있어서,
    상기 고온 증기의 온도는 100℃ 이상 400℃ 이하인 것을 특징으로 하는, 플라즈마와 증기를 이용한 건식 세정 장치.
  4. 제2항에 있어서,
    상기 고온 증기는 탈이온수와 IPA(isopropyl alcohol, 이소프로필 알코올) 중에서 적어도 하나를 포함하는 것을 특징으로 하는, 플라즈마와 증기를 이용한 건식 세정 장치.
  5. 제4항에 있어서,
    상기 고온 증기는 질소가스 또는 불활성가스를 더 포함하는 것을 특징으로 하는, 플라즈마와 증기를 이용한 건식 세정 장치.
  6. 제2항에 있어서,
    상기 반응가스는 적어도 HF와 NH3를 포함하거나 NF3와 NH3를 포함하는 것을 특징으로 하는, 플라즈마와 증기를 이용한 건식 세정 장치.
  7. 제2항에 있어서,
    상기 척의 가열온도는 80℃ 이상 200℃ 이하인 것을 특징으로 하는, 플라즈마와 증기를 이용한 건식 세정 장치.
  8. 제2항에 있어서,
    상기 챔버의 내부 벽면의 가열온도는 80℃ 이상 150℃ 이하인 것을 특징으로 하는, 플라즈마와 증기를 이용한 건식 세정 장치.
  9. 제2항에 있어서,
    상기 반응가스 공급부와 상기 상부공급포트 사이의 배관에 설치된 제1 밸브;
    상기 증기 공급부와 상기 측면공급포트 사이의 배관에 설치된 제2 밸브;
    상기 제2 밸브와 상기 증기 공급부 사이에 설치된 제3 밸브; 및
    상기 배출포트와 배출펌프 사이의 배관에 설치된 제4 밸브를 더 포함하는 것을 특징으로 하는, 플라즈마와 증기를 이용한 건식 세정 장치.
  10. 제9항에 있어서,
    상기 제2 밸브와 상기 제3 밸브 사이의 배관의 분기지점과 상기 배출펌프 사이의 배관에 설치된 제5 밸브를 더 포함하는 것을 특징으로 하는, 플라즈마와 증기를 이용한 건식 세정 장치.
  11. 제9항에 있어서,
    상기 제1 밸브가 개방된 상태에서 상기 반응가스가 상기 상부공급포트를 통해 상기 챔버의 내부로 공급되어 상기 반응물이 생성되고,
    상기 제1 밸브가 폐쇄되고 상기 제2 밸브가 개방된 상태에서 상기 제3 밸브가 개방됨으로써, 상기 고온 증기가 상기 측면공급포트를 통해 상기 챔버의 내부로 공급되어 상기 반응물을 기화시키고,
    상기 제1 밸브, 상기 제2 밸브, 상기 제3 밸브가 폐쇄된 상태에서 상기 제4 밸브가 개방됨으로써, 상기 챔버의 내부에 존재하는 기화된 반응물과 고온 증기가 상기 배출펌프에 의해 상기 배출포트를 통해 강제 배출되는 것을 특징으로 하는, 플라즈마와 증기를 이용한 건식 세정 장치.
  12. 제10항에 있어서,
    상기 제1 밸브가 개방된 상태에서 상기 반응가스가 상기 상부공급포트를 통해 상기 챔버의 내부로 공급되어 상기 반응물이 생성되고,
    상기 제1 밸브가 폐쇄되고 상기 제2 밸브가 개방된 상태에서 상기 제3 밸브가 개방됨으로써, 상기 고온 증기가 상기 측면공급포트를 통해 상기 챔버의 내부로 공급되어 상기 반응물을 기화시키고,
    상기 제1 밸브, 상기 제2 밸브, 상기 제3 밸브가 폐쇄된 상태에서 상기 제4 밸브가 개방됨으로써, 상기 챔버의 내부에 존재하는 기화된 반응물과 고온 증기가 상기 배출펌프에 의해 상기 배출포트를 통해 강제 배출되고,
    상기 제1 밸브, 상기 제2 밸브, 상기 제3 밸브, 상기 제4 밸브가 폐쇄된 상태에서 상기 제5 밸브가 개방됨으로써, 배관에 잔류하는 증기 성분이 상기 배출펌프에 의해 강제 배출되는 것을 특징으로 하는, 플라즈마와 증기를 이용한 건식 세정 장치.
PCT/KR2020/005422 2019-05-17 2020-04-24 플라즈마와 증기를 이용한 건식 세정 장치 WO2020235822A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080034382.3A CN113811400B (zh) 2019-05-17 2020-04-24 使用等离子体和蒸汽的干式清洁设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190057817A KR102179717B1 (ko) 2019-05-17 2019-05-17 플라즈마와 증기를 이용한 건식 세정 장치
KR10-2019-0057817 2019-05-17

Publications (1)

Publication Number Publication Date
WO2020235822A1 true WO2020235822A1 (ko) 2020-11-26

Family

ID=73458131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/005422 WO2020235822A1 (ko) 2019-05-17 2020-04-24 플라즈마와 증기를 이용한 건식 세정 장치

Country Status (4)

Country Link
KR (1) KR102179717B1 (ko)
CN (1) CN113811400B (ko)
TW (1) TWI748453B (ko)
WO (1) WO2020235822A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230151810A (ko) * 2022-04-26 2023-11-02 주식회사 원익아이피에스 기판 처리 장치 및 기판 처리 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070044081A (ko) * 2005-10-24 2007-04-27 삼성전자주식회사 반도체 기판의 처리 방법
KR20080090026A (ko) * 2007-04-03 2008-10-08 주식회사 소로나 박막 코팅 장치 및 방법
JP2010225847A (ja) * 2009-03-24 2010-10-07 Tokyo Electron Ltd 真空処理装置,減圧処理方法,基板処理方法
KR20150109288A (ko) * 2014-03-19 2015-10-01 에이에스엠 아이피 홀딩 비.브이. 플라즈마 전-세정 모듈 및 공정
KR20190032033A (ko) * 2017-09-19 2019-03-27 무진전자 주식회사 인시튜 건식 세정 방법 및 장치

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100696378B1 (ko) * 2005-04-13 2007-03-19 삼성전자주식회사 반도체 기판을 세정하는 장치 및 방법
KR20080019141A (ko) * 2006-08-25 2008-03-03 삼성전자주식회사 화학기상증착설비
KR100784661B1 (ko) 2006-12-26 2007-12-12 피에스케이 주식회사 반도체 소자의 제조방법
JP5016351B2 (ja) * 2007-03-29 2012-09-05 東京エレクトロン株式会社 基板処理システム及び基板洗浄装置
JP5374039B2 (ja) 2007-12-27 2013-12-25 東京エレクトロン株式会社 基板処理方法、基板処理装置及び記憶媒体
JP5707144B2 (ja) * 2011-01-18 2015-04-22 東京エレクトロン株式会社 基板処理装置のドライクリーニング方法及び金属膜の除去方法
KR101314162B1 (ko) * 2012-02-16 2013-10-04 주식회사 다원시스 복합 세정장치 및 방법
JP2015211156A (ja) * 2014-04-28 2015-11-24 東京エレクトロン株式会社 ドライクリーニング方法及びプラズマ処理装置
US10358715B2 (en) * 2016-06-03 2019-07-23 Applied Materials, Inc. Integrated cluster tool for selective area deposition
KR101981738B1 (ko) * 2017-09-19 2019-05-27 무진전자 주식회사 기판 처리 방법 및 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070044081A (ko) * 2005-10-24 2007-04-27 삼성전자주식회사 반도체 기판의 처리 방법
KR20080090026A (ko) * 2007-04-03 2008-10-08 주식회사 소로나 박막 코팅 장치 및 방법
JP2010225847A (ja) * 2009-03-24 2010-10-07 Tokyo Electron Ltd 真空処理装置,減圧処理方法,基板処理方法
KR20150109288A (ko) * 2014-03-19 2015-10-01 에이에스엠 아이피 홀딩 비.브이. 플라즈마 전-세정 모듈 및 공정
KR20190032033A (ko) * 2017-09-19 2019-03-27 무진전자 주식회사 인시튜 건식 세정 방법 및 장치

Also Published As

Publication number Publication date
CN113811400A (zh) 2021-12-17
TWI748453B (zh) 2021-12-01
CN113811400B (zh) 2023-07-25
TW202109705A (zh) 2021-03-01
KR102179717B1 (ko) 2020-11-17

Similar Documents

Publication Publication Date Title
WO2019059621A1 (ko) 인시튜 건식 세정 방법 및 장치
WO2019059620A1 (ko) 기판 처리 방법 및 장치
WO2013095030A1 (ko) 기판 처리 장치 및 기판 처리 방법
WO2017171346A1 (ko) 실리콘산화막의 선택적 식각 방법
WO2020235822A1 (ko) 플라즈마와 증기를 이용한 건식 세정 장치
WO2020218815A1 (ko) 식각장치 및 그 식각방법
WO2020235823A1 (ko) 플라즈마와 증기를 이용한 건식 세정 방법
WO2017131404A1 (ko) 기판처리장치
WO2019107728A1 (ko) 고 선택적 실리콘 산화물 제거를 위한 건식 세정 장치 및 방법
WO2019124736A1 (ko) 반도체 기판의 건식 세정을 위한 플라즈마 장치
WO2022260473A1 (ko) 배리어층의 형성 방법
WO2020040464A1 (ko) 대기압 플라즈마와 스팀을 이용한 건식 세정 장치 및 방법
WO2013055023A1 (en) Systems and methods for processing substrates
WO2023048455A1 (ko) 기판 처리 장치의 세정 방법
WO2022080656A1 (ko) 기판처리장치
WO2023068466A1 (ko) 기판 처리 장치 및 이를 이용한 기판 처리 방법
WO2021002605A1 (ko) 기판처리장치
WO2023014195A1 (ko) Sic 기판의 제조 방법
KR101300998B1 (ko) 기판처리시스템
WO2022025644A1 (ko) 박막 형성 방법
WO2024019392A1 (ko) 박막 제조방법, 박막, 및 기판처리장치
KR100639517B1 (ko) 확산기를 구비한 cvd 장비
WO2021154025A1 (ko) 기판처리장치 및 기판처리방법
WO2022177102A2 (ko) 식각 처리 장치 및 식각 처리 방법
WO2020101375A1 (ko) 기판처리장치 및 기판처리방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20809342

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20809342

Country of ref document: EP

Kind code of ref document: A1