WO2020231068A1 - 마이크로 led 흡착체 및 이를 이용한 마이크로 led 디스플레이 제작 방법 및 마이크로 led 디스플레이 - Google Patents
마이크로 led 흡착체 및 이를 이용한 마이크로 led 디스플레이 제작 방법 및 마이크로 led 디스플레이 Download PDFInfo
- Publication number
- WO2020231068A1 WO2020231068A1 PCT/KR2020/005978 KR2020005978W WO2020231068A1 WO 2020231068 A1 WO2020231068 A1 WO 2020231068A1 KR 2020005978 W KR2020005978 W KR 2020005978W WO 2020231068 A1 WO2020231068 A1 WO 2020231068A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- micro led
- adsorption
- substrate
- micro
- leds
- Prior art date
Links
- 239000003463 adsorbent Substances 0.000 title claims abstract description 266
- 238000000034 method Methods 0.000 title claims abstract description 109
- 238000004519 manufacturing process Methods 0.000 title claims description 55
- 239000000758 substrate Substances 0.000 claims abstract description 618
- 238000001179 sorption measurement Methods 0.000 claims description 800
- 239000010410 layer Substances 0.000 claims description 221
- 239000011148 porous material Substances 0.000 claims description 194
- 238000012546 transfer Methods 0.000 claims description 134
- 239000010407 anodic oxide Substances 0.000 claims description 103
- 239000000463 material Substances 0.000 claims description 92
- 230000004888 barrier function Effects 0.000 claims description 62
- 239000006096 absorbing agent Substances 0.000 claims description 52
- 239000013013 elastic material Substances 0.000 claims description 36
- 229910052751 metal Inorganic materials 0.000 claims description 31
- 239000002184 metal Substances 0.000 claims description 30
- 230000008093 supporting effect Effects 0.000 claims description 19
- 229920000642 polymer Polymers 0.000 claims description 12
- 230000002829 reductive effect Effects 0.000 claims description 11
- 229920002120 photoresistant polymer Polymers 0.000 claims description 8
- 229910001374 Invar Inorganic materials 0.000 claims description 7
- 230000000149 penetrating effect Effects 0.000 claims description 6
- 239000011247 coating layer Substances 0.000 claims description 4
- 229910052755 nonmetal Inorganic materials 0.000 claims description 4
- 239000004205 dimethyl polysiloxane Substances 0.000 claims 1
- 235000013870 dimethyl polysiloxane Nutrition 0.000 claims 1
- CXQXSVUQTKDNFP-UHFFFAOYSA-N octamethyltrisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)O[Si](C)(C)C CXQXSVUQTKDNFP-UHFFFAOYSA-N 0.000 claims 1
- 238000004987 plasma desorption mass spectroscopy Methods 0.000 claims 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 claims 1
- 239000010408 film Substances 0.000 description 121
- 230000006870 function Effects 0.000 description 71
- 230000008569 process Effects 0.000 description 50
- 239000004065 semiconductor Substances 0.000 description 41
- 239000003570 air Substances 0.000 description 40
- 238000005530 etching Methods 0.000 description 25
- 238000010586 diagram Methods 0.000 description 20
- 239000007769 metal material Substances 0.000 description 18
- 238000002048 anodisation reaction Methods 0.000 description 16
- 238000005452 bending Methods 0.000 description 15
- 238000004140 cleaning Methods 0.000 description 15
- 239000000126 substance Substances 0.000 description 12
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 11
- 239000010409 thin film Substances 0.000 description 11
- 239000000853 adhesive Substances 0.000 description 10
- 230000001070 adhesive effect Effects 0.000 description 10
- 229920005989 resin Polymers 0.000 description 9
- 239000011347 resin Substances 0.000 description 9
- 238000000926 separation method Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 8
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 7
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 7
- 229910052782 aluminium Inorganic materials 0.000 description 7
- 230000008602 contraction Effects 0.000 description 7
- 239000006185 dispersion Substances 0.000 description 7
- 238000002161 passivation Methods 0.000 description 7
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 7
- 238000003825 pressing Methods 0.000 description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 230000000903 blocking effect Effects 0.000 description 6
- 238000004891 communication Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 239000011777 magnesium Substances 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 5
- 239000000956 alloy Substances 0.000 description 5
- 230000003139 buffering effect Effects 0.000 description 5
- 239000011575 calcium Substances 0.000 description 5
- 239000011651 chromium Substances 0.000 description 5
- 230000002950 deficient Effects 0.000 description 5
- 239000010931 gold Substances 0.000 description 5
- 230000001976 improved effect Effects 0.000 description 5
- 230000001965 increasing effect Effects 0.000 description 5
- 229910010272 inorganic material Inorganic materials 0.000 description 5
- 239000011147 inorganic material Substances 0.000 description 5
- 229910052759 nickel Inorganic materials 0.000 description 5
- 239000011368 organic material Substances 0.000 description 5
- -1 polyethylene terephthalate Polymers 0.000 description 5
- 239000005020 polyethylene terephthalate Substances 0.000 description 5
- 229920000139 polyethylene terephthalate Polymers 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- 239000002356 single layer Substances 0.000 description 5
- 239000010936 titanium Substances 0.000 description 5
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 239000011810 insulating material Substances 0.000 description 4
- 239000011229 interlayer Substances 0.000 description 4
- 229910052749 magnesium Inorganic materials 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 229910052750 molybdenum Inorganic materials 0.000 description 4
- 239000011733 molybdenum Substances 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 4
- 239000004926 polymethyl methacrylate Substances 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 229910052814 silicon oxide Inorganic materials 0.000 description 4
- 238000009751 slip forming Methods 0.000 description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 3
- 229910052779 Neodymium Inorganic materials 0.000 description 3
- 239000004697 Polyetherimide Substances 0.000 description 3
- 239000004642 Polyimide Substances 0.000 description 3
- 229910052581 Si3N4 Inorganic materials 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 238000007743 anodising Methods 0.000 description 3
- 229910052791 calcium Inorganic materials 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- 239000011162 core material Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000005489 elastic deformation Effects 0.000 description 3
- 230000005611 electricity Effects 0.000 description 3
- 229910052733 gallium Inorganic materials 0.000 description 3
- 229910052732 germanium Inorganic materials 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 229910052738 indium Inorganic materials 0.000 description 3
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 3
- 238000007689 inspection Methods 0.000 description 3
- 229910052741 iridium Inorganic materials 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 230000000116 mitigating effect Effects 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- 229910052763 palladium Inorganic materials 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 229920000058 polyacrylate Polymers 0.000 description 3
- 239000004417 polycarbonate Substances 0.000 description 3
- 229920000515 polycarbonate Polymers 0.000 description 3
- 229920001601 polyetherimide Polymers 0.000 description 3
- 229920001721 polyimide Polymers 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 239000011787 zinc oxide Substances 0.000 description 3
- 229910002704 AlGaN Inorganic materials 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- 229920008347 Cellulose acetate propionate Polymers 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 206010011469 Crying Diseases 0.000 description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- URLKBWYHVLBVBO-UHFFFAOYSA-N Para-Xylene Chemical group CC1=CC=C(C)C=C1 URLKBWYHVLBVBO-UHFFFAOYSA-N 0.000 description 2
- 239000004734 Polyphenylene sulfide Substances 0.000 description 2
- 229910004205 SiNX Inorganic materials 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 238000003491 array Methods 0.000 description 2
- UMIVXZPTRXBADB-UHFFFAOYSA-N benzocyclobutene Chemical compound C1=CC=C2CCC2=C1 UMIVXZPTRXBADB-UHFFFAOYSA-N 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- JAONJTDQXUSBGG-UHFFFAOYSA-N dialuminum;dizinc;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Al+3].[Al+3].[Zn+2].[Zn+2] JAONJTDQXUSBGG-UHFFFAOYSA-N 0.000 description 2
- 239000002019 doping agent Substances 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 238000002248 hydride vapour-phase epitaxy Methods 0.000 description 2
- 150000003949 imides Chemical class 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 229910003437 indium oxide Inorganic materials 0.000 description 2
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000001451 molecular beam epitaxy Methods 0.000 description 2
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 229920000069 polyphenylene sulfide Polymers 0.000 description 2
- 230000008439 repair process Effects 0.000 description 2
- 229910052594 sapphire Inorganic materials 0.000 description 2
- 239000010980 sapphire Substances 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 239000012780 transparent material Substances 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910017107 AlOx Inorganic materials 0.000 description 1
- 229920002284 Cellulose triacetate Polymers 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 229910002601 GaN Inorganic materials 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229910004286 SiNxOy Inorganic materials 0.000 description 1
- 229910003070 TaOx Inorganic materials 0.000 description 1
- 229910003087 TiOx Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 238000005411 Van der Waals force Methods 0.000 description 1
- 229910007667 ZnOx Inorganic materials 0.000 description 1
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 1
- 239000012080 ambient air Substances 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 150000008378 aryl ethers Chemical class 0.000 description 1
- CXOWYMLTGOFURZ-UHFFFAOYSA-N azanylidynechromium Chemical compound [Cr]#N CXOWYMLTGOFURZ-UHFFFAOYSA-N 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 229910000423 chromium oxide Inorganic materials 0.000 description 1
- 210000004081 cilia Anatomy 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 229910001195 gallium oxide Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- CJNBYAVZURUTKZ-UHFFFAOYSA-N hafnium(iv) oxide Chemical compound O=[Hf]=O CJNBYAVZURUTKZ-UHFFFAOYSA-N 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 229910001026 inconel Inorganic materials 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical group [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 229910052809 inorganic oxide Inorganic materials 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910000833 kovar Inorganic materials 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000011344 liquid material Substances 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000113 methacrylic resin Substances 0.000 description 1
- JFNLZVQOOSMTJK-KNVOCYPGSA-N norbornene Chemical compound C1[C@@H]2CC[C@H]1C=C2 JFNLZVQOOSMTJK-KNVOCYPGSA-N 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920001230 polyarylate Polymers 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001955 polyphenylene ether Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000002096 quantum dot Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- HLLICFJUWSZHRJ-UHFFFAOYSA-N tioxidazole Chemical compound CCCOC1=CC=C2N=C(NC(=O)OC)SC2=C1 HLLICFJUWSZHRJ-UHFFFAOYSA-N 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- ILJSQTXMGCGYMG-UHFFFAOYSA-N triacetic acid Chemical compound CC(=O)CC(=O)CC(O)=O ILJSQTXMGCGYMG-UHFFFAOYSA-N 0.000 description 1
- 238000001947 vapour-phase growth Methods 0.000 description 1
- 229920001567 vinyl ester resin Polymers 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67144—Apparatus for mounting on conductive members, e.g. leadframes or conductors on insulating substrates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/005—Processes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L21/6835—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L21/6838—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping with gripping and holding devices using a vacuum; Bernoulli devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/02—Bonding areas ; Manufacturing methods related thereto
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/005—Processes
- H01L33/0093—Wafer bonding; Removal of the growth substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2221/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
- H01L2221/67—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
- H01L2221/683—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L2221/68304—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
- H01L2221/68313—Auxiliary support including a cavity for storing a finished device, e.g. IC package, or a partly finished device, e.g. die, during manufacturing or mounting
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2221/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
- H01L2221/67—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
- H01L2221/683—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L2221/68304—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
- H01L2221/68318—Auxiliary support including means facilitating the separation of a device or wafer from the auxiliary support
- H01L2221/68322—Auxiliary support including means facilitating the selective separation of some of a plurality of devices from the auxiliary support
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2221/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
- H01L2221/67—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
- H01L2221/683—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L2221/68304—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
- H01L2221/68354—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used to support diced chips prior to mounting
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
- H01L25/03—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
- H01L25/04—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L25/075—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
- H01L25/0753—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/005—Processes
- H01L33/0095—Post-treatment of devices, e.g. annealing, recrystallisation or short-circuit elimination
Definitions
- the present invention relates to a micro LED adsorbent for adsorbing micro LEDs with a vacuum suction force.
- micro LED In the current display market, while LCD is still mainstream, OLED is rapidly replacing LCD and emerging as mainstream. With display companies' participation in the OLED market in a rush, Micro LED (hereinafter referred to as “micro LED”) displays are emerging as another next-generation display. While the core materials of LCD and OLED are liquid crystal and organic materials, respectively, micro LED displays are displays that use the LED chip itself in units of 1 to 100 micrometers ( ⁇ m) as emitting materials.
- the existing pick & place equipment cannot be used as the size of the LED is reduced to 1-100 micrometers ( ⁇ m).
- a transfer head technology that transfers with higher precision is required.
- Prior invention 1 a method of transferring a micro LED using an electrostatic head
- the transfer principle of Prior Invention 1 is the principle of generating adhesion with the micro LED by charging by applying a voltage to the head made of silicon material. This method may cause a problem of damage to the micro LED due to charging due to the voltage applied to the head when inducing a power failure.
- X-Celeprint of the United States has proposed a method of transferring micro LEDs on a wafer to a desired substrate by applying a transfer head with an elastic polymer material (Korean Laid-Open Patent Publication No. 2').
- This method has no problem for LED damage compared to the electrostatic head method, but in the transfer process, the micro LED can be stably transferred only when the adhesive force of the elastic transfer head is greater compared to the adhesive force of the target substrate, and an additional process for electrode formation is required.
- maintaining the adhesive strength of the elastic polymer material continuously acts as a very important factor.
- Prior Invention 3 has a disadvantage in that it is difficult to fabricate an adhesive structure of cilia.
- prior invention 4 requires continuous use of an adhesive, and there is a disadvantage in that the micro LED may be damaged when pressing the roller.
- Samsung Display proposed a method of transferring micro LEDs to the array substrate by static electricity induction by applying negative voltages to the first and second electrodes of the array substrate while the array substrate is immersed in a solution (Korean Patent Laid-Open Publication No. No. 10-2017-0026959, hereinafter referred to as'prior invention 5').
- prior invention 5 has a disadvantage in that a separate solution is required and a subsequent drying process is required in that the micro LED is transferred to the array substrate by immersing it in a solution.
- LG Electronics has proposed a method of arranging a head holder between a plurality of pickup heads and a substrate, and providing a degree of freedom to a plurality of pickup heads by deforming the shape by the movement of the plurality of pickup heads.
- No. 10-2017-0024906, hereinafter referred to as'prior invention 6' hereinafter referred to as'prior invention 6'.
- the prior invention 6 has a disadvantage in that a separate process of applying a bonding material to the pickup head is required in that it is a method of transferring a micro LED by applying a bonding material having adhesive strength to the adhesive surfaces of a plurality of pickup heads.
- Patent Document 2 Korean Patent Application Publication No. 10-2014-0112486
- Patent Document 3 Korean Patent Application Publication No. 10-2017-0019415
- Patent Document 5 Korean Registered Patent Publication No. 10-1757404
- Patent Document 7 Korean Patent Application Publication No. 10-2017-0024906
- an object of the present invention is to solve the problem of the transfer head of the micro LED proposed so far and to provide a micro LED adsorbent adopting a vacuum adsorption structure capable of transferring the micro LED.
- the micro LED adsorbent according to the present invention includes an adsorption member provided as an anodic oxide film having vertical pores; And a support member having arbitrary pores and supporting the adsorption member, wherein the adsorption member is divided into an adsorption area for adsorbing the micro LED with a vacuum suction force and a non adsorption area for not adsorbing the micro LED to provide the micro LED. It is characterized by selectively transferring.
- the adsorption region is characterized in that the barrier layer formed during the manufacture of the anodic oxide layer is removed so that the top and bottom of the vertical pores penetrate each other.
- the adsorption region is formed by adsorption holes having a width greater than the width of the vertical pores formed during the manufacture of the anodic oxide layer, and having upper and lower sides penetrated through each other.
- the non-adsorption region is characterized in that it is formed by a shielding portion that closes at least one of the upper and lower portions of the vertical pores formed during the manufacture of the anodic oxide layer.
- the micro LED adsorbent according to another feature of the present invention is provided as an anodic oxide film having vertical pores, and constitutes an adsorption area for adsorbing micro LEDs with a vacuum suction force through a through hole having a width greater than the width of the vertical pores. And an adsorption member configured with a non-adsorption area that does not adsorb the micro LED through a shield that closes one of the upper and lower portions of the vertical pores; And a support member supporting the adsorption member.
- the micro LED adsorbent according to another feature of the present invention is provided as an anodic oxide film having vertical pores, and at least a portion of the adsorption area for adsorbing the micro LED by the vacuum suction force through the vertical pores and the upper and lower portions of the vertical pores
- a support member supporting the adsorption member is provided as an anodic oxide film having vertical pores, and at least a portion of the adsorption area for adsorbing the micro LED by the vacuum suction force through the vertical pores and the upper and lower portions of the vertical pores
- the micro LED adsorbent includes: an adsorption member divided into an adsorption area for adsorbing micro LEDs with a vacuum suction force and a non adsorption area for not adsorbing the micro LEDs; And a support member formed separately from the adsorption member and dispersing the suction force of the vacuum chamber through a pore structure and transferring the suction force to the adsorption region.
- the micro LED adsorbent includes: an adsorption member divided into an adsorption area for adsorbing micro LEDs with a vacuum suction force and a non adsorption area for not adsorbing the micro LEDs; And a support member provided on a side opposite to the suction surface of the suction member and having arbitrary pores communicating with the suction region through an air flow path.
- the micro LED adsorbent includes: an adsorption member divided into an adsorption area for adsorbing micro LEDs with a vacuum suction force and a non adsorption area for not adsorbing the micro LEDs; And a support member configured to adsorb the non-adsorption region of the adsorption member with a vacuum suction force to support the adsorption member and communicate with the adsorption region of the adsorption member through an air flow path to adsorb the micro LED to the adsorption region. It is characterized.
- the micro LED adsorbent comprises: an adsorption member for adsorbing the micro LED, divided into an adsorption area for adsorbing micro LEDs and a non adsorption area for adsorbing the micro LED; A support member provided on the upper portion of the adsorption member and made of a porous material; And a vacuum chamber, wherein the vacuum pressure of the vacuum chamber is reduced by the porous material of the support member and then transferred to the adsorption area of the adsorption member to adsorb the micro LED, and the vacuum pressure of the vacuum chamber is It is characterized in that the porous material of the support member is transferred to the non-adsorbing region of the adsorption member to adsorb the adsorption member.
- the adsorption area is formed by adsorption holes penetrating the adsorption member up and down, and the non-adsorption area is a region in which the adsorption holes are not formed.
- the adsorption member is characterized in that it is made of at least one of anodic oxide film, wafer substrate, invar, metal, non-metal, polymer, paper, photoresist, and PDMS material.
- the adsorption member is formed on the outside of the adsorption member, characterized in that it comprises a protrusion formed to protrude from the adsorption surface of the adsorption member.
- the protrusion is characterized in that it is composed of a porous member.
- the micro LED adsorbent selectively adsorbs the micro LEDs disposed on the first substrate, but the x-direction pitch distance between the adsorption areas is three times the pitch distance in the x direction of the micro LEDs disposed on the first substrate. It is a distance, and the y-direction pitch interval between the adsorption regions is a distance three times the pitch interval in the y-direction of the micro LEDs disposed on the first substrate.
- the micro LED absorber selectively adsorbs the micro LEDs disposed on the first substrate, wherein a diagonal pitch distance between the adsorption areas is the same as the diagonal pitch distance of the micro LEDs disposed on the first substrate. To do.
- the micro LED adsorption body selectively adsorbs the micro LEDs disposed on the first substrate, but the x-direction pitch interval between the adsorption areas is twice the pitch distance in the x direction of the micro LEDs disposed on the first substrate.
- Distance, and the y-direction pitch interval between the adsorption regions is a distance equal to twice the pitch interval in the y-direction of the micro LEDs disposed on the first substrate.
- a method of manufacturing a micro LED display includes: preparing a first substrate equipped with a micro LED; Preparing a circuit board; And a pitch spacing in one direction between the adsorption regions is M/3 times the pitch spacing in one direction of the micro LEDs disposed on the first substrate, and M is an integer of 4 or more.
- the micro LED on the first substrate is connected to the circuit.
- manufacturing a unit module by transferring to a substrate.
- the step of preparing the first substrate equipped with micro LEDs may be a step of preparing and preparing the micro LED on a growth substrate through an epi process, or preparing the micro LED by transferring to a carrier substrate on the growth substrate It is characterized by being.
- the step of preparing the first substrate equipped with the micro LEDs may be a step of preparing a micro LED of the same kind at a predetermined pitch interval, or a step of preparing a different type of micro LED to form a pixel array.
- micro LEDs are mounted on the circuit board to form an array of pixels to form a unit module.
- Micro LED display according to another aspect of the present invention, a display wiring board; And a plurality of unit modules coupled to the display wiring board; wherein the unit module is configured by mounting a micro LED on a circuit board, and the micro LED pixel arrangement in the display wiring board is a micro LED in the unit module It is the same as the pixel arrangement, and the pitch interval of the pixel arrangement on the display wiring board is the same as the pitch interval of the pixel arrangement in the unit module.
- the micro LED adsorbent of the present invention can transfer the micro LED from the first substrate to the second substrate by the vacuum suction force.
- FIG. 1 is a diagram showing a micro LED to be transferred in an embodiment of the present invention.
- FIG. 2 is a diagram of a micro LED structure transferred and mounted on a display substrate according to an embodiment of the present invention.
- FIG. 3 is a view showing a micro LED adsorbent according to a first embodiment of the present invention.
- FIG. 4 is a view showing a micro LED adsorbent according to a second embodiment of the present invention.
- 5 to 7 are diagrams showing modified examples according to the second embodiment of the present invention.
- FIG. 8 is a diagram showing a micro LED adsorbent according to a third embodiment of the present invention.
- Figure 9 (a) is a diagram showing a fourth embodiment of the present invention.
- 9(b) is a diagram showing a fifth embodiment of the present invention.
- FIG. 10 is a diagram showing a sixth embodiment of the present invention.
- 11 to 13 are diagrams showing an embodiment of a protrusion provided in the micro LED adsorbent of the present invention.
- FIG. 14 is a diagram showing an embodiment of a suction pipe constituting the micro LED adsorbent of the present invention.
- 15 to 17 are diagrams showing embodiments of an adsorption area provided in the embodiments of the present invention.
- FIG. 18 is a diagram schematically showing a process of manufacturing a micro LED display using the micro LED adsorbent of the present invention.
- Embodiments described in the present specification will be described with reference to sectional views and/or perspective views that are ideal examples of the present invention.
- the thicknesses and diameters of holes and the like of the films and regions shown in these drawings are exaggerated for effective description of technical content.
- the shape of the exemplary diagram may be modified by manufacturing technology and/or tolerance.
- the number of micro LEDs shown in the drawings is only partially shown in the drawings by way of example. Accordingly, embodiments of the present invention are not limited to the specific form shown, but also include a change in form generated according to a manufacturing process.
- the micro device may include a micro LED.
- Micro LED is a state cut out of a wafer used for crystal growth without being packaged with molded resin, etc., and refers to a size of 1 to 100 ⁇ m in academic terms.
- the micro LED described in the present specification is not limited to the size (one side length) of 1 to 100 ⁇ m, and includes those having a size of 100 ⁇ m or more or less than 1 ⁇ m.
- the micro LED adsorbent of the present invention can adsorb the micro LED (ML) using a vacuum suction force.
- the structure of the micro LED absorber there is no limitation on the structure as long as it is a structure capable of generating a vacuum suction force.
- the micro LED adsorbent may be a growth substrate 101 or a carrier substrate receiving micro LEDs (ML) from a temporary substrate, and by adsorbing the micro LEDs (ML) of a first substrate such as the growth substrate 101 or a temporary substrate It may be a micro LED transfer head that transfers to a temporary substrate or a second substrate such as the display substrate 301.
- ML micro LEDs
- micro LED transfer head as a micro LED adsorption body 1 capable of adsorbing micro LEDs (ML) using a vacuum suction force will be described as an example.
- micro LED ML
- ML micro LED
- FIG. 1 is a view showing a plurality of micro LEDs (ML) to be transferred to the micro LED adsorbent (1) according to a preferred embodiment of the present invention.
- the micro LED (ML) is manufactured and positioned on the growth substrate 101.
- the growth substrate 101 may be formed of a conductive substrate or an insulating substrate.
- the growth substrate 101 may be formed of at least one of sapphire, SiC, Si, GaAs, GaN, ZnO, Si, GaP, InP, Ge, and Ga 2 0 3 .
- the first semiconductor layer 102 may be implemented as, for example, a p-type semiconductor layer.
- the p-type semiconductor layer is a semiconductor material having a composition formula of In x Al y Ga 1-xy N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x+y ⁇ 1), for example GaN, AlN, AlGaN , InGaN, InN, InAlGaN, AlInN, and the like, and p-type dopants such as Mg, Zn, Ca, Sr, Ba, etc. may be doped.
- the present invention is not limited thereto, and the first semiconductor layer 102 may include an n-type semiconductor layer, and the second semiconductor layer 104 may include a p-type semiconductor layer.
- a first contact electrode 106 may be formed on the first semiconductor layer 102, and a second contact electrode 107 may be formed on the second semiconductor layer 104.
- the first contact electrode 106 and/or the second contact electrode 107 may include one or more layers, and may be formed of a variety of conductive materials including metals, conductive oxides, and conductive polymers.
- a plurality of micro LEDs (ML) formed on the growth substrate 101 are cut along the cutting line using a laser, or separated individually through an etching process, and a plurality of micro LEDs (ML) are grown as a growth substrate through a laser lift-off process. It can be in a state that can be separated from (101).
- 'P' denotes a pitch interval between micro LEDs (ML)
- 'S' denotes a separation distance between micro LEDs (ML)
- 'W' denotes a width of micro LEDs (ML).
- ML the cross-sectional shape of the micro LED (ML) is circular, but the cross-sectional shape of the micro LED (ML) is not limited thereto, and the circular cross-section is according to the method of manufacturing the growth substrate 101 such as a square cross-section. It may have a cross-sectional shape other than that.
- FIG. 2 is a view showing a micro LED structure formed by being transferred to and mounted on a display substrate by a micro LED adsorbent according to a preferred embodiment of the present invention.
- the display substrate 301 may include various materials.
- the display substrate 301 may be made of a transparent glass material containing SiO 2 as a main component.
- the display substrate 301 is not necessarily limited thereto, and may be made of a transparent plastic material to have availability.
- Plastic materials are insulating organic materials such as polyethersulphone (PES), polyacrylate (PAR, polyacrylate), polyetherimide (PEI), polyethylene naphthalate (PEN), polyethylene terephthalate (PET, polyethylene terephthalate), polyphenylene sulfide (PPS), polyarylate, polyimide, polycarbonate (PC), cellulose triacetate (TAC), cellulose acetate propionate : CAP) may be an organic material selected from the group consisting of.
- PES polyethersulphone
- PAR polyacrylate
- PEI polyetherimide
- PEN polyethylene naphthalate
- PET polyethylene terephthalate
- PPS polyphenylene sulfide
- PPS polyarylate
- polyimide polycarbonate
- PC cellulose triacetate
- TAC cellulose acetate propionate
- CAP cellulose acetate propionate
- the display substrate 301 is formed of metal
- the display substrate 301 is at least one selected from the group consisting of iron, chromium, manganese, nickel, titanium, molybdenum, stainless steel (SUS), Invar alloy, Inconel alloy, and Kovar alloy. It may include, but is not limited thereto.
- the display substrate 301 may include a buffer layer 311.
- the buffer layer 311 may provide a flat surface and may block the penetration of foreign matter or moisture.
- the buffer layer 311 is made of inorganic materials such as silicon oxide, silicon nitride, silicon oxynitride, aluminum oxide, aluminum nitride, titanium oxide or titanium nitride, or organic materials such as polyimide, polyester, and acrylic. It may contain, and may be formed of a plurality of laminates among the exemplified materials.
- the thin film transistor TFT may include an active layer 310, a gate electrode 320, a source electrode 330a, and a drain electrode 330b.
- the thin film transistor TFT is a top gate type in which the active layer 310, the gate electrode 320, the source electrode 330a, and the drain electrode 330b are sequentially formed will be described.
- the present embodiment is not limited thereto, and various types of thin film transistors (TFTs) such as a bottom gate type may be employed.
- the active layer 310 may include a semiconductor material, such as amorphous silicon or poly crystalline silicon. However, the present embodiment is not limited thereto, and the active layer 310 may contain various materials. As an alternative embodiment, the active layer 310 may contain an organic semiconductor material.
- the active layer 310 may contain an oxide semiconductor material.
- the active layer 310 is a group 12, 13, 14 metal elements such as zinc (Zn), indium (In), gallium (Ga), tin (Sn) cadmium (Cd), germanium (Ge), and combinations thereof. It may include oxides of selected materials.
- a gate insulating layer 313 is formed on the active layer 310.
- the gate insulating layer 313 serves to insulate the active layer 310 from the gate electrode 320.
- the gate insulating layer 313 may be formed of a multilayer or single layer made of an inorganic material such as silicon oxide and/or silicon nitride.
- the gate electrode 320 is formed on the gate insulating layer 313.
- the gate electrode 320 may be connected to a gate line (not shown) for applying an on/off signal to the thin film transistor TFT.
- the gate electrode 320 may be made of a low resistance metal material.
- the gate electrode 320 considers the adhesion with the adjacent layer, the surface flatness of the layer to be laminated, and the workability, for example, aluminum (Al), platinum (Pt), palladium (Pd), silver (Ag), magnesium (Mg).
- Gold (Au), Nickel (Ni), Neodymium (Nd), Iridium (Ir), Chrome (Cr), Lithium (Li), Calcium (Ca), Molybdenum (Mo), Titanium (Ti), Tungsten (W) , Copper (Cu) may be formed as a single layer or multiple layers of one or more materials.
- An interlayer insulating film 315 is formed on the gate electrode 320.
- the interlayer insulating layer 315 insulates the source electrode 330a and drain electrode 330b from the gate electrode 320.
- the interlayer insulating layer 315 may be formed of a multilayer or single layer made of an inorganic material.
- the inorganic material may be a metal oxide or a metal nitride, and specifically, the inorganic material is silicon oxide (SiO 2 ), silicon nitride (SiNx), silicon oxynitride (SiON), aluminum oxide (Al 2 O 3 ), titanium oxide ( TiO 2 ), tantalum oxide (Ta 2 O 5 ), hafnium oxide (HfO 2 ), or zinc oxide (ZrO 2 ).
- a source electrode 330a and a drain electrode 330b are formed on the interlayer insulating layer 315.
- the source electrode 330a and the drain electrode 330b are aluminum (Al), platinum (Pt), palladium (Pd), silver (Ag), magnesium (Mg), gold (Au), nickel (Ni), and neodymium (Nd). ), iridium (Ir), chromium (Cr), lithium (Li), calcium (Ca), molybdenum (Mo), titanium (Ti), tungsten (W), copper (Cu) in a single layer or multiple layers Can be formed.
- the source electrode 330a and the drain electrode 330b are electrically connected to the source region and the drain region of the active layer 310, respectively.
- the planarization layer 317 is formed on the thin film transistor TFT.
- the planarization layer 317 is formed to cover the thin film transistor TFT, thereby eliminating a step difference caused by the thin film transistor TFT and flattening the top surface.
- the planarization layer 317 may be formed of a single layer or multiple layers of an organic material.
- Organic substances are general-purpose polymers such as polymethylmethacrylate (PMMA) or polystylene (PS), polymer derivatives having phenolic groups, acrylic polymers, imide polymers, arylether polymers, amide polymers, fluorine polymers, p-xylene polymers It may include polymers, vinyl alcohol-based polymers, and blends thereof.
- the planarization layer 317 may be formed of a composite laminate of an inorganic insulating film and an organic insulating film.
- a first electrode 510 is positioned on the planarization layer 317.
- the first electrode 510 may be electrically connected to the thin film transistor TFT. Specifically, the first electrode 510 may be electrically connected to the drain electrode 330b through a contact hole formed in the planarization layer 317.
- the first electrode 510 may have various shapes, for example, may be formed by patterning in an island shape.
- a bank layer 400 defining a pixel area may be disposed on the planarization layer 317.
- the bank layer 400 may include a receiving recess in which the micro LED (ML) is accommodated.
- the bank layer 400 may include, for example, a first bank layer 410 forming a receiving recess.
- the height of the first bank layer 410 may be determined by the height and viewing angle of the micro LED (ML).
- the size (width) of the receiving recess may be determined by the resolution and pixel density of the display device. In one embodiment, the height of the micro LED (ML) may be greater than the height of the first bank layer 410.
- the receiving concave portion may have a rectangular cross-sectional shape, but embodiments of the present invention are not limited thereto, and the receiving concave portion may have various cross-sectional shapes such as polygonal, rectangular, circular, conical, elliptical, and triangular.
- the bank layer 400 may further include a second bank layer 420 above the first bank layer 410.
- the first bank layer 410 and the second bank layer 420 have a step difference, and the width of the second bank layer 420 may be smaller than the width of the first bank layer 410.
- a conductive layer 550 may be disposed on the second bank layer 420.
- the conductive layer 550 may be disposed in a direction parallel to the data line or the scan line, and is electrically connected to the second electrode 530.
- the present invention is not limited thereto, and the second bank layer 420 is omitted, and the conductive layer 550 may be disposed on the first bank layer 410.
- the second bank layer 420 and the conductive layer 500 may be omitted, and the second electrode 530 may be formed on the entire substrate 301 as a common electrode common to the pixels P.
- the first bank layer 410 and the second bank layer 420 may include a material that absorbs at least a portion of light, a light reflective material, or a light scattering material.
- the first bank layer 410 and the second bank layer 420 may include an insulating material that is translucent or opaque to visible light (eg, light in a wavelength range of 380 nm to 750 nm).
- the first bank layer 410 and the second bank layer 420 are polycarbonate (PC), polyethylene terephthalate (PET), polyethersulfone, polyvinyl butyral, polyphenylene ether, polyamide, poly Etherimide, norbornene system resin, methacrylic resin, thermoplastic resin such as cyclic polyolefin, epoxy resin, phenolic resin, urethane resin, acrylic resin, vinyl ester resin, imide resin, urethane resin, urea It may be formed of a thermosetting resin such as resin or melamine resin, or an organic insulating material such as polystyrene, polyacrylonitrile, or polycarbonate, but is not limited thereto.
- PC polycarbonate
- PET polyethylene terephthalate
- polyethersulfone polyvinyl butyral
- polyphenylene ether polyamide
- poly Etherimide norbornene system resin
- methacrylic resin thermoplastic resin such as cyclic polyolefin, epoxy resin
- the first bank layer 410 and the second bank layer 420 may be formed of inorganic insulating materials such as inorganic oxides such as SiOx, SiNx, SiNxOy, AlOx, TiOx, TaOx, ZnOx, inorganic nitrides, etc. It is not limited thereto.
- the first bank layer 410 and the second bank layer 420 may be formed of an opaque material such as a black matrix material.
- the first bank layer 410 and the second bank layer 420 may be a dispersed Bragg reflector (DBR) having a high reflectivity or a mirror reflector formed of metal.
- DBR dispersed Bragg reflector
- Micro LEDs are arranged in the receiving recess.
- the micro LED ML may be electrically connected to the first electrode 510 in the receiving recess.
- Micro LED (ML) emits light having wavelengths such as red, green, blue, and white, and white light can also be realized by using a fluorescent material or by combining colors.
- Micro LEDs (ML) individually or in plurality are picked up on the growth substrate 101 by the transfer head according to the embodiment of the present invention and transferred to the display substrate 301, thereby receiving concave in the display substrate 301 Can be accommodated in wealth.
- the passivation layer 520 surrounds the micro LED (ML) in the receiving recess.
- the passivation layer 520 fills the space between the bank layer 400 and the micro LED (ML) to cover the receiving recess and the first electrode 510.
- the passivation layer 520 may be formed of an organic insulating material.
- the passivation layer 520 may be formed of acrylic, poly(methyl methacrylate) (PMMA), benzocyclobutene (BCB), polyimide, acrylate, epoxy, polyester, etc., but is limited thereto. It is not.
- the passivation layer 520 is formed at a height that does not cover the upper portion of the micro LED (ML), for example, the second contact electrode 107, so that the second contact electrode 107 is exposed.
- a second electrode 530 electrically connected to the exposed second contact electrode 107 of the micro LED ML may be formed on the passivation layer 520.
- the second electrode 530 may be disposed on the micro LED (ML) and the passivation layer 520.
- the second electrode 530 may be formed of a transparent conductive material such as ITO, IZO, ZnO, or In 2 O 3 .
- the first and second contact electrodes 106 and 107 have been described by exemplifying vertical micro LEDs (ML) provided on the upper and lower surfaces of the micro LEDs (ML), respectively, but preferred embodiments of the present invention are ,
- the two contact electrodes 106 and 107 may be a flip type or a lateral type micro LED (ML) provided on either of the upper and lower surfaces of the micro LED (ML), in this case
- the first and second electrodes 510 and 530 may also be appropriately provided.
- the micro LED adsorbent 1 includes a porous member 1000 having pores, and applies a vacuum to the porous member 1000 or releases the applied vacuum to form a micro LED (ML) on a first substrate (for example, growth). It is an adsorbent transferred from the substrate 101 or the temporary substrate) to the second substrate (for example, the temporary substrate or the display substrate 301).
- a vacuum chamber 1300 is provided on the porous member 1000.
- the vacuum chamber 1300 is connected to a vacuum port for supplying vacuum or releasing the vacuum.
- the vacuum chamber 1300 functions to apply the vacuum supplied through the suction pipe 1400 or release the applied vacuum from the porous member 1000 according to the operation of the vacuum port.
- the structure of coupling the vacuum chamber 1300 to the porous member 1000 is not limited as long as it is a structure suitable for preventing leakage of vacuum to other parts when applying vacuum to the porous member 1000 or releasing the applied vacuum. .
- the porous member 1000 is composed of a material containing a large number of pores therein, and may be formed in a powder, thin film/thick film, and bulk form having a porosity of about 0.2 to 0.95 with a certain arrangement or disordered pore structure. .
- the pores of the porous member 1000 can be classified into micro pores with a diameter of 2 nm or less, meso pores of 2 to 50 nm, and macro pores of 50 nm or more, depending on their size. Includes at least some.
- the porous member 1000 may be classified into organic, inorganic (ceramic), metal, and hybrid porous materials according to its constituent components.
- the porous member 1000 includes an anodic oxide film 1600 in which pores are formed in a predetermined arrangement.
- the porous member 1000 can be a powder, a coating film, or a bulk in terms of shape, and in the case of a powder, various shapes such as spherical, hollow sphere, fiber, and tube are possible, and the powder may be used as it is, but it is used as a starting material. It is also possible to manufacture and use a coating film or a bulk shape.
- the internal spaces are randomly present in a manufacturing process such as sintering, foaming, and the like and have arbitrary pores connected to each other.
- the pores of the porous member 1000 have a disordered pore structure
- the interior of the porous member 1000 forms an air passage connecting the top and bottom of the porous member 1000 while a plurality of pores are connected to each other.
- arbitrary pores mean that the directionality of the pores is disorderly formed, and vertical pores mean that the directionality of the pores is formed in the up and down directions.
- the porous member 1000 includes a dual structure of the first and second porous members 1100 and 1200.
- a second porous member 1200 is provided above the first porous member 1100.
- the first porous member 1100 is configured to perform a function of vacuum-adsorbing the micro LED (ML) and includes an adsorption member
- the second porous member 1200 includes a vacuum chamber 1300 and a first porous member 1100 It is positioned between and performs a function of transmitting the vacuum pressure of the vacuum chamber 1300 to the first porous member 1100 and a function of supporting the first porous member 1200.
- the second porous member 1200 may include a support member that supports the adsorption member.
- the first and second porous members 1100 and 1200 may have different porosity characteristics.
- the first and second porous members 1100 and 1200 may have different characteristics in terms of the arrangement and size of pores, and the material and shape of the porous member 1000.
- the first porous member 1100 may have a uniform arrangement of pores
- the second porous member 1200 may have a disordered arrangement of pores.
- the size of the pores one of the first and second porous members 1100 and 1200 may have a larger pore size than the other.
- the size of the pores may be the average size of the pores, and may be the largest size among the pores.
- the material side of the porous member 1000 if any one is composed of one of organic, inorganic (ceramic), metal, and hybrid porous material, it is a material different from the other element, such as organic, inorganic (ceramic), It may be selected from metal and hybrid porous materials.
- the inner pores of the first and second porous members 1100 and 1200 may be configured differently from each other.
- the first porous member 1100 may be a porous member having vertical pores having a uniform arrangement of pores.
- the first porous member 1100 is composed of a porous member having vertical pores and includes an adsorption member 1100 functioning to adsorb the micro LED (ML).
- the adsorption member 1100 includes an anodic oxide film 1600.
- the adsorption member 1100 may be an adsorption member 1100 having vertical pores formed through laser processing, an adsorption member 1100 in which vertical pores are formed through etching. As such, the adsorption member 1100 may be variously configured in a structure having vertical pores.
- the second porous member 1200 may be a porous member having arbitrary pores having a random arrangement of pores.
- the second porous member 1200 may include a support member 1200 having arbitrary pores and supporting the configuration of the adsorption member 1100.
- the functions of the micro LED adsorbent 1 can be varied by varying the arrangement and size of the pores, the material, and the internal pores of the first and second porous members 1100 and 1200, and the first and second porous members It is possible to perform a complementary function for each of (1100, 1200).
- the number of porous members is not limited to two, as in the first and second porous members 1100 and 1200, and may be provided in more than one as long as each porous member has a complementary function to each other.
- the porous member 1000 will be described as being configured to include a dual structure of the first and second porous members 1100 and 1200.
- the second porous member 1200 may be a porous member having arbitrary pores, and may be formed of a porous support having a function of supporting the first porous member 1100.
- the material of the second porous member 1200 is not limited as long as it is configured to achieve a function of supporting the first porous member 1100.
- the second porous member 1200 may be formed of a rigid porous support having an effect of preventing a central sag phenomenon of the first porous member 1100.
- the second porous member 1200 may be a porous ceramic material.
- the second porous member 1200 not only prevents the first porous member 1100 provided in the form of a thin film from being deformed by vacuum pressure, but also distributes the vacuum pressure of the vacuum chamber 1300 1 Performs a function of transmitting to the porous member 1100.
- the vacuum pressure dispersed or diffused by the second porous member 1200 is transmitted to the adsorption area of the first porous member 1100 to adsorb the micro LED (ML), and to the non-adsorbing area of the first porous member 1100. It is transmitted so that the second porous member 1200 adsorbs the first porous member 1100.
- the second porous member 1200 may be formed of a porous buffer for buffering the contact between the first porous member 1100 and the micro LED (ML).
- the material is not limited.
- the second porous member 1200 is in contact with the micro LED (ML) and adsorbs the micro LED (ML) by vacuum, the first porous member 1100 is attached to the micro LED (ML).
- the second porous member 1200 may be composed of a soft porous buffer that helps to prevent damage to the micro LED (ML) by touching it.
- the second porous member 1200 may be a porous elastic material such as a sponge.
- the first porous member 1100 for vacuum adsorbing the micro LEDs ML includes an adsorption area 2000 for adsorbing the micro LEDs ML and a non-adsorption area 1130 for adsorbing the micro LEDs ML.
- the adsorption region 1110 is a region in which the vacuum of the vacuum chamber 1300 is transferred to adsorb the micro LED (ML), and the non-adsorption region 1130 is a micro LED ( ML) is not adsorbed.
- the non-adsorption region 2100 may be implemented by forming a shield on at least a portion of the surface of the first porous member 1100.
- the shielding portion is formed to close pores formed on at least a portion of the surface of the first porous member 1100.
- the size of the horizontal area of each adsorption area 1110 may be formed to be smaller than the size of the horizontal area of the upper surface of the micro LED (ML), thereby preventing leakage of vacuum while vacuum adsorption of the micro LED (ML). Vacuum adsorption can be made easier.
- the first porous member 1100 is an adsorption member 1100 provided as a mask 3000 in which a second opening 3000a having a constant pitch interval is formed
- the second opening 3000a of the mask 3000 is The adsorption region 2000 may be formed by the formed opening region.
- the mask 3000 is a material that can be formed in a thin film shape, the material is not limited.
- the adsorption area 2000 is formed at the same pitch spacing as the pitch spacing of the micro LEDs ML on the growth substrate 101, so that the entire micro LEDs ML on the growth substrate 101 can be vacuum-adsorbed and transferred at a time.
- the micro LED (ML) adsorbed on the adsorption region 2000 it may be disposed on the growth substrate 101, the temporary substrate or the carrier substrate, or may be disposed on the display substrate 301 or the target substrate TS, as mentioned below.
- the substrate S is a growth substrate 101, a temporary substrate, a first substrate including a carrier substrate, a display substrate 301, a target substrate TS, a circuit board HS, a temporary substrate, and a carrier substrate. It may be at least one of the second substrates.
- a pitch interval in the column direction (x direction) may be formed by three times the pitch interval in the column direction (x direction) of the micro LEDs ML on the first substrate.
- the micro LED adsorbent 1 can be transported by vacuum adsorption of only micro LEDs (ML) corresponding to three times the heat.
- the micro LED (ML) transferred in the triple row may be any one of red, green, blue, and white LEDs.
- the micro LEDs (ML) having the same light emission color mounted on the second substrate can be transferred by being spaced apart at three times the pitch interval in the column direction (x direction) of the micro LEDs (ML) of the first substrate.
- the micro LED adsorbent 1 having an adsorption area 2000 formed at three times the pitch interval in the column direction (x direction) of the micro LEDs ML of the first substrate 1 may be implemented as shown in FIG. 3.
- the micro LEDs (ML) to be adsorbed on the substrate (S) may be micro LEDs (ML) at positions 1, 4, 7, and 10 based on the left side of FIG. 3.
- a pitch interval in the row direction (y direction) may be formed by three times the pitch interval in the row direction (y direction) of the micro LEDs ML on the first substrate.
- the micro LED adsorber 1 can be transported by vacuum adsorption of only micro LEDs (ML) corresponding to three times the number of rows.
- the micro LEDs (ML) transferred in the triple row may be any one of red, green, blue, and white LEDs.
- the micro LEDs ML having the same light emission color mounted on the second substrate can be transferred by being spaced apart at three times the pitch interval in the row direction (y direction) of the micro LEDs ML on the first substrate.
- the adsorption region 2000 may be formed in a diagonal direction of the micro LEDs ML on the first substrate.
- the pitch spacing in the column direction (x direction) and row direction (y direction) of the adsorption region 2000 is the pitch spacing in the column direction (x direction) and row direction (y direction) of the micro LEDs (ML) on the first substrate. It can be formed in a multiple of three.
- the micro LEDs (ML) transferred to the triple row and the triple column may be any one of red, green, blue, and white LEDs.
- the micro LED adsorbent 1 of the present invention can transfer the micro LED (ML) in the following manner. First, the micro LED adsorbent 1 is moved to the upper part of the first substrate and positioned, and then the micro LED adsorbent 1 is lowered. At this time, the micro LED (ML) is vacuum-adsorbed by applying vacuum to the porous member 1000 by forming a vacuum pressure through the vacuum port. When the micro LED adsorbent 1 adsorbs the micro LED (ML) with a vacuum force, the porous member 1000 of the micro LED adsorbent 1 may be vacuum adsorbed while being in close contact with the micro LED (ML).
- the micro LED adsorbent 1 is raised and then moved.
- the micro LED adsorbent 1 is moved to the upper part of the second substrate and positioned, and then the micro LED adsorbent 1 is lowered. At this time, the micro LED (ML) is transferred to the second substrate by releasing the vacuum applied to the porous member 1000 through the vacuum port.
- the micro LED adsorbent 1 ′ of the second embodiment is an adsorption member 1100 in which the first porous member 1100 having vertical pores described in the first embodiment is provided as an anodic oxide film 1600, and a second porous member 1200 is a support member 1200 that has arbitrary pores and supports the adsorption member 1100, and the micro LED adsorbent 1'of the second embodiment includes the adsorption member 1100 and the support member 1200 It consists of including.
- a method of fixing the adsorption member 1100 to the micro LED adsorption body 1 ′ includes a method of fixing the adsorption member 1100 to the adsorption body 1 ′ through vacuum suction of the support member 1200, and a support member ( 1200), a method of fixing to the adsorbent 1'through a sub-pipe separate from the pipe that forms a vacuum in), a method of fixing to the adsorbent 1'through a physical means such as a clip or clamp, or an adhesive, etc. It includes a method of fixing to the adsorbent (1') through a chemical means of.
- the method of fixing the adsorption member 1100 to the adsorption body 1 ′ through vacuum suction of the support member 1200 is a method of fixing the adsorption member 1100 to the adsorption member 1 ′ by using a vacuum suction force applied through the porous pores of the support member 1200. This is a method in which the support member 1200 adsorbs the adsorption member 1100 by adsorbing the non-adsorption region 1200 of 1100.
- the method of fixing to the adsorbent 1'through a sub-pipe separate from the pipe for forming a vacuum in the support member 1200 is a sub-pipe for adsorbing the adsorption member 1100 and the support member 1200.
- the main pipe for imparting vacuum force to the adsorption area 2000 is divided and the adsorption member 1100 is always fixed to the adsorption body 1'using a sub-pipe, and the adsorption body 1'is a micro LED. This is to allow the adsorption member 100 to adsorb the micro LED by operating the main pipe only when adsorbing (ML).
- the main pipe can be operated only when the adsorbent (1') wants to adsorb the micro LED (ML), before adsorbing the micro LED (ML). It is possible to prevent the occurrence of vortex due to the intake air caused by the operation of the main pipe, and as a result, the adsorbent 1'can be made to adsorb the micro LED (ML) more precisely and reliably.
- the micro LED adsorbent 1 ′ includes an adsorption member 1100 provided as an anodic oxide film 1600 having vertical pores, and a support member for supporting the adsorption member with optional pores. Including 1200, the adsorption member 1100 is divided into an adsorption area 2000 that adsorbs micro LEDs with a vacuum suction force and a non adsorption area 2100 that does not adsorb the micro LEDs to selectively select micro LEDs (ML). To be killed.
- an adsorption member 1100 provided as an anodic oxide film 1600 having vertical pores
- a support member for supporting the adsorption member with optional pores.
- the adsorption member 1100 is divided into an adsorption area 2000 that adsorbs micro LEDs with a vacuum suction force and a non adsorption area 2100 that does not adsorb the micro LEDs to selectively select micro LEDs (ML). To be killed.
- the adsorption region 2000 is formed by removing the barrier layer 1600b formed during the manufacture of the anodic oxide film 1600 so that the top and bottom of the vertical pores penetrate each other, or larger than the width of the vertical pores formed during the manufacture of the anodization film 1600. While having a width, it may be formed by an adsorption hole 1500 having the top and bottom passing through each other.
- the non-adsorption region 2100 may be formed by a shielding portion that closes at least one of the top and bottom of the vertical pores formed during the manufacture of the anodic oxide layer 1600, and a barrier layer formed during the manufacture of the anodic oxide layer 1600 (1600) may be configured as a shield.
- the second embodiment described below will be described mainly on characteristic components compared to the first embodiment, and descriptions of the same or similar components as the first embodiment will be omitted.
- the adsorption member 1100 is provided as an anodic oxide film 1600 having vertical pores, and an adsorption area 2000 that adsorbs micro LEDs (ML) with a vacuum suction force through an adsorption hole 1500 having a width greater than the width of the vertical pores. ), and a non-adsorption region 2100 that does not adsorb the micro LED (ML) through a shield that closes any one of the upper and lower portions of the vertical pores.
- the anodic oxide film 1600 providing the adsorption member 1100 refers to a film formed by anodizing a metal, which is a base material, and pores refer to a hole formed in the process of forming the anodic oxide film 1600 by anodizing the metal. do.
- a metal which is a base material
- pores refer to a hole formed in the process of forming the anodic oxide film 1600 by anodizing the metal. do.
- the base metal is aluminum (Al) or an aluminum alloy
- Al 2 O 3 anodized aluminum
- the formed anodic oxide film 1600 is vertically divided into a barrier layer 1600b having no pores formed therein, and a porous layer 1600a having pores formed therein.
- the barrier layer 1600b is positioned on the base material, and the porous layer 1600a is positioned on the barrier layer 1600b.
- the anodic oxide film 1600 having the barrier layer 1600b and the porous layer 1600a is removed from the base material formed on the surface, only the anodic oxide film 1600 made of anodized aluminum (Al 2 O 3 ) Will remain.
- the anodic oxide film 1600 has a uniform diameter, is formed in a vertical shape, and has pores having a regular arrangement. Accordingly, when the barrier layer 1600b is removed, the pores have a structure vertically penetrating upwards and downwards, and through this, it is easy to form a vacuum pressure in a vertical direction.
- the anodic oxide film 1600 includes an adsorption area 2000 that vacuum-adsorbs the micro LEDs (ML) and a non-adsorption area 2100 that does not adsorb the micro LEDs (ML).
- the adsorption region 2000 of the anodic oxide film 1600 may be formed by removing the barrier layer 1600b formed during the manufacture of the anodic oxide film so that the upper and lower vertical pores penetrate each other.
- the adsorption member 1100 is provided as an anodic oxide film 1600 having vertical pores, and at least one of the adsorption area 2000 that adsorbs the micro LED (ML) with a vacuum suction force through the vertical pores and the upper and lower vertical pores. It may be divided into a non-adsorption area 2100 that is partially closed and does not adsorb the micro LED (ML).
- a support member 1200 is provided on the anodization layer 1600 and a vacuum chamber 1300 is provided on the support member 1200.
- the vacuum chamber 1300 applies vacuum or releases vacuum to a plurality of vertical pores of the adsorption member 1100 provided as the support member 1200 and the anodic oxide film 1600 according to the operation of the vacuum port supplying the vacuum. Functions to do.
- the vacuum applied to the vacuum chamber 1300 is transferred to a plurality of pores of the anodizing film 1600 to provide a vacuum adsorption force for the micro LED (ML).
- the adsorption member 1100 provided as the anodic oxide film 1600 is divided into an adsorption area 2000 that adsorbs micro LEDs (ML) by vacuum suction and a non adsorption area 2100 that does not adsorb micro LEDs (ML).
- LED (ML) can be selectively transferred.
- the adsorption member 1100 may selectively transfer the micro LEDs (ML) according to the pitch interval of the adsorption area 2000 or may transfer them all at once.
- the adsorption area 2000 of the adsorption member 1100 provided as the anodic oxide film 1600 is formed by a porous layer 1600a having vertical pores formed therein by removing at least a part of the barrier layer 1600b, or FIG. 4
- the anodic oxide film 1600 may be formed by an adsorption hole 1500 formed by passing the top and bottom through each other while having a width greater than the width of the vertical pores formed during the manufacture of the anodic oxide layer 1600.
- the adsorption area 2000 may be formed with the porous layer 1600a by removing the barrier layer 1600b, or the adsorption area 2000 may be formed by removing both the barrier layer 1600b and the porous layer 1600a.
- FIG. 4 shows that the barrier layer 1600b and the porous layer 1600a are all removed to form the adsorption region 2000.
- the adsorption hole 1500 is additionally formed in the adsorption member 1100.
- the adsorption hole 1500 is formed to penetrate the upper and lower surfaces of the anodic oxide film 1600.
- the width of the adsorption hole 1500 is formed larger than the width of the pores.
- the adsorption hole 1500 may be formed by etching the anodic oxide film 1600 in a vertical direction after the anodic oxide film 1600 and pores are formed. By forming the adsorption hole 1500 by etching, it is possible to easily form the adsorption hole 1500 without damage to the side of the pore, thereby preventing damage to the adsorption hole 1500 from occurring. .
- the non-adsorption area 2100 may be an area in which the adsorption hole 1500 is not formed.
- the non-adsorption region 2100 may be a region in which at least one of the upper and lower portions of the pores is closed.
- the non-adsorption region 2100 may be formed by a shielding portion that closes at least one of the upper and lower portions of the vertical pores formed during the manufacture of the anodic oxide layer 1600.
- the shielding portion may be a barrier layer 1600b formed when the anodization layer 1600 is manufactured.
- the barrier layer 1600b may be formed on at least some of the upper and lower surfaces of the anodic oxide film 1600 to function as a shielding part.
- the non-adsorption region 2100 of the second embodiment is formed so that any one of the upper and lower vertical pores is closed by the barrier layer 1600b when the anodic oxide film 1600 is manufactured. Can be.
- the barrier layer 1600b is shown above the anodic oxide film 1600 and the porous layer 1600a having pores is located below the anodic oxide film 1600, but the barrier layer 1600b is located below the anodic oxide film 1600.
- the anodic oxide film 1600 shown in FIG. 4 may be inverted up and down so that the non-adsorption region 2100 may be formed.
- the non-adsorption region 2100 has either the upper or lower part of the pores closed by the barrier layer 1600b, but a separate coating layer is added to the opposite surface that is not closed by the barrier layer 1600b. It can be configured so that both the top and bottom are closed. In configuring the non-adsorption region 2100, the configuration in which both the top and the bottom of the anodic oxide film 1600 are closed is compared to a configuration in which at least one of the top and bottom of the anodic oxide film 1600 is closed. ) It is advantageous in that it can reduce the risk of foreign matter remaining in the pores.
- the adsorption member 1100 as described above may be made of at least one of the anodic oxide film 1600, the wafer substrate, invar, metal, nonmetal, polymer, paper, photoresist, and PDMS.
- the material of the adsorption member 1100 is a metal material, it is possible to have the advantage of preventing the generation of static electricity during transfer of the micro LED (ML).
- the material of the adsorption member 1100 is a non-metal material, it has the advantage of minimizing the effect of the adsorption member 1100 on the micro LED (ML) having metal properties as a material that does not have metal properties.
- the adsorption member 1100 is made of silicon or PDMS, even if the lower surface of the adsorption member 1100 directly contacts the upper surface of the micro LED (ML), it exhibits a buffer function, thereby reducing the fear of damage due to collision with the micro LED (ML). Can be minimized.
- the material of the adsorption member 1100 is a resin material, there is an advantage in that the production of the adsorption member 1100 is simple.
- the adsorption member 1100 divided into an adsorption area 2000 that adsorbs micro LEDs (ML) with a vacuum suction force and a non adsorption area 2100 that does not adsorb the micro LEDs (ML) is the adsorption area 2000 and the air flow path. It may be supported by the support member 1200 having arbitrary pores in communication with each other.
- the support member 1200 is provided on the adsorption member 1100 and may be made of a porous material. Specifically, the support member 1200 may be made of a porous material having arbitrary pores.
- the support member 1200 adsorbs the non-adsorption area 2100 of the adsorption member 1100 with a vacuum suction force to support the adsorption member 1100 and communicates with the adsorption area 2000 of the adsorption member 1100 through an air flow path.
- Micro LED (ML) may be adsorbed to the adsorption region 2000.
- the micro LED adsorbent 1 ′ of the second embodiment includes the adsorption member 1100, the support member 1200, and the vacuum chamber 1300 as described above, so that the vacuum pressure of the vacuum chamber 1300 is reduced to the support member 1200 ) After being depressurized by the porous material and transferred to the adsorption area 2000 of the adsorption member 1100 to adsorb the micro LED (ML).
- the vacuum pressure of the vacuum chamber 1300 is transmitted to the non-adsorption region 2100 of the adsorption member 1100 by the porous material of the support member 1200 to adsorb the adsorption member 1100.
- the adsorption area 2000 of the adsorption member 1100 is formed by a porous layer 1600a in which at least a part of the barrier layer 1600b is removed and vertical pores are formed therein, or the anodization film 1600 is manufactured. It may be formed by an adsorption hole 1500 that has a width greater than the width of the vertical pores formed at the time and the upper and lower portions penetrate each other.
- the adsorption area 2000 is formed with a pitch interval in the column direction (x direction) by three times the pitch interval in the column direction (x direction) of the micro LED (ML) on the substrate S as an example.
- the substrate S may mean a first substrate (eg, a growth substrate 101 or a temporary substrate).
- the adsorption region 2000 of a modified example to be described below is also described as an example, showing that the pitch interval in the column direction (x direction) is formed by three times the pitch interval in the column direction (x direction) of the micro LED (ML).
- the x-direction pitch spacing between the adsorption areas 2000 is three times the x-direction pitch spacing of the micro LEDs ML disposed on the first substrate, and the adsorption area 2000
- the y-direction pitch spacing between the cells is formed to be three times the pitch spacing in the y-direction of the micro LEDs ML disposed on the first substrate, so that the micro LEDs ML disposed on the first substrate may be selectively adsorbed.
- micro LED adsorbent 1' is disposed on the first substrate in which the diagonal pitch spacing between the adsorption regions 2000 is the same as the diagonal pitch spacing of the micro LEDs ML disposed on the first substrate.
- Micro LED (ML) can be selectively adsorbed.
- the pitch spacing in the column direction (x direction) and the row direction (y direction) of the adsorption area 2000 is not limited to the accompanying drawings, and the pitch spacing in the column direction (x direction) of the micro LEDs ML on the substrate S It may be formed as a distance three times the distance or three times the pitch interval in the row direction (y direction).
- the micro LED (ML) is transferred onto a substrate (for example, a second substrate such as the display substrate 301) such as the diagonal direction of the micro LED (ML) on the substrate (S) and formed appropriately for the pixel array to be placed. Can be.
- FIGS. 5 to 7 are diagrams showing various modified examples according to the second embodiment of the present invention.
- Modified examples according to the second embodiment are the same as in the second embodiment in that the adsorption member 1100 is formed of an anodic oxide film 1600 and provided, but adsorption in which the adsorption area 2000 for adsorbing micro LEDs (ML) is formed. It differs from the second embodiment in that the structure and configuration of the member 1100 is modified or a new configuration is added.
- the description of various modified examples according to the second embodiment below is a description of a special structure and configuration in the second embodiment, the second embodiment includes other configurations other than that according to the following description. There is no change in that it can be configured.
- a drawing is shown centering on the adsorption member 1100, and characteristic components will be described as the center.
- FIG. 5(a) is a diagram showing a first modified example according to the second embodiment.
- Fig. 5(a) shows a part of the adsorption member 1100 provided as the anodic oxide film 1600 of the micro LED adsorbent 1'of the first modified example.
- a support part 1600c for reinforcing the strength of the anodic oxide film 1600 is additionally formed on the non-adsorbing region 2100 of the adsorption member 1100.
- the support part 1600c may be a base material made of a metal material. The base material of the metal material used during the anodization is not removed and is provided on the barrier layer 1600b, so that the base material of the metal material may become the support part 1600c. Referring to FIG.
- a base material made of metal, a barrier layer 1600b, and a porous layer 1600a in which pores are formed are all provided, and the adsorption area 2000 is As the base material and the barrier layer 1600b of the material are removed, the upper and lower pores are formed to penetrate.
- the thickness of the anodic oxide film 1600 of the adsorption region 2000 formed through the upper and lower pores is smaller than the thickness of the anodic oxide film 1600 of the non-adsorption region 2100.
- a base material made of a metallic material is provided in the non-adsorption region 2100 to secure the rigidity of the anodized oxide film 1600.
- the support part 1600c By the configuration of the support part 1600c as described above, it is possible to increase the strength of the anodic oxide film 1600, which is relatively weak, so that the size of the micro LED adsorbent 1 ′ composed of the anodic oxide film 1600 is increased to a large area. can do.
- the adsorption region 2000 may be formed by the porous layer 1600a from which the barrier layer 1600b has been removed, as shown in Fig. 5(a), and differently, the barrier layer 1600b and the porous layer ( 1600a) may also be formed by the configuration of the adsorption hole (1500) has all been removed.
- FIG. 5(b) shows a part of the adsorption member 1100 provided as the anodic oxide film 1600 of the micro LED adsorber 1'of the second modified example of the second embodiment.
- the base material is removed, and at least a part of the barrier layer 1600b is removed to form the adsorption region 2000.
- An adsorption groove 1700 is additionally formed under the adsorption region 2000 of the anodic oxide film 1600.
- the adsorption groove 1700 has a larger horizontal area than the above-described pores or adsorption hole 1500 and has an area smaller than the horizontal area of the upper surface of the micro LED ML.
- the adsorption groove 1700 may be formed by etching at least a portion of the lower portion of the adsorption region 2000 of the anodization layer 1600 to a predetermined depth after the above-described anodization layer 1600 and pores are formed.
- the adsorption region 2000 may be formed by the porous layer 1600a from which the barrier layer 1600b has been removed, as shown in FIG. 5(b), and differently, the barrier layer 1600b and the porous layer ( 1600a) may also be formed by the configuration of the adsorption hole (1500) has all been removed.
- FIG. 5(c) shows a part of the adsorption member 1100 provided as the anodic oxide film 1600 of the micro LED adsorber 1'of the third modified example of the second embodiment.
- a seating groove 1800 is additionally formed under the adsorption region 2000.
- the seating groove 1800 has a larger horizontal area than the horizontal area of the upper surface of the micro LED ML.
- the adsorption area 2000 may be configured in the form of an adsorption hole 1500 in which both the barrier layer 1600b and the porous layer 1600a are removed.
- the seating groove 1800 may be formed at a lower portion of the adsorption hole 1500 than a width of the adsorption hole 1500.
- the escape groove 1900 may be formed by etching at least a portion of the lower portion of the non-adsorbing region 2100 to a predetermined depth in at least a portion of the lower portion of the non-adsorbing region 2100.
- a protrusion region 2200 may be formed around the escape groove 1900 in the adsorption member 1100.
- An adsorption area 2000 may be formed in the center of the protrusion area 2200.
- the micro LED (ML) is adsorbed by the adsorption region 2000 and the micro LED (ML) is adsorbed under the protruding region 2200.
- the horizontal area of the protruding area 2200 is formed larger than the horizontal area of the upper surface of the micro LED (ML), and the adsorption area 2000 formed by removing the barrier layer 1600b in the center of the protruding area 2200 is a micro LED (ML). ) It is formed smaller than the width of the upper surface to prevent leakage of vacuum.
- the base material is removed, and at least a part of the barrier layer 1600b is removed to form the adsorption region 2000.
- the adsorption area 2000 may be formed of an adsorption hole 1500 from which both the barrier layer 1600b and the porous layer 1600a are removed.
- the horizontal area of the escape groove 1900 is formed larger than the horizontal area of at least one micro LED (ML).
- 5(d) shows that the horizontal area of the escape groove 1900 in the horizontal direction is equal to the horizontal area of the two micro LEDs (ML) plus twice the horizontal pitch interval between the micro LEDs (ML). Is shown.
- FIG. 6(a) shows a part of the adsorption member 1100 provided as the anodic oxide film 1600 of the micro LED adsorber 1'of the fifth modified example of the second embodiment.
- the base material of the anodic oxide film 1600 is removed, and at least a part of the barrier layer 1600b is removed to form the adsorption region 2000.
- the adsorption region 2000 may be configured with the adsorption hole 1500 from which both the barrier layer 1600b and the porous layer 1600a are removed.
- a first protruding dam 2300 is provided below the adsorption member 1100 of the fifth modified example. Specifically, a first protruding dam 2300 is provided under the non-adsorption area 2100 of the adsorption member 1100. The first protrusion dam 2300 may be provided below the non-adsorption region 2100 and may be provided around the adsorption region 2000.
- the material of the first protruding dam 2300 may be formed of a photoresist (including PR, dry film PR), PDMS material, or metal material, and may be formed on the surface of the adsorption member 1100 at a predetermined height. If it is, there is no limit to this.
- the first protruding dam 2300 may be formed of an elastic material.
- the cross-sectional shape of the protruding portion of the first protruding dam 2300 includes any protruding shape such as a square, a circle, and a triangle.
- the cross-sectional shape of the protruding portion of the first protruding dam 2300 may be configured in consideration of the shape of the micro LED (ML). For example, if the micro LED (ML) has a structure having a wider lower portion than the upper portion, the cross-sectional shape of the protruding portion of the first protruding dam 2300 is a structure having a narrower lower portion than the upper portion. It is more advantageous in terms of preventing interference between LEDs (ML). Referring to FIG. 6A, the cross-sectional shape of the protruding portion of the first protruding dam 2300 has a shape tapered downward.
- micro LED adsorbent 1' When the micro LED adsorbent 1'descends to the adsorption position to vacuum-adsorb the micro LED ML located on the substrate S, due to a driving error of the driving means of the micro LED adsorbent 1' The adsorption member 1100 and the micro LED (ML) come into contact with each other to cause damage to the micro LED (ML).
- the adsorption member 1100 can vacuum-adsorb the micro LED ML even by a relatively smaller vacuum pressure.
- 6(b) shows a part of the adsorption member 1100 provided as the anodic oxide film 1600 of the micro LED adsorbent 1'of the sixth modified example of the second embodiment.
- the sixth modified example may be configured to include a concave portion 2400 provided on a lower surface of the adsorption member 1100.
- the base material of the anodic oxide layer 1600 is removed, and at least a part of the barrier layer 1600b is removed to form the adsorption region 2000.
- the adsorption region 2000 may be formed with the configuration of the adsorption hole 1500 from which both the barrier layer 1600b and the porous layer 1600a are removed.
- the recess 2400 is formed on the lower surface of the adsorption area 2000 of the adsorption member 1100, and the micro LED (ML) is inserted when the micro LED adsorption body 1'vacuum adsorption of the micro LED (ML) It functions to provide.
- the concave portion 2400 has a shape that is recessed in the lower surface of the suction member 1100.
- the concave portion 2400 may have a circular or square cross section.
- the shape of the concave part 2400 may vary according to the cross-sectional shape of the micro LED ML.
- the shape of the concave portion 2400 may also have a square shape corresponding to the cross-sectional shape of the micro LED (ML).
- the concave portion 2400 may be formed by providing an additional flat portion 2500 on the lower surface of the adsorption member 1100.
- the upper surface of the micro LED ML is on the lower surface of the region where the concave part 2400 of the adsorption member 1100 is formed. Come into contact. Accordingly, the lower surface of the region in which the concave portion 2400 is formed among the lower surfaces of the suction member 1100 may be the micro LED adsorption region 2000.
- the micro LED adsorption body 1'of the sixth modified example has a concave part 2400 and a flat part 2500 to form an adsorption area 2000 and a non-adsorption area 2100 on the lower surface of the adsorption member 1100.
- the concave portion 2400 the micro LED (ML) is inserted to be adsorbed on the lower surface of the adsorption member 1100, so that the adsorption area 2000 is, and in the case of the flat part 2500, the lower surface of the non-adsorbing area 2100 Since it is provided in the non-adsorption area 2100.
- the concave portion 2400 may be formed only at a position corresponding to the micro LED (ML) to be adsorbed.
- the micro LED (ML) to be adsorbed in FIG. 6 (b) is the micro LED (ML) located at the first and fourth positions based on the left side of the drawing.
- the micro LED (ML) When the micro LED adsorber 1'provided with the concave part 2400 adsorbs the micro LED (ML), the micro LED (ML) is picked up into the concave part 2400 by the adsorption force and into the concave part 2400 Will be inserted. This is, even if the upper surface of the micro LED (ML) and the lower surface of the micro LED adsorber 1'are controlled to be spaced apart by a predetermined interval, the micro LED (ML) is concave by the adsorption force of the adsorption unit 1100 ( 2400) direction can be picked up.
- the micro LED adsorption body 1' is the lower surface of the micro LED adsorption body 1', that is, the lower surface of the flat part 2500 is the micro LED ML. It is controlled so as to be spaced apart from the upper surface at a predetermined interval to pick up the micro LED (ML).
- the inclined portion 2400a is formed in the concave portion 2400, when the micro LED (ML) is inserted into the concave portion 2400 and picked up from the growth substrate 101, the inclined portion 2400a The micro LED (ML) is guided by the micro LED (ML), so that the micro LED (ML) is picked up by being sucked into the correct position. Accordingly, it is possible to solve a problem of a position error that may occur when the micro LED (ML) is adsorbed, and through this, transfer of the micro LED (ML) from the display substrate 301 to an accurate position can be performed.
- the terminal avoidance groove 2700 may be formed in a shape corresponding to the size, number, and position of terminals formed on the surface of the micro LED (ML).
- 6(c) shows a micro LED ML in which first and second terminals 106 and 107 performing the same functions as the first and second contact electrodes 106 and 107 are formed on the upper surface.
- the micro LED (ML) only differs from the micro LED (ML) described with reference to FIGS. 1 and 2 and the position of the first and second contact electrodes 106 and 107, and the flip performs the same function with the same configuration. It is a type or lateral type micro LED (ML).
- the first and second terminals 106 and 107 may have different heights and may have the same height.
- the micro LED (ML) is not limited to the shape shown in FIG. 6(c).
- the seventh modified example prevents the problem of lowering the adsorption of micro LEDs due to the protruding terminals by forming the terminal avoidance groove 2700 on the surface of the adsorption area 2000 for adsorbing the micro LEDs (ML) of the adsorption member 1100. can do.
- the terminal avoidance groove 2700 may be formed larger than an area of a terminal formed on the surface of the micro LED ML.
- the height of the terminal avoidance groove 2700 is formed equal to the terminal of the micro LED (ML).
- the terminal avoidance groove 2700 formed in such an area and height can facilitate the insertion of the micro LED (ML) into the terminal avoidance groove 2700 by the area, and the height of the terminal of the micro LED (ML)
- the upper surface may be adsorbed to the upper surface of the terminal avoidance groove 2700.
- the terminal avoidance groove 2700 may be partially removed and formed at a position of the adsorption area 2000 at a position corresponding to the terminal on the surface of the micro LED ML by etching, etc., at the same height as the area of the terminal. have.
- Fig. 7(a) shows a part of the adsorption member 1100 provided as the anodic oxide film 1600 of the micro LED adsorber 1'of the eighth modified example of the second embodiment.
- the shielding portion may be formed under the adsorption member 1100.
- a barrier layer 1600b is formed on the lower surface of the anodic oxide film 1600. The lower portion of the pores is closed by the barrier layer 1600b to form a non-adsorption region 2100 in the adsorption member 1100.
- adsorption holes 1500 penetrating the top and bottom of the anodic oxide film 1600 are formed by etching.
- the adsorption area 2000 is formed by the adsorption hole 1500.
- the buffer unit 2600 may be made of an elastic material.
- a buffer function to prevent damage to the micro LED (ML) can be performed.
- the first substrate is the growth substrate 101
- the micro LEDs (ML) are removed from the growth substrate 101 using the LLO method
- the micro LEDs (ML) from the growth substrate 101 There may be a phenomenon of bouncing toward the LED adsorbent 1'.
- the buffer unit 2600 made of an elastic material may perform a function of supporting the micro LED (ML) to the upper side of the micro LED (ML) while in contact with the micro LED (ML) and perform a buffer function. .
- the buffer unit 2600 made of an elastic material may prevent the micro LED (ML) from being damaged.
- the semiconductor material of the first semiconductor layer 102 and the second semiconductor layer 104 included in the micro LED (ML) is selected as GaN
- the micro LED (ML) may be in close contact with each other, the first and second semiconductor layers 102 and 104 may be damaged.
- the buffer unit 2600 made of an elastic material is provided, when the micro LED adsorbent 1'and the micro LED (ML) are in close contact with each other, the buffer unit 2600 can perform the function of buffering. , It is possible to prevent breakage of a specific layer of the micro LED (ML) such as the two semiconductor layers 102 and 104.
- the buffer unit 2600 may be formed of a photoresist PR, a PDMS material, or a metal material, and may be formed through an exposure process. In addition, it may be formed through sputtering.
- the buffer unit 2600 may be provided on the surface of the adsorption member 1100 except for the opening of the adsorption area 2000 to form an opening by the adsorption area 2000.
- the openings 2600a of the buffer unit 2600 may be formed in the same number as the adsorption areas 2000 and at regular intervals, and may be formed at positions corresponding to the adsorption areas 2000.
- the opening 2600a of the buffer unit 2600 may be formed at the same pitch interval as that of the micro LEDs ML on the substrate S, and the opening 2600a and the adsorption area 2000 of the buffer unit 2600 Since is formed at a corresponding position, the adsorption region 2000 may also be formed at the same pitch interval as the pitch interval of the micro LEDs ML of the first substrate.
- the micro LED adsorber 1'of the eighth modified example can selectively vacuum-adsorb the micro LEDs ML on the substrate S at a time.
- the buffer unit 2600 may be provided on the entire surface of the anodic oxide film 1600 except for the opening of the adsorption region 2000, and is provided on at least a portion of the surface of the anodic oxide film, and surrounds the opening of the adsorption region 2000. It may be provided in a stacked form.
- the barrier layer 1600b serving as a shielding part may be formed under the adsorption member 1100.
- a barrier layer 1600b is formed on the lower surface of the anodization layer 1600. The lower portion of the pores is closed by the barrier layer 1600b to form a non-adsorption region 2100 in the adsorption member 1100.
- adsorption holes 1500' penetrating the top and bottom of the anodic oxide film 1600 are formed by etching.
- the adsorption area 2000 is formed by the adsorption hole 1500'.
- the adsorption hole 1500' of the ninth modified example may be formed in a rectangular cross section.
- the adsorption hole 1500' having a square cross section can minimize the vacuum pressure loss area for the micro LED (ML) when adsorbing the micro LED (ML).
- the upper surface of the micro LED ML is in direct contact with the surface of the adsorption area 2000 as much as the area of the adsorption hole of the circular cross section when adsorbing the micro LEDs ML.
- the suction hole having a circular cross section may have a larger vacuum pressure loss area for adsorbing the micro LED (ML) than the suction hole 1500 ′ having a square cross section, as in the ninth modified example.
- the suction hole of a circular cross section and the suction hole 1500 ′ of a square cross section have the same horizontal and vertical width, and a micro LED (ML) having the same horizontal and vertical width is adsorbed to each of the suction holes 1500 ′,
- the vacuum pressure loss area for the micro LED ML in the adsorption hole 1500' having a square cross section can be minimized.
- the adsorption hole 1500' having a square cross section is formed equal to the pitch interval in the column direction (x direction) and the row direction (y direction) of the micro LED (ML) on the substrate S, or may be formed at a pitch interval of two or more times. I can.
- adsorption holes 1500' having a square cross section are formed at a pitch interval three times the pitch interval in the column direction (x direction) of the micro LEDs ML on the substrate S. It is shown that the fourth micro LED (ML) can be adsorbed in the adsorption area 2000 formed by the adsorption hole 1500' of the adsorption member 1100.
- the adsorption hole 1500' having a square cross section may be formed by removing at least a part of the adsorption member 1100 to a predetermined depth, and the adsorption hole 1500' It may be formed by additionally providing a communication hole having a width different from the horizontal and vertical widths of the square cross section of the.
- the communication hole is formed in a rectangular cross-section having a width smaller than that of the adsorption hole 1500 ′, and has a relatively small area through which air is discharged. Accordingly, when the vacuum pump is operated, the time for forming the vacuum pressure formed when the air inside the suction hole 1500 ′ and the communication hole is discharged to the outside may be shortened compared to the embodiment.
- Micro LED adsorber 1' according to the second modified example has the horizontal and vertical widths of the square cross-section of the communication hole formed on the upper side of the adsorption hole 1500' and the horizontal and vertical widths of the rectangular cross-section of the adsorption hole 1500'. By forming a smaller size, it is possible to obtain an effect of improving the transfer efficiency of the micro LED (ML) by shortening the vacuum pressure forming time.
- the above shape may be a modified shape of the adsorption area 2000.
- FIG. 7(c-1) shows a part of the adsorption member 1100 provided as the anodic oxide film 1600 of the micro LED adsorber 1'of the tenth modified example of the second embodiment
- FIG. 7(c-2) Is a perspective view showing a part of the second protruding dam 2800 provided in the tenth modified example.
- the adsorption member 1100 of the tenth modified example is formed in the same shape as the adsorption member 1100 of the eighth modified example shown in FIG. 7(a) and the adsorption region 2000 is formed by the adsorption hole 1500.
- the eighth modified example will be omitted.
- the micro LED adsorbent 1'of the tenth modified example includes a second protruding dam 2800.
- the second protrusion dam 2800 is provided on the lower surface of the adsorption member 1100 formed of the anodized oxide film 1600 and is provided to surround the lower part of the adsorption area 2000.
- the second protruding dam 2800 is independently provided in a form surrounding each of the plurality of adsorption holes 1500 formed in the adsorption member 1100, and each adsorption area 2000 It may be provided in an independent form surrounding the.
- the second protruding dam 2800 may be in a form of standing alone.
- the second protruding dam 2800 is provided to surround the adsorption region 2000 and is formed to protrude from the lower part of the adsorption member 1100.
- 7(c-2) shows that the second protrusion dam 2800 has a square cross section, but the shape of the second protrusion dam 2800 is not limited thereto, and may be provided in another shape such as a circular frame.
- the vacuum applied to the adsorption region 2000 is transferred to the inside, so that suction force may be generated therein.
- the adsorption member 1100 is capable of adsorbing the micro LED (ML) by the suction force inside the second protrusion dam 2800.
- the micro LED adsorbent 1'descends to adsorb the micro LED ML the lower surface of the second protruding dam 2800 provided under the adsorption member 1100 is on the upper surface of the micro LED ML. Can be contacted.
- the second protruding dam 2800 may be made of an elastic material.
- the second protrusion dam 2800 can function as a buffer when in contact with the micro LED (ML), and does not damage the micro LED (ML) when adsorbing the micro LED (ML) with the micro LED adsorbent (1'). It can be adsorbed.
- a buffer that prevents damage to the micro LED (ML) when the micro LED (ML) is removed from the first substrate using the LLO (Laser Lift-off) method. Function can be performed.
- the first substrate is the growth substrate 101
- the micro LEDs (ML) are removed from the growth substrate 101 using the LLO method
- the micro LEDs (ML) from the growth substrate 101 There may be a phenomenon of bouncing toward the LED adsorbent 1'.
- the second protruding dam 2800 made of an elastic material is in contact with the micro LED (ML) and performs a function of supporting the micro LED (ML) to the upper side of the micro LED (ML), and a buffer function. I can.
- the second protrusion dam 2800 made of an elastic material may prevent damage to the micro LED ML.
- the semiconductor material of the first semiconductor layer 102 and the second semiconductor layer 104 included in the micro LED (ML) is selected as GaN
- the micro LED (ML) may be in close contact with each other, the first and second semiconductor layers 102 and 104 may be damaged.
- the second protruding dam 2800 made of an elastic material is provided, the second protruding dam 2800 will function as a buffer when the micro LED absorber 1'and the micro LED ML come into close contact with each other. Therefore, it is possible to prevent damage to a specific layer of the micro LED (ML) such as the first and second semiconductor layers 102 and 104.
- the second protrusion dam 2800 may be formed of a photoresist PR, a PDMS material, or a metal material, and may be formed through an exposure process. In addition, it may be formed through sputtering.
- the micro LED adsorption body 1 ′ provided with the second protrusion dam 2800 may perform the micro LED (ML) adsorption process even in a state spaced apart from the micro LED (ML).
- 7(c-1) shows that when the micro LED adsorbent 1'of the tenth modified example performs a micro LED adsorption process, the micro LED adsorbent 1'and the micro LED ML are spaced apart.
- Micro LED (ML) can be adsorbed.
- the second protruding dam 2800 since the second protruding dam 2800 is provided at the lower portion, the second protruding dam 2800 and the micro LED ML may be spaced apart.
- the micro LED adsorbent 1 ′ provided with the second protruding dam 2800 is applied with a vacuum from a vacuum pump into the second protruding dam 2800. Since the second protruding dam 2800 has a shape surrounding the adsorption region 2000, a larger vacuum suction force than that formed in the adsorption region 2000 may be formed therein. In order to form a large vacuum suction input, the area of the adsorption region 2000 may be formed to be wide, but the capacity of the vacuum pump must be changed to a large capacity or high output by the increased area. However, when the second protruding dam 2800 is provided, it is possible to efficiently adsorb micro LEDs in a spaced state without the need to change the capacity of the vacuum pump to a large capacity or high output.
- modified examples described with reference to FIGS. 5 to 7 may be implemented by a porous member having vertical pores as a material other than the anodic oxide film 1600 in addition to the adsorption member 1100 of the anodic oxide film 1600 as in the second embodiment. have.
- the third embodiment is an adsorption area provided as an anodic oxide film 1600 to adsorb micro LEDs (ML). (2000) and the adsorption member 1100 divided into a non-adsorption area 2100 that does not adsorb the micro LED (ML), and a support member that supports the adsorption member 1100 on the upper surface of the adsorption member 1100 with arbitrary pores It is composed of (1200).
- the third embodiment is different from the second embodiment in that the adsorption member 1100 has a structure in which the barrier layer 1600b is positioned under the anodic oxide film 1600.
- a buffer part 2600 and a metal part 6000 are provided under the adsorption member 1100.
- the third embodiment described below will be described mainly on characteristic elements compared to the second embodiment, and detailed descriptions of the same or similar elements will be omitted.
- the adsorption member 1100 may be divided into an adsorption area 2000 that adsorbs the micro LEDs ML with a vacuum suction force and a non adsorption area 2100 that does not adsorb the micro LEDs ML.
- the adsorption member 1100 may be supported by a support member 1200 provided thereon.
- the support member 1200 may be formed separately from the adsorption member 1100 to distribute the suction force of the vacuum chamber 1300 through a pore structure and transmit the suction force to the adsorption region 2000. As a result, a vacuum suction force is generated in the suction member 1100 so that the micro LED (ML) can be sucked onto the suction surface of the suction member 1100.
- ML micro LED
- the support member 1200 is provided on the side opposite to the suction surface of the suction member 1100, and may be formed of arbitrary pores communicating with the suction region 2000 through an air passage.
- the support member 1200 adsorbs the non-adsorption area 2100 of the adsorption member 1100 with a vacuum suction force to support the adsorption member 1100 and communicates with the air flow path of the adsorption member 1100 to the adsorption area 2000. It can be made to adsorb the micro LED (ML).
- the adsorption member 1100 may be provided as an anodic oxide film 1600 including a porous layer 1600a and a barrier layer 1600b.
- a barrier layer 1600b may be located under the anodic oxide film 1600 and a porous layer 1600a may be located above the barrier layer 1600b.
- the barrier layer 1600b may have a flat surface. Accordingly, when the barrier layer 1600b is located under the anodization layer 1600, the non-adsorption region 2100 by the barrier layer 1600b may be formed on a flat surface.
- the lower surface of the adsorption member 1100 may be formed as a flat surface. Due to this, when the micro LED (ML) is adsorbed, the buffer unit 2600 to prevent damage to the micro LED (ML) and the metal unit 6000 to prevent static electricity can be easily formed.
- the barrier layer 1600b is located under the anodization layer 1600, so that the anodic oxide layer is compared to the configuration in which the porous layer 1600a is located under the anodization layer 1600.
- the lower surface of 1600 may be formed flat.
- the micro LED adsorbent 1 when the micro LED (ML) is adsorbed, at least a part of the exposed surface of the lower portion of the adsorption member 1100 comes into contact with the micro LED (ML), and the micro LED ( ML), where the exposed surface of the lower portion of the adsorption member 1100 may be a non-adsorption area 2100.
- the adsorption member 1100 provided as an anodic oxide film 1600 which is a material having high hardness.
- a buffer unit 2600 that performs a buffer function on the lower exposed surface of the adsorption member 1100 is provided. Can be combined.
- the buffer unit 2600 may be made of an elastic material.
- the buffer unit 2600 may be formed of a photoresist PR, a PDMS material, or a metal material, and may be formed through an exposure process. In addition, it may be formed through sputtering.
- a buffer function to prevent damage to the micro LED (ML) can be performed.
- the first substrate is the growth substrate 101
- the micro LEDs (ML) are removed from the growth substrate 101 using the LLO method
- the micro LEDs (ML) from the growth substrate 101 The phenomenon of bouncing toward the LED absorber 1" may occur.
- the buffer unit 2600 made of an elastic material is in contact with the micro LED (ML) and moves to the upper side of the micro LED (ML). ), and can perform a buffer function.
- the buffer unit 2600 made of an elastic material is provided, the micro LED adsorption When the body (1") and the micro LED (ML) are in close contact with each other, the buffer unit 2600 can perform the function of buffering, so that the micro LED (ML) such as the first and second semiconductor layers 102 and 104 is It is possible to prevent breakage of a specific layer.
- a metal part 6000 may be provided under the buffer part 2600 provided on the exposed surface of the non-adsorption area 2100.
- the metal part 6000 in which the opening of the suction member 1100 and the opening of the buffer part 2600 are formed on the exposed surfaces excluding the opening of the suction member 1100 and the opening of the buffer part 2600. ) Can be provided by bonding.
- the metal part 6000 may have an opening formed at a position corresponding to the opening of the adsorption member 1100 and the opening of the buffer part 2600.
- the area of the opening of the metal part 6000 may be the same as the area of the opening of the adsorption member 1100 and the opening of the buffer part 2600.
- the metal part 6000 may be made of a metal material. Accordingly, it is possible to effectively remove the electrostatic force that interferes with the micro LED (ML) transfer process of the micro LED adsorbent 1" in advance.
- ML micro LED
- a first substrate for example, a growth substrate 101, a temporary substrate, or a carrier substrate (for example, a growth substrate 101, a temporary substrate, or a carrier substrate) due to friction or the like in the process of transferring the micro LED (ML) through the micro LED adsorbent 1" C)) between the micro LED adsorption body (1") or between the second substrate (for example, display board 301, temporary board, target board or circuit board (HS)) and the micro LED adsorption body (1") Electrostatic force may be unintentionally generated by charging in. The unintentional electrostatic force greatly affects the micro LED 100 having a size of 1 to 100 micrometers ( ⁇ m) even if the electrostatic force caused by a small electric charge.
- the micro LED (ML) when an electrostatic force is generated in the unloading process in which the micro LED (ML) is mounted on the second substrate after the micro LED adsorbent (1") adsorbs the micro LED (ML) from the first substrate, the micro LED ( Since ML) differs from the micro LED adsorbent (1"), it is unloaded to the second substrate while the position is displaced, or unloading itself is not performed.
- the metal part 6000 may be formed in a configuration of an electrode pattern, through which it is electrically connected to the contact electrodes 106 and 107 of the micro LED (ML) to electrically check whether the micro LED (ML) is defective. .
- FIG. 9(a) is an enlarged view showing a part of a porous member 1000 constituting a micro LED adsorbent according to a fourth embodiment of the present invention.
- the mask 3000 in which the second opening portion 3000a is formed is formed of the first porous member 1100.
- the first porous member 1100 according to the fourth embodiment may be the adsorption member 1100 provided as the mask 3000 in which the opening 3000a is formed.
- an adsorption member 1100 provided as a mask 3000 which is a first porous member 1100, may be provided on a lower surface of the support member 1200 having arbitrary pores.
- the second openings 3000a of the mask 3000 may be formed at regular intervals to form an adsorption area 2000 for adsorbing the micro LEDs (ML), and the second openings 3000a of the mask 3000 are not formed.
- the non-adsorption area 2100 to which the micro LEDs ML are not adsorbed may be formed on the non-adsorbed surface.
- the second opening (3000a) of the mask (3000) is formed equal to the pitch interval of the micro LED (ML) on the growth substrate (101), or to be formed with a constant pitch interval to selectively adsorb the micro LED (ML). I can.
- the second opening 3000a of the mask 3000 is the pitch in the column direction (x direction) of the micro LEDs ML on the growth substrate 101. It may be formed at a pitch interval of 3 times the interval. Accordingly, the micro LED adsorbent can selectively adsorb the micro LEDs (ML) corresponding to the first and fourth times on the substrate (S).
- the mask 3000 has a second opening 3000a and a non-opening area 3000b, so that the non-opening area 3000b blocks a partial surface of the lower part of the support member 1200 having arbitrary pores, thereby forming the second opening 3000a.
- a large vacuum adsorption force can be formed.
- the portion where the second opening portion 3000a of the mask 3000 is located is the absorption region 2000 that substantially adsorbs the micro LED (ML).
- the mask 3000 is provided on the lower surface of the support member 1200, so that the adsorption area 2000 that substantially adsorbs the micro LEDs ML can be defined.
- the second opening 3000a provided in the mask 3000 may correspond to a vertical pore.
- the surface of the mask 3000 on which the second opening 3000a is not formed functions as a shielding part by blocking pores in the lower surface of the support member 1200. Accordingly, a vacuum pressure formed by being transferred from the vacuum chamber 1300 to the support member 1200 may be larger due to the second opening 3000a of the mask 3000.
- the area of the second opening part 3000a of the mask 3000 may be formed to be smaller than the horizontal area of the top surface of the micro LED ML.
- the material of the mask 3000 may be made of an elastic material.
- the area of the second opening (3000a) is formed smaller than the horizontal area of the upper surface of the micro LED (ML), and the mask 3000 made of an elastic material is a micro LED (ML) when adsorbing the micro LED (ML) of the micro LED adsorbent. It can perform a buffer function to prevent the damage of.
- the micro LED (ML) when the micro LED (ML) is adsorbed, the micro LED (ML) is formed in at least a part of the non-opening area 3000b in which the second opening 3000a formed around the second opening 3000a of the mask 3000 is not formed.
- the micro LED (ML) may be adsorbed while at least a portion of the upper surface of) is in contact.
- the horizontal area of the top surface of the micro LED ML equal to the amount of the horizontal area of the top surface of the micro LED ML excluding the area of the second opening portion 3000a of the mask 3000 is on the exposed surface of the mask 3000. It can be contacted and adsorbed to the micro LED adsorbent. Since the portion in direct contact with the micro LED (ML) is the exposed surface of the mask 3000, the micro LED (ML) can be adsorbed to the micro LED adsorbent without being damaged.
- the second opening 3000a of the mask 3000 may be formed to be larger than the size of the horizontal area of the upper surface of the micro LED ML.
- the second porous member 1200 to which the vacuum is transmitted through the vacuum chamber 1300 The vacuum pressure is formed due to the second opening portion 3000a of the mask 3000 and the micro LEDs ML are adsorbed on the lower surface of the support member 1200, thereby adsorbing the micro LEDs ML.
- the mask 3000 may include an invar material, an anodic oxide layer, a metal material, a film material, a paper material, and an elastic material (PR, PDMS).
- the mask 3000 may be a coating layer formed by applying a liquid material to the surface of the support member 1200 having arbitrary pores and then curing it.
- the region to which the liquid substance is applied becomes the non-opening region 3000b as a non-adsorption region
- the region to which the liquid substance is not applied becomes the second opening 3000a as the adsorption region.
- the coating layer is provided with openings at regular intervals to form an adsorption area that adsorbs micro LEDs, and the surface where the opening is not formed forms a non-adsorption area that does not adsorb the micro LEDs, and is integrally formed on the surface of the porous member I can.
- the mask 3000 When the area of the second opening 3000a described above is formed smaller than the horizontal area of the upper surface of the micro LED (ML), the mask 3000 performs the function of forming the adsorption area 2000 and the function of buffering. It may be desirable.
- the mask 3000 is made of an Invar material, since the coefficient of thermal expansion is low, distortion of the interface due to thermal effects can be prevented.
- the second opening 3000a may be easily formed. Since the metal material is easy to process, the formation of the second opening 3000a of the mask 3000 may be easy. As a result, there is an effect that the convenience of manufacturing is improved.
- the mask 3000 is made of a metal material
- a metal bonding method is used as a means for bonding the micro LED (ML) to the first contact electrode 106 of the display substrate 301
- the display substrate 301 The micro LED (ML) is bonded to the first contact electrode 106 by heating the upper surface of the micro LED (ML) through the mask 3000 of the micro LED absorber without applying power to heat the bonding metal (alloy). I can.
- the mask 3000 may be made of a film material.
- the micro LED adsorbent provided with the mask 3000 adsorbs the micro LED (ML)
- foreign substances may adhere to the surface of the mask 3000.
- the mask 3000 may be cleaned and reused, but there is a problem that it is cumbersome to perform the cleaning process each time. Therefore, by providing the mask 3000 as a film material, when foreign substances are attached, the mask 3000 itself can be removed to facilitate replacement.
- the mask 3000 may be made of a paper material. When foreign substances are attached to the surface of the mask 3000 made of paper, it can be easily replaced by removing the mask 3000 itself without a separate cleaning process.
- the mask 3000 may be made of an elastic material.
- the micro LED (ML) corresponding to the non-adsorption area 2100 may be prevented from being damaged, thereby performing a buffer function.
- the micro LED adsorbent may cause a transfer error while descending due to mechanical tolerance.
- the micro LED ML corresponding to the non-adsorption area 2100 comes into contact with the non-adsorption area 2100.
- the mask 3000 may be configured by changing the shape of the second opening 3000a.
- the second opening 3000a has an inner diameter of the second opening 3000a of the mask 3000 on the side of the direct contact surface in direct contact with the lower surface of the support member 1200 and the upper surface of the micro LED ML It is formed larger than the horizontal area, and the inner diameter thereof increases toward the upper surface of the micro LED (ML). Accordingly, the inner surface of the second opening 3000a may be formed to be inclined in a form in which the inner diameter increases downward based on the downward direction of the micro LED adsorbent.
- the mask 3000 may be adsorbed under the support member 1200 by a vacuum suction force.
- the micro LED adsorbent having the mask 3000 applies vacuum to the support member 1200 by forming a vacuum pressure through the vacuum port to vacuum-adsorb the micro LED (ML). Thereafter, the micro LED adsorbent is moved to the upper portion of the display substrate 301 to be positioned and then descends.
- the vacuum applied to the support member 1200 through the vacuum port may be released to transfer the mask 3000 and the micro LEDs ML vacuum-adsorbed to the lower portion of the support member 1200 to the display substrate 301.
- the micro LEDs ML transferred to the display substrate 301 may be bonded to the first contact electrode 106 of the display substrate 301 by applying power to the display substrate 301.
- the micro LED adsorbent may apply vacuum to the support member 1200 by forming a vacuum pressure through the vacuum port to re-adsorb the mask 3000 delivered to the display substrate 301. Since the micro LED ML is bonded to the first contact electrode 106, only the mask 3000 can be vacuum-adsorbed under the support member 1200. In the present invention, it has been described that the mask 3000 transferred to the display substrate 301 is adsorbed and removed by the micro LED adsorbent again, but the mask 3000 may be removed through other suitable means.
- the mask 3000 functions as an adsorption member 1100 for adsorbing micro LEDs (ML) in the micro LED adsorption body. Accordingly, the mask 3000 may have configurations of modified examples of the second embodiment described above.
- the micro LED adsorbent is provided with the mask 3000 as described above to form a larger vacuum pressure for vacuum-adsorbing the micro LED (ML) through the second opening 3000a of the mask 3000, and uniform
- the micro LED (ML) is directly in contact with the lower surface of the support member 1200 having a flatness, so that it is possible to prevent separation that occurs during vacuum adsorption.
- FIG. 9(b) is an enlarged view showing some of the first and second porous members 1100 and 1200 constituting the micro LED adsorber according to the fifth embodiment of the present invention.
- the adsorption member 1100 having vertical pores in the form of an upper light narrowing using a laser is constituted by the first porous member 1100.
- the adsorption hole 1500" according to the fifth embodiment is formed in the form of an upper light narrowing.
- the adsorption hole 1500" forms an adsorption area 2000 for adsorbing the micro LEDs ML, and the adsorption hole 1500" is formed.
- the non-adsorption area 2100 does not adsorb the micro LEDs ML.
- the adsorption hole 1500" is formed to penetrate the adsorption member 1100 vertically up and down, and the width decreases toward the adsorption surface on which the micro LED (ML) is adsorbed.
- the adsorption hole 1500" may have an inclined inner surface.
- the lower width having the smallest inner width in the adsorption hole 1500" may be formed to be smaller than the horizontal width of the micro LED ML.
- the micro LED ML can be adsorbed. If only the vacuum pressure can be formed, the width is formed smaller toward the adsorption surface, so even if the lower width is smaller than the horizontal width of the upper surface of the micro LED (ML), there is no fear of separation of the micro LED (ML) and the reduction in adsorption efficiency.
- the process of adsorbing micro LED (ML) can be performed.
- the adsorption hole 1500" formed through laser processing may be formed in the form of an upper narrow light and wider toward the bottom.
- the adsorption hole 1500" of this type is a packaged LED or heavy semiconductor chip. Compared to that, it is more difficult to meet the high alignment accuracy considering the mechanical error of the transfer head when adsorbing the micro LED of a relatively small size.
- the vacuum in the suction hole 1500" may leak.
- the suction hole with a wide lower width may occur. Due to (1500"), the lower horizontal area of the non-adsorption region of the adsorption member is narrowed and is formed in a sharp shape, thereby causing a problem of damaging the micro LED (ML).
- the micro LED (ML) when the adsorption hole 1500" having a smaller width toward the adsorption surface is formed, the micro LED (ML) may be adsorbed even if the alignment accuracy is relatively low. Since the lower width of the adsorption hole 1500" is formed with a width smaller than the width in the horizontal direction of the LED ML, the micro LED ML is adsorbed if the adsorption hole 1500" is located only within the width of the upper surface of the micro LED ML. This is because it can be adsorbed to the hole 1500".
- the adsorption hole 1500" may have a uniform vacuum pressure of the adsorption member 1100 due to an increase in the upper width. Referring to FIG. 9B again, the upper width of the adsorption hole 1500" is increased Due to this, the air discharged from the inside of the adsorption hole 1500" can be smoothly collected in one place. In other words, the air in the plurality of adsorption holes 1500" formed in the adsorption member 1100 is collected in one place. A uniform vacuum pressure can be formed in the adsorption hole 1500". Due to this, the micro LED adsorption body not only can simultaneously adsorb the micro LEDs (ML) together, but also the micro LEDs (ML) on the adsorption surface. By adsorption, adsorption efficiency can be improved.
- the adsorption hole 1500" may have a circular cross-section.
- the adsorption hole 1500" is formed with a smaller width toward the adsorption surface using a laser. When formed, it may be easier to form the suction hole 1500" having a circular cross section.
- a plurality of adsorption holes 1500" formed in the adsorption member 1100 of the micro LED adsorption body are formed to be spaced apart at regular intervals in the x (row) direction and y (column) direction.
- the adsorption holes 1500" In at least one of the x- and y-directions, the micro LEDs (ML) arranged in the donor portion are spaced apart by a distance of at least twice the pitch interval in the x- and y-directions.
- the adsorption hole 1500" may be formed at an interval three times the pitch interval in the x direction of the micro LEDs ML on the substrate S, as shown in Fig. 9(b). Accordingly, the suction member 1100 The non-adsorption area 2100 in which the adsorption hole 1500" is not formed is provided, and the micro LED ML on the substrate S disposed at a position corresponding to the lower surface of the non-adsorption area 2100 is an adsorption member 1100 ) May be non-adsorbed.
- the adsorption member 1100 having vertical pores formed through laser processing according to the fifth embodiment may have the configurations of the modified example of the second embodiment.
- the adsorption member 1100 is a porous member having vertical pores formed using a laser
- the shape of the pores penetrating the top and bottom of the porous member may not be uniform.
- the adsorption hole 1500 having a square cross section of the ninth modified example may be difficult to be formed in a porous member having vertical pores formed using a laser.
- the sixth embodiment is an adsorption member 1100 having vertical pores formed by etching. ), it may be configured to include a support member 1200 supporting the adsorption member 1100 on the upper surface of the adsorption member 1100.
- the adsorption member 1100 of the sixth embodiment includes a through hole 5000 formed by etching. This one adsorption area 2000 is formed.
- a plurality of vertical pores constitute one adsorption area 2000, but differently, one vertical pore formed by etching is a single adsorption area ( 2000) can be formed.
- the adsorption member 1100 is divided into an adsorption area 2000 for adsorbing micro LEDs (ML) formed by the through-hole 5000 and a non-adsorption area formed by not forming the through-hole 5000, and the wafer substrate ( w) It can be made of a material.
- the through hole 5000 may be a vertical pore formed by etching.
- the adsorption member 1100 may be provided with the adsorption region 2000 by forming a through hole 5000 through the adsorption member 1100 up and down. It may perform the same function as the adsorption hole 1500 forming the adsorption area 2000 of the micro LED adsorption body of the above-described embodiments.
- a wafer substrate w made of silicon is first provided.
- through-hole 5000 is formed through etching.
- the through hole 5000 may be formed by etching at least a portion of the wafer substrate w.
- 10(a) shows that etching is performed on at least a portion of the wafer substrate w in the depth direction from the bottom of the drawing to form a plurality of through holes 5000, but the wafer substrate w is in the depth direction from the top. Etching may be performed on at least part of it.
- the etching method includes an etching method such as wet etching and dry etching which are commonly used in semiconductor manufacturing processes.
- the adsorption area 2000 of the adsorption member 1100 of the sixth embodiment is formed of a through hole 5000. Accordingly, through holes 5000 for configuring the adsorption area 2000 are formed by etching, and a plurality of the adsorption areas 2000 are formed in the same process to adsorb the micro LEDs (ML) on the substrate S. It may be provided with the adsorption area (2000). In this case, the adsorption area 2000 is formed to have an area smaller than the horizontal area of the upper surface of the micro LED ML, so that leakage of vacuum can be prevented.
- the adsorption area 2000 including the through hole 5000 is formed at the same pitch interval as the column direction (x direction) and row direction (y direction) pitch interval of the micro LEDs ML on the substrate S, or three times It can be formed at intervals.
- the adsorption region 2000 is illustrated and described as being formed at the same pitch interval as the pitch interval in the column direction (x direction) of the micro LEDs ML on the substrate S.
- 10(a) is a process of forming a through hole 5000 constituting the adsorption region 2000.
- through-holes 5000 constituting one adsorption area 2000 are formed at regular pitch intervals, and a plurality of through-holes 5000 are again at regular pitch intervals in consideration of the pitch distance of the adsorption area 2000. It can be formed at regular pitch intervals.
- one adsorption area 2000 is shown to be formed of three through-holes 5000, but this is only an example and the number of through-holes 5000 constituting the adsorption area 2000 is limited to none.
- FIG. 10(b) the opposite surface of the etched surface of the wafer substrate w is removed.
- a plurality of through holes 5000 formed in FIG. 10(a) are formed through the upper and lower directions of the wafer substrate w, so that the adsorption member 1100 having the through holes 5000 by etching is formed.
- I can.
- a plurality of adsorption regions 2000 including through holes 5000 are formed in the adsorption member 1100.
- the adsorption member 1100 may be provided with configurations of modified examples of the second embodiment.
- the adsorption member 1100 may be coupled to the lower portion of the support member 1200 supporting the adsorption member 1100 with arbitrary pores.
- the support member 1200 may support the adsorption member 1100 on the upper surface of the adsorption member 1100.
- the adsorption member 1100 may be brittlely destroyed by a high vacuum suction force. Is high. Therefore, it is necessary to support it through a support member 1200 such as a porous ceramic member.
- Fig. 10(d) is a diagram showing a state before the micro LED adsorbent 1"' of the sixth embodiment adsorbs the micro LED ML on the substrate S.
- (2000) is formed equal to the pitch spacing in the column direction (x direction) and row direction (y direction) of the micro LEDs (ML) on the substrate (S), so that the entire micro LEDs (ML) of the substrate (S) are absorbed at once or , It is formed with a distance of 3 times or more to selectively adsorb and transport the micro LEDs (ML) of the substrate (S).
- micro LED adsorbent 1"' of the sixth embodiment as described above is transferred to the through hole 5000 of the adsorption member 1100 after the vacuum pressure is reduced by the arbitrary pores of the support member 1200, and is ) Is adsorbed and delivered to the non-adsorption region 2100 of the adsorption member 1100 by arbitrary pores of the support member 1200 to adsorb the adsorption member 1100.
- the micro LED adsorbent of the present invention is formed on the outside of the adsorption member 1100 and may include a protrusion 2900 to protrude from the adsorption surface of the adsorption member 1100.
- the protrusion 2900 may be formed on the outside of the adsorption member 1100 and may be provided to protrude from the edge of the micro LED adsorbent so as to protrude from the lower surface of the adsorption member 1100.
- the edge of the micro LED adsorbent is the outer side of the adsorption surface that adsorbs the micro LED (ML) of the micro LED adsorbent corresponding to the existing micro LED presence area while the micro LED (ML) is chipped on the upper surface of the substrate (S).
- the rim of the micro LED adsorbent mentioned below also means the same part as the rim of the micro LED adsorbent 1'described above.
- the micro LED (ML) is adsorbed to the micro LED adsorbent to seal the transfer space 4000 to be transferred.
- the protrusion 2900 may be made of an elastic material including sponge, rubber, silicone, foam, and polydimethysiloxane (PDMS).
- the protrusion 2900 may function as a buffer to prevent damage to the micro LED (ML) by preventing a collision between the micro LED adsorbent 1 ′ and the micro LED (ML).
- the protrusion 2900 may be provided in consideration of the material shrinkage rates of the above-described elastic materials. Specifically, when the protrusion 2900 is made of an elastic material, the material shrinkage rates of the above-described elements of the elastic material may be different. When the protrusion 2900 is contracted to the maximum due to the descending of the micro LED adsorbent, when it is desired to have a length greater than the height of the micro LED (ML) on the substrate (S), the protrusion ( 2900) can be configured.
- the protrusion 2900 when the protrusion 2900 is contracted to the maximum due to the descending of the micro LED adsorbent, the upper surface of the micro LED (ML) on the substrate (S) and the adsorbing surface of the micro LED adsorbent (1') are in contact with each other.
- the protrusion 2900 may be formed of an elastic material having a suitable material shrinkage rate.
- the protrusion 2900 may perform a function of alleviating a warpage phenomenon of the substrate S caused by thermal deformation during a process in a high temperature state.
- the height of the micro LEDs ML on the substrate S may be different.
- the protrusion 2900 that performs the function of alleviating the warpage of the substrate S has a maximum contraction length of the protrusion 2900 that is contracted by the descending of the micro LED adsorbent. It may be desirable to be made of an elastic material having a length greater than the height of the micro LED (ML) located at the highest height among them.
- the micro LED adsorbent 1'of the second embodiment is shown to have a protrusion 2900, but the micro LED adsorbent 1'provided with the protrusion 2900 Is not limited to the second embodiment, and may also be provided in the micro LED adsorbent 1 ′ of the first to sixth embodiments.
- the adsorption member 1100 provided as the anodic oxide film 1600 is shown to be an anodization film 1600 including a barrier layer 1600b and a porous layer 1600a. The adsorption member 1100 is not limited thereto.
- FIGS. 11 to 13 the micro LED adsorbent 1'of the second embodiment is shown to have a protrusion 2900, but the micro LED adsorbent 1'provided with the protrusion 2900 Is not limited to the second embodiment, and may also be provided in the micro LED adsorbent 1 ′ of the first to sixth embodiments.
- the adsorption member 1100 provided as the anodic oxide film 1600 is shown to be an ano
- the pitch spacing of the adsorption area 2000 formed on the adsorption member 1100 is three times the pitch spacing in the column direction (x direction) of the micro LEDs ML on the substrate S.
- the pitch interval of the adsorption region 2000 is not limited thereto.
- the adsorption region 2000 may be formed of an adsorption hole 1500 and may be formed of a porous layer 1600a from which the barrier layer 1600b is removed.
- the micro LED adsorbent 1' includes a protrusion 2900 provided on the rim so as to protrude below the lower surface of the adsorption member 1100 on the outside of the adsorption member 1100. do.
- the protrusion 2900 is continuously formed on the edge of the micro LED adsorption body 1', so that when the micro LED adsorption body 1'vacuum-adsorbs the micro LEDs (ML), eddy currents due to outside air are generated. It is possible to prevent shaking of the micro LED (ML) located on the edge side.
- micro LED adsorbent (1') adsorbs the micro LED (ML)
- a vortex is generated due to the vacuum pressure of the micro LED adsorbent (1') and the ambient air, resulting in a micro LED close to the edge of the substrate (S).
- ML may shake. This may cause a problem of lowering the adsorption and transfer efficiency of the micro LED adsorbent 1'.
- the micro LED adsorbent 1'of the present invention is continuously formed on the edge of the micro LED adsorbent 1'and has a protrusion 2900 so as to protrude below the lower surface of the adsorption member 1100.
- ML It is possible to prevent shaking of the micro LED (ML) on the substrate (S) due to the occurrence of vortex during the adsorption process.
- the transfer space 4000 formed while the micro LED adsorbent 1 ′ and the micro LED ML are spaced apart from each other may be blocked.
- the transfer space 4000 which is sealed by the protrusion 2900, is blocked from inflow of external air, thereby creating an environment in which the micro LED (ML) can be effectively vacuum-adsorbed.
- the protrusion 2900 may be made of an elastic material.
- the micro LED adsorbent 1 ′ may supply vacuum through the vacuum chamber 1300 to form the transfer space 4000 in a reduced pressure state.
- the transfer space 4000 may be elastically deformed while being in a depressurized state.
- the lower surface of the adsorption member 1100 and the upper surface of the micro LED (ML) are in contact with the upper surface of the micro LED (ML) by the protrusion 2900 whose height is lowered due to elastic deformation, and the micro LED (ML) may be adsorbed to the micro LED adsorption body 1 ′. .
- the micro LED ML is adsorbed while being in contact with the micro LED absorber 1 ′ by the protrusion 2900 that is elastically deformed and lowers its height.
- the separation distance between the lower surface of the adsorption member 1100 and the upper surface of the micro LED (ML) gradually decreases, and the micro LED ( ML) is adsorbed.
- the height of at least a portion of the non-elastically deformed protrusion 2900 protruding lower than the lower surface of the adsorption member 1100 is the lower surface of the protrusion 2900 as the lower surface of the micro LED adsorbent 1'is the substrate support member 2920
- the substrate support member 2920 When in contact with the upper surface of the micro LED (ML) it may be desirable to be formed at a height that does not contact the lower surface of the adsorption member 1100.
- the transfer space 4000 is sealed by the descending of the micro LED absorber 1'to increase the transfer efficiency of the micro LED absorber 1'as well as the micro LED absorber. It can perform a buffer function between (1') and micro LED (ML).
- the micro LED adsorbent 1' may cause a transfer error when the micro LED adsorbent 1'descends due to mechanical tolerance.
- the protrusion 2900 is made of an elastic material, the upper surface of the substrate support member 2920 Because it elastically deforms while in contact with, it can accommodate transfer errors due to mechanical tolerances. This prevents a collision between the micro LED absorber 1'and the micro LED ML.
- the protrusion 2900 may be formed of a porous member having pores. In this case, since the protrusion 2900 may block the transfer space 4000 while introducing a little outside air through the pores, the vacuum pressure that rapidly rises while the transfer space 4000 is blocked can be alleviated.
- the protrusion 2900 when the protrusion 2900 is formed of a porous member having pores, it is possible to prevent the occurrence of vortex in the transfer space 4000 due to high vacuum.
- the transfer space 4000 when the transfer space 4000 is formed in a high vacuum state by using a high vacuum pump for high vacuum adsorption power of the micro LED adsorbent 1', a vortex is generated in the transfer space 4000 due to the high vacuum state.
- the LED(ML) shakes or the micro LED(ML) is not adsorbed.
- the protrusion 2900 when the protrusion 2900 is formed of a porous member having pores, some external air may flow into the transfer space 4000 through the pores. Accordingly, generation of eddy currents due to a high vacuum state in the transfer space 4000 is prevented, and micro LED (ML) adsorption is effectively performed.
- the micro LED adsorbent 1 ′ may additionally include a passage 2910 for introducing outside air into the transfer space 4000.
- the passage 2910 functions to introduce outside air into the transfer space 4000 and thus is formed inside the protrusion 2900.
- the transfer space 4000 is sealed by the protrusion 2900, and the passage 2910 has a function of introducing outside air into the sealed transfer space 4000, so it is inside the transfer space 4000 and It can be formed in a communication position.
- the micro LED adsorbent 1 ′ may introduce external air into the transfer space 4000 sealed by the protrusion 2900 through the passage 2910.
- the transfer space 4000 sealed by the protrusion 2900 has a high vacuum pressure. However, when external air flows into the transfer space 4000 through the passage 2910, the vacuum pressure of the transfer space 4000 is lowered, and the micro LED adsorbent 1'can be easily raised.
- Such a passage 2910 is provided with an opening and closing means (not shown) so that when the micro LED adsorbent 1'rises, it is opened to introduce outside air, and the micro LED adsorbent 1'is a first substrate (for example, growth When the micro LED (ML) is transferred from the substrate 101 to the second substrate (eg, the display substrate 301), it may be closed. For this reason, while the micro LED (ML) is transferred, outside air does not flow into the transfer space 4000, so that the transfer efficiency of the transfer space 4000 sealed by the protrusion 2900 can be maintained as it is.
- an opening and closing means not shown
- the opening and closing means of the passage 2910 may be a cover in the form of a slide, and when the passage 2910 is formed in a circular tube shape, it may be in the form of a conical stopper that can be separated and coupled to the upper portion of the passage 2910.
- the shape of the opening and closing means is not limited thereto, and may be provided in a suitable shape for opening and closing the passage 2910.
- the passage 2910 for introducing external air into the transfer space 4000 may be provided through the protrusion 2900 in at least a part of the protrusion 2900 protruding downward from the lower surface of the adsorption member 1100. have.
- the passage 2910 When the passage 2910 is provided in at least a part of the protrusion 2900, it may be provided at a position that directly seals the transfer space 4000.
- the passage 2910 may be formed in a shape that penetrates the substrate support member 2920 up and down on the edge side of the substrate support member 2920.
- the passage 2910 may preferably be provided inside the position corresponding to the protrusion 2900.
- the edge of the substrate support member 2920 refers to an outer portion of the substrate-providing region in which the substrate S chipped with the micro LEDs ML is provided while being inside the position corresponding to the protrusion 2900.
- the substrate S chipped with the micro LEDs ML has a horizontal area smaller than the horizontal area of the top surface of the substrate support member 2920. This is to allow external air to flow into the transfer space 4000 through the passage 2910 provided on the edge of the substrate support member 2920.
- the micro LED adsorbent 1' has a protrusion 2900 continuously formed on the edge, so that the micro LED adsorbent 1'seals the transfer space 4000 for transferring the micro LEDs (ML) to the outside. It is possible to prevent the micro LED (ML) from shaking due to the occurrence of eddy current.
- the micro LED adsorbent 1 ′ may include a passage 2910 that can be opened and closed to introduce outside air into the transfer space 4000. The passage 2910 is opened after adsorbing the micro LED (ML) on the adsorption surface of the micro LED adsorption body 1', so that outside air can be introduced into the transfer space 4000. As the pneumatic pressure is lowered, the lower surface of the protrusion 2900 is easily detached from the upper surface of the substrate support member 2920 so that the micro LED adsorbent 1 ′ can easily rise.
- the protrusion 2900 may seal the transfer space 4000 to block external factors that interfere with the micro LED (ML) adsorption force in the transfer space 4000.
- the micro LED adsorbent 1' since the protrusion 2900 mainly performs a function of blocking external factors flowing into the transfer space 4000, the micro LED adsorbent 1'has a protrusion 2900 as shown in FIG. 12, but the transfer space 4000 ) It may be configured in a structure that does not additionally include a passage 2910 for introducing outside air into the interior.
- External factors that interfere with the adsorption force to the micro LED (ML) within the transfer space 4000 may be foreign matter and external air as an example.
- the foreign material may block the adsorption area 2000 of the adsorption member 1100. Due to this, the micro LED (ML) is not adsorbed to some of the adsorption regions 2000, so that the transfer efficiency of the micro LED (ML) may be lowered.
- the protrusion 2900 mainly performs a function of blocking external factors that interfere with the adsorption force for the micro LED (ML)
- the protrusion 2900 is preferably made of an elastic material to provide a buffer function and a transfer space 4000 ) It can perform the function of blocking disturbing elements inside.
- the protrusion 2900 formed on the edge of the micro LED adsorbent 1 ′ as shown in FIG. 12 may be formed on the substrate support member 2920.
- the protrusion 2900 may be formed to protrude upward from the edge of the substrate support member 2920 that is an outer portion of the substrate S provided on the upper surface of the substrate support member 2920.
- the protrusion 2900 is upwardly positioned on the edge of the substrate S. It may be provided to protrude.
- the edge of the substrate S refers to the outer portion of the micro LED presence area that exists while the micro LEDs ML are chipped on the substrate S.
- the protrusion 2900 is formed so as to protrude upward from the edge of the substrate support member 2920 or the substrate S, so that when the micro LED adsorbent 1'adsorbs the micro LED ML, an external factor that interferes with the adsorption force Penetration into the transfer space 4000 is shielded.
- the protrusion 2900 is made of an elastic material to accommodate the transfer error due to the mechanical tolerance of the micro LED absorber 1', so that the micro LED absorber 1'and the top surface of the micro LED ML collide with each other.
- a buffer function can be performed so that the LED (ML) is not damaged.
- the protrusion 2900 may perform a function of sealing the cleaning space in a cleaning process of cleaning foreign substances on the adsorption surface of the micro LED adsorbent 1 ′, that is, the lower surface of the adsorption member 1100.
- the adsorption surface of the micro LED adsorbent 1' may generate foreign substances due to repetitive adsorption function in the process of transferring the micro LED (ML). These foreign substances may interfere with the adsorption function of the adsorption member 1100 in the adsorption area 2000. Accordingly, the micro LED adsorbent 1 ′ may be cleaned of foreign substances that interfere with the adsorption function of the micro LED adsorbent 1 ′ through a cleaning process.
- the protrusion 2900 may perform a function of sealing the cleaning space to prevent elements (eg, external foreign matter) interfering with the cleaning process from flowing into the cleaning space.
- the protrusion 2900 may be formed to protrude upward from the edge of the support member supporting the substrate on which the micro LED (ML) is chipped during the cleaning process.
- the substrate In a substrate having a horizontal area equal to the horizontal area of the support member, the substrate It may be formed to protrude upward on the rim of the.
- the function may be performed, and a function of alleviating the warpage phenomenon occurring in the substrate S may be performed.
- the substrate S may be thermally deformed during a process performed in a high temperature state to cause a warpage.
- the bending phenomenon of the substrate S may be caused by a crying ( ⁇ ) type of bending or a smile ( ⁇ ) type of bending as illustrated in FIG. 13.
- H shown in FIG. 13 denotes the curved height of the substrate S.
- the substrate S when the bending phenomenon occurs in the form of a crying shape or a smile shape, the substrate S may be bent toward the presence area of the micro LEDs present on the substrate S.
- the protrusion 2900 formed continuously or discontinuously on the edge of the micro LED adsorbent 1' is in contact with the substrate S when the micro LED adsorbent 1'descends to alleviate the bending phenomenon, and It is possible to make the micro LED adsorption body 1'adsorb the micro LED (ML) while preventing damage to the (ML).
- the protrusion 2900 that performs a function to mitigate the warpage of the substrate S and a buffer function for the micro LED (ML) is on the edge of the micro LED adsorbent 1'as described with reference to FIGS. 11 and 12 It is formed to protrude from the lower surface of the adsorption member 1100, may be formed continuously or may be formed discontinuously.
- the height of each micro LED (ML) chipped on the substrate (S) may be different due to the bending phenomenon of the substrate (S). Accordingly, when the micro LED (ML) is adsorbed, the contact position at which the micro LED (ML) contacts each of the adsorption regions 2000 is changed, thereby causing damage to the micro LED (ML). Specifically, when the micro LED adsorbent 1'descends to adsorb the micro LED (ML) on the substrate S where the warpage has occurred, chipping at the highest position on the substrate S where the warpage has occurred.
- micro LEDs (ML) that have been absorbed are first adsorbed to the adsorption area (2000) corresponding thereto, and then gradually lowered to lower the remaining micro LEDs (ML) that are not adsorbed, and the micro LEDs (ML) adsorbed first are excessively pressurized. Micro LED (ML) breakage problem occurs.
- the protrusion 2900 provided on the edge of the micro LED adsorber 1' which is a position corresponding to the outer part of the micro LED presence area on the substrate S of the present invention, is contracted only up to the maximum contraction length and thus the micro LED adsorber ( It limits the lowering position of 1') and performs the function of mitigating the bending phenomenon of the substrate S, so that the micro LED adsorbent 1'does not damage the micro LED (ML) on the substrate S where the bending phenomenon occurs. Can be adsorbed without.
- the protrusion 2900 may be formed of an elastic material having a height greater than the height of the micro LED ML having the highest height on the substrate S as the maximum contraction length.
- the micro LED adsorbent 1 ′ having such a protrusion 2900 may be lowered only to the maximum contraction length of the protrusion 2900 when descending, thereby limiting the lowering position.
- the lowering position of the micro LED adsorbent 1 ′ limited by the protrusion 2900 may be a position higher than the height of the micro LED ML having the highest height on the substrate S.
- the protrusion 2900 that limits the lowering position of the micro LED adsorbent 1 ′ may be deformed by pressing the substrate S while being contracted to the maximum contraction length.
- the elastic modulus of the protrusion 2900 may be lower than that of the substrate S.
- the protrusion 2900 may deform the substrate S by pressing the contact surface while being in contact with the substrate S where the bending phenomenon has occurred.
- the contact surface between the substrate S and the protrusion 2900 may be at least a portion of the substrate S having the highest height due to the bending phenomenon. Accordingly, the flatness of the substrate S may be improved.
- the protrusion 2900 provided continuously or discontinuously on the edge of the micro LED adsorbent 1 ′ may be deformed by pressing the substrate S while contracting to the maximum contraction length.
- micro LED adsorber 1 ′ having the continuous or discontinuous protrusions 2900 on the rim can effectively adsorb micro LEDs of a substrate having a low flatness in addition to the substrate S where the warpage has occurred.
- the protrusion 2900 may come into contact with the upper surface of the substrate having low flatness due to the lowering of the micro LED adsorbent 1 ′.
- a plurality of protrusions 2900 may be discontinuously provided on the edge of the micro LED adsorbent 1 ′.
- the protrusion 2900 first comes into contact with the upper surface of the substrate with low flatness due to the descending of the micro LED adsorbent 1 ′, presses the substrate to deform it, and adjusts the flatness, and the remaining non-contact protrusions ( 2900) is in contact with the substrate to improve the flatness of the substrate.
- the protrusion 2900 is provided around the adsorption member 1100 of the micro LED adsorption body 1', and the micro LED adsorption body 1', which is an outer part of the micro LED presence area on the substrate S It is provided on the edge of the micro LED (ML) can be prevented from damage due to excessive descending of the micro LED adsorbent (1').
- the micro LED adsorption body 1 ′ can effectively adsorb the micro LEDs ML on the substrate S having warpage or low flatness.
- the amount of pressing of the protrusion 2900 may additionally be provided with a stop member that can limit the.
- the stop member may be provided at a lower height than the protrusion, and may be provided around the protrusion 2900 and may be provided around the protrusion 2900 while serving as an edge of the micro LED adsorbent 1 ′. Since the stop member is provided at a height lower than that of the protrusion 2900, there may be a height difference from the protrusion 2900. The stop member may limit the amount of pressing of the protrusion 2900 due to a difference in height from the protrusion 2900.
- the stop member may be made of a material having an elastic modulus lower than that of the protrusion 2900. Accordingly, the protrusion 2900 may be a material having a high elastic modulus as opposed to the stop member.
- the stop member has a characteristic that is not easily deformed by an external force, while the protrusion portion 2900 has a characteristic that is relatively easily deformed by an external force. For this reason, when the micro LED adsorbent 1'descends, the protrusion 2900 that comes into contact with the upper surface of the substrate S before the stop member may be contracted by a height difference from the stop member.
- the lower surface of the stop member may be in contact with the upper surface of the substrate S due to the protrusion 2900 contracted by a height difference from the stop member. At this time, since the stop member hardly contracts due to the characteristic having a low elastic modulus, it is possible to stop the contraction of the protrusion 2900 and limit the amount of pressing of the protrusion 2900.
- the stop member may be provided continuously or discontinuously along the circumference of the protrusion 2900 around the protrusion 2900.
- the shape is not limited to any shape, and may be formed to have a circular cross section or a square cross section as an example.
- the stop member is provided discontinuously around the protrusion 2900, preferably at least two or more may be provided. At least two or more discontinuous stop members are provided around the protrusion 2900, but may preferably be provided at opposite positions.
- FIG. 14 is a diagram showing embodiments of a suction pipe constituting the micro LED adsorbent of the present invention.
- the micro LED adsorbent 1 ′ of the second embodiment is illustrated and described, but the micro LED adsorbent is not limited thereto, and may include the first to sixth embodiments.
- the suction pipe 1400 is configured to include a connection part 1400a, and the vacuum chamber 1300 and the vacuum chamber 1300 are connected through the connection part 1400a to vacuum the vacuum chamber 1300.
- the horizontal area of the connection part 1400a is formed equal to the horizontal area of the upper surface of the porous member 1000.
- connection part 1400a may be provided between the vacuum chamber 1300 and the suction pipe 1400.
- the vacuum chamber 1300 and the suction pipe 1400 may be connected to each other by the connection part 1400a.
- the connection part 1400a is formed in a horizontal area equal to the horizontal area of the upper surface of the adsorption member 1100 that functions to adsorb the micro LED (ML).
- connection part 1400a having a horizontal area equal to the horizontal area of the upper surface of the suction member 1100 is equal to the horizontal area of the suction member 1100 It can be formed in a horizontal area. Since the connection portion 1400a is formed equal to the horizontal area of the suction member 1100, a uniform vacuum suction force is generated on the entire suction surface of the suction member 1100 of the micro LED absorber 1'.
- connection part 1400a connecting the vacuum chamber 1300 and the suction pipe 1400 is connected so that the vacuum supplied through the vacuum pump flows into the vacuum chamber 1300 when the vacuum supplied through the suction pipe 1400 is introduced.
- the horizontal range of the vacuum flowing into the support member 1200 and the adsorption member 1100 may vary according to the horizontal area of the connection part 1400a.
- the horizontal area of the connection part 1400a connecting the vacuum chamber 1300 and the suction pipe 1400 is formed smaller than the horizontal area of the upper surface of the suction member 1100, and the vacuum supplied from the vacuum pump is suction pipe 1400 ) And is supplied to the support member 1200 and the adsorption member 1100 through the connection part 1400a.
- the vacuum supplied to the suction pipe 1400 flows into the vacuum chamber 1300 through the connection part 1400a, passes through the vacuum chamber 1300, passes through the support member 1200, and is provided to the anodic oxide film 1600.
- the vacuum may be better transferred to the adsorption area 2000 at a location corresponding to the location where the connection part 1400a is formed.
- the connection part 1400a is formed smaller than the horizontal area of the upper surface of the suction member 1100, the suction region 2000 at a position corresponding to the position where the connection part 1400a is formed, and a position where the connection part 1400a is not formed.
- a difference may occur in the vacuum received from the vacuum chamber 1300 through the connection part 1400a. For this reason, the adsorption force of the adsorption surface of the micro LED adsorbent 1'may become non-uniform.
- a connection part 1400a connecting the vacuum chamber 1300 and the suction pipe 1400 is formed in a horizontal area equal to the horizontal area of the upper surface of the adsorption member 1100, Compared to a configuration in which the connection part 1400a is formed smaller than the horizontal area of the upper surface of the adsorption member 1100, a uniform adsorption force may be generated on the entire micro LED adsorption surface, which is the lower surface of the adsorption member 1100.
- the micro LED (ML) when the micro LED (ML) is adsorbed by the micro LED adsorption body (1'), the micro LED (ML) located on the edge of the substrate (S) is non-adsorbed and separated from the adsorption surface due to the uneven adsorption power of the adsorption surface The problem can be solved.
- the arrows shown in FIG. 14(a) indicate a suction direction of a uniform suction force generated on the suction surface of the suction member 1100 due to the vacuum supplied from the vacuum chamber 1300.
- the suction pipe 1400 may have the same horizontal area as the connection part 1400a but may have a different shape.
- the vacuum chamber 1300 can generate a uniform adsorption force on the adsorption surface of the adsorption member 1100.
- the adsorption surface of the micro LED adsorption body 1' secures a uniform adsorption power, and the adsorption power at any position of the adsorption surface is weakened, so that the micro LED (ML) on the substrate S is not adsorbed. ML) can be adsorbed.
- the vacuum pressure of the adsorption member 1100 providing the adsorption surface can be uniformly formed.
- the dispersing member is composed of a porous member having vertical pores, it is possible to eliminate the central displacement of the vacuum pressure of the adsorption member 1100 that provides the adsorption surface through a plurality of vertical pores.
- the dispersion member may be formed in a structure in which the structure of the hole constituting the dispersion member is formed in a larger number of lower holes formed at the lower end than the upper hole provided at the upper end.
- the upper hole and the lower hole may have a structure connected through a plurality of air flow paths therein. With such a structure, the dispersion member can equalize the air pressure at the lower hole position.
- a plurality of suction pipes 1400 may be provided to supply vacuum to the vacuum chamber 1300.
- Each suction pipe 1400 may be configured to include a connection part 1400a.
- the micro LED absorber 1 ′ may be configured to include a common pipe connecting the plurality of suction pipes 1400 in common.
- the plurality of suction pipes 1400 may be respectively provided at positions capable of uniformly transmitting vacuum to a horizontal area of the upper surface of the suction member 1100 through the vacuum chamber 1300.
- a plurality of suction pipes 1400 may be provided in consideration of the presence area of the micro LEDs existing while the micro LEDs ML on the substrate S are chipped.
- a second suction pipe including a second connection portion and a third suction pipe including a third connection portion may be provided at positions connected to the outer periphery of the 1300.
- the center of the vacuum chamber 1300 means a location corresponding to the center in the micro LED presence area
- the outer edge of the vacuum chamber 1300 means a location corresponding to one end and the other end in the micro LED presence area.
- the first to third suction pipes are connected in common through a common pipe, and vacuum supplied from the vacuum pump may be supplied to the plurality of suction pipes 1400 through the common pipe.
- connection portion 1400a of each suction pipe 1400 considers that the inflow amount of vacuum supplied from the vacuum pump is different depending on the formation position of the suction pipe 1400 Thus, the horizontal area may be formed differently. As a result, a uniform adsorption force can be generated on the adsorption surface.
- a vortex generating means in the form of a helical member may be additionally provided inside each suction pipe 1400.
- the vortex generating means may be provided inside the second and third suction pipes connected to the outer periphery of the vacuum chamber 1300.
- the eddy current generating means serves to induce a rapid flow of air, so that the vacuum supplied from the vacuum pump can be easily supplied to the vacuum chamber 1300 through the second and third connectors.
- the plurality of suction pipes 1400 may not be connected through a common pipe, but may be respectively connected to a vacuum pump capable of being individually controlled to receive a vacuum.
- the plurality of suction pipes 1400 are formed continuously while surrounding the first suction pipe connected to the center of the vacuum chamber 1300 and the first suction pipe at the outer edge of the vacuum chamber 1300. It may be configured as a second suction pipe connected to the outer periphery. Even in this case, each connection portion of the first and second suction pipes may have different horizontal areas. Specifically, the connection portion of the first suction pipe, which is relatively easy to inflow of vacuum, may be formed to have a smaller horizontal area than the connection portion of the second suction pipe. For this reason, a uniform adsorption force may be generated on the entire adsorption surface of the micro LED adsorber 1'.
- a dispersing member may be provided at a connection portion of the plurality of suction pipes 1400.
- the dispersion member is connected to the suction pipe 1400 or the connection portion 1400a of the internal suction pipe 1400 of the vacuum chamber 1300 and/or the connection portion of the suction pipes 1400.
- the connecting portion of the suction pipes 1400 means a portion in which the suction pipe 1400 and the common pipe are commonly connected between the suction pipes 1400 and the common pipe.
- the dispersion member may be composed of a porous member having arbitrary pores or a porous member having vertical pores.
- the adsorption target micro LED (ML) adsorbed by the adsorption region 2000 may be any one of red (Red, ML1), green (green, ML2), blue (BLUE, ML3), and white LEDs.
- 15 to 17 show red, green, and blue micro LEDs (ML1, ML2, ML3) as an example, and according to the arrangement of the adsorption area 2000, red, green, and blue micro LEDs (ML1, ML2, and ML2) are shown. It will be described that the ML3) is transferred to the second substrate (display substrate 301) to be spaced apart from each other to form a pixel array.
- the adsorption regions 2000 are formed to be spaced apart at regular intervals in a column direction (x direction) and a row direction (y direction).
- the adsorption area 2000 includes a column direction (x direction) and a row direction (y direction) of the micro LEDs (ML) disposed on the first substrate in at least one of a column direction (x direction) and a row direction (y direction).
- ML micro LEDs
- the column direction (x direction) pitch spacing of the micro LEDs ML on the donor substrates DS1, DS2, DS3 is P(n) and the row direction (y direction) pitch
- the adsorption region 2000 may have a pitch spacing in the column direction (x direction) of 3P(n) and a pitch spacing in the row direction (y direction) of P(m).
- 3P(n) means that it is three times the pitch spacing P(n) in the column direction (x direction) of the micro LEDs ML of the donor substrates DS1, DS2, and DS3.
- the micro LED adsorption body 1' can be transported by vacuum adsorption of only micro LEDs (ML) corresponding to three times the heat.
- the micro LED (ML) transferred in the triple row may be any one of red (Red, ML1), green (Green, ML2), blue (BLUE, ML3), and white LEDs.
- the micro LEDs ML having the same emission color mounted on the target substrate TS can be transferred by being spaced apart at 3P(m) intervals.
- the micro LED adsorption body 1 ′ in which the adsorption regions 2000 having the above pitch intervals are formed may selectively adsorb the micro LEDs ML disposed on the donor.
- the donor part is a first donor substrate DS1 on which a red micro LED ML1 is disposed, a second donor substrate DS2 on which a green micro LED ML2 is disposed, and a third donor substrate on which a blue micro LED ML3 is disposed ( DS3).
- Micro LEDs (ML) arranged on each donor substrate are arranged at regular intervals in the column direction (x direction) and row direction (y direction), and are arranged on the first to third donor substrates DS1, DS2, DS3
- the red, green, and blue micro LEDs ML1, ML2, and ML3 are arranged at equal pitch intervals in the column direction (x direction) and row direction (y direction).
- the distance in the column direction (x direction) is three times the pitch distance in the column direction (x direction) of the micro LEDs (ML) disposed on the donor, and the row
- the separation distance in the direction (y direction) is one multiple of the pitch interval in the row direction (y direction) of the micro LEDs ML disposed on the donor.
- a micro LED adsorption with an adsorption area 2000 having a column direction (x direction) pitch spacing of 3P(n) and a row direction (y direction) pitch spacing P(m) is formed
- red micro LEDs ML1 are disposed on the first donor substrate DS1 at regular intervals.
- the micro LED adsorbent 1 ′ descends toward the first donor substrate DS1 to selectively adsorb the red micro LED ML1 present at a position corresponding to the adsorption area 2000.
- the micro LED adsorbent 1' is only red micro LEDs (ML) corresponding to the 1st, 4th, 7, 10th, 13th, and 16th columns on the first donor substrate DS1.
- Selectively vacuum adsorption When the adsorption is complete, the micro LED adsorbent 1'rises and then moves horizontally to be positioned above the target substrate TS. After that, the micro LED adsorbent 1'descends to collectively transfer the red micro LEDs ML1 onto the target substrate TS.
- the micro LED absorber 1 absorbs the green micro LED ML2 on the second donor substrate DS2 and transfers it to the target substrate TS.
- the green micro LED is placed on the right side of the drawing by the pitch interval in the x direction of the micro LED (ML). (ML2) is collectively transferred onto the target substrate TS.
- the micro LED adsorbent 1' moves onto the third donor substrate DS3. Then, in the same process as the process of transferring the red micro LED (ML1) previously, the micro LED adsorbent (1') adsorbs the blue micro LED (ML3) on the third donor substrate (DS3) and transfers it to the target substrate (TS). do. At this time, based on the green micro LED (ML2) already transferred on the target substrate (TS), the micro LED adsorbent (1') is positioned to the right of the drawing by the pitch interval in the x direction of the micro LED (ML) to The LED (ML3) is collectively transferred onto the target substrate (TS).
- the target substrate TS having a 1 ⁇ 3 pixel array according to this configuration may be implemented as shown in FIG. 15(a-2).
- the target substrate TS may be the display substrate 301 shown in FIG. 2, and may be a temporary substrate or a carrier substrate transferred from the growth substrate 101.
- the adsorption region 2000 is formed with a pitch interval of 3P(n) in a column direction (x direction) and a pitch interval of 3P(m) in a row direction (y direction).
- the micro LED adsorbent 1 ′ can vacuum-adsorb and transport the micro LEDs (ML) corresponding to the triple row and the micro LEDs (ML) corresponding to the triple row.
- the micro LEDs ML that are transferred to the triple column and row may be red, green, and blue micro LEDs ML1, ML2, and ML3.
- the micro LEDs (ML) having the same emission color mounted on the display substrate 301 can be transferred by being spaced apart at 3P(n) and 3P(m) intervals.
- the distance in the column direction (x direction) is three times the pitch distance in the column direction (x direction) of the micro LEDs ML disposed on the donor
- the row direction ( The y direction) separation distance is a distance three times the pitch interval in the row direction (y direction) of the micro LEDs (ML) disposed on the donor.
- micro LED adsorption with an adsorption area 2000 formed with pitch spacing in the column direction (x direction) pitch spacing 3P(n) and row direction (y direction) pitch spacing 3P(m)
- the sieve 1 moves between the first to third donor substrates DS1, DS2, and DS3 and the target substrate TS nine times and moves the red, green, and blue micro LEDs (ML1, ML2, ML3) to the target substrate. Transfer to (TS) so that the red, green and blue micro LEDs (ML1, ML2, ML3) form a 1 ⁇ 3 pixel array.
- the micro LED absorber 1 when transferring once, the micro LED absorber 1'selectively adsorbs the red micro LED ML1 from the first donor substrate DS1 and transfers it collectively to the target substrate TS, and transfers twice.
- the micro LED absorber 1'selectively adsorbs the green micro LED (ML2) from the second donor substrate (DS2) the micro LED is based on the red micro LED (ML1) already transferred to the target substrate (TS).
- the green micro LED (ML2) is collectively transferred onto the target substrate (TS) by placing the micro LED adsorbent (1') to the right on the drawing by the pitch interval in the x direction of (ML).
- the micro LED absorber 1 In the next 3 transfers, the micro LED absorber 1'selectively adsorbs the blue micro LED (ML3) from the third donor substrate DS3, and the green micro LED (ML2) already transferred onto the target substrate TS.
- the blue micro LEDs ML3 are collectively transferred onto the target substrate TS by placing the micro LED adsorbent 1'to the right of the drawing by the pitch interval in the x direction of the micro LEDs ML based on.
- the micro LED absorber 1 when transferring 4 times, the micro LED absorber 1'selectively adsorbs the red micro LED (ML1) from the first donor substrate (DS1), and the green micro LED (ML2) already transferred onto the target substrate (TS).
- the micro LED adsorbent 1' is placed at the bottom of the drawing by a pitch interval in the y direction of the micro LEDs ML based on the reference, and the red micro LEDs ML1 are collectively transferred onto the target substrate TS.
- the green micro LED (ML) is collectively transferred onto the target substrate TS by placing the micro LED adsorbent 1'to the right on the drawing by the pitch interval in the x direction of the micro LED (ML) based on ML1).
- the blue micro LED (ML3) is collectively transferred onto the target substrate (TS) by placing the micro LED adsorbent (1') to the right on the drawing by the pitch interval in the x direction of the micro LED (ML) based on (ML2). .
- the micro LED absorber 1 when transferring 7 times, the micro LED absorber 1'selectively adsorbs the red micro LED (ML1) from the first donor substrate (DS1), and the blue micro LED (ML3) that has already been transferred onto the target substrate (TS).
- the micro LED adsorbent 1' is placed at the bottom of the drawing by a pitch interval in the y direction of the micro LEDs ML based on the reference, and the red micro LEDs ML1 are collectively transferred onto the target substrate TS.
- the green micro LED (ML2) is collectively transferred onto the target substrate TS by placing the micro LED adsorbent (1') to the right on the drawing by the pitch interval in the x direction of the micro LED (ML) based on ML1).
- the blue micro LED (ML3) is collectively transferred onto the target substrate (TS) by placing the micro LED adsorbent (1') to the right on the drawing with only the pitch gap in the x direction of the micro LED (ML) based on ML2). .
- the target substrate TS having a 1 ⁇ 3 pixel array according to this configuration may be implemented as shown in FIG. 15(d).
- the target substrate TS may be the display substrate 301 shown in FIG. 2, and may be a temporary substrate or a carrier substrate transferred from the growth substrate.
- the adsorption region 2000 may be formed at a pitch interval equal to the pitch interval in the diagonal direction of the micro LEDs ML disposed on the donor.
- the micro LED adsorbent 1 moves between the first to third donor substrates DS1, DS2, DS3 and the target substrate TS three times, while red, green, and blue micro LEDs ( ML1, ML2, ML3) are transferred to the target substrate TS so that the red, green, and blue micro LEDs ML1, ML2, and ML3 form a 1x3 pixel array.
- the micro LED absorber 1 when transferring once, the micro LED absorber 1'selectively adsorbs the red micro LED (ML1) from the first donor substrate (DS1) and transfers it collectively from the target substrate (TS), and transfers twice.
- the micro LED absorber 1'selectively adsorbs the green micro LED (ML2) from the second donor substrate (DS2) the micro LED is based on the red micro LED (ML1) already transferred to the target substrate (TS).
- the green micro LED (ML2) is collectively transferred onto the target substrate (TS) by placing the micro LED adsorbent (1') to the right on the drawing by the pitch interval in the x direction of (ML).
- the micro LED adsorbent 1 During the next three transfers, the micro LED adsorbent 1'selectively adsorbs the blue micro LED ML3 from the third donor substrate DS3 to transfer the green micro LED ML2 already transferred to the target substrate TS.
- the micro LED adsorbent 1' is positioned to the right of the drawing by the pitch interval in the x direction of the micro LEDs ML, and the blue micro LEDs ML3 are collectively transferred onto the target substrate TS.
- the target substrate TS having a 1 ⁇ 3 pixel array according to this configuration may be implemented as shown in FIG. 15(d).
- the target substrate TS may be the display substrate 301 shown in FIG. 2, and may be a temporary substrate or a carrier substrate transferred from the growth substrate 101.
- the adsorption area 2000 is a distance twice the pitch interval in the column direction (x direction) of the micro LEDs (ML) disposed on the donor, and the row direction (y direction). It can be formed with a distance twice the pitch interval.
- the micro LED adsorbent 1 moves between the first to third donor substrates DS1, DS2, DS3 and the target substrate TS three times, while the red, green, and blue micro LEDs ML1 , ML2, ML3) are transferred to the target substrate TS so that the red, green, and blue micro LEDs ML1, ML2, and ML3 form a 2 ⁇ 2 pixel array.
- the micro LED absorber 1 when transferring once, the micro LED absorber 1'selectively adsorbs the red micro LED (ML1) from the first donor substrate (DS1) and transfers it collectively to the target substrate (TS).
- the adsorbent (1') selectively adsorbs the green micro LED (ML2) from the second donor substrate (DS2) and uses the micro LED (ML) based on the red micro LED (ML) already transferred onto the target substrate (TS).
- the green micro LED (ML2) is collectively transferred onto the target substrate (TS) by placing the micro LED adsorbent (1') to the right on the drawing by the pitch interval in the x direction of.
- the micro LED absorber 1 During the next three transfers, the micro LED absorber 1'selectively adsorbs the blue micro LED (ML3) from the third donor substrate (DS3) and transfers the green micro LED onto the target substrate (TS) twice.
- the blue micro LED (ML3) is collectively transferred onto the target substrate (TS) by placing the micro LED adsorbent (1') downward on the drawing by the pitch interval in the y direction of the micro LED (ML) based on (ML2). .
- the target substrate TS having a 2 ⁇ 2 pixel array according to this configuration may be implemented as shown in FIG. 16(a-2).
- the target substrate TS may be the display substrate 301 shown in FIG. 2, and may be a temporary substrate or a carrier substrate transferred from the growth substrate 101.
- the adsorption area 2000 is formed with a distance twice the pitch interval in the column direction (x direction) of the donor micro LED (ML) and a distance twice the pitch interval in the row direction (y direction), as shown in Fig. 16(a-2).
- a 2 ⁇ 2 pixel arrangement can be formed with only three micro LEDs (ML1, ML2, ML3) on the target substrate TS. In this case, there is a spare area in which the micro LED (ML) can be additionally mounted.
- an additional micro LED (ML) is transferred to the spare area in an empty 2 ⁇ 2 pixel array, so that a total of 4 micro LEDs ( ML) can form a 2x2 pixel array.
- the micro LED (ML) transferred to the spare area is a green micro LED (ML2) as an example, but the micro LED (ML) transferred to the spare area is not limited thereto and is red. , Any one of the blue micro LEDs ML1 and ML3 may be additionally transferred.
- micro LED micro LED
- the missing micro LED ML
- ML micro LED
- the adsorption area 2000 is a distance three times the pitch interval in the column direction (x direction) of the micro LEDs ML disposed on the donor, and the row direction (y Direction) It can be formed with a distance three times the pitch interval.
- the pitch interval of the adsorption area 2000 is shown to be the same pitch interval as those of FIGS. 16(a-1) and 16(b-1), but this is shown for convenience and the pitch It is the adsorption area 2000 formed differently from FIGS. 16(a-1) and 16(b-1).
- the micro LED adsorbent 1 moves between the first to third donor substrates DS1, DS2, DS3 and the target substrate TS three times, while the red, green, and blue micro LEDs ML1 , ML2, ML3) are transferred to the target substrate TS so that the red, green, and blue micro LEDs ML1, ML2, and ML3 form a 3 ⁇ 3 pixel array.
- the micro LED adsorber 1 when transferring once, the micro LED adsorber 1'selectively adsorbs the red micro LED ML1 from the first donor substrate DS1 to collectively transfer to the target substrate TS, and transfer twice.
- the micro LED absorber 1'selectively adsorbs the green micro LED (ML2) from the second donor substrate (DS2) the micro LED is based on the red micro LED (ML1) already transferred to the target substrate (TS).
- the green micro LEDs ML2 are collectively transferred onto the target substrate TS by placing the micro LED adsorbent 1'to the right by the pitch interval in the x direction of (ML) and downward by the pitch interval in the y direction.
- micro LED adsorbent 1 moves between the first to third donor substrates DS1, DS2, DS3 and the target substrate TS three times, while the red, green, and blue micro LEDs ML1, ML2, and ML3) Three are to form a 3 ⁇ 3 pixel array.
- the micro LED absorber (1') can be transported by adsorbing the entire micro LED (ML) of the substrate (S) at once.
- the adsorption region 2000 may be formed in an arrangement in which the micro LEDs (ML) of the growth substrate 101 are transferred to the target substrate TS at an interval greater than the pitch interval on the growth substrate 101. Accordingly, the micro LEDs ML on the growth substrate 101 may be transferred to the target substrate TS by extending the pitch interval at the same interval.
- the micro LED adsorber 1 ′ selectively adsorbs the micro LEDs (ML) disposed on the first substrate (eg, the growth substrate 101), but in one direction between the adsorption regions 2000
- the pitch interval is M/3 times the pitch interval in one direction of the micro LEDs (ML) disposed on the first substrate (for example, the growth substrate 101), and M is an integer of 4 or more.
- the second pitch interval b of the micro LEDs ML of the target substrate TS is formed by M/3 times the first pitch interval a of the micro LEDs ML of the donor part.
- the pitch spacing of the adsorption area 2000 for adsorbing the micro LEDs ML of the target substrate TS is M/3 times the pitch spacing of the micro LEDs ML on the growth substrate 101, and M is 4 It is an integer greater than or equal to.
- the adsorption area 2000 for adsorbing the micro LEDs (ML) of the donor is on the target substrate TS at a second pitch interval (b) that is M/3 times the first pitch interval (a) of the micro LEDs ML of the donor. In order to transfer the micro LEDs ML, they may be formed at an interval of 4 or more times the first pitch interval a of the micro LEDs ML of the donor.
- the adsorption area 2000 for adsorbing the micro LEDs (ML) of the donor portion is formed at a pitch interval of a distance of 4 times the first pitch interval (a) of the micro LEDs ML of the donor portion.
- the maximum pitch interval of the adsorption region 2000 is the minimum distance for forming a pixel on the target substrate TS.
- the micro LED adsorption body 1' having an adsorption area 2000 formed at a pitch interval of 4 times the first pitch distance a of the micro LEDs ML of the donor part adsorbs the micro LEDs ML of the donor part.
- it may be transferred to have a second pitch spacing (b) that is M/3 times the first pitch spacing (a) of the micro LEDs ML of the donor portion, like the target substrate TS shown in FIG. 17.
- the red micro LEDs ML1 are disposed on the first donor substrate DS1 at a first pitch interval a.
- the green micro LEDs ML2 are arranged at a first pitch interval (a)
- the blue micro LEDs ML3 are arranged on the third donor substrate DS3 at a first pitch interval (a). Is placed.
- the micro LED adsorbent 1' moves to the target substrate TS and collectively transfers the red micro LED ML1 onto the target substrate TS.
- the micro LED adsorbent (1') selectively adsorbs the green micro LEDs (ML2) of the second donor substrate (DS2) of 1 row 1 column, 1 row 5 column, 5 row 1 column and 5 row 5 columns. do.
- the micro LED adsorbent 1' is on the right side of the drawing by the second pitch interval (b) in the x direction of the micro LED (ML) based on the red micro LED (ML1) already transferred onto the target substrate (TS). Move to and collectively transfer the green micro LED (ML2) onto the target substrate (TS).
- the micro LED adsorbent 1 moves onto the third donor substrate DS3.
- the blue micro LED (ML) moves to the right by the second pitch interval (b) in the x direction of the micro LED (ML) based on the already transferred green micro LED (ML2).
- the LED (ML3) is collectively transferred onto the target substrate (TS).
- the micro LED adsorber 1 when transferring 4 times, the micro LED adsorber 1'selectively adsorbs the red micro LED ML1 at the position corresponding to the adsorption area 2000 on the first donor substrate DS1,
- the red micro LED (ML1) is transferred to the target substrate (TS) by moving to the bottom of the drawing by a second pitch interval (b) in the y direction based on the transferred red micro LED (ML1) once.
- the transferred red micro LED (ML1) is moved to the right of the drawing by a second pitch interval (b) in the x direction to collectively transfer the green micro LED (ML2) onto the target substrate TS.
- the micro LED adsorbent 1 when transferring 6 times, the micro LED adsorbent 1'selectively adsorbs the blue micro LED ML3 at a position corresponding to the adsorption area 2000 from the third donor substrate DS3 to be placed on the target substrate TS.
- the blue micro LED (ML3) is collectively transferred onto the target substrate TS by moving to the right of the drawing by the second pitch interval (b) in the x direction based on the transferred green micro LED (ML2).
- the micro LED adsorbent 1 when transferring 7 times, the micro LED adsorbent 1'selectively adsorbs the red micro LED ML1 at a position corresponding to the adsorption area 2000 from the first donor substrate DS1 to be placed on the target substrate TS.
- the red micro LED (ML1) is collectively transferred to the target substrate TS by moving to the bottom of the drawing by the second pitch interval (b) in the y direction based on the already transferred red micro LED (ML1). .
- the micro LED adsorbent (1') adsorbs the green micro LED (ML2) in the same process as the 5 transfer process and removes it in the x direction based on the red micro LED (ML1) transferred during the 7 transfer.
- the green micro LED (ML2) is collectively transferred by moving to the right of the drawing by a 2-pitch interval (b). Then, the micro LED adsorbent (1') adsorbs the blue micro LED (ML3) in the same process as the transfer process 6 times when transferring 9 times, and moves it in the x direction based on the green micro LED (ML2) transferred when transferring 8 times.
- the blue micro LED (ML3) is collectively transferred by moving to the right of the drawing by the second pitch interval (b).
- the micro LEDs ML1, ML2, and ML3 are in the column direction from the target substrate TS by the adsorption area 2000 having a pitch distance of 4 times the first pitch distance a of the micro LEDs ML of the donor.
- the (x-direction) and row-direction (y-direction) pitch intervals are extended to the target substrate TS by being extended to the column-direction (x-direction) and row-direction (y-direction) pitch intervals of the micro LED (ML) of the donor at the same interval Can be transferred.
- the micro LED adsorbent 1 moves between the first to third donor substrates DS1, DS2, DS3 and the target substrate TS 9 times, while red and green And the blue micro LEDs (ML1, ML2, ML3) are transferred to the target substrate TS so that the three micro LEDs (ML1, ML2, ML3) form a 1 ⁇ 3 pixel array on the target substrate TS, and in the same column.
- the same type of micro LED (ML) can be transferred.
- micro LEDs (ML) can be transferred by any suitable method in which (ML) is transferred.
- the micro LED adsorbent 1 moves the positions in the column direction (x direction) and the row direction (y direction) from the top of the target substrate TS, so that three micro LEDs ( ML1, ML2, and ML3) form a 1 ⁇ 3 pixel array, but may be transferred to have an array different from an array in which the same type of micro LED (ML) is transferred in the same column.
- the micro LED absorber 1 Move to and collectively transfer the green micro LED (ML2) onto the target substrate (TS).
- the micro LED absorber 1 'selectively adsorbs the blue micro LED (ML3) from the third donor substrate (DS3) and transfers it to the target substrate (TS) twice.
- the blue micro LED (ML3) is collectively transferred onto the target substrate (TS) by moving to the right by the second pitch interval (b) in the x direction based on ML2).
- the micro LED adsorbent (1') is on the right by the second pitch interval (b) in the x direction and the second pitch interval (b) in the y direction based on the same type of micro LED (ML) that has already been transferred.
- ML micro LED
- the micro LED adsorbent of the present invention can be used to fabricate a micro LED display (D).
- D micro LED display
- the pitch interval in one direction between the adsorption regions (2000) is applied to the first substrate. It may be preferable that M/3 of the pitch interval in one direction of the arranged micro LEDs (ML) and M is an integer micro LED adsorbent (1') is used.
- 18(a) to 18(d) are diagrams schematically showing a process of manufacturing a micro LED display (D) using the micro LED adsorbent of the present invention.
- the pitch distance in one direction between the adsorption regions 2000 is M/3 of the pitch distance in one direction of the micro LEDs (ML) disposed on the first substrate, and M is an integer. It can be composed of.
- the first substrate and the second substrate may be classified according to a substrate on which the micro LED absorber adsorbs the micro LED (ML) and a substrate to which the adsorbed micro LED (ML) is transferred.
- the first substrate may mean a temporary substrate (HS)
- the second substrate is It may mean a circuit board HS.
- the first substrate and the second substrate may be classified according to the substrate on which the micro LED absorber adsorbs the micro LED and the substrate to be transferred.
- the method of manufacturing the micro LED display (D) includes preparing a first substrate equipped with a micro LED (ML), preparing a circuit board (HS), and a pitch interval in one direction between the adsorption regions 2000. M/3 times the pitch interval in one direction of the micro LEDs (ML) arranged on the substrate, and M is an integer greater than or equal to 4 micro LED adsorption bodies (1'), and the micro LEDs (ML) on the first substrate to the circuit board (HS) Transferring to fabricate a unit module (M), preparing a display wiring board (DP), and transferring the unit module (M) to the display wiring board (DP), but the micro LED ( ML)
- the pixel arrangement is the same as the micro LED (ML) pixel arrangement in the unit module M
- the pitch interval of the pixel arrangement in the display wiring board DP is the arrangement interval of the pixel arrangement in the unit module M.
- it may be configured including the step of mounting the unit module M on the display wiring board DP.
- micro LEDs ML1, ML2, and ML3 are manufactured and prepared from each of the growth substrates 101a, 101b, and 101c through an epitaxial process. Accordingly, a plurality of first substrates may be provided.
- Micro LEDs (ML1, ML2, ML3) of each of the growth substrates 101a, 101b, 101c are transferred to a carrier substrate C corresponding to each of the micro LED absorbers at regular pitch intervals, or a circuit board HS Can be transferred to.
- the carrier substrate C is a first carrier substrate C1 on which a red micro LED ML1 is transferred, a second carrier substrate C2 on which a green micro LED ML2 is provided, and a second carrier substrate C2 on which the blue micro LED ML3 is provided. It may be composed of a three-carrier substrate C3.
- a step of preparing the circuit board HS to transfer the micro LEDs ML of the carrier board C to the circuit board HS may be performed.
- the micro LED (ML) of the carrier substrate (C) may be transferred to the prepared circuit board (HS) by a micro LED adsorbent.
- the mounting of the unit module M may be performed by providing an adsorbent for transferring the unit module M to the display wiring board DP separately from the micro LED adsorbent.
- a process of transferring the plurality of unit modules M to the display wiring board DP may be performed.
- the micro LED pixel arrangement in the display wiring board DP may be the same as the micro LED pixel arrangement in the unit module M.
- the pitch interval of the pixel arrays on the display wiring board DP may be the same as the arrangement interval of the pixel arrays in the unit module M.
- the unit module M is transferred to form a micro LED pixel array of 1 ⁇ 3 pixel array on the display wiring board DP.
- the pitch interval in one direction between the adsorption regions 2000 is M/3 times the pitch interval in one direction of the micro LEDs ML disposed on the first substrate, and M is an integer of 4 or more.
- the micro LEDs ML having the same pitch interval as the micro LED pixel array formed by transferring the micro LEDs ML1, ML2, and ML3 to the circuit board HS may be transferred.
- This structure may be the micro LED pixel arrangement and pitch interval of the micro LED display D implemented as shown in FIG. 18(d).
- Micro LED display (D) is a step of preparing and preparing a micro LED (ML) through the epi process on the growth substrate 101 as above, transferring the micro LED (ML) of the growth substrate 101 to the carrier substrate (C) After that, transferring the micro LED (ML) of the carrier substrate (C) to the circuit board (HS) prepared in the circuit board (HS) preparation step to fabricate a unit module (M), the unit module (M) described above. It can be manufactured by mounting on the display wiring board DP.
- the step of preparing the first substrate including the micro LEDs (ML) may be a step of preparing the micro LEDs (ML) from the growth substrate 101 by transferring them to the carrier substrate (C).
- the step of preparing the first substrate with micro LEDs (ML) in order to manufacture the micro LED display D is the step of preparing and preparing the micro LEDs (ML) on the growth substrate 101 through an epitaxial process.
- it may be a step in which the micro LED (ML) is transferred from the growth substrate 101 to the carrier substrate C and prepared.
- the step of preparing the first substrate on which the micro LEDs (ML) are provided may be a step of preparing the same type of micro LEDs (ML) at predetermined pitch intervals.
- it may be a step of preparing the different types of micro LEDs ML1, ML2, and ML3 to form a pixel array.
- micro LEDs ML1, ML2, ML3 of respective growth substrates 101a, 101b, and 101c and respective carrier substrates C1, C2, and C3 are provided at regular pitch intervals.
- micro LEDs (ML1, ML2, ML3) of respective growth substrates 101a, 101b, and 101c and respective carrier substrates C1, C2, and C3 May be prepared to form a pixel array before the heterogeneous micro LEDs ML are transferred to the circuit board HS.
- the first The preparing of the substrate may be a step of preparing the same type of micro LEDs (ML) at a predetermined pitch interval, or a step of preparing the different types of micro LEDs ML1, ML2, and ML3 to form a pixel array.
- the step of preparing the first substrate with micro LEDs (ML) is a step of preparing the micro LEDs (ML) by transferring them from the growth substrate 101 to the carrier substrate (C) Explain.
- a step of preparing the circuit board HS to transfer the micro LEDs ML of the carrier board C, which is the first substrate, to the circuit board HS may be performed.
- the micro LEDs (ML1, ML2, ML3) of each of the carrier substrates (C1, C2, C3) have a pitch interval in one direction between the adsorption regions 2000 and the pitch interval of the micro LEDs (ML) arranged on the first substrate M/3 times of, and M can be transferred to the circuit board HS by a micro LED adsorbent that is an integer of 4 or more. This process may be performed in the unit module manufacturing step to manufacture the unit module M.
- the pitch interval in one direction between the adsorption regions (2000) is M/3 times the pitch interval of the micro LEDs (ML) arranged on the first substrate, and M is an integer of 4 or more.
- the LED adsorbent is manufactured by transferring the micro LEDs (ML1, ML2, ML3) of the carrier substrates (C1, C2, C3) to the circuit board (HS), so that the heterogeneous micro LEDs (ML1, ML2, ML3) form an array of pixels. It may be a mounted form.
- the unit module M manufactured through the unit module manufacturing step may be transferred to the display wiring board DP.
- a step of preparing the display wiring board DP may be performed.
- the unit module M may be transferred to the prepared display wiring board DP.
- the unit module M may be transferred by an adsorbent functioning to transfer the unit module M to the display wiring board DP.
- the adsorbent has the same micro LED pixel arrangement in the display wiring board DP as the micro LED pixel arrangement in the unit module M, and the pitch interval of the pixel arrangement is the pixel arrangement in the unit module M. Mounting the unit module M on the display wiring board DP to be the same as the arrangement interval may be performed. As a result, a micro LED display D can be manufactured.
- the micro LED (ML) is transferred from the growth substrate 101 to the carrier substrate (C) to prepare the first substrate equipped with the micro LED (ML), the circuit board (HS) preparation Step, transferring the micro LED (ML) of the carrier substrate (C) to the circuit board (HS) to fabricate a unit module (M), mounting the unit module (M) on the display wiring board (DP) Can be produced by
- a micro LED display D
- the steps of preparing a first substrate with micro LEDs (ML), preparing a circuit board (HS), and preparing a display wiring board (DP) are sequentially It is not the order in which they are performed. Therefore, the above-described steps may be performed without being limited to any order.
- a plurality of unit modules (M) can be configured, so that good and defective products can be inspected simply, and the repair process based on the above inspection You will be able to proceed simply.
- the unit module (M) composed of only good-quality micro LEDs can be mounted on a large-area display, the yield of the large-area display manufacturing process can be improved and manufacturing time can be shortened.
- a plurality of unit modules (M) formed by transferring the micro LEDs (ML) to the circuit board (HS) are mounted to form a micro LED display (D), so a large area display without a border (bezelless) Becomes possible to implement.
- the micro LED display D manufactured by using the micro LED adsorbent of the present invention may include a display wiring board DP and a plurality of unit modules M coupled to the display wiring board DP.
- the unit module M may be configured by mounting the micro LED ML on the circuit board HS.
- the display wiring board DP may be a wiring board capable of individually driving each of the plurality of unit modules M.
- the unit module M is manufactured to be bonded to the display wiring board DP so that each of the micro LEDs ML of each unit module M can be individually driven by the wiring board.
- the display wiring board DP is provided with a driving circuit in a number corresponding to the number of micro LEDs ML, so that each of the micro LEDs ML can be individually driven.
- the display wiring board DP may be configured as a wiring board capable of collectively driving all of the micro LEDs ML of each unit module M.
- the unit module M is bonded to the display wiring board DP so that all of the micro LEDs ML of the unit module M can be collectively driven by the display wiring board DP.
- the display wiring board DP can drive all of the micro LEDs ML at once.
- the micro LED pixel arrangement in the unit module M includes a unit pixel in which a red micro LED, a green micro LED, and a blue micro LED are arranged in a two-dimensional array, and the unit pixels are arranged in a matrix form in N rows and M columns. Can be.
- the micro LED pixel arrangement in the display wiring board DP is the micro LED pixels in the unit module M. May be the same as the arrangement.
- the pitch interval of the pixel arrangement in the display wiring board DP is the pixel arrangement in the unit module M. It may be the same as the pitch spacing of.
- the micro LED pixel array of the display wiring board and the pitch interval of the pixel array are the micro LED pixel array of the unit module (M) as above. And the pitch interval of the pixel arrangement.
- the unit module M may be configured by mounting the micro LED (ML) on the circuit board (HS), and otherwise, it may be configured by mounting the micro LED (ML) on the anisotropic conductive film.
- ACF anisotropic conductive film
- a core of a conductive material is formed of a plurality of particles covered by an insulating film. When pressure or heat is applied to the anisotropic conductive film, only the applied portion is destroyed and the insulating film is electrically connected by the core.
- a release film may be further included under the anisotropic conductive film. The release film is attached to the lower part of the anisotropic conductive film to prevent particles from sticking to the lower part of the anisotropic conductive film.
- the release film is attached to be easily removable when bonding the unit module M to the display wiring board DP.
- the release film attached to the lower portion of the anisotropic conductive film is separated.
- the micro LEDs ML are thermally compressed from top to bottom so that the micro LEDs ML and individual electrodes formed on the display wiring board DP can be electrically connected to each other. Accordingly, only the heat-compressed portion has conductivity, so that the individual electrodes of the display wiring board DP and the micro LEDs ML are electrically connected.
- the micro LED pixel arrangement of the micro LED display D shown in FIG. 18(d) is shown as an example.
- the micro LED pixel array of the micro LED display (D) comprises a red micro LED (ML1), a green micro LED (ML2), and a blue micro LED (ML3) according to the arrangement of the adsorption area of the micro LED adsorbent.
- ML1 red micro LED
- ML2 green micro LED
- ML3 blue micro LED
- the same type of micro LEDs (ML) may be arranged in a different arrangement than that in the same column.
- protruding area 2300 first protruding dam
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Led Device Packages (AREA)
Abstract
본 발명은 마이크로 LED를 제1기판에서 제2기판으로 이송하는 마이크로 LED 흡착체에 관한 것으로서, 진공 흡입력 방식을 이용하여 마이크로 LED를 이송하는 마이크로 LED 흡착체에 관한 것이다.
Description
본 발명은 진공 흡입력으로 마이크로 LED를 흡착하는 마이크로 LED 흡착체에 관한 것이다.
현재 디스플레이 시장은 아직은 LCD가 주류를 이루고 있는 가운데 OLED가 LCD를 빠르게 대체하며 주류로 부상하고 있는 상황이다. 디스플레이 업체들의 OLED 시장 참여가 러시를 이루고 있는 상황에서 최근 Micro LED(이하,‘마이크로 LED’라 함) 디스플레이가 또 하나의 차세대 디스플레이로 부상하고 있다. LCD와 OLED의 핵심소재가 각각 액정(Liquid Crystal), 유기재료인데 반해 마이크로 LED 디스플레이는 1~100마이크로미터(㎛) 단위의 LED 칩 자체를 발광재료로 사용하는 디스플레이다.
Cree사가 1999년에 "광 적출을 향상시킨 마이크로-발광 다이오드 어레이"에 관한 특허를 출원하면서(한국등록특허공보 등록번호 제10-0731673호), 마이크로 LED 라는 용어가 등장한 이래 관련 연구 논문들이 잇달아 발표되면서 연구개발이 이루어지고 있다. 마이크로 LED를 디스플레이에 응용하기 위해 해결해야 할 과제로 마이크로 LED 소자를 Flexible 소재/소자를 기반으로 하는 맞춤형 마이크로 칩 개발이 필요하고, 마이크로 미터 사이즈의 LED 칩의 전사(transfer)와 디스플레이 픽셀 전극에 정확한 실장(Mounting)을 위한 기술이 필요하다.
특히, 마이크로 LED 소자를 표시 기판에 이송하는 전사(transfer)와 관련하여, LED 크기가 1~100 마이크로미터(㎛) 단위까지 작아짐에 따라 기존의 픽앤플레이스(pick & place) 장비를 사용할 수 없고, 보다 고정밀도로 이송하는 전사 헤드기술이 필요하게 되었다.
이에 기존의 진공 흡입력을 이용하는 방식 대신에 정전기력, 반데르발스력, 자기력과 같은 다양한 힘 들을 이용하고자 하는 기술들이 개발되고 있고, 열, 레이저, UV, 전자기파 등에 의해 접합력이 가변적인 물질을 이용하여 전사하는 기술이나, 롤러를 이용하는 방식, 유체를 이용하는 방식들이 개발되고 있다.
이러한 전사 헤드 기술과 관련하여, 이하에서 살펴보는 바와 같이 몇 가지의 구조들이 제안되고 있으나 각 제안 기술은 몇 가지의 단점들을 가지고 있다.
미국의 Luxvue사는 정전헤드(electrostatic head)를 이용하여 마이크로 LED를 전사하는 방법을 제안하였다(한국 공개특허공보 공개번호 제10-2014-0112486호, 이하 ‘선행발명1’이라 함). 선행발명1의 전사원리는 실리콘 재질로 만들어진 헤드 부분에 전압을 인가함으로써 대전현상에 의해 마이크로 LED와 밀착력이 발생하게 하는 원리이다. 이 방법은 정전 유도시 헤드에 인가된 전압에 의해 대전 현상에 의한 마이크로 LED 손상에 대한 문제가 발생할 수 있다.
미국의 X-Celeprint사는 전사 헤드를 탄성이 있는 고분자 물질로 적용하여 웨이퍼 상의 마이크로 LED를 원하는 기판에 이송시키는 방법을 제안하였다(한국공개특허공보 공개번호 제10-2017-0019415호, 이하 ‘선행발명2’라 함). 이 방법은 정전헤드 방식에 비해 LED 손상에 대한 문제점은 없으나, 전사 과정에서 목표 기판의 접착력 대비 탄성 전사 헤드의 접착력이 더 커야 안정적으로 마이크로 LED를 이송시킬 수 있으며, 전극 형성을 위한 추가 공정이 필요한 단점이 있다. 또한, 탄성 고분자 물질의 접착력을 지속적으로 유지하는 것도 매우 중요한 요소로 작용하게 된다.
한국광기술원은 섬모 접착구조 헤드를 이용하여 마이크로 LED를 전사하는 방법을 제안하였다(한국등록특허공보 등록번호 제10-1754528호, 이하 ‘선행발명3’이라 함). 그러나 선행발명3은 섬모의 접착구조를 제작하는 것이 어렵다는 단점이 있다.
한국기계연구원은 롤러에 접착제를 코팅하여 마이크로 LED를 전사하는 방법을 제안하였다(한국등록특허공보 등록번호 제10-1757404호, 이하 ‘선행발명4’라 함). 그러나 선행발명4는 접착제의 지속적인 사용이 필요하고, 롤러 가압 시 마이크로 LED가 손상될 수도 있는 단점이 있다.
삼성디스플레이는 어레이 기판이 용액에 담겨 있는 상태에서 어레이 기판의 제1,2전극에 마이너스 전압을 인가하여 정전기 유도 현상에 의해 마이크로 LED를 어레이 기판에 전사하는 방법을 제안하였다(한국공개특허공보 공개번호 제10-2017-0026959호, 이하 ‘선행발명5’라 함). 그러나 선행발명 5는 마이크로 LED를 용액에 담가 어레이 기판에 전사한다는 점에서 별도의 용액이 필요하고 이후 건조공정이 필요하다는 단점이 있다.
엘지전자는 헤드홀더를 복수의 픽업헤드들과 기판 사이에 배치하고 복수의 픽업 헤드의 움직임에 의해 그 형상이 변형되어 복수의 픽업 헤드들에게 자유도를 제공하는 방법을 제안하였다(한국공개특허공보 공개번호 제10-2017-0024906호, 이하 ‘선행발명6’이라 함). 그러나 선행발명 6은 복수의 픽업헤드들의 접착면에 접착력을 가지는 본딩물질을 도포하여 마이크로 LED를 전사하는 방식이라는 점에서, 픽업헤드에 본딩물질을 도포하는 별도의 공정이 필요하다는 단점이 있다.
위와 같은 선행발명들의 문제점을 해결하기 위해서는 선행발명들이 채택하고 있는 기본 원리를 그대로 채용하면서 전술한 단점들을 개선해야 하는데, 이와 같은 단점들은 선행발명들이 채용하고 있는 기본 원리로부터 파생된 것이어서 기본 원리를 유지하면서 단점들을 개선하는 데에는 한계가 있다. 이에 본 발명의 출원인은 이러한 종래기술의 단점들을 개선하는데 그치지 않고, 선행 발명들에서는 전혀 고려하지 않았던 새로운 방식을 제안하고자 한다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 한국등록특허공보 등록번호 제10-0731673호
(특허문헌 2) 한국공개특허공보 공개번호 제10-2014-0112486호
(특허문헌 3) 한국공개특허공보 공개번호 제10-2017-0019415호
(특허문헌 4) 한국등록특허공보 등록번호 제10-1754528호
(특허문헌 5) 한국등록특허공보 등록번호 제10-1757404호
(특허문헌 6) 한국공개특허공보 공개번호 제10-2017-0026959호
(특허문헌 7) 한국공개특허공보 공개번호 제10-2017-0024906호
이에 본 발명은 현재까지 제안된 마이크로 LED의 전사헤드의 문제점을 해결하고 마이크로 LED를 전사할 수 있는 진공 흡착의 구조를 채택한 마이크로 LED 흡착체를 제공하는 것을 그 목적으로 한다.
이러한 본 발명의 목적을 달성하기 위해, 본 발명에 따른 마이크로 LED 흡착체는, 수직적 기공을 갖는 양극산화막으로 제공되는 흡착 부재; 및 임의적 기공을 갖고, 상기 흡착 부재를 지지하는 지지 부재를 포함하고, 상기 흡착 부재는 진공 흡입력으로 마이크로 LED를 흡착하는 흡착영역과 상기 마이크로 LED를 흡착하지 않는 비흡착영역으로 구분되어 상기 마이크로 LED를 선택적으로 전사하는 것을 특징으로 한다.
또한, 상기 흡착영역은 상기 양극산화막의 제조시 형성된 배리어층이 제거되어 상기 수직적 기공의 상,하가 서로 관통되어 형성된 것을 특징으로 한다.
또한, 상기 흡착영역은 상기 양극산화막의 제조시 형성된 상기 수직적 기공의 폭보다 큰 폭을 가지면서 상,하가 서로 관통되어 형성되는 갖는 흡착홀에 의해 형성되는 것을 특징으로 한다.
또한, 상기 비흡착영역은 상기 양극산화막의 제조시 형성된 상기 수직적 기공의 상,하 중 적어도 어느 한 부분을 폐쇄하는 차폐부에 의해 형성된 것을 특징으로 한다.
또한, 상기 차폐부는 상기 양극산화막의 제조시 형성된 배리어층인 것을 특징으로 한다.
또한, 상기 흡착 부재에 구비된 완충부를 포함하는 것을 특징으로 한다.
본 발명의 다른 특징에 따른 마이크로 LED 흡착체는, 수직적 기공을 갖는 양극산화막으로 제공되며, 상기 수직적 기공의 폭보다 큰 폭을 갖는 관통홀을 통한 진공 흡입력으로 마이크로 LED를 흡착하는 흡착영역을 구성하고, 상기 수직적 기공의 기공의 상,하 중 어느 한 부분을 폐쇄하는 차폐부를 통해 마이크로 LED를 흡착하지 않는 비흡착영역이 구성된 흡착 부재; 및 상기 흡착 부재를 지지하는 지지 부재를 포함하는 것을 특징으로 한다.
본 발명의 다른 특징에 따른 마이크로 LED 흡착체는, 수직적 기공을 갖는 양극산화막으로 제공되며, 상기 수직적 기공을 통한 진공 흡입력으로 마이크로 LED를 흡착하는 흡착영역과 상기 수직적 기공의 상,하 중 적어도 일부가 폐쇄되어 상기 마이크로 LED를 흡착하지 않는 비흡착영역으로 구분된 흡착 부재; 및 상기 흡착 부재를 지지하는 지지 부재를 포함하는 것을 특징으로 한다.
본 발명의 다른 특징에 따른 마이크로 LED 흡착체는, 진공 흡입력으로 마이크로 LED를 흡착하는 흡착영역과 상기 마이크로 LED를 흡착하지 않는 비흡착영역으로 구분된 흡착 부재; 및 상기 흡착 부재와 별도로 형성되어 기공 구조를 통해 진공챔버의 흡입력을 분산시켜 상기 흡착영역에 전달하는 지지 부재를 포함하는 것을 특징으로 한다.
본 발명의 다른 특징에 따른 마이크로 LED 흡착체는, 진공 흡입력으로 마이크로 LED를 흡착하는 흡착영역과 상기 마이크로 LED를 흡착하지 않는 비흡착영역으로 구분된 흡착 부재; 및 상기 흡착부재의 흡착면의 반대면 측에 구비되고, 상기 흡착영역과 공기 유로적으로 연통되는 임의적 기공을 갖는 지지 부재를 포함하는 것을 특징으로 한다.
본 발명의 다른 특징에 따른 마이크로 LED 흡착체는, 진공 흡입력으로 마이크로 LED를 흡착하는 흡착영역과 상기 마이크로 LED를 흡착하지 않는 비흡착영역으로 구분된 흡착 부재; 및 상기 흡착 부재의 비흡착영역을 진공 흡입력으로 흡착하여 상기 흡착부재를 지지하면서 상기 흡착 부재의 흡착영역과 공기 유로적으로 연통되어 상기 흡착영역으로 상기 마이크로 LED를 흡착하도록 하는 지지부재를 포함하는 것을 특징으로 한다.
본 발명의 다른 특징에 따른 마이크로 LED 흡착체는, 마이크로 LED를 흡착하는 흡착영역과 상기 마이크로 LED를 흡착하지 않는 비흡착영역으로 구분되어 상기 마이크로 LED를 흡착하는 흡착부재; 상기 흡착부재의 상부에 구비되며 다공성 재질로 구성되는 지지부재; 및 진공챔버를 포함하고, 상기 진공챔버의 진공압은 상기 지지부재의 다공성 재질에 의해 감압된 후 상기 흡착부재의 상기 흡착영역에 전달되어 상기 마이크로 LED를 흡착하고, 상기 진공챔버의 진공압은 상기 지지부재의 다공성 재질에 의해 상기 흡착부재의 비흡착영역에 전달되어 상기 흡착부재를 흡착하는 것을 특징으로 한다.
또한, 상기 흡착영역은 상기 흡착부재를 상, 하로 관통하는 흡착홀에 의해 형성되고, 상기 비흡착영역은 상기 흡착홀이 형성되지 않는 영역인 것을 특징으로 한다.
또한, 상기 흡착 부재는, 양극산화막, 웨이퍼 기판, 인바(invar), 금속, 비금속, 폴리머, 종이, 포토레지스트, PDMS 재질 중 적어도 어느 하나의 재질로 구성되는 것을 특징으로 한다.
본 발명의 다른 특징에 따른 마이크로 LED 흡착체는, 관통홀에 의해 형성되는 마이크로 LED를 흡착하는 흡착영역과 관통홀이 형성되지 않아 형성되는 비흡착영역으로 구분되고, 웨이퍼 기판 재질로 구성되는 흡착 부재; 및 임의적 기공을 갖고 상기 흡착 부재를 지지하는 지지 부재;를 포함하고, 상기 지지 부재의 임의적 기공에 의해 진공압이 감압된 후 상기 흡착 부재의 상기 관통홀에 전달되어 상기 마이크로 LED 를 흡착하고, 상기 지지 부재의 임의적 기공에 의해 상기 흡착 부재의 비흡착영역에 전달되어 상기 흡착 부재를 흡착하는 것을 특징으로 한다.
또한, 상기 흡착부재의 외측에 형성되고, 상기 흡착부재의 흡착면보다 돌출되도록 형성된 돌출부를 포함하는 것을 특징으로 한다.
또한, 상기 돌출부는 탄성재질로 구성되는 것을 특징으로 한다.
또한, 상기 돌출부는 다공성 부재로 구성되는 것을 특징으로 한다.
또한, 상기 마이크로 LED 흡착체는 제1기판에 배치된 마이크로 LED를 선택적으로 흡착하되, 상기 흡착영역 간의 x 방향 피치간격은 상기 제1기판에 배치된 마이크로 LED의 x방향의 피치간격의 3배수의 거리이고, 상기 흡착영역 간의 y 방향 피치간격은 상기 제1기판에 배치된 마이크로 LED의 y방향의 피치간격의 1배수의 거리인 것을 특징으로 한다.
또한, 상기 마이크로 LED 흡착체는 제1기판에 배치된 마이크로 LED를 선택적으로 흡착하되, 상기 흡착영역 간의 x 방향 피치간격은 상기 제1기판에 배치된 마이크로 LED의 x방향의 피치간격의 3배수의 거리이고, 상기 흡착영역 간의 y 방향 피치간격은 상기 제1기판에 배치된 마이크로 LED의 y방향의 피치간격의 3배수의 거리인 것을 특징으로 한다.
또한, 상기 마이크로 LED 흡착체는 제1기판에 배치된 마이크로 LED를 선택적으로 흡착하되, 상기 흡착영역 간의 대각선 방향 피치간격은 상기 제1기판에 배치된 마이크로 LED의 대각선 방향의 피치간격과 동일한 것을 특징으로 한다.
또한, 상기 마이크로 LED 흡착체는 제1기판에 배치된 마이크로 LED를 선택적으로 흡착하되, 상기 흡착영역 간의 x 방향 피치간격은 상기 제1기판에 배치된 마이크로 LED의 x방향의 피치간격의 2배수의 거리이고, 상기 흡착영역 간의 y 방향 피치간격은 상기 제1기판에 배치된 마이크로 LED의 y방향의 피치간격의 2배수의 거리인 것을 특징으로 한다.
또한, 제1기판에 배치된 마이크로 LED를 선택적으로 흡착하되, 상기 흡착영역 간의 일 방향 피치간격은 상기 제1기판에 배치된 마이크로 LED의 일 방향의 피치간격의 M/3배이고, M은 4이상의 정수인 것을 특징으로 한다.
본 발명의 다른 특징에 따른 마이크로 LED 디스플레이를 제작하는 방법은, 마이크로 LED 흡착체를 이용하는 것을 특징으로 한다.
본 발명의 다른 특징에 따른 마이크로 LED 디스플레이를 제작하는 방법은, 마이크로 LED가 구비된 제1기판을 준비하는 단계; 회로기판을 준비하는 단계; 및 흡착영역 간의 일 방향 피치간격이 상기 제1기판에 배치된 마이크로 LED의 일 방향의 피치간격의 M/3배이고, M는 4이상의 정수인 마이크로 LED 흡착체로 상기 제1기판 상의 상기 마이크로 LED를 상기 회로기판으로 전사하여 단위 모듈을 제작하는 단계;를 포함하는 것을 특징으로 한다.
또한, 디스플레이 배선 기판을 준비하는 단계; 및 상기 단위 모듈을 상기 디스플레이 배선 기판에 전사하되, 상기 디스플레이 배선 기판에서의 마이크로 LED 화소 배열은 상기 단위 모듈에서의 마이크로 LED 화소 배열과 동일하고, 상기 디스플레이 배선 기판에서의 화소 배열의 피치 간격은 상기 단위 모듈에서의 화소 배열의 배치 간격과 동일하도록 상기 단위 모듈을 상기 디스플레이 배선 기판에 실장하는 단계를 포함하는 것을 특징으로 한다.
또한, 마이크로 LED가 구비된 제1기판을 준비하는 단계는, 성장기판에서 상기 마이크로 LED를 에피공정을 통해 제작하여 준비하는 단계이거나, 상기 성장기판에서 상기 마이크로 LED가 캐리어 기판에 전사되어 준비하는 단계인 것을 특징으로 한다.
또한, 마이크로 LED가 구비된 제1기판을 준비하는 단계는, 동종의 마이크로 LED를 일정 피치간격으로 구비시켜 준비하는 단계이거나 이종의 마이크로 LED가 화소 배열을 이루도록 준비하는 단계인 것을 특징으로 한다.
또한, 상기 단위 모듈을 제작하는 단계는, 상기 회로기판에는 이종의 마이크로 LED가 화소의 배열을 이루며 실장되어 단위 모듈을 구성하는 것을 특징으로 한다.
본 발명의 다른 특징에 따른 마이크로 LED 디스플레이는, 디스플레이 배선 기판; 및 상기 디스플레이 배선 기판에 결합된 복수의 단위 모듈;을 포함하되, 상기 단위 모듈은 마이크로 LED가 회로기판에 실장되어 구성되고, 상기 디스플레이 배선 기판에서의 마이크로 LED 화소 배열은 상기 단위 모듈에서의 마이크로 LED화소 배열과 동일하고, 상기 디스플레이 배선 기판에서의 화소 배열의 피치간격은 상기 단위 모듈에서의 화소 배열의 피치 간격과 동일한 것을 특징으로 한다.
이상에서 살펴본 바와 같이, 본 발명의 마이크로 LED 흡착체는 진공 흡입력에 의해 마이크로 LED를 제1기판에서 제2기판으로 이송할 수 있게 된다.
도 1은 본 발명의 실시 예의 이송 대상이 되는 마이크로 LED를 도시한 도.
도 2는 본 발명의 실시 예에 의해 표시 기판에 이송되어 실장된 마이크로 LED 구조체의 도면.
도 3은 본 발명의 바람직한 제1실시 예의 마이크로 LED 흡착체를 도시한 도.
도 4는 본 발명의 바람직한 제2실시 예의 마이크로 LED 흡착체를 도시한 도.
도 5 내지 도 7은 본 발명의 제2실시 예에 따른 변형 예들을 도시한 도.
도 8은 본 발명의 제3실시 예에 따른 마이크로 LED 흡착체를 도시한 도.
도 9(a)는 본 발명의 제4실시 예를 도시한 도.
도 9(b)는 본 발명의 제5실시 예를 도시한 도.
도 10은 본 발명의 제6실시 예를 도시한 도.
도 11 내지 도 13는 본 발명의 마이크로 LED 흡착체에 구비되는 돌출부의 실시 예를 도시한 도.
도 14는 본 발명의 마이크로 LED 흡착체를 구성하는 흡인 배관의 실시 예를 도시한 도.
도 15 내지 도 17은 본 발명의 실시 예들에 구비되는 흡착영역의 실시 예들을 도시한 도.
도 18은 본 발명의 마이크로 LED 흡착체를 이용하여 마이크로 LED 디스플레이를 제작하는 과정을 개략적으로 도시한 도.
이하의 내용은 단지 발명의 원리를 예시한다. 그러므로 당업자는 비록 본 명세서에 명확히 설명되거나 도시되지 않았지만 발명의 원리를 구현하고 발명의 개념과 범위에 포함된 다양한 장치를 발명할 수 있는 것이다. 또한, 본 명세서에 열거된 모든 조건부 용어 및 실시 예들은 원칙적으로, 발명의 개념이 이해되도록 하기 위한 목적으로만 명백히 의도되고, 이와 같이 특별히 열거된 실시 예들 및 상태들에 제한적이지 않는 것으로 이해되어야 한다.
상술한 목적, 특징 및 장점은 첨부된 도면과 관련한 다음의 상세한 설명을 통하여 보다 분명해 질 것이며, 그에 따라 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 발명의 기술적 사상을 용이하게 실시할 수 있을 것이다.
본 명세서에서 기술하는 실시 예들은 본 발명의 이상적인 예시 도인 단면도 및/또는 사시도들을 참고하여 설명될 것이다. 이러한 도면들에 도시된 막 및 영역들의 두께 및 구멍들의 지름 등은 기술적 내용의 효과적인 설명을 위해 과장된 것이다. 제조 기술 및/또는 허용 오차 등에 의해 예시도의 형태가 변형될 수 있다. 또한 도면에 도시된 마이크로 LED의 개수는 예시적으로 일부만을 도면에 도시한 것이다. 따라서, 본 발명의 실시 예들은 도시된 특정 형태로 제한되는 것이 아니라 제조 공정에 따라 생성되는 형태의 변화도 포함하는 것이다.
다양한 실시예들을 설명함에 있어서, 동일한 기능을 수행하는 구성요소에 대해서는 실시예가 다르더라도 편의상 동일한 명칭 및 동일한 참조번호를 부여하기로 한다. 또한, 이미 다른 실시예에서 설명된 구성 및 작동에 대해서는 편의상 생략하기로 한다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시 예들을 설명하기에 앞서, 마이크로 소자는 마이크로 LED를 포함할 수 있다. 마이크로 LED는 성형한 수지 등으로 패키징되지 않으면서 결정 성장에 이용한 웨이퍼에서 잘라낸 상태의 것으로, 학술적으로 1~100㎛ 단위의 크기의 것을 지칭한다. 그러나 본 명세서에 기재된 마이크로 LED는 그 크기(1개의 변 길이)가 1~100㎛ 단위인 것으로 한정되는 것은 아니며 100㎛ 이상의 크기를 갖거나 1㎛ 미만의 크기를 갖는 것도 포함한다.
또한 이하에서 설명하는 본 발명의 바람직한 실시예의 구성들은 각 실시예들의 기술적 사상의 변경없이 적용될 수 있는 미소 소자들의 전사에도 적용될 수 있다.
본 발명의 마이크로 LED 흡착체는 진공 흡입력을 이용하여 마이크로 LED(ML)를 흡착할 수 있다. 마이크로 LED 흡착체의 구조의 경우, 진공 흡입력을 발생시킬 수 있는 구조라면 그 구조에 대한 한정은 없다.
마이크로 LED 흡착체는 성장 기판(101) 또는 임시 기판으로부터 마이크로 LED(ML)를 전달받는 캐리어 기판일 수 있고, 성장 기판(101) 또는 임시 기판과 같은 제1기판의 마이크로 LED(ML)를 흡착하여 임시 기판 또는 표시 기판(301)과 같은 제2기판으로 전사하는 마이크로 LED 전사헤드일 수 있다.
이하에서는 진공 흡입력을 이용하여 마이크로 LED(ML)를 흡착할 수 있는 마이크로 LED 흡착체(1)로서 마이크로 LED 전사헤드를 실시 예로 예시하여 설명한다.
먼저, 도 1을 참조하면 본 발명의 마이크로 LED 흡착체(1)의 이송 대상이 되는 마이크로 LED(ML)에 대해 설명한다.
도 1은 본 발명의 바람직한 실시예에 따른 마이크로 LED 흡착체(1)의 이송 대상이 되는 복수의 마이크로 LED(ML)를 도시한 도면이다. 마이크로 LED(ML)는 성장 기판(101) 위에서 제작되어 위치한다.
성장 기판(101)은 전도성 기판 또는 절연성 기판으로 이루어질 수 있다. 예를 들어, 성장 기판(101)은 사파이어, SiC, Si, GaAs, GaN, ZnO, Si, GaP, InP, Ge, 및 Ga
20
3 중 적어도 어느 하나로 형성될 수 있다.
마이크로 LED(ML)는 제1 반도체층(102), 제2 반도체층(104), 제1 반도체층(102)과 제2 반도체층(104) 사이에 형성된 활성층(103), 제1 컨택전극(106) 및 제2 컨택전극(107)을 포함할 수 있다.
제1 반도체층(102), 활성층(103), 및 제2 반도체층(104)은 유기금속 화학 증착법(MOCVD; Metal Organic Chemical Vapor Deposition), 화학 증착법(CVD; Chemical Vapor Deposition), 플라즈마 화학 증착법(PECVD; Plasma-Enhanced Chemical Vapor Deposition), 분자선 성장법(MBE; Molecular Beam Epitaxy), 수소화물 기상 성장법(HVPE; Hydride Vapor Phase Epitaxy) 등의 방법을 이용하여 형성할 수 있다.
제1 반도체층(102)은 예를 들어, p형 반도체층으로 구현될 수 있다. p형 반도체층은 In
xAl
yGa
1-x-yN (0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 조성식을 갖는 반도체 재료, 예를 들어 GaN, AlN, AlGaN, InGaN, InN, InAlGaN, AlInN 등에서 선택될 수 있으며, Mg, Zn, Ca, Sr, Ba 등의 p형 도펀트가 도핑될 수 있다.
제2 반도체층(104)은 예를 들어, n형 반도체층을 포함하여 형성될 수 있다. n형 반도체층은 In
xAl
yGa
1-x-yN (0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 조성식을 갖는 반도체 재료, 예를 들어 GaN, AlN, AlGaN, InGaN, InN, InAlGaN, AlInN 등에서 선택될 수 있으며, Si, Ge, Sn 등의 n형 도펀트가 도핑될 수 있다.
다만, 본 발명은 이에 한하지 않으며, 제1 반도체층(102)이 n형 반도체층을 포함하고, 제2 반도체층(104)이 p형 반도체층을 포함할 수도 있다.
활성층(103)은 전자와 정공이 재결합되는 영역으로, 전자와 정공이 재결합함에 따라 낮은 에너지 준위로 천이하며, 그에 상응하는 파장을 가지는 빛을 생성할 수 있다. 활성층(103)은 예를 들어, In
xAl
yGa
1-x-yN (0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 조성식을 가지는 반도체 재료를 포함하여 형성할 수 있으며, 단일 양자 우물 구조 또는 다중 양자 우물 구조(MQW: Multi Quantum Well)로 형성될 수 있다. 또한, 양자선(Quantum wire)구조 또는 양자점(Quantum dot)구조를 포함할 수도 있다.
제1 반도체층(102)에는 제1 컨택전극(106)이 형성되고, 제2 반도체층(104)에는 제2 컨택전극(107)이 형성될 수 있다. 제1 컨택 전극(106) 및/또는 제2 컨택 전극(107)은 하나 이상의 층을 포함할 수 있으며, 금속, 전도성 산화물 및 전도성 중합체들을 포함한 다양한 전도성 재료로 형성될 수 있다.
성장 기판(101) 위에 형성된 복수의 마이크로 LED(ML)를 커팅 라인을 따라 레이저 등을 이용하여 커팅하거나 에칭 공정을 통해 낱개로 분리하고, 레이저 리프트 오프 공정으로 복수의 마이크로 LED(ML)를 성장 기판(101)으로부터 분리 가능한 상태가 되도록 할 수 있다.
도 1에서 ‘P’는 마이크로 LED(ML)간의 피치간격을 의미하고, ‘S’는 마이크로 LED(ML)간의 이격 거리를 의미하며, ‘W’는 마이크로 LED(ML)의 폭을 의미한다. 도 1에는 마이크로 LED(ML)의 단면 형상이 원형인 것을 예시하고 있으나, 마이크로 LED(ML)의 단면 형상은 이에 한정되지 않고 사각 단면 등과 같이 성장 기판(101)에서 제작되는 방법에 따라 원형 단면이 아닌 다른 단면 형상을 가질 수 있다.
도 2는 본 발명의 바람직한 실시예에 따른 마이크로 LED 흡착체에 의해 표시 기판으로 이송되어 실장됨에 따라 형성된 마이크로 LED 구조체를 도시한 도면이다.
표시 기판(301)은 다양한 소재를 포함할 수 있다. 예를 들어, 표시 기판(301)은 SiO
2를 주성분으로 하는 투명한 유리 재질로 이루어질 수 있다. 그러나, 표시 기판(301)은 반드시 이에 한정되는 것은 아니며, 투명한 플라스틱 재질로 형성되어 가용성을 가질 수 있다. 플라스틱 재질은 절연성 유기물인 폴리에테르술폰(PES, polyethersulphone), 폴리아크릴레이트(PAR, polyacrylate), 폴리에테르 이미드(PEI, polyetherimide), 폴리에틸렌 나프탈레이트(PEN, polyethylene naphthalate), 폴리에틸렌 테레프탈레이트(PET, polyethylene terephthalate), 폴리페닐렌 설파이드(polyphenylene sulfide: PPS), 폴리아릴레이트(polyarylate), 폴리이미드(polyimide), 폴리카보네이트(PC), 셀룰로오스 트리 아세테이트(TAC), 셀룰로오스 아세테이트 프로피오네이트(cellulose acetate propionate: CAP)로 이루어진 그룹으로부터 선택되는 유기물일 수 있다.
화상이 표시 기판(301)방향으로 구현되는 배면 발광형인 경우에 표시 기판(301)은 투명한 재질로 형성해야 한다. 그러나 화상이 표시 기판(301)의 반대 방향으로 구현되는 전면 발광형인 경우에 표시 기판(301)은 반드시 투명한 재질로 형성할 필요는 없다. 이 경우 금속으로 표시 기판(301)을 형성할 수 있다.
금속으로 표시 기판(301)을 형성할 경우 표시 기판(301)은 철, 크롬, 망간, 니켈, 티타늄, 몰리브덴, 스테인레스 스틸(SUS), Invar 합금, Inconel 합금 및 Kovar 합금으로 이루어진 군으로부터 선택된 하나 이상을 포함할 수 있으나, 이에 한정되는 것은 아니다.
표시 기판(301)은 버퍼층(311)을 포함할 수 있다. 버퍼층(311)은 평탄면을 제공할 수 있고, 이물 또는 습기가 침투하는 것을 차단할 수 있다. 예를 들어, 버퍼층(311)은 실리콘 옥사이드, 실리콘 나이트라이드, 실리콘 옥시나이트라이드, 알루미늄옥사이드, 알루미늄나이트라이드, 티타늄옥사이드 또는 티타늄나이트라이드 등의 무기물이나, 폴리이미드, 폴리에스테르, 아크릴 등의 유기물을 함유할 수 있고, 예시한 재료들 중 복수의 적층체로 형성될 수 있다.
박막 트랜지스터(TFT)는 활성층(310), 게이트 전극(320), 소스 전극(330a) 및 드레인 전극(330b)을 포함할 수 있다.
이하에서는 박막 트랜지스터(TFT)가 활성층(310), 게이트 전극(320), 소스 전극(330a) 및 드레인 전극(330b)이 순차적으로 형성된 탑 게이트 타입(top gate type)인 경우를 설명한다. 그러나 본 실시예는 이에 한정되지 않고 바텀 게이트 타입(bottom gate type) 등 다양한 타입의 박막 트랜지스터(TFT)가 채용될 수 있다.
활성층(310)은 반도체 물질, 예컨대 비정질 실리콘(amorphous silicon) 또는 다결정 실리콘(poly crystalline silicon)을 포함할 수 있다. 그러나 본 실시예는 이에 한정되지 않고 활성층(310)은 다양한 물질을 함유할 수 있다. 선택적 실시예로서 활성층(310)은 유기 반도체 물질 등을 함유할 수 있다.
또 다른 선택적 실시예로서, 활성층(310)은 산화물 반도체 물질을 함유할 수 있다. 예컨대, 활성층(310)은 아연(Zn), 인듐(In), 갈륨(Ga), 주석(Sn) 카드뮴(Cd), 게르마늄(Ge) 등과 같은 12, 13, 14족 금속 원소 및 이들의 조합에서 선택된 물질의 산화물을 포함할 수 있다.
게이트 절연막(313:gate insulating layer)은 활성층(310) 상에 형성된다. 게이트 절연막(313)은 활성층(310)과 게이트 전극(320)을 절연하는 역할을 한다. 게이트 절연막(313)은 실리콘산화물 및/또는 실리콘질화물 등의 무기 물질로 이루어진 막이 다층 또는 단층으로 형성될 수 있다.
게이트 전극(320)은 게이트 절연막(313)의 상부에 형성된다. 게이트 전극(320)은 박막 트랜지스터(TFT)에 온/오프 신호를 인가하는 게이트 라인(미도시)과 연결될 수 있다.
게이트 전극(320)은 저저항 금속 물질로 이루어질 수 있다. 게이트 전극(320)은 인접층과의 밀착성, 적층되는 층의 표면 평탄성 그리고 가공성 등을 고려하여, 예컨대 알루미늄(Al), 백금(Pt), 팔라듐(Pd), 은(Ag), 마그네슘(Mg), 금(Au), 니켈(Ni), 네오디뮴(Nd), 이리듐(Ir), 크롬(Cr), 리튬(Li), 칼슘(Ca), 몰리브덴(Mo), 티타늄(Ti), 텅스텐(W), 구리(Cu) 중 하나 이상의 물질로 단층 또는 다층으로 형성될 수 있다.
게이트 전극(320)상에는 층간 절연막(315)이 형성된다. 층간 절연막(315)은 소스 전극(330a) 및 드레인 전극(330b)과 게이트 전극(320)을 절연한다. 층간 절연막(315)은 무기 물질로 이루어진 막이 다층 또는 단층으로 형성될 수 있다. 예컨대 무기 물질은 금속 산화물 또는 금속 질화물일 수 있으며, 구체적으로 무기 물질은 실리콘 산화물(SiO
2), 실리콘질화물(SiNx), 실리콘산질화물(SiON), 알루미늄산화물(Al
2O
3), 티타늄산화물(TiO
2), 탄탈산화물(Ta
2O
5), 하프늄산화물(HfO
2), 또는 아연산화물(ZrO
2) 등을 포함할 수 있다.
층간 절연막(315) 상에 소스 전극(330a) 및 드레인 전극(330b)이 형성된다. 소스 전극(330a) 및 드레인 전극(330b)은 알루미늄(Al), 백금(Pt), 팔라듐(Pd), 은(Ag), 마그네슘(Mg), 금(Au), 니켈(Ni), 네오디뮴(Nd), 이리듐(Ir), 크롬(Cr), 리튬(Li), 칼슘(Ca), 몰리브덴(Mo), 티타늄(Ti), 텅스텐(W), 구리(Cu) 중 하나 이상의 물질로 단층 또는 다층으로 형성될 수 있다. 소스 전극(330a) 및 드레인 전극(330b)은 활성층(310)의 소스 영역과 드레인 영역에 각각 전기적으로 연결된다.
평탄화층(317)은 박막 트랜지스터(TFT) 상에 형성된다. 평탄화층(317)은 박막 트랜지스터(TFT)를 덮도록 형성되어, 박막 트랜지스터(TFT)로부터 비롯된 단차를 해소하고 상면을 평탄하게 한다. 평탄화층(317)은 유기 물질로 이루어진 막이 단층 또는 다층으로 형성될 수 있다. 유기 물질은 Polymethylmethacrylate(PMMA)나, Polystylene(PS)과 같은 일반 범용고분자, 페놀계 그룹을 갖는 고분자 유도체, 아크릴계 고분자, 이미드계 고분자, 아릴에테르계 고분자, 아마이드계 고분자, 불소계고분자, p-자일렌계 고분자, 비닐알콜계 고분자 및 이들의 블렌드 등을 포함할 수 있다. 또한, 평탄화층(317)은 무기 절연막과 유기절연막의 복합 적층체로 형성될 수도 있다.
평탄화층(317)상에는 제1 전극(510)이 위치한다. 제1 전극(510)은 박막 트랜지스터(TFT)와 전기적으로 연결될 수 있다. 구체적으로, 제1 전극(510)은 평탄화층(317)에 형성된 컨택홀을 통하여 드레인 전극(330b)과 전기적으로 연결될 수 있다. 제1 전극(510)은 다양한 형태를 가질 수 있는데, 예를 들면 아일랜드 형태로 패터닝되어 형성될 수 있다. 평탄화층(317)상에는 픽셀 영역을 정의하는 뱅크층(400)이 배치될 수 있다. 뱅크층(400)은 마이크로 LED(ML)가 수용될 수용오목부를 포함할 수 있다. 뱅크층(400)은 일 예로, 수용오목부를 형성하는 제1 뱅크층(410)를 포함할 수 있다. 제1 뱅크층(410)의 높이는 마이크로 LED(ML)의 높이 및 시야각에 의해 결정될 수 있다. 수용오목부의 크기(폭)는 표시 장치의 해상도, 픽셀 밀도 등에 의해 결정될 수 있다. 일 실시예에서, 제1 뱅크층(410)의 높이보다 마이크로 LED(ML)의 높이가 더 클 수 있다. 수용오목부는 사각 단면 형상일 수 있으나, 본 발명의 실시예들은 이에 한정되지 않고, 수용오목부는 다각형, 직사각형, 원형, 원뿔형, 타원형, 삼각형 등 다양한 단면 형상을 가질 수 있다.
뱅크층(400)은 제1 뱅크층(410) 상부의 제2 뱅크층(420)를 더 포함할 수 있다. 제1 뱅크층(410)와 제2 뱅크층(420)는 단차를 가지며, 제2 뱅크층(420)의 폭이 제1 뱅크층(410)의 폭보다 작을 수 있다. 제2 뱅크층(420)의 상부에는 전도층(550)이 배치될 수 있다. 전도층(550)은 데이터선 또는 스캔선과 평행한 방향으로 배치될 수 있고, 제2 전극(530)과 전기적으로 연결된다. 다만, 본 발명은 이에 한정되지 않으며, 제2 뱅크층(420)는 생략되고, 제1 뱅크층(410) 상에 전도층(550)이 배치될 수 있다. 또는, 제2 뱅크층(420) 및 전도층(500)을 생략하고, 제2 전극(530)을 픽셀(P)들에 공통인 공통전극으로서 기판(301) 전체에 형성할 수도 있다. 제1 뱅크층(410) 및 제2 뱅크층(420)는 광의 적어도 일부를 흡수하는 물질, 또는 광 반사 물질, 또는 광 산란물질을 포함할 수 있다. 제1 뱅크층(410) 및 제2 뱅크층(420)는 가시광(예를 들어, 380nm 내지 750nm 파장 범위의 광)에 대해 반투명 또는 불투명한 절연 물질을 포함할 수 있다.
일 예로, 제1 뱅크층(410) 및 제2 뱅크층(420)는 폴리카보네이트(PC), 폴리에틸렌테레프탈레이트(PET), 폴리에테르설폰, 폴리비닐부티랄, 폴리페닐렌에테르, 폴리아미드, 폴리에테르이미드, 노보넨계(norbornene system) 수지, 메타크릴 수지, 환상 폴리올레핀계 등의 열가소성 수지, 에폭시 수지, 페놀 수지, 우레탄 수지, 아크릴수지, 비닐 에스테르 수지, 이미드계 수지, 우레탄계 수지, 우레아(urea)수지, 멜라민(melamine) 수지 등의 열경화성 수지, 혹은 폴리스티렌, 폴리아크릴로니트릴, 폴리카보네이트 등의 유기 절연 물질로 형성될 수 있으나, 이에 한정되는 것은 아니다.
다른 예로, 제1 뱅크층(410) 및 제2 뱅크층(420)는 SiOx, SiNx, SiNxOy, AlOx, TiOx, TaOx, ZnOx 등의 무기산화물, 무기질화물 등의 무기 절연 물질로 형성될 수 있으나, 이에 한정되는 것은 아니다. 일 실시예에서, 제1뱅크층(410) 및 제2 뱅크층(420)는 블랙 매트릭스(black matrix) 재료와 같은 불투명 재료로 형성될 수 있다. 절연성 블랙 매트릭스 재료로는 유기 수지, 글래스 페이스트(glass paste) 및 흑색 안료를 포함하는 수지 또는 페이스트, 금속 입자, 예컨대 니켈, 알루미늄, 몰리브덴 및 그의 합금, 금속 산화물 입자(예를 들어, 크롬 산화물), 또는 금속 질화물 입자(예를 들어, 크롬 질화물) 등을 포함할 수 있다. 변형례에서 제1 뱅크층(410) 및 제2 뱅크층(420)는 고반사율을 갖는 분산된 브래그 반사체(DBR) 또는 금속으로 형성된 미러 반사체일 수 있다.
수용오목부에는 마이크로 LED(ML)가 배치된다. 마이크로 LED(ML)는 수용오목부에서 제1 전극(510)과 전기적으로 연결될 수 있다.
마이크로 LED(ML)는 적색, 녹색, 청색, 백색 등의 파장을 가지는 빛을 방출하며, 형광 물질을 이용하거나 색을 조합함으로써 백색광도 구현이 가능하다. 마이크로 LED(ML)는 개별적으로 또는 복수 개가 본 발명의 실시예에 따른 전사헤드에 의해 성장 기판(101) 상에서 픽업(pick up)되어 표시 기판(301)에 전사됨으로써 표시 기판(301)의 수용오목부에 수용될 수 있다.
마이크로 LED(ML)는 p-n 다이오드, p-n 다이오드의 일측에 배치된 제1 컨택 전극(106) 및 제1 컨택 전극(106)과 반대측에 위치한 제2 컨택 전극(107)을 포함한다. 제1 컨택 전극(106)은 제1 전극(510)과 접속하고, 제2 컨택 전극(107)은 제2 전극(530)과 접속할 수 있다.
제1 전극(510)은 Ag, Mg, Al, Pt, Pd, Au, Ni, Nd, Ir, Cr 및 이들의 화합물 등으로 형성된 반사막과, 반사막상에 형성된 투명 또는 반투명 전극층을 구비할 수 있다. 투명 또는 반투명 전극층은 인듐틴옥사이드(ITO; indium tin oxide), 인듐징크옥사이드(IZO; indium zinc oxide), 징크옥사이드(ZnO; zinc oxide), 인듐옥사이드(In
2O
3; indium oxide), 인듐갈륨옥사이드(IGO; indium gallium oxide) 및 알루미늄징크옥사이드(AZO;aluminum zinc oxide)를 포함하는 그룹에서 선택된 적어도 하나 이상을 구비할 수 있다.
패시베이션층(520)은 수용오목부 내의 마이크로 LED(ML)를 둘러싼다. 패시베이션층(520)은 뱅크층(400)과 마이크로 LED(ML) 사이의 공간을 채움으로써, 수용오목부 및 제1 전극(510)을 커버한다. 패시베이션층(520)은 유기 절연물질로 형성될 수 있다. 예를 들어, 패시베이션층(520)은 아크릴, 폴리(메틸 메타크릴레이트)(PMMA), 벤조사이클로부텐(BCB), 폴리이미드, 아크릴레이트, 에폭시 및 폴리에스테르 등으로 형성될 수 있으나, 이에 한정되는 것은 아니다.
패시베이션층(520)은 마이크로 LED(ML)의 상부, 예컨대 제2 컨택 전극(107)은 커버하지 않는 높이로 형성되어, 제2 컨택 전극(107)은 노출된다. 패시베이션층(520) 상부에는 마이크로 LED(ML)의 노출된 제2 컨택 전극(107)과 전기적으로 연결되는 제2 전극(530)이 형성될 수 있다.
제2 전극(530)은 마이크로 LED(ML)와 패시베이션층(520)상에 배치될 수 있다. 제2 전극(530)은 ITO, IZO, ZnO 또는 In
2O
3 등의 투명 전도성 물질로 형성될 수 있다.
앞선 설명에서는 제1, 2 컨택 전극(106, 107)이 마이크로 LED(ML)의 상, 하면에 각각 구비되는 수직형 마이크로 LED(ML)를 예시하여 설명하였으나, 본 발명의 바람직한 실시 예들은 제1, 2 컨택 전극(106, 107)이 마이크로 LED(ML)의 상, 하면 중 어느 한 면에 모두 구비되는 플립(flip)형 또는 레터럴(lateral)형 마이크로 LED(ML)일 수 있고, 이 경우에는 제1, 2전극(510, 530)역시 적절하게 구비될 수 있다.
제1실시 예
도 3은 본 발명의 바람직한 제1실시 예에 따른 마이크로 LED 흡착체(1)를 도시한 도이다. 마이크로 LED 흡착체(1)는 기공을 갖는 다공성 부재(1000)를 포함하고, 다공성 부재(1000)에 진공을 가하거나 가해진 진공을 해제하여 마이크로 LED(ML)를 제1기판(예를 들어, 성장 기판(101) 또는 임시기판)에서 제2기판(예를 들어, 임시기판 또는 표시 기판(301))으로 이송하는 흡착체이다.
다공성 부재(1000)의 상부에는 진공 챔버(1300)가 구비된다. 진공 챔버(1300)는 진공을 공급하거나 진공을 해제하는 진공포트에 연결된다. 진공 챔버(1300)는 진공포트의 작동에 따라 흡인 배관(1400)을 통해 공급된 진공을 다공성 부재(1000)의 가하거나 가해진 진공을 해제하는 기능을 한다. 진공 챔버(1300)를 다공성 부재(1000)에 결합하는 구조는 다공성 부재(1000)에 진공을 가하거나 가해진 진공을 해제함에 있어서 다른 부위로의 진공의 누설을 방지하는데 적절한 구조라면 이에 대한 한정은 없다.
다공성 부재(1000)는 내부에 기공이 다수 함유되어 있는 물질을 포함하여 구성되며, 일정 배열 또는 무질서한 기공구조로 0.2~0.95 정도의 기공도를 가지는 분말, 박막/후막 및 벌크 형태로 구성될 수 있다. 다공성 부재(1000)의 기공은 그 크기에 따라 직경 2 nm 이하의 마이크로(micro)기공, 2~50 nm 메조(meso)기공, 50 nm 이상의 마크로(macro)기공으로 구분할 수 있는데, 이들의 기공들을 적어도 일부를 포함한다. 다공성 부재(1000)는 그 구성 성분에 따라서 유기, 무기(세라믹), 금속, 하이브리드형 다공성 소재로 구분이 가능하다. 다공성 부재(1000)는 기공이 일정 배열로 형성되는 양극산화막(1600)을 포함한다. 다공성 부재(1000)는 형상의 측면에서 분말, 코팅막, 벌크가 가능하고, 분말의 경우 구형, 중공구형, 화이버, 튜브형등 다양한 형상이 가능하며, 분말을 그대로 사용하는 경우도 있지만, 이를 출발물질로 코팅막, 벌크 형상을 제조하여 사용하는 것도 가능하다.
다공성 부재(1000)의 기공이 임의적 기공 구조를 갖는 경우는, 소결, 발포 등과 같은 제조과정에서 내부의 공간이 무질서하게 존재하면서 서로 연결되는 임의적 기공을 갖게 된다. 다공성 부재(1000)의 기공이 무질서한 기공구조를 갖는 경우에는, 다공성 부재(1000)의 내부는 다수의 기공들이 서로 연결되면서 다공성 부재(1000)의 상, 하를 연결하는 공기 유로를 형성하게 된다.
한편, 다공성 부재(1000)의 기공이 수직 형상의 기공구조를 갖는 경우에는, 다공성 부재(1000)의 내부는 수직 형상의 기공에 의해 다공성 부재(1000)의 상, 하로 관통되면서 공기 유로를 형성할 수 있도록 한다. 여기서 수직적 기공 구조는 다공성 부재의 상, 하 방향으로 기공이 형성되어 있음을 의미하며, 기공 형상 자체가 완벽한 수직의 형태를 의미하는 것은 아니며 기공의 상, 하 중 적어도 어느 하나가 막혀있을 수 있고, 상, 하가 관통될 수도 있다. 수직적 기공은 해당 다공성 부재를 제조할 당시 형성되는 기공일 수 있고, 다공성 부재를 제조한 이후에 별도의 홀을 뚫어 형성될 수 있다. 수직적 기공은 다공성 부재 전체에 걸쳐 형성될 수 있고, 다공성 부재의 일부 영역에만 형성될 수 있다.
이처럼 임의적 기공은 기공의 방향성이 무질서하게 형성된 것을 의미하고, 수직적 기공은 기공의 방향성이 상, 하 방향으로 형성된 것을 의미한다.
도 3에 도시된 바와 같이, 다공성 부재(1000)는 제1, 2다공성 부재(1100, 1200)의 이중 구조를 포함하여 구성된다.
제1다공성 부재(1100)의 상부에는 제2다공성 부재(1200)가 구비된다. 제1다공성 부재(1100)는 마이크로 LED(ML)를 진공 흡착하는 기능을 수행하는 구성으로 흡착 부재를 포함하고, 제2다공성 부재(1200)는 진공 챔버(1300)와 제1다공성 부재(1100) 사이에 위치하여 진공 챔버(1300)의 진공압을 제1다공성 부재(1100)에 전달하는 기능 및 제1다공성 부재(1200)를 지지하는 기능을 수행한다. 제2다공성 부재(1200)는 흡착 부재를 지지하는 지지 부재를 포함할 수 있다.
제1, 2다공성 부재(1100, 1200)는 서로 다른 다공성의 특성을 가질 수 있다. 예를 들어, 제1, 2다공성 부재(1100, 1200)는 기공의 배열 및 크기, 다공성 부재(1000)의 소재, 형상 등에서 서로 다른 특성을 가질 수 있다.
기공의 배열 측면에서 살펴보면, 제1다공성 부재(1100)는 기공이 일정한 배열을 갖는 것일 수 있고, 제2다공성 부재(1200)는 기공이 무질서한 배열을 갖는 것일 수 있다. 기공의 크기 측면에서 살펴보면, 제1, 2다공성 부재(1100, 1200) 중 어느 하나는 기공의 크기가 다른 하나에 비해 큰 것일 수 있다. 여기서 기공의 크기는 기공의 평균 크기일 수 있고, 기공 중에서의 최대 크기일 수 있다. 다공성 부재(1000)의 소재 측면에서 살펴보면, 어느 하나가 유기, 무기(세라믹), 금속, 하이브리드형 다공성 소재 중 하나의 소재로 구성되면 다른 하나의 소자와는 다른 소재로서 유기, 무기(세라믹), 금속, 하이브리드형 다공성 소재 중에서 선택될 수 있다.
다공성 부재(1000)의 내부 기공 측면에서 살펴보면, 제1, 2다공성 부재(1100, 1200)의 내부 기공은 서로 상이하게 구성될 수 있다. 구체적으로, 제1다공성 부재(1100)는 기공이 일정한 배열을 갖는 수직적 기공을 갖는 다공성 부재일 수 있다. 제1다공성 부재(1100)는 수직적 기공을 갖는 다공성 부재로 구성되면서 마이크로 LED(ML)를 흡착하는 기능을 하는 흡착 부재(1100)를 포함하여 구성된다.흡착 부재(1100)는 양극산화막(1600)으로 제공되며 제조시 형성되는 기공 또는 기공과는 별도로 형성되는 흡착홀을 통해 수직적 기공을 갖는 흡착 부재(1100), 개구부(3000a)가 형성된 마스크(3000)로 제공되며 개구부(3000a)를 통해 수직적 기공을 갖는 흡착 부재(1100), 레이저 가공을 통해 수직적 기공이 형성되는 흡착 부재(1100), 에칭을 통해 수직적 기공이 형성되는 흡착 부재(1100)일 수 있다. 이처럼, 흡착 부재(1100)는 수직적 기공을 갖는 구조로 다양하게 구성될 수 있다. 제2다공성 부재(1200)는 기공이 무질서한 배열을 갖는 임의적 기공을 갖는 다공성 부재일 수 있다. 제2다공성 부재(1200)는 임의적 기공을 갖고 상기한 흡착 부재(1100)의 구성을 지지하는 지지 부재(1200)를 포함할 수 있다.
이처럼 제1, 2다공성 부재(1100, 1200)의 기공의 배열 및 크기, 소재 및 내부 기공 등을 서로 달리함으로써 마이크로 LED 흡착체(1)의 기능을 다양하게 할 수 있고, 제1, 2다공성 부재(1100, 1200)의 각각에 대한 상보적인 기능을 수행할 수 있게 된다.
다공성 부재의 개수는 제1, 2다공성 부재(1100, 1200)처럼 2개로 한정되는 것은 아니며 각각의 다공성 부재가 서로 상보적인 기능을 갖는 것이라면 그 이상으로 구비되는 것도 무방하다. 이하에서는 다공성 부재(1000)가 제1, 2다공성 부재(1100, 1200)의 이중 구조를 포함하여 구성되는 것으로 도시하여 설명한다.
제2다공성 부재(1200)는 전술한 바와 같이, 임의적 기공을 갖는 다공성 부재일 수 있고, 제1다공성 부재(1100)를 지지하는 기능을 갖는 다공성 지지체로 구성될 수 있다. 제2다공성 부재(1200)는 제1다공성 부재(1100)를 지지하는 기능을 달성할 수 있는 구성이라면 그 재료에는 한정이 없다. 제2다공성 부재(1200)는 제1다공성 부재(1100)의 중앙 처짐 현상 방지에 효과를 갖는 경질의 다공성 지지체로 구성될 수 있다. 예컨대, 제2다공성 부재(1200)는 다공성 세라믹 소재일 수 있다. 제2다공성 부재(1200)는 박막의 형태로 제공되는 제1다공성 부재(1100)가 진공압에 의해 변형되는 것을 방지하는 기능을 수행할 뿐만 아니라, 진공챔버(1300)의 진공압을 분산시켜 제1다공성 부재(1100)에 전달하는 기능을 수행한다. 제2다공성 부재(1200)에 의해 분산 내지 확산된 진공압은 제1다공성 부재(1100)의 흡착영역에 전달되어 마이크로 LED(ML)를 흡착하고, 제1다공성 부재(1100)의 비흡착영역에 전달되어 제2다공성 부재(1200)가 제1다공성 부재(1100)를 흡착하도록 한다.
또한, 제2다공성 부재(1200)는 제1다공성 부재(1100)와 마이크로 LED(ML)간의 접촉 시 이를 완충하기 위한 다공성 완충체로 구성될 수 있다. 제2다공성 부재(1200)가 제1다공성 부재(1100)를 완충하는 기능을 달성할 수 있는 구성이라면 그 재료에는 한정이 없다. 제2다공성 부재(1200)는 제1다공성 부재(1100)가 마이크로 LED(ML)와 접촉되어 진공으로 마이크로 LED(ML)를 흡착하는 경우에 제1다공성 부재(1100)가 마이크로 LED(ML)에 맞닿아 마이크로 LED(ML)를 손상시키는 것을 방지하는데 도움이 되는 연질의 다공성 완충체로 구성될 수 있다. 예컨대, 제2다공성 부재(1200)는 스펀지 등과 같은 다공성 탄성 재질일 수 있다.
마이크로 LED(ML)를 진공 흡착하는 제1다공성 부재(1100)는 마이크로 LED(ML)를 흡착하는 흡착영역(2000)과 마이크로 LED(ML)를 흡착하지 않는 비흡착영역(1130)을 포함한다. 흡착영역(1110)은 진공 챔버(1300)의 진공이 전달되어 마이크로 LED(ML)를 흡착하는 영역이고, 비흡착영역(1130)은 진공 챔버(1300)의 진공이 전달되지 않음에 따라 마이크로 LED(ML)를 흡착하지 않는 영역이다.
비흡착영역(2100)은 제1다공성 부재(1100)의 적어도 일부 표면에 차폐부를 형성함으로써 구현될 수 있다. 차폐부는 제1다공성 부재(1100)의 적어도 일부 표면에 형성된 기공을 막도록 형성된다.
차폐부는 제1다공성 부재(1100)의 표면의 기공을 막는 기능을 수행할 수 있는 것이라면 그 재질, 형상, 두께에는 한정이 없다. 바람직하게는 포토레지스트(PR, Dry Film PR포함) 또는 PDMS 재질, 또는 금속 재질로 추가로 형성될 수 있고, 제1다공성 부재(1100)를 이루는 자체 구성에 의해서도 형성 가능하다. 여기서 제1다공성 부재(1100)를 이루는 자체 구성으로는, 예를 들어 후술하는 제1다공성 부재(1100)가 양극산화막(1600)으로 구성될 경우에는, 차폐부는 배리어층 또는 금속 모재일 수 있다.
마이크로 LED 흡착체(1)는 진공 챔버(1300)의 진공도를 모니터링하는 모니터링부가 구비될 수 있다. 모니터링부는 진공 챔버(1300)에 형성되는 진공도를 모니터링하며, 제어부는 진공 챔버(1300)의 진공도의 정도에 따라 진공 챔버(1300)의 진공도를 제어할 수 있다. 모니터링부에서 진공 챔버(1300)의 진공도가 기 설정된 진공도의 범위보다 낮은 진공도로 형성될 경우에는, 제어부는 제1다공성 부재(1100)에 진공 흡착되어야 하는 마이크로 LED(ML) 중 일부가 진공 흡착되지 않은 경우로 판단하거나 일부에서 진공의 누설이 있는 것으로 판단하여 마이크로 LED 흡착체(1)의 재작동을 명령할 수 있다. 이처럼 진공 챔버(1300) 내부의 진공도의 정도에 따라 마이크로 LED 흡착체(1)가 마이크로 LED(ML)를 오류 없이 이송하도록 한다.
각각의 흡착영역(1110)의 수평 면적의 크기는 마이크로 LED(ML)의 상부면의 수평 면적의 크기보다 작게 형성될 수 있고, 이를 통해 마이크로 LED(ML)를 진공 흡착하면서 진공의 누설을 방지하여 진공 흡착이 보다 용이하게 할 수 있다.
흡착영역(2000)은 제1다공성 부재(1100)의 구성에 적합하게 형성될 수 있다. 구체적으로, 제1다공성 부재(1100)가 내부에 기공이 형성되지 않은 배리어층과 내부에 기공이 형성된 다공층을 포함하는 양극산화막(1600)일 경우, 배리어층의 적어도 일부를 제거하여 다수의 기공이 형성된 다공층만으로 흡착영역(2000)을 형성할 수 있다. 또는, 양극산화막(1600)의 적어도 일부를 상, 하로 전부 에칭하여 다공층의 기공보다 큰 폭을 갖는 흡착홀(1500)을 형성함으로써 흡착영역(2000)을 형성할 수 있다.
이와는 달리, 제1다공성 부재(1100)는 사파이어 또는 실리콘 웨이퍼와 같은 웨이퍼로 구성되되, 흡착영역(2000)은 레이저, 에칭으로 형성된 수직한 기공에 의하여 형성될 수도 있다.
이와는 달리, 제1다공성 부재(1100)가 일정한 피치 간격을 갖는 제2개구부(3000a)가 형성된 마스크(3000)로 제공되는 흡착 부재(1100)일 경우 마스크(3000)의 제2개구부(3000a)가 형성된 개구부 형성 영역에 의해 흡착영역(2000)이 형성될 수도 있다. 여기서 마스크(3000)는 박막 형태로 구성될 수 있는 재질이라면 그 재질에는 한정은 없다.
흡착영역(2000)은 성장 기판(101)상의 마이크로 LED(ML)의 피치 간격과 동일한 피치간격으로 형성되어 성장 기판(101)상의 마이크로 LED(ML) 전체를 한꺼번에 진공 흡착하여 이송할 수 있다. 흡착영역(2000)에 흡착되는 마이크로 LED(ML)의 경우, 성장 기판(101), 임시기판 또는 캐리어 기판에 배치되거나 표시 기판(301) 또는 목표 기판(TS)에 배치될 수 있으며, 이하에서 언급되는 기판(S)은 성장 기판(101), 임시 기판, 캐리어 기판을 포함하는 제1기판, 표시 기판(301), 목표 기판(TS), 회로 기판(HS), 임시 기판, 캐리어 기판을 포함하는 제2기판 중 적어도 하나일 수 있다.
흡착영역(2000)은 제1기판상의 마이크로 LED(ML)의 열 방향(x 방향) 피치 간격의 3배수로 열 방향(x 방향) 피치 간격이 형성될 수 있다. 위와 같은 구성에 의하면 마이크로 LED 흡착체(1)는 3배수 열에 해당하는 마이크로 LED(ML)만을 진공 흡착하여 이송할 수 있다. 여기서 3배수 열로 이송되는 마이크로 LED(ML)는 적색(Red), 녹색(Green), 청색(Blue), 백색(white) LED 중 어느 하나일 수 있다. 이와 같은 구성에 의하여 제2기판에 실장되는 동일 발광색의 마이크로 LED(ML)를 제1기판의 마이크로 LED(ML)의 열 방향(x 방향) 피치 간격의 3배수 간격으로 이격시켜 전사할 수 있다. 제1기판의 마이크로 LED(ML)의 열 방향(x 방향) 피치 간격의 3배수로 형성되는 흡착영역(2000)을 구비하는 마이크로 LED 흡착체(1)는 도 3과 같이 구현될 수 있다. 이 경우, 기판(S)상에서 흡착 대상이 되는 마이크로 LED(ML)는 도 3의 좌측을 기준으로 1, 4, 7, 10번째 위치에 있는 마이크로 LED(ML)일 수 있다.
이와는 달리, 흡착영역(2000)은 제1기판상의 마이크로 LED(ML)의 행 방향(y 방향) 피치 간격의 3배수로 행 방향(y 방향) 피치 간격이 형성될 수 있다. 위와 같은 구성에 의하면 마이크로 LED 흡착체(1)는 3배수 행에 해당하는 마이크로 LED(ML)만을 진공 흡착하여 이송할 수 있다. 여기서 3배수 행로 이송되는 마이크로 LED(ML)는 적색(Red), 녹색(Green), 청색(Blue), 백색(white) LED 중 어느 하나일 수 있다. 이와 같은 구성에 의하여 제2기판에 실장되는 동일 발광색의 마이크로 LED(ML)를 제1기판상의 마이크로 LED(ML)의 행 방향(y 방향) 피치 간격의 3배수 간격으로 이격시켜 전사할 수 있다.
이와는 달리, 흡착영역(2000)은 제1기판상의 마이크로 LED(ML)의 대각선 방향으로 형성될 수 있다. 이 경우, 흡착영역(2000)의 열 방향(x 방향) 및 행 방향(y 방향) 피치 간격은 제1기판상의 마이크로 LED(ML)의 열 방향(x 방향) 및 행 방향(y 방향) 피치 간격의 3배수로 형성될 수 있다. 여기서 3배수 행 및 3배수 열로 이송되는 마이크로 LED(ML)는 적색(Red), 녹색(Green), 청색(Blue), 백색(white) LED 중 어느 하나일 수 있다. 이와 같은 구성에 의하여 제1기판에 실장되는 동일 발광색의 마이크로 LED(ML)를 제1기판상의 마이크로 LED(ML)의 열 방향(x 방향) 및 행 방향(y 방향) 피치 간격의 3배수 간격으로 이격시킴으로써, 동일 발광색의 마이크로 LED(ML)를 대각선 방향으로 전사할 수 있다.
본 발명의 마이크로 LED 흡착체(1)는 다음과 같은 방법으로 마이크로 LED(ML)를 전사할 수 있다. 먼저, 마이크로 LED 흡착체(1)를 제1기판의 상부로 이동시켜 위치시킨 다음에 마이크로 LED 흡착체(1)를 하강한다. 이 때 진공포트를 통해 진공압을 형성함으로써 다공성 부재(1000)에 진공을 가하여 마이크로 LED(ML)를 진공 흡착한다. 마이크로 LED 흡착체(1)가 마이크로 LED(ML)를 진공력으로 흡착함에 있어서는 마이크로 LED 흡착체(1)의 다공성 부재(1000)가 마이크로 LED(ML)와 밀착되도록 하면서 진공 흡착할 수 있다. 한편, 다공성 부재(1000)와 마이크로 LED(ML)의 밀착에 의해, 마이크로 LED(ML)가 손상될 우려가 있으므로 실질적인 마이크로 LED(ML) 흡착면이 구성되는 제1다공성 부재(1100)의 하면과 마이크로 LED(ML)의 상면으로 소정 간격으로 이격시킨 상태에서 진공 흡입력에 의해 마이크로 LED(ML)를 제1다공성 부재(1100)의 하면에 달라 붙게 할 수도 있다.
그 다음 마이크로 LED 흡착체(1)의 마이크로 LED(ML)에 대한 진공 흡착력을 유지한 상태에서 마이크로 LED 흡착체(1)를 상승시킨 후 이동시킨다.
그 이후에 마이크로 LED 흡착체(1)를 제2기판의 상부로 이동시켜 위치시킨 다음에 마이크로 LED 흡착체(1)를 하강한다. 이 때에 진공포트를 통해 다공성 부재(1000)에 가하진 진공을 해제함으로써 마이크로 LED(ML)를 제2기판으로 전달한다.
제2실시 예
도 4는 본 발명의 실시 예에 따른 마이크로 LED 흡착체(1')의 제2실시 예를 도시한 도이다. 제2실시 예의 마이크로 LED 흡착체(1')는 제1실시 예에서 설명한 수직적 기공을 갖는 제1다공성 부재(1100)가 양극산화막(1600)으로 제공되는 흡착 부재(1100)이고, 제2다공성 부재(1200)는 임의적 기공을 갖고, 흡착 부재(1100)를 지지하는 지지 부재(1200)인 것으로서, 제2실시 예의 마이크로 LED 흡착체(1')는 흡착 부재(1100) 및 지지 부재(1200)를 포함하여 구성된다.
흡착 부재(1100)를 마이크로 LED 흡착체(1')에 고정하는 방법은, 지지부재(1200)의 진공흡입력을 통해 흡착 부재(1100)를 흡착체(1')에 고정하는 방법, 지지부재(1200)에 진공을 형성하는 배관과는 별도의 서브배관을 통한 흡착체(1')에 고정하는 방법, 클립 또는 클램프 등의 물리적인 수단을 통해 흡착체(1')에 고정하는 방법 또는 접착제 등의 화학적인 수단을 통해 흡착체(1')에 고정하는 방법을 포함한다.
여기서, 지지부재(1200)의 진공흡입력을 통해 흡착 부재(1100)를 흡착체(1')에 고정하는 방법은, 지지부재(1200)의 다공성의 기공을 통해 가해지는 진공흡입력을 이용하여 흡착 부재(1100)의 비흡착영역(1200)를 흡착함으로써 지지부재(1200)가 흡착 부재(1100)를 흡착하는 방법이다.
한편, 지지부재(1200)에 진공을 형성하는 배관과는 별도의 서브배관을 통한 흡착체(1')에 고정하는 방법은, 흡착 부재(1100)를 흡착하기 위한 서브배관과 지지부재(1200)를 통해 흡착영역(2000)에 진공력을 부여하기 위한 메인배관을 구분하여 서브배관을 이용하여 흡착 부재(1100)를 항시 흡착체(1')에 고정시키고, 흡착체(1')가 마이크로 LED(ML)를 흡착할 때에만 메인배관을 작동시켜 흡착 부재(100)가 마이크로 LED를 흡착하고자 하기 위함이다. 이처럼 메인배관과는 별도로 서브배관을 이용하는 구성에 따르면, 흡착체(1')가 마이크로 LED(ML)를 흡착하고자 할 때에만 메인배관을 작동시킬 수 있게 됨으로써, 마이크로 LED(ML)를 흡착하기 이전에 메인배관의 작동에 따른 흡기에 의해 와류가 발생하는 것을 방지할 수 있고 그 결과 보다 정밀하고 신뢰성있게 흡착체(1')가 마이크로 LED(ML)를 흡착하도록 할 수 있다.
본 발명의 바람직한 제2실시 예에 따른 마이크로 LED 흡착체(1')는, 수직적 기공을 갖는 양극산화막(1600)으로 제공되는 흡착 부재(1100) 및 임의적 기공을 갖고, 흡착 부재를 지지하는 지지 부재(1200)를 포함하고, 흡착 부재(1100)는 진공 흡입력으로 마이크로 LED를 흡착하는 흡착영역(2000)과 마이크로 LED를 흡착하지 않는 비흡착영역(2100)으로 구분되어 마이크로 LED(ML)를 선택적으로 전사한다.
흡착영역(2000)은 양극산화막(1600)의 제조시 형성된 배리어층(1600b)이 제거되어 수직적 기공의 상,하가 서로 관통되어 형성되거나 양극산화막(1600)의 제조시 형성된 수직적 기공의 폭보다 큰 폭을 가지면서 상,하가 서로 관통되어 형성되는 갖는 흡착홀(1500)에 의해 형성될 수 있다.
비흡착영역(2100)은 양극산화막(1600)의 제조시 형성된 수직적 기공의 상,하 중 적어도 어느 한 부분을 폐쇄하는 차폐부에 의해 형성될 수 있으며, 양극산화막(1600)의 제조시 형성된 배리어층(1600)이 차폐부로 구성될 수 있다.
이하 설명되는 제2실시 예는 제1실시 예와 비교하여 특징적인 구성요소들을 중심으로 설명하겠으며, 제1실시 예와 동일하거나 유사한 구성요소들에 대한 설명들은 생략한다.
흡착 부재(1100)는 수직적 기공을 갖는 양극산화막(1600)으로 제공되며, 수직적 기공의 폭보다 큰 폭을 갖는 흡착홀(1500)을 통한 진공 흡입력으로 마이크로 LED(ML)를 흡착하는 흡착영역(2000)을 구성하고, 수직적 기공의 상, 하 중 어느 한 부분을 폐쇄하는 차폐부를 통해 마이크로 LED(ML)를 흡착하지 않는 비흡착영역(2100)이 구성된다.
먼저, 흡착 부재(1100)를 제공하는 양극산화막(1600)은 모재인 금속을 양극산화하여 형성된 막을 의미하고, 기공은 금속을 양극산화하여 양극산화막(1600)을 형성하는 과정에서 형성되는 구멍을 의미한다. 예컨대, 모재인 금속이 알루미늄(Al) 또는 알루미늄 합금인 경우, 모재를 양극산화하면 모재의 표면에 양극산화알루미늄(Al
2O
3) 재질의 양극산화막(1600)이 형성된다. 위와 같이, 형성된 양극산화막(1600)은 수직적으로 내부에 기공이 형성되지 않은 배리어층(1600b)과, 내부에 기공이 형성된 다공층(1600a)으로 구분된다. 배리어층(1600b)은 모재의 상부에 위치하고, 다공층(1600a)은 배리어층(1600b)의 상부에 위치한다. 이처럼, 배리어층(1600b)과 다공층(1600a)을 갖는 양극산화막(1600)이 표면에 형성된 모재에서, 모재를 제거하게 되면, 양극산화알루미늄(Al
2O
3) 재질의 양극산화막(1600)만이 남게 된다.
양극산화막(1600)은, 지름이 균일하고, 수직한 형태로 형성되면서 규칙적인 배열을 갖는 기공을 갖게 된다. 따라서, 배리어층(1600b)을 제거하면, 기공은 상, 하로 수직하게 관통된 구조를 갖게 되며, 이를 통해 수직한 방향으로 진공압을 형성하는 것이 용이하게 된다.
양극산화막(1600)은 마이크로 LED(ML)를 진공 흡착하는 흡착영역(2000)과 마이크로 LED(ML)를 흡착하지 않는 비흡착영역(2100)을 포함한다. 양극산화막(1600)의 흡착영역(2000)은 양극산화막의 제조시 형성된 배리어층(1600b)이 제거되어 수직적 기공의 상, 하가 서로 관통되어 형성될 수 있다.
이로 인해 흡착 부재(1100)는 수직적 기공을 갖는 양극산화막(1600)으로 제공되며, 수직적 기공을 통한 진공 흡입력으로 마이크로 LED(ML)를 흡착하는 흡착영역(2000)과 수직적 기공의 상, 하 중 적어도 일부가 폐쇄되어 마이크로 LED(ML)를 흡착하지 않는 비흡착영역(2100)으로 구분될 수 있다.
양극산화막(1600)의 상부에는 지지 부재(1200)가 구비되고, 지지 부재(1200)의 상부에는 진공 챔버(1300)가 구비된다. 진공 챔버(1300)는 진공을 공급하는 진공 포트의 작동에 따라 지지 부재(1200) 및 양극산화막(1600)으로 제공되는 흡착 부재(1100)의 다수의 수직 형상의 기공에 진공을 가하거나 진공을 해제하는 기능을 한다.
마이크로 LED(ML)의 흡착시, 진공 챔버(1300)에 가해진 진공은 양극산화막(1600)의 다수의 기공에 전달되어 마이크로 LED(ML)에 대한 진공 흡착력을 제공한다.
양극산화막(1600)으로 제공되는 흡착 부재(1100)는 진공 흡입력으로 마이크로 LED(ML)을 흡착하는 흡착영역(2000)과 마이크로 LED(ML)를 흡착하지 않는 비흡착영역(2100)으로 구분되어 마이크로 LED(ML)를 선택적으로 전사할 수 있다. 흡착 부재(1100)는 흡착영역(2000)의 피치 간격에 따라 마이크로 LED(ML)를 선택적으로 전사하거나, 한꺼번에 전사할 수 있다.
이처럼 양극산화막(1600)으로 제공되는 흡착 부재(1100)의 흡착영역(2000)은 배리어층(1600b)의 적어도 일부를 제거하여 내부에 수직적 기공이 형성된 다공층(1600a)에 의해 형성되거나, 도 4에 도시된 바와 같이 양극산화막(1600)의 제조시 형성된 수직적 기공의 폭보다 큰 폭을 가지면서 상, 하가 서로 관통되어 형성되는 흡착홀(1500)에 의해 형성될 수 있다.
이처럼 배리어층(1600b)을 제거하여 다공층(1600a)으로 흡착영역(2000)을 구성하거나 배리어층(1600b) 및 다공층(1600a)을 모두 제거하여 흡착영역(2000)을 구성할 수 있다. 도 4는 그 중에서 배리어층(1600b) 및 다공층(1600a)을 모두 제거하여 흡착영역(2000)을 구성한 것을 도시한 것이다.
도 4에 도시된 바와 같이, 제2실시 예에서는 양극산화막(1600)을 상, 하 관통하여 형성되는 흡착홀(1500)에 의해 흡착영역(2000)이 형성되는 것으로 도시하여 설명한다.
흡착 부재(1100)에는 양극산화막(1600)의 자연발생적으로 형성되는 기공 이외에 흡착홀(1500)이 추가로 형성된다. 흡착홀(1500)은 양극산화막(1600)의 상면과 하면을 관통하도록 형성된다. 흡착홀(1500)의 폭은 기공의 폭보다 더 크게 형성된다. 기공의 폭보다 더 큰 폭을 갖는 흡착홀(1500)이 형성되는 구성에 의하여, 마이크로 LED(ML)를 흡착하는 흡착영역(2000)이 형성되고, 기공만으로 마이크로 LED(ML)를 진공 흡착하는 구성에 비해, 마이크로 LED(ML)에 대한 진공 흡착면적을 키울 수 있게 된다.
이러한 흡착홀(1500)은 전술한 양극산화막(1600) 및 기공이 형성된 후, 양극산화막(1600)을 수직방향으로 에칭함으로써 형성될 수 있다. 에칭에 의해 흡착홀(1500)을 형성시킴에 따라 기공의 측면의 손상없이 용이하게 흡착홀(1500)을 형성할 수 있으며, 이를 통해 흡착홀(1500)의 손상이 발생하는 것을 방지할 수 있는 것이다.
비흡착영역(2100)은 흡착홀(1500)이 형성되지 않은 영역일 수 있다. 이러한 비흡착영역(2100)은 기공의 상, 하 중 적어도 어느 한 부분이 폐쇄된 영역일 수 있다. 비흡착영역(2100)은 양극산화막(1600)의 제조시 형성된 수직적 기공의 상, 하 중 적어도 어느 한 부분을 폐쇄하는 차폐부에 의해 형성될 수 있다. 제2실시 예의 경우, 차폐부는 양극산화막(1600)의 제조시 형성된 배리어층(1600b)일 수 있다. 배리어층(1600b)은 양극산화막(1600)의 상, 하 표면 중에서 적어도 일부 표면에 형성되어 차폐부로서의 기능을 할 수 있다.
도 4에 도시된 바와 같이, 제2실시 예의 비흡착영역(2100)은 양극산화막(1600)의 제조 시 배리어층(1600b)에 의해 수직 형상의 기공의 상, 하 중 어느 한 부분이 폐쇄되도록 형성될 수 있다.
도 4에는 배리어층(1600b)이 양극산화막(1600)의 상부에 위치하고 기공이 있는 다공층(1600a)이 하부에 위치하는 것으로 도시되어 있으나, 배리어층(1600b)이 양극산화막(1600)의 하부에 위치하도록 도 4에 도시된 양극산화막(1600)이 상, 하 반전되어 비흡착영역(2100)을 구성할 수 있다.
한편, 비흡착영역(2100)이 배리어층(1600b)에 의해 기공의 상, 하 중 어느 한 부분이 폐쇄된 것으로 설명하였으나, 배리어층(1600b)에 의해 폐쇄되지 않은 반대면은 별도의 코팅층이 추가되어 상, 하가 모두 폐쇄되도록 구성될 수 있다. 비흡착영역(2100)을 구성함에 있어서, 양극산화막(1600)의 상, 하면이 모두 폐쇄되는 구성은, 양극산화막(1600)의 상, 하면 중 적어도 하나가 폐쇄되는 구성에 비해 비흡착영역(2100)의 기공에 이물질이 잔존할 우려를 줄일 수 있다는 점에서 유리하다.
위와 같은 흡착 부재(1100)는 양극산화막(1600), 웨이퍼 기판, 인바(invar), 금속, 비금속, 폴리머, 종이, 포토레지스트, PDMS 중 적어도 어느 하나의 재질로 구성될 수 있다.
흡착부재(1100)의 재질이 금속 재질인 경우에는 마이크로 LED(ML)의 전사 시 정전기 발생을 방지할 수 있다는 이점을 갖게 할 수 있다. 흡착부재(1100)의 재질이 비금속 재질인 경우에는 금속의 성질을 가지지 않은 재질로서 흡착부재(1100)가 금속의 성질을 가진 마이크로 LED(ML)에 미치는 영향을 최소할 수 있는 이점을 갖는다. 흡착부재(1100)가 실리콘 또는 PDMS 재질인 경우에는 흡착부재(1100)의 하면이 마이크로 LED(ML)의 상면과 직접 접촉하더라도 완충 기능을 발휘하여 마이크로 LED(ML)와의 충돌에 따른 파손의 염려를 최소할 수 있게 된다. 흡착부재(1100)의 재질이 수지 재질인 경우에는 흡착부재(1100)의 제작이 간편하다는 장점이 있다.
이처럼 진공 흡입력으로 마이크로 LED(ML)를 흡착하는 흡착영역(2000)과 마이크로 LED(ML)를 흡착하지 않는 비흡착영역(2100)으로 구분된 흡착 부재(1100)는 흡착영역(2000)과 공기 유로적으로 연통되는 임의적 기공을 갖는 지지 부재(1200)에 의해 지지될 수 있다.
지지 부재(1200)는 흡착 부재(1100)의 상부에 구비되며 다공성 재질로 구성될 수 있다. 구체적으로, 지지 부재(1200)는 임의적 기공을 갖는 다공성 재질로 구성될 수 있다.
지지 부재(1200)는 흡착 부재(1100)의 비흡착영역(2100)을 진공 흡입력으로 흡착하여 흡착 부재(1100)를 지지하면서 흡착 부재(1100)의 흡착영역(2000)과 공기 유로적으로 연통되어 흡착영역(2000)으로 마이크로 LED(ML)를 흡착할 수 있다.
제2실시 예의 마이크로 LED 흡착체(1')는 위와 같은 흡착 부재(1100), 지지 부재(1200) 및 진공 챔버(1300)를 포함하여 구성되어 진공 챔버(1300)의 진공압이 지지 부재(1200)의 다공성 재질에 의해 감압된 후 흡착 부재(1100)의 흡착영역(2000)에 전달되어 마이크로 LED(ML)를 흡착할 수 있다. 이 경우, 진공 챔버(1300)의 진공압은 지지 부재(1200)의 다공성 재질에 의해 흡착 부재(1100)의 비흡착영역(2100)에 전달되어 흡착 부재(1100)를 흡착할 수 있다.
이상과 같이, 흡착부재(1100)의 흡착영역(2000)은 배리어층(1600b)의 적어도 일부를 제거하여 내부에 수직적 기공이 형성된 다공층(1600a)에 의해 형성되거나, 양극산화막(1600)의 제조시 형성된 수직적 기공의 폭보다 큰 폭을 가지면서 상, 하가 서로 관통되어 형성되는 흡착홀(1500)에 의해 형성될 수 있다.
흡착영역(2000)은 도 4에 도시된 바와 같이, 하나의 예로서 기판(S)상의 마이크로 LED(ML)의 열 방향(x 방향) 피치 간격의 3배수로 열 방향(x 방향) 피치 간격이 형성될 수 있다. 여기서, 기판(S)은 제1기판(예를 들어, 성장 기판(101) 또는 임시기판)을 의미할 수 있다.
다시 말해, 마이크로 LED 흡착체(1')는 흡착영역(2000)간의 x방향 피치 간격이 제1기판에 배치된 마이크로 LED(ML)의 x방향 피치 간격의 3배수 거리이고, 흡착영역(2000)간의 y방향 피치 간격이 제1기판에 배치된 마이크로 LED(ML)의 y방향 피치 간격의 1배수의 거리로 형성되어 제1기판에 배치된 마이크로 LED(ML)를 선택적으로 흡착할 수 있다. 위와 같은 구성에 의하면 마이크로 LED 흡착체(1')는 기판(S)의 3배수 열에 해당하는 마이크로 LED(ML)만을 진공 흡착하여 이송할 수 있다. 이 경우, 마이크로 LED 흡착체(1')는 도 4의 도면 좌측을 기준으로 1, 4, 7, 10번째 위치에 있는 마이크로 LED(ML)를 흡착할 수 있다.
후술하는 변형 예의 흡착영역(2000)도 하나의 예로서 마이크로 LED(ML)의 열 방향(x 방향) 피치 간격의 3배수로 열 방향(x 방향) 피치 간격이 형성되는 것으로 도시하여 설명한다.
이와는 달리, 마이크로 LED 흡착체(1')는 흡착영역(2000) 간의 x 방향 피치 간격이 제1기판에 배치된 마이크로 LED(ML)의 x 방향 피치 간격의 3배수 거리이고, 흡착영역(2000)간의 y 방향 피치 간격이 제1기판에 배치된 마이크로 LED(ML)의 y 방향의 피치 간격의 3배수 거리로 형성되어 제1기판에 배치된 마이크로 LED(ML)를 선택적으로 흡착할 수 있다.
이와는 달리, 마이크로 LED 흡착체(1')는 흡착 영역(2000)간의 대각선 방향 피치 간격이 제1기판에 배치된 마이크로 LED(ML)의 대각선 방향의 피치 간격과 동일하게 형성되어 제1기판에 배치된 마이크로 LED(ML)를 선택적으로 흡착할 수 있다.
이처럼 흡착영역(2000)의 열 방향(x 방향) 및 행 방향(y 방향) 피치 간격은 첨부된 도면에 한정되지 않고, 기판(S)상의 마이크로 LED(ML)의 열 방향(x 방향) 피치 간격의 3배수 거리 또는 행 방향(y 방향) 피치 간격의 3배수 거리로 형성될 수 있다. 또는 기판(S)상의 마이크로 LED(ML)의 대각선 방향 등 기판(예를 들어 표시 기판(301)과 같은 제2기판)상에 마이크로 LED(ML)를 전사하여 배치하려고 하는 화소 배열에 적합하게 형성될 수 있다.
도 5 내지 도 7은 본 발명의 제2실시 예에 따른 다양한 변형 예들을 도시한 도이다. 제2실시 예에 따른 변형 예들은 흡착 부재(1100)가 양극산화막(1600)으로 구성되어 제공되는 것은 제2실시 예와 동일하나 마이크로 LED(ML)를 흡착하는 흡착영역(2000)이 형성되는 흡착 부재(1100)의 구조 및 구성이 변형되거나 새로운 구성이 추가된다는 점에서 제2실시 예와 차이가 있다. 다만, 이하의 제2실시예에 따른 다양한 변형 예들에 대한 설명은 제2실시예에의 특별한 구조 및 구성에 대한 설명이므로, 이하의 설명에 의하더라도 제2실시예가 그 이외의 다른 구성을 포함하여 구성될 수 있다는 점에 있어서는 변함이 없다. 이하에서는 흡착 부재(1100)를 중심으로 도면을 도시하여 특징적인 구성요소들을 중심으로 설명한다.
먼저, 도 5(a)는 제2실시 예에 따른 제1변형 예를 도시한 도이다. 도 5(a)에는 제1변형 예의 마이크로 LED 흡착체(1')의 양극산화막(1600)으로 제공되는 흡착 부재(1100)의 일부가 도시된다. 흡착 부재(1100)의 비흡착영역(2100)의 상부에는 양극산화막(1600)의 강도를 보강하기 위한 지지부(1600c)가 추가로 형성된다. 하나의 예로서, 지지부(1600c)는 금속 재질의 모재가 될 수 있다. 양극산화 시 사용된 금속 재질의 모재가 제거되지 않고 배리어층(1600b)의 상부에 구비되면서 금속 재질의 모재가 지지부(1600c)가 될 수 있다. 도 5(a)를 참조하면, 비흡착영역(2100)에서는 금속 재질의 모재, 배리어층(1600b) 및 기공이 형성된 다공층(1600a)이 모두 구비된 채로 형성되고, 흡착영역(2000)은 금속 재질의 모재 및 배리어층(1600b)이 제거됨에 따라 기공의 상, 하가 관통되도록 형성된다. 기공의 상, 하가 관통되어 형성되는 흡착영역(2000)의 양극산화막(1600)의 두께는 비흡착영역(2100)의 양극산화막(1600)의 두께보다 작다. 금속 재질의 모재가 비흡착영역(2100)에 구비되어 양극산화막(1600)의 강성을 확보할 수 있게 된다. 위와 같은 지지부(1600c)의 구성에 의하여, 상대적으로 강도가 약한 양극산화막(1600)의 강도를 높일 수 있게 됨에 따라 양극산화막(1600)으로 구성되는 마이크로 LED 흡착체(1')의 크기를 대면적화 할 수 있다.
이 경우, 흡착영역(2000)은 도 5(a)에 도시된 바와 같이 배리어층(1600b)이 제거된 다공층(1600a)에 의해 형성될 수 있고, 이와는 다르게 배리어층(1600b) 및 다공층(1600a)이 모두 제거된 흡착홀(1500)의 구성에 의해서도 형성될 수 있다.
도 5(b)에는 제2실시 예의 제2변형 예의 마이크로 LED 흡착체(1')의 양극산화막(1600)으로 제공되는 흡착 부재(1100)의 일부가 도시된다. 양극산화막(1600)은 모재가 제거되고, 배리어층(1600b)의 적어도 일부가 제거되어 흡착영역(2000)이 형성된다. 양극산화막(1600)의 흡착영역(2000)의 하부에는 흡착홈(1700)이 추가로 형성된다. 흡착홈(1700)은 전술한 기공 또는 흡착홀(1500)보다 더 큰 수평 면적을 갖으면서도 마이크로 LED(ML)의 상면의 수평 면적보다 작은 면적을 갖는다. 이를 통해 마이크로 LED(ML)에 대한 진공 흡착 면적을 더 키울 수 있게 되고, 흡착홈(1700)을 통해 마이크로 LED(ML)에 대한 균일한 진공 흡착 면적을 제공할 수 있게 된다. 흡착홈(1700)은 전술한 양극산화막(1600) 및 기공이 형성된 후, 양극산화막(1600)의 흡착영역(2000)의 하부의 적어도 일부를 소정의 깊이로 에칭 함으로써 형성될 수 있다.
이 경우, 흡착영역(2000)은 도 5(b)에 도시된 바와 같이 배리어층(1600b)이 제거된 다공층(1600a)에 의해 형성될 수 있고, 이와는 다르게 배리어층(1600b) 및 다공층(1600a)이 모두 제거된 흡착홀(1500)의 구성에 의해서도 형성될 수 있다.
도 5(c)에는 제2실시 예의 제3변형 예의 마이크로 LED 흡착체(1')의 양극산화막(1600)으로 제공되는 흡착 부재(1100)의 일부가 도시된다. 흡착영역(2000)의 하부에는 안착홈(1800)이 추가로 형성된다. 안착홈(1800)은 마이크로 LED(ML)의 상면의 수평 면적보다 더 큰 수평 면적을 갖는다. 이를 통해 마이크로 LED(ML)가 안착홈(1800) 내부로 삽입되어 안착됨에 따라 마이크로 LED 흡착체(1')의 이동 시 마이크로 LED(ML)의 위치 변동을 제한할 수 있게 된다. 안착홈(1800)은 전술한 양극산화막(1600) 및 기공이 형성된 후, 양극산화막(1600)의 흡착영역(2000)의 하부의 적어도 일부를 소정의 깊이로 에칭함으로써 형성될 수 있다. 이 경우, 안착홈(1800)은 마이크로 LED(ML)의 상면의 수평 면적보다 더 큰 수평 면적으로 형성되므로, 양극산화막(1600)은 안착홈(1800)에 의해 비흡착영역(2100)의 하부의 적어도 일부가 소정의 깊이로 에칭된 형태일 수 있다. 양극산화막(1600)은 모재가 제거되고, 배리어층(1600b)의 적어도 일부가 제거되어 흡착영역(2000)이 형성된다.
한편, 도 5(c)에 도시된 바와는 다르게 흡착영역(2000)은 배리어층(1600b) 및 다공층(1600a)이 모두 제거된 흡착홀(1500)의 형태로 구성될 수 있고, 이 경우에 안착홈(1800)은 흡착홀(1500)의 하부에서 흡착홀(1500)의 폭 크기보다 크게 형성될 수 있다.
도 5(d)에는 제2실시 예의 제4변형 예의 마이크로 LED 흡착체(1')의 양극산화막(1600)으로 제공되는 흡착 부재(1100)의 일부가 도시된다. 양극산화막(1600)의 비흡착영역(2100)의 하부에는 도피홈(1900)이 추가로 형성된다. 도피홈(1900)은 마이크로 LED 흡착체(1')가 하강하여 특정 위치, 열 또는 행의 마이크로 LED(ML)를 진공 흡착할 경우에, 비 흡착 대상의 마이크로 LED(ML)와의 간섭을 방지하는 기능을 한다. 도피홈(1900)은 비흡착영역(2100)의 하부의 적어도 일부에 비흡착영역(2100)의 하부의 적어도 일부를 소정의 깊이로 에칭함으로써 형성될 수 있다. 도피홈(1900)의 구성에 의해 흡착 부재(1100)에는 도피홈(1900)의 주변에 돌출영역(2200)이 형성될 수 있다. 돌출영역(2200)의 중앙에는 흡착영역(2000)이 형성될 수 있다. 이러한 흡착영역(2000)에 의해 마이크로 LED(ML)가 흡착되어 돌출영역(2200)의 하부에는 마이크로 LED(ML)가 흡착된다. 돌출영역(2200)의 수평 면적은 마이크로 LED(ML) 상면의 수평 면적보다 크게 형성되고, 돌출영역(2200)의 중앙에 배리어층(1600b)이 제거됨으로써 형성된 흡착영역(2000)은 마이크로 LED(ML) 상면 폭보다 작게 형성되어 진공의 누설을 방지할 수 있게 된다. 양극산화막(1600)은 모재가 제거되고, 배리어층(1600b)의 적어도 일부가 제거되어 흡착영역(2000)이 형성된다.
한편, 도 5(d)에 도시된 바와는 다르게 흡착영역(2000)은 배리어층(1600b) 및 다공층(1600a)이 모두 제거된 흡착홀(1500)의 구성으로 형성될 수 있다.
도피홈(1900)의 수평 면적은 적어도 1개의 마이크로 LED(ML)의 수평 면적보다 크게 형성된다. 도 5(d)에는 도피홈(1900)의 가로 방향의 수평 면적이 2개의 마이크로 LED(ML)의 수평 면적과 마이크로 LED(ML)간의 가로 방향 피치간격의 2배를 더한 만큼의 수평 면적을 갖는 것으로 도시되어 있다. 이를 통해 흡착대상이 되는 마이크로 LED(ML)를 진공 흡착하기 위하여, 마이크로 LED 흡착체(1')를 하강시킬 때에 비흡착되는 대상이 되는 마이크로 LED(ML)와의 간섭을 방지할 수 있게 된다.
도 6(a)에는 제2실시 예의 제5변형 예의 마이크로 LED 흡착체(1')의 양극산화막(1600)으로 제공되는 흡착 부재(1100)의 일부가 도시된다. 제5변형 예의 흡착 부재(1100)는 양극산화막(1600)의 모재가 제거되고, 배리어층(1600b)의 적어도 일부가 제거되어 흡착영역(2000)이 형성된다. 이와는 달리 배리어층(1600b) 및 다공층(1600a)이 모두 제거된 흡착홀(1500)의 구성으로 흡착영역(2000)이 구성될 수 있다.
제5변형 예의 흡착 부재(1100)의 하부에는 제1돌출댐(2300)이 구비된다. 구체적으로 흡착 부재(1100)의 비흡착영역(2100)의 하부에 제1돌출댐(2300)이 구비된다. 제1돌출댐(2300)은 비흡착영역(2100)의 하부에 구비되되, 흡착영역(2000)의 주변에 구비되는 형태일 수 있다.
제1돌출댐(2300)의 재질은 포토레지스트(PR, Dry Film PR포함), PDMS 재질, 또는 금속 재질로 형성될 수 있으며, 소정의 높이로 흡착 부재(1100)의 표면에 형성될 수 있는 재질이라면 이에 한정은 없다. 또한 제1돌출댐(2300)은 탄성재질로 구성될 수 있다.
제1돌출댐(2300)의 돌출된 부분의 단면 형상은 사각형, 원형, 삼각형 등 돌출된 형상이라면 모두 포함된다. 제1돌출댐(2300)의 돌출된 부분의 단면 형상은 마이크로 LED(ML)의 형상을 고려하여 구성될 수 있다. 예컨대, 마이크로 LED(ML)가 상부보다 하부가 넓은 구조를 갖는 것이라면 제1돌출댐(2300)의 돌출된 부분의 단면 형상은 상부보다 하부가 좁은 구조를 갖는 것이 제1돌출댐(2300)과 마이크로 LED(ML)간의 간섭 방지의 측면에서 보다 유리하다. 도 6(a)를 참조하면, 제1돌출댐(2300)의 돌출된 부분의 단면 형상은 하부로 테이퍼진 형상을 갖는다.
마이크로 LED 흡착체(1')가 기판(S)상에 위치하는 마이크로 LED(ML)를 진공 흡착하기 위하여 흡착 위치로 하강할 경우, 마이크로 LED 흡착체(1')의 구동 수단의 구동 오차로 인하여 흡착 부재(1100)와 마이크로 LED(ML)가 서로 접촉하여 마이크로 LED(ML)에 손상을 줄 우려가 있게 마련이다.
마이크로 LED(ML)의 손상 방지를 위해서는 마이크로 LED 흡착체(1')가 마이크로 LED(ML)를 흡착하는 위치에서 흡착 부재(1100)의 하면과 마이크로 LED(ML)의 상면이 서로 이격되어야 하는 것이 바람직하다. 그런데 흡착 부재(1100)의 하면과 마이크로 LED(ML)간의 이격 틈새가 존재하는 경우에는, 양자가 서로 접촉하는 경우에 비하여 보다 큰 진공압이 요구된다.
하지만 제5변형 예와 같은 흡착 부재(1100)의 비흡착영역(2100)의 하부에 제1돌출댐(2300)이 구비되는 구성에 의하면, 주변영역으로부터 흡착영역(2000)으로 유입되는 공기의 양을 줄임으로써, 제1돌출댐(2300)이 구비되지 않은 구성에 비해, 상대적으로 보다 작은 진공압에 의해서도 흡착 부재(1100)가 마이크로 LED(ML)를 진공 흡착할 수 있게 된다.
도 6(b)는 제2실시 예의 제6변형 예의 마이크로 LED 흡착체(1')의 양극산화막(1600)으로 제공되는 흡착 부재(1100)의 일부가 도시된다. 제6변형 예는 흡착 부재(1100)의 하면에 구비되는 오목부(2400)를 포함하여 구성될 수 있다. 흡착 부재(1100)는 양극산화막(1600)의 모재가 제거되고, 배리어층(1600b)의 적어도 일부가 제거되어 흡착영역(2000)이 형성된다. 이와는 달리 배리어층(1600b) 및 다공층(1600a)이 모두 제거된 흡착홀(1500)의 구성으로 흡착영역(2000)이 형성될 수 있다.
오목부(2400)는 흡착 부재(1100)의 흡착영역(2000)의 하면에 형성되어 마이크로 LED 흡착체(1')가 마이크로 LED(ML)를 진공 흡착할 시 마이크로 LED(ML)가 삽입되는 공간을 제공하는 기능을 한다.
오목부(2400)는 흡착 부재(1100)의 하면에서 오목하게 파여있는 형상을 갖는다. 오목부(2400)의 형상은 원형, 사각 단면을 가질 수 있다. 한편 마이크로 LED(ML)의 단면 형상에 따라 오목부(2400)의 형상이 달라질 수 있다. 예컨대, 마이크로 LED(ML)의 단면 형상이 사각형일 경우, 오목부(2400)의 형상 또한 마이크로 LED(ML)의 단면 형상과 대응되는 사각형 형상을 가질 수 있다.
오목부(2400)는 흡착 부재(1100)의 하면에 추가로 평탄부(2500)를 구비함으로써 형성될 수 있다.
마이크로 LED(ML)가 흡착 부재(1100)에 의해 흡착되어 오목부(2400)에 삽입될 때, 흡착 부재(1100)의 오목부(2400)가 형성된 영역의 하면에는 마이크로 LED(ML)의 상면이 접촉하게 된다. 따라서, 흡착 부재(1100)의 하면 중 오목부(2400)가 형성된 영역의 하면은 마이크로 LED 흡착영역(2000)이 될 수 있다.
오목부(2400)는 마이크로 LED 흡착체(1')의 상부에서 하부로 갈수록 외측으로 경사진 경사부(2400a)를 갖는다. 이러한 경사부(2400a)가 형성됨에 따라 오목부(2400)는 단면적이 마이크로 LED 흡착체(1')의 상부에서 하부로 갈수록 커진다. 여기서, 단면적은 마이크로 LED 흡착체(1')의 하면과 평행한 수평면 상의 면적을 의미한다. 경사부(2400a)에 의해 오목부(2400)의 단면적은 하부에서 상부로 갈수록 작아지는 형태일 수 있다.
흡착 부재(1100)의 하면에 구비되는 오목부(2400)로 인해 추가로 구비되는 평탄부(2500)는 오목부(2400)에 비해 흡착 부재(1100)의 하부 방향으로 돌출된 형태를 갖는다. 평탄부(2500)는 비흡착영역(2100)의 하면에 구비되어 흡착영역(2000)의 하면에 오목부(2400)가 형성되게 할 수 있다.
이처럼 제6변형 예의 마이크로 LED 흡착체(1')는 오목부(2400)와 평탄부(2500)를 구비함으로써 흡착 부재(1100)의 하면에 흡착영역(2000)과 비흡착영역(2100)이 형성될 수 있다. 오목부(2400)의 경우, 마이크로 LED(ML)가 삽입되어 흡착 부재(1100)의 하면에 흡착되게 하므로 흡착영역(2000)이고, 평탄부(2500)의 경우, 비흡착영역(2100)의 하면에 구비되므로 비흡착영역(2100)이 된다.
오목부(2400)는 흡착대상이 되는 마이크로 LED(ML)와 대응되는 위치에만 형성될 수 있다. 이 경우, 도 6(b)에서 흡착대상이 되는 마이크로 LED(ML)는 도면 좌측을 기준으로 1, 4번째 위치에 있는 마이크로 LED(ML)이다.
오목부(2400)가 구비되는 마이크로 LED 흡착체(1')가 마이크로 LED(ML)를 흡착할 경우, 마이크로 LED(ML)는 흡착력에 의해 오목부(2400)로 픽업되어 오목부(2400) 내로 삽입되게 된다. 이는, 마이크로 LED(ML)의 상면과 마이크로 LED 흡착체(1')의 하면이 소정 간격으로 이격되도록 제어된 상태라 하더라도, 흡착부(1100)의 흡착력에 의해 마이크로 LED(ML)가 오목부(2400) 방향으로 픽업될 수 있기 때문이다.
위와 같이, 흡착부(1100)에서 흡착력이 발생함에 따라 마이크로 LED 흡착체(1')는 마이크로 LED 흡착체(1')의 하면, 즉, 평탄부(2500)의 하면이 마이크로 LED(ML)의 상면과 소정 간격으로 이격되도록 제어되어 마이크로 LED(ML)를 픽업할 수 있다.
제6변형 예는 오목부(2400)에는 경사부(2400a)가 형성되어 있으므로, 성장 기판(101)에서 마이크로 LED(ML)가 오목부(2400)로 삽입되어 픽업될 때, 경사부(2400a)가 마이크로 LED(ML)를 가이드함으로써, 마이크로 LED(ML)가 정위치로 흡착되어 픽업된다. 따라서, 마이크로 LED(ML)의 흡착시 발생할 수 있는 위치 오차의 문제를 해결할 수 있으며, 이를 통해, 표시 기판(301)에서 정확한 위치로의 마이크로 LED(ML) 전사가 수행될 수 있다.
도 6(c)에는 제2실시 예의 제7변형 예의 마이크로 LED 흡착체(1')의 양극산화막(1600)으로 제공되는 흡착 부재(1100)의 일부가 도시된다. 제7변형 예는 흡착 부재(1100)의 표면에 형성된 단자 회피홈(2700)을 포함하여 구성된다. 양극산화막(1600)은 모재가 제거되고, 배리어층(1600b)의 적어도 일부가 제거되어 흡착영역(2000)이 형성된다. 단자 회피홈(2700)은 마이크로 LED(ML)의 표면에 돌출되게 형성되는 단자의 영향을 받지 않고, 마이크로 LED(ML)를 효과적으로 진공 흡착하기 위해 형성될 수 있다. 따라서, 단자 회피홈(2700)은 흡착 부재(1100)의 표면에 형성되되, 마이크로 LED(ML)를 흡착하는 흡착영역(2000)의 표면에 형성될 수 있다.
단자 회피홈(2700)은 마이크로 LED(ML)의 표면에 형성되는 단자의 크기, 개수 및 위치에 따라 이에 대응되는 형상으로 형성될 수 있다. 도 6(c)에는 상면에 제1, 2컨택전극(106, 107)과 동일한 기능을 수행하는 제1, 2 단자(106, 107)가 형성되는 마이크로 LED(ML)가 도시된다. 이 경우, 마이크로 LED(ML)는 도 1 및 2를 참조하여 설명한 마이크로 LED(ML)와 제1, 2컨택전극(106, 107)의 위치만 상이할 뿐, 동일한 구성으로 동일한 기능을 수행하는 플립 형 또는 레터럴 형 마이크로 LED(ML)이다. 도 6(c)에 도시된 바와 같이, 제1, 2단자(106, 107)은 서로 다른 높이일 수 있고, 동일한 높이로 형성될 수 있다. 다시 말해, 마이크로 LED(ML)는 도 6(c)에 도시되는 형상에 한정되지 않는다.
마이크로 LED 흡착체(1')가 마이크로 LED(ML)를 흡착할 경우, 단자가 마이크로 LED(ML)의 표면에 돌출되게 형성될 경우, 마이크로 LED 흡착체(1')의 진공 흡착 기능을 방해하여 흡착력이 저하되는 문제가 야기될 수 있다. 따라서, 제7변형 예는 흡착 부재(1100)의 마이크로 LED(ML)를 흡착하는 흡착영역(2000)의 표면에 단자 회피홈(2700)을 형성함으로써 돌출된 단자에 의한 마이크로 LED 흡착 저하 문제를 방지할 수 있다.
단자 회피홈(2700)은 마이크로 LED(ML)의 표면에 형성되는 단자의 면적보다 크게 형성될 수 있다. 이러한 단자 회피홈(2700)의 높이는 마이크로 LED(ML)의 단자와 동일하게 형성된다. 이와 같은 면적 및 높이로 형성되는 단자 회피홈(2700)은 면적에 의해 단자 회피홈(2700)으로 마이크로 LED(ML)의 삽입을 용이하게 할 수 있고, 높이에 의해 마이크로 LED(ML)의 단자의 상면이 단자 회피홈(2700)의 상면에 흡착되게 할 수 있다.
단자 회피홈(2700)은 에칭 등의 방법으로 마이크로 LED(ML)의 표면의 단자와 대응되는 위치의 흡착영역(2000)의 위치에 단자의 면적보다 넓은 면적과 동일한 높이로 일부 제거되어 형성될 수 있다.
도 7(a)에는 제2실시 예의 제8변형 예의 마이크로 LED 흡착체(1')의 양극산화막(1600)으로 제공되는 흡착 부재(1100)의 일부가 도시된다. 제8변형 예는 차폐부가 흡착 부재(1100)의 하부에 형성될 수 있다. 구체적으로, 양극산화막으로 구성되는 제8변형 예의 흡착 부재(1100)는 양극산화막(1600)의 하부의 표면에 배리어층(1600b)이 형성된다. 배리어층(1600b)에 의해 기공의 하부가 폐쇄되어 흡착 부재(1100)에 비흡착영역(2100)이 형성된다. 제8변형 예의 흡착 부재(1100)에는 에칭에 의해 양극산화막(1600)의 상, 하를 관통하는 흡착홀(1500)이 형성된다. 이러한 흡착홀(1500)에 의해 흡착영역(2000)이 형성된다.
도 7(a)에 도시된 바와 같이, 흡착부재(1100)에는 완충부(2600)가 구비된다. 완충부(2600)는 흡착 부재(1100)의 마이크로 LED(ML)가 흡착되는 흡착면에는 구비된다. 다시 말해, 흡착 부재(1100)의 표면에는 완충부(2600)가 구비된다. 완충부(2600)는 흡착 부재(1100)의 표면에 구비되되 흡착홀(1500)에 의해 형성되는 흡착영역(2000)의 주변에 구비되는 형태일 수 있다.
완충부(2600)는 탄성 재질로 구성될 수 있다. 이 경우, LLO(Laser Lift-off) 방식을 이용하여 제1기판에서 마이크로 LED(ML)를 떼어낼 때 마이크로 LED(ML)의 파손을 방지하는 완충 기능을 수행할 수 있다. 예컨대, 제1기판이 성장 기판(101)일 경우, LLO 방식을 이용하여 성장 기판(101)에서 마이크로 LED(ML)를 떼어낼 때 가스압으로 인해 마이크로 LED(ML)가 성장 기판(101)에서 마이크로 LED 흡착체(1') 측으로 튀어오르는 현상이 발생할 수 있다. 이 경우, 탄성 재질로 구성된 완충부(2600)는 마이크로 LED(ML)와 접촉된 상태에서 마이크로 LED(ML) 상부측으로 마이크로 LED(ML)를 지지하는 기능을 수행하고, 완충 기능을 수행할 수 있다.
제1기판이 임시 기판 또는 캐리어 기판일 경우에도 탄성 재질로 구성된 완충부(2600)는 마이크로 LED(ML)의 파손을 방지할 수 있다. 예컨대, 마이크로 LED(ML)에 포함된 제1반도체층(102) 및 제2반도체층(104)의 반도체 재료가 GaN로 선택될 경우, GaN의 상대적으로 약한 강성으로 인해 마이크로 LED 흡착체(1')와 마이크로 LED(ML)가 접촉되어 밀착될 때 제1, 2반도체층(102, 104)이 파손되는 문제가 발생할 수 있다. 하지만 탄성 재질로 구성된 완충부(2600)가 구비됨으로 인해 마이크로 LED 흡착체(1')와 마이크로 LED(ML)가 접촉되면서 밀착될 경우 완충부(2600)가 완충의 기능을 수행할 수 있으므로 제1, 2반도체층(102, 104)과 같은 마이크로 LED(ML)의 특정 레이어(Layer)의 파손을 방지할 수 있게 된다.
또한, 완충부(2600)는 포토레지스트(PR), PDMS재질 또는 금속 재질로 형성될 수 있으며, 노광 공정을 통해 형성될 수 있다. 또한, 스퍼터링(Sputtering)을 통해 형성될 수 있다.
완충부(2600)는 흡착영역(2000)의 개구를 제외한 흡착 부재(1100)의 표면에 구비되어 흡착영역(2000)에 의한 개구가 형성될 수 있다. 완충부(2600)의 개구(2600a)는 흡착영역(2000)과 동일한 개수 및 일정한 간격으로 형성될 수 있고, 흡착영역(2000)과 대응되는 위치에 형성될 수 있다.
완충부(2600)의 개구(2600a)는 기판(S)상의 마이크로 LED(ML)의 피치 간격과 동일한 피치 간격으로 형성될 수 있고, 완충부(2600)의 개구(2600a)와 흡착영역(2000)은 대응되는 위치에 형성되므로 흡착영역(2000)도 제1기판의 마이크로 LED(ML)의 피치 간격과 동일한 피치 간격으로 형성될 수 있다. 이와 같은 구성에 의해 제8변형 예의 마이크로 LED 흡착체(1')는 기판(S)상의 마이크로 LED(ML)를 한꺼번에 선택적으로 진공 흡착할 수 있다.
완충부(2600)는 흡착영역(2000)의 개구를 제외한 양극산화막(1600)의 표면 전체에 구비될 수 있고, 양극산화막의 표면 중 적어도 일부에 구비되되, 흡착영역(2000)의 개구 주변을 둘러쌓은 형태로 구비될 수 있다.
도 7(b)에는 제2실시 예의 제9변형 예의 마이크로 LED 흡착체(1')의 양극산화막(1600)으로 제공되는 흡착 부재(1100)의 일부가 도시된다. 제9변형 예는 차폐부 기능을 하는 배리어층(1600b)이 흡착 부재(1100)의 하부에 형성될 수 있다. 다시 말해, 양극산화막으로 구성되는 흡착 부재(1100)는 양극산화막(1600)의 하부의 표면에 배리어층(1600b)이 형성된다. 배리어층(1600b)에 의해 기공의 하부가 폐쇄되어 흡착 부재(1100)에 비흡착영역(2100)이 형성된다. 제9변형 예의 흡착 부재(1100)에는 에칭에 의해 양극산화막(1600)의 상, 하를 관통하는 흡착홀(1500')이 형성된다. 이러한 흡착홀(1500')에 의해 흡착영역(2000)이 형성된다.
제9변형 예의 흡착홀(1500')은 사각 단면으로 형성될 수 있다. 사각 단면을 갖는 흡착홀(1500')은 마이크로 LED(ML) 흡착 시 마이크로 LED(ML)에 대한 진공압 손실 면적을 최소화할 수 있게 된다. 원형 단면의 흡착홀(1500')의 경우, 마이크로 LED(ML)흡착시 흡착영역(2000)의 표면에 원형 단면의 흡착홀의 면적만큼의 마이크로 LED(ML)의 상면이 직접 접촉되어 흡착된다. 그러나 원형 단면의 흡착홀은 제9변형 예와 같이 사각 단면의 흡착홀(1500')보다 마이크로 LED(ML)를 흡착하는 진공압 손실 면적이 클 수 있다. 예컨대, 원형 단면의 흡착홀과 사각 단면의 흡착홀(1500')이 동일한 가로 및 세로 폭을 갖고 각각의 흡착홀(1500')에 가로 및 세로 폭이 동일한 마이크로 LED(ML)가 흡착될 경우, 사각 단면의 흡착홀(1500')에서 마이크로 LED(ML)에 대한 진공압 손실 면적이 최소화될 수 있다.
사각 단면의 흡착홀(1500')은 기판(S)상의 마이크로 LED(ML)의 열 방향(x 방향) 및 행 방향(y 방향) 피치 간격과 동일하게 형성되거나, 2배 이상의 피치 간격으로 형성될 수 있다. 도 7(b)에는 사각 단면의 흡착홀(1500')이 기판(S)상의 마이크로 LED(ML)의 열 방향(x 방향) 피치 간격의 3배수 피치 간격으로 형성되어 기판(S)상의 1, 4번째 마이크로 LED(ML)가 흡착 부재(1100)의 흡착홀(1500')에 의해 형성된 흡착영역(2000)에 흡착될 수 있는 것으로 도시하였다.
사각 단면의 흡착홀(1500')은 도 7(b)에 도시된 형성과 달리, 흡착 부재(1100)의 하부에 소정의 깊이로 적어도 일부가 제거되어 형성될 수 있고, 흡착홀(1500')의 사각 단면의 가로 및 세로 폭과 다른 폭을 갖는 연통홀을 추가로 구비하여 형성될 수도 있다.
연통홀은 흡착홀(1500')의 사각 단면보다 작은 가로 및 세로의 폭을 갖는 사각 단면으로 형성되어 상대적으로 공기가 배출되는 면적이 작다. 이로 인해 진공 펌프 작동 시 흡착홀(1500') 및 연통홀의 내부의 공기가 외부로 배출되면서 형성되는 진공압의 형성 시간이 실시 예 대비 단축될 수 있다. 제2변형 예에 따른 마이크로 LED 흡착체(1')는 흡착홀(1500')의 상부에 형성되는 연통홀의 사각 단면의 가로 및 세로 폭을 흡착홀(1500')의 사각 단면의 가로 및 세로 폭보다 작게 형성함으로써 진공압 형성 시간을 단축하여 마이크로 LED(ML)의 전사 효율을 향상시키는 효과를 얻을 수 있다.
흡착영역(2000)은 흡착홀(1500')에 의해 형성되므로, 위와 같은 형상은 흡착영역(2000)의 변형 형상일 수 있다.
도 7(c-1)에는 제2실시 예의 제10변형 예의 마이크로 LED 흡착체(1')의 양극산화막(1600)으로 제공되는 흡착 부재(1100)의 일부가 도시되고, 도 7(c-2)에는 제10변형 예에 구비되는 제2돌출댐(2800)의 일부를 사시도로 도시한 도이다. 제10변형 예의 흡착 부재(1100)는 도 7(a)에 도시된 제8변형 예의 흡착 부재(1100)와 동일한 형상으로 형성되어 흡착홀(1500)에 의해 흡착영역(2000)이 형성된다. 이에 대한 자세한 설명은 제8변형 예를 참조하기로 하고 생략한다.
먼저, 도 7(c-1)에 도시된 바와 같이, 제10변형 예의 마이크로 LED 흡착체(1')는 제2돌출댐(2800)을 포함하여 구성된다. 제2돌출댐(2800)은 양극산화막(1600)으로 구성된 흡착 부재(1100)의 하면에 구비되되, 흡착영역(2000)의 하부를 감싸는 형태로 구비된다. 도 7(c-2)에 도시된 바와 같이, 제2돌출댐(2800)은 흡착 부재(1100)에 형성된 다수의 흡착홀(1500) 각각을 감싸는 형태로 독립적으로 구비되어 흡착영역(2000) 각각을 감싸는 독립적인 형태로 구비될 수 있다. 이러한 제2돌출댐(2800)은 독립하여 홀로 서있는 형태일 수 있다. 제2돌출댐(2800)은 흡착영역(2000)을 감싸는 형태로 구비되어 흡착 부재(1100)의 하부에서 돌출되게 형성된다. 도 7(c-2)에는 제2돌출댐(2800)이 사각 단면을 갖는 것으로 도시하였지만 제2돌출댐(2800)의 형상은 이에 한정되지 않고, 원형 틀 등의 다른 형상으로 구비될 수 있다.
제2돌출댐(2800)은 흡착영역(2000)에 가해진 진공이 내부로 전달되어 내부에 흡입력이 발생할 수 있다. 흡착 부재(1100)는 제2돌출댐(2800) 내부의 흡입력으로 마이크로 LED(ML)를 흡착할 수 있게 된다. 마이크로 LED 흡착체(1')가 마이크로 LED(ML)를 흡착하기 위해 하강할 경우, 흡착 부재(1100)의 하부에 구비된 제2돌출댐(2800)의 하면이 마이크로 LED(ML)의 상면에 접촉될 수 있다. 제2돌출댐(2800)은 탄성재질로 구성될 수 있다. 이로 인해 제2돌출댐(2800)은 마이크로 LED(ML)와의 접촉 시 완충 기능을 할 수 있고, 마이크로 LED 흡착체(1')로 마이크로 LED(ML) 흡착시 마이크로 LED(ML)를 손상시키지 않고 흡착할 수 있게 된다.
제2돌출댐(2800)은 탄성 재질로 구성될 경우, LLO(Laser Lift-off) 방식을 이용하여 제1기판에서 마이크로 LED(ML)를 떼어낼 때 마이크로 LED(ML)의 파손을 방지하는 완충 기능을 수행할 수 있다. 예컨대, 제1기판이 성장 기판(101)일 경우, LLO 방식을 이용하여 성장 기판(101)에서 마이크로 LED(ML)를 떼어낼 때 가스압으로 인해 마이크로 LED(ML)가 성장 기판(101)에서 마이크로 LED 흡착체(1') 측으로 튀어오르는 현상이 발생할 수 있다. 이 경우, 탄성 재질로 구성된 제2돌출댐(2800)이 마이크로 LED(ML)와 접촉된 상태에서 마이크로 LED(ML) 상부측으로 마이크로 LED(ML)를 지지하는 기능을 수행하고, 완충 기능을 수행할 수 있다.
제1기판이 임시 기판 또는 캐리어 기판일 경우에도 탄성 재질로 구성된 제2돌출댐(2800)은 마이크로 LED(ML)의 파손을 방지할 수 있다. 예컨대, 마이크로 LED(ML)에 포함된 제1반도체층(102) 및 제2반도체층(104)의 반도체 재료가 GaN로 선택될 경우, GaN의 상대적으로 약한 강성으로 인해 마이크로 LED 흡착체(1')와 마이크로 LED(ML)가 접촉되어 밀착될 때 제1, 2반도체층(102, 104)이 파손되는 문제가 발생할 수 있다. 하지만 탄성 재질로 구성된 제2돌출댐(2800)이 구비됨으로 인해 마이크로 LED 흡착체(1')와 마이크로 LED(ML)가 접촉되면서 밀착될 경우 제2돌출댐(2800)이 완충의 기능을 수행할 수 있으므로 제1, 2반도체층(102, 104)과 같은 마이크로 LED(ML)의 특정 레이어(Layer)의 파손을 방지할 수 있게 된다.
또한, 제2돌출댐(2800)은 포토레지스트(PR), PDMS 재질, 또는 금속 재질로 형성될 수 있으며, 노광 공정을 통해 형성될 수 있다. 또한, 스퍼터링(Sputtering)을 통해 형성될 수 있다.
제2돌출댐(2800)이 구비된 마이크로 LED 흡착체(1')는 마이크로 LED(ML)와 이격된 상태에서도 마이크로 LED(ML) 흡착 과정을 수행할 수 있다. 도 7(c-1)이 제10변형 예의 마이크로 LED 흡착체(1')가 마이크로 LED 흡착 과정을 수행하는 상태일 경우, 마이크로 LED 흡착체(1')와 마이크로 LED(ML)가 이격된 상태로 마이크로 LED(ML)를 흡착할 수 있다. 제10변형 예의 마이크로 LED 흡착체(1')의 경우 하부에 제2돌출댐(2800)이 구비되므로 제2돌출댐(2800)과 마이크로 LED(ML)는 이격된 상태일 수 있다.
제2돌출댐(2800)이 구비된 마이크로 LED 흡착체(1')는 제2돌출댐(2800) 내부로 진공 펌프의 진공이 가해진다. 제2돌출댐(2800)은 흡착영역(2000)을 감싸는 형태이므로 그 내부에는 흡착영역(2000)에서 형성되는 진공흡입력보다 더 큰 진공흡입력이 형성될 수 있다. 큰 진공흡입력을 형성하기 위하여 흡착영역(2000)의 면적을 넓게 형성할 수 있지만, 넓어진 면적만큼 진공 펌프의 용량을 대용량 또는 고출력으로 변경해야 한다. 하지만 제2돌출댐(2800)을 구비할 경우, 진공펌프의 용량을 대용량 또는 고출력으로 변경할 필요없이 이격된 상태의 마이크로 LED를 효율적으로 흡착할 수 있게 된다.
제2돌출댐(2800)은 탄성 변형되는 재질로 구성되어 마이크로 LED(ML)가 서로 다른 높이를 갖더라도 탄성 변형을 통해 각각의 마이크로 LED(ML)의 높이차를 수용하여 마이크로 LED(ML)가 마이크로 LED 흡착체(1')에 흡착되도록 할 수 있다.
도 5 내지 도 7을 참조하여 설명한 변형 예들은 제2실시 예와 같은 양극산화막(1600)의 흡착 부재(1100)외에도 양극산화막(1600)이 아닌 재질로서 수직적 기공을 갖는 다공성 부재에 의해서도 구현될 수 있다.
제3실시 예
도 8은 본 발명의 바람직한 제3실시 예에 따른 마이크로 LED 흡착체(1")를 도시한 도이다. 제3실시 예는 양극산화막(1600)으로 제공되어 마이크로 LED(ML)를 흡착하는 흡착영역(2000) 및 마이크로 LED(ML)를 흡착하지 않는 비흡착영역(2100)으로 구분된 흡착 부재(1100) 및 임의적 기공을 갖고 흡착 부재(1100)의 상면에서 흡착 부재(1100)를 지지하는 지지 부재(1200)를 포함하여 구성된다.
제3실시 예는 흡착 부재(1100)가 배리어층(1600b)이 양극산화막(1600)의 하부에 위치하는 구조로 구성된다는 점에서 제2실시 예와 차이가 있다. 또한, 이러한 흡착 부재(1100)의 하부에 완충부(2600) 및 금속부(6000)가 구비된다는 점에서 제2실시 예와 차이가 있다. 이하에서 설명되는 제3실시 예는 제2실시 예와 비교하여 특징적인 구성요소들을 중심으로 설명하겠으며, 동일하거나 유사한 구성요소들에 대한 자세한 설명들은 생략한다.
흡착 부재(1100)는 진공 흡입력으로 마이크로 LED(ML)를 흡착하는 흡착영역(2000)과 마이크로 LED(ML)를 흡착하지 않는 비흡착영역(2100)으로 구분될 수 있다.
이러한 흡착 부재(1100)는 상부에 구비되는 지지 부재(1200)에 의해 지지될 수 있다.
지지 부재(1200)는 흡착 부재(1100)와 별도로 형성되어 기공 구조를 통해 진공 챔버(1300)의 흡입력을 분산시켜 흡착영역(2000)에 전달할 수 있다. 이로 인해 흡착 부재(1100)에 진공 흡입력이 발생되어 흡착 부재(1100)의 흡착면에 마이크로 LED(ML)가 흡착될 수 있게 된다.
도 8에 도시된 바와 같이, 지지부재(1200)는 흡착 부재(1100)의 흡착면 반대면 측에 구비되고, 흡착영역(2000)과 공기 유로적으로 연통되는 임의적 기공으로 구성될 수 있다. 지지 부재(1200)는 흡착 부재(1100)의 비흡착영역(2100)을 진공 흡입력으로 흡착하여 흡착 부재(1100)를 지지하면서 흡착 부재(1100)의 공기 유로적으로 연통되어 흡착영역(2000)으로 마이크로 LED(ML)를 흡착하도록 할 수 있다.
도 8에 도시된 바와 같이, 흡착 부재(1100)는 다공층(1600a) 및 배리어층(1600b)을 포함하는 양극산화막(1600)으로 제공될 수 있다. 양극산화막(1600)은 배리어층(1600b)이 양극산화막(1600)의 하부에 위치하고 다공층(1600a)이 배리어층(1600b)의 상부에 위치할 수 있다.
배리어층(1600b)은 그 표면이 평탄한 면을 가질 수 있다. 따라서, 배리어층(1600b)이 양극산화막(1600)의 하부에 위치할 경우, 배리어층(1600b)에 의한 비흡착영역(2100)은 평탄한 면으로 형성될 수 있다.
배리어층(1600b)이 양극산화막(1600)의 하부에 위치할 경우, 흡착 부재(1100)의 하부 표면이 평탄한 면으로 형성될 수 있다. 이로 인해 마이크로 LED(ML) 흡착시 마이크로 LED(ML)의 파손을 방지하는 완충부(2600) 및 정전기를 방지하는 금속부(6000)의 형성이 용이해질 수 있다.
구체적으로 설명하면, 도 5에 도시된 바와 같이, 배리어층(1600b)이 양극산화막(1600)의 하부에 위치함으로써 다공층(1600a)이 양극산화막(1600)의 하부에 위치하는 구성에 대비 양극산화막(1600)의 하부 표면이 평탄하게 형성될 수 있다. 마이크로 LED 흡착체(1")의 경우, 마이크로 LED(ML) 흡착 시 흡착 부재(1100)의 하부의 노출 표면의 적어도 일부가 마이크로 LED(ML)와 접촉되면서 흡착영역(2000)에 의해 마이크로 LED(ML)를 흡착할 수 있다. 여기서 흡착 부재(1100)의 하부의 노출 표면은 비흡착영역(2100)일 수 있다. 이 경우, 경도가 높은 재질인 양극산화막(1600)으로 제공되는 흡착 부재(1100)가 마이크로 LED(ML)와 접촉되면서 마이크로 LED(ML)가 파손되는 문제가 발생할 수 있다. 따라서, 바람직하게는 흡착 부재(1100)의 하부 노출 표면에 완충 기능을 수행하는 완충부(2600)를 결합할 수 있다.
완충부(2600)는 탄성 재질로 구성될 수 있다. 완충부(2600)는 포토레지스트(PR), PDMS 재질 또는 금속 재질로 형성될 수 있으며, 노광 공정을 통해 형성될 수 있다. 또한, 스퍼터링(Sputtering)을 통해 형성될 수 있다.
이 경우, LLO(Laser Lift-off) 방식을 이용하여 제1기판에서 마이크로 LED(ML)를 떼어낼 때 마이크로 LED(ML)의 파손을 방지하는 완충 기능을 수행할 수 있다. 예컨대, 제1기판이 성장 기판(101)일 경우, LLO 방식을 이용하여 성장 기판(101)에서 마이크로 LED(ML)를 떼어낼 때 가스압으로 인해 마이크로 LED(ML)가 성장 기판(101)에서 마이크로 LED 흡착체(1") 측으로 튀어오르는 현상이 발생할 수 있다. 이 경우, 탄성 재질로 구성된 완충부(2600)는 마이크로 LED(ML)와 접촉된 상태에서 마이크로 LED(ML) 상부측으로 마이크로 LED(ML)를 지지하는 기능을 수행하고, 완충 기능을 수행할 수 있다.
제1기판이 임시 기판 또는 캐리어 기판일 경우에도 탄성 재질로 구성된 완충부(2600)는 마이크로 LED(ML)의 파손을 방지할 수 있다. 예컨대, 마이크로 LED(ML)에 포함된 제1반도체층(102) 및 제2반도체층(104)의 반도체 재료가 GaN로 선택될 경우, GaN의 상대적으로 약한 강성으로 인해 마이크로 LED 흡착체(1")와 마이크로 LED(ML)가 접촉되어 밀착될 때 제1, 2반도체층(102, 104)이 파손되는 문제가 발생할 수 있다. 하지만 탄성 재질로 구성된 완충부(2600)가 구비됨으로 인해 마이크로 LED 흡착체(1")와 마이크로 LED(ML)가 접촉되면서 밀착될 경우 완충부(2600)가 완충의 기능을 수행할 수 있으므로 제1, 2반도체층(102, 104)과 같은 마이크로 LED(ML)의 특정 레이어(Layer)의 파손을 방지할 수 있게 된다.
비흡착영역(2100)의 노출 표면에 구비된 완충부(2600)의 하부에는 금속부(6000)가 구비될 수 있다. 다시 말해, 흡착 부재(1100)의 개구 및 완충부(2600)의 개구를 제외한 노출 표면에 흡착 부재(1100)의 개구 및 완충부(2600)의 개구와 대응되는 위치에 개구가 형성된 금속부(6000)가 접합되어 구비될 수 있다.
도 8에 도시된 바와 같이, 금속부(6000)는 흡착 부재(1100)의 개구 및 완충부(2600)의 개구와 대응되는 위치에 개구가 형성될 수 있다. 이 경우, 금속부(6000)의 개구의 면적은 흡착 부재(1100)의 개구 및 완충부(2600)의 개구의 면적과 동일할 수 있다.
금속부(6000)는 금속 재질로 구비될 수 있다. 이로 인해 마이크로 LED 흡착체(1")의 마이크로 LED(ML) 전사 공정을 방해하는 정전기력을 사전에 효과적으로 제거할 수 있게 된다.
구체적으로 설명하면, 마이크로 LED 흡착체(1")를 통한 마이크로 LED(ML) 전사 과정에서 마찰 등의 원인에 의해 제1기판(예를 들어, 성장 기판(101), 임시 기판, 또는 캐리어 기판(C))과 마이크로 LED 흡착체(1") 사이 또는 제2기판(예를 들어, 표시 기판(301), 임시 기판, 목표 기판 또는 회로 기판(HS))과 마이크로 LED 흡착체(1") 사이에서 의도치 않게 대전에 의한 정전기력이 발생할 수 있다. 의도치 않은 정전기력은 작은 전하에 의한 정전기력이라 하더라도 1~100마이크로미터(㎛)의 크기를 갖는 마이크로 LED(100)에 큰 영향을 미치게 된다.
다시 말해, 마이크로 LED 흡착체(1")가 제1기판으로부터 마이크로 LED(ML)를 흡착한 후, 제2기판으로 마이크로 LED(ML)를 실장시키는 언로딩 공정에서 정전기력이 발생하게 되면 마이크로 LED(ML)가 마이크로 LED 흡착체(1")에 달라 부터 위치가 틀어진 채 제2기판으로 언로딩되거나, 언로딩 자체가 수행되지 않는 문제점이 발생한다.
이러한 상황에서 금속 재질의 금속부(6000)를 완충부(2600)의 노출 표면에 구비함으로써 마이크로 LED 흡착체(1")를 통한 마이크로 LED(ML) 전사 과정에서 발생하는 부정적인 정전기력을 제거할 수 있다.
또한 금속부(6000)는 전극 패턴의 구성으로 형성될 수 있고, 이를 통해 마이크로 LED(ML)의 컨택전극(106,107)과 전기적으로 접속하여 마이크로 LED(ML)의 불량여부를 전기적으로 검사할 수 있다.
제4실시 예
도 9(a)는 본 발명의 바람직한 제4실시 예에 따른 마이크로 LED 흡착체를 구성하는 다공성 부재(1000)의 일부를 확대하여 도시한 도이다. 제4실시 예는 제2개구부(3000a)가 형성된 마스크(3000)가 제1다공성 부재(1100)로 구성된다. 따라서, 제4실시 예의 제1다공성 부재(1100)는 개구부(3000a)가 형성된 마스크(3000)로 제공되는 흡착 부재(1100)일 수 있다. 이하에서 설명되는 제4실시 예는 제1실시 예와 비교하여 특징적인 구성요소들을 중심으로 설명하겠으며, 동일하거나 유사한 구성요소들에 대한 자세한 설명들은 생략한다.
도 9(a)에 도시된 바와 같이, 임의적 기공을 갖는 지지 부재(1200)의 하부 표면에는 제1다공성 부재(1100)인 마스크(3000)로 제공되는 흡착 부재(1100)가 구비될 수 있다. 마스크(3000)의 제2개구부(3000a)는 일정한 간격으로 형성되어 마이크로 LED(ML)를 흡착하는 흡착영역(2000)을 형성할 수 있고, 마스크(3000)의 제2개구부(3000a)가 형성되지 않은 면은 마이크로 LED(ML)가 흡착되지 않는 비흡착영역(2100)을 형성할 수 있다.
마스크(3000)의 제2개구부(3000a)는 성장 기판(101)상의 마이크로 LED(ML)의 피치 간격과 동일하게 형성되거나, 마이크로 LED(ML)를 선택적으로 흡착하기 위해 일정한 피치 간격을 갖고 형성될 수 있다.
도 9(a)에서는 기판(S)이 성장 기판(101)일 경우, 마스크(3000)의 제2개구부(3000a)는 성장 기판(101)상의 마이크로 LED(ML)의 열 방향(x 방향) 피치간격의 3배수의 피치 간격으로 형성될 수 있다. 이로 인해 마이크로 LED 흡착체는 기판(S)상의 1, 4번째에 해당하는 마이크로 LED(ML)를 선택적으로 흡착할 수 있다.
마스크(3000)는 제2개구부(3000a) 및 비개구부 영역(3000b)을 구비하여 비개구부 영역(3000b)이 임의적 기공을 갖는 지지 부재(1200)의 하부의 일부 표면을 막아 제2개구부(3000a)에 큰 진공 흡착력이 형성되도록 할 수 있다.
임의적 기공을 갖는 지지 부재(1200)는 내부 전체에 기체 유로가 형성되어 하부 표면 전체에 마이크로 LED(ML)를 흡착하기 위한 진공 흡착력이 형성될 수 있다. 따라서 이러한 지지 부재(1200)의 표면에 마스크(3000)를 구비할 경우, 마스크(3000)의 제2개구부(3000a)가 위치하는 부분이 실질적으로 마이크로 LED(ML)를 흡착하는 흡착영역(2000)이 될 수 있다. 다시 말해, 제4실시 예는 지지 부재(1200)의 하부 표면에 마스크(3000)를 구비함으로써 실질적으로 마이크로 LED(ML)를 흡착하는 흡착영역(2000)을 한정할 수 있게 된다. 이 경우, 마스크(3000)에 구비되는 제2개구부(3000a)가 수직적 기공에 해당할 수 있다.
마스크(3000)의 제2개구부(3000a)가 형성되지 않은 면은 지지 부재(1200)의 하부 표면의 기공을 막는 기능을 하여 차폐부로서의 역할을 한다. 이로 인해 진공 챔버(1300)에서 지지 부재(1200)로 전달됨으로써 형성되는 진공압이 마스크(3000)의 제2개구부(3000a)로 인해 더 크게 형성될 수 있다.
도 9(a)에 도시된 바와 같이, 마스크(3000)의 제2개구부(3000a)의 면적은 마이크로 LED(ML)의 상부면 수평 면적보다 작게 형성될 수 있다. 이 경우, 바람직하게는 마스크(3000)의 재질이 탄성 재질로 구성될 수 있다. 제2개구부(3000a)의 면적이 마이크로 LED(ML)의 상부면 수평 면적보다 작게 형성되고 탄성 재질로 구성되는 마스크(3000)는 마이크로 LED 흡착체의 마이크로 LED(ML) 흡착시 마이크로 LED(ML)의 파손을 방지하는 완충 기능을 수행할 수 있다. 구체적으로 설명하면, 마이크로 LED(ML) 흡착시 마스크(3000)의 제2개구부(3000a) 주변에 형성된 제2개구부(3000a)가 형성되지 않는 비개구부 영역(3000b)의 적어도 일부에 마이크로 LED(ML)의 상부면의 적어도 일부가 접촉되면서 마이크로 LED(ML)가 흡착될 수 있다. 다시 말해, 마이크로 LED(ML)의 상부면 수평 면적 중 마스크(3000)의 제2개구부(3000a)의 면적을 제외한 만큼의 마이크로 LED(ML)의 상부면 수평 면적이 마스크(3000)의 노출 표면에 접촉되어 마이크로 LED 흡착체에 흡착될 수 있다. 마이크로 LED(ML)와 직접 접촉되는 부분은 마스크(3000)의 노출 표면이므로 마이크로 LED(ML)는 파손되지 않고 마이크로 LED 흡착체에 흡착될 수 있다.
이와는 달리, 마스크(3000)의 제2개구부(3000a)는 마이크로 LED(ML)의 상부면의 수평 면적 크기보다 크게 형성될 수도 있다.
이처럼 마스크(3000)의 제2개구부(3000a)의 면적이 마이크로 LED(ML) 상부면의 수평 면적보다 크게 형성될 경우, 진공 챔버(1300)를 통해 진공이 전달된 제2다공성 부재(1200)의 진공압이 마스크(3000)의 제2개구부(3000a)로 인해 형성되고, 지지 부재(1200)의 하부 표면에 마이크로 LED(ML)가 흡착됨으로써 마이크로 LED(ML)를 흡착할 수 있게 된다.
마스크(3000)는 인바(invar) 재질, 양극산화막, 금속 재질, 필름 재질, 종이 재질, 탄성 재질(PR, PDMS)을 포함하여 구성될 수 있다.
한편 마스크(3000)는 액상 물질을 임의적 기공을 갖는 지지부재(1200)의 표면에 도포한 후 경화시켜 형성된 코팅층일 수 있다. 이 경우, 액상물질이 도포된 영역은 비흡착영역으로서 비개구부 영역(3000b)이 되고, 액상물질이 도포되지 않은 영역은 흡착영역으로서 제2개구부(3000a)가 된다. 코팅층은 개구부가 일정한 간격으로 구비되어 마이크로 LED를 흡착하는 흡착영역을 형성하고, 개구부가 형성되지 않은 면은 상기 마이크로 LED를 흡착하지 않는 비흡착영역을 형성하며, 다공성 부재의 표면에 일체로 형성될 수 있다.
앞서 설명한 제2개구부(3000a)의 면적이 마이크로 LED(ML) 상부면 수평 면적보다 작게 형성될 경우에는 마스크(3000)가 흡착영역(2000) 형성 기능 및 완충의 기능을 수행하므로 탄성 재질로 구성되는 것이 바람직할 수 있다.
마스크(3000)가 인바 재질로 구성될 경우, 열팽창 계수가 낮아 열영향으로 인한 계면의 틀어짐을 방지할 수 있다.
이와는 달리, 마스크(3000)가 금속 재질로 구성될 경우, 제2개구부(3000a) 형성의 용이성을 가질 수 있다. 금속 재질은 가공이 쉽기 때문에 마스크(3000)의 제2개구부(3000a) 형성이 쉬울 수 있다. 그 결과 제조의 편이성이 향상된다는 효과가 있다.
또한, 마스크(3000)가 금속 재질일 경우, 마이크로 LED(ML)를 표시 기판(301)의 제1 컨택전극(106)에 본딩시키기 위한 수단으로 금속 접합방식을 이용할 때, 표시 기판(301)에 전원을 인가하지 않고 마이크로 LED 흡착체의 마스크(3000)를 통해서 마이크로 LED(ML)의 상면을 가열하여 본딩 금속(합금)을 가열함으로써 마이크로 LED(ML)를 제1 컨택전극(106)에 본딩시킬 수 있다.
이와는 달리, 마스크(3000)는 필름 재질로 이루어질 수 있다. 마스크(3000)가 구비된 마이크로 LED 흡착체는 마이크로 LED(ML)를 흡착할 경우, 마스크(3000)의 표면에 이물질이 부착될 수 있다. 마스크(3000)는 세정하여 재사용될 수 있으나 매번 세정 과정을 수행하기는 번거롭다는 문제점이 있다. 따라서, 마스크(3000)를 필름 재질로 구비함으로써 이물질이 부착될 경우 마스크(3000) 자체를 제거하여 교체를 용이하게 할 수 있다. 또한, 마스크(3000)는 종이 재질로 구성될 수 있다. 종이 재질로 구성된 마스크(3000)도 표면에 이물질이 부착될 경우, 별도의 세정 과정없이 마스크(3000) 자체를 제거하여 용이하게 교체할 수 있다.
이와는 달리, 마스크(3000)는 탄성 재질로 구성될 수 있다. 이 경우, 비흡착영역(2100)과 대응되는 마이크로 LED(ML)의 파손을 방지하여 완충 기능을 할 수 있다.
구체적으로 설명하면, 마이크로 LED 흡착체는 기계적 공차로 인하여 하강하면서 이송 오차가 발생할 수 있다. 이로 인해 비흡착영역(2100)에 비흡착영역(2100)와 대응되는 마이크로 LED(ML)가 접촉되게 된다. 이 경우, 탄성 재질의 마스크(3000)가 이송 오차를 수용하면서 비흡착영역(2100)에 접촉된 마이크로 LED(ML)의 파손을 방지할 수 있게 된다.
마스크(3000)는 제2개구부(3000a)의 형상을 달리하여 구성될 수 있다. 구체적으로 설명하면, 제2개구부(3000a)는 지지 부재(1200)의 하부 표면과 직접 접촉하는 직접 접촉면측의 마스크(3000)의 제2개구부(3000a)의 내경이 마이크로 LED(ML)의 상부면 수평 면적보다 크게 형성되고, 마이크로 LED(ML) 상부면 측으로 갈수록 그 내경이 커지는 형태로 형성될 수 있다. 이로 인해 제2개구부(3000a)의 내측면은 마이크로 LED 흡착체의 하강 방향을 기준으로 하방향으로 갈수록 내경이 커지는 형태로 경사지게 형성될 수 있다. 이와 같은 구성에 의하여 마스크(3000)는 마이크로 LED 흡착체의 흡착영역(2000)에 마이크로 LED(ML)가 흡착될 때 흡착영역(2000)으로 올바르게 흡착될 수 있도록 진공 흡착 위치를 가이드할 수 있는 기능을 할 수 있게 된다.
마스크(3000)는 진공 흡입력에 의해 지지 부재(1200)의 하부에 흡착될 수 있다. 마스크(3000)를 구비한 마이크로 LED 흡착체는 진공 포트를 통해 진공압을 형성함으로써 지지 부재(1200)에 진공을 가하여 마이크로 LED(ML)를 진공 흡착한다. 이후, 마이크로 LED 흡착체를 표시 기판(301)의 상부로 이동 시켜 위치시킨 다음 하강한다. 진공 포트를 통해 지지 부재(1200)에 가해진 진공을 해제하여 지지 부재(1200)의 하부에 진공 흡착된 마스크(3000) 및 마이크로 LED(ML)를 표시 기판(301)으로 전달할 수 있다. 표시 기판(301)으로 전달된 마이크로 LED(ML)는 표시 기판(301)에 전원을 인가함으로써 표시 기판(301)의 제1 컨택전극(106)에 본딩될 수 있다. 이후, 마이크로 LED 흡착체는 진공 포트를 통해 진공압을 형성함으로써 지지 부재(1200)에 진공을 가하여 표시 기판(301)에 전달된 마스크(3000)를 다시 흡착할 수 있다. 마이크로 LED(ML)는 제1 컨택전극(106)에 본딩되어 있으므로, 마스크(3000)만이 지지 부재(1200)의 하부에 진공 흡착될 수 있다. 본 발명에서는 표시 기판(301)에 전달된 마스크(3000)를 마이크로 LED 흡착체가 다시 흡착하여 제거하는 것으로 설명하였지만, 마스크(3000)는 다른 적합한 수단을 통해 제거될 수 있다.
마스크(3000)는 마이크로 LED 흡착체에서 마이크로 LED(ML)를 흡착하는 흡착 부재(1100)로서의 기능을 수행한다. 따라서, 마스크(3000)는 앞서 설명한 제2실시 예의 변형 예들의 구성이 구비될 수 있다.
마이크로 LED 흡착체는 이와 같이 마스크(3000)를 구비하여 마스크(3000)의 제2개구부(3000a)를 통해 마이크로 LED(ML)를 진공 흡착하는 진공압을 더욱 크게 형성하고, 큰 진공압으로 균일한 평탄도를 가진 지지 부재(1200)의 하부 표면에 마이크로 LED(ML)가 직접 접촉되어 진공 흡착 시 발생하는 이탈을 방지할 수 있게 된다.
제5실시 예
도 9(b)는 본 발명의 제5실시 예에 따른 마이크로 LED 흡착체를 구성하는 제1, 2다공성 부재(1100, 1200)의 일부를 확대하여 도시한 도이다. 제5실시 예는 레이저를 이용하여 상광하협 형태의 수직적 기공을 갖는 흡착 부재(1100)가 제1다공성 부재(1100)로 구성된다. 제5실시 예의 흡착홀(1500")은 상광하협 형태로 형성된다. 흡착홀(1500")은 마이크로 LED(ML)를 흡착하는 흡착영역(2000)을 형성하고, 흡착홀(1500")이 형성되지 않은 영역은 마이크로 LED(ML)를 흡착하지 않는 비흡착영역(2100)을 형성한다.
도 9(b)에 도시된 바와 같이, 흡착홀(1500")은 흡착 부재(1100)를 수직방향으로 상, 하 관통되게 형성되되, 마이크로 LED(ML)가 흡착되는 흡착면으로 갈수록 폭이 작게 형성된다. 이로 인해 흡착홀(1500")은 경사진 내측면이 구비될 수 있다.
흡착홀(1500")에서 가장 작은 내부 폭을 갖는 하부 폭은 마이크로 LED(ML)의 수평방향 폭보다 작게 형성될 수 있다. 흡착홀(1500")의 경우, 마이크로 LED(ML)를 흡착할 수 있는 진공압만 형성될 수 있다면 그 폭이 흡착면으로 갈수록 작게 형성되어 하부 폭이 마이크로 LED(ML)의 상부면 수평방향 폭보다 작게 형성되어도 마이크로 LED(ML)의 이탈 염려 및 흡착 효율의 저하없이 마이크로 LED(ML)를 흡착하는 과정을 수행할 수 있다.
레이저 가공을 통해 형성되는 흡착홀(1500")은 상협하광 형태로 하부로 갈수록 폭이 넓어지는 형태로 형성될 수도 있다. 그러나 이와 같은 형태의 흡착홀(1500")은 패키징된 LED 또는 무거운 반도체 칩에 비해 상대적으로 작은 사이즈의 마이크로 LED 흡착 시 전사헤드의 기계적 오차를 고려한 높은 얼라인 정밀도를 충족시키기가 더욱 어렵다. 또한, 하부 폭이 넓은 형태로 인해 마이크로 LED 전사헤드의 기계적 오차로 인한 위치 정렬 오차가 발생하면 흡착홀(1500")의 진공이 새는 문제가 발생할 수 있다. 또한, 하부 폭이 넓게 형성되는 흡착홀(1500")로 인해 흡착 부재의 비흡착영역의 하부 수평 면적이 좁아지면서 날카로운 형태로 형성되어 마이크로 LED(ML)를 손상시키는 문제가 발생될 수 있다.
하지만, 제5실시 예와 같이, 흡착면으로 갈수록 폭이 작게 형성되는 흡착홀(1500")이 형성되면 상대적으로 얼라인 정밀도가 낮더라도 마이크로 LED(ML)의 흡착이 수행될 수 있다. 이는 마이크로 LED(ML)의 수평방향 폭보다 작은 폭으로 흡착홀(1500")의 하부 폭이 형성되므로 흡착홀(1500")이 마이크로 LED(ML)의 상면 폭 내로만 위치된다면 마이크로 LED(ML)는 흡착홀(1500")에 흡착될 수 있기 때문이다. 이로 인해 마이크로 LED(ML)에 대한 마이크로 LED 흡착체의 얼라인 정밀도가 상대적으로 낮더라도 마이크로 LED(ML) 흡착 효율 저하없이 마이크로 LED(ML)를 흡착할 수 있는 효과가 있다. 또한, 흡착홀(1500")의 하부 폭이 마이크로 LED(ML)의 수평방향 폭보다 작은 폭으로 형성되어 마이크로 LED(ML)의 상면 폭 내로 위치하면 마이크로 LED(ML)는 흡착된다. 이로 인해 흡착홀(1500")의 진공 누설의 염려가 줄어들고, 흡착홀(1500)의 하부 폭은 흡착홀(1500")의 상부 폭보다 작은 폭으로 형성되어 상부 폭 대비 상대적으로 센 진공압이 형성되므로 마이크로 LED(ML)가 이탈 염려없이 흡착될 수 있다. 또한, 마이크로 LED(ML)의 서로 간의 이격 거리가 수 ㎛로 좁아도 흡착홀(1500")의 하부 폭이 마이크로 LED(ML)의 수평 방향 폭보다 작으므로 용이한 흡착이 가능할 수 있다. 또한, 진공압 형성 시 공기가 흡착홀(1500")의 상부 폭 대비 작은 폭을 갖는 하부에서부터 상부로 갈수록 넓은 폭을 거쳐 외부로 배출되므로, 와류 발생 확률이 낮아 와류로 인한 진공압 미형성 문제로 마이크로 LED(ML)가 미흡착되는 문제 발생 확률을 낮출 수 있다.
흡착홀(1500")은 상부 폭이 커지는 형상으로 인해 흡착 부재(1100)의 진공압이 균일하게 형성되게 할 수 있다. 다시 도 9b를 참조하면, 흡착홀(1500")의 상부 폭이 커지는 형상으로 인해 흡착홀(1500") 내부에서 외부로 배출되는 공기는 한군데로 원활하게 모일 수 있게 된다. 다시 말해, 흡착 부재(1100)에 형성된 복수개의 흡착홀(1500")의 공기가 한군데로 모이면서 흡착홀(1500")에는 균일한 진공압 형성될 수 있게 된다. 이로 인해 마이크로 LED 흡착체는 마이크로 LED(ML)를 함께 동시에 흡착할 수 있을 뿐만 아니라, 마이크로 LED(ML)를 빠짐없이 흡착면에 흡착하여 흡착효율이 향상될 수 있게 된다.
흡착홀(1500")은 흡착 부재(1100)를 하면에서 바라볼 경우, 그 단면이 원형 단면일 수 있다. 예컨대, 레이저를 이용하여 흡착면으로 갈수록 폭이 작게 형성되는 흡착홀(1500")을 형성할 경우, 원형 단면을 갖는 흡착홀(1500")을 형성하기가 더욱 용이할 수 있다.
마이크로 LED 흡착체의 흡착 부재(1100)에 형성되는 복수개의 흡착홀(1500")은 x(행) 방향, y(열) 방향으로 일정 간격으로 이격되어 형성된다. 여기서 흡착홀(1500")은 x, y 방향 중 적어도 어느 한 방향으로는 도너부에 배치된 마이크로 LED(ML)의 x, y 방향의 피치 간격의 2배 이상의 거리로 이격되어 형성된다.
흡착홀(1500")은 도 9(b)에 도시된 바와 같이, 기판(S)상의 마이크로 LED(ML)의 x방향 피치 간격의 3배수 간격으로 형성될 수 있다. 이로 인해 흡착 부재(1100)에는 흡착홀(1500")이 미형성된 비흡착영역(2100)이 구비되고, 비흡착영역(2100)의 하면과 대응되는 위치에 배치된 기판(S)상의 마이크로 LED(ML)는흡착 부재(1100)에 비흡착될 수 있다.
제5실시 예의 레이저 가공을 통해 형성된 수직적 기공을 갖는 흡착 부재(1100)는 전술한 제2실시 예의 변형 예의 구성들을 구비할 수 있다. 다만, 흡착 부재(1100)가 레이저를 이용하여 형성되는 수직적 기공을 갖는 다공성 부재일 경우, 다공성 부재의 상, 하를 관통하는 기공의 형상이 일정하지 않을 수 있으므로 도 9(b)를 참조하는 제9변형 예의 사각 단면의 흡착홀(1500)은 레이저를 이용하여 형성되는 수직적 기공을 갖는 다공성 부재에는 형성되기 어려울 수 있다.
이처럼 제5실시 예의 마이크로 LED 흡착체는 마이크로 LED(ML)를 흡착하는 흡착 부재(1100)에 흡착면으로 갈수록 폭이 작게 형성되는 흡착홀(1500")을 복수개 구비함으로써 흡착영역(2000)을 형성할 수 있다. 이로 인해 마이크로 LED(ML)간의 이격거리가 좁더라도 마이크로 LED(ML)를 용이하게 흡착할 수 있다. 또한, 흡착면으로 갈수록 폭이 작게 형성되는 흡착홀(1500")은 상부로 갈수록 폭이 넓어지는 구조이므로, 흡착홀(1500') 내부에서 외부로 배출되는 공기가 한군데로 모이게 될 수 있다. 이로 인해 복수개의 흡착홀(1500") 전체에 균일한 진공압이 형성될 수 있고, 흡착면 전체에 마이크로 LED(ML)가 빠짐없이 흡착되어 마이크로 LED(ML) 흡착 효율이 향상될 수 있다.
제6실시 예
도 10은 본 발명의 제6실시 예에 따른 마이크로 LED 흡착체(1"')를 구성하는 과정을 개략적으로 도시한 도이다. 제6실시 예는 에칭에 의해 형성된 수직적 기공을 갖는 흡착 부재(1100), 흡착 부재(1100)의 상면에서 흡착 부재(1100)를 지지하는 지지 부재(1200)를 포함하여 구성될 수 있다. 제6실시 예의 흡착 부재(1100)는 에칭에 의해 형성된 관통홀(5000)이 하나의 흡착영역(2000)을 형성한다. 도 10에는 다수의 수직적 기공이 하나의 흡착영역(2000)을 구성하는 것으로 도시되어 있으나 이와는 다르게 에칭에 의해 형성된 하나의 수직적 기공이 하나의 흡착영역(2000)을 형성할 수 있다.
흡착 부재(1100)는 관통홀(5000)에 의해 형성되는 마이크로 LED(ML)를 흡착하는 흡착영역(2000)과 관통홀(5000)이 형성되지 않아 형성되는 비흡착영역으로 구분되고, 웨이퍼 기판(w) 재질로 구성될 수 있다.
관통홀(5000)은 에칭에 의해 형성된 수직적 기공일 수 있다. 흡착 부재(1100)는 관통홀(5000)이 흡착 부재(1100)를 상, 하 관통하여 형성됨으로써 흡착 영역(2000)을 구비할 수 있게 된다. 전술한 실시 예들의 마이크로 LED 흡착체의 흡착영역(2000)을 형성하는 흡착홀(1500)과 동일한 기능을 수행할 수 있다.
관통홀(5000)에 의해 흡착영역(2000)이 형성되는 흡착 부재(1100)를 형성하기 위해 먼저, 실리콘 재질의 웨이퍼 기판(w)이 구비된다.
그런 다음 도 10(a)에 도시된 바와 같이, 에칭을 통해 관통홀(5000)이 형성된다. 관통홀(5000)은 웨이퍼 기판(w)의 적어도 일부를 에칭하여 형성될 수 있다. 도 10(a)는 도면상 웨이퍼 기판(w)의 하부에서부터 깊이 방향으로 적어도 일부에 에칭이 수행되어 다수의 관통홀(5000)을 형성하는 것으로 도시하였지만, 웨이퍼 기판(w)은 상부에서 깊이 방향으로 적어도 일부에 에칭이 수행될 수도 있다. 여기서 에칭 방법은 반도체 제조 공정에서 통상적으로 사용되고 있는 습식 에칭, 드라이 에칭등의 에칭 방법을 포함한다.
제6실시 예의 흡착 부재(1100)의 흡착영역(2000)은 관통홀(5000)로 구성된다. 따라서, 에칭에 의해 흡착영역(2000)을 구성하기 위한 관통홀(5000)이 형성되고, 동일한 과정으로 흡착영역(2000)을 복수개 형성하여 기판(S)상의 마이크로 LED(ML)를 흡착하기 위한 복수개의 흡착영역(2000)을 구비할 수 있다. 이 경우, 흡착영역(2000)은 마이크로 LED(ML)의 상부면 수평 면적보다 작은 면적으로 형성되어 진공의 누설을 방지할 수 있다.
관통홀(5000)을 포함하는 흡착영역(2000)은 기판(S)상의 마이크로 LED(ML)의 열 방향(x 방향) 및 행 방향(y 방향) 피치 간격과 동일한 피치 간격으로 형성되거나, 3배수 간격으로 형성될 수 있다. 도 10에서는 하나의 예로서 흡착영역(2000)이 기판(S)상의 마이크로 LED(ML)의 열 방향(x 방향) 피치 간격과 동일한 피치 간격으로 형성되는 것으로 도시하여 설명한다.
도 10(a)는 흡착영역(2000)을 구성하는 관통홀(5000)을 형성하는 과정이다. 이 경우, 하나의 흡착영역(2000)을 구성하는 관통홀(5000)이 일정한 피치 간격으로 형성되고, 흡착영역(2000)의 피치 간격을 고려하여 일정한 피치 간격을 두고 다시 다수의 관통홀(5000)이 일정한 피치 간격으로 형성될 수 있다. 도 10에서는 하나의 흡착영역(2000)이 3개의 관통홀(5000)으로 형성되는 것으로 도시하였지만, 이는 하나의 예로서 흡착영역(2000)을 구성하는 다수의 관통홀(5000)의 개수에 한정은 없다. 다만, 흡착영역(2000)은 마이크로 LED(ML)의 상부면 수평 면적보다 작게 형성되므로 흡착영역(2000)이 마이크로 LED(ML) 상부면 수평 면적보다 작은 면적을 형성할 수 있도록 다수의 관통홀(5000)을 구성하는 것이 바람직할 수 있다.
그런 다음 도 10(b)에 도시된 바와 같이, 웨이퍼 기판(w)의 에칭면의 반대면을 제거한다. 이로 인해 도 10(a)에서 형성된 다수의 관통홀(5000)이 웨이퍼 기판(w)의 상, 하 방향을 관통하여 형성되어 에칭에 의한 관통홀(5000)을 갖는 흡착 부재(1100)가 형성될 수 있다. 흡착 부재(1100)에는 관통홀(5000)을 포함하는 흡착영역(2000)이 복수개 형성된다. 이러한 흡착 부재(1100)에는 전술한 제2실시 예의 변형 예의 구성들이 구비될 수 있다.
그런 다음 도 10(c)에 도시된 바와 같이, 흡착 부재(1100)는 임의적 기공을 갖고 흡착 부재(1100)를 지지하는 지지 부재(1200)의 하부에 결합될 수 있다. 지지 부재(1200)는 흡착 부재(1100)의 상면에서 흡착 부재(1100)를 지지할 수 있다. 얇은 두께의 박판의 형태로 제공되는 웨이퍼 기판(w)에 수만개의 관통홀을 에칭하여 형성하여 지지 부재없이 그 자체만으로 구성될 경우에는, 높은 진공 흡입력에 의해 흡착 부재(1100)가 취성 파괴될 우려가 높다. 따라서 다공성 세라믹 부재와 같은 지지 부재(1200)를 통해 지지하도록 하는 것이 필요하다.
도 10(d)는 제6실시 예의 마이크로 LED 흡착체(1"')가 기판(S)상의 마이크로 LED(ML)를 흡착하기 전 상태를 도시한 도이다. 도 10(a) 내지 도 10(c)를 참조하여 설명한 웨이퍼를 에칭에 의해 형성된 수직적 기공을 포함하는 흡착영역(2000)이 복수개 형성되는 흡착 부재(1100)를 구비하는 제6실시 예의 마이크로 LED 흡착체(1"')는 흡착영역(2000)이 기판(S)상의 마이크로 LED(ML)의 열 방향(x 방향) 및 행 방향(y 방향) 피치 간격과 동일하게 형성되어 기판(S)의 마이크로 LED(ML) 전체를 한꺼번에 흡착하거나, 3배수 이상의 거리로 형성되어 기판(S)의 마이크로 LED(ML)를 선택적으로 흡착하여 이송할 수 있다.
위와 같은 제6실시 예의 마이크로 LED 흡착체(1"')는 지지 부재(1200)의 임의적 기공에 의해 진공압이 감압된 후 흡착 부재(1100)의 관통홀(5000)에 전달되어 마이크로 LED(ML)를 흡착하고, 지지 부재(1200)의 임의적 기공에 의해 흡착 부재(1100)의 비흡착영역(2100)에 전달되어 흡착 부재(1100)를 흡착할 수 있다.
이하, 도 11 내지 도 13을 참조하여 마이크로 LED 흡착체의 흡착 부재(1100)의 외측이면서 마이크로 LED 흡착체의 테두리에 구비되는 돌출부(2900)에 대해 설명한다.
본 발명의 마이크로 LED 흡착체는 흡착 부재(1100)의 외측에 형성되고, 흡착 부재(1100)의 흡착면보다 돌출되도록 돌출부(2900)를 구비할 수 있다.
돌출부(2900)는 흡착 부재(1100)의 외측에 형성되되, 흡착 부재(1100)의 하부 표면보다 돌출되도록 마이크로 LED 흡착체의 테두리에 돌출되게 구비될 수 있다. 여기서, 마이크로 LED 흡착체의 테두리는 기판(S)의 상면에 마이크로 LED(ML)가 칩핑되면서 존재하는 마이크로 LED 존재영역에 대응되는 마이크로 LED 흡착체의 마이크로 LED(ML)를 흡착하는 흡착면 중 바깥 부분을 의미한다. 또한, 이하에서 언급되는 마이크로 LED 흡착체의 테두리도 상기한 마이크로 LED 흡착체(1')의 테두리와 동일한 부분을 의미한다.
돌출부(2900)는 마이크로 LED 흡착체의 테두리에 연속적 또는 불연속적으로 구비될 수 있다. 다만, 돌출부(2900)가 특정 공간(후술하는 전사공간(4000) 및 클리닝 공간)을 밀폐하여 공간의 기능을 방해하는 요인을 차단하는 기능을 수행할 경우에는 마이크로 LED 흡착체의 테두리에 연속적으로 형성되는 형태로만 구비될 수 있다.
돌출부(2900)는 마이크로 LED 흡착체의 테두리에 연속적으로 구비될 경우, 마이크로 LED 흡착체에 마이크로 LED(ML)가 흡착되어 전사되는 전사공간(4000)을 밀폐하는 기능을 수행할 수 있다.
이러한 돌출부(2900)는 스펀지, 고무, 실리콘, 발포체, PDMS(Polydimethysiloxane)를 포함하는 탄성 재질로 구성될 수 있다. 이 경우, 돌출부(2900)는 마이크로 LED 흡착체(1')와 마이크로 LED(ML)간의 충돌을 방지하여 마이크로 LED(ML)의 파손을 방지하는 완충의 기능을 수행할 수 있다.
돌출부(2900)는 상기한 탄성 재질의 구성들의 재료 수축률을 고려하여 구비될 수 있다. 구체적으로, 돌출부(2900)가 탄성 재질로 구성될 경우, 상기한 탄성 재질의 구성들의 재료 수축률은 각각 다를 수 있다. 마이크로 LED 흡착체의 하강에 의해 돌출부(2900)가 최대로 수축되었을 때 기판(S)상의 마이크로 LED(ML)의 높이보다 큰 길이를 갖기를 원할 경우, 이에 적합한 재료 수축률을 갖는 탄성 재질로 돌출부(2900)를 구성할 수 있다. 또는 마이크로 LED 흡착체의 하강에 의해 돌출부(2900)가 최대로 수축되었을 때 기판(S)상의 마이크로 LED(ML)의 상면과 마이크로 LED 흡착체(1')의 흡착면이 접촉되도록 하는 길이를 갖기를 원할 경우, 이에 적합한 재료 수축률을 갖는 탄성 재질로 돌출부(2900)를 구성할 수 있다.
돌출부(2900)는 고온 상태의 공정 수행 과정에서 열 변형되어 발생하는 기판(S)의 휨(warpage) 현상을 완화시키는 기능을 수행할 수 있다. 기판(S)에 휨 현상이 발생할 경우, 기판(S)상의 마이크로 LED(ML)의 높이는 각각 다를 수 있다. 따라서, 기판(S)의 휨 현상을 완화시키는 기능을 수행하는 돌출부(2900)는 마이크로 LED 흡착체의 하강에 의해 수축되는 돌출부(2900)의 최대 수축 길이가 기판(S)상의 마이크로 LED(ML) 중 가장 높은 높이에 위치한 마이크로 LED(ML)의 높이보다 큰 길이를 갖는 탄성 재질로 구성되는 것이 바람직할 수 있다.
도 11 내지 도 13에서는 하나의 예로서, 제2실시 예의 마이크로 LED 흡착체(1')에 돌출부(2900)가 구비되는 것으로 도시하였으나, 돌출부(2900)가 구비되는 마이크로 LED 흡착체(1')는 제2실시 예에 한정되지 않으며, 제1실시 예 내지 제6실시 예의 마이크로 LED 흡착체(1')에도 구비될 수 있다. 또한, 도 11 내지 도 13에는 하나의 예로서 양극산화막(1600)으로 제공되는 흡착 부재(1100)가 배리어층(1600b) 및 다공층(1600a)을 포함하는 양극산화막(1600)인 것으로 도시하였으나, 흡착 부재(1100)는 이에 한정되지 않는다. 또한, 도 11 내지 도 13에서는 하나의 예로서 흡착 부재(1100)에 형성되는 흡착영역(2000) 피치 간격을 기판(S)상의 마이크로 LED(ML)의 열 방향(x 방향) 피치 간격의 3배수 거리인 것으로 도시하였지만, 흡착영역(2000)의 피치 간격은 이에 한정되지 않는다. 흡착영역(2000)은 도 11에 도시된 바와 같이 흡착홀(1500)의 구성으로 형성될 수 있고, 배리어층(1600b)이 제거된 다공층(1600a)의 구성으로 형성될 수 있다.
먼저, 도 11 및 도 12를 참조하여 마이크로 LED 흡착체(1')의 테두리에 연속적으로 구비되는 돌출부(2900)에 대해 설명한다. 도 11에 도시된 바와 같이, 마이크로 LED 흡착체(1')는 흡착 부재(1100)의 외측에 흡착 부재(1100)의 하부 표면보다 하부로 돌출되도록 테두리에 구비되는 돌출부(2900)를 포함하여 구성된다.
돌출부(2900)는 마이크로 LED 흡착체(1')의 테두리에 연속적으로 형성되어 마이크로 LED 흡착체(1')가 마이크로 LED(ML)를 진공 흡착할 시 외기로 인한 와류 발생으로 기판(S)의 테두리 측에 위치한 마이크로 LED(ML)의 흔들림을 방지할 수 있다.
마이크로 LED 흡착체(1')가 마이크로 LED(ML)를 흡착할 경우, 마이크로 LED 흡착체(1')의 진공압과 주변 외기로 인해 와류가 발생하여 기판(S)상의 테두리측에 가까운 마이크로 LED(ML)가 흔들릴 수 있다. 이는 마이크로 LED 흡착체(1')의 흡착 및 전사 효율을 저하시키는 문제를 야기할 수 있다.
하지만 본 발명의 마이크로 LED 흡착체(1')는 마이크로 LED 흡착체(1')의 테두리에 연속적으로 형성되고 흡착 부재(1100)의 하부 표면보다 하부로 돌출되도록 돌출부(2900)를 구비함으로써 마이크로 LED(ML) 흡착 과정에서 와류 발생으로 인한 기판(S)상의 마이크로 LED(ML) 흔들림을 방지할 수 있다.
마이크로 LED 흡착체(1')가 마이크로 LED(ML) 상면 방향으로 하강할 경우, 돌출부(2900)는 기판(S)을 지지하는 기판 지지 부재(2920)의 상면에 접촉된다. 이로 인해 마이크로 LED 흡착체(1')와 마이크로 LED(ML)가 이격되게 위치하면서 형성되는 전사공간(4000)이 차단될 수 있다. 그 결과 마이크로 LED 흡착체(1')가 마이크로 LED(ML)를 진공 흡착하는 과정에서 전사공간(4000)에 유입되는 외기로 인해 발생하는 마이크로 LED(ML)의 흔들림을 방지할 수 있게 된다.
마이크로 LED 흡착체(1')의 하강시 돌출부(2900)에 의해 밀폐되는 전사공간(4000)은 외기 유입이 차단되어 마이크로 LED(ML)를 효과적으로 진공 흡착할 수 있는 환경이 조성되게 된다.
돌출부(2900)는 탄성 재질로 구성될 수 있다. 마이크로 LED 흡착체(1')는 진공 챔버(1300)를 통해 진공을 공급하여 전사공간(4000)을 감압상태로 형성할 수 있다. 돌출부(2900)가 탄성 재질로 구성될 경우, 전사공간(4000)이 감압상태가 되면서 탄성 변형될 수 있다. 탄성 변형하여 높이가 낮아진 돌출부(2900)에 의해 흡착 부재(1100)의 하부 표면과 마이크로 LED(ML)의 상면이 접촉되고 마이크로 LED(ML)가 마이크로 LED 흡착체(1')에 흡착될 수 있다. 돌출부(2900)가 탄성 재질로 구성될 경우, 탄성변형되어 그 높이가 낮아지는 돌출부(2900)에 의해 마이크로 LED(ML)가 마이크로 LED 흡착체(1')에 접촉되면서 흡착된다. 다시 말해, 돌출부(2900)의 높이가 탄성 변형으로 인해 낮아지면서 흡착 부재(1100)의 하부 표면과 마이크로 LED(ML) 상면 간의 이격거리가 점차 줄어들면서 흡착 부재(1100)의 하부 표면에 마이크로 LED(ML)가 흡착되게 된다. 흡착 부재(1100)의 하부 표면보다 하부로 돌출되는 탄성 변형되지 않은 돌출부(2900)의 적어도 일부의 높이는 마이크로 LED 흡착체(1')의 하강으로 돌출부(2900)의 하면이 기판 지지 부재(2920)의 상면에 접촉되었을 때 마이크로 LED(ML)상면과 흡착 부재(1100)의 하부 표면이 접촉되지 않는 높이로 형성되는 것이 바람직할 수 있다.
돌출부(2900)가 탄성 재질로 구성될 경우, 마이크로 LED 흡착체(1')의 하강으로 전사공간(4000)을 밀폐하여 마이크로 LED 흡착체(1')의 전사 효율을 높일뿐만 아니라 마이크로 LED 흡착체(1')와 마이크로 LED(ML)간의 완충 기능을 수행할 수 있다. 마이크로 LED 흡착체(1')는 기계적 공차로 인하여 마이크로 LED 흡착체(1')가 하강할 경우 이송 오차가 발생할 수 있는데, 돌출부(2900)가 탄성 재질로 구성되면 기판 지지 부재(2920)의 상면과 접촉되면서 탄성 변형하기 때문에 기계적 공차로 인한 이송 오차를 수용할 수 있다. 이로 인해 마이크로 LED 흡착체(1')와 마이크로 LED(ML)와의 충돌이 방지된다.
돌출부(2900)는 기공을 갖는 다공성 부재로 구성될 수 있다. 이 경우, 돌출부(2900)는 기공을 통해 약간의 외기를 유입하면서 전사공간(4000)을 막아줄 수 있으므로 전사공간(4000)이 막히면서 급격하게 상승하는 진공압을 완화시킬 수 있다.
또한, 돌출부(2900)가 기공을 갖는 다공성 부재로 구성될 경우, 고진공으로 인한 전사공간(4000) 내의 와류 발생을 방지할 수 있다. 예컨대, 마이크로 LED 흡착체(1')의 높은 진공 흡착력을 위해 고진공 펌프를 이용하여 전사공간(4000)을 고진공 상태로 형성할 경우, 고진공 상태로 인해 전사공간(4000) 내에서 와류가 발생하여 마이크로 LED(ML)의 흔들림이 유발되거나 마이크로 LED(ML)가 흡착되지 않는 문제가 발생할 수 있다. 하지만 돌출부(2900)를 기공을 갖는 다공성 부재로 구성할 경우 기공을 통해 약간의 외기가 전사공간(4000) 내부로 유입될 수 있다. 이로 인해 전사공간(4000) 내의 고진공 상태로 인한 와류 발생이 방지되고, 마이크로 LED(ML) 흡착이 효과적으로 이루어지게 된다.
도 11 내지 도 13에서는 기판 지지 부재(2920)의 수평 면적이 기판(S)의 수평 면적보다 큰 것을 도시하였지만, 기판(S)의 수평 면적은 기판 지지 부재(2920)의 수평 면적과 동일하게 구성될 수 있고, 이로 인해 마이크로 LED 흡착체(1')의 하강 시 돌출부(2900)의 하면이 기판(S)의 상면에 접촉되어 전사공간(4000)이 차단될 수 있다.
위와 같이 본 발명은 마이크로 LED 흡착체(1')의 테두리에 흡착 부재(1100)의 하부 표면보다 하부로 돌출되도록 돌출부(2900)를 연속적으로 구비할 경우, 돌출부(2900)에 의해 전사공간(4000)을 차단하여 마이크로 LED(ML) 흡착 효율을 높일 수 있다. 이 경우, 마이크로 LED 흡착체(1')는 전사공간(4000)에 외기를 유입하는 통로(2910)를 추가적으로 구비할 수 있다. 도 11에 도시된 바와 같이, 통로(2910)는 전사공간(4000)에 외기를 유입하는 기능을 하므로 돌출부(2900)보다 내측에 형성된다. 전사공간(4000)은 돌출부(2900)에 의해 밀폐되고, 통로(2910)는 밀폐된 전사공간(4000)에 외기를 유입하는 기능을 하는 구성이므로 돌출부(2900)보다 내측이면서 전사공간(4000)와 연통되는 위치에 형성될 수 있다.
마이크로 LED 흡착체(1')는 통로(2910)를 통해 돌출부(2900)에 의해 밀폐된 전사공간(4000)으로 외기를 유입할 수 있다. 돌출부(2900)에 의해 밀폐된 전사공간(4000)은 진공압이 높은 상태이다. 하지만 통로(2910)를 통해 전사공간(4000) 내부로 외기를 유입하면 전사공간(4000)의 진공압이 낮아지고 마이크로 LED 흡착체(1')가 용이하게 상승할 수 있게 된다. 이러한 통로(2910)는 개폐수단(미도시)이 구비되어 마이크로 LED 흡착체(1') 상승시에는 개방되어 외기를 유입하고, 마이크로 LED 흡착체(1')가 제1기판(예를 들어, 성장 기판(101))에서 제2기판(예를 들어, 표시 기판(301))으로 마이크로 LED(ML)를 전사할 시에는 폐쇄될 수 있다. 이로 인해 마이크로 LED(ML)의 전사가 수행되는 동안에는 전사공간(4000)에 외기가 유입되지 않아 돌출부(2900)로 밀폐된 전사공간(4000)의 전사 효율은 그대로 유지될 수 있다. 통로(2910)의 개폐수단은 슬라이드 형태의 커버일 수 있고, 통로(2910)가 원형 관 형태로 형성될 경우에는 통로(2910)의 상부에 분리결합될 수 있는 원뿔 형상의 마개 형태일 수 있다. 다만, 개폐수단의 형상은 이에 한정되지 않고 통로(2910)의 개폐기능을 하는 적합한 형상으로 구비될 수 있다.
이와는 달리, 전사공간(4000) 내부로 외기를 유입하는 통로(2910)는 흡착 부재(1100)의 하부 표면보다 하부로 돌출되는 돌출부(2900)의 적어도 일부에 돌출부(2900)를 관통하여 구비될 수 있다. 통로(2910)가 돌출부(2900)의 적어도 일부에 구비될 경우, 바람직하게는 전사공간(4000)을 직접적으로 밀폐하는 위치에 구비될 수 있다.
이와는 달리, 통로(2910)는 기판 지지 부재(2920)의 테두리 측에 기판 지지 부재(2920)를 상, 하 관통하는 형상으로 형성될 수도 있다. 이 경우, 통로(2910)는 바람직하게는 돌출부(2900)와 대응되는 위치보다 내측에 구비될 수 있다. 여기서, 기판 지지 부재(2920)의 테두리는 돌출부(2900)와 대응되는 위치보다 내측이면서 마이크로 LED(ML)가 칩핑된 기판(S)이 구비된 기판 구비영역의 바깥 부분을 의미한다.
통로(2910)가 기판 지지 부재(2920)에 구비될 경우, 마이크로 LED(ML)가 칩핑된 기판(S)은 기판 지지 부재(2920)의 상면 수평 면적보다 작은 수평 면적으로 구성된다. 이는 기판 지지 부재(2920)의 테두리 측에 구비된 통로(2910)를 통해 전사공간(4000) 내부로 외기가 유입되도록 하기 위함이다.
이처럼 마이크로 LED 흡착체(1')는 테두리에 연속적으로 형성되는 돌출부(2900)를 구비함으로써 마이크로 LED 흡착체(1')가 마이크로 LED(ML)를 전사하는 전사공간(4000)을 밀폐하여 외기로 인한 와류 발생으로 마이크로 LED(ML)의 흔들림을 방지할 수 있다. 이 경우, 마이크로 LED 흡착체(1')는 개폐가능한 통로(2910)를 구비하여 전사공간(4000)에 외기를 유입할 수 있다. 통로(2910)는 마이크로 LED 흡착체(1')의 흡착면에 마이크로 LED(ML)를 흡착한 후 개방되어 전사공간(4000)으로 외기를 유입할 수 있고, 이로 인해 전사공간(4000)의 진공압이 낮아지면서 돌출부(2900)의 하면이 기판 지지 부재(2920)의 상면에서 쉽게 탈착되어 마이크로 LED 흡착체(1')가 쉽게 상승할 수 있다.
돌출부(2900)는 전사공간(4000)을 밀폐하여 전사공간(4000)에서의 마이크로 LED(ML) 흡착력을 방해하는 외부 요인을 차단할 수 있다. 이 경우, 돌출부(2900)는 전사공간(4000) 내로 유입되는 외부 요인 차단 기능을 중점적으로 수행하므로 도 12와 같이 마이크로 LED 흡착체(1')가 돌출부(2900)를 구비하되, 전사공간(4000) 내부로 외기를 유입하는 통로(2910)를 추가적으로 구비하지 않는 구조로 구성될 수 있다.
전사공간(4000) 내에서 마이크로 LED(ML)에 대한 흡착력을 방해하는 외부 요인은 하나의 예로서 이물질 및 외부 공기일 수 있다.
마이크로 LED(ML)에 대한 흡착력을 방해하는 외부 요인이 이물질일 경우, 이물질이 흡착 부재(1100)의 흡착영역(2000)을 막는 문제가 발생될 수 있다. 이로 인해 일부 흡착영역(2000)에 마이크로 LED(ML)가 흡착되지 않아 마이크로 LED(ML) 전사 효율이 저하될 수 있다.
마이크로 LED(ML)에 대한 흡착력을 방해하는 외부 요인이 외부 공기일 경우, 전사공간(4000)내에 와류를 발생시킬 수 있다. 이로 인해 마이크로 LED(ML)에 흔들림이 발생되어 마이크로 LED(ML)가 제대로 흡착되지 않을 수 있다.
돌출부(2900)가 마이크로 LED(ML)에 대한 흡착력을 방해하는 외부 요인을 차단하는 기능을 중점적으로 수행할 경우에는, 바람직하게는 돌출부(2900)가 탄성 재질로 구성되어 완충 기능 및 전사공간(4000) 내부로 방해 요소 차단 기능을 수행할 수 있다.
도 12에 도시된 바와 같은 마이크로 LED 흡착체(1')의 테두리에 형성되는 돌출부(2900)는 기판 지지 부재(2920)에 형성될 수도 있다. 이 경우, 돌출부(2900)는 기판 지지 부재(2920)의 상면에 구비되는 기판(S)의 바깥부분인 기판 지지 부재(2920)의 테두리에 상부로 돌출되도록 형성될 수 있다. 기판 지지 부재(2920)의 상면에 구비되는 기판(S)의 수평 면적이 기판 지지 부재(2920)의 수평 면적과 동일한 면적으로 구비될 경우, 돌출부(2900)는 기판(S)의 테두리에 상부로 돌출되도록 구비될 수 있다. 여기서 기판(S)의 테두리는 기판(S)에 마이크로 LED(ML)가 칩핑되면서 존재하는 마이크로 LED 존재영역의 바깥 부분을 의미한다.
돌출부(2900)는 기판 지지 부재(2920) 또는 기판(S)의 테두리에 상부로 돌출되도록 형성되어 마이크로 LED 흡착체(1')가 마이크로 LED(ML)를 흡착할 때 흡착력에 방해가 되는 외부 요인이 전사공간(4000) 내부로 침투하는 것을 차폐한다. 이 경우, 돌출부(2900)는 탄성 재질로 구성되어 마이크로 LED 흡착체(1')의 기계적 공차로 인한 이송오차를 수용함으로써 마이크로 LED 흡착체(1')와 마이크로 LED(ML) 상면이 충돌하여 마이크로 LED(ML)가 파손되지 않도록 완충 기능을 수행할 수 있다.
돌출부(2900)는 마이크로 LED 흡착체(1')의 흡착면, 다시 말해, 흡착 부재(1100)의 하부 표면의 이물질을 세척하는 클리닝 공정에서 클리닝 공간을 밀폐하는 기능을 수행할 수도 있다. 마이크로 LED 흡착체(1')의 흡착면은 마이크로 LED(ML)를 전사하는 과정에서 반복적인 흡착 기능 수행으로 인해 이물질이 발생할 수 있다. 이러한 이물질은 흡착 부재(1100)의 흡착영역(2000)에서의 흡착 기능을 방해할 수 있다. 따라서, 마이크로 LED 흡착체(1')는 클리닝 공정을 통해 마이크로 LED 흡착체(1')의 흡착 기능을 방해하는 이물질을 세척하는 과정이 수행될 수 있다.
클리닝 공정에서 돌출부(2900)는 클리닝 공간을 밀폐하여 클리닝 공정을 방해하는 요소(예를 들어, 외부 이물질)가 클리닝 공간으로 유입되는 것을 방지하는 기능을 할 수 있다.
한편, 돌출부(2900)는 클리닝 과정에서 마이크로 LED(ML)가 칩핑된 기판을 지지하는 지지 부재의 테두리에 상부로 돌출되도록 형성될 수 있고, 지지 부재의 수평 면적과 동일한 수평 면적을 갖는 기판에서는 기판의 테두리에 상부로 돌출되도록 형성될 수도 있다.
클리닝 공간은 돌출부(2900)에 의해 밀폐됨으로써 마이크로 LED 흡착체(1')의 흡착면의 세척을 방해하는 외부 이물질 유입이 차단될 수 있다.
이처럼 마이크로 LED 흡착체(1')의 테두리에 연속적으로 구비되는 돌출부(2900)는 특정 공간(전사공간(4000), 클리닝 공간)을 밀폐하여 내부로 외부 이물질이 유입되어 기능을 방해하는 것을 차단하는 기능을 수행할 수 있고, 기판(S)에 발생한 휨 현상을 완화시키는 기능을 수행할 수도 있다.
도 13에 도시된 바와 같이, 기판(S)은 고온 상태의 공정 수행 과정에서 열변형되어 휨 현상이 발생할 수 있다. 기판(S)의 휨 현상은 크라잉(crying, ∩) 형태의 휨 현상 또는 도 13에 도시된 바와 같은 스마일(smile, ∪) 형태의 휨 현상으로 발생될 수 있다. 도 13에 도시된 h는 기판(S)의 휘어진 높이를 의미한다. 기판(S)의 경우, 크라잉 형태 또는 스마일 형태로 휨 현상이 발생할 때 기판(S)상에 존재하는 마이크로 LED 존재영역측으로 휘어질 수 있다. 이 때 마이크로 LED 흡착체(1')의 테두리에 연속적 또는 불연속적으로 형성된 돌출부(2900)는 마이크로 LED 흡착체(1')의 하강시 기판(S)과 접촉되어 휨 현상을 완화시키고, 마이크로 LED(ML)의 파손을 방지하면서 마이크로 LED 흡착체(1')가 마이크로 LED(ML)를 흡착하도록 할 수 있다.
기판(S)의 휨 현상을 완화 기능 및 마이크로 LED(ML)에 대한 완충 기능을 수행하는 돌출부(2900)는 도 11 및 도 12를 참조하여 설명한 바와 같이 마이크로 LED 흡착체(1')의 테두리에 흡착 부재(1100)의 하부 표면보다 돌출되게 형성되되, 연속적으로 형성될 수도 있고, 불연속적으로 형성될 수도 있다.
도 13에 도시된 바와 같이, 기판(S)의 휨 현상으로 인해 기판(S)상에 칩핑된 각각의 마이크로 LED(ML)의 높이가 다를 수 있다. 이로 인해 마이크로 LED(ML) 흡착시 각각의 흡착영역(2000)에 마이크로 LED(ML)가 접촉되는 접촉위치가 달라지면서 마이크로 LED(ML)의 파손이 유발될 수 있다. 구체적으로 설명하면, 휨 현상이 발생한 기판(S)상의 마이크로 LED(ML)를 흡착하기 위해 마이크로 LED 흡착체(1')가 하강할 경우, 휨 현상이 발생한 기판(S)상의 가장 높은 위치에 칩핑된 마이크로 LED(ML)가 이에 대응되는 흡착영역(2000)에 먼저 흡착되고, 비흡착된 나머지 마이크로 LED(ML)를 하강하기 위해서 점차 더 하강하여 먼저 흡착된 마이크로 LED(ML)가 과도하게 가압됨으로써 마이크로 LED(ML) 파손 문제가 발생하게 된다.
하지만 본 발명의 기판(S)상의 마이크로 LED 존재영역의 바깥부분과 대응되는 위치인 마이크로 LED 흡착체(1')의 테두리에 구비되는 돌출부(2900)는 최대 수축 길이까지만 수축되어 마이크로 LED 흡착체(1')의 하강 위치를 제한하고, 기판(S)의 휨 현상을 완화시키는 기능을 수행하여 마이크로 LED 흡착체(1')가 휨 현상이 발생한 기판(S)상의 마이크로 LED(ML)를 파손시키지 않고 흡착하도록 할 수 있다.
구체적으로 설명하면, 돌출부(2900)는 기판(S)상의 가장 높은 높이를 갖는 마이크로 LED(ML)의 높이보다 큰 높이를 최대 수축 길이로 갖는 탄성 재질로 구성될 수 있다. 이러한 돌출부(2900)를 구비하는 마이크로 LED 흡착체(1')는 하강 시 돌출부(2900)의 최대 수축 길이까지만 하강되어 하강 위치가 제한될 수 있다. 돌출부(2900)에 의해 제한된 마이크로 LED 흡착체(1')의 하강 위치는 기판(S)상에서 가장 높은 높이를 갖는 마이크로 LED(ML)의 높이보다 높은 높이의 위치일 수 있다.
마이크로 LED 흡착체(1')의 하강 위치를 제한하는 돌출부(2900)는 최대 수축 길이까지 수축되면서 기판(S)을 가압하여 변형시킬 수 있다. 이 경우, 돌출부(2900)의 탄성 계수는 기판(S)의 탄성 계수보다 낮을 수 있다. 돌출부(2900)는 휨 현상이 발생한 기판(S)과 접촉되면서 접촉면을 가압하여 기판(S)을 변형시킬 수 있다. 이 때 기판(S)과 돌출부(2900)의 접촉면은 휨 현상으로 인해 가장 높은 높이를 갖는 기판(S)의 적어도 어느 일부분일 수 있다. 이로 인해 기판(S)의 편평도가 향상될 수 있다.
이처럼 마이크로 LED 흡착체(1')의 테두리에 연속적 또는 불연속적으로 구비되는 돌출부(2900)는 최대 수축 길이까지 수축하면서 기판(S)을 가압하여 변형시킬 수 있다.
마이크로 LED 흡착체(1')의 테두리에 구비되는 돌출부(2900)를 불연속적으로 구비할 경우, 불연속적으로 구비되는 돌출부(2900)의 개수는 한정되지 않고, 휨 현상이 발생한 기판(S)의 편평도를 향상시키기 적합한 위치에 독립적인 형태로 복수개 구비될 수 있다.
연속적 또는 불연속적인 돌출부(2900)를 테두리에 구비하는 마이크로 LED 흡착체(1')는 휨 현상이 발생한 기판(S) 외에 낮은 평탄도를 갖는 기판의 마이크로 LED도 효과적으로 흡착할 수 있다.
구체적으로 설명하면, 돌출부(2900)는 마이크로 LED 흡착체(1')의 하강에 의하여 평탄도가 낮은 기판의 상면에 접촉될 수 있다. 돌출부(2900)가 기판(S)의 평탄도를 조절하는 기능을 수행할 경우, 바람직하게는 불연속적으로 복수개의 돌출부(2900)가 마이크로 LED 흡착체(1')의 테두리에 구비될 수 있다. 이는 마이크로 LED 흡착체(1')의 하강으로 돌출부(2900)의 적어도 일부가 평탄도가 낮은 기판의 상면에 먼저 접촉되어 기판을 가압하여 변형시키면서 평탄도를 조절하고, 비접촉된 나머지 일부의 돌출부(2900)가 기판에 접촉되어 기판의 평탄도를 향상시키기 위함이다.
이처럼 돌출부(2900)는 마이크로 LED 흡착체(1')의 흡착 부재(1100)의 주변에 구비되되, 기판(S)상에 존재하는 마이크로 LED 존재영역의 바깥부분인 마이크로 LED 흡착체(1')의 테두리에 구비되어 마이크로 LED 흡착체(1')의 과도한 하강으로 인한 마이크로 LED(ML)의 파손을 방지할 수 있다. 또한, 마이크로 LED 흡착체(1')가 휨 현상이 발생하거나 평탄도가 낮은 기판(S)상의 마이크로 LED(ML)도 효과적으로 흡착하게 할 수 있다.
마이크로 LED 흡착체(1')는 테두리에 돌출부(2900)를 구비하고, 돌출부(2900)가 기판(S)의 휨 현상 완화 및 평탄도 향상의 기능을 수행할 경우, 돌출부(2900)의 눌림량을 제한할 수 있는 정지부재를 추가적으로 구비할 수 있다. 정지부재는 돌출부보다 낮은 높이로 구비되되 돌출부(2900)의 주변에 구비되어 마이크로 LED 흡착체(1')의 테두리이면서 돌출부(2900)의 주변에 구비되는 형태일 수 있다. 정지부재는 돌출부(2900)보다 낮은 높이로 구비되므로 돌출부(2900)와의 높이차가 존재할 수 있다. 정지부재는 돌출부(2900)와의 높이차에 의해 돌출부(2900)의 눌림량을 제한할 수 있다.
정지부재는 돌출부(2900)보다 낮은 탄성 계수를 갖는 재질로 구성될 수 있다. 따라서 돌출부(2900)는 정지부재와 반대로 높은 탄성 계수를 갖는 재질일 수 있다. 정지부재는 외력에 의해 쉽게 변형되지 않는 특성을 갖는 반면에 돌출부(2900)는 외력에 의해 상대적으로 쉽게 변형되는 특성을 가진다. 이로 인해 마이크로 LED 흡착체(1')의 하강시 기판(S)의 상면에 정지부재보다 먼저 접촉된 돌출부(2900)가 정지부재와의 높이차만큼 수축될 수 있다. 정지부재와의 높이차만큼 수축된 돌출부(2900)로 인해 정지부재의 하면은 기판(S)의 상면에 접촉될 수 있다. 이 때 정지부재는 낮은 탄성계수를 갖는 특성으로 인해 거의 수축되지 않으므로 돌출부(2900)의 수축을 정지하여 돌출부(2900)의 눌림량을 제한할 수 있게 된다.
정지부재는 돌출부(2900)의 기판(S)의 휨 현상 완화 및 평탄도 조절의 기능이 보다 효과적으로 수행될 수 있도록 기여할 수 있다. 구체적으로, 돌출부(2900)는 정지부재와의 높이차만큼 수축되면서 1차적으로 기판(S)의 휨 현상 완화 및 평탄도를 조절할 수 있다. 그런 다음 정지부재가 기판(S)의 상면에 접촉되어 2차적으로 기판(S)의 휨 현상 완화 및 평탄도를 조절할 수 있다.
정지부재는 돌출부(2900)의 주변에 돌출부(2900)의 둘레를 따라 연속적으로 구비되거나 불연속적으로 구비될 수 있다. 정지부재가 연속적으로 구비될 경우, 그 형상은 어느 형상에 한정되지 않으며 하나의 예로서 원형 단면 또는 사각 단면을 갖도록 형성될 수 있다. 한편, 정지부재가 돌출부(2900)의 주변에 불연속적으로 구비될 경우, 바람직하게는 적어도 두 개 이상이 구비될 수 있다. 적어도 두 개 이상 구비되는 불연속적인 형태의 정지부재는 돌출부(2900)의 주변에 구비되되 바람직하게는 반대되는 위치에 구비될 수 있다.
도 14는 본 발명의 마이크로 LED 흡착체를 구성하는 흡인 배관의 실시 예들을 도시한 도이다. 도 14에서는 하나의 예로서, 제2실시 예의 마이크로 LED 흡착체(1')를 도시하여 설명하였지만, 마이크로 LED 흡착체는 이에 한정되지 않고 제1실시 예 내지 제6실시 예를 구비할 수 있다.
본 발명의 마이크로 LED 흡착체는 흡인 배관(1400)이 연결부(1400a)를 포함하여 구성되어 연결부(1400a)를 통해 진공 챔버(1300)와 진공 챔버(1300)를 연결시켜 진공 챔버(1300)에 진공을 공급할 수 있다. 연결부(1400a)의 수평 면적은 다공성 부재(1000)의 상부면 수평 면적과 동일하게 형성된다.
마이크로 LED 흡착체(1')는 흡착 부재(1100)가 배리어층(1600b)을 포함하는 양극산화막(1600)으로 구성되고, 제2다공성 부재(1200)가 임의적 기공을 갖는 다공성 부재로 구성될 수 있다. 이 경우, 흡착 부재(1100)는 하나의 예로서 양극산화막(1600)으로 제공되는 흡착 부재(1100)일 수 있고, 수직적 기공을 갖는 다공성 부재로 구성될 수도 있다. 흡착 부재(1100)는 앞서 설명한 제2실시 예의 변형 예들의 구성으로 구비될 수 있다.
도 14(a)에 도시된 바와 같이, 진공 챔버(1300)의 상부에 흡인 배관(1400)이 구비되면서 진공 챔버(1300)와 흡인 배관(1400) 사이에는 연결부(1400a)가 구비될 수 있다. 이러한 연결부(1400a)에 의해 진공 챔버(1300) 및 흡인 배관(1400)이 서로 연결될 수 있다. 연결부(1400a)는 마이크로 LED(ML)를 흡착하는 기능을 하는 흡착 부재(1100)의 상부면 수평 면적과 동일한 수평 면적으로 형성된다.
흡착 부재(1100)의 상부면 수평 면적과 동일한 수평 면적을 갖는 연결부(1400a)에 의해 진공 챔버(1300)의 상부로 수직 방향 연결되는 흡인 배관(1400)은 흡착 부재(1100)의 수평 면적과 동일한 수평 면적으로 형성될 수 있다. 연결부(1400a)가 흡착 부재(1100)의 수평 면적과 동일하게 형성됨으로써 마이크로 LED 흡착체(1')의 흡착 부재(1100)의 흡착면 전체에는 균일한 진공 흡착력이 발생되게 된다.
구체적으로 설명하면, 진공 챔버(1300)와 흡인 배관(1400)을 연결하는 연결부(1400a)는 진공 펌프를 통해 공급된 진공이 흡인 배관(1400)을 통해 유입되면 진공 챔버(1300)로 유입되도록 연결하는 기능을 한다. 이 경우, 연결부(1400a)의 수평 면적에 따라 지지 부재(1200) 및 흡착 부재(1100)로 유입되는 진공의 수평방향 범위가 달라질 수 있다. 예컨대, 진공 챔버(1300)와 흡인 배관(1400)을 연결하는 연결부(1400a)의 수평 면적은 흡착 부재(1100)의 상부면 수평 면적보다 작게 형성되고, 진공 펌프에서부터 공급된 진공이 흡인 배관(1400) 및 연결부(1400a)를 통해 지지 부재(1200) 및 흡착 부재(1100)로 공급된다. 이 경우, 흡인 배관(1400)으로 공급된 진공이 연결부(1400a)를 통해 진공 챔버(1300)로 유입되고 진공 챔버(1300)를 지나 지지 부재(1200)를 거쳐 양극산화막(1600)으로 제공되는 흡착 부재(1100)의 흡착영역(2000)으로 전달될 때, 연결부(1400a)가 형성되는 위치와 대응되는 위치의 흡착영역(2000)으로 진공이 더 잘 전달될 수 있다. 이처럼 연결부(1400a)가 흡착 부재(1100)의 상부면 수평 면적보다 작게 형성될 경우, 연결부(1400a)가 형성된 위치와 대응되는 위치의 흡착영역(2000)과, 연결부(1400a)가 형성되지 않은 위치와 대응되는 위치의 흡착영역(2000)은 연결부(1400a)를 통해 진공 챔버(1300)로부터 전달받는 진공에 차이가 발생할 수 있다. 이로 인해 마이크로 LED 흡착체(1')의 흡착면의 흡착력이 불균일해질 수 있다.
하지만 본 발명의 마이크로 LED 흡착체(1')는 진공 챔버(1300)와 흡인 배관(1400)을 연결하는 연결부(1400a)를 흡착 부재(1100)의 상부면 수평 면적과 동일한 수평 면적으로 형성하여, 연결부(1400a)가 흡착 부재(1100)의 상부면 수평 면적보다 작게 형성되는 구성에 비해 흡착 부재(1100)의 하부 표면인 마이크로 LED 흡착면 전체에 균일한 흡착력이 발생되도록 할 수 있다. 그 결과 마이크로 LED 흡착체(1')의 마이크로 LED(ML) 흡착시, 흡착면의 불균일한 흡착력으로 인해 기판(S)의 가장자리 측에 위치한 마이크로 LED(ML)가 흡착면에 비흡착되어 이탈되는 문제가 해소될 수 있게 된다.
도 14(a)에 도시된 화살표는 진공 챔버(1300)에서 공급한 진공으로 인해 흡착 부재(1100)의 흡착면에 발생한 균일한 흡입력의 흡입 방향을 의미한다.
이와는 달리, 흡인 배관(1400)은 연결부(1400a)와 수평 면적은 동일하되 형상이 다르게 구비될 수 있다.
도 14(b)에 도시된 바와 같이, 흡인 배관(1400)은 하부가 확관되면서 연결부(1400a)의 수평 면적이 흡착 부재(1100)의 상부면 수평 면적과 동일하게 형성되는 구조로 형성된다. 흡인 배관(1400)은 흡인 배관(1400)의 하부가 진공 챔버(1300)가 위치하는 하방향으로 외경이 커지는 형태로 형성되어 진공 챔버(1300)와 연결될 수 있다. 따라서, 흡인 배관(1400)의 하부가 하방향으로 외경이 커지면서 확관된 형태로 형성되어 흡인 배관(1400)의 연결부(1400a) 수평 면적이 흡착 부재(1100)의 상부면 수평 면적과 동일하게 형성되는 구조가 형성될 수 있다.
이와 같은 구조에 의하여 진공 챔버(1300)는 흡착 부재(1100)의 흡착면에 균일한 흡착력이 발생되도록 할 수 있다. 그 결과 마이크로 LED 흡착체(1')의 흡착면은 균일한 흡착력이 확보되고, 흡착면의 어느 위치에 흡착력이 약화되어 마이크로 LED(ML)가 비흡착되는 문제없이 기판(S)상의 마이크로 LED(ML)를 흡착할 수 있다.
흡인 배관(1400)의 연결부(1400a)에는 분산부재가 추가적으로 구비될 수도 있다. 분산부재는 흡인 배관(1400) 또는 진공 챔버(1300)의 내부 흡인 배관(1400)의 연결부(1400a)에 구비될 수 있다. 분산부재는 진공펌프에 의해 형성되는 공기압이 지지 부재(1200) 및 흡착 부재(1100) 측에서 균일화되도록 하는 버퍼 기능을 수행한다. 분산부재는 임의적 기공을 갖는 다공성 부재 또는 수직적 기공을 갖는 다공성 부재로 구성될 수 있다. 분산부재가 임의적 기공을 갖는 다공성 부재로 구성될 경우, 수평 방향으로 공기압을 분산 시키는 효과를 발휘할 수 있다. 이로 인해 흡착면을 제공하는 흡착 부재(1100)의 진공압이 균일하게 형성될 수 있다. 또는 분산부재가 수직적 기공을 갖는 다공성 부재로 구성될 경우, 다수의 수직적 기공을 통해 흡착면을 제공하는 흡착 부재(1100)의 진공압의 중앙 쏠림 현상을 해소할 수 있게 된다. 한편, 분산부재는, 분산부재를 구성하는 홀의 구조가 상단에 구비되는 상부홀보다 하단에 형성되는 하부홀이 많게 형성되는 구조로 형성될 수 있다. 이 경우, 상부홀과 하부홀은 내부의 복수개의 공기유로를 통해 연결되는 구조를 가질 수 있다. 이와 같은 구조에 의해 분산부재는 하부홀 위치에서의 공기압을 균일화할 수 있게 된다.
이와는 달리, 흡인 배관(1400)은 복수개 구비되어 진공 챔버(1300)에 진공을 공급할 수 있다. 각각의 흡인 배관(1400)은 연결부(1400a)를 포함하여 구성될 수 있다. 흡인 배관(1400)이 복수개 구비될 경우, 마이크로 LED 흡착체(1')는 복수개의 흡인 배관(1400)을 공통으로 연결하는 공통 배관을 포함하여 구성될 수 있다.
복수개의 흡인 배관(1400)은 진공 챔버(1300)를 통해 흡착 부재(1100)의 상부면 수평 면적에 균일하게 진공을 전달할 수 있는 위치에 각각 구비될 수 있다. 이 경우, 기판(S)상의 마이크로 LED(ML)가 칩핑되면서 존재하는 마이크로 LED 존재영역을 고려하여 복수개의 흡인 배관(1400)이 구비될 수 있다.
예를 들어, 마이크로 LED 흡착체(1')에 3개의 흡인 배관(1400)이 구비될 경우, 진공 챔버(1300)의 중앙과 연결되는 위치에 제1연결부를 포함하는 제1흡인 배관, 진공 챔버(1300)의 외곽과 연결되는 위치에 제2연결부를 포함하는 제2흡인 배관 및 제3연결부를 포함하는 제3흡인 배관이 각각 구비될 수 있다. 여기서 진공 챔버(1300)의 중앙은 마이크로 LED 존재영역에서의 중앙과 대응되는 위치를 의미하고, 진공 챔버(1300)의 외곽은 마이크로 LED 존재영역에서의 일단과 타단에 대응되는 위치를 의미한다. 제1 내지 3흡인 배관은 공통 배관을 통해 공통으로 연결되고, 진공 펌프에서 공급된 진공은 공통 배관을 통해 복수개의 흡인 배관(1400)으로 공급될 수 있다.
제1흡인 배관의 제1연결부와 제2, 3흡인 배관의 연결부의 수평 면적은 다르게 형성될 수 있다. 구체적으로, 진공 챔버(1300)의 중앙과 연결되어 진공 펌프에서 공급된 진공의 유입이 쉬운 제1연결부는 진공 챔버(1300)의 외곽과 연결되어 상대적으로 진공의 유입이 어려운 제2, 3연결부에 비해 작은 수평 면적을 갖도록 형성될 수 있다. 마이크로 LED 전사헤드는 제1 내지 제3연결부의 수평 면적을 다르게 형성함으로써 유입되는 진공의 양을 조절할 수 있고, 이로 인해 흡착면에 균일한 흡착력이 발생되게 할 수 있다. 다시 말해, 복수개의 흡인 배관(1400)이 구비될 경우, 각각의 흡인 배관(1400)의 연결부(1400a)는 흡인 배관(1400)의 형성 위치에 따라 진공 펌프에서 공급된 진공의 유입량이 다름을 고려하여 그 수평 면적이 다르게 형성될 수 있다. 이로 인해 흡착면에 균일한 흡착력이 발생할 수 있게 된다.
복수개의 흡인 배관(1400)이 구비될 경우, 각각의 흡인 배관(1400)의 내부에는 나선부재와 같은 형태의 와류 발생 수단이 추가적으로 구비될 수 있다. 와류 발생 수단은 진공 챔버(1300)의 외곽과 연결되는 제2, 3흡인 배관의 내부에 구비될 수 있다. 와류 발생 수단은 공기의 흐름이 빨라지도록 유도하는 기능을 하여 진공 펌프에서 공급된 진공이 제2, 3연결부를 통해 진공 챔버(1300)로 용이하게 공급될 수 있다.
한편, 복수개의 흡인 배관(1400)은 공통 배관을 통해 연결되지 않고 개별 제어가 가능한 진공 펌프와 각각 연결되어 진공을 공급받는 형태로 형성될 수도 있다.
이와는 달리, 복수개의 흡인 배관(1400)은 진공 챔버(1300)의 중앙과 연결되는 제1흡인 배관 및 제1흡인 배관의 외곽에서 제1흡인 배관을 감싸면서 연속적으로 형성되어 진공 챔버(1300)의 외곽과 연결되는 제2흡인 배관으로 구성될 수도 있다. 이 경우에도 제1, 2흡인 배관의 각각의 연결부는 다른 수평 면적을 가질 수 있다. 구체적으로, 상대적으로 진공의 유입이 쉬운 제1흡인 배관의 연결부는 제2흡인 배관의 연결부보다 작은 수평 면적으로 형성될 수 있다. 이로 인해 마이크로 LED 흡착체(1')의 흡착면 전체에는 균일한 흡착력이 발생될 수 있다.
복수개의 흡인 배관(1400)의 연결부에는 분산부재가 구비될 수 있다. 흡인 배관(1400)이 복수개로 구비될 경우, 분산부재는 흡인 배관(1400) 또는 진공 챔버(1300)의 내부 흡인 배관(1400)의 연결부(1400a) 및/또는 흡인 배관(1400)들의 연결부분에 구비될 수 있다. 여기서 흡인 배관(1400)들의 연결부분은 흡인 배관(1400)들과 공통 배관 사이에 흡인 배관(1400)과 공통 배관이 공통적으로 연결되는 부분을 의미한다. 이 경우, 분산부재는 앞서 설명한 바와 같이, 임의적 기공을 갖는 다공성 부재 또는 수직적 기공을 갖는 다공성 부재로 구성될 수 있다.
이하, 도 15 내지 도 17을 참조하여 본 발명의 마이크로 LED 흡착체의 흡착영역(2000)의 배열에 대한 실시 예에 대해 설명한다. 흡착영역(2000)에 의해 흡착되는 흡착 대상 마이크로 LED(ML)는 적색(Red, ML1), 녹색(Green, ML2), 청색(BLUE, ML3), 백색(White) LED 중 어느 하나일 수 있다. 도 15 내지 도 17의 도면에서는 하나의 예로서 적색, 녹색, 청색 마이크로 LED(ML1, ML2, ML3)를 도시하고 흡착영역(2000)의 배열에 따라 적색, 녹색, 청색 마이크로 LED(ML1, ML2, ML3)가 제2기판(표시 기판(301))에 각각 이격되게 전사되어 화소 배열을 형성하는 것으로 설명한다.
흡착영역(2000)은 열 방향(x 방향) 및 행 방향(y 방향)으로 일정 간격으로 이격되어 형성된다. 흡착영역(2000)은 열 방향(x 방향) 및 행 방향(y 방향) 중 적어도 어느 한 방향으로는 제1기판에 배치된 마이크로 LED(ML)의 열 방향(x 방향) 및 행 방향(y 방향)의 피치 간격의 2배 이상의 거리로 이격되어 형성될 수 있다.
도 15(a-1)에 도시된 바와 같이, 도너 기판(DS1, DS2, DS3)상의 마이크로 LED(ML)의 열 방향(x 방향) 피치 간격이 P(n)이고 행 방향(y 방향) 피치 간격이 P(m)인 경우에, 흡착영역(2000)은 열 방향(x 방향) 피치 간격이 3P(n)이고, 행 방향(y 방향) 피치 간격이 P(m)일 수 있다. 여기서 3P(n)의 의미는, 도너 기판(DS1, DS2, DS3)의 마이크로 LED(ML)의 열 방향(x 방향) 피치 간격 P(n)의 3배임을 의미한다. 이와 같은 구성에 의하면, 마이크로 LED 흡착체(1')는 3배수 열에 해당하는 마이크로 LED(ML)만을 진공 흡착하여 이송할 수 있다. 여기서 3배수 열로 이송되는 마이크로 LED(ML)는 적색(Red, ML1), 녹색(Green, ML2), 청색(BLUE, ML3), 백색(White) LED 중 어느 하나일 수 있다. 이와 같은 구성에 의하여 목표 기판(TS)에 실장되는 동일 발광색의 마이크로 LED(ML)를 3P(m) 간격으로 이격시켜 전사할 수 있다.
위와 같은 피치 간격의 흡착영역(2000)이 형성된 마이크로 LED 흡착체(1')는 도너부에 배치된 마이크로 LED(ML)를 선택적으로 흡착할 수 있다.
도너부는 적색 마이크로 LED(ML1)가 배치된 제1도너 기판(DS1), 녹색 마이크로 LED(ML2)가 배치된 제2도너 기판(DS2) 및 청색 마이크로 LED(ML3)가 배치된 제3도너 기판(DS3)을 포함한다.
각각의 도너 기판에 배치된 마이크로 LED(ML)는 열 방향(x 방향) 및 행 방향(y 방향)으로 일정 간격으로 배치되며, 제1 내지 제3도너 기판(DS1, DS2, DS3)상에 배치된 적색, 녹색, 청색 마이크로 LED(ML1, ML2, ML3)는 열 방향(x 방향) 및 행 방향(y 방향)으로 동일한 피치 간격으로 이격되어 배치된다.
도 15(a-1)에 도시된 흡착영역(2000)은 열 방향(x 방향) 이격거리는 도너부에 배치된 마이크로 LED(ML)의 열 방향(x 방향) 피치 간격의 3배수 거리이고, 행 방향(y 방향) 이격거리는 도너부에 배치된 마이크로 LED(ML)의 행 방향(y 방향) 피치 간격의 1배수 거리이다.
도 15(a-1)에 도시된 바와 같이 열 방향(x 방향) 피치 간격이 3P(n), 행 방향(y 방향) 피치 간격이 P(m)인 흡착영역(2000)이 형성된 마이크로 LED 흡착체(1')는 제1 내지 제3도너 기판(DS1, DS2, DS3)과 목표 기판(TS) 사이를 3회 왕복 이동하면서 적색, 녹색 및 청색 마이크로 LED(ML1, ML2, ML3)를 목표 기판(TS)에 전사하여 적색, 녹색 및 청색 마이크로 LED(ML1, ML2, ML3)가 1×3 화소 배열을 형성하도록 한다.
구체적으로 설명하면, 도 15에 도시된 바와 같이, 제1도너 기판(DS1)상에는 적색 마이크로 LED(ML1)가 일정 간격으로 배치된다. 마이크로 LED 흡착체(1')는 제1도너 기판(DS1)측으로 하강하여 흡착영역(2000)에 대응되는 위치에 존재하는 적색 마이크로 LED(ML1)를 선택적으로 흡착한다. 도 15(a-1)을 참조하면, 마이크로 LED 흡착체(1')는 제1도너 기판(DS1)상의 1,4,7,10,13,16번째 열에 해당하는 적색 마이크로 LED(ML)만을 선택적으로 진공 흡착한다. 흡착이 완료되면 마이크로 LED 흡착체(1')는 상승한 후 수평 이동하여 목표 기판(TS)상부에 위치한다. 그 이후에 마이크로 LED 흡착체(1')가 하강하여 목표 기판(TS)상에 적색 마이크로 LED(ML1)를 일괄 전사한다.
그런 다음 마이크로 LED 흡착체(1')는 제2도너 기판(DS2)상의 녹색 마이크로 LED(ML2)를 흡착하여 목표 기판(TS)으로 전사한다. 이때 목표 기판(TS)상에 이미 전사된 적색 마이크로 LED(ML1)를 기준으로 마이크로 LED(ML)의 x방향의 피치 간격만큼 도면상 오른쪽으로 마이크로 LED 흡착체(1')를 위치시켜 녹색 마이크로 LED(ML2)를 목표 기판(TS)상으로 일괄 전사한다.
그런 다음 마이크로 LED 흡착체(1')는 제3도너 기판(DS3)상으로 이동한다. 그 다음 앞서 적색 마이크로 LED(ML1)를 전사하는 과정과 동일한 과정으로 마이크로 LED 흡착체(1')는 제3도너 기판(DS3)상의 청색 마이크로 LED(ML3)를 흡착하여 목표 기판(TS)으로 전사한다. 이 때 목표 기판(TS)상에 이미 전사된 녹색 마이크로 LED(ML2)를 기준으로 마이크로 LED(ML)의 x 방향의 피치 간격만큼 도면상 오른쪽으로 마이크로 LED 흡착체(1')를 위치시켜 청색 마이크로 LED(ML3)를 목표 기판(TS)상으로 일괄 전사한다.
이와 같은 구성에 의한 1×3 화소 배열의 목표 기판(TS)은 도 15(a-2)와 같이 구현될 수 있다. 여기서 목표 기판(TS)은 도 2에 도시된 표시 기판(301)일 수 있고, 성장 기판(101)에서 전사된 임시기판 또는 캐리어 기판일 수 있다.
이와는 달리, 도 15(b)에 도시된 바와 같이, 흡착영역(2000)은 열 방향(x 방향) 피치 간격이 3P(n), 행 방향(y 방향) 피치 간격이 3P(m)으로 형성될 수 있다. 이와 같은 구성에 의하면 마이크로 LED 흡착체(1')는 3배수 열에 해당하는 마이크로 LED(ML) 및 3배수 행에 해당하는 마이크로 LED(ML)를 진공 흡착하여 이송할 수 있다. 여기서 3배수 열 및 행으로 이송되는 마이크로 LED(ML)는 적색, 녹색, 청색 마이크로 LED(ML1, ML2, ML3)일 수 있다. 이와 같은 구성에 의하여 표시 기판(301)에 실장되는 동일 발광색의 마이크로 LED(ML)를 3P(n), 3P(m) 간격으로 이격시켜 전사할 수 있다.
도 15(b)에 도시된 흡착영역(2000)은 열 방향(x 방향) 이격거리는 도너부에 배치된 마이크로 LED(ML)의 열 방향(x 방향) 피치 간격의 3배수 거리이고, 행 방향(y 방향) 이격거리는 도너부에 배치된 마이크로 LED(ML)의 행 방향(y 방향) 피치 간격의 3배수 거리이다.
도 15(b)에 도시된 바와 같이 열 방향(x 방향) 피치 간격 3P(n), 행 방향(y 방향) 피치 간격 3P(m)으로 피치 간격이 형성된 흡착영역(2000)이 형성된 마이크로 LED 흡착체(1')는 제1 내지 제3도너 기판(DS1, DS2, DS3)과 목표 기판(TS) 사이를 9회 왕복 이동하면서 적색, 녹색 및 청색 마이크로 LED(ML1, ML2, ML3)를 목표 기판(TS)에 전사하여 적색, 녹색 및 청색 마이크로 LED(ML1, ML2, ML3)가 1×3 화소 배열을 형성하도록 한다.
구체적으로 설명하면, 1회 전사 시 마이크로 LED 흡착체(1')는 제1도너 기판(DS1)에서 적색 마이크로 LED(ML1)를 선택적으로 흡착하여 목표 기판(TS)에 일괄 전사하고, 2회 전사 시 마이크로 LED 흡착체(1')는 제2도너 기판(DS2)에서 녹색 마이크로 LED(ML2)를 선택적으로 흡착하여 목표 기판(TS)상에 이미 전사된 적색 마이크로 LED(ML1)를 기준으로 마이크로 LED(ML)의 x 방향의 피치 간격만큼 도면상 오른쪽으로 마이크로 LED 흡착체(1')를 위치시켜 녹색 마이크로 LED(ML2)를 목표 기판(TS)상으로 일괄 전사한다. 다음 3회 전사시, 마이크로 LED 흡착체(1')는 제3도너 기판(DS3)에서 청색 마이크로 LED(ML3)를 선택적으로 흡착하여 목표 기판(TS)상에 이미 전사된 녹색 마이크로 LED(ML2)를 기준으로 마이크로 LED(ML)의 x 방향의 피치 간격만큼 도면상 오른쪽으로 마이크로 LED 흡착체(1')를 위치시켜 청색 마이크로 LED(ML3)를 목표 기판(TS)상으로 일괄 전사한다.
다음으로 4회 전사 시 마이크로 LED 흡착체(1')는 제1도너 기판(DS1)에서 적색 마이크로 LED(ML1)를 선택적으로 흡착하여 목표 기판(TS)상에 이미 전사된 녹색 마이크로 LED(ML2)를 기준으로 마이크로 LED(ML)의 y 방향의 피치 간격만큼 도면 아래쪽으로 마이크로 LED 흡착체(1')를 위치시켜 적색 마이크로 LED(ML1)를 목표 기판(TS)상으로 일괄 전사한다. 다음 5회 전사시 마이크로 LED 흡착체(1')는 제2도너 기판(DS2)에서 녹색 마이크로 LED(ML2)를 선택적으로 흡착하여 목표 기판(TS)상에 4회 전사 때 전사된 적색 마이크로 LED(ML1)를 기준으로 마이크로 LED(ML)의 x방향의 피치 간격만큼 도면상 오른쪽으로 마이크로 LED 흡착체(1')를 위치시켜 녹색 마이크로 LED(ML)를 목표 기판(TS)상으로 일괄 전사한다. 다음 6회 전사 시, 마이크로 LED 흡착체(1')는 제3도너 기판(DS3)에서 청색 마이크로 LED(ML3)를 선택적으로 흡착하여 목표 기판(TS)상에 5회 전사 시 전사된 녹색 마이크로 LED(ML2)를 기준으로 마이크로 LED(ML)의 x 방향의 피치 간격만큼 도면상 오른쪽으로 마이크로 LED 흡착체(1')를 위치시켜 청색 마이크로 LED(ML3)를 목표 기판(TS)상으로 일괄 전사한다.
다음으로 7회 전사시 마이크로 LED 흡착체(1')는 제1도너 기판(DS1)에서 적색 마이크로 LED(ML1)를 선택적으로 흡착하여 목표 기판(TS)상에 이미 전사된 청색 마이크로 LED(ML3)를 기준으로 마이크로 LED(ML)의 y 방향의 피치 간격만큼 도면 아래쪽으로 마이크로 LED 흡착체(1')를 위치시켜 적색 마이크로 LED(ML1)를 목표 기판(TS)상으로 일괄 전사한다. 다음 8회 전사 시 마이크로 LED 흡착체(1')는 제2도너 기판(DS2)에서 녹색 마이크로 LED(ML2)를 선택적으로 흡착하여 목표 기판(TS)상에 7회 전사 때 전사된 적색 마이크로 LED(ML1)를 기준으로 마이크로 LED(ML)의 x방향의 피치 간격만큼 도면상 오른쪽으로 마이크로 LED 흡착체(1')를 위치시켜 녹색 마이크로 LED(ML2)를 목표 기판(TS)상으로 일괄 전사한다. 다음 9회 전사 시 마이크로 LED 흡착체(1')는 제3도너 기판(DS3)에서 청색 마이크로 LED(ML3)를 선택적으로 흡착하여 목표 기판(TS)상에 8회 전사시 전사된 녹색 마이크로 LED(ML2)를 기준으로 마이크로 LED(ML)의 x 방향의 피치 간격만크 도면 상 오른쪽으로 마이크로 LED 흡착체(1')를 위치시켜 청색 마이크로 LED(ML3)를 목표 기판(TS)상으로 일괄 전사한다.
이와 같은 구성에 의한 1×3 화소 배열의 목표 기판(TS)은 도 15(d)와 같이 구현될 수 있다. 여기서 목표 기판(TS)은 도 2에 도시된 표시 기판(301)일 수 있고, 성장 기판에서 전사된 임시기판 또는 캐리어 기판일 수 있다.
이와는 달리, 도 15(c)에 도시된 바와 같이, 흡착영역(2000)은 도너부에 배치된 마이크로 LED(ML)의 대각선 방향의 피치 간격과 동일한 피치 간격으로 형성될 수 있다. 이와 같은 구성에 의하여 마이크로 LED 흡착체(1')는 제1 내지 제3도너 기판(DS1, DS2, DS3)과 목표 기판(TS) 사이를 3회 왕복 이동하면서 적색, 녹색, 및 청색 마이크로 LED(ML1, ML2, ML3)를 목표 기판(TS)에 전사하여 적색, 녹색, 및 청색 마이크로 LED(ML1, ML2, ML3)가 1×3 화소 배열을 형성하도록 한다.
구체적으로 설명하면, 1회 전사시 마이크로 LED 흡착체(1')는 제1도너 기판(DS1)에서 적색 마이크로 LED(ML1)를 선택적으로 흡착하여 목표 기판(TS)에서 일괄 전사하고, 2회 전사 시 마이크로 LED 흡착체(1')는 제2도너 기판(DS2)에서 녹색 마이크로 LED(ML2)를 선택적으로 흡착하여 목표 기판(TS)상에 이미 전사된 적색 마이크로 LED(ML1)를 기준으로 마이크로 LED(ML)의 x 방향의 피치 간격만큼 도면상 오른쪽으로 마이크로 LED 흡착체(1')를 위치시켜 녹색 마이크로 LED(ML2)를 목표 기판(TS)상으로 일괄 전사한다. 다음 3회 전사시, 마이크로 LED 흡착체(1')는 제3도너 기판(DS3)에서 청색 마이크로 LED(ML3)를 선택적으로 흡착하여 목표 기판(TS)에 이미 전사된 녹색 마이크로 LED(ML2)를 기준으로 마이크로 LED(ML)의 x 방향의 피치 간격만큼 도면상 오른쪽으로 마이크로 LED 흡착체(1')를 위치시켜 청색 마이크로 LED(ML3)를 목표 기판(TS)상으로 일괄 전사한다.
이와 같은 구성에 의한 1×3 화소 배열의 목표 기판(TS)은 도 15(d)와 같이 구현될 수 있다. 여기서 목표 기판(TS)은 도 2에 도시된 표시 기판(301)일 수 있고, 성장 기판(101)에서 전사된 임시기판 또는 캐리어 기판일 수 있다.
이와는 달리, 마이크로 LED 흡착체(1')의 흡착 영역(2000)간의 x 방향 피치 간격은 제1기판을 포함하는 기판에 배치된 마이크로 LED(ML)의 x 방향 피치 간격의 2배수 거리이고, 흡착 영역(2000)간의 y 방향 피치 간격은 제1기판에 배치된 마이크로 LED(ML)의 y 방향 피치 간격의 2배수 거리로 형성될 수 있다. 이로 인해 마이크로 LED 흡착체(1')는 제1기판에 배치된 마이크로 LED(ML)를 선택적으로 흡착할 수 있다. 이 경우, 제1기판은 제1 내지 제3도너부(DS1, DS2, DS3)를 포함할 수 있다.
그러므로 도 16(a-1)에 도시된 바와 같이, 흡착영역(2000)은 도너부에 배치된 마이크로 LED(ML)의 열 방향(x 방향) 피치 간격의 2배수 거리, 행 방향(y 방향) 피치 간격의 2배수 거리로 형성될 수 있다. 이와 같은 구성에 의하여 마이크로 LED 흡착체(1')는 제1 내지 제3도너 기판(DS1, DS2, DS3)과 목표 기판(TS) 사이를 3회 왕복 이동하면서 적색, 녹색 및 청색 마이크로 LED(ML1, ML2, ML3)를 목표 기판(TS)에 전사하여 적색, 녹색 및 청색 마이크로 LED(ML1, ML2, ML3)가 2×2 화소 배열을 형성하도록 한다.
먼저, 1회 전사 시 마이크로 LED 흡착체(1')는 제1도너 기판(DS1)에서 적색 마이크로 LED(ML1)를 선택적으로 흡착하여 목표 기판(TS)에 일괄 전사하고, 2회 전사시 마이크로 LED 흡착체(1')는 제2도너 기판(DS2)에서 녹색 마이크로 LED(ML2)를 선택적으로 흡착하여 목표 기판(TS)상에 이미 전사된 적색 마이크로 LED(ML)를 기준으로 마이크로 LED(ML)의 x방향의 피치 간격만큼 도면상 오른쪽으로 마이크로 LED 흡착체(1')를 위치시켜 녹색 마이크로 LED(ML2)를 목표 기판(TS)상으로 일괄 전사한다. 다음 3회 전사시, 마이크로 LED 흡착체(1')는 제3도너 기판(DS3)에서 청색 마이크로 LED(ML3)를 선택적으로 흡착하여 목표 기판(TS)상에 2회 전사시 전사된 녹색 마이크로 LED(ML2)를 기준으로 마이크로 LED(ML)의 y방향의 피치 간격만큼 도면상 아래쪽으로 마이크로 LED 흡착체(1')를 위치시켜 청색 마이크로 LED(ML3)를 목표 기판(TS)상으로 일괄 전사한다.
이와 같은 구성에 의한 2×2 화소 배열의 목표 기판(TS)은 도 16(a-2)와 같이 구현될 수 있다. 여기서 목표 기판(TS)은 도 2에 도시된 표시 기판(301)일 수 있고, 성장 기판(101)에서 전사된 임시기판 또는 캐리어 기판일 수 있다.
흡착영역(2000)은 도너부의 마이크로 LED(ML)의 열 방향(x 방향) 피치 간격의 2배수 거리, 행 방향(y 방향) 피치 간격의 2배수 거리로 형성되어 도 16(a-2)와 같이 목표 기판(TS)상에 총 3개의 마이크로 LED(ML1, ML2, ML3)만으로 2×2 화소 배열을 이룰 수 있다. 이 경우, 마이크로 LED(ML)가 추가적으로 실장될 수 있는 여유 영역이 존재하게 된다. 마이크로 LED(ML)의 개별적 발광 특성 개선, 시인성 개선 및/또는 불량품의 존재 등을 고려하여, 비어 있는 2×2 화소 배열에 추가적인 마이크로 LED(ML)를 여유 영역에 전사하여 총 4개의 마이크로 LED(ML)로 2×2 화소 배열을 형성할 수 있다.
마이크로 LED 흡착체(1')는 제1 내지 제3도너 기판(DS1, DS2, DS3) 중 어느 하나의 기판과 목표 기판(TS) 사이를 1회 이동하여 적색, 녹색 및 청색 마이크로 LED(ML1, ML2, ML3) 중 어느 하나의 마이크로 LED를 추가로 상기 목표 기판(TS)에 전사하여 적색, 녹색 및 청색 마이크로 LED(ML1, ML2,ML3)의 4개가 2×2 화소 배열을 형성할 수 있다. 여기서 추가적으로 전사되는 마이크로 LED(ML)는 적색, 녹색 및 청색 마이크로 LED(ML1, ML2, ML3) 중 어느 하나의 것이다. 이와 같이 여유 영역에 마이크로 LED(ML)가 추가적으로 전사되어 형성되는 2×2 화소 배열을 갖는 목표 기판(TS)은 16(b-2)와 같이 구현될 수 있다. 도 16(b-2)에서는 하나의 예로서 여유 영역에 전사된 마이크로 LED(ML)가 녹색 마이크로 LED(ML2)인 것으로 도시하였지만, 여유 영역에 전사되는 마이크로 LED(ML)는 이에 한정되지 않고 적색, 청색 마이크로 LED(ML1, ML3) 중 어느 하나가 추가적으로 전사될 수도 있다.
이를 통해 마이크로 LED(ML)의 발광 특성 또는 시인성을 보완할 수 있고, 마이크로 LED(ML) 전사 시 전사가 제대로 이루어지지 않아 누락된 마이크로 LED(ML)가 존재하거나 불량품의 마이크로 LED(ML)가 존재할 경우 양품의 마이크로 LED(ML)를 추가로 실장함으로써 디스플레이의 화질을 향상시킬 수 있게 된다.
이와는 달리, 도 16(c-1)에 도시된 바와 같이, 흡착영역(2000)은 도너부에 배치된 마이크로 LED(ML)의 열 방향(x 방향) 피치 간격의 3배수 거리, 행 방향(y 방향) 피치 간격의 3배수 거리로 형성될 수 있다. 도 16(c-1)의 경우, 흡착영역(2000)의 피치 간격이 도 16(a-1) 및 도 16(b-1)과 동일한 피치 간격인 것으로 도시되었으나, 이는 편의상 도시된 것으로 그 피치 간격이 도 16(a-1) 및 도 16(b-1)과 다르게 형성된 흡착영역(2000)이다.
이와 같은 구성에 의하여 마이크로 LED 흡착체(1')는 제1 내지 제3도너 기판(DS1, DS2, DS3)과 목표 기판(TS) 사이를 3회 왕복 이동하면서 적색, 녹색 및 청색 마이크로 LED(ML1, ML2, ML3)를 목표 기판(TS)에 전사하여 적색, 녹색 및 청색 마이크로 LED(ML1, ML2, ML3)가 3×3 화소 배열을 형성하도록 한다.
구체적으로 설명하면, 1회 전사시 마이크로 LED 흡착체(1')는 제1도너 기판(DS1)에서 적색 마이크로 LED(ML1)를 선택적으로 흡착하여 목표 기판(TS)에 일괄 전사하고, 2회 전사시 마이크로 LED 흡착체(1')는 제2도너 기판(DS2)에서 녹색 마이크로 LED(ML2)를 선택적으로 흡착하여 목표 기판(TS)상에 이미 전사된 적색 마이크로 LED(ML1)를 기준으로 마이크로 LED(ML)의 x방향의 피치 간격만큼 오른쪽으로 그리고 y방향의 피치 간격만큼 아래쪽으로 마이크로 LED 흡착체(1')를 위치시켜 녹색 마이크로 LED(ML2)를 목표 기판(TS)상으로 일괄 전사한다. 다음 3회 전사시, 마이크로 LED 흡착체(1')는 제3도너 기판(DS3)에서 청색 마이크로 LED(ML3)를 선택적으로 흡착하여 목표 기판(TS)상에 2회 전사시 전사된 녹색 마이크로 LED(ML2)를 기준으로 마이크로 LED(ML)의 x방향의 피치 간격만큼 오른쪽으로 그리고 y방향의 피치 간격만큼 아래쪽으로 마이크로 LED 흡착체(1')를 위치시켜 청색 마이크로 LED(ML3)를 목표 기판(TS)상으로 일괄 전사한다. 이로 인해 마이크로 LED 흡착체(1')는 제1 내지 제3도너 기판(DS1, DS2, DS3)과 목표 기판(TS) 사이를 3회 왕복 이동하면서 적색, 녹색 및 청색 마이크로 LED(ML1, ML2, ML3) 3개가 3×3 화소 배열을 형성하도록 한다.
이와는 달리, 흡착영역(2000)이 기판(S)에 배치된 마이크로 LED(ML)의 열 방향(x 방향) 및 행 방향(y 방향) 피치 간격과 동일한 피치 간격으로 형성될 경우, 마이크로 LED 흡착체(1')는 기판(S)의 마이크로 LED(ML) 전체를 한꺼번에 흡착하여 이송할 수 있다.
한편, 흡착영역(2000)은 성장 기판(101)의 마이크로 LED(ML)를 성장 기판(101)상의 피치 간격보다 확장된 간격으로 목표 기판(TS)에 전사하는 배열로 형성될 수 있다. 이로 인해 성장 기판(101)상의 마이크로 LED(ML)는 동일한 간격으로 피치 간격이 확장되어 목표 기판(TS)상에 전사될 수 있다.
구체적으로 설명하면, 마이크로 LED 흡착체(1')는 제1기판(예를 들어, 성장 기판(101))에 배치된 마이크로 LED(ML)를 선택적으로 흡착하되, 흡착영역(2000) 간의 일 방향 피치 간격은 제1기판(예를 들어, 성장 기판(101))에 배치된 마이크로 LED(ML)의 일 방향 피치 간격의 M/3배이고, M은 4이상의 정수이다.
도 17을 참조하여 설명하면, 목표 기판(TS)의 마이크로 LED(ML)의 제2피치 간격(b)은 도너부의 마이크로 LED(ML)의 제1피치 간격(a)의 M/3배로 형성된다. 이 경우, 목표 기판(TS)의 마이크로 LED(ML)를 흡착하기 위한 흡착영역(2000)의 피치 간격은 성장 기판(101)상의 마이크로 LED(ML)의 피치 간격의 M/3배이고, M은 4이상의 정수이다.
도너부의 마이크로 LED(ML)를 흡착하는 흡착영역(2000)은 도너부의 마이크로 LED(ML)의 제1피치 간격(a)의 M/3배인 제2피치 간격(b)으로 목표 기판(TS)에 마이크로 LED(ML)를 전사하기 위해 도너부의 마이크로 LED(ML)의 제1피치 간격(a)의 4배수 이상의 간격으로 형성될 수 있다. 이하에서는 하나의 예로서, 도너부의 마이크로 LED(ML)를 흡착하는 흡착영역(2000)이 도너부의 마이크로 LED(ML)의 제1피치 간격(a)의 4배수 거리의 피치 간격으로 형성되는 것으로 한다. 여기서 흡착영역(2000)의 최대 피치 간격은 목표 기판(TS)에서 화소를 이루기 위한 최소 거리이다.
도너부의 마이크로 LED(ML)의 제1피치 간격(a)의 4배수 거리의 피치 간격으로 형성된 흡착영역(2000)을 구비하는 마이크로 LED 흡착체(1')는 도너부의 마이크로 LED(ML)를 흡착하여 도 17에 도시된 목표 기판(TS)과 같이 도너부의 마이크로 LED(ML)의 제1피치 간격(a)의 M/3배인 제2피치 간격(b)을 갖도록 전사할 수 있다.
구체적으로 설명하면, 제1도너 기판(DS1)상에는 적색 마이크로 LED(ML1)가 제1피치 간격(a)으로 배치된다. 제2도너 기판(DS2)상에는 녹색 마이크로 LED(ML2)가 제1피치 간격(a)으로 배치되고, 제3도너 기판(DS3)상에도 청색 마이크로 LED(ML3)가 제1피치 간격(a)으로 배치된다. 1회 전사시 마이크로 LED 흡착체(1')는 제1도너 기판(DS1)측으로 하강하여 흡착영역(2000)에 대응되는 위치에 존재하는 1행 1열, 1행 5열, 5행 1열 및 5행 5열의 적색 마이크로 LED(ML1)를 선택적으로 흡착한다. 그런 다음 마이크로 LED 흡착체(1')는 목표 기판(TS)으로 이동하여 목표 기판(TS)상에 적색 마이크로 LED(ML1)를 일괄 전사한다. 2회 전사시 마이크로 LED 흡착체(1')는 제2도너 기판(DS2)의 1행 1열, 1행 5열, 5행 1열 및 5행 5열의 녹색 마이크로 LED(ML2)를 선택적으로 흡착한다. 그런 다음 마이크로 LED 흡착체(1')는 목표 기판(TS)상에 이미 전사된 적색 마이크로 LED(ML1)를 기준으로 마이크로 LED(ML)의 x방향의 제2피치 간격(b)만큼 도면상 오른쪽으로 이동하여 녹색 마이크로 LED(ML2)를 목표 기판(TS)상으로 일괄 전사한다. 그 다음 3회 전사시 마이크로 LED 흡착체(1')는 제3도너 기판(DS3)상으로 이동한다. 마이크로 LED 흡착체(1')는 제3도너 기판(DS3)상의 1행 1열, 1행 5열, 5행 1열 및 5행 5열의 청색 마이크로 LED(ML3)를 흡착하여 목표 기판(TS)으로 전사한다. 이 경우, 목표 기판(TS)에 2회 전사 시 이미 전사된 녹색 마이크로 LED(ML2)를 기준으로 마이크로 LED(ML)의 x방향의 제2피치 간격(b)만큼 도면상 오른쪽으로 이동하여 청색 마이크로 LED(ML3)를 목표 기판(TS)상으로 일괄 전사한다.
다음으로 4회 전사시 마이크로 LED 흡착체(1')는 제1도너 기판(DS1)에서 흡착영역(2000)에 대응되는 위치의 적색 마이크로 LED(ML1)를 선택적으로 흡착하여 목표 기판(TS)상에 1회 전사시 전사된 적색 마이크로 LED(ML1)를 기준으로 y방향의 제2피치 간격(b)만큼 도면 아래쪽으로 이동하여 적색 마이크로 LED(ML1)를 목표 기판(TS)상으로 일괄 전사한다. 다음 5회 전사시 마이크로 LED 흡착체(1')는 제2도너 기판(DS2)에서 흡착영역(2000)에 대응되는 위치의 녹색 마이크로 LED(ML2)를 선택적으로 흡착하여 목표 기판(TS)상에 4회 전사시 전사된 적색 마이크로 LED(ML1)를 기준으로 x방향의 제2피치 간격(b)만큼 도면 오른쪽으로 이동하여 녹색 마이크로 LED(ML2)를 목표 기판(TS)상을 일괄 전사한다. 다음으로 6회 전사시 마이크로 LED 흡착체(1')는 제3도너 기판(DS3)에서 흡착영역(2000)에 대응되는 위치의 청색 마이크로 LED(ML3)를 선택적으로 흡착하여 목표 기판(TS)상에 5회 전사시 전사된 녹색 마이크로 LED(ML2)를 기준으로 x방향의 제2피치 간격(b)만큼 도면 오른쪽으로 이동하여 청색 마이크로 LED(ML3)를 목표 기판(TS)상으로 일괄 전사한다.
다음으로 7회 전사 시 마이크로 LED 흡착체(1')는 제1도너 기판(DS1)에서흡착영역(2000)에 대응되는 위치의 적색 마이크로 LED(ML1)를 선택적으로 흡착하여 목표 기판(TS)상에 4회 전사시 이미 전사된 적색 마이크로 LED(ML1)를 기준으로 y방향으로 제2피치 간격(b)만큼 도면 아래쪽으로 이동하여 적색 마이크로 LED(ML1)를 목표 기판(TS)상으로 일괄 전사한다. 다음 8회 전사시 마이크로 LED 흡착체(1')는 5회 전사 과정과 동일한 과정으로 녹색 마이크로 LED(ML2)를 흡착하여 7회 전사시 전사된 적색 마이크로 LED(ML1)를 기준으로 x방향으로 제2피치 간격(b)만큼 도면 오른쪽으로 이동하여 녹색 마이크로 LED(ML2)를 일괄 전사한다. 그런 다음 마이크로 LED 흡착체(1')는 9회 전사시 6회 전사 과정과 동일한 과정으로 청색 마이크로 LED(ML3)를 흡착하여 8회 전사시 전사된 녹색 마이크로 LED(ML2)를 기준으로 x방향으로 제2피치 간격(b)만큼 도면 오른쪽으로 이동하여 청색 마이크로 LED(ML3)를 일괄 전사한다.
이처럼 도너부의 마이크로 LED(ML)의 제1피치 간격(a)의 4배수 거리의 피치 간격을 갖는 흡착영역(2000)에 의하여 마이크로 LED(ML1, ML2, ML3)는 목표 기판(TS)에서 열 방향(x 방향) 및 행 방향(y 방향) 피치 간격이 동일한 간격으로 도너부의 마이크로 LED(ML)의 열 방향(x 방향) 및 행 방향(y 방향) 피치 간격보다 확장되어 목표 기판(TS)상에 전사될 수 있다.
위와 같은 흡착영역(2000)의 배열에 의하여 마이크로 LED 흡착체(1')는 제1 내지 제3도너 기판(DS1, DS2, DS3)과 목표 기판(TS) 사이를 9회 왕복 이동하면서 적색, 녹색 및 청색 마이크로 LED(ML1, ML2, ML3)를 목표 기판(TS)에 전사하여 목표 기판(TS)에 3개의 마이크로 LED(ML1, ML2, ML3)가 1×3 화소 배열을 형성하도록 하고, 동일한 열에 동일한 종류의 마이크로 LED(ML)가 전사되도록 할 수 있다.
동일한 열에 동일한 종류의 마이크로 LED(ML)가 전사되도록 하는 전사 방법의 경우, 이에 한정되지 않으며 마이크로 LED 흡착체(1')는 전술한 전사 방법외에 목표 기판(TS)의 동일한 열에 동일한 종류의 마이크로 LED(ML)가 전사되는 적합한 방법으로 마이크로 LED(ML)를 전사할 수 있다.
이와는 달리, 마이크로 LED 흡착체(1')는 목표 기판(TS)의 상부에서 열 방향(x 방향) 및 행 방향(y 방향)의 위치를 이동하여 목표 기판(TS)상에 3개의 마이크로 LED(ML1, ML2, ML3)가 1×3 화소 배열을 형성하되, 동일한 열에 동일한 종류의 마이크로 LED(ML)가 전사되는 배열과 다른 배열을 갖도록 전사할 수도 있다.
구체적으로 설명하면, 마이크로 LED 흡착체(1')는 이미 전사된 같은 종류의 마이크로 LED(ML)를 기준으로 x방향의 제2피치 간격(b)만큼 오른쪽, y방향의 제2피치 간격(b)만큼 아래쪽으로 이동하여 전사될 수 있다. 1회 전사시 마이크로 LED 흡착체(1')는 제1도너 기판(DS1)에서 적색 마이크로 LED(ML1)를 선택적으로 흡착하여 목표 기판(TS)에 일괄 전사하고, 2회 전사시 제2도너 기판(DS2)의 녹색 마이크로 LED(ML2)를 선택적으로 흡착하여 목표 기판(TS)상에 1회 전사시 이미 전사된 적색 마이크로 LED(ML1)를 기준으로 x방향의 제2피치 간격(b)만큼 오른쪽으로 이동하여 녹색 마이크로 LED(ML2)를 목표 기판(TS)상으로 일괄 전사한다. 다음 3회 전사시 마이크로 LED 흡착체(1')는 제3도너 기판(DS3)에서 청색 마이크로 LED(ML3)을 선택적으로 흡착하여 목표 기판(TS)상에 2회 전사시 전사된 녹색 마이크로 LED(ML2)를 기준으로 x방향의 제2피치 간격(b)만큼 오른쪽으로 이동하여 청색 마이크로 LED(ML3)를 목표 기판(TS)상으로 일괄 전사한다.
4회 전사시 마이크로 LED 흡착체(1')는 제1도너 기판(DS1)에서 적색 마이크로 LED(ML1)를 선택적으로 흡착하여 목표 기판(TS)상에 1회 전사시 이미 전사된 적색 마이크로 LED(ML1)를 기준으로 y방향의 제2피치 간격(b)만큼 아래쪽으로 이동하고, x방향의 제2피치 간격(b)만큼 오른쪽으로 이동하여 적색 마이크로 LED(ML)를 일괄 전사한다. 다음 5회 전사시 마이크로 LED 흡착체(1')는 제2도너 기판(DS2)의 녹색 마이크로 LED(ML2)를 선택적으로 흡착하여 목표 기판(TS)상에 2회 전사시 이미 전사된 녹색 마이크로 LED(ML2)를 기준으로 y방향의 제2피치 간격(b)만큼 아래쪽, x방향의 제2피치 간격(b)만큼 오른쪽으로 이동하여 녹색 마이크로 LED(ML2)를 목표 기판(TS)상에 일괄 전사한다. 다음 6회 전사시 마이크로 LED 흡착체(1')는 제3도너 기판(DS3)의 청색 마이크로 LED(ML3)를 선택적으로 흡착하여 목표 기판(TS)상에 3회 전사시 전사된 청색 마이크로 LED(ML3)를 기준으로 y방향의 제2피치 간격(b)만큼 아래쪽, x방향의 제2피치 간격(b)만큼 오른쪽으로 이동하여 청색 마이크로 LED(ML3)를 목표 기판(TS)상에 일괄 전사한다.
위와 같이 마이크로 LED 흡착체(1')는 이미 전사된 같은 종류의 마이크로 LED(ML)를 기준으로 x방향의 제2피치 간격(b)만큼 오른쪽, y방향의 제2피치 간격(b)만큼 아래쪽으로 이동하여 마이크로 LED(ML)를 전사함으로써 목표 기판(TS)상에 대각선 방향으로 동일한 종류의 마이크로 LED(ML)가 배치되는 형태를 구현할 수 있게 된다.
도 17을 참조하여 설명한 바와 같이, 흡착영역(2000)을 제1기판의 마이크로 LED(ML)를 제1기판상의 피치 간격보다 확장된 간격으로 제2기판에 전사하는 배열로 형성할 경우, 마이크로 LED(ML)의 개별화 공정 후, 별도의 필름 확장 수단없이 마이크로 LED(ML)의 피치 간격을 확장할 수 있고, 수십 또는 수만개의 마이크로 LED(ML)의 피치 간격을 동일한 간격으로 확장하는 효과를 얻을 수 있다.
본 발명의 마이크로 LED 흡착체는 마이크로 LED 디스플레이(D)를 제작하는데 이용될 수 있다. 도 17의 제2기판(TS)에 피치 간격이 확장되어 전사된 마이크로 LED(ML)를 전체적으로 일괄 흡착하여 제3기판에 전사할 경우에는 흡착영역(2000) 간의 일 방향 피치 간격이 제1기판에 배치된 마이크로 LED(ML)의 일 방향 피치 간격의 M/3이고, M은 정수인 마이크로 LED 흡착체(1')가 이용되는 것이 바람직할 수 있다.
도 18(a) 내지 도 18(d)는 본 발명의 마이크로 LED 흡착체를 이용하여 마이크로 LED 디스플레이(D)를 제작하는 과정을 개략적으로 도시한 도이다.
이하, 도 18을 참조하는 설명에서 마이크로 LED 흡착체는 흡착영역(2000) 간의 일 방향 피치 간격이 제1기판에 배치된 마이크로 LED(ML)의 일 방향 피치 간격의 M/3이고, M은 정수인 것으로 구성될 수 있다.
마이크로 LED 흡착체는 마이크로 LED 디스플레이(D)를 제작하기 위해 제1기판의 마이크로 LED를 흡착하여 제2기판으로 전사하는 과정을 수행할 수 있다. 이 경우, 마이크로 LED 흡착체가 마이크로 LED(ML)를 흡착하는 제1기판은 성장 기판(101)이거나, 캐리어 기판(C)일 수 있다. 한편, 마이크로 LED 흡착체가 제1기판의 마이크로 LED(ML)를 전사하는 제2기판은 캐리어 기판(C)이거나 회로 기판(HS)일 수 있다.
제1기판 및 제2기판은 마이크로 LED 흡착체가 마이크로 LED(ML)를 흡착하는 기판 및 흡착한 마이크로 LED(ML)를 전사하는 기판에 따라 구분될 수 있다.
구체적으로 설명하면, 제1기판은 마이크로 LED 흡착체가 마이크로 LED(ML)를 흡착하는 기판을 의미한다. 또한, 제2기판은 마이크로 LED 흡착체가 제1기판에서 흡착한 마이크로 LED(ML)를 전사하는 기판을 의미한다. 따라서, 마이크로 LED 흡착체가 성장 기판(101)의 마이크로 LED(ML)를 흡착할 경우, 성장 기판(101)은 제1기판이 될 수 있다. 또한, 성장 기판(101)의 마이크로 LED(ML)를 흡착하여 캐리어 기판(C)에 전사할 경우, 제2기판은 캐리어 기판(C)이 될 수 있다.
이와는 달리, 마이크로 LED 흡착체가 캐리어 기판(C)의 마이크로 LED(ML)를 흡착하여 회로 기판(HS)에 전사할 경우, 제1기판은 임시 기판(HS)을 의미할 수 있고, 제2기판은 회로 기판(HS)을 의미할 수 있다. 이처럼 제1기판 및 제2기판은 마이크로 LED 흡착체가 마이크로 LED를 흡착하는 기판과 전사하는 기판에 따라 구분될 수 있다.
마이크로 LED 디스플레이(D)를 제작하는 방법은 마이크로 LED(ML)가 구비된 제1기판을 준비하는 단계, 회로 기판(HS)을 준비하는 단계 및 흡착영역(2000)간의 일 방향 피치 간격이 제1기판에 배치된 마이크로 LED(ML)의 일 방향 피치 간격의 M/3배이고, M은 4이상의 정수인 마이크로 LED 흡착체(1')로 제1기판 상의 마이크로 LED(ML)를 회로 기판(HS)으로 전사하여 단위 모듈(M)을 제작하는 단계, 디스플레이 배선 기판(DP)를 준비하는 단계 및 단위 모듈(M)을 디스플레이 배선 기판(DP)에 전사하되, 디스플레이 배선 기판(DP)에서의 마이크로 LED(ML) 화소 배열은 단위 모듈(M)에서의 마이크로 LED(ML) 화소 배열과 동일하고, 디스플레이 배선 기판(DP)에서의 화소 배열의 피치 간격은 단위 모듈(M)에서의 화소 배열의 배치 간격과 동일하도록 단위 모듈(M)을 디스플레이 배선 기판(DP)에 실장하는 단계를 포함하여 구성될 수 있다.
마이크로 LED(ML)가 구비된 제1기판을 준비하는 단계는 성장 기판(101)에서 마이크로 LED(ML)를 에피 공정을 통해 제작하여 준비하는 단계일 수 있다. 성장 기판(101)은 적색 마이크로 LED(ML)가 구비된 제1성장 기판(101a), 녹색 마이크로 LED(ML)가 구비된 제2성장 기판(102a), 청색 마이크로 LED(ML)가 구비된 제3성장 기판(103a)으로 구성될 수 있다.
도 18(a)에 도시된 바와 같이, 에피 공정을 통해 각각의 성장 기판(101a, 101b, 101c)에서 마이크로 LED(ML1, ML2, ML3)가 제작되어 준비된다. 따라서, 복수개의 제1기판이 구비될 수 있다.
각각의 성장 기판(101a, 101b, 101c)의 마이크로 LED(ML1, ML2, ML3)는 마이크로 LED 흡착체에 의해 일정한 피치 간격으로 각각에 대응되는 캐리어 기판(C)에 전사되거나, 회로 기판(HS)에 전사될 수 있다. 캐리어 기판(C)은 적색 마이크로 LED(ML1)가 전사되는 제1캐리어 기판(C1), 녹색 마이크로 LED(ML2)가 구비되는 제2캐리어 기판(C2), 청색 마이크로 LED(ML3)가 구비되는 제3캐리어 기판(C3)으로 구성될 수 있다.
먼저, 성장 기판(101a, 101b, 101c)의 마이크로 LED(ML1, ML2, ML3)가 각각에 대응되는 캐리어 기판(C1, C2, C3)에 전사될 경우, 캐리어 기판(C1, C2, C3)은 제1기판(101a, 101b, 101c)의 마이크로 LED(ML1, ML2, ML3)가 전사되는 제2기판으로서의 기능을 한다. 각각의 마이크로 LED(ML1, ML2, ML3)가 대응되는 캐리어 기판(C1, C2, C3)에 전사된 형태는 도 18(b)와 같이 구현될 수 있다. 각각의 캐리어 기판(C1, C2, C3)은 동종의 마이크로 LED가 일정한 피치 간격으로 구비된 형태일 수 있다.
캐리어 기판(C)의 마이크로 LED(ML)를 회로 기판(HS)으로 전사하기 위해 회로 기판(HS)을 준비하는 단계가 수행될 수 있다. 준비된 회로 기판(HS)에는 마이크로 LED 흡착체에 의해 캐리어 기판(C)의 마이크로 LED(ML)가 전사될 수 있다.
흡착영역(2000)간의 일 방향 피치 간격이 제1기판에 배치된 마이크로 LED(ML)의 일 방향 피치 간격의 M/3배이고, M은 4이상의 정수인 마이크로 LED 흡착체는 마이크로 LED(ML)를 선택적으로 흡착하여 전사할 수 있다. 이로 인해 캐리어 기판(C)의 각각의 마이크로 LED(ML1, ML2, ML3)는 하나의 회로 기판(HS)으로 일정한 피치 간격으로 각각 전사될 수 있다. 이 경우, 동일한 열에는 동일한 종류의 마이크로 LED(ML)가 전사된 형태일 수 있다. 각각의 마이크로 LED(ML1, ML2, ML3)가 일정한 피치 간격으로 전사된 회로 기판(HS)상에는 1×3 화소 배열이 형성되게 된다. 회로 기판(HS)상에 1×3 화소 배열이 형성되면서 1×3 화소 배열을 갖는 단위 모듈(M)이 제작될 수 있게 된다. 이처럼 단위 모듈(M)을 제작하는 단계에서는 회로 기판(HS)에 이종의 마이크로 LED(ML1, ML2, ML3)가 화소의 배열을 이루며 실장되는 과정이 수행될 수 있다. 단위 모듈(M)은 도 18(c)에 도시된 바와 같이, 복수개로 개별적으로 구비될 수 있다. 회로 기판(HS)에 마이크로 LED(ML)가 전사되어 구성되는 복수개의 단위 모듈(M)은 테두리가 없는(베젤리스) 대면적 디스플레이의 구현을 가능하게 할 수 있다.
단위 모듈 제작 단계를 통해 복수개의 개별적인 단위 모듈(M) 각각에는 상대적으로 적은 수의 마이크로 LED(ML)가 실장될 수 있다. 이는 양품 및 불량품 검사가 간단하게 수행될 수 있고, 검사에 기초한 리페어 공정도 간단하게 수행되게 할 수 있다. 이를 통해 양품의 마이크로 LED만으로 구성된 단위 모듈(M)을 대면적 디스플레이에 실장할 수 있게 되어 대면적 디스플레이 제작 공정 수율이 향상되고 제작 시간이 단축되는 효과를 발휘할 수 있게 된다.
그런 다음 단위 모듈(M)을 전사하기 위한 디스플레이 배선 기판(DP)을 준비하는 단계가 수행될 수 있다. 그 다음 준비된 디스플레이 배선 기판(DP)에 복수개의 단위 모듈(M)을 실장하는 단계가 수행된다.
단위 모듈(M)을 실장하는 단계는 마이크로 LED 흡착체와 별도로 단위 모듈(M)을 디스플레이 배선 기판(DP)으로 전사하는 흡착체가 구비되어 수행될 수 있다. 디스플레이 배선 기판(DP)에 단위 모듈(M)을 실장하는 단계에서는 디스플레이 배선 기판(DP)에 복수개의 단위 모듈(M)을 전사하는 과정이 수행될 수 있다. 이로 인해 디스플레이 배선 기판(DP)에서의 마이크로 LED 화소 배열은 단위 모듈(M)에서의 마이크로 LED 화소 배열과 동일할 수 있다. 또한, 디스플레이 배선 기판(DP)에서의 화소 배열의 피치 간격은 단위 모듈(M)에서의 화소 배열의 배치 간격과 동일할 수 있다.
구체적으로 설명하면, 도 18(d)에 도시된 바와 같이, 단위 모듈(M)이 전사됨으로써 디스플레이 배선 기판(DP)에는 1×3 화소 배열의 마이크로 LED 화소 배열이 형성된다. 이러한 디스플레이 배선 기판(DP)에는 흡착영역(2000)간의 일 방향 피치 간격이 제1기판에 배치된 마이크로 LED(ML)의 일 방향 피치 간격의 M/3배이고, M은 4이상의 정수인 마이크로 LED 흡착체가 회로 기판(HS)에 마이크로 LED(ML1, ML2, ML3)를 전사함으로써 형성된 마이크로 LED 화소 배열과 동일한 피치 간격을 갖는 마이크로 LED(ML)가 전사된 형태일 수 있다. 이러한 구조는 도 18(d)와 같이 구현된 마이크로 LED 디스플레이(D)의 마이크로 LED 화소 배열 및 피치 간격일 수 있다.
마이크로 LED 디스플레이(D)는 위와 같이 성장 기판(101)에서 에피 공정을 통해 마이크로 LED(ML)를 제작하여 준비하는 단계, 성장 기판(101)의 마이크로 LED(ML)를 캐리어 기판(C)에 전사한 뒤, 회로 기판(HS) 준비 단계에서 준비된 회로 기판(HS)에 캐리어 기판(C)의 마이크로 LED(ML)를 전사하여 단위 모듈(M)을 제작하는 단계, 상기한 단위 모듈(M)을 디스플레이 배선 기판(DP)에 실장하는 단계에 의해 제작될 수 있다.
이와는 달리, 성장 기판(101)에서 에피 공정을 통해 마이크로 LED(ML)를 제작하여 준비하는 단계, 회로 기판(HS) 준비 단계, 성장 기판(101)의 마이크로 LED(ML)를 회로 기판(HS)으로 전사하여 단위 모듈(M)을 제작하는 단계 및 상기한 단위 모듈(M)을 디스플레이 배선 기판(DP)에 실장하는 단계에 의해 마이크로 LED 디스플레이(D)가 제작될 수도 있다.
한편, 마이크로 LED(ML)가 구비된 제1기판을 준비하는 단계는 성장 기판(101)에서 마이크로 LED(ML)가 캐리어 기판(C)에 전사되어 준비하는 단계일 수 있다. 이 경우, 마이크로 LED 디스플레이(D)를 제작하기 위해 마이크로 LED(ML)가 구비된 제1기판을 준비하는 단계는 성장 기판(101)에서 마이크로 LED(ML)를 에피공정을 통해 제작하여 준비하는 단계이거나 성장 기판(101)에서 마이크로 LED(ML)가 캐리어 기판(C)에 전사되어 준비되는 단계일 수 있다. 다시 말해, 마이크로 LED(ML)가 구비된 제1기판을 준비하는 단계는 동종의 마이크로 LED(ML)를 일정 피치 간격으로 구비시켜 준비하는 단계일 수 있다. 또는 이종의 마이크로 LED(ML1, ML2, ML3)가 화소 배열을 이루도록 준비하는 단계일 수 있다.
도 18(a) 및 도 18(b)에 도시된 바와 같이, 각각의 성장 기판(101a, 101b, 101c) 및 각각의 캐리어 기판(C1, C2, C3)의 마이크로 LED(ML1, ML2, ML3)는 일정 피치 간격으로 구비된 상태이다.
도 18(a) 및 도 18(b)에 도시된 바와 같이, 각각의 성장 기판(101a, 101b, 101c) 및 각각의 캐리어 기판(C1, C2, C3)의 마이크로 LED(ML1, ML2, ML3)는 이종의 마이크로 LED(ML)가 회로 기판(HS)으로 전사되기 전 화소 배열을 이루도록 준비된 상태일 수도 있다.
따라서, 마이크로 LED 디스플레이(D)를 제작하기 위해 마이크로 LED(ML)가 구비된 제1기판을 준비하는 단계에서 제1기판이 성장 기판(101) 및 캐리어 기판(C) 중 어느 하나로 구분되더라도 제1기판은 준비하는 단계는 동종의 마이크로 LED(ML)를 일정 피치 간격으로 구비시켜 준비하는 단계이거나 이종의 마이크로 LED(ML1, ML2, ML3)가 화소 배열을 이루도록 준비하는 단계일 수 있다.
다시 도 18(b)를 참조하여 마이크로 LED(ML)가 구비된 제1기판을 준비하는 단계가 성장 기판(101)에서 마이크로 LED(ML)가 캐리어 기판(C)에 전사되어 준비하는 단계일 경우를 설명한다. 이 경우, 제1기판인 캐리어 기판(C)의 마이크로 LED(ML)를 회로 기판(HS)으로 전사하기 위해 회로 기판(HS)을 준비하는 단계가 수행될 수 있다. 그런 다음, 각각의 캐리어 기판(C1, C2, C3)의 마이크로 LED(ML1, ML2, ML3)는 흡착영역(2000)간의 일 방향 피치 간격이 제1기판에 배치된 마이크로 LED(ML)의 피치 간격의 M/3배이고, M은 4이상의 정수인 마이크로 LED 흡착체에 의해 회로 기판(HS)으로 전사될 수 있다. 이러한 과정은 단위 모듈 제작 단계에서 수행되어 단위 모듈(M)이 제작될 수 있다.
단위 모듈 제작 단계에서 제작된 단위 모듈(M)은 흡착영역(2000)간의 일 방향 피치 간격이 제1기판에 배치된 마이크로 LED(ML)의 피치 간격의 M/3배이고, M은 4이상의 정수인 마이크로 LED 흡착체가 캐리어 기판(C1, C2, C3)의 마이크로 LED(ML1, ML2, ML3)를 회로 기판(HS)으로 전사함으로써 제작되어 이종의 마이크로 LED(ML1, ML2, ML3)가 화소의 배열을 이루며 실장된 형태일 수 있다.
단위 모듈 제작 단계를 통해 제작된 단위 모듈(M)은 디스플레이 배선 기판(DP)에 전사될 수 있다. 단위 모듈(M)을 디스플레이 배선 기판(DP)에 전사하는 과정을 수행하기 위해 디스플레이 배선 기판(DP)을 준비하는 단계가 수행될 수 있다. 준비된 디스플레이 배선 기판(DP)에는 단위 모듈(M)이 전사될 수 있다. 디스플레이 배선 기판(DP)은 단위 모듈(M)을 디스플레이 배선 기판(DP)으로 전사하는 기능을 하는 흡착체에 의해 단위 모듈(M)이 전사될 수 있다. 이 경우, 흡착체는 디스플레이 배선 기판(DP)에서의 마이크로 LED 화소 배열은 단위 모듈(M)에서의 마이크로 LED 화소 배열과 동일하고, 화소 배열의 피치 간격은 단위 모듈(M)에서의 화소 배열의 배치 간격과 동일하도록 단위 모듈(M)을 디스플레이 배선 기판(DP)에 실장하는 단계를 수행할 수 있다. 그 결과 마이크로 LED 디스플레이(D)가 제작될 수 있다.
이처럼 마이크로 LED 디스플레이(D)는 성장 기판(101)에서 마이크로 LED(ML)가 캐리어 기판(C)에 전사되어 마이크로 LED(ML)가 구비된 제1기판이 준비되는 단계, 회로 기판(HS) 준비 단계, 캐리어 기판(C)의 마이크로 LED(ML)를 회로 기판(HS)으로 전사하여 단위 모듈(M)을 제작하는 단계, 상기한 단위 모듈(M)을 디스플레이 배선 기판(DP)에 실장하는 단계에 의해 제작될 수 있다.
마이크로 LED 디스플레이(D)를 제작하는 방법에서 마이크로 LED(ML)가 구비된 제1기판을 준비하는 단계, 회로 기판(HS)을 준비하는 단계 및 디스플레이 배선 기판(DP)을 준비하는 단계는 순차적으로 수행되는 순서가 아니다. 따라서, 상기한 단계들은 어느 순서에 한정되지 않고 수행될 수 있다.
본 발명의 마이크로 LED 흡착체를 이용하여 마이크로 LED 디스플레이(D)를 제작할 경우, 복수개의 단위 모듈(M) 구성이 가능하여 양품 및 불량품 검사를 간단하게 수행할 수 있고 상기한 검사에 기초한 리페어 공정도 간단하게 진행할 수 있게 된다. 이를 통해 양품의 마이크로 LED만으로 구성된 단위 모듈(M)을 대면적 디스플레이에 실장할 수 있게 되므로 대면적 디스플레이의 제작 공정 수율이 향상되고 제작 시간이 단축되는 효과를 발휘할 수 있다. 또한, 회로 기판(HS)에 마이크로 LED(ML)가 전사되어 형성되는 복수개의 단위 모듈(M)이 실장되어 마이크로 LED 디스플레이(D)를 구성하는 구조에 의하여 테두리가 없는(베젤리스) 대면적 디스플레이의 구현이 가능하게 된다.
본 발명의 마이크로 LED 흡착체를 이용하여 제작된 마이크로 LED 디스플레이(D)는 디스플레이 배선 기판(DP), 디스플레이 배선 기판(DP)에 결합된 복수의 단위 모듈(M)을 포함하여 구성될 수 있다. 이 경우, 단위 모듈(M)은 마이크로 LED(ML)가 회로 기판(HS)에 실장되어 구성될 수 있다.
디스플레이 배선 기판(DP)은 복수의 단위 모듈(M) 각각을 개별적으로 구동할 수 있는 배선 기판일 수 있다. 단위 모듈(M)은 디스플레이 배선 기판(DP)에 접합되어 배선 기판에 의해 각각의 단위 모듈(M)의 마이크로 LED(ML) 각각이 개별적으로 구동가능하도록 제작된 것이다. 이러한 디스플레이 배선 기판(DP)에는 마이크로 LED(ML)의 개수와 대응되는 개수로 구동 회로가 구비되어 마이크로 LED(ML) 각각을 개별적으로 구동할 수 있다.
이와는 달리, 디스플레이 배선 기판(DP)은 각각의 단위 모듈(M)을 개별적으로 구동할 수 있는 배선 기판으로 구성될 수도 있다. 단위 모듈(M)은 디스플레이 배선 기판(DP)에 접합되어 디스플레이 배선 기판(DP)에 의해 각각의 단위 모듈(M)이 개별적으로 구동 가능하도록 제작된 것이다. 따라서 디스플레이 배선 기판(DP)에는 단위 모듈(M)의 개수와 대응되는 개수로 구동 회로가 구비되어 단위 모듈(M) 각각이 개별적으로 구동될 수 있게 된다.
이와는 달리, 디스플레이 배선 기판(DP)은 각각의 단위 모듈(M)의 마이크로 LED(ML) 전부를 일괄적으로 구동할 수 있는 배선 기판으로 구성될 수 있다. 단위 모듈(M)은 디스플레이 배선 기판(DP)에 접합되어 디스플레이 배선 기판(DP)에 의해 단위 모듈(M)의 마이크로 LED(ML) 전부가 일괄적으로 구동 가능하도록 제작된 것이다. 다시 말해, 단위 모듈(M)의 개수 및 마이크로 LED(ML)의 개수와는 관계없이, 디스플레이 배선 기판(DP)은 마이크로 LED(ML) 전부가 한꺼번에 구동할 수 있게 된다.
디스플레이 배선 기판(DP)에서의 마이크로 LED 화소 배열은 단위 모듈(M)에서의 마이크로 LED 화소 배열과 동일할 수 있다. 또한, 디스플레이 배선 기판(DP)에서의 화소 배열의 피치 간격은 단위 모듈(M)에서의 화소 배열의 피치 간격과 동일할 수 있다.
단위 모듈(M)에서의 마이크로 LED 화소 배열은 적색 마이크로 LED, 녹색 마이크로 LED, 청색 마이크로 LED가 1차원 어레이 배열되어 단위 화소를 형성하되, 1행 및 M열의 단위 화소의 배열 순서는 1행 및 1열의 단위 화소의 배열 순서와 동일하고, N행 및 1열의 단위 화소의 배열 순서 및 N행 및 M열의 단위 화소의 배열 순서는 11행 및 2열의 단위 화소의 배열 순서(GBR)이며, M은 2 이상의 정수이고, N은 3의 배수인 관계를 만족한다. 또는 단위 모듈(M)에서의 마이크로 LED 화소 배열은 적색 마이크로 LED, 녹색 마이크로 LED, 청색 마이크로 LED가 2차원 어레이로 배열되는 단위 화소를 포함하되, 상기 단위 화소는 N행 및 M열로 매트릭스 형태로 배치될 수 있다. 위와 같은 구성에 의해, 복수 개의 단위 모듈(M)을 디스플레이 배선기판(DP)에 서로 인접하게 배치하게 되더라도 디스플레이 배선 기판(DP)에서의 마이크로 LED 화소 배열은 단위 모듈(M)에서의 마이크로 LED 화소 배열과 동일할 수 있다.
단위 모듈(M)에서 인접하는 단위 화소 간의 거리를 'd'라고 하였을 때, 단위 모듈(M)의 단부에서 최외곽에 위치한 단위 화소 간의 이격 거리는, 단위 화소 간의 거리(d)의 절반 이하의 거리이다. 위와 같은 구성에 의해 복수 개의 단위 모듈(M)을 디스플레이 배선기판(DP)에 서로 인접하게 배치하게 되더라도, 디스플레이 배선 기판(DP)에서의 화소 배열의 피치 간격은 단위 모듈(M)에서의 화소 배열의 피치 간격과 동일할 수 있다.
위와 같은 갖는 복수의 단위 모듈(M)을 디스플레이 배선 기판(D)에 실장함으로써 형성되는 것이므로 위와 같이 디스플레이 배선 기판의 마이크로 LED 화소 배열 및 화소 배열의 피치 간격은 단위 모듈(M)의 마이크로 LED 화소 배열 및 화소 배열의 피치 간격과 동일할 수 있다.
단위 모듈(M)은 회로 기판(HS)에 마이크로 LED(ML)를 실장함으로써 구성될 수 있고, 이와는 다르게 이방성 전도 필름에 마이크로 LED(ML)를 실장함으로써 구성될 수 있다. 이방성 전도 필름(anistropy conductive film, ACF)은 전도성 물질의 코어가 절연막에 의하여 피복된 다수의 입자로 이루어진 상태이다. 이러한 이방성 전도 필름은 압력 또는 열이 가해지면 가해진 부분만 절연막이 파괴되면서 코어에 의하여 전기적으로 연결되는 것이다. 이방성 전도필름의 하부에는 이형필름이 더 포함될 수 있다. 이형필름은 이방성 전도 필름의 하부에 부착되어 이방성 전도 필름의 하부에 파티클이 달라붙는 것을 방지한다. 이형필름은 단위 모듈(M)을 디스플레이 배선 기판(DP)에 접합할 때 쉽게 제거가능하게 부착되어 있다. 단위 모듈(M)을 디스플레이 배선 기판(DP)에 실장할 때에는, 우선 이방성 전도 필름의 하부에 부착된 이형필름을 분리한다. 그 다음, 마이크로 LED(ML)와 디스플레이 배선 기판(DP)에 형성된 개별 전극이 서로 전기적으로 연결될 수 있도록 마이크로 LED(ML)을 상부에서 하부로 열압착한다. 이에 따라 열압착되는 부분만 전도성을 갖는 갖게 되어 디스플레이 배선 기판(DP)의 개별전극과 마이크로 LED(ML)가 전기적으로 연결된다.
도 18(d)에 도시된 마이크로 LED 디스플레이(D)의 마이크로 LED 화소 배열은 하나의 예로서 도시된 것이다. 마이크로 LED 디스플레이(D)의 마이크로 LED 화소 배열은 마이크로 LED 흡착체의 흡착영역 배열에 따라 적색 마이크로 LED(ML1), 녹색 마이크로 LED(ML2), 청색 마이크로 LED(ML3)를 포함하여 최소 화소 단위를 이루면서 도 18(d)와 같이 동일한 열에 동일한 종류의 마이크로 LED(ML)가 배치되는 배열과 다른 배열로 구성될 수 있다.
전술한 바와 같이, 본 발명의 바람직한 실시 예를 참조하여 설명하였지만, 해당 기술분야의 통상의 기술자는 하기의 특허 청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 또는 변형하여 실시할 수 있다.
[부호의 설명]
1, 1', 1", 1"': 마이크로 LED 흡착체
1000: 다공성 부재 1100: 제1다공성 부재, 흡착 부재
1200: 제2다공성 부재, 지지 부재
1500, 1500': 흡착홀 1700: 흡착홈
1800: 안착홈 1900: 도피홈
2000: 흡착영역 2100: 비흡착영역
2200: 돌출영역 2300: 제1돌출댐
2400: 오목부 2500: 평탄부
2600: 완충부 2700: 단자 회피홈
2800: 제2돌출댐 2900: 돌출부
3000: 마스크
ML: 마이크로 LED
Claims (31)
- 수직적 기공을 갖는 양극산화막으로 제공되는 흡착 부재; 및임의적 기공을 갖고, 상기 흡착 부재를 지지하는 지지 부재를 포함하고,상기 흡착 부재는 진공 흡입력으로 마이크로 LED를 흡착하는 흡착영역과 상기 마이크로 LED를 흡착하지 않는 비흡착영역으로 구분되어 상기 마이크로 LED를 선택적으로 전사하는 것을 특징으로 하는 마이크로 LED 흡착체.
- 제1항에 있어서,상기 흡착영역은 상기 양극산화막의 제조시 형성된 배리어층이 제거되어 상기 수직적 기공의 상,하가 서로 관통되어 형성된 것을 특징으로 하는 마이크로 LED 흡착체.
- 제1항에 있어서,상기 흡착영역은 상기 양극산화막의 제조시 형성된 상기 수직적 기공의 폭보다 큰 폭을 가지면서 상,하가 서로 관통되어 형성되는 갖는 흡착홀에 의해 형성되는 것을 특징으로 하는 마이크로 LED 흡착체.
- 제1항에 있어서,상기 비흡착영역은 상기 양극산화막의 제조시 형성된 상기 수직적 기공의 상,하 중 적어도 어느 한 부분을 폐쇄하는 차폐부에 의해 형성된 것을 특징으로 하는 마이크로 LED 흡착체.
- 제4항에 있어서,상기 차폐부는 상기 양극산화막의 제조시 형성된 배리어층인 것을 특징으로 하는 마이크로 LED 흡착체.
- 제1항에 있어서,상기 흡착 부재에 구비된 완충부를 포함하는 것을 특징으로 하는 마이크로 LED 흡착체.
- 수직적 기공을 갖는 양극산화막으로 제공되며, 상기 수직적 기공의 폭보다 큰 폭을 갖는 관통홀을 통한 진공 흡입력으로 마이크로 LED를 흡착하는 흡착영역을 구성하고, 상기 수직적 기공의 기공의 상,하 중 어느 한 부분을 폐쇄하는 차폐부를 통해 마이크로 LED를 흡착하지 않는 비흡착영역이 구성된 흡착 부재; 및상기 흡착 부재를 지지하는 지지 부재를 포함하는 것을 특징으로 하는 마이크로 LED 흡착체.
- 수직적 기공을 갖는 양극산화막으로 제공되며, 상기 수직적 기공을 통한 진공 흡입력으로 마이크로 LED를 흡착하는 흡착영역과 상기 수직적 기공의 상,하 중 적어도 일부가 폐쇄되어 상기 마이크로 LED를 흡착하지 않는 비흡착영역으로 구분된 흡착 부재; 및상기 흡착 부재를 지지하는 지지 부재를 포함하는 것을 특징으로 하는 마이크로 LED 흡착체.
- 진공 흡입력으로 마이크로 LED를 흡착하는 흡착영역과 상기 마이크로 LED를 흡착하지 않는 비흡착영역으로 구분된 흡착 부재; 및상기 흡착 부재와 별도로 형성되어 기공 구조를 통해 진공챔버의 흡입력을 분산시켜 상기 흡착영역에 전달하는 지지 부재를 포함하는 것을 특징으로 하는 마이크로 LED 흡착체.
- 진공 흡입력으로 마이크로 LED를 흡착하는 흡착영역과 상기 마이크로 LED를 흡착하지 않는 비흡착영역으로 구분된 흡착 부재; 및상기 흡착부재의 흡착면의 반대면 측에 구비되고, 상기 흡착영역과 공기 유로적으로 연통되는 임의적 기공을 갖는 지지 부재를 포함하는 것을 특징으로 하는 마이크로 LED 흡착체.
- 진공 흡입력으로 마이크로 LED를 흡착하는 흡착영역과 상기 마이크로 LED를 흡착하지 않는 비흡착영역으로 구분된 흡착 부재; 및상기 흡착 부재의 비흡착영역을 진공 흡입력으로 흡착하여 상기 흡착부재를 지지하면서 상기 흡착 부재의 흡착영역과 공기 유로적으로 연통되어 상기 흡착영역으로 상기 마이크로 LED를 흡착하도록 하는 지지부재를 포함하는 것을 특징으로 하는 마이크로 LED 흡착체.
- 마이크로 LED를 흡착하는 흡착영역과 상기 마이크로 LED를 흡착하지 않는 비흡착영역으로 구분되어 상기 마이크로 LED를 흡착하는 흡착부재;상기 흡착부재의 상부에 구비되며 다공성 재질로 구성되는 지지부재; 및진공챔버를 포함하고,상기 진공챔버의 진공압은 상기 지지부재의 다공성 재질에 의해 감압된 후 상기 흡착부재의 상기 흡착영역에 전달되어 상기 마이크로 LED를 흡착하고,상기 진공챔버의 진공압은 상기 지지부재의 다공성 재질에 의해 상기 흡착부재의 비흡착영역에 전달되어 상기 흡착부재를 흡착하는 것을 특징으로 하는 마이크로 LED 흡착체.
- 제10항 내지 제12항 중 어느 한 항에 있어서,상기 흡착영역은 상기 흡착부재를 상, 하로 관통하는 흡착홀에 의해 형성되고, 상기 비흡착영역은 상기 흡착홀이 형성되지 않는 영역인 것을 특징으로 하는 마이크로 LED 흡착체.
- 제10항 내지 제12항 중 어느 한 항에 있어서,상기 흡착 부재는, 양극산화막, 웨이퍼 기판, 인바(invar), 금속, 비금속, 폴리머, 종이, 포토레지스트, PDMS 재질 중 적어도 어느 하나의 재질로 구성되는 것을 특징으로 하는 마이크로 LED 흡착체.
- 임의적 기공을 갖는 다공성 부재; 및개구부가 일정한 간격으로 구비되어 마이크로 LED를 흡착하는 흡착영역을 형성하고, 상기 개구부가 형성되지 않은 면은 상기 마이크로 LED를 흡착하지 않는 비흡착영역을 형성하며, 상기 다공성 부재의 표면에 일체로 형성된 코팅층을 포함하는 것을 특징으로 하는 마이크로 LED 흡착체.
- 관통홀에 의해 형성되는 마이크로 LED를 흡착하는 흡착영역과 관통홀이 형성되지 않아 형성되는 비흡착영역으로 구분되고, 웨이퍼 기판 재질로 구성되는 흡착 부재; 및임의적 기공을 갖고 상기 흡착 부재를 지지하는 지지 부재;를 포함하고,상기 지지 부재의 임의적 기공에 의해 진공압이 감압된 후 상기 흡착 부재의 상기 관통홀에 전달되어 상기 마이크로 LED 를 흡착하고,상기 지지 부재의 임의적 기공에 의해 상기 흡착 부재의 비흡착영역에 전달되어 상기 흡착 부재를 흡착하는 것을 특징으로 하는 마이크로 LED 흡착체.
- 제1항 및 제7항 내지 제12항, 제15항 및 제16항 중 어느 한 항에 있어서,상기 흡착부재의 외측에 형성되고, 상기 흡착부재의 흡착면보다 돌출되도록 형성된 돌출부를 포함하는 것을 특징으로 하는 마이크로 LED 흡착체.
- 제17항에 있어서,상기 돌출부는 탄성재질로 구성되는 것을 특징으로 하는 마이크로 LED 흡착체.
- 제17항에 있어서,상기 돌출부는 다공성 부재로 구성되는 것을 특징으로 하는 마이크로 LED 흡착체.
- 제1항 및 제7항 내지 제12항, 제15항 및 제16항 중 어느 한 항에 있어서,상기 마이크로 LED 흡착체는 제1기판에 배치된 마이크로 LED를 선택적으로 흡착하되,상기 흡착영역 간의 x 방향 피치간격은 상기 제1기판에 배치된 마이크로 LED의 x방향의 피치간격의 3배수의 거리이고, 상기 흡착영역 간의 y 방향 피치간격은 상기 제1기판에 배치된 마이크로 LED의 y방향의 피치간격의 1배수의 거리인 것을 특징으로 하는 마이크로 LED 흡착체.
- 제1항 및 제7항 내지 제12항, 제15항 및 제16항 중 어느 한 항에 있어서,상기 마이크로 LED 흡착체는 제1기판에 배치된 마이크로 LED를 선택적으로 흡착하되,상기 흡착영역 간의 x 방향 피치간격은 상기 제1기판에 배치된 마이크로 LED의 x방향의 피치간격의 3배수의 거리이고, 상기 흡착영역 간의 y 방향 피치간격은 상기 제1기판에 배치된 마이크로 LED의 y방향의 피치간격의 3배수의 거리인 것을 특징으로 하는 마이크로 LED 흡착체.
- 제1항 및 제7항 내지 제12항, 제15항 및 제16항 중 어느 한 항에 있어서,상기 마이크로 LED 흡착체는 제1기판에 배치된 마이크로 LED를 선택적으로 흡착하되,상기 흡착영역 간의 대각선 방향 피치간격은 상기 제1기판에 배치된 마이크로 LED의 대각선 방향의 피치간격과 동일한 것을 특징으로 하는 마이크로 LED 흡착체.
- 제1항 및 제7항 내지 제12항, 제15항 및 제16항 중 어느 한 항에 있어서,상기 마이크로 LED 흡착체는 제1기판에 배치된 마이크로 LED를 선택적으로 흡착하되,상기 흡착영역 간의 x 방향 피치간격은 상기 제1기판에 배치된 마이크로 LED의 x방향의 피치간격의 2배수의 거리이고, 상기 흡착영역 간의 y 방향 피치간격은 상기 제1기판에 배치된 마이크로 LED의 y방향의 피치간격의 2배수의 거리인 것을 특징으로 하는 마이크로 LED 흡착체.
- 제1항 및 제7항 내지 제12항, 제15항 및 제16항 중 어느 한 항에 있어서,상기 마이크로 LED 흡착체는 제1기판에 배치된 마이크로 LED를 선택적으로 흡착하되,상기 흡착영역 간의 일 방향 피치간격은 상기 제1기판에 배치된 마이크로 LED의 일 방향의 피치간격의 M/3배이고, M은 4이상의 정수인 것을 특징으로 하는 마이크로 LED 흡착체.
- 제1항 및 제7항 내지 제12항, 제15항 및 제16항 중 어느 한 항의 마이크로 LED 흡착체를 이용하여 마이크로 LED 디스플레이를 제작하는 방법.
- 마이크로 LED가 구비된 제1기판을 준비하는 단계;회로기판을 준비하는 단계; 및흡착영역 간의 일 방향 피치간격이 상기 제1기판에 배치된 마이크로 LED의 일 방향의 피치간격의 M/3배이고, M은 4이상의 정수인 마이크로 LED 흡착체로 상기 제1기판 상의 상기 마이크로 LED를 상기 회로기판으로 전사하여 단위 모듈을 제작하는 단계;를 포함하는 것을 특징으로 하는 마이크로 LED 디스플레이를 제작하는 방법.
- 제26항에 있어서,디스플레이 배선 기판을 준비하는 단계; 및상기 단위 모듈을 상기 디스플레이 배선 기판에 전사하되, 상기 디스플레이 배선 기판에서의 마이크로 LED 화소 배열은 상기 단위 모듈에서의 마이크로 LED 화소 배열과 동일하고, 상기 디스플레이 배선 기판에서의 화소 배열의 피치 간격은 상기 단위 모듈에서의 화소 배열의 배치 간격과 동일하도록 상기 단위 모듈을 상기 디스플레이 배선 기판에 실장하는 단계를 포함하는 것을 특징으로 하는 마이크로 LED 디스플레이를 제작하는 방법.
- 제26항에 있어서,마이크로 LED가 구비된 제1기판을 준비하는 단계는,성장기판에서 상기 마이크로 LED를 에피공정을 통해 제작하여 준비하는 단계이거나, 상기 성장기판에서 상기 마이크로 LED가 캐리어 기판에 전사되어 준비하는 단계인 것을 특징으로 하는 마이크로 LED 디스플레이를 제작하는 방법.
- 제26항에 있어서,마이크로 LED가 구비된 제1기판을 준비하는 단계는,동종의 마이크로 LED를 일정 피치간격으로 구비시켜 준비하는 단계이거나 이종의 마이크로 LED가 화소 배열을 이루도록 준비하는 단계인 것을 특징으로 하는 마이크로 LED 디스플레이를 제작하는 방법.
- 제26항에 있어서,상기 단위 모듈을 제작하는 단계는,상기 회로기판에는 이종의 마이크로 LED가 화소의 배열을 이루며 실장되어 단위 모듈을 구성하는 것을 특징으로 하는 마이크로 LED 디스플레이를 제작하는 방법.
- 디스플레이 배선 기판; 및상기 디스플레이 배선 기판에 결합된 복수의 단위 모듈;을 포함하되,상기 단위 모듈은 마이크로 LED가 회로기판에 실장되어 구성되고,상기 디스플레이 배선 기판에서의 마이크로 LED 화소 배열은 상기 단위 모듈에서의 마이크로 LED 화소 배열과 동일하고, 상기 디스플레이 배선 기판에서의 화소 배열의 피치 간격은 상기 단위 모듈에서의 화소 배열의 피치 간격과 동일한 것을 특징으로 하는 마이크로 LED 디스플레이.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202080032551.XA CN113785390A (zh) | 2019-05-10 | 2020-05-07 | 微led吸附体、使用其的微led显示器制作方法及微led显示器 |
US17/607,030 US20220123165A1 (en) | 2019-05-10 | 2020-05-07 | Micro led suction body, and method of manufacturing micro led display using same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020190054622A KR20200129751A (ko) | 2019-05-10 | 2019-05-10 | 마이크로 led 흡착체 및 이를 이용한 마이크로 led 디스플레이 제작 방법 및 마이크로 led 디스플레이 |
KR10-2019-0054622 | 2019-05-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020231068A1 true WO2020231068A1 (ko) | 2020-11-19 |
Family
ID=73290254
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2020/005978 WO2020231068A1 (ko) | 2019-05-10 | 2020-05-07 | 마이크로 led 흡착체 및 이를 이용한 마이크로 led 디스플레이 제작 방법 및 마이크로 led 디스플레이 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20220123165A1 (ko) |
KR (1) | KR20200129751A (ko) |
CN (1) | CN113785390A (ko) |
WO (1) | WO2020231068A1 (ko) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112582308A (zh) * | 2020-12-14 | 2021-03-30 | 福州京东方光电科技有限公司 | 微型发光二极管的转移方法及转移装置 |
CN113937039A (zh) * | 2021-12-16 | 2022-01-14 | 佛山市华道超精科技有限公司 | 一种芯片巨量转移方法及芯片巨量转移设备 |
CN114141803A (zh) * | 2021-11-17 | 2022-03-04 | 深圳市华星光电半导体显示技术有限公司 | 像素阵列和显示装置 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI749399B (zh) * | 2019-11-18 | 2021-12-11 | 錼創顯示科技股份有限公司 | 微型元件轉移頭、微型元件轉移裝置以及微型元件顯示裝置 |
DE112021002047T5 (de) * | 2020-03-30 | 2023-04-13 | Vuereal Inc | Versatzausrichtung und reparatur im mikrobauelement-transfer |
US20240120231A1 (en) * | 2020-03-30 | 2024-04-11 | Vuereal Inc. | Offset alignment and repair in micro device transfer |
KR102435062B1 (ko) * | 2021-12-20 | 2022-08-22 | 주식회사 미코세라믹스 | 본딩 헤드 및 이를 포함하는 본딩 장치 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002134906A (ja) * | 2000-10-20 | 2002-05-10 | Matsushita Electric Ind Co Ltd | 電子部品の熱圧着装置および熱圧着方法 |
KR20150065518A (ko) * | 2013-12-05 | 2015-06-15 | 주식회사 페코텍 | 반도체 다이 본딩 장치 |
US20170167025A1 (en) * | 2015-12-09 | 2017-06-15 | Point Engineering Co., Ltd. | Fluid Permeable Anodic Oxide Film and Fluid Permeable Body Using Anodic Oxide Film |
KR20190028099A (ko) * | 2017-09-08 | 2019-03-18 | 삼성전자주식회사 | 반도체 제조 장치 |
KR101941541B1 (ko) * | 2018-05-10 | 2019-04-12 | 주식회사 팀즈 | 마이크로 led소자의 정렬이송방법, 이에 따른 led디스플레이모듈의 제조방법, 및 이에 사용되는 정렬모듈 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6410942B1 (en) | 1999-12-03 | 2002-06-25 | Cree Lighting Company | Enhanced light extraction through the use of micro-LED arrays |
KR101540140B1 (ko) * | 2008-08-08 | 2015-07-28 | 아사히 가라스 가부시키가이샤 | 기판의 유지 장치, 기판의 유지 방법 및 합판 유리의 제조 방법 |
JP6100275B2 (ja) | 2011-11-18 | 2017-03-22 | アップル インコーポレイテッド | 電気的絶縁層を持つマイクロled構造体及びマイクロled構造体のアレイの形成方法 |
KR102048378B1 (ko) | 2014-06-18 | 2019-11-25 | 엑스-셀레프린트 리미티드 | 트랜스퍼가능한 반도체 구조체들의 방출을 제어하기 위한 시스템들 및 방법들 |
JP2016092240A (ja) * | 2014-11-05 | 2016-05-23 | 株式会社タンケンシールセーコウ | 真空吸着パッドおよび真空吸着装置 |
KR101757404B1 (ko) | 2015-07-24 | 2017-07-12 | 한국기계연구원 | 점착력 제어 필름 기반 선택적 연속 전사 장치 |
KR102402189B1 (ko) | 2015-08-26 | 2022-05-25 | 엘지전자 주식회사 | 마이크로 디바이스의 픽업 헤드유닛 |
KR102465382B1 (ko) | 2015-08-31 | 2022-11-10 | 삼성디스플레이 주식회사 | 표시장치 및 표시장치의 제조방법 |
KR101754528B1 (ko) | 2016-03-23 | 2017-07-06 | 한국광기술원 | 건식 접착구조를 갖는 led 구조체 어레이의 전사체와 이를 이용한 led 구조체 어레이의 이송방법 및 led 구조체 |
KR102428029B1 (ko) * | 2017-12-20 | 2022-08-02 | (주)포인트엔지니어링 | 마이크로 led 전사헤드 |
TW201944086A (zh) * | 2018-04-06 | 2019-11-16 | 南韓商普因特工程有限公司 | 微發光二極體吸附體 |
-
2019
- 2019-05-10 KR KR1020190054622A patent/KR20200129751A/ko not_active Application Discontinuation
-
2020
- 2020-05-07 US US17/607,030 patent/US20220123165A1/en not_active Abandoned
- 2020-05-07 CN CN202080032551.XA patent/CN113785390A/zh not_active Withdrawn
- 2020-05-07 WO PCT/KR2020/005978 patent/WO2020231068A1/ko active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002134906A (ja) * | 2000-10-20 | 2002-05-10 | Matsushita Electric Ind Co Ltd | 電子部品の熱圧着装置および熱圧着方法 |
KR20150065518A (ko) * | 2013-12-05 | 2015-06-15 | 주식회사 페코텍 | 반도체 다이 본딩 장치 |
US20170167025A1 (en) * | 2015-12-09 | 2017-06-15 | Point Engineering Co., Ltd. | Fluid Permeable Anodic Oxide Film and Fluid Permeable Body Using Anodic Oxide Film |
KR20190028099A (ko) * | 2017-09-08 | 2019-03-18 | 삼성전자주식회사 | 반도체 제조 장치 |
KR101941541B1 (ko) * | 2018-05-10 | 2019-04-12 | 주식회사 팀즈 | 마이크로 led소자의 정렬이송방법, 이에 따른 led디스플레이모듈의 제조방법, 및 이에 사용되는 정렬모듈 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112582308A (zh) * | 2020-12-14 | 2021-03-30 | 福州京东方光电科技有限公司 | 微型发光二极管的转移方法及转移装置 |
CN112582308B (zh) * | 2020-12-14 | 2022-10-28 | 福州京东方光电科技有限公司 | 微型发光二极管的转移方法及转移装置 |
CN114141803A (zh) * | 2021-11-17 | 2022-03-04 | 深圳市华星光电半导体显示技术有限公司 | 像素阵列和显示装置 |
CN114141803B (zh) * | 2021-11-17 | 2023-11-28 | 深圳市华星光电半导体显示技术有限公司 | 像素阵列和显示装置 |
CN113937039A (zh) * | 2021-12-16 | 2022-01-14 | 佛山市华道超精科技有限公司 | 一种芯片巨量转移方法及芯片巨量转移设备 |
CN113937039B (zh) * | 2021-12-16 | 2022-02-25 | 佛山市华道超精科技有限公司 | 一种芯片巨量转移方法及芯片巨量转移设备 |
Also Published As
Publication number | Publication date |
---|---|
CN113785390A (zh) | 2021-12-10 |
KR20200129751A (ko) | 2020-11-18 |
US20220123165A1 (en) | 2022-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020231068A1 (ko) | 마이크로 led 흡착체 및 이를 이용한 마이크로 led 디스플레이 제작 방법 및 마이크로 led 디스플레이 | |
WO2020242098A1 (ko) | 마이크로 led 디스플레이 제작 방법 및 이를 이용한 마이크로 led 디스플레이 | |
WO2017034379A1 (ko) | 반도체 발광소자의 이송 헤드, 이송 시스템 및 반도체 발광소자를 이송하는 방법 | |
WO2019103566A1 (en) | Led unit for display and display apparatus having the same | |
WO2019117656A1 (en) | Light emitting stacked structure and display device having the same | |
WO2019135589A1 (en) | Display device having light emitting stacked structure | |
WO2017160119A1 (ko) | 반도체 소자 및 이를 포함하는 표시장치 | |
WO2019112304A1 (en) | Light emitting device with led stack for display and display apparatus having the same | |
WO2019045549A1 (ko) | 표시 장치 및 그의 제조 방법 | |
WO2019135606A1 (en) | Light emitting device with led stack for display and display apparatus having the same | |
WO2020050468A1 (ko) | 발광 소자, 그의 제조 방법, 및 발광 소자를 구비한 표시 장치 | |
WO2016129873A2 (ko) | 발광소자 및 발광 다이오드 | |
WO2017183944A1 (ko) | 발광소자 및 이를 포함하는 표시장치 | |
WO2019240538A1 (ko) | 인쇄회로기판 및 이를 포함하는 카메라 장치 | |
WO2017078402A1 (ko) | 광학 플레이트, 조명 소자 및 광원 모듈 | |
WO2019004518A1 (ko) | 발광소자 패키지 및 광원 장치 | |
WO2016099061A1 (en) | Semiconductor light emitting device and method of manufacturing the same | |
WO2018048275A1 (ko) | 반도체 소자 | |
WO2018143751A1 (ko) | 반도체 소자 및 이를 포함하는 디스플레이 장치 | |
WO2017122918A1 (ko) | 박막 트랜지스터 기판, 이를 포함하는 표시패널 및 표시장치 | |
WO2019054548A1 (ko) | 발광소자 패키지 | |
WO2019045513A1 (ko) | 발광소자 패키지 및 이를 포함하는 조명장치 | |
WO2019054793A1 (ko) | 발광소자 패키지 | |
WO2019045166A1 (ko) | 발광소자 패키지 | |
WO2022220558A1 (ko) | 반도체 발광소자를 포함하는 디스플레이 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20805628 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20805628 Country of ref document: EP Kind code of ref document: A1 |