WO2020233605A1 - 一种飞行控制方法、装置、系统及无人机 - Google Patents

一种飞行控制方法、装置、系统及无人机 Download PDF

Info

Publication number
WO2020233605A1
WO2020233605A1 PCT/CN2020/091343 CN2020091343W WO2020233605A1 WO 2020233605 A1 WO2020233605 A1 WO 2020233605A1 CN 2020091343 W CN2020091343 W CN 2020091343W WO 2020233605 A1 WO2020233605 A1 WO 2020233605A1
Authority
WO
WIPO (PCT)
Prior art keywords
flight
amount
rocker
joystick
stick
Prior art date
Application number
PCT/CN2020/091343
Other languages
English (en)
French (fr)
Inventor
钟自鸣
Original Assignee
深圳市道通智能航空技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市道通智能航空技术有限公司 filed Critical 深圳市道通智能航空技术有限公司
Publication of WO2020233605A1 publication Critical patent/WO2020233605A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0011Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement
    • G05D1/0016Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement characterised by the operator's input device
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft

Definitions

  • This application relates to the technical field of drone control, in particular to a flight control method, device, system and drone.
  • UAVs do not yet have the ability to fly autonomously in a relatively complex flight environment, and they still need to be controlled by a remote controller.
  • the drone is controlled by the remote control, only the flight control instructions sent by the remote control can control the flight of the drone, and the autonomous motion planning module in the drone control system does not have any control on the movement of the drone.
  • Control rights that is, when the drone is controlled by the remote control, it cannot achieve autonomous obstacle avoidance and other functions.
  • the operator needs to cooperate with the navigation map and the camera image transmission screen to determine and plan the obstacle avoidance route through the remote control
  • the drone controls the drone to avoid obstacles.
  • the operator needs to plan and adjust the flight route in real time according to the navigation map and the camera image transmission screen while operating the remote control.
  • Such flight control will undoubtedly increase the difficulty of the drone and reduce the user's operating experience.
  • the embodiments of the present invention aim to provide a flight control method, device, system and drone, which can provide operation assistance at the remote control terminal, further simplify the process of the operator operating the drone, reduce the difficulty of using the drone, and improve users Operating experience.
  • a technical solution adopted in the embodiments of the present invention is to provide a flight control method applied to an unmanned aerial vehicle.
  • the unmanned aerial vehicle is communicatively connected with a remote controller, and the method includes:
  • the obtaining the flight planning information includes:
  • the flight planning information is generated.
  • the remote controller is connected to a mobile terminal, and the mobile terminal is in communication connection with the drone; then,
  • the obtaining of the flight planning information includes:
  • the generating the lever control instruction according to the flight planning information includes:
  • the flight control parameters include flight speed and/or flight direction; then,
  • the inverse calculation of the flight control parameter to obtain the lever amount parameter includes:
  • the stick amount parameter is calculated inversely, wherein the stick amount parameter includes a stick mark and a stick amount.
  • the flight control parameter includes the flight speed
  • the joystick identifier includes a first joystick identifier
  • the joystick amount includes the first joystick amount
  • the encapsulating the rod amount parameter to generate the rod amount control instruction includes:
  • the flight control parameter includes the flight direction
  • the joystick identifier includes a second joystick identifier
  • the joystick amount includes the second joystick amount
  • the encapsulating the rod amount parameter to generate the rod amount control instruction includes:
  • the second rocker mark and the second rocker amount are encapsulated into the stick amount control command.
  • the flight control parameters also include flight duration; then,
  • the inverse calculation of the flight control parameter to obtain the lever amount parameter includes:
  • the encapsulating the rod amount parameter to generate the rod amount control instruction includes:
  • the rocker mark, the rocker amount, and the stick amount holding time are encapsulated into the stick amount control command.
  • another technical solution adopted in the embodiments of the present invention is to provide a flight control device applied to an unmanned aerial vehicle.
  • the unmanned aerial vehicle is in communication connection with a remote controller, and the device includes:
  • An obtaining module which is used to obtain flight planning information
  • a generating module which is used to generate a stick control instruction according to the flight planning information
  • a sending module configured to send the stick control instruction to the remote controller, so that the remote controller switches the position of the joystick according to the stick control instruction and generates a flight control instruction
  • the receiving module is configured to receive the flight control instruction, and control the drone to fly according to the flight control instruction.
  • the acquisition module is specifically configured to:
  • the flight planning information is generated.
  • the remote control is connected to a mobile terminal, and the mobile terminal is in communication connection with the drone; then,
  • the acquiring module is specifically used for:
  • the generating module is specifically configured to:
  • the flight control parameters include flight speed and/or flight direction; then,
  • the generating module is specifically used for:
  • the stick amount parameter is calculated inversely, wherein the stick amount parameter includes a stick mark and a stick amount.
  • the flight control parameter includes the flight speed
  • the joystick identifier includes a first joystick identifier
  • the joystick amount includes the first joystick amount
  • the generating module is specifically used for:
  • the flight control parameter includes the flight direction
  • the joystick identifier includes a second joystick identifier
  • the joystick amount includes the second joystick amount
  • the generating module is specifically used for:
  • the second rocker mark and the second rocker amount are encapsulated into the stick amount control command.
  • the flight control parameters also include flight duration; then,
  • the generating module is specifically used for:
  • the rocker mark, the rocker amount, and the stick amount holding time are encapsulated into the stick amount control command.
  • a drone including:
  • An arm connected to the fuselage
  • the power device is arranged on the arm and is used to provide power for the drone to fly;
  • At least one processor At least one processor
  • the device can be used to perform the flight control method described above.
  • a flight control system including:
  • a remote control the remote control is communicatively connected with the drone, the remote control includes a lever amount actuator, and the lever amount actuator is used to switch the position of the joystick according to the lever amount control instruction sent by the drone And generate flight control instructions.
  • a mobile terminal is connected to the remote controller, and the mobile terminal is in communication connection with the drone, and the mobile terminal is used to send flight mode information to the drone.
  • another technical solution adopted by the embodiments of the present invention is to provide a non-volatile computer-readable storage medium, and the non-volatile computer-readable storage medium stores computer-executable instructions.
  • the computer-executable instructions are used to make the drone execute the flight control method described above.
  • the embodiments of the present invention provide a flight control method, device, system, and a drone.
  • the drone obtains a flight plan.
  • the information generates stick control instructions, and then controls the remote control to switch the position of the joystick through the stick control instructions and generates flight control instructions to control the drone flight, so that the drone can directly operate the remote control without the operator’s cooperation.
  • the navigation map and camera image transmission screen operate the remote control, providing the operator with intelligent operation assistance, simplifying the process of the operator operating the drone, reducing the difficulty of using the drone, and improving the user's operating experience.
  • Fig. 1 is a schematic structural diagram of a flight control system provided by an embodiment of the present invention
  • FIG. 2 is a schematic flowchart of a flight control method provided by an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a flight control device provided by an embodiment of the present invention.
  • Fig. 4 is a schematic diagram of the hardware structure of a drone provided by an embodiment of the present invention.
  • the present invention provides a flight control method and device.
  • the method and device are applied to an unmanned aerial vehicle, so that after the unmanned aerial vehicle is communicatively connected with a remote controller, it can generate a stick control instruction according to the acquired flight planning information
  • To control the remote control to switch the joystick position realize the autonomous operation of the remote control, provide the operator with intelligent operation assistance, simplify the process of the operator to operate the drone, reduce the difficulty of using the drone, and improve the user experience .
  • the UAV may be any suitable type of high-altitude UAV or low-altitude UAV, including fixed-wing UAVs, rotary-wing UAVs and the like.
  • FIG. 1 is a flight control system provided by one embodiment of the present invention, which includes a mobile terminal 100, a remote controller 200, and a drone 300.
  • the mobile terminal 100 is connected to the remote controller 200, and the drone 300 is respectively Communication and connection with the mobile terminal 100 and the remote controller 200.
  • the mobile terminal 100 is an electronic device capable of running application programs such as a smart phone or a tablet computer. It includes one or more input/output components, such as a display screen, buttons, touch screen, etc., and the input/output component is used for
  • the interactive interface of the application program running on the mobile terminal 100 is displayed to the user and the user's trigger operation in the interactive interface is collected, so as to realize the interaction between the user and the mobile terminal 100.
  • the flight control program provided by the supplier or service provider of the drone 300 running in the mobile terminal 100, through which one or more users can bind or register one or more drones 300, so that the user and the drone 300 can interact through the interactive interface of the flight control program.
  • each flight mode selection button corresponds to one flight mode information.
  • the mobile terminal 100 can collect the flight mode information corresponding to the flight mode selection button triggered by the user, and send the collected flight mode information to the communication connected drone 300.
  • the flight mode selection button set in the interactive interface of the flight control program includes a teaching flight mode selection button and/or a fixed speed flight mode selection button.
  • the flight mode information corresponding to the teaching flight mode selection button is the teaching flight information
  • the flight mode information corresponding to the constant speed flight mode selection button is the constant speed flight information.
  • different flight mode information corresponds to different preset flight control parameters.
  • the corresponding preset flight control parameters include the preset flight speed, the preset flight direction and the preset flight duration; when the flight mode information is the fixed speed flight information, the corresponding The preset flight control parameters include the preset flight speed.
  • the preset flight control parameters are the flight parameters preset by the user through the interactive interface of the flight control program to guide the flight of the drone 300, for example: when it is necessary to guide the drone 300 to fly at a constant speed of 10m/s In the constant speed flight mode, set 10m/s as the preset flight control parameter.
  • the remote control 200 includes a rocker 210 and a lever amount actuator 220.
  • the lever amount actuator 220 is connected to the rocker 210 and is used to control the rocker 210 to switch positions.
  • the switching position of the control rocker 210 means that the control rocker 210 generates a displacement between the initial position of the rocker and the end position of the rocker.
  • the end position of the rocker includes a first end position and a second end position, and the first end position and the second end position are symmetrical with respect to the initial position of the rocker. Based on this, the rocker 210 is in the initial position of the rocker. The displacement generated from the first end position is opposite to the direction of the displacement of the rocker 210 at the initial position and the second end position of the rocker.
  • the rocker 210 includes a speed rocker, a direction rocker, and a lift rocker.
  • the speed rocker moves downward or upward with the initial position of the rocker as a starting point, and is used to control the flying speed of the drone 300.
  • the drone 300 is controlled to decelerate; when the speed rocker moves upward, the drone 300 is controlled to accelerate.
  • the distance that the speed rocker moves is different, the flying speed of the drone 300 is different. Specifically, the greater the distance the speed rocker moves down, the slower the flying speed of the drone 300; The greater the distance, the faster the flying speed of the drone 300.
  • the direction joystick and the lift joystick are used to control the flight direction of the drone 300.
  • the direction joystick moves left or right from the initial position of the joystick, and is used to control the drone 300 to fly left or right.
  • the direction joystick is moved to the left, the drone 300 is controlled to fly to the left; when the direction joystick is moved to the right, the drone 300 is controlled to fly to the right.
  • the lifting joystick moves downward or upward from the initial position of the joystick, and is used to control the drone 300 to fly backward or forward.
  • the lifting rocker moves downward, the drone 300 is controlled to fly backward; when the lifting rocker moves upward, the drone 300 is controlled to fly forward.
  • the lifting rocker is used to control the drone 300 to descend or rise. At this time, when the lifting rocker moves downward, the drone 300 is controlled to descend; when the lifting rocker moves upward When, control the drone 300 to rise.
  • the direction and distance of the movement of the rocker 210 can be determined by the amount of the rocker, which is the ratio of the displacement of the rocker 210 to the maximum movable distance of the rocker 210, and the range is [-1,1 ].
  • the maximum movable distance of the rocker 210 is the distance between the initial position of the rocker and the end position of the rocker. When the rocker 210 is at the initial position of the rocker, the amount of the rocker is 0, and when the rocker 210 is at the end of the rocker In position, the absolute value of the joystick amount is 1.
  • the direction of the rocker 210 is determined by the amount of the rocker, if the amount of the rocker is -1 ⁇ S ⁇ 0, it is determined that the speed rocker moves down, the direction rocker moves to the left, and the lift rocker moves down; if If the rocker amount is 0 ⁇ S ⁇ 1, it is determined that the speed rocker moves up, the direction rocker moves to the right, and the elevator rocker moves up.
  • the absolute value of the product of the maximum movable distance of the rocker 210 and the amount of the rocker is determined as the distance that the rocker 210 moves.
  • the different rocker amounts of the speed rocker can represent the different flying speed of the drone 300.
  • the amount of joystick of the speed joystick 1, it means the flying speed of the drone 300 is 10m/s; when the amount of the speed joystick is -0.5, it means the flying speed of the drone 300 is -5m/ s.
  • the lever actuator 220 includes an execution part 221 and a control unit 222, and the control unit 222 is connected to the execution part 221 for controlling the execution part 221 to perform actions.
  • the number of the executing parts 221 is the same as the number of the rocker 210, including a speed rocker executing part, a direction rocker executing part, and a lifting rocker executing part.
  • the lever amount actuator 220 is correspondingly connected to the rocker 210 through the actuator 221 to drive the rocker 210 to switch positions through the action of the actuator 221.
  • the speed rocker actuator is connected to the speed rocker to drive the speed rocker to switch positions
  • the direction rocker actuator is connected to the direction rocker to drive the direction rocker to switch positions
  • the elevator rocker actuator and the elevator rocker switch positions Connect to drive the lifting rocker to switch positions.
  • An identification number is also set in each execution part 221, so that the control unit 222 controls the corresponding execution part 221 to perform actions through the identification number.
  • the identification number of the speed rocker execution part is 1
  • the identification number of the direction rocker execution part is 2
  • the identification number of the lifting rocker execution part is 3. If the identification number recognized by the control unit 222 is 2, the control direction rocker execution unit performs an action to drive the direction rocker to switch positions.
  • the control unit 222 is a processor with a certain logic computing capability, such as a single-chip microcomputer, a microprocessor, or a CPU.
  • the control unit 222 is used to communicate with the drone 300 to receive the rod amount control sent by the drone 300 According to the command, the corresponding execution unit 221 is controlled to execute actions to drive the joystick 210 connected to the execution unit 221 to switch positions, and the flight control instruction is generated after the joystick 210 switches positions.
  • the lever amount control instruction includes a rocker indicator and a rocker amount
  • the control unit 222 can determine the executing part 221 to perform an action according to the rocker indicator, and can control the motion range and direction of the executing part 221 according to the rocker amount.
  • the stick amount control instruction also includes the stick amount holding time, and the control unit 222 can control the execution part 221 to maintain the motion range and the length of time in the motion direction according to the stick amount holding time.
  • control unit 222 stores the corresponding relationship between the identification number and the rocker identification, for example, the speed rocker identification corresponds to the identification number 1, the direction rocker identification corresponds to the identification number 2, and the lift rocker identification corresponds to the identification number 3. Based on this, when the control unit 222 receives the rocker identification, it can determine the corresponding identification number according to the rocker identification, and then control the corresponding execution unit 221 to perform actions according to the identification number. For example, when the joystick identification received by the control unit 222 is a speed joystick identification, the identification number is determined to be 1. Because the execution part 221 with the identification number 1 is the speed joystick execution part, the control unit 222 controls the speed joystick The rod actuator performs the action.
  • the UAV 300 includes a sensor 310, a flight planning subsystem 320, and a flight control subsystem 330.
  • the sensor 310 is a depth sensor, which is used to collect flight environment information in the flight direction of the drone 300.
  • the flight environment information collected by the sensor 310 can determine the actual distance between the object in the flying direction of the drone 300 and the drone 300, and thus can determine whether there are obstacles in the flying direction of the drone 300.
  • the flight planning subsystem 320 is in communication connection with the sensor 310 to collect the flight environment information of the UAV 300 through the sensor 310.
  • the flight control subsystem 330 is used to control the drone 300 to fly.
  • the UAV 300 when the UAV 300 is in communication connection with the mobile terminal 100 and the remote controller 200, the UAV 300 communicates with the mobile terminal 100 through the flight planning subsystem 320, and the UAV 300 passes through the flight planning subsystem 320 and the flight control sub-system.
  • the system 330 is respectively connected to the control unit 222 of the remote controller 200 in communication.
  • the UAV 300 executes the flight control method to realize the autonomous operation of the remote controller and simplify the process of the operator operating the UAV, including:
  • the flight planning subsystem 320 obtains flight planning information, and generates a lever amount control command according to the flight planning information.
  • the flight planning subsystem 320 acquires the flight planning information, it can be acquired through the sensor 310 or through the mobile terminal 100.
  • the flight planning subsystem 320 collects the flight environment information of the UAV 300 through the sensor 310, and then plans the flight path of the UAV 300 according to the collected flight environment information, and according to the planned The flight path generates flight planning information.
  • the flight planning subsystem 320 plans the flight path of the UAV 300 according to the collected flight environment information, it first needs to determine whether there are obstacles in the flight direction of the UAV 300 according to the flight environment information.
  • the flight planning subsystem 320 plans the flight path of the UAV 300 according to the position of the obstacle, so that the UAV 300 can avoid the obstacle and realize the avoidance of the obstacle.
  • the flight path planned by the flight planning subsystem 320 is a path that enables the UAV 300 to circumvent obstacles.
  • the flight path consists of flight control parameters, including at least one of flight speed, flight direction, and flight duration. For example, In other words, when the flight path is flying to the right for 40s and then flying forward, the flight control parameters included in the flight path are the flight direction and flight duration.
  • the flight planning subsystem 320 When the flight planning subsystem 320 generates flight planning information according to the planned flight path, it encapsulates the flight path into flight planning information so that the flight planning information carries the flight path. Among them, since the flight path is a path that enables the UAV 300 to circumvent obstacles, the generated flight planning information is obstacle avoidance flight information.
  • the remote controller can be operated by performing the stick control generated by the obstacle avoidance flight information. Find obstacles in time to avoid them, reduce the risk of drone crashes and improve safety.
  • the flight planning subsystem 320 When acquiring flight planning information through the mobile terminal 100, the flight planning subsystem 320 receives the flight mode information sent by the mobile terminal 100, and then uses the received flight mode information as flight planning information. At this time, the flight planning information is related to the flight mode information. If the flight mode information received by the flight planning subsystem 320 is teaching flight information, the flight planning information is teaching flight information. At this time, the flight planning information carries a preset flight Speed, preset flight direction and preset flight duration; if the flight mode information received by the flight planning subsystem 320 is constant speed flight information, the flight planning information is constant speed flight information. At this time, the flight planning information carries The preset flight speed.
  • the flight planning subsystem 320 when the flight planning subsystem 320 generates a stick control command based on the flight planning information, it first extracts the flight control parameters based on the flight planning information. Specifically, when the flight planning information is teaching flight information, the extracted flight control parameters include flight speed, flight direction, and flight duration; when the flight planning information is constant speed flight information, the extracted flight control parameters include flight speed; When the planning information is obstacle avoidance flight information, the flight control parameter is extracted from the flight path carried by the obstacle avoidance flight information, and the flight control parameter includes at least one of flight speed, flight direction and flight duration.
  • the flight control parameters are calculated inversely to obtain the rod amount parameters. Specifically, when the extracted flight control parameters include flight speed and/or flight direction, inversely calculate the joystick identification and joystick amount according to the flight speed and/or flight direction; when the extracted flight control parameters also include flight duration , Also need to calculate the stick holding time based on the flight time.
  • the corresponding joystick identification and the joystick amount can be calculated inversely according to the flight speed and flight direction.
  • the joystick indicator includes the first joystick indicator, and the joystick amount includes the first joystick amount;
  • the joystick indicator includes the second joystick indicator, the joystick The amount includes the second rocker amount.
  • the flight control parameters include flight speed or flight direction, calculate the first joystick identification and the first joystick amount according to the flight speed, or calculate the second joystick identification and the second joystick according to the flight direction.
  • the flight control parameters include flight speed and flight direction, calculate the first joystick identification and the first joystick quantity according to the flight speed, and calculate the second joystick identification and the second joystick according to the flight direction. the amount.
  • the joystick identification and the joystick amount can be obtained by inverse calculation according to the type of the flight control parameter and the preset joystick setting parameters.
  • Table 1 is the preset rocker setting parameters provided by the embodiment of the present invention.
  • set the speed joystick to control the acceleration or deceleration of the drone and set when the joystick amount is 0 ⁇ S ⁇ 1, control the drone to accelerate, that is, the flight speed is greater than 0, when the joystick amount is When -1 ⁇ S ⁇ 0, control the drone to decelerate, that is, the flight speed is less than 0, and set the maximum flight speed that the speed joystick can control to 10m/s.
  • the maximum flight speed is when the speed joystick is at the end position of the joystick The speed; set the direction joystick to control the drone to turn left or right, and set when the joystick amount is 0 ⁇ S ⁇ 1, control the drone to turn right, when the joystick amount is -1 ⁇ S ⁇ At 0, control the drone to turn left; set the lifting joystick to control the drone to move forward or backward, and set when the joystick amount is 0 ⁇ S ⁇ 1, control the drone to move forward, when the joystick amount is- When 1 ⁇ S ⁇ 0, control the drone to retreat.
  • the joystick identification is obtained by inverse calculation according to the type of the flight control parameter, and the joystick amount is obtained by inverse calculation according to the preset joystick setting parameters.
  • the stick mark obtained by inverse calculation according to the flight speed is the speed stick mark.
  • the flight control parameter is the flight direction
  • the flight direction is matched with the preset joystick setting parameters to determine the joystick identification and the joystick amount. For example: when the flight direction is flying to the right, it is determined that the flight direction matches the direction joystick, and the flight direction matches the joystick amount 0 ⁇ S ⁇ 1, then the joystick identification obtained by inverse calculation according to the flight direction It is a direction rocker indicator, the rocker amount is any value in 0 ⁇ S ⁇ 1, and preferably, the rocker amount is determined to be 1.
  • stick quantity parameters calculated by the inverse solution are the stick mark and the stick quantity
  • the stick mark and the stick quantity are encapsulated as stick quantity control commands
  • stick quantity parameters calculated by the inverse solution are the stick mark, stick quantity and
  • stick amount holding time encapsulate the stick mark, stick amount and stick amount holding time into stick amount control commands.
  • the stick quantity parameters calculated by the inverse solution are the first stick mark and the first stick quantity, and/or the second stick mark and the second stick quantity, then the first stick mark and the first stick quantity
  • the rocker amount is encapsulated into a first stick amount control command, and/or the second rocker mark and the second rocker amount are encapsulated into a second stick amount control command.
  • the stick amount parameters calculated by the inverse solution are the first stick mark, the first stick amount and the stick amount holding time, the first stick mark, the first stick amount and the stick amount holding time are encapsulated into the third stick Quantity control instructions.
  • the flight planning subsystem 320 After the flight planning subsystem 320 generates the stick control command, it sends the generated stick control command to the control unit 222 of the remote controller 200, and the control unit 222 switches the position of the stick according to the stick control command and generates the flight control command.
  • control unit 222 controls the corresponding execution unit 221 to perform actions according to the lever amount control instruction to drive the joystick 210 connected to the execution unit 221 to switch positions, and generates a flight control instruction after the joystick 210 switches positions.
  • the control unit 222 determines the executing part 221 to perform the action according to the rocker mark, and then controls the determined motion range and direction of the executing part 221 according to the rocker amount.
  • the control unit 222 also causes the determined execution unit 221 to maintain a certain length of time in the motion range and direction according to the stick amount holding time.
  • the control unit 222 determines the corresponding identification number in the corresponding relationship between the rocker identification and the identification number according to the rocker identification, and then determines the execution unit 221 that executes the action according to the determined identification number.
  • the control unit 222 determines the ID number to be 1 according to the speed rocker ID, because the execution part with the ID number 1 is the speed rocker execution part, Therefore, the control unit 222 determines that the execution part is the speed rocker execution part; at the same time, the control unit 222 determines that the speed rocker moves upward according to the rocker amount 1 and moves to the end position of the rocker, so the control unit 222 controls the speed rocker execution part Move the speed rocker to the maximum extent in the direction that can make the speed rocker move up, and then drive the speed rocker to move up to the end position of the rocker.
  • control unit 222 After the control unit 222 generates the flight control instruction, it sends the flight control instruction to the flight control subsystem 330, and the flight control subsystem 330 receives the flight control instruction, and controls the drone 300 to fly according to the flight control instruction.
  • the drone controls the remote control to switch the position of the joystick by obtaining flight planning information to generate a stick control instruction, so as to realize the autonomous operation of the remote control, and does not require the operator to cooperate with the navigation map and the camera image transmission screen to control the remote control
  • the operation of the drone provides the operator with intelligent operation assistance, which simplifies the process for the operator to operate the drone, reduces the difficulty of using the drone, and improves the user's operating experience.
  • FIG. 2 is a schematic flow chart of a flight control method according to one embodiment of the present invention, which is applied to a drone, and the drone is in communication with a remote controller.
  • the drone is the one described in the above embodiment
  • the method provided by the embodiment of the present invention is executed by the drone 300, which is used to realize the autonomous operation of the remote control, provide intelligent operation assistance for the operator, and simplify the process of the operator operating the drone.
  • Control methods include:
  • the UAV When the UAV is in communication with the mobile terminal, the UAV can obtain flight planning information through sensors, and it can also obtain flight planning information through the mobile terminal.
  • the flight environment information is the environmental information in the flight direction of the drone.
  • the flight environment information can determine the actual distance between the object in the flight direction of the drone and the drone, and then determine whether the flight direction of the drone is There are obstacles.
  • the flight path is a path that enables the UAV to bypass obstacles.
  • the flight path is composed of flight control parameters, including at least one of flight speed, flight direction, and flight duration. For example, when the flight path is rightward flight When flying forward after 40s, the flight control parameters included in the flight path are flight direction and flight duration.
  • the flight path When generating flight planning information according to the planned flight path, the flight path is encapsulated into flight planning information, so that the flight planning information carries the flight path.
  • the generated flight planning information is obstacle avoidance flight information.
  • the remote controller can be operated in a timely manner by executing the lever control generated by the obstacle avoidance flight information. Find obstacles to avoid obstacles, reduce the risk of drone crashes, and improve safety.
  • the drone When acquiring flight planning information through a mobile terminal, the drone receives the flight mode information sent by the mobile terminal, and then uses the received flight mode information as flight planning information. At this time, the flight planning information is related to the flight mode information.
  • the flight mode information is generated by the user triggering the flight mode selection button in the mobile terminal, and different flight mode information corresponds to different preset flight control parameters.
  • the corresponding preset flight control parameters include the preset flight speed, the preset flight direction and the preset flight duration; when the flight mode information is the fixed speed flight information, the corresponding The preset flight control parameters include the preset flight speed.
  • the preset flight control parameters are the flight parameters pre-set by the user through the interactive interface of the flight control program displayed on the mobile terminal to guide the flight of the drone, for example: when the drone needs to be guided to a uniform speed of 10m/s When flying, set 10m/s as the preset flight control parameter in the constant speed flight mode.
  • the flight planning information is teaching flight information. At this time, the flight planning information carries the preset flight speed, preset flight direction, and preset Flight duration; if the flight mode information received by the flight planning subsystem 320 is constant speed flight information, the flight planning information is constant speed flight information. At this time, the flight planning information carries the preset flight speed.
  • the drone When the drone generates a stick control command based on the flight planning information, it first extracts the flight control parameters based on the flight planning information. Specifically, when the flight planning information is teaching flight information, the extracted flight control parameters include flight speed, flight direction, and flight duration; when the flight planning information is constant speed flight information, the extracted flight control parameters include flight speed; When the planning information is obstacle avoidance flight information, the flight control parameter is extracted from the flight path carried by the obstacle avoidance flight information, and the flight control parameter includes at least one of flight speed, flight direction and flight duration.
  • the flight control parameters are calculated inversely to obtain the rod amount parameters. Specifically, when the extracted flight control parameters include flight speed and/or flight direction, inversely calculate the joystick identification and joystick amount according to the flight speed and/or flight direction; when the extracted flight control parameters also include flight duration , Also need to calculate the stick holding time based on the flight time.
  • the rocker identification includes a speed rocker identification, a direction rocker identification, and a lifting rocker identification.
  • the corresponding joystick identification and the joystick amount can be calculated inversely according to the flight speed and flight direction.
  • the joystick indicator includes the first joystick indicator, and the joystick amount includes the first joystick amount;
  • the joystick indicator includes the second joystick indicator, the joystick The amount includes the second rocker amount.
  • the flight control parameters include flight speed or flight direction, calculate the first joystick identification and the first joystick amount according to the flight speed, or calculate the second joystick identification and the second joystick according to the flight direction.
  • the flight control parameters include flight speed and flight direction, calculate the first joystick identification and the first joystick quantity according to the flight speed, and calculate the second joystick identification and the second joystick according to the flight direction. the amount.
  • the joystick identification and the joystick amount can be obtained by inverse calculation according to the type of the flight control parameter and the preset joystick setting parameters.
  • the speed joystick is used to control the acceleration or deceleration of the drone, and when the amount of joystick is 0 ⁇ S ⁇ 1, the drone is set to accelerate, that is, the flight speed Greater than 0, when the amount of joystick is -1 ⁇ S ⁇ 0, control the drone to decelerate, that is, the flight speed is less than 0, and set the maximum flight speed that the speed joystick can control to 10m/s, and the maximum flight speed is speed
  • the speed when the joystick is at the end position of the joystick set the direction joystick to control the drone to turn left or right, and set the joystick to control the drone to turn right when the amount of the joystick is 0 ⁇ S ⁇ 1.
  • the joystick identification is obtained by inverse calculation according to the type of the flight control parameter, and the joystick amount is obtained by inverse calculation according to the preset joystick setting parameters.
  • the stick mark obtained by inverse calculation according to the flight speed is the speed stick mark.
  • the flight control parameter is the flight direction
  • the flight direction is matched with the preset joystick setting parameters to determine the joystick identification and the joystick amount. For example: when the flight direction is flying to the right, it is determined that the flight direction matches the direction joystick, and the flight direction matches the joystick amount 0 ⁇ S ⁇ 1, then the joystick identification obtained by inverse calculation according to the flight direction It is a direction rocker indicator, the rocker amount is any value in 0 ⁇ S ⁇ 1, and preferably, the rocker amount is determined to be 1.
  • stick quantity parameters calculated by the inverse solution are the stick mark and the stick quantity
  • the stick mark and the stick quantity are encapsulated as stick quantity control commands
  • stick quantity parameters calculated by the inverse solution are the stick mark, stick quantity and
  • stick amount holding time encapsulate the stick mark, stick amount and stick amount holding time into stick amount control commands.
  • the stick quantity parameters calculated by the inverse solution are the first stick mark and the first stick quantity, and/or the second stick mark and the second stick quantity, then the first stick mark and the first stick quantity
  • the rocker amount is encapsulated into a first stick amount control command, and/or the second rocker mark and the second rocker amount are encapsulated into a second stick amount control command.
  • the stick amount parameters calculated by the inverse solution are the first stick mark, the first stick amount and the stick amount holding time, the first stick mark, the first stick amount and the stick amount holding time are encapsulated into the third stick Quantity control instructions.
  • S300 Send the lever amount control instruction to the remote controller, so that the remote controller switches the position of the joystick according to the lever amount control instruction and generates a flight control instruction.
  • the remote controller determines the stick according to the stick mark, it controls the determined movement range and movement direction of the stick according to the stick quantity.
  • the remote controller keeps the determined rocker moving in the motion range and direction according to the stick amount holding time.
  • S400 Receive the flight control instruction, and control the drone to fly according to the flight control instruction.
  • the remote controller is controlled to switch the position of the joystick by obtaining the flight planning information and generating the stick quantity control instruction, so as to realize the autonomous operation of the remote controller, and the operator does not need to cooperate with the navigation map and the camera image transmission screen to operate the remote controller ,
  • To provide the operator with intelligent operation assistance simplify the process of the operator to operate the drone, reduce the control difficulty of the drone, and improve the user's operating experience.
  • module is a combination of software and/or hardware that can implement predetermined functions.
  • devices described in the following embodiments can be implemented by software, implementation by hardware or a combination of software and hardware is also possible.
  • FIG. 3 is a flight control device provided by one embodiment of the present invention.
  • the device is applied to a drone, and the drone is in communication with a remote controller.
  • UAV 300 the functions of the various modules of the device provided in the embodiment of the present invention are executed by the UAV to realize the autonomous operation of the remote control and simplify the process of the operator operating the UAV.
  • the flight control device includes:
  • An obtaining module 400 which is used to obtain flight planning information
  • a generating module 500 configured to generate a stick control instruction according to the flight planning information
  • a sending module 600 configured to send the lever amount control instruction to the remote controller, so that the remote controller switches the position of the joystick according to the lever amount control instruction and generates a flight control instruction;
  • the receiving module 700 is configured to receive the flight control instruction, and control the drone to fly according to the flight control instruction.
  • the obtaining module 400 is specifically used for:
  • the flight planning information is generated.
  • the remote controller is connected to a mobile terminal, and the mobile terminal is in communication connection with the drone; then,
  • the obtaining module 400 is specifically used for:
  • the generating module 500 is specifically used for:
  • flight control parameters include flight speed and/or flight direction
  • the generating module 500 is specifically used for:
  • the stick amount parameter is calculated inversely, wherein the stick amount parameter includes a stick mark and a stick amount.
  • the flight control parameter includes the flight speed
  • the joystick identifier includes a first joystick identifier
  • the joystick amount includes the first joystick amount
  • the generating module 500 is specifically used for:
  • the flight control parameter includes the flight direction
  • the joystick identifier includes a second joystick identifier
  • the joystick amount includes a second joystick amount
  • the generating module 500 is specifically used for:
  • the second rocker mark and the second rocker amount are encapsulated into the stick amount control command.
  • flight control parameters also include flight duration
  • the generating module 500 is specifically used for:
  • the rocker mark, the rocker amount, and the stick amount holding time are encapsulated into the stick amount control command.
  • the acquisition module 400, the generation module 500, and the sending module 600 may be the processing chip of the flight planning subsystem 320, and the receiving module 700 may be the processing chip of the flight control subsystem 330.
  • the content of the device embodiment can be quoted from the method embodiment on the premise that the content does not conflict with each other, which will not be repeated here.
  • the remote controller is controlled to switch the position of the joystick by obtaining the flight planning information and generating the stick quantity control instruction, so as to realize the autonomous operation of the remote controller, and the operator does not need to cooperate with the navigation map and the camera image transmission screen to operate the remote controller ,
  • To provide the operator with intelligent operation assistance simplify the process of the operator to operate the drone, reduce the difficulty of using the drone, and improve the user's operating experience.
  • FIG. 4 is a schematic diagram of the hardware structure of an unmanned aerial vehicle according to one embodiment of the present invention.
  • the hardware modules provided in this embodiment of the present invention are integrated into the unmanned aerial vehicle 300 described in the foregoing embodiment, so that the unmanned aerial vehicle 300 300 can execute a flight control method described in the above embodiment, and can also implement the functions of each module of a flight control device described in the above embodiment.
  • the drone 300 includes:
  • One or more processors 340 and memory 350 are taken as an example in FIG. 4.
  • the processor 340 and the memory 350 may be connected by a bus or in other ways.
  • the connection by a bus is taken as an example.
  • the memory 350 can be used to store non-volatile software programs, non-volatile computer-executable programs and modules, as corresponding to a flight control method in the above-mentioned embodiment of the present invention
  • the program instructions for a flight control device and the corresponding modules for example, the acquisition module 400, the generation module 500, the sending module 600, and the receiving module 700, etc.
  • the processor 340 executes various functional applications and data processing of a flight control method by running the non-volatile software programs, instructions, and modules stored in the memory 350, that is, realizes a flight control in the above method embodiment The method and the function of each module of the above device embodiment.
  • the memory 350 may include a program storage area and a data storage area.
  • the program storage area may store an operating system and an application program required by at least one function; the data storage area may store data created according to the use of a flight control device.
  • the storage data area also stores preset data, including preset rocker setting parameters.
  • the memory 350 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other non-volatile solid-state storage devices.
  • the memory 350 may optionally include memories remotely provided with respect to the processor 340, and these remote memories may be connected to the processor 340 via a network. Examples of the aforementioned networks include, but are not limited to, the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • the program instructions and one or more modules are stored in the memory 350, and when executed by the one or more processors 340, each step of a flight control method in any of the foregoing method embodiments is executed, or , To realize the functions of each module of a flight control device in any of the above-mentioned device embodiments.
  • the above-mentioned product can execute the method provided in the above-mentioned embodiment of the present invention, and has corresponding functional modules and beneficial effects for the execution method.
  • the above-mentioned product can execute the method provided in the above-mentioned embodiment of the present invention, and has corresponding functional modules and beneficial effects for the execution method.
  • the embodiment of the present invention also provides a non-volatile computer-readable storage medium, the computer-readable storage medium stores computer-executable instructions, the computer-executable instructions are executed by one or more processors, for example, FIG. 4
  • a processor 340 in any of the foregoing method embodiments may enable a computer to execute each step of a flight control method in any of the foregoing method embodiments, or implement the functions of various modules of a flight control device in any of the foregoing device embodiments.
  • the embodiment of the present invention also provides a computer program product, the computer program product includes a computer program stored on a non-volatile computer-readable storage medium, the computer program includes program instructions, when the program instructions are Or executed by multiple processors, for example, a processor 340 in FIG. 4, which can make the computer execute each step of a flight control method in any of the foregoing method embodiments, or implement a flight in any of the foregoing device embodiments. Control the function of each module of the device.
  • the device embodiments described above are merely illustrative.
  • the modules described as separate components may or may not be physically separated, and the components displayed as modules may or may not be physical units, that is, they may be located in One place, or it can be distributed to multiple network units. Some or all of the modules may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each embodiment can be implemented by software plus a general hardware platform, and of course, it can also be implemented by hardware.
  • Those of ordinary skill in the art can understand that all or part of the processes in the methods of the foregoing embodiments can be implemented by computer programs instructing relevant hardware.
  • the programs can be stored in a computer readable storage medium, and the program is executed At the time, it may include the process of the implementation method of the above-mentioned methods.
  • the storage medium may be a magnetic disk, an optical disc, a read-only memory (Read-Only Memory, ROM), or a random access memory (Random Access Memory, RAM), etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种飞行控制方法、装置、系统及无人机。其中,飞行控制方法包括:获取飞行规划信息(S100);根据飞行规划信息,生成杆量控制指令(S200);将杆量控制指令发送至遥控器,以使遥控器根据杆量控制指令切换摇杆位置并生成飞行控制指令(S300);接收飞行控制指令,根据飞行控制指令控制无人机飞行(S400)。能够直接完成对遥控器的操作,不需要操纵者配合导航地图及相机图传画面对遥控器进行操作,为操纵者提供智能化的操作辅助,简化了操纵者操作无人机的过程,降低无人机的使用难度,提高了用户操作体验。

Description

一种飞行控制方法、装置、系统及无人机
本申请要求于2019年5月21日提交中国专利局、申请号为201910423076.8、申请名称为“一种飞行控制方法、装置、系统及无人机”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无人机控制技术领域,特别是涉及一种飞行控制方法、装置、系统及无人机。
背景技术
目前,无人机在相对复杂的飞行环境中尚不具备自主飞行的能力,仍需要操纵者通过遥控器进行操纵控制。而且当通过遥控器对无人机进行控制时,只有遥控器发送的飞行控制指令能够控制无人机飞行,而无人机控制系统中的自主运动规划模块此时不具备对无人机运动的控制权,即无人机在通过遥控器进行控制的情况下无法实现自主避障等功能,在此场景下,需要操纵者配合导航地图及相机图传画面等判断规划避障路线后,通过遥控器操纵无人机实现避障。在该过程中,操纵者需要边操作遥控器的同时边根据导航地图及相机图传画面实时规划调整飞行路线,这样的飞行操纵无疑增加了无人机的使用难度,降低用户的操作体验。
发明内容
本发明实施例旨在提供一种飞行控制方法、装置、系统及无人机,能够提供遥控器端的操作辅助,进一步简化操纵者操作无人机的过程,降低无人机的使用难度,提高用户操作体验。
为解决上述技术问题,本发明实施例采用的一个技术方案是:提供一种飞行控制方法,应用于无人机,所述无人机与遥控器通信连接,所述方法包括:
获取飞行规划信息;
根据所述飞行规划信息,生成杆量控制指令;
将所述杆量控制指令发送至所述遥控器,以使所述遥控器根据所述杆量控制指令切换摇杆位置并生成飞行控制指令;
接收所述飞行控制指令,根据所述飞行控制指令控制所述无人机飞行。
可选地,所述获取所述飞行规划信息,包括:
通过所述无人机的传感器采集所述无人机的飞行环境信息;
根据所述飞行环境信息,规划所述无人机的飞行路径;
根据所述飞行路径,生成所述飞行规划信息。
可选地,所述遥控器连接有移动终端,所述移动终端与所述无人机通信连 接;则,
所述获取所述飞行规划信息,包括:
接收所述移动终端发送的飞行模式信息,并将所述飞行模式信息作为飞行规划信息。
可选地,所述根据所述飞行规划信息,生成所述杆量控制指令,包括:
根据所述飞行规划信息,提取飞行控制参数;
逆解算所述飞行控制参数,以得到杆量参数;
封装所述杆量参数,以生成所述杆量控制指令。
可选地,所述飞行控制参数包括飞行速度和/或飞行方向;则,
所述逆解算所述飞行控制参数,以得到所述杆量参数,包括:
根据所述飞行速度和/或所述飞行方向,逆解算出所述杆量参数,其中,所述杆量参数包括摇杆标识和摇杆量。
可选地,所述飞行控制参数包括所述飞行速度,所述摇杆标识包括第一摇杆标识,所述摇杆量包括第一摇杆量;则,
所述封装所述杆量参数,以生成所述杆量控制指令,包括:
根据所述飞行速度逆解算出所述第一摇杆标识和所述第一摇杆量;
将所述第一摇杆标识和所述第一摇杆量封装成所述杆量控制指令。
可选地,所述飞行控制参数包括所述飞行方向,所述摇杆标识包括第二摇杆标识,所述摇杆量包括第二摇杆量;则,
所述封装所述杆量参数,以生成所述杆量控制指令,包括:
根据所述飞行方向逆解算出所述第二摇杆标识和所述第二摇杆量;
将所述第二摇杆标识和所述第二摇杆量封装成所述杆量控制指令。
可选地,所述飞行控制参数还包括飞行时长;则,
所述逆解算所述飞行控制参数,以得到所述杆量参数,包括:
逆解算所述飞行时长,以得到杆量保持时间;
则,所述封装所述杆量参数,以生成所述杆量控制指令,包括:
将所述摇杆标识、所述摇杆量及所述杆量保持时间封装成所述杆量控制指令。
为解决上述技术问题,本发明实施例采用的另一个技术方案是:提供一种飞行控制装置,应用于无人机,所述无人机与遥控器通信连接,所述装置包括:
获取模块,所述获取模块用于获取飞行规划信息;
生成模块,所述生成模块用于根据所述飞行规划信息,生成杆量控制指令;
发送模块,所述发送模块用于将所述杆量控制指令发送至所述遥控器,以使所述遥控器根据所述杆量控制指令切换摇杆位置并生成飞行控制指令;
接收模块,所述接收模块用于接收所述飞行控制指令,根据所述飞行控制指令控制所述无人机飞行。
可选地,所述获取模块具体用于:
通过所述无人机的传感器采集所述无人机的飞行环境信息;
根据所述飞行环境信息,规划所述无人机的飞行路径;
根据所述飞行路径,生成所述飞行规划信息。
可选地,所述遥控器连接有移动终端,所述移动终端与所述无人机通信连接;则,
所述获取模块具体用于:
接收所述移动终端发送的飞行模式信息,并将所述飞行模式信息作为飞行规划信息。
可选地,所述生成模块具体用于:
根据所述飞行规划信息,提取飞行控制参数;
逆解算所述飞行控制参数,以得到杆量参数;
封装所述杆量参数,以生成所述杆量控制指令。
可选地,所述飞行控制参数包括飞行速度和/或飞行方向;则,
所述生成模块具体用于:
根据所述飞行速度和/或所述飞行方向,逆解算出所述杆量参数,其中,所述杆量参数包括摇杆标识和摇杆量。
可选地,所述飞行控制参数包括所述飞行速度,所述摇杆标识包括第一摇杆标识,所述摇杆量包括第一摇杆量;则,
所述生成模块具体用于:
根据所述飞行速度逆解算出所述第一摇杆标识和所述第一摇杆量;
将所述第一摇杆标识和所述第一摇杆量封装成所述杆量控制指令。
可选地,所述飞行控制参数包括所述飞行方向,所述摇杆标识包括第二摇杆标识,所述摇杆量包括第二摇杆量;则,
所述生成模块具体用于:
根据所述飞行方向逆解算出所述第二摇杆标识和所述第二摇杆量;
将所述第二摇杆标识和所述第二摇杆量封装成所述杆量控制指令。
可选地,所述飞行控制参数还包括飞行时长;则,
所述生成模块具体用于:
逆解算所述飞行时长,以得到杆量保持时间;以及
将所述摇杆标识、所述摇杆量及所述杆量保持时间封装成所述杆量控制指令。
为解决上述技术问题,本发明实施例采用的另一个技术方案是:提供一种无人机,包括:
机身;
机臂,与所述机身相连;
动力装置,设于所述机臂,用于给所述无人机提供飞行的动力;
至少一个处理器;以及
与所述至少一个处理器通信连接的存储器;其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使 所述至少一个处理器能够用于执行以上所述的飞行控制方法。
为解决上述技术问题,本发明实施例采用的另一个技术方案是:提供一种飞行控制系统,包括:
以上所述的无人机;以及
遥控器,所述遥控器与所述无人机通信连接,所述遥控器包括杆量执行机构,所述杆量执行机构用于根据所述无人机发送的杆量控制指令切换摇杆位置并生成飞行控制指令。
可选地,所述遥控器连接有移动终端,所述移动终端与所述无人机通信连接,所述移动终端用于向所述无人机发送飞行模式信息。
为解决上述技术问题,本发明实施例采用的另一个技术方案是:提供一种非易失性计算机可读存储介质,所述非易失性计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使无人机执行以上所述的飞行控制方法。
本发明实施例的有益效果是:区别于现有技术的情况下,本发明实施例提供一种飞行控制方法、装置、系统及无人机,在飞行控制方法中,无人机通过获取飞行规划信息生成杆量控制指令,然后通过杆量控制指令控制遥控器切换摇杆位置并生成控制无人机飞行的飞行控制指令,使得无人机能够直接完成对遥控器的操作,不需要操纵者配合导航地图及相机图传画面对遥控器进行操作,为操纵者提供了智能化的操作辅助,简化了操纵者操作无人机的过程,降低无人机的使用难度,提高用户操作体验。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1是本发明一实施例提供的一种飞行控制系统的结构示意图;
图2是本发明一实施例提供的一种飞行控制方法的流程示意图;
图3是本发明一实施例提供的一种飞行控制装置的结构示意图;
图4是本发明一实施例提供的一种无人机的硬件结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整的描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。基于本发明 中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,当元件被表述“固定于”另一个元件,它可以直接在另一个元件上、或者其间可以存在一个或多个居中的元件。当一个元件被表述“连接”另一个元件,它可以是直接连接到另一个元件、或者其间可以存在一个或多个居中的元件。本说明书所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的。
此外,下面所描述的本发明各个实施例中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
本发明提供了一种飞行控制方法及装置,该方法及装置应用于无人机,从而使得该无人机在与遥控器通信连接后,能够根据所获取的飞行规划信息,生成杆量控制指令来控制遥控器切换摇杆位置,实现遥控器的自主操作,为操纵者提供了智能化的操作辅助,简化了操纵者操作无人机的过程,降低无人机的使用难度,提高用户操作体验。其中,无人机可以是任何合适类型的高空无人机或者低空无人机,包括固定翼无人机、旋翼无人机等。
下面,将通过具体实施例对本发明进行阐述。
实施例一
请参阅图1,是本发明其中一实施例提供的一种飞行控制系统,包括移动终端100、遥控器200和无人机300,移动终端100与遥控器200连接,并且,无人机300分别与移动终端100和遥控器200通信连接。
其中,移动终端100为智能手机、平板电脑等能够运行应用程序的电子设备,其包括一个或者多个输入/输出部件,例如:显示屏、按钮、触控屏幕等,该输入/输出部件用于将移动终端100运行的应用程序的交互界面显示给用户并采集用户在交互界面中的触发操作,实现用户与移动终端100之间的交互。
具体地,移动终端100中运行的为无人机300的供应商或者服务提供商提供的飞行控制程序,通过该飞行控制程序,一个或者多个用户能够绑定或者注册一个或者多个无人机300,以使用户与无人机300能够通过该飞行控制程序的交互界面实现交互。
在该飞行控制程序的交互界面中,设置有数量至少为1的飞行模式选择按钮,每个飞行模式选择按钮对应一个飞行模式信息,当用户在交互界面中通过点击、长按等方式触发飞行模式选择按钮后,移动终端100能够采集到用户所触发的飞行模式选择按钮对应的飞行模式信息,并将所采集的飞行模式信息发送至通信连接的无人机300中。
优选地,飞行控制程序的交互界面中设置的飞行模式选择按钮包括教学飞行模式选择按钮和/或定速飞行模式选择按钮。其中,教学飞行模式选择按钮对应的飞行模式信息为教学飞行信息;定速飞行模式选择按钮对应的飞行模式信息为定速飞行信息。
进一步地,不同飞行模式信息对应不同的预设的飞行控制参数。当飞行模式信息为教学飞行信息时,对应的预设的飞行控制参数包括预设的飞行速度、预设的飞行方向和预设的飞行时长;当飞行模式信息为定速飞行信息时,对应的预设的飞行控制参数包括预设的飞行速度。其中,预设的飞行控制参数为用户通过飞行控制程序的交互界面预先设置的用于指导无人机300飞行的飞行参数,比如:当需要指导无人机300按照10m/s的速度进行匀速飞行时,则在定速飞行模式中,将10m/s设置为预设的飞行控制参数。
遥控器200则包括摇杆210和杆量执行机构220,杆量执行机构220与摇杆210连接,用于控制摇杆210切换位置。其中,控制摇杆210切换位置即控制摇杆210在摇杆初始位置和摇杆终点位置之间产生位移。在本发明实施例中,摇杆终点位置包括第一终点位置和第二终点位置,并且第一终点位置和第二终点位置相对摇杆初始位置对称,基于此,摇杆210在摇杆初始位置和第一终点位置产生的位移与摇杆210在摇杆初始位置和第二终点位置产生的位移方向相反。
具体地,摇杆210包括速度摇杆、方向摇杆和升降摇杆。
速度摇杆以摇杆初始位置为起点向下移动或向上移动,用于控制无人机300的飞行速度。当速度摇杆向下移动时,控制无人机300减速;当速度摇杆向上移动时,控制无人机300加速。其中,速度摇杆移动的距离不同,则无人机300的飞行速度不同,具体地,速度摇杆向下移动的距离越大,无人机300的飞行速度越慢;速度摇杆向上移动的距离越大,无人机300的飞行速度越快。
方向摇杆和升降摇杆则用于控制无人机300的飞行方向。
方向摇杆以摇杆初始位置为起点向左移动或向右移动,用于控制无人机300向左飞行或向右飞行。当方向摇杆向左移动时,控制无人机300向左飞行;当方向摇杆向右移动时,控制无人机300向右飞行。
升降摇杆则以摇杆初始位置为起点向下移动或向上移动,用于控制无人机300向后飞行或向前飞行。当升降摇杆向下移动时,控制无人机300向后飞行;当升降摇杆向上移动时,控制无人机300向前飞行。当然,在其他一些可替代实施例中,升降摇杆用于控制无人机300下降或上升,此时,当升降摇杆向下移动时,控制无人机300下降;当升降摇杆向上移动时,控制无人机300上升。
进一步地,摇杆210移动的方向和移动的距离能够通过摇杆量确定,该摇杆量为摇杆210的位移与摇杆210的最大可移动距离的比值,其范围为[-1,1]。其中,摇杆210的最大可移动距离为摇杆初始位置和摇杆终点位置之间的距离,当摇杆210位于摇杆初始位置时,摇杆量为0,当摇杆210位于摇杆终点位置时,摇杆量的绝对值为1。
当通过摇杆量确定摇杆210移动的方向时,若摇杆量为-1≤S<0,则确定速度摇杆向下移动、方向摇杆向左移动、升降摇杆向下移动;若摇杆量为0<S≤1,则确定速度摇杆向上移动、方向摇杆向右移动、升降摇杆向上移动。
当通过摇杆量确定摇杆210移动的距离时,将摇杆210的最大可移动距离与摇杆量乘积的绝对值确定为摇杆210移动的距离。
进一步地,由于速度摇杆移动的距离不同时,无人机300的飞行速度不同,故速度摇杆的不同摇杆量能够代表无人机300的不同飞行速度。比如:速度摇杆的摇杆量为1时,代表无人机300的飞行速度为10m/s;速度摇杆的摇杆量为-0.5时,代表无人机300的飞行速度为-5m/s。
杆量执行机构220则包括执行部221和控制单元222,控制单元222与执行部221连接,用于控制执行部221执行动作。
其中,执行部221的数量与摇杆210的数量一致,包括速度摇杆执行部、方向摇杆执行部和升降摇杆执行部。杆量执行机构220通过执行部221与摇杆210对应连接,以通过执行部221的动作带动摇杆210切换位置。具体地,速度摇杆执行部与速度摇杆连接,以带动速度摇杆切换位置;方向摇杆执行部与 方向摇杆连接,以带动方向摇杆切换位置;升降摇杆执行部与升降摇杆连接,以带动升降摇杆切换位置。
在每个执行部221中还设置有标识编号,以使控制单元222通过标识编号控制对应的执行部221执行动作。比如:速度摇杆执行部设置标识编号为1,方向摇杆执行部设置标识编号为2,升降摇杆执行部设置标识编号为3。若控制单元222识别到的标识编号为2,则控制方向摇杆执行部执行动作,以带动方向摇杆切换位置。
控制单元222则为具有一定逻辑运算能力的处理器,比如:单片机、微处理器或者CPU等,该控制单元222用于与无人机300通信连接,以接收无人机300发送的杆量控制指令,并根据杆量控制指令控制对应的执行部221执行动作以带动与执行部221连接的摇杆210切换位置,并在摇杆210切换位置后生成飞行控制指令。
其中,杆量控制指令包括摇杆标识和摇杆量,控制单元222能够根据摇杆标识确定执行动作的执行部221,能够根据摇杆量控制执行部221的动作幅度和动作方向。当然,在其他一些可替代实施例中,杆量控制指令还包括杆量保持时间,控制单元222能够根据杆量保持时间控制执行部221维持动作幅度和动作方向的时长。
进一步地,控制单元222中存储有标识编号与摇杆标识的对应关系,比如:速度摇杆标识对应标识编号1、方向摇杆标识对应标识编号2、升降摇杆标识对应标识编号3。基于此,当控制单元222接收到摇杆标识时,能够根据摇杆标识确定对应的标识编号,进而根据标识编号控制对应的执行部221执行动作。举例而言,当控制单元222接收到的摇杆标识为速度摇杆标识时,确定标识编号为1,因标识编号为1的执行部221为速度摇杆执行部,则控制单元222控制速度摇杆执行部执行动作。
无人机300则包括传感器310、飞行规划子系统320和飞行控制子系统330。
其中,传感器310为深度传感器,用于采集无人机300飞行方向上的飞行环境信息。通过传感器310采集的飞行环境信息能够确定无人机300飞行方向上的物体与无人机300的实际距离,进而能够确定无人机300的飞行方向上是 否存在障碍物。
飞行规划子系统320与传感器310通信连接,以通过传感器310采集无人机300的飞行环境信息。
飞行控制子系统330则用于控制无人机300飞行。
其中,当无人机300与移动终端100和遥控器200通信连接时,无人机300通过飞行规划子系统320与移动终端100通信连接,无人机300通过飞行规划子系统320和飞行控制子系统330分别与遥控器200的控制单元222通信连接。
基于此,无人机300执行飞行控制方法,以实现遥控器的自主操作,简化操纵者操作无人机的过程,具体包括:
飞行规划子系统320获取飞行规划信息,并根据飞行规划信息生成杆量控制指令。
其中,飞行规划子系统320获取飞行规划信息时,能够通过传感器310获取,也能够通过移动终端100获取。
当通过传感器310获取飞行规划信息时,飞行规划子系统320通过传感器310采集无人机300的飞行环境信息,然后根据所采集的飞行环境信息规划无人机300的飞行路径,并根据所规划的飞行路径生成飞行规划信息。
其中,飞行规划子系统320根据所采集的飞行环境信息规划无人机300的飞行路径时,首先需要根据飞行环境信息判断无人机300的飞行方向上是否存在障碍物,当无人机300的飞行方向上存在障碍物时,飞行规划子系统320才根据障碍物的位置规划无人机300的飞行路径,以使无人机300绕开障碍物,实现对障碍物的躲避。即飞行规划子系统320所规划的飞行路径为能够使无人机300绕开障碍物的路径,该飞行路径由飞行控制参数组成,包括飞行速度、飞行方向和飞行时长中的至少一个,举例而言,当飞行路径为向右飞行40s后向前飞行时,则该飞行路径包括的飞行控制参数为飞行方向和飞行时长。
飞行规划子系统320根据所规划的飞行路径生成飞行规划信息时,将飞行路径封装成飞行规划信息,以使飞行规划信息携带飞行路径。其中,由于飞行路径为能够使无人机300绕开障碍物的路径,故生成的飞行规划信息为避障飞行信息,通过避障飞行信息生成的杆量控制执行来对遥控器进行操作,能够及 时发现障碍物进行避障,减少无人机坠毁风险,提高安全性。
当通过移动终端100获取飞行规划信息时,飞行规划子系统320接收移动终端100发送的飞行模式信息,然后将所接收的飞行模式信息作为飞行规划信息。此时,飞行规划信息与飞行模式信息相关,若飞行规划子系统320接收到的飞行模式信息为教学飞行信息,则飞行规划信息为教学飞行信息,此时,该飞行规划信息携带预设的飞行速度、预设的飞行方向和预设的飞行时长;若飞行规划子系统320接收到的飞行模式信息为定速飞行信息,则飞行规划信息为定速飞行信息,此时,该飞行规划信息携带预设的飞行速度。
进一步地,飞行规划子系统320根据飞行规划信息生成杆量控制指令时,首先根据飞行规划信息,提取飞行控制参数。具体地,当飞行规划信息为教学飞行信息时,提取的飞行控制参数包括飞行速度、飞行方向和飞行时长;当飞行规划信息为定速飞行信息时,提取的飞行控制参数包括飞行速度;当飞行规划信息为避障飞行信息时,从避障飞行信息携带的飞行路径中提取飞行控制参数,该飞行控制参数包括飞行速度、飞行方向和飞行时长中的至少一种。
其次逆解算飞行控制参数以得到杆量参数。具体地,当所提取的飞行控制参数包括飞行速度和/或飞行方向时,根据飞行速度和/或飞行方向,逆解算出摇杆标识和摇杆量;当所提取的飞行控制参数还包括飞行时长时,还需根据飞行时长,逆解算出杆量保持时间。
其中,根据飞行速度和/或飞行方向,逆解算出摇杆标识和摇杆量时,能够根据飞行速度和飞行方向分别逆解算出对应的摇杆标识和摇杆量。当飞行控制参数包括飞行速度时,摇杆标识包括第一摇杆标识,摇杆量包括第一摇杆量;当飞行控制参数包括飞行方向时,摇杆标识包括第二摇杆标识,摇杆量包括第二摇杆量。比如:当飞行控制参数包括飞行速度或飞行方向时,根据飞行速度逆解算出第一摇杆标识和第一摇杆量,或者,根据飞行方向逆解算出第二摇杆标识和第二摇杆量;当飞行控制参数包括飞行速度和飞行方向时,根据飞行速度逆解算出第一摇杆标识和第一摇杆量,以及,根据飞行方向逆解算出第二摇杆标识和第二摇杆量。
进一步地,摇杆标识和摇杆量能够根据飞行控制参数的类型以及预设摇杆设置参数逆解算得到。
具体地,请参阅表1,为本发明实施例提供的预设摇杆设置参数。在表1中,设置速度摇杆用于控制无人机加速或者减速,并设置当摇杆量为0<S≤1时,控制无人机加速,即飞行速度大于0,当摇杆量为-1≤S<0时,控制无人机减速,即飞行速度小于0,同时设置速度摇杆能够控制的最大飞行速度为10m/s,该最大飞行速度为速度摇杆位于摇杆终点位置时的速度;设置方向摇杆用于控制无人机左转或者右转,并设置当摇杆量为0<S≤1时,控制无人机右转,当摇杆量为-1≤S<0时,控制无人机左转;设置升降摇杆用于控制无人机前进或者后退,并设置当摇杆量为0<S≤1时,控制无人机前进,当摇杆量为-1≤S<0时,控制无人机后退。
表1
Figure PCTCN2020091343-appb-000001
当飞行控制参数为飞行速度时,根据飞行控制参数的类型逆解算得到摇杆标识,根据预设摇杆设置参数逆解算得到摇杆量。
其中,根据飞行速度逆解算得到的摇杆标识为速度摇杆标识。
根据预设摇杆设置参数逆解算得到摇杆量时,将飞行速度与最大飞行速度的比值确定为摇杆量。比如:当飞行速度为-5m/s时,则摇杆量为(-5m/s)/(10m/s)=-0.5。
当飞行控制参数为飞行方向时,根据飞行控制参数的类型以及预设摇杆设置参数逆解算得到摇杆标识和摇杆量。
其中,将飞行方向与预设摇杆设置参数进行匹配确定摇杆标识和摇杆量。比如:当飞行方向为向右飞行时,确定该飞行方向与方向摇杆匹配,且该飞行方向与摇杆量为0<S≤1时匹配,则根据飞行方向逆解算得到的摇杆标识为方向摇杆标识,摇杆量为0<S≤1中的任意数值,优选地,摇杆量确定为1。
最后封装杆量参数以生成杆量控制指令。
当逆解算出的杆量参数为摇杆标识和摇杆量时,将摇杆标识和摇杆量封装成杆量控制指令;当逆解算出的杆量参数为摇杆标识、摇杆量和杆量保持时间 时,将摇杆标识、摇杆量和杆量保持时间封装成杆量控制指令。
比如:当逆解算出的杆量参数为第一摇杆标识和第一摇杆量,和/或,第二摇杆标识和第二摇杆量时,则将第一摇杆标识和第一摇杆量封装成第一杆量控制指令,和/或,将第二摇杆标识和第二摇杆量封装成第二杆量控制指令。
当逆解算出的杆量参数为第一摇杆标识、第一摇杆量和杆量保持时间时,则将第一摇杆标识、第一摇杆量和杆量保持时间封装成第三杆量控制指令。
飞行规划子系统320生成杆量控制指令后,将所生成的杆量控制指令发送至遥控器200的控制单元222,控制单元222根据杆量控制指令切换摇杆位置并生成飞行控制指令。
具体地,控制单元222根据杆量控制指令控制对应的执行部221执行动作以带动与执行部221连接的摇杆210切换位置,并在摇杆210切换位置后生成飞行控制指令。
当杆量控制指令包括摇杆标识和摇杆量时,控制单元222根据摇杆标识确定执行动作的执行部221,然后根据摇杆量控制所确定的执行部221的动作幅度和动作方向。
当杆量控制指令还包括杆量保持时间时,控制单元222还根据杆量保持时间使所确定的执行部221在所述动作幅度和动作方向维持一定的时长。
其中,控制单元222根据摇杆标识在摇杆标识与标识编号的对应关系中确定对应的标识编号,进而根据所确定的标识编号确定执行动作的执行部221。
举例而言,当杆量控制指令包括速度摇杆标识和摇杆量1时,控制单元222根据速度摇杆标识确定标识编号为1,因标识编号为1的执行部为速度摇杆执行部,故控制单元222确定执行部为速度摇杆执行部;同时,控制单元222根据摇杆量1确定速度摇杆向上移动,且移动至摇杆终点位置,于是,控制单元222控制速度摇杆执行部向能够使速度摇杆向上移动的方向动作到最大幅度,以带动速度摇杆向上移动至摇杆终点位置。
控制单元222生成飞行控制指令后,将飞行控制指令发送至飞行控制子系统330,飞行控制子系统330接收飞行控制指令,并根据飞行控制指令控制无人机300飞行。
在本发明实施例中,无人机通过获取飞行规划信息生成杆量控制指令来控 制遥控器切换摇杆位置,实现遥控器的自主操作,不需要操纵者配合导航地图及相机图传画面对遥控器进行操作,为操纵者提供智能化的操作辅助,简化了操纵者操作无人机的过程,降低无人机的使用难度,提高用户操作体验。
实施例二
请参阅图2,是本发明其中一实施例提供的一种飞行控制方法的流程示意图,应用于无人机,该无人机与遥控器通信连接,该无人机为上述实施例中所述的无人机300,本发明实施例提供的方法由无人机执行,用于实现遥控器的自主操作,为操纵者提供智能化的操作辅助,简化操纵者操作无人机的过程,该飞行控制方法包括:
S100:获取飞行规划信息。
当无人机与移动终端通信连接后,无人机能够通过传感器获取飞行规划信息,也能够通过移动终端获取飞行规划信息。
当通过传感器获取飞行规划信息时,首先,通过传感器采集无人机的飞行环境信息;然后,根据所采集的飞行环境信息规划无人机的飞行路径;最后,根据所规划的飞行路径生成飞行规划信息。
其中,飞行环境信息为无人机飞行方向上的环境信息,通过该飞行环境信息能够确定无人机飞行方向上的物体与无人机的实际距离,进而能够确定无人机的飞行方向上是否存在障碍物。
根据所采集的飞行环境信息规划无人机的飞行路径时,首先需要根据飞行环境信息判断无人机的飞行方向上是否存在障碍物,当无人机的飞行方向上存在障碍物时,才根据障碍物的位置规划无人机的飞行路径,以使无人机绕开障碍物,实现对障碍物的躲避。即飞行路径为能够使无人机绕开障碍物的路径,该飞行路径由飞行控制参数组成,包括飞行速度、飞行方向和飞行时长中的至少一个,举例而言,当飞行路径为向右飞行40s后向前飞行时,则该飞行路径包括的飞行控制参数为飞行方向和飞行时长。
根据所规划的飞行路径生成飞行规划信息时,将飞行路径封装成飞行规划信息,以使飞行规划信息携带飞行路径。其中,由于飞行路径为能够使无人机绕开障碍物的路径,故生成的飞行规划信息为避障飞行信息,通过避障飞行信息生成的杆量控制执行来对遥控器进行操作,能够及时发现障碍物进行避障, 减少无人机坠毁风险,提高安全性。
当通过移动终端获取飞行规划信息时,无人机接收移动终端发送的飞行模式信息,然后将所接收的飞行模式信息作为飞行规划信息。此时,飞行规划信息与飞行模式信息相关。
其中,飞行模式信息由用户触发移动终端中的飞行模式选择按钮产生,不同飞行模式信息对应不同的预设的飞行控制参数。当飞行模式信息为教学飞行信息时,对应的预设的飞行控制参数包括预设的飞行速度、预设的飞行方向和预设的飞行时长;当飞行模式信息为定速飞行信息时,对应的预设的飞行控制参数包括预设的飞行速度。其中,预设的飞行控制参数为用户通过移动终端显示的飞行控制程序的交互界面预先设置的用于指导无人机飞行的飞行参数,比如:当需要指导无人机10m/s的速度进行匀速飞行时,则在定速飞行模式中,将10m/s设置为预设的飞行控制参数。
基于此,若无人机接收到的飞行模式信息为教学飞行信息,则飞行规划信息为教学飞行信息,此时,该飞行规划信息携带预设的飞行速度、预设的飞行方向和预设的飞行时长;若飞行规划子系统320接收到的飞行模式信息为定速飞行信息,则飞行规划信息为定速飞行信息,此时,该飞行规划信息携带预设的飞行速度。
S200:根据所述飞行规划信息,生成杆量控制指令。
无人机根据飞行规划信息生成杆量控制指令时,首先根据飞行规划信息,提取飞行控制参数。具体地,当飞行规划信息为教学飞行信息时,提取的飞行控制参数包括飞行速度、飞行方向和飞行时长;当飞行规划信息为定速飞行信息时,提取的飞行控制参数包括飞行速度;当飞行规划信息为避障飞行信息时,从避障飞行信息携带的飞行路径中提取飞行控制参数,该飞行控制参数包括飞行速度、飞行方向和飞行时长中的至少一种。
其次逆解算飞行控制参数以得到杆量参数。具体地,当所提取的飞行控制参数包括飞行速度和/或飞行方向时,根据飞行速度和/或飞行方向,逆解算出摇杆标识和摇杆量;当所提取的飞行控制参数还包括飞行时长时,还需根据飞行时长,逆解算出杆量保持时间。
其中,由于遥控器包括速度摇杆、方向摇杆和升降摇杆,故摇杆标识包括 速度摇杆标识、方向摇杆标识和升降摇杆标识。
其中,根据飞行速度和/或飞行方向,逆解算出摇杆标识和摇杆量时,能够根据飞行速度和飞行方向分别逆解算出对应的摇杆标识和摇杆量。当飞行控制参数包括飞行速度时,摇杆标识包括第一摇杆标识,摇杆量包括第一摇杆量;当飞行控制参数包括飞行方向时,摇杆标识包括第二摇杆标识,摇杆量包括第二摇杆量。比如:当飞行控制参数包括飞行速度或飞行方向时,根据飞行速度逆解算出第一摇杆标识和第一摇杆量,或者,根据飞行方向逆解算出第二摇杆标识和第二摇杆量;当飞行控制参数包括飞行速度和飞行方向时,根据飞行速度逆解算出第一摇杆标识和第一摇杆量,以及,根据飞行方向逆解算出第二摇杆标识和第二摇杆量。
进一步地,摇杆标识和摇杆量能够根据飞行控制参数的类型以及预设摇杆设置参数逆解算得到。
具体地,请参阅表1,在表1中,设置速度摇杆用于控制无人机加速或者减速,并设置当摇杆量为0<S≤1时,控制无人机加速,即飞行速度大于0,当摇杆量为-1≤S<0时,控制无人机减速,即飞行速度小于0,同时设置速度摇杆能够控制的最大飞行速度为10m/s,该最大飞行速度为速度摇杆位于摇杆终点位置时的速度;设置方向摇杆用于控制无人机左转或者右转,并设置当摇杆量为0<S≤1时,控制无人机右转,当摇杆量为-1≤S<0时,控制无人机左转;设置升降摇杆用于控制无人机前进或者后退,并设置当摇杆量为0<S≤1时,控制无人机前进,当摇杆量为-1≤S<0时,控制无人机后退。
当飞行控制参数为飞行速度时,根据飞行控制参数的类型逆解算得到摇杆标识,根据预设摇杆设置参数逆解算得到摇杆量。
其中,根据飞行速度逆解算得到的摇杆标识为速度摇杆标识。
根据预设摇杆设置参数逆解算得到摇杆量时,将飞行速度与最大飞行速度的比值确定为摇杆量。比如:当飞行速度为-5m/s时,则摇杆量为(-5m/s)/(10m/s)=-0.5。
当飞行控制参数为飞行方向时,根据飞行控制参数的类型以及预设摇杆设置参数逆解算得到摇杆标识和摇杆量。
其中,将飞行方向与预设摇杆设置参数进行匹配确定摇杆标识和摇杆量。 比如:当飞行方向为向右飞行时,确定该飞行方向与方向摇杆匹配,且该飞行方向与摇杆量为0<S≤1时匹配,则根据飞行方向逆解算得到的摇杆标识为方向摇杆标识,摇杆量为0<S≤1中的任意数值,优选地,摇杆量确定为1。
最后封装杆量参数以生成杆量控制指令。
当逆解算出的杆量参数为摇杆标识和摇杆量时,将摇杆标识和摇杆量封装成杆量控制指令;当逆解算出的杆量参数为摇杆标识、摇杆量和杆量保持时间时,将摇杆标识、摇杆量和杆量保持时间封装成杆量控制指令。
比如:当逆解算出的杆量参数为第一摇杆标识和第一摇杆量,和/或,第二摇杆标识和第二摇杆量时,则将第一摇杆标识和第一摇杆量封装成第一杆量控制指令,和/或,将第二摇杆标识和第二摇杆量封装成第二杆量控制指令。
当逆解算出的杆量参数为第一摇杆标识、第一摇杆量和杆量保持时间时,则将第一摇杆标识、第一摇杆量和杆量保持时间封装成第三杆量控制指令。
S300:将所述杆量控制指令发送至所述遥控器,以使所述遥控器根据所述杆量控制指令切换摇杆位置并生成飞行控制指令。
当杆量控制指令包括摇杆标识和摇杆量时,遥控器根据摇杆标识确定摇杆后,根据摇杆量控制所确定的摇杆的动作幅度和动作方向。
当杆量控制指令还包括杆量保持时间时,遥控器根据杆量保持时间使所确定的摇杆在所述动作幅度和动作方向维持移动的时长。
S400:接收所述飞行控制指令,根据所述飞行控制指令控制所述无人机飞行。
在本发明实施例中,通过获取飞行规划信息生成杆量控制指令来控制遥控器切换摇杆位置,实现遥控器的自主操作,不需要操纵者配合导航地图及相机图传画面对遥控器进行操作,为操纵者提供智能化的操作辅助,简化了操纵者操作无人机的过程,降低无人机的控制难度,提高用户操作体验。
实施例三
以下所使用的术语“模块”为可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置可以以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能被构想的。
请参阅图3,是本发明其中一实施例提供的一种飞行控制装置,该装置应 用于无人机,该无人机与遥控器通信连接,该无人机为上述实施例中所述的无人机300,本发明实施例提供的装置各个模块的功能由无人机执行,用于实现遥控器的自主操作,简化操纵者操作无人机的过程,该飞行控制装置包括:
获取模块400,所述获取模块400用于获取飞行规划信息;
生成模块500,所述生成模块500用于根据所述飞行规划信息,生成杆量控制指令;
发送模块600,所述发送模块600用于将所述杆量控制指令发送至所述遥控器,以使所述遥控器根据所述杆量控制指令切换摇杆位置并生成飞行控制指令;
接收模块700,所述接收模块700用于接收所述飞行控制指令,根据所述飞行控制指令控制所述无人机飞行。
进一步地,获取模块400具体用于:
通过所述无人机的传感器采集所述无人机的飞行环境信息;
根据所述飞行环境信息,规划所述无人机的飞行路径;
根据所述飞行路径,生成所述飞行规划信息。
进一步地,所述遥控器连接有移动终端,所述移动终端与所述无人机通信连接;则,
获取模块400具体用于:
接收所述移动终端发送的飞行模式信息,并将所述飞行模式信息作为飞行规划信息。
进一步地,生成模块500具体用于:
根据所述飞行规划信息,提取飞行控制参数;
逆解算所述飞行控制参数,以得到杆量参数;
封装所述杆量参数,以生成所述杆量控制指令。
进一步地,所述飞行控制参数包括飞行速度和/或飞行方向;则,
生成模块500具体用于:
根据所述飞行速度和/或所述飞行方向,逆解算出所述杆量参数,其中,所述杆量参数包括摇杆标识和摇杆量。
进一步地,所述飞行控制参数包括所述飞行速度,所述摇杆标识包括第一 摇杆标识,所述摇杆量包括第一摇杆量;则,
生成模块500具体用于:
根据所述飞行速度逆解算出所述第一摇杆标识和所述第一摇杆量;
将所述第一摇杆标识和所述第一摇杆量封装成所述杆量控制指令。
进一步地,所述飞行控制参数包括所述飞行方向,所述摇杆标识包括第二摇杆标识,所述摇杆量包括第二摇杆量;则,
所述生成模块500具体用于:
根据所述飞行方向逆解算出所述第二摇杆标识和所述第二摇杆量;
将所述第二摇杆标识和所述第二摇杆量封装成所述杆量控制指令。
进一步地,所述飞行控制参数还包括飞行时长;则,
生成模块500具体用于:
逆解算所述飞行时长,以得到杆量保持时间;以及
将所述摇杆标识、所述摇杆量及所述杆量保持时间封装成所述杆量控制指令。
当然,在其他一些可替代实施例中,上述获取模块400、生成模块500和发送模块600可以为飞行规划子系统320的处理芯片,上述接收模块700可以为飞行控制子系统330的处理芯片。
由于装置实施例和方法实施例是基于同一构思,在内容不互相冲突的前提下,装置实施例的内容可以引用方法实施例的,在此不再一一赘述。
在本发明实施例中,通过获取飞行规划信息生成杆量控制指令来控制遥控器切换摇杆位置,实现遥控器的自主操作,不需要操纵者配合导航地图及相机图传画面对遥控器进行操作,为操纵者提供智能化的操作辅助,简化了操纵者操作无人机的过程,降低无人机的使用难度,提高用户操作体验。
实施例四
请参阅图4,是本发明其中一实施例提供的一种无人机的硬件结构示意图,本发明实施例提供的硬件模块集成于上述实施例所述的无人机300内,使得无人机300能够执行以上实施例所述的一种飞行控制方法,还能实现以上实施例所述的一种飞行控制装置的各个模块的功能。该无人机300包括:
一个或多个处理器340以及存储器350。其中,图4中以一个处理器340 为例。
处理器340和存储器350可以通过总线或者其他方式连接,图4中以通过总线连接为例。
存储器350作为一种非易失性计算机可读存储介质,可用于存储非易失性软件程序、非易失性计算机可执行程序以及模块,如本发明上述实施例中的一种飞行控制方法对应的程序指令以及一种飞行控制装置对应的模块(例如,获取模块400、生成模块500、发送模块600和接收模块700等)。处理器340通过运行存储在存储器350中的非易失性软件程序、指令以及模块,从而执行一种飞行控制方法的各种功能应用以及数据处理,即实现上述方法实施例中的一种飞行控制方法以及上述装置实施例的各个模块的功能。
存储器350可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储根据一种飞行控制装置的使用所创建的数据等。
所述存储数据区还存储有预设的数据,包括预设摇杆设置参数。
此外,存储器350可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实施例中,存储器350可选包括相对于处理器340远程设置的存储器,这些远程存储器可以通过网络连接至处理器340。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
所述程序指令以及一个或多个模块存储在所述存储器350中,当被所述一个或者多个处理器340执行时,执行上述任意方法实施例中的一种飞行控制方法的各个步骤,或者,实现上述任意装置实施例中的一种飞行控制装置的各个模块的功能。
上述产品可执行本发明上述实施例所提供的方法,具备执行方法相应的功能模块和有益效果。未在本实施例中详尽描述的技术细节,可参见本发明上述实施例所提供的方法。
本发明实施例还提供了一种非易失性计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,该计算机可执行指令被一个或多个处理器执行,例如图4中的一个处理器340,可使得计算机执行上述任意方法实施 例中的一种飞行控制方法的各个步骤,或者,实现上述任意装置实施例中的一种飞行控制装置的各个模块的功能。
本发明实施例还提供了一种计算机程序产品,所述计算机程序产品包括存储在非易失性计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被一个或多个处理器执行,例如图4中的一个处理器340,可使得计算机执行上述任意方法实施例中的一种飞行控制方法的各个步骤,或者,实现上述任意装置实施例中的一种飞行控制装置的各个模块的功能。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
通过以上的实施例的描述,本领域普通技术人员可以清楚地了解到各实施例可借助软件加通用硬件平台的方式来实现,当然也可以通过硬件。本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程是可以通过计算机程序指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施方法的流程。其中,所述存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(RandomAccessMemory,RAM)等。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;在本发明的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本发明的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (20)

  1. 一种飞行控制方法,应用于无人机,其特征在于,所述无人机与遥控器通信连接,所述方法包括:
    获取飞行规划信息;
    根据所述飞行规划信息,生成杆量控制指令;
    将所述杆量控制指令发送至所述遥控器,以使所述遥控器根据所述杆量控制指令切换摇杆位置并生成飞行控制指令;
    接收所述飞行控制指令,根据所述飞行控制指令控制所述无人机飞行。
  2. 根据权利要求1所述的方法,其特征在于,所述获取所述飞行规划信息,包括:
    通过所述无人机的传感器采集所述无人机的飞行环境信息;
    根据所述飞行环境信息,规划所述无人机的飞行路径;
    根据所述飞行路径,生成所述飞行规划信息。
  3. 根据权利要求1所述的方法,其特征在于,所述遥控器连接有移动终端,所述移动终端与所述无人机通信连接;则,
    所述获取所述飞行规划信息,包括:
    接收所述移动终端发送的飞行模式信息,并将所述飞行模式信息作为飞行规划信息。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述根据所述飞行规划信息,生成所述杆量控制指令,包括:
    根据所述飞行规划信息,提取飞行控制参数;
    逆解算所述飞行控制参数,以得到杆量参数;
    封装所述杆量参数,以生成所述杆量控制指令。
  5. 根据权利要求4所述的方法,其特征在于,所述飞行控制参数包括飞行速度和/或飞行方向;则,
    所述逆解算所述飞行控制参数,以得到所述杆量参数,包括:
    根据所述飞行速度和/或所述飞行方向,逆解算出所述杆量参数,其中,所述杆量参数包括摇杆标识和摇杆量。
  6. 根据权利要求5所述的方法,其特征在于,所述飞行控制参数包括所述飞行速度,所述摇杆标识包括第一摇杆标识,所述摇杆量包括第一摇杆量;则,
    所述封装所述杆量参数,以生成所述杆量控制指令,包括:
    根据所述飞行速度逆解算出所述第一摇杆标识和所述第一摇杆量;
    将所述第一摇杆标识和所述第一摇杆量封装成所述杆量控制指令。
  7. 根据权利要求5或6所述的方法,其特征在于,所述飞行控制参数包括所述飞行方向,所述摇杆标识包括第二摇杆标识,所述摇杆量包括第二摇杆量;则,
    所述封装所述杆量参数,以生成所述杆量控制指令,包括:
    根据所述飞行方向逆解算出所述第二摇杆标识和所述第二摇杆量;
    将所述第二摇杆标识和所述第二摇杆量封装成所述杆量控制指令。
  8. 根据权利要求5所述的方法,其特征在于,所述飞行控制参数还包括飞行时长;则,
    所述逆解算所述飞行控制参数,以得到所述杆量参数,包括:
    逆解算所述飞行时长,以得到杆量保持时间;
    则,所述封装所述杆量参数,以生成所述杆量控制指令,包括:
    将所述摇杆标识、所述摇杆量及所述杆量保持时间封装成所述杆量控制指令。
  9. 一种飞行控制装置,应用于无人机,其特征在于,所述无人机与遥控器通信连接,所述装置包括:
    获取模块,所述获取模块用于获取飞行规划信息;
    生成模块,所述生成模块用于根据所述飞行规划信息,生成杆量控制指令;
    发送模块,所述发送模块用于将所述杆量控制指令发送至所述遥控器,以使所述遥控器根据所述杆量控制指令切换摇杆位置并生成飞行控制指令;
    接收模块,所述接收模块用于接收所述飞行控制指令,根据所述飞行控制指令控制所述无人机飞行。
  10. 根据权利要求9所述的装置,其特征在于,所述获取模块具体用于:
    通过所述无人机的传感器采集所述无人机的飞行环境信息;
    根据所述飞行环境信息,规划所述无人机的飞行路径;
    根据所述飞行路径,生成所述飞行规划信息。
  11. 根据权利要求9所述的装置,其特征在于,所述遥控器连接有移动终端,所述移动终端与所述无人机通信连接;则,
    所述获取模块具体用于:
    接收所述移动终端发送的飞行模式信息,并将所述飞行模式信息作为飞行规划信息。
  12. 根据权利要求9至11中任一项所述的装置,其特征在于,所述生成模块具体用于:
    根据所述飞行规划信息,提取飞行控制参数;
    逆解算所述飞行控制参数,以得到杆量参数;
    封装所述杆量参数,以生成所述杆量控制指令。
  13. 根据权利要求12所述的装置,其特征在于,所述飞行控制参数包括飞行速度和/或飞行方向;则,
    所述生成模块具体用于:
    根据所述飞行速度和/或所述飞行方向,逆解算出所述杆量参数,其中,所述杆量参数包括摇杆标识和摇杆量。
  14. 根据权利要求13所述的装置,其特征在于,所述飞行控制参数包括所述飞行速度,所述摇杆标识包括第一摇杆标识,所述摇杆量包括第一摇杆量;则,
    所述生成模块具体用于:
    根据所述飞行速度逆解算出所述第一摇杆标识和所述第一摇杆量;
    将所述第一摇杆标识和所述第一摇杆量封装成所述杆量控制指令。
  15. 根据权利要求13或14所述的装置,其特征在于,所述飞行控制参数包括所述飞行方向,所述摇杆标识包括第二摇杆标识,所述摇杆量包括第二摇杆量;则,
    所述生成模块具体用于:
    根据所述飞行方向逆解算出所述第二摇杆标识和所述第二摇杆量;
    将所述第二摇杆标识和所述第二摇杆量封装成所述杆量控制指令。
  16. 根据权利要求13所述的装置,其特征在于,所述飞行控制参数还包括飞行时长;则,
    所述生成模块具体用于:
    逆解算所述飞行时长,以得到杆量保持时间;以及
    将所述摇杆标识、所述摇杆量及所述杆量保持时间封装成所述杆量控制指令。
  17. 一种无人机,其特征在于,包括:
    机身;
    机臂,与所述机身相连;
    动力装置,设于所述机臂,用于给所述无人机提供飞行的动力;
    至少一个处理器;以及
    与所述至少一个处理器通信连接的存储器;其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够用于执行如权利要求1-8中任一项所述的飞行控制方法。
  18. 一种飞行控制系统,其特征在于,包括:
    如权利要求17所述的无人机;以及
    遥控器,所述遥控器与所述无人机通信连接,所述遥控器包括杆量执行机构,所述杆量执行机构用于根据所述无人机发送的杆量控制指令切换摇杆位置并生成飞行控制指令。
  19. 根据权利要求18所述的飞行控制系统,其特征在于,所述遥控器连接有移动终端,所述移动终端与所述无人机通信连接,所述移动终端用于向所述无人机发送飞行模式信息。
  20. 一种非易失性计算机可读存储介质,其特征在于,所述非易失性计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使无人机执行如权利要求1-8中任一项所述的飞行控制方法。
PCT/CN2020/091343 2019-05-21 2020-05-20 一种飞行控制方法、装置、系统及无人机 WO2020233605A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910423076.8 2019-05-21
CN201910423076.8A CN110069078B (zh) 2019-05-21 2019-05-21 一种飞行控制方法、装置、系统及无人机

Publications (1)

Publication Number Publication Date
WO2020233605A1 true WO2020233605A1 (zh) 2020-11-26

Family

ID=67371185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/091343 WO2020233605A1 (zh) 2019-05-21 2020-05-20 一种飞行控制方法、装置、系统及无人机

Country Status (2)

Country Link
CN (1) CN110069078B (zh)
WO (1) WO2020233605A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110069078B (zh) * 2019-05-21 2021-06-01 深圳市道通智能航空技术股份有限公司 一种飞行控制方法、装置、系统及无人机
WO2021237481A1 (zh) * 2020-05-26 2021-12-02 深圳市大疆创新科技有限公司 无人飞行器的控制方法和设备
CN114127656A (zh) * 2020-06-04 2022-03-01 深圳市大疆创新科技有限公司 展示内容的生成方法及装置和影像生成方法及装置
CN112650297B (zh) * 2020-12-31 2023-11-21 广州极飞科技股份有限公司 用于无人机的控制方法、控制装置、无人机及存储介质
WO2023272446A1 (zh) * 2021-06-28 2023-01-05 深圳市大疆创新科技有限公司 通信方法、系统、装置、遥控器、飞行器及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070229680A1 (en) * 2006-03-30 2007-10-04 Jai Pulnix, Inc. Resolution proportional digital zoom
CN105353762A (zh) * 2015-09-25 2016-02-24 南京航空航天大学 基于双余度姿态传感器的六旋翼无人机及其控制方法
CN106160617A (zh) * 2016-07-27 2016-11-23 零度智控(北京)智能科技有限公司 飞行器的电机控制方法、装置、电子调速器以及飞行器
CN107438808A (zh) * 2016-10-31 2017-12-05 深圳市大疆创新科技有限公司 一种杆量控制的方法、装置及相关设备
CN109445464A (zh) * 2019-01-08 2019-03-08 深圳市道通智能航空技术有限公司 一种飞行控制方法及飞行控制系统
CN109765927A (zh) * 2018-12-29 2019-05-17 湖北无垠智探科技发展有限公司 一种基于app的无人机航摄飞行遥控系统
CN110069078A (zh) * 2019-05-21 2019-07-30 深圳市道通智能航空技术有限公司 一种飞行控制方法、装置、系统及无人机

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2442201B1 (en) * 2010-07-01 2020-01-22 Sikorsky Aircraft Corporation Formation flying method and system
JP6181300B2 (ja) * 2014-09-05 2017-08-16 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd 無人航空機の速度を制御するシステム
CN108089596B (zh) * 2014-12-15 2020-12-18 深圳市大疆创新科技有限公司 一种飞行器控制方法、装置及飞行器
EP3299920B1 (en) * 2015-05-18 2021-06-23 SZ DJI Technology Co., Ltd. Unmanned aerial vehicle control method and device based on no-head mode
CN205211142U (zh) * 2015-11-27 2016-05-04 杨珊珊 无人飞行器的遥控装置
WO2017143588A1 (en) * 2016-02-26 2017-08-31 SZ DJI Technology Co., Ltd. Systems and methods for adjusting uav trajectory
CN205540284U (zh) * 2016-04-06 2016-08-31 成都普蓝特科技有限公司 一种用于无人机的联合控制系统
CN106200662A (zh) * 2016-08-11 2016-12-07 国网四川省电力公司检修公司 一种无人机飞行控制系统
CN106527439B (zh) * 2016-10-31 2020-12-04 纳恩博(北京)科技有限公司 一种运动控制方法和装置
CN106818691B (zh) * 2016-11-30 2020-04-24 广西圣尧航空科技有限公司 植保机作业时的半自动控制系统
CN106802662A (zh) * 2017-03-13 2017-06-06 安徽朗巴智能科技有限公司 一种多旋翼无人机嵌入式控制系统
CN108052111B (zh) * 2017-10-24 2021-02-09 南京奇蛙智能科技有限公司 一种基于双目视觉技术的无人机实时避障方法
CN109270957A (zh) * 2018-11-19 2019-01-25 广州极飞科技有限公司 一种植保系统及其飞行器控制方法和装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070229680A1 (en) * 2006-03-30 2007-10-04 Jai Pulnix, Inc. Resolution proportional digital zoom
CN105353762A (zh) * 2015-09-25 2016-02-24 南京航空航天大学 基于双余度姿态传感器的六旋翼无人机及其控制方法
CN106160617A (zh) * 2016-07-27 2016-11-23 零度智控(北京)智能科技有限公司 飞行器的电机控制方法、装置、电子调速器以及飞行器
CN107438808A (zh) * 2016-10-31 2017-12-05 深圳市大疆创新科技有限公司 一种杆量控制的方法、装置及相关设备
CN109765927A (zh) * 2018-12-29 2019-05-17 湖北无垠智探科技发展有限公司 一种基于app的无人机航摄飞行遥控系统
CN109445464A (zh) * 2019-01-08 2019-03-08 深圳市道通智能航空技术有限公司 一种飞行控制方法及飞行控制系统
CN110069078A (zh) * 2019-05-21 2019-07-30 深圳市道通智能航空技术有限公司 一种飞行控制方法、装置、系统及无人机

Also Published As

Publication number Publication date
CN110069078A (zh) 2019-07-30
CN110069078B (zh) 2021-06-01

Similar Documents

Publication Publication Date Title
WO2020233605A1 (zh) 一种飞行控制方法、装置、系统及无人机
CN110325939B (zh) 用于操作无人驾驶飞行器的系统和方法
WO2021238742A1 (zh) 一种返航方法、控制器、无人机及存储介质
US9625909B2 (en) Velocity control for an unmanned aerial vehicle
EP3494443B1 (en) Systems and methods for controlling an image captured by an imaging device
KR101569454B1 (ko) 무인 비행체를 이용한 비행 체험 시스템 및 방법
US10852724B2 (en) Customizable waypoint missions
WO2018214079A1 (zh) 一种导航处理方法、装置及控制设备
JP2019507924A (ja) Uav軌道を調整するシステム及び方法
CN106054926A (zh) 一种无人机跟随系统及跟随飞行的控制方法
CN104950902A (zh) 多旋翼飞行器的控制方法及多旋翼飞行器
WO2018099258A1 (zh) 无人机的飞行控制方法和装置
CN114089784B (zh) 一种基于mr眼镜的无人机控制方法及系统
WO2023025199A1 (zh) 一种无人机飞行控制方法、装置、管理平台和存储介质
WO2021135823A1 (zh) 飞行控制方法及装置、无人机
US11620913B2 (en) Movable object application framework
WO2023025202A1 (zh) 云台方向的控制方法、装置及终端
CN106200630A (zh) 一种姿势控制遥控器系统及遥控方法
US20200382696A1 (en) Selfie aerial camera device
WO2023025203A1 (zh) 云台相机的变焦控制方法、装置及终端
CN108469835A (zh) 一种基于Ubuntu的提高无人机飞行效率的控制系统和方法
Chen et al. Multivr: Digital twin and virtual reality based system for multi-people remote control unmanned aerial vehicles
WO2020198998A1 (zh) 一种可移动平台的控制方法、设备及可移动平台
CN114935940B (zh) 一种基于虚拟现实的多无人机远程控制方法
CN108351686B (zh) 便于飞桁操作的触觉增强现实装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20809859

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20809859

Country of ref document: EP

Kind code of ref document: A1