WO2020230520A1 - ダイヤモンド結晶体を備える複合体 - Google Patents

ダイヤモンド結晶体を備える複合体 Download PDF

Info

Publication number
WO2020230520A1
WO2020230520A1 PCT/JP2020/016893 JP2020016893W WO2020230520A1 WO 2020230520 A1 WO2020230520 A1 WO 2020230520A1 JP 2020016893 W JP2020016893 W JP 2020016893W WO 2020230520 A1 WO2020230520 A1 WO 2020230520A1
Authority
WO
WIPO (PCT)
Prior art keywords
diamond crystal
base material
diamond
substrate
bonded
Prior art date
Application number
PCT/JP2020/016893
Other languages
English (en)
French (fr)
Inventor
貴司 松前
仁 梅沢
優一 倉島
高木 秀樹
Original Assignee
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所 filed Critical 国立研究開発法人産業技術総合研究所
Priority to US17/609,919 priority Critical patent/US20220230934A1/en
Priority to JP2021519318A priority patent/JP7071775B2/ja
Priority to EP20805468.4A priority patent/EP3967792A4/en
Publication of WO2020230520A1 publication Critical patent/WO2020230520A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/04Diamond
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/06Joining of crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76251Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3732Diamonds

Definitions

  • the present application relates to a composite having a diamond crystal bonded to a base material while taking advantage of the characteristics of diamond.
  • Diamond has a very high thermal conductivity and dielectric breakdown electric field. By directly joining the existing device to the diamond substrate, it is expected that the cooling efficiency and input / output power will be significantly improved.
  • a method is known in which diamond and a Si substrate are thermocompression bonded at a temperature of 1000 ° C. or higher and a pressure of 32 MPa to bond C and Si at the atomic level (Non-Patent Document 1).
  • the diamond-Si composite bonded by this method may break due to thermal expansion and contraction.
  • Patent Document 2 there is also known a method in which a diamond substrate smooth at the atomic level and quartz glass are brought into contact with each other, heated to a temperature of 800 to 900 ° C. in a hydrogen atmosphere, and the diamond and quartz are bonded by a surface reaction on the contact surface (non-).
  • Patent Document 2 it is not necessary to apply a special joining load.
  • this method requires treatment in a hydrogen atmosphere and at a high temperature, and the emergence of a technique for bonding diamond to a base material under mild conditions is desired.
  • the subject of the present application is a base material and a diamond crystal body in which diamond can be bonded to a base material in the air without a special bonding load at a high temperature of about 1000 ° C. and the diamond crystal structure is hardly altered near the bonding surface.
  • the present invention is to provide a composite comprising a diamond crystal which is bonded to a base material and whose diamond crystal structure is hardly altered in the vicinity of the bonding surface.
  • the composite of the present application has a base material having an oxide layer MO x of the element M on the surface and a diamond crystal bonded to the surface, and M is a metal element (however, an alkali) capable of forming an oxide. (Excluding metals and alkaline earth metals), Si, Ge, As, Se, Sb, Te, and Bi, and C of a part or more of the (111) surface of the diamond crystal is MOC. By being bonded, the diamond crystal is bonded to the surface.
  • An electronic device of an aspect of the present application has the composite of the present application, the diamond crystal having a layered shape, one surface of the diamond crystal bonded to the surface, and formed on the other surface of the diamond crystal. Further has the electronic member.
  • An electronic device of another aspect of the present application has the composite of the present application, the substrate having a plate shape, one surface of the substrate bonded to the (111) surface, and the other surface of the substrate. It further has a formed electronic member.
  • the (111) surface of the diamond crystal is treated with an oxidizing liquid to introduce OH into C of a part or more of the (111) surface of the diamond crystal.
  • the (111) surface of the diamond crystal is treated with an oxidizing liquid to introduce OH into C of a part or more of the (111) surface of the diamond crystal.
  • (111) surface to which OH was introduced in the conversion step and the hydroxy step metal elements capable of forming oxides (excluding alkali metals and alkaline earth metals), Si, Ge, As, Se, Sb, It has a bonding step of contacting the surface of a base material having one or more hydroxydos of Te and Bi on the surface, and applying dehydration energy to the contact portion to cause a dehydration reaction.
  • the diamond crystal can be joined to the base material in the atmosphere at a low temperature of about 200 ° C. without requiring a special joining load. Further, in the composite provided with the diamond crystal bonded to the base material of the present application, the diamond crystal structure is hardly altered in the vicinity of the bonded surface.
  • FIG. 6 is a schematic cross-sectional view of a diamond device which is an electronic device of the embodiment. Schematic diagram of a cross section of an electronic device of another embodiment. Images of the diamond substrate side of the composite obtained in each Example and Comparative Example.
  • a cross-sectional TEM image of the composite of Example 2 having a different magnification from that of FIG. (A) Cross-sectional TEM image of the composite of Example 1, (b) and EELS spectra on each portion shown in (a) and a diamond substrate.
  • FIG. 6 is a schematic cross-sectional view of a diamond device which is an electronic device of the embodiment. Schematic diagram of a cross section of an electronic device of another embodiment. Images of the diamond substrate side of the composite obtained in each Example
  • FIG. 1A in the hydroxylation step, the (111) surface of the diamond crystal is treated with an oxidizing liquid to introduce OH into C of a part or more of the (111) surface of the diamond crystal. To do.
  • the hydroxylation step is also a method for hydroxylating the surface of a diamond crystal according to the embodiment of the present application.
  • the oxidizing liquid include a mixed solution of sulfuric acid and hydrogen peroxide (Sulfuric acid / Hydrogen Peroxide Mixture: SPM).
  • SPM sulfuric acid / Hydrogen Peroxide Mixture
  • the surface (111) of the diamond crystal into which OH was introduced in the hydroxylating step and this surface of the base material provided with the hydroxydide of a predetermined element M on the surface make contact.
  • the base material is a Si substrate, and a natural oxide film SiO 2 is formed on the surface of the base material.
  • a base material having a hydroxy product of a predetermined element on the surface that is, a base material having Si—OH on the surface, is obtained by irradiating the natural oxide film SiO 2 with oxygen plasma. ..
  • the predetermined element M is one or more of metal elements capable of forming oxides (excluding alkali metals and alkaline earth metals), Si, Ge, As, Se, Sb, Te and Bi.
  • metal elements are Al, from Sc of atomic number 21 to Ga of atomic number 31, from Y of atomic number 39 to Sn of atomic number 50, from La of atomic number 57 to Ir of atomic number 77, Tl. And Pb.
  • These elements M can form an oxide layer MO x at least on the surface. If an element M capable of forming an oxide layer MO x is used as a base material, MO x can be converted into a hydroxy product M—OH by an appropriate treatment. Then, as will be described later, this M-OH and the C-OH on the (111) surface of the diamond crystal into which the OH has been introduced undergo a dehydration reaction.
  • dehydration energy is applied to this contact portion to cause a dehydration reaction.
  • dehydrogenation energy include thermal energy, light energy, electrical energy, and chemical energy.
  • the contact portion is heated.
  • C of a part or more of the (111) surface of the diamond crystal is Si—OC bonded.
  • the diamond crystal is bonded to the surface of the Si substrate. This joint has sufficient shear strength.
  • the composite of the embodiment of the present application includes a base material having an oxide layer MO x of a predetermined element M on the surface, and a diamond crystal bonded to the surface. Then, the diamond crystal is bonded to the surface by MOC bonding of a part or more of C on the (111) surface of the diamond crystal.
  • the formation of the MOC bond can be confirmed by, for example, FT-IR.
  • the base material having the oxide layer MO x on the surface may be a base material having an M or M compound as a main component and a thermal oxide film or a natural oxide film MO x formed on the surface, or the base material having MO x as a main component. , Or a substrate composed of MO x .
  • a base material in which M or M compound is the main component and a thermal oxide film or natural oxide film MO x is formed on the surface Si base material, SiC base material, SiN base material, Ge base material, GaAs base material, and GaN Examples thereof include a base material, an InP base material, a Cu base material, an Al base material, an AlN base material, a Ti base material, and a TiN base material.
  • Examples of the base material composed of MO x include a SiO 2 base material, a Ga 2 O 3 base material, an Al 2 O 3 base material, a CuO base material, and a TiO 2 base material. Further, the base material may have a single crystal structure or a polycrystalline structure.
  • the predetermined element M is as described above.
  • M is preferably one or more of Si, Ti, Al, Cu, In, and Ga. This is because the base material provided with these oxide layers MO x on the surface is easily bonded to the diamond crystal by the bonding of C and MOC of a part or more of the (111) surface of the diamond crystal. Further, the base material containing Si, Ti, Al, Cu, In, and Ga is used in various fields, and the base material used in these various fields can be given the characteristics of diamond. Even if the (100) surface of the diamond crystal is treated with an oxidizing liquid such as SPM, OH is not easily introduced into C on the (100) surface. This is because the treatment of the (100) surface of the diamond crystal with an oxidizing liquid facilitates C—O—C bonds between adjacent Cs on the surface.
  • an oxidizing liquid such as SPM
  • the complex of this embodiment can be applied to various fields.
  • the base material is an existing heat sink or heat spreader
  • the high thermal conductivity of diamond enhances the heat dissipation and endothermic properties of the composite. Therefore, this complex can be used as a new heat sink or heat spreader.
  • the complex of this embodiment can be applied to an electronic device. That is, as shown in FIG. 2, a certain electronic device has the composite of the present embodiment, the diamond crystal has a layer shape, and one surface of the diamond crystal is bonded to the surface of the base material. It further has an electronic member formed on the other surface of the diamond crystal.
  • This electronic device functions as a diamond device having a semiconductor laminated structure, a quantum device, a sensor, an ultraviolet LED, or an electronic member such as an electron emitting device on a diamond crystal. If the diamond crystal structure is hardly altered near the joint surface as in the composite of the present embodiment, the entire base material is not an expensive diamond crystal, and only the surface layer of the inexpensive base material is a diamond crystal. Is replaced by. Therefore, the cost of this diamond device can be reduced.
  • another electronic device has the composite of the present embodiment, the base material has a plate shape, and one surface of the base material is bonded to the (111) surface of the diamond crystal. And further has an electronic member formed on the other surface of the substrate.
  • This electronic device has a structure in which diamond crystals are bonded under the substrate of a conventional device. Therefore, in this electronic device, the conventional device can efficiently dissipate heat from the diamond crystal. Further, since the diamond crystal has a large dielectric breakdown electric field, high power can be input to the electronic member of this electronic device.
  • Example 1 Preparation of complex (Example 1) A diamond substrate (EDP, RH333KPPL, 3 mm ⁇ 3 mm) having a (111) surface was immersed in a mixed solution of 20 mL of 98% concentrated sulfuric acid and 5 mL of 35% hydrogen peroxide solution at a temperature of 75 ° C. for 10 minutes. Monocrystalline Si substrate having a thermally oxidized SiO 2 film having a thickness of 300nm on the surface (Matsuzaki Seisakusho, T4APX, diameter 100 mm) of the SiO 2 film surface, pressure 60 Pa, was treated for 30 seconds with pure oxygen plasma output 200 W.
  • the surface of the plasma-treated Si substrate SiO 2 film that is, the Si substrate provided with Si—OH, and the surface of the diamond substrate (111) were brought into contact with each other in the air, and stored in a closed container together with a desiccant for 3 days. Then, the mixture was heated at a temperature of 200 ° C. for 24 hours to obtain a composite.
  • Example 2 The same method as in Example 1 except that a single crystal Si substrate having a naturally oxidized SiO 2 film having a thickness of about 1 nm was used instead of the single crystal Si substrate having the thermally oxidized SiO 2 film on the surface. Obtained a complex in.
  • Example 3 Example 1 and Example 1 except that a single crystal Si substrate having a Ti film having a thickness of about 10 nm formed by a sputtering method on the surface was used instead of the single crystal Si substrate having a thermally oxidized SiO 2 film on the surface. A complex was obtained in a similar manner. The TIO 2 film is thinly formed on the surface of the Ti film.
  • Example 4 A composite was obtained in the same manner as in Example 1 except that a polished single crystal Ga 2 O 3 substrate was used instead of the single crystal Si substrate provided with the thermally oxidized SiO 2 film on the surface.
  • Example 2 A composite was obtained in the same manner as in Example 1 except that a diamond substrate having a (100) surface was used instead of the diamond substrate having a (111) surface.
  • FIG. 4 shows images of the composites of Examples 1 to 4 and Comparative Examples on the diamond substrate side.
  • the diamond substrate was bonded to the SiO 2 film surface of the Si substrate over the entire surface.
  • the shear strength of the composite of Example 1 was 9.0 kgf.
  • the diamond substrate was bonded to the Si substrate over the entire surface.
  • the shear strength of the composite of Example 2 was 18 kgf.
  • Example 3 In the composite of Example 3, about half of the surface of the diamond substrate was bonded to the Ti film surface of the Si substrate. The shear strength of the composite of Example 3 was 7.4 kgf. In the composite of Example 4, about half of the surface of the diamond substrate was bonded to the Ga 2 O 3 substrate. The shear strength of the composite of Example 4 was 5.0 kgf. In the composite of the comparative example, the diamond substrate was hardly bonded to the Si substrate. The shear strength of the composite of Comparative Example was less than 0.2 kgf. As shown in FIG. 4, the portion where the Newton ring is observed is the portion where the newton ring is not joined.
  • FIG. 5 shows a cross-sectional TEM image of the composite of Example 2.
  • the composite of Example 2 provided a diamond substrate, a Si substrate, and a SiO 2 film having a thickness of about 4 nm between them.
  • FIG. 6 shows a cross-sectional TEM image of Example 2 having a magnification different from that of FIG. As shown in FIG. 6, the diamond substrate and the SiO 2 film were bonded at the atomic level. Further, the stepped portion on the surface of the diamond substrate was filled with SiO 2 .
  • FIG. 7A shows a cross-sectional TEM image of the composite of Example 1.
  • FIG. 7 (b) shows the EELS spectra in each portion from # 1 to # 3 near the surface of the diamond substrate shown in FIG. 7 (a) and in the diamond substrate.
  • the 300 eV and 307 eV peaks in the EELS spectrum are inherent peaks of diamond.
  • FIG. 7B a peculiar peak of diamond was also observed near the bonding interface between the diamond substrate and the SiO 2 film. That is, the crystallinity of diamond was not lost even in the vicinity of the bonding interface between the diamond substrate and the SiO 2 film.
  • FIG. 8 is an FT-IR spectrum of the complex of Example 1. This spectrum is a common value obtained by dividing the absorption spectrum of the polycrystalline Si substrate having the thermal oxide SiO 2 film on the surface from the absorption spectrum of the laminated portion of the polycrystalline Si substrate having the thermal oxide SiO 2 film on the surface and the diamond substrate. It is a logarithm. As shown in FIG. 8, a peak attributed to the Si—OC bond was observed near 1100 cm -1 . That is, it was found that the diamond crystal was bonded to the SiO 2 film by the Si—OC bond of a part or more of C on the (111) surface of the diamond crystal. This indicates that the following dehydration reaction proceeded. Si-OH + C-OH ⁇ Si-OC + H 2 O
  • FIG. 9 is an FT-IR spectrum of the complex of Example 2 measured by the same method as the spectrum measurement of FIG. As shown in FIG. 9, a peak attributed to the Si—OC bond was also observed in the vicinity of 1100 cm -1 in the complex of Example 2. In addition to the Si—OC bond, a peak attributed to the Si—C bond was observed. Surface of the Si substrate of the composite of Example 2 are the fairly thin natural oxide SiO 2 film than the thermal oxide SiO 2 film, partially potentially Si and C are bonded directly considered.
  • FIG. 10 shows the relationship between the SPM treatment temperature and the shear strength of the composite in the process of producing the composite of Example 1.
  • the SPM treatment temperature is preferably 75 ° C. or higher and 95 ° C. or lower, and particularly preferably around 75 ° C. If the SPM treatment temperature is too low, it is considered that the introduction of C OH on the (111) surface of the diamond crystal is insufficient, and the formation of Si—OC bonds forming a bond is also insufficient. Further, if the SPM treatment temperature is too high, the reaction of the diamond crystal on the (111) surface becomes excessive, the (111) surface becomes rough, and it is considered that the (111) surface and the SiO 2 film cannot be brought into close contact with each other.
  • the root mean square roughness (RMS) of the (111) surface of the diamond crystal was measured.
  • the RMS of the (111) surface of the diamond crystal before the SPM treatment was 0.3 nm
  • the RMS of the (111) surface of the diamond crystal after the SPM treatment at a temperature of 75 ° C. was 0.4 nm.
  • the RMS of the (111) surface of the diamond crystal after the SPM treatment at a temperature of 110 ° C. was 0.8 nm.
  • the SPM treatment temperature is too high, the unevenness of the (111) surface of the diamond crystal becomes large.
  • the RMS was 0.3 nm, which was the same as before the SPM treatment.
  • the (100) surface of the diamond crystal is considered to have low reactivity with SPM. That is, it is considered that OH is unlikely to be introduced into C on the (100) surface of the diamond crystal.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

常温で、特別な接合荷重が不要で、大気中で、ダイヤモンド結晶体を基材に接合する基材とダイヤモンド結晶体の接合方法を提供する。基材とダイヤモンド結晶体の接合方法は、ダイヤモンド結晶体の(111)表面を酸化性液体で処理して、ダイヤモンド結晶体の(111)表面の一部以上のCにOHを導入するヒドロキシ化工程と、ヒドロキシ化工程でOHが導入された(111)表面と、酸化物を形成できる金属元素(ただし、アルカリ金属およびアルカリ土類金属を除く)、Si、Ge、As、Se、Sb、Te、およびBiの一種以上のヒドロキシ化物を表面に備える基材の表面を接触させ、この接触部に脱水化エネルギーを与えて脱水反応させる接合工程を有する。

Description

ダイヤモンド結晶体を備える複合体
 本願は、ダイヤモンドの特性を活かした状態で基材に接合されているダイヤモンド結晶体を備える複合体に関する。
 ダイヤモンドは、非常に高い熱伝導率と絶縁破壊電界を有している。既存のデバイスをダイヤモンド基板と直接接合することで、冷却効率と入出力電力の大幅な向上が期待できる。温度1000℃以上、圧力32MPaでダイヤモンドとSi基板を熱圧着して、CとSiを原子レベルで接合する方法が知られている(非特許文献1)。しかしながら、この方法によって接合されたダイヤモンドとSiの複合体は、熱膨張と熱収縮によって破断するおそれがある。
 また、原子レベルで平滑なダイヤモンド基板と石英ガラスを接触させて、水素雰囲気下で温度800~900℃に加熱し、接触面の表面反応によりダイヤモンドと石英を接合する方法も知られている(非特許文献2)。この方法では、特別な接合荷重を付与する必要がない。しかしながら、この方法は、水素雰囲気下かつ高温下での処理が必要であり、温和な条件でダイヤモンドを基材に接合する技術の出現が望まれている。
G. N. Yushin et al., Appl. Phys. Lett., 81, 3275-3277 (2002). J. Haisma, B. A. C. M. Spierings, U. K. P. Biermann and A. A. van Gorkum, Appl. Opt., 33, 1154 (1994).
 本願の課題は、1000℃近くの高温下でなく、特別な接合荷重が不要で、大気中でダイヤモンドが基材に接合でき、接合面付近でダイヤモンド結晶構造がほとんど変質しない基材とダイヤモンド結晶体の接合方法と、基材に接合されており、接合面付近でダイヤモンド結晶構造がほとんど変質してしないダイヤモンド結晶体を備える複合体を提供することである。
 本願の複合体は、表面に元素Mの酸化物層MOを備える基材と、表面に接合されているダイヤモンド結晶体とを有し、Mが、酸化物を形成できる金属元素(ただし、アルカリ金属およびアルカリ土類金属を除く)、Si、Ge、As、Se、Sb、Te、およびBiの一種以上であり、ダイヤモンド結晶体の(111)表面の一部以上のCがM-O-C結合されることによって、ダイヤモンド結晶体が表面に接合されている。
 本願のある態様の電子装置は、本願の複合体を有し、ダイヤモンド結晶体が層形状を備え、ダイヤモンド結晶体の一方の面が表面に接合されており、ダイヤモンド結晶体の他方の面に形成された電子部材をさらに有する。本願の他の態様の電子装置は、本願の複合体を有し、基材が板形状を備え、基材の一方の面が(111)表面に接合されており、基材の他方の面に形成された電子部材をさらに有する。本願のダイヤモンド結晶体表面のヒドロキシ化方法は、ダイヤモンド結晶体の(111)表面を酸化性液体で処理して、ダイヤモンド結晶体の(111)表面の一部以上のCにOHを導入する。
 本願の基材とダイヤモンド結晶体の接合方法は、ダイヤモンド結晶体の(111)表面を酸化性液体で処理して、ダイヤモンド結晶体の(111)表面の一部以上のCにOHを導入するヒドロキシ化工程と、ヒドロキシ化工程でOHが導入された(111)表面と、酸化物を形成できる金属元素(ただし、アルカリ金属およびアルカリ土類金属を除く)、Si、Ge、As、Se、Sb、Te、およびBiの一種以上のヒドロキシ化物を表面に備える基材の表面を接触させ、この接触部に脱水化エネルギーを与えて脱水反応させる接合工程とを有する。
 本願の基材とダイヤモンド結晶体の接合方法によれば、200℃程度の低温で、特別な接合荷重が不要で、大気中でダイヤモンド結晶体が基材に接合できる。また、本願の基材に接合されたダイヤモンド結晶体を備える複合体では、接合面付近でダイヤモンド結晶構造がほとんど変質してしない。
実施形態の基材とダイヤモンド結晶体の接合方法を説明する斜視図。 実施形態の電子装置であるダイヤモンドデバイスの断面模式図。 他の実施形態の電子装置の断面模式図。 各実施例と比較例で得られた複合体のダイヤモンド基板側の画像。 実施例2の複合体の断面TEM画像。 図5と倍率が異なる実施例2の複合体の断面TEM画像。 (a)実施例1の複合体の断面TEM画像、(b)(a)に示す各部分およびダイヤモンド基板におけるEELSスペクトル。 実施例1の複合体のFT-IRスペクトル。 実施例2の複合体のFT-IRスペクトル。 実施例1の複合体の作製過程におけるSPM処理温度と複合体のせん断強度の関係を示すグラフ。
 図1(a)から図1(c)は、本願の実施形態の基材とダイヤモンド結晶体の接合方法を説明するための斜視模式図である。実施形態の基材とダイヤモンド結晶体の接合方法は、ヒドロキシ化工程と、接合工程を備えている。図1(a)に示すように、ヒドロキシ化工程では、ダイヤモンド結晶体の(111)表面を酸化性液体で処理して、ダイヤモンド結晶体の(111)表面の一部以上のCにOHを導入する。
 ヒドロキシ化工程は、本願の実施形態のダイヤモンド結晶体表面のヒドロキシ化方法でもある。酸化性液体としては、例えば硫酸と過酸化水素の混合液(Sulfuric acid / Hydrogen Peroxide Mixture:SPM)が挙げられる。SPMを用いる場合、温度75℃以上95℃以下で処理することが好ましい。実施例で示すように、基材とダイヤモンド結晶体が強く接合されるからである。
 図1(b)に示すように、接合工程では、ヒドロキシ化工程でOHが導入されたダイヤモンド結晶体の(111)表面と、所定の元素Mのヒドロキシ化物を表面に備える基材のこの表面を接触させる。本実施形態では、基材がSi基板であり、基材の表面には自然酸化膜SiOが形成されている。図1(a)に示すように、所定の元素のヒドロキシ化物を表面に備える基材、すなわちSi-OHを表面に備える基材は、自然酸化膜SiOに酸素プラズマを照射することによって得られる。
 所定の元素Mとは、酸化物を形成できる金属元素(ただし、アルカリ金属およびアルカリ土類金属を除く)、Si、Ge、As、Se、Sb、TeおよびBiの一種以上である。このような金属元素は、Al、原子番号21のScから原子番号31のGaまで、原子番号39のYから原子番号50のSnまで、原子番号57のLaから原子番号77のIrまで、Tl、およびPbである。これらの元素Mは、少なくとも表面に酸化物層MOを形成できる。酸化物層MOを形成できる元素Mを基材に使用すれば、適切な処理によってMOをヒドロキシ化物M-OHに変換できる。そして、後述するように、このM-OHと、OHが導入されたダイヤモンド結晶体の(111)表面のC-OHが脱水反応する。
 そして、図1(c)に示すように、この接触部に脱水化エネルギーを与えて脱水反応させる。脱水化エネルギーとしては、熱エネルギー、光エネルギー、電気エネルギー、または化学エネルギーなどが挙げられる。本実施形態では接触部を加熱している。この脱水反応によって、ダイヤモンド結晶体の(111)表面の一部以上のCがSi-O-C結合される。これによって、ダイヤモンド結晶体がSi基板の表面に接合される。この接合部分は十分なせん断強度がある。
 本願の実施形態の複合体は、表面に所定の元素Mの酸化物層MOを備える基材と、表面に接合されているダイヤモンド結晶体とを備えている。そして、ダイヤモンド結晶体の(111)表面の一部以上のCがM-O-C結合されることによって、ダイヤモンド結晶体が表面に接合されている。M-O-C結合が形成されていることは、例えばFT-IRによって確認できる。
 表面に酸化物層MOを備える基材は、MまたはM化合物を主成分とし、表面に熱酸化膜または自然酸化膜MOが形成された基材でもよいし、MOを主成分とする、またはMOから構成されている基材でもよい。MまたはM化合物を主成分とし、表面に熱酸化膜または自然酸化膜MOが形成された基材としては、Si基材、SiC基材、SiN基材、Ge基材、GaAs基材、GaN基材、InP基材、Cu基材、Al基材、AlN基材、Ti基材、またはTiN基材などが挙げられる。MOから構成されている基材としては、SiO基材、Ga基材、Al基材、CuO基材、またはTiO基材などが挙げられる。また、基材は、単結晶構造でもよいし、多結晶構造でもよい。
 所定の元素Mは、上述したとおりである。MはSi、Ti、Al、Cu、In、およびGaの一種以上であることが好ましい。表面にこれらの酸化物層MOを備える基材は、ダイヤモンド結晶体の(111)表面の一部以上のCとM-O-Cの結合によって、ダイヤモンド結晶体と接合しやすいからである。また、Si、Ti、Al、Cu、In、およびGaを備える基材は各種分野で使用されており、この各種分野で使用されている基材にダイヤモンドの特性を付与できるからである。なお、ダイヤモンド結晶体の(100)表面をSPMのような酸化性液体で処理しても、(100)表面のCにはOHが導入されにくい。ダイヤモンド結晶体の(100)表面の酸化性液体での処理によって、表面の隣り合うC同士がC-O-C結合しやすいからである。
 本実施形態の複合体は、各種分野に応用できる。例えば、基材を既存のヒートシンクまたはヒートスプレッダーとすれば、ダイヤモンドの高い熱伝導性によって、複合体の放熱・吸熱特性が高くなる。このため、この複合体は、新たなヒートシンクまたはヒートスプレッダーとして使用できる。また、本実施形態の複合体は電子装置に適用できる。すなわち、図2に示すように、ある電子装置は、本実施形態の複合体を有し、ダイヤモンド結晶体が層形状を備え、ダイヤモンド結晶体の一方の面が基材表面に接合されており、ダイヤモンド結晶体の他方の面に形成された電子部材をさらに有している。
 この電子装置は、ダイヤモンド結晶体上に半導体積層構造、量子デバイス、センサー、紫外光LED、または電子放出デバイスのような電子部材を備えるダイヤモンドデバイスとして機能する。本実施形態の複合体のように、接合面付近でダイヤモンド結晶構造がほとんど変質してしなければ、基材全体を高価なダイヤモンド結晶体とせずに、安価な基材の表層だけをダイヤモンド結晶体に置き換えられる。このため、このダイヤモンドデバイスは、コストダウンが可能となる。
 また、図3に示すように、他の電子装置は、本実施形態の複合体を有し、基材が板形状を備え、基材の一方の面がダイヤモンド結晶体の(111)表面に接合されており、基材の他方の面に形成された電子部材をさらに有している。この電子装置は、従来デバイスの基板下に、ダイヤモンド結晶体が接合された構造を備えている。このため、この電子装置では、従来デバイスをダイヤモンド結晶体から効率よく放熱できる。また、ダイヤモンド結晶体は絶縁破壊電界が大きいので、この電子装置の電子部材に高電力が入力できる。
1.複合体の作製
(実施例1)
 98%濃硫酸20mLと35%過酸化水素水5mLからなる温度75℃の混合液に、(111)表面を備えるダイヤモンド基板(EDP社、RH333KPPL、3mm×3mm)を10分間浸漬した。厚さ300nmの熱酸化SiO膜を表面に備える単結晶Si基板(松崎製作所社、T4APX、直径100mm)のSiO膜表面を、圧力60Pa、出力200Wの高純度酸素プラズマで30秒間処理した。プラズマ処理したSi基板のSiO膜、すなわちSi-OHを備えるSi基板の表面と、ダイヤモンド基板の(111)表面を大気中で接触させ、密閉容器内で乾燥剤とともに3日間保管した。その後、温度200℃で24時間加熱して複合体を得た。
(実施例2)
 熱酸化SiO膜を表面に備える単結晶Si基板の代わりに、厚さ約1nmの自然酸化SiO膜を表面に備える単結晶Si基板を用いた点を除いて、実施例1と同様の方法で複合体を得た。
(実施例3)
 熱酸化SiO膜を表面に備える単結晶Si基板の代わりに、スパッタリング法によって成膜した厚さ約10nmのTi膜を表面に備える単結晶Si基板を用いた点を除いて、実施例1と同様の方法で複合体を得た。なお、Ti膜の表面にはTiO膜が薄く形成されている。
(実施例4)
 熱酸化SiO膜を表面に備える単結晶Si基板の代わりに、研磨した単結晶Ga基板を用いた点を除いて、実施例1と同様の方法で複合体を得た。
(比較例)
 (111)表面を備えるダイヤモンド基板の代わりに、(100)表面を備えるダイヤモンド基板を用いた点を除いて、実施例1と同様の方法で複合体を得た。
2.複合体の評価
 図4は、実施例1から実施例4および比較例の複合体のダイヤモンド基板側の画像を示している。実施例1の複合体では、ダイヤモンド基板が全面にわたってSi基板のSiO膜表面に接合していた。実施例1の複合体のせん断強度は9.0kgfであった。実施例2の複合体では、ダイヤモンド基板が全面にわたってSi基板に接合していた。実施例2の複合体のせん断強度は18kgfであった。
 実施例3の複合体では、ダイヤモンド基板の表面の半分程度がSi基板のTi膜表面に接合していた。実施例3の複合体のせん断強度は7.4kgfであった。実施例4の複合体では、ダイヤモンド基板の表面の半分程度がGa基板に接合していた。実施例4の複合体のせん断強度は5.0kgfであった。比較例の複合体では、ダイヤモンド基板がSi基板にほとんど接合していなかった。比較例の複合体のせん断強度は0.2kgf未満であった。図4に示すように、ニュートンリングが観察される部分が、接合してしない部分である。
 図5は、実施例2の複合体の断面TEM画像を示している。図5に示すように、実施例2の複合体は、ダイヤモンド基板と、Si基板と、これらの間にある厚さ約4nmのSiO膜を備えていた。図6は、図5と倍率が異なる実施例2の断面TEM画像を示している。図6に示すように、ダイヤモンド基板とSiO膜は原子レベルで接合した。また、ダイヤモンド基板の表面の段部にはSiOが充填されていた。
 図7(a)は、実施例1の複合体の断面TEM画像を示している。図7(b)は、図7(a)に示すダイヤモンド基板の表面近くの#1から#3までの各部分およびダイヤモンド基板におけるEELSスペクトルを示している。EELSスペクトルの300eVと307eVのピークは、ダイヤモンドの固有ピークである。図7(b)に示すように、ダイヤモンド基板とSiO膜の接合界面近傍でも、ダイヤモンドの固有ピークが観察された。すなわち、ダイヤモンド基板とSiO膜の接合界面近傍でも、ダイヤモンドの結晶性が失われていなかった。
 図8は、実施例1の複合体のFT-IRスペクトルである。このスペクトルは、熱酸化SiO膜を表面に備える多結晶Si基板とダイヤモンド基板の積層部の吸収スペクトルから熱酸化SiO膜を表面に備える多結晶Si基板部の吸収スペクトルを除算した数値の常用対数をとったものである。図8に示すように、1100cm-1付近にSi-O-C結合に帰属されるピークが観測された。すなわち、ダイヤモンド結晶体の(111)表面の一部以上のCがSi-O-C結合されることによって、ダイヤモンド結晶体がSiO膜に接合されていることがわかった。これは、下記の脱水反応が進行したことを示している。
 Si-OH + C-OH → Si-O-C + H
 図9は、図8のスペクトル測定と同様の方法で測定した実施例2の複合体のFT-IRスペクトルである。図9に示すように、実施例2の複合体でも1100cm-1付近にSi-O-C結合に帰属されるピークが観測された。また、Si-O-C結合とは別に、Si-C結合に帰属されるピークが観測された。実施例2の複合体のSi基板の表面は、熱酸化SiO膜よりかなり薄い自然酸化SiO膜であるため、部分的にSiとCが直接結合した可能性が考えられる。
 図10は、実施例1の複合体の作製過程におけるSPM処理温度と複合体のせん断強度の関係を示している。図10に示すように、SPM処理温度は、75℃以上95℃以下であることが好ましく、75℃近辺が特に好ましい。SPM処理温度が低すぎると、ダイヤモンド結晶体の(111)表面のCのOH導入が不十分となり、接合を形成するSi-O-C結合の生成も不十分となると考えられる。また、SPM処理温度が高すぎると、ダイヤモンド結晶体の(111)表面での反応が過剰となり、(111)表面が荒れ、(111)表面とSiO膜が密着できなくなると考えられる。
 これを確かめるため、ダイヤモンド結晶体の(111)表面の自乗平均面粗さ(RMS)を測定した。SPM処理前のダイヤモンド結晶体の(111)表面のRMSは0.3nmであり、温度75℃のSPM処理後のダイヤモンド結晶体の(111)表面のRMSは0.4nmであった。これに対して、温度110℃のSPM処理後のダイヤモンド結晶体の(111)表面のRMSは0.8nmであった。
 これらのRMSから、SPM処理温度が高すぎると、ダイヤモンド結晶体の(111)表面の凹凸が大きくなることが裏付けられた。なお、ダイヤモンド結晶体の(100)表面を温度110℃でSPM処理したところ、RMSが0.3nmであり、SPM処理前と同じであった。ダイヤモンド結晶体の(100)表面は、SPMとの反応性が低いと考えられる。すなわち、ダイヤモンド結晶体の(100)表面のCには、OHが導入されにくいと考えられる。

Claims (9)

  1.  表面に元素Mの酸化物層MOを備える基材と、前記表面に接合されているダイヤモンド結晶体とを有し、
     前記Mが、酸化物を形成できる金属元素(ただし、アルカリ金属およびアルカリ土類金属を除く)、Si、Ge、As、Se、Sb、Te、およびBiの一種以上であり、
     前記ダイヤモンド結晶体の(111)表面の一部以上のCがM-O-C結合されることによって、前記ダイヤモンド結晶体が前記表面に接合されている複合体。
  2.  請求項1において、
     前記MがSi、Ti、Al、Cu、In、およびGaの一種以上である複合体。
  3.  請求項1または2において、
     前記基材がヒートシンクまたはヒートスプレッダーである複合体。
  4.  請求項1または2の複合体を有し、
     前記ダイヤモンド結晶体が層形状を備え、
     前記ダイヤモンド結晶体の一方の面が前記表面に接合されており、
     前記ダイヤモンド結晶体の他方の面に形成された電子部材をさらに有する電子装置。
  5.  請求項1または2の複合体を有し、
     前記基材が板形状を備え、
     前記基材の一方の面が前記(111)表面に接合されており、
     前記基材の他方の面に形成された電子部材をさらに有する電子装置。
  6.  ダイヤモンド結晶体の(111)表面を酸化性液体で処理して、前記ダイヤモンド結晶体の(111)表面の一部以上のCにOHを導入するダイヤモンド結晶体表面のヒドロキシ化方法。
  7.  請求項6において、
     前記酸化性液体が、硫酸と過酸化水素の混合液であるダイヤモンド結晶体表面のヒドロキシ化方法。
  8.  請求項7において、
     温度75℃以上95℃以下の前記混合液で処理するダイヤモンド結晶体表面のヒドロキシ化方法。
  9.  ダイヤモンド結晶体の(111)表面を酸化性液体で処理して、前記ダイヤモンド結晶体の(111)表面の一部以上のCにOHを導入するヒドロキシ化工程と、
     前記ヒドロキシ化工程でOHが導入された前記(111)表面と、酸化物を形成できる金属元素(ただし、アルカリ金属およびアルカリ土類金属を除く)、Si、Ge、As、Se、Sb、Te、およびBiの一種以上のヒドロキシ化物を表面に備える基材の前記表面を接触させ、この接触部に脱水化エネルギーを与えて脱水反応させる接合工程と、
     を有する基材とダイヤモンド結晶体の接合方法。
PCT/JP2020/016893 2019-05-10 2020-04-17 ダイヤモンド結晶体を備える複合体 WO2020230520A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/609,919 US20220230934A1 (en) 2019-05-10 2020-04-17 Composite having diamond crystal base
JP2021519318A JP7071775B2 (ja) 2019-05-10 2020-04-17 ダイヤモンド結晶体を備える複合体
EP20805468.4A EP3967792A4 (en) 2019-05-10 2020-04-17 COMPOSITE BODY WITH DIAMOND CRYSTAL BODY

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-089796 2019-05-10
JP2019089796 2019-05-10

Publications (1)

Publication Number Publication Date
WO2020230520A1 true WO2020230520A1 (ja) 2020-11-19

Family

ID=73289420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/016893 WO2020230520A1 (ja) 2019-05-10 2020-04-17 ダイヤモンド結晶体を備える複合体

Country Status (4)

Country Link
US (1) US20220230934A1 (ja)
EP (1) EP3967792A4 (ja)
JP (1) JP7071775B2 (ja)
WO (1) WO2020230520A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022196241A1 (ja) * 2021-03-15 2022-09-22 国立研究開発法人産業技術総合研究所 炭化ケイ素を備える複合体とその製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11307747A (ja) * 1998-04-17 1999-11-05 Nec Corp Soi基板およびその製造方法
JP2009209028A (ja) * 2008-02-08 2009-09-17 Sumitomo Electric Ind Ltd ダイヤモンド多結晶基板の製造方法及びダイヤモンド多結晶基板
JP2010222172A (ja) * 2009-03-23 2010-10-07 Nippon Telegr & Teleph Corp <Ntt> ダイヤモンド薄膜及びその製造方法
JP2018074172A (ja) * 2013-09-02 2018-05-10 アールエフエイチアイシー コーポレイション 基板近傍の熱伝導性が改善された多結晶性cvdダイヤモンドを含む半導体デバイス構造体
JP2019062020A (ja) * 2017-09-25 2019-04-18 株式会社Sumco Soiウェーハの製造方法およびsoiウェーハ

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5212401A (en) * 1991-07-25 1993-05-18 Kobe Steel Usa, Inc. High temperature rectifying contact
US5463271A (en) * 1993-07-09 1995-10-31 Silicon Video Corp. Structure for enhancing electron emission from carbon-containing cathode
DE19846479A1 (de) * 1997-10-09 1999-04-15 Mitsubishi Materials Corp Diamant-Impfpulver mit ausgezeichneter Adhäsion an eine Oberfläche zur Bildung eines Films aus synthetischem Diamant und Dispersion davon
JP3970399B2 (ja) * 1997-12-24 2007-09-05 シャープ株式会社 ダイヤモンド形成用基体の製造方法
JP4287416B2 (ja) * 2005-08-03 2009-07-01 株式会社東芝 電子放出装置
JP4789009B2 (ja) 2007-01-16 2011-10-05 住友電気工業株式会社 ダイヤモンド基板およびその製造方法
KR101019029B1 (ko) * 2007-08-14 2011-03-04 한국과학기술연구원 그라핀 하이브리드 물질 및 그 제조 방법
GB2573215B (en) 2017-02-02 2021-11-17 Mitsubishi Electric Corp Semiconductor manufacturing method and semiconductor manufacturing device
EP3379580A1 (en) * 2017-03-22 2018-09-26 Evince Technology Ltd Diamond semiconductor device
JP2019021889A (ja) * 2017-07-20 2019-02-07 山口 浩一 パワー半導体の回路実装構造とその製造方法
IL308125A (en) * 2018-01-11 2023-12-01 Nanocore Aps Composites containing mechanical ligands
JP2019201090A (ja) 2018-05-16 2019-11-21 公立大学法人大阪 半導体デバイスの製造方法及び半導体デバイス

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11307747A (ja) * 1998-04-17 1999-11-05 Nec Corp Soi基板およびその製造方法
JP2009209028A (ja) * 2008-02-08 2009-09-17 Sumitomo Electric Ind Ltd ダイヤモンド多結晶基板の製造方法及びダイヤモンド多結晶基板
JP2010222172A (ja) * 2009-03-23 2010-10-07 Nippon Telegr & Teleph Corp <Ntt> ダイヤモンド薄膜及びその製造方法
JP2018074172A (ja) * 2013-09-02 2018-05-10 アールエフエイチアイシー コーポレイション 基板近傍の熱伝導性が改善された多結晶性cvdダイヤモンドを含む半導体デバイス構造体
JP2019062020A (ja) * 2017-09-25 2019-04-18 株式会社Sumco Soiウェーハの製造方法およびsoiウェーハ

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
G. N. YUSHIN ET AL., APPL. PHYS. LETT., vol. 81, 2002, pages 3275 - 3277
J. HAISMAB. A. C. M. SPIERINGSU. K. P. BIERMANNA. A. VAN GORKUM, APPL. OPT., vol. 33, 1994, pages 1154
See also references of EP3967792A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022196241A1 (ja) * 2021-03-15 2022-09-22 国立研究開発法人産業技術総合研究所 炭化ケイ素を備える複合体とその製造方法

Also Published As

Publication number Publication date
JPWO2020230520A1 (ja) 2020-11-19
US20220230934A1 (en) 2022-07-21
EP3967792A1 (en) 2022-03-16
JP7071775B2 (ja) 2022-05-19
EP3967792A4 (en) 2023-05-17

Similar Documents

Publication Publication Date Title
Moriceau et al. Overview of recent direct wafer bonding advances and applications
Matsumae et al. Low-temperature direct bonding of β-Ga2O3 and diamond substrates under atmospheric conditions
KR101154227B1 (ko) 실온 공유 결합 방법
Bao et al. A review of silicon-based wafer bonding processes, an approach to realize the monolithic integration of Si-CMOS and III–V-on-Si wafers
WO2020230520A1 (ja) ダイヤモンド結晶体を備える複合体
AU745315B2 (en) Method for manufacturing semiconductor article
JP6133991B2 (ja) ゲルマニウム層上に酸化ゲルマニウムを含む膜を備える半導体構造およびその製造方法
US9978893B2 (en) Layered bonded structures formed from reactive bonding of zinc metal and zinc peroxide
Tong Wafer bonding for integrated materials
JP2014516469A5 (ja)
JP2006258958A (ja) 基板接着方法及び基板接着装置
JP7362166B2 (ja) ダイヤモンド複合材及びその製造方法
CN109904064A (zh) 一种提高碳化硅直接键合强度的方法
US9331243B2 (en) Producing a light-emitting semiconductor component by connecting first and second semiconductor bodies
JP4868910B2 (ja) 半導体装置およびその製造方法
WO2022196241A1 (ja) 炭化ケイ素を備える複合体とその製造方法
TWI712146B (zh) 半導體結構及其形成方法
KR20120054252A (ko) 웨이퍼 접합방법
WO2023286711A1 (ja) 銅-銅積層体の分離方法及び銅-銅積層体
JP2012244069A (ja) 多層膜構造体及びその形成方法
Tong et al. Wafer bonding of Si with dissimilar materials
Romanov et al. Photoluminescence of SiO 2/SiN x/SiO 2/Si Structures with Off-Stoichiometric Silicon Nitride Layers
Minowa et al. Direct bonding of Germanium and Diamond substrates by reduction process
Bogan et al. Photoemission study of the growth of Mn silicate barrier layers on ultra low-k carbon doped oxide surfaces
Dragoi et al. Si/GaAs heterostructures fabricated by direct wafer bonding

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20805468

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021519318

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020805468

Country of ref document: EP

Effective date: 20211210