WO2020230307A1 - 操舵制御方法及び操舵制御装置 - Google Patents
操舵制御方法及び操舵制御装置 Download PDFInfo
- Publication number
- WO2020230307A1 WO2020230307A1 PCT/JP2019/019397 JP2019019397W WO2020230307A1 WO 2020230307 A1 WO2020230307 A1 WO 2020230307A1 JP 2019019397 W JP2019019397 W JP 2019019397W WO 2020230307 A1 WO2020230307 A1 WO 2020230307A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- steering
- reaction force
- angle
- driver
- control
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D15/00—Steering not otherwise provided for
- B62D15/02—Steering position indicators ; Steering position determination; Steering aids
- B62D15/025—Active steering aids, e.g. helping the driver by actively influencing the steering system after environment evaluation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D6/00—Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
- B62D6/002—Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits computing target steering angles for front or rear wheels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D6/00—Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
- B62D6/008—Control of feed-back to the steering input member, e.g. simulating road feel in steer-by-wire applications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D1/00—Steering controls, i.e. means for initiating a change of direction of the vehicle
- B62D1/24—Steering controls, i.e. means for initiating a change of direction of the vehicle not vehicle-mounted
- B62D1/28—Steering controls, i.e. means for initiating a change of direction of the vehicle not vehicle-mounted non-mechanical, e.g. following a line or other known markers
- B62D1/286—Systems for interrupting non-mechanical steering due to driver intervention
Definitions
- the present invention relates to a steering control method and a steering control device.
- Patent Document 1 in a vehicle provided with a steer-by-wire type steering mechanism in which the steering wheel and the steering wheel are mechanically separated, a target steering angle of the steering wheel for maintaining a lane is calculated. Described is a steering control device that applies a steering reaction force so that the steering angle of the steering wheel corresponding to the target steering angle is in the neutral position of the steering wheel.
- An object of the present invention is to facilitate the steering operation of the driver during driving support control for applying a steering reaction force that causes the steering angle of the steering wheel to follow the target steering angle.
- a steering control method for a vehicle provided with a steer-by-wire type steering mechanism in which the steering wheel and the steering wheel are mechanically separated is provided.
- the actual steering angle of the steering wheel is detected
- the target steering angle of the steering wheel is calculated based on the target steering angle of the steering wheel
- the angle deviation between the actual steering angle and the target steering angle is obtained.
- a steering reaction force is applied to the steering wheel accordingly, the steering operation of the steering wheel by the driver is detected, and when the steering operation by the driver is detected, compared with the case where the steering operation by the driver is not detected. , Reduces the steering reaction force according to the angle deviation.
- the steering angle of the steering wheel is changed to the target steering angle.
- the driver's steering operation can be easily performed while ensuring the followability, and the driving support control and the steering operation by the driver can be compatible with each other.
- a vehicle equipped with the vehicle control device 1 (hereinafter referred to as "own vehicle") includes a steer-by-wire type steering mechanism in which the steering wheel and the steering wheel are mechanically separated.
- the vehicle control device 1 controls the steering angle of the steering wheel and the steering reaction force applied to the steering wheel.
- the vehicle control device 1 performs travel support control that supports the travel of the own vehicle.
- the driving support control includes automatic driving control that automatically drives the own vehicle without the driver's involvement based on the driving environment around the own vehicle, and driving support control that assists the driver in driving the own vehicle.
- the driving support control includes steering support control such as lane keeping control, following vehicle following control that travels along the traveling locus of the preceding vehicle, and steering assist control that assists steering for avoiding obstacles.
- the vehicle control device 1 includes an external sensor 2, an internal sensor 3, a positioning device 4, a map database 5, a communication device 6, a navigation system 7, a traveling controller 8, an accelerator opening actuator 9, and brake control. It includes an actuator 10, a controller 11, a reaction force actuator 12, a first drive circuit 13, a steering actuator 14, and a second drive circuit 15.
- the map database is referred to as "map DB".
- the external sensor 2 is a sensor that detects the surrounding environment of the own vehicle, for example, an object around the own vehicle.
- the external sensor 2 may include, for example, a camera 16 and a ranging device 17.
- the camera 16 and the distance measuring device 17 include objects existing around the own vehicle (for example, other vehicles, pedestrians, white lines such as lane boundaries and lane dividing lines, traffic lights provided on or around the road, and stop lines. , Signs, buildings, electric poles, rim stones, pedestrians, and other features), the relative position of the object with respect to the vehicle, the relative distance between the vehicle and the object, and other surrounding environments of the vehicle.
- the camera 16 may be, for example, a stereo camera.
- the camera 16 may be a monocular camera, or the same object may be photographed from a plurality of viewpoints by the monocular camera and the distance to the object may be calculated. Further, the distance to the object may be calculated based on the ground contact position of the object detected from the image captured by the monocular camera.
- the range finder 17 may be, for example, a laser range finder (LRF), a radar unit, or a laser scanner unit.
- LRF laser range finder
- the camera 16 and the distance measuring device 17 output the detected surrounding environment information to the navigation system 7, the traveling controller 8, and the controller 11.
- the internal sensor 3 is a sensor that detects the traveling state of the own vehicle.
- the internal sensor 3 may include, for example, a vehicle speed sensor 18 and a steering angle sensor 19.
- the vehicle speed sensor 18 detects the vehicle speed V of the own vehicle.
- the steering angle sensor 19 detects the column shaft rotation angle, that is, the actual steering angle ⁇ s (steering angle) of the steering wheel.
- the internal sensor 3 may include, for example, an acceleration sensor that detects the acceleration generated in the own vehicle or a gyro sensor that detects the angular velocity of the own vehicle.
- the internal sensor 3 outputs the running state information, which is the detected running state information, to the navigation system 7, the running controller 8, and the controller 11.
- the positioning device 4 receives radio waves from a plurality of navigation satellites, acquires the current position of the own vehicle, and outputs the acquired current position of the own vehicle to the navigation system 7 and the traveling controller 8.
- the positioning device 4 may have, for example, a GPS (Global Positioning System) receiver or a Global Positioning System (GNSS: Global Navigation Satellite System) receiver other than the GPS receiver.
- GPS Global Positioning System
- GNSS Global Navigation Satellite System
- the map database 5 stores road map data.
- Road map data includes white line shapes (lane shapes) such as lane boundaries and lane division lines, coordinate information, altitudes of roads and white lines, traffic lights on or around roads, stop lines, signs, buildings, and electric poles. Includes coordinate information for features such as curbs, pedestrian crossings, etc.
- the road map data may further include information on the road type, the slope of the road, the number of lanes, the speed limit (legal speed), the road width, the presence or absence of a confluence, and the like.
- the road type may include, for example, a general road and an expressway.
- the map database 5 is referred to by the navigation system 7 and the travel controller 8.
- the communication device 6 performs wireless communication with a communication device outside the own vehicle.
- the communication method by the communication device 6 may be, for example, wireless communication by a public mobile phone network, vehicle-to-vehicle communication, road-to-vehicle communication, or satellite communication.
- the navigation system 7, the traveling controller 8, and the controller 11 may acquire road map data by the communication device 6 from an external information processing device in place of or in addition to the map database 5.
- the navigation system 7 provides the occupants of the own vehicle with route guidance to the destination set on the map by the driver of the own vehicle.
- the navigation system 7 estimates the current position of the own vehicle using various information input from the external sensor 2, the internal sensor 3, and the positioning device 4, generates a route to the destination, and guides the occupant.
- the navigation system 7 outputs the route information to the traveling controller 8.
- the travel controller 8 controls the travel support of the own vehicle.
- the driving support control includes an automatic driving control for automatically driving the own vehicle without the involvement of the driver and a driving support control for assisting the driver in driving the own vehicle.
- the travel controller 8 uses the route information output from the navigation system 7, the surrounding environment such as objects around the vehicle and lane boundaries detected by the external sensor 2, and the road map of the map database 5. Based on the data and the traveling state of the own vehicle detected by the internal sensor 3, the target traveling track to be traveled by the own vehicle on the traveling lane is set.
- the traveling controller 8 uses the positioning result of the positioning device 4, the surrounding environment detected by the external sensor 2, the road map data of the map database 5, and the traveling of the own vehicle detected by the internal sensor 3. Based on the state, the target traveling track that the own vehicle should travel on the traveling lane is set.
- the traveling controller 8 drives the accelerator opening actuator 9 and the brake control actuator 10 so that the own vehicle travels along the target traveling trajectory, and controls the driving force and the braking force of the own vehicle.
- the accelerator opening actuator 9 controls the accelerator opening of the vehicle.
- the brake control actuator 10 controls the braking operation of the vehicle braking device.
- the traveling controller 8 sets a target steering angle, which is a target value of a steering angle (tire angle) of the steering wheel for traveling the own vehicle along the target traveling trajectory in the traveling support control including the automatic steering control. calculate.
- the travel controller 8 calculates the target steering angle ⁇ t of the steering wheel corresponding to the target steering angle.
- the traveling controller 8 outputs the target steering angle ⁇ t to the controller 11.
- the controller 11 is an electronic control unit (ECU) that controls the steering of the steering wheel and the reaction force of the steering wheel.
- reaction force control refers to the control of steering torque applied to the steering wheel by an actuator. Further, the steering torque applied to the steering wheel by this reaction force control may be referred to as steering reaction force torque.
- the controller 11 includes a processor 20 and peripheral components such as a storage device 21.
- the processor 20 may be, for example, a CPU (Central Processing Unit) or an MPU (Micro-Processing Unit).
- the controller 11 may be an electronic control unit integrated with the traveling controller 8 or a separate electronic control unit.
- the storage device 21 may include a semiconductor storage device, a magnetic storage device, and an optical storage device.
- the storage device 21 may include a memory such as a register, a cache memory, a ROM (Read Only Memory) and a RAM (Random Access Memory) used as the main storage device.
- the controller 11 may be realized by a functional logic circuit set in a general-purpose semiconductor integrated circuit.
- the controller 11 may have a programmable logic device (PLD: Programmable Logic Device) such as a field-programmable gate array (FPGA).
- PLD Programmable Logic Device
- the controller 11 is a steering reaction force torque (rotation torque applied to the steering wheel) applied to the steering wheel according to the actual steering angle ⁇ s of the steering wheel, the vehicle speed V, and the target steering angle ⁇ t determined by the traveling controller 8. , Hereinafter also referred to as steering torque), the command steering torque Tr is calculated. If the vehicle speed is the same, the controller 11 calculates a command steering torque Tr that increases as the deviation between the target steering angle ⁇ t and the actual steering angle ⁇ s increases. Further, the command steering torque Tr is a steering torque applied to the steering wheel in a direction in which the actual steering angle ⁇ s coincides with the target steering angle ⁇ t. The controller 11 outputs a control signal for generating a command steering torque Tr to the reaction force actuator 12 to the first drive circuit 13, and drives the reaction force actuator 12 to apply the calculated steering reaction force torque to the steering wheel. ..
- the controller 11 calculates the command steering angle, which is the command value of the steering angle of the steering wheel, according to the actual steering angle ⁇ s of the steering wheel detected by the steering angle sensor 19.
- the controller 11 outputs the calculated command steering angle to the second drive circuit 15, and drives the steering actuator 14 so that the actual steering angle of the steering wheel becomes the command steering angle.
- the steering system of the own vehicle will be described with reference to FIG.
- the own vehicle includes a steering unit 31, a steering unit 32, and a backup clutch 33.
- the steering unit 31 that receives the driver's steering input
- the steering unit 32 that steers the left and right front wheels 34FL and 34FR, which are steering wheels, are mechanically separated.
- the steering unit 31 includes a steering wheel 31a, a column shaft 31b, a current sensor 31c, a reaction force actuator 12, a first drive circuit 13, and a steering angle sensor 19.
- the steering unit 32 includes a pinion shaft 32a, a steering gear 32b, a rack gear 32c, a steering rack 32d, a steering actuator 14, a second drive circuit 15, and a steering angle sensor 35.
- the controller 11 includes a steering control unit 36 that determines a command steering angle according to the actual steering angle ⁇ s of the steering wheel 31a, an actual steering angle ⁇ s, a vehicle speed V, and a target steering determined by the traveling controller 8.
- a reaction force control unit 37 that determines the command steering torque Tr according to the angle ⁇ t is provided.
- the functions of the steering control unit 36 and the reaction force control unit 37 may be realized, for example, by the processor 20 executing a computer program stored in the storage device 21 of the controller 11.
- the reaction force actuator 12, the first drive circuit 13, and the controller 11 form a steering control device.
- the steering wheel 31a of the steering unit 31 rotates by the steering reaction torque applied by the reaction actuator 12, and also rotates by receiving the input of the steering torque applied by the driver.
- the column shaft 31b rotates integrally with the steering wheel 31a.
- the reaction force actuator 12 may be, for example, an electric motor.
- the reaction force actuator 12 has an output shaft arranged coaxially with the column shaft 31b.
- the reaction actuator 12 outputs the rotational torque applied to the steering wheel 31a to the column shaft 31b in response to the command current output from the first drive circuit 13. By applying the rotational torque, the steering reaction force torque is generated in the steering wheel 31a.
- the first drive circuit 13 includes an actual steering reaction torque estimated from the drive current of the reaction actuator 12 detected by the current sensor 31c and a command steering torque Tr indicated by a control signal output from the reaction control unit 37.
- the command current output to the reaction force actuator 12 is controlled by the torque feedback that matches.
- the steering angle sensor 19 detects the rotation angle of the column shaft 31b, that is, the actual steering angle ⁇ s of the steering wheel 31a.
- the steering gear 32b of the steering portion 32 steers the left and right front wheels 34FL and 34FR according to the rotation of the pinion shaft 32a.
- a rack and pinion type steering gear or the like may be adopted.
- the steering actuator 14 may be an electric motor such as a brushless motor.
- the output shaft of the steering actuator 14 is connected to the rack gear 32c via a speed reducer.
- the steering actuator 14 outputs steering torque for steering the left and right front wheels 34FL and 34FR to the steering rack 32d according to the command current output from the second drive circuit 15.
- the steering angle sensor 35 detects the rotation angle of the output shaft of the steering actuator 14, and detects the steering angles of the left and right front wheels 34FL and 34FR based on the detected rotation angle.
- the second drive circuit 15 sends an angle feedback to the steering actuator 14 to match the actual steering angle detected by the steering angle sensor 35 with the command steering angle indicated by the control signal from the steering control unit 36. Controls the command current of.
- the backup clutch 33 is provided between the column shaft 31b and the pinion shaft 32a. Then, when the backup clutch 33 is in the released state, the steering unit 31 and the steering unit 32 are mechanically disconnected, and when the engagement state is reached, the steering unit 31 and the steering unit 32 are mechanically connected.
- the first steering reaction force torque Tr1 will be described.
- the steering wheel 31a and the steering wheel are mechanically separated from each other. Therefore, the lateral force of the tire acting on the steering wheel is not transmitted to the steering wheel 31a, and the restoration torque (for example, the steering angle when going straight and the steering angle of 0 °) is returned to the neutral position (for example). Self-aligning torque) does not occur.
- the reaction force control unit 37 calculates the first steering reaction force torque Tr1 as the restoration torque for the steering wheel 31a to return to the neutral position. For example, the reaction force control unit 37 calculates the first steering reaction force torque Tr1 having the characteristics shown in FIG. 3A.
- the reaction force control unit 37 may calculate, for example, the steering reaction force based on the actual steering angle ⁇ s and the vehicle speed V as the first steering reaction force torque Tr1. As a result, the driver can feel the steering reaction force according to the lateral force of the tire, so that the steering feeling of the steer-by-wire type steering mechanism is improved.
- the reaction force control unit 37 offsets the actual steering angle ⁇ s by the target steering angle ⁇ t to calculate the first steering reaction force torque Tr1. Then, the characteristics of the first steering reaction torque Tr1 are as shown in FIG. 3B, and the steering reaction torque is calculated according to the angle deviation ( ⁇ t ⁇ s) between the actual steering angle ⁇ s and the target steering angle ⁇ t. As a result, the first steering reaction force torque Tr1 works so that the target steering angle ⁇ t is in the neutral position of the steering wheel 31a.
- the actual steering angle ⁇ s is 15 °
- the target steering angle ⁇ t is 30 °
- the actual steering angle ⁇ s is 15 °.
- the actual steering angle ⁇ s is offset by dividing the target steering angle ⁇ t by 30 °
- the actual steering angle ⁇ s after offset becomes -15 ° (steering angle to the left 15 °)
- the steering wheel has a steering angle.
- Steering reaction force torque that tries to return from the position of -15 ° to the neutral position (position of steering angle 0 °) is applied, and steering reaction torque is applied according to the deviation between the actual steering angle ⁇ s and the target steering angle ⁇ t. Will be done.
- the deviation ( ⁇ t) between the actual steering angle ⁇ s and the target steering angle ⁇ t is applied by applying the steering reaction force torque corresponding to the value obtained by offsetting (subtracting) the actual steering angle ⁇ s with the target steering angle ⁇ t.
- the steering reaction force torque corresponding to ⁇ s) is applied, and the actual steering angle ⁇ s is controlled to follow the target steering angle ⁇ t.
- the first steering reaction force torque Tr1 is a restoration torque generated so as to act in the direction of returning the steering wheel 31a to the neutral position in response to the driver's steering operation with respect to the steer-by-wire type steering mechanism, and is automatic. It occurs not only during steering control but also when automatic steering is not performed (for example, during manual operation). Therefore, the magnitude of the first steering reaction force torque Tr1 is set to a magnitude that does not hinder the steering operation by the driver (a magnitude that allows the driver to easily perform the steering operation).
- the reaction force control unit 37 calculates the reaction force torque according to the angle deviation ( ⁇ t ⁇ s) between the actual steering angle ⁇ s and the target steering angle ⁇ t as the second steering reaction force torque Tr2. See FIG. 3D.
- the command steering torque Tr is the sum of the solid first steering reaction torque Tr1 and the broken line second steering reaction torque Tr2.
- the reaction force control unit 37 may calculate the second steering reaction force torque Tr2 including the transient component of the angle deviation ( ⁇ t ⁇ s).
- the transient component is, for example, a velocity component (single derivative value) of an angular deviation ( ⁇ t ⁇ s).
- the steering reaction force Tr2 as described above is applied to the steering wheel 31a, the steering reaction force becomes excessive for the driver, and the steering operation by the driver is hindered. That is, in automatic steering control, if the steering reaction force torque is increased in order to obtain sufficient follow-up response to the target steering angle ⁇ t of the actual steering angle ⁇ s, the steering operation by the driver is hindered, while the steering operation by the driver is performed. If the steering reaction force torque is reduced for ease of use, it becomes difficult to obtain sufficient follow-up response to the target steering angle ⁇ t of the actual steering angle ⁇ s.
- the reaction force control unit 37 determines the command steering torque Tr (that is, the angle deviation) when the steering operation of the steering wheel 31a by the driver is detected, as compared with the case where the steering operation is not detected. The corresponding steering reaction force) is reduced. As a result, during automatic steering control, sufficient follow-up response to the target steering angle ⁇ t of the actual steering angle ⁇ s is obtained, and the steering operation by the driver becomes easy.
- the reaction force control unit 37 may reduce both or one of the first steering reaction force torque Tr1 and the second steering reaction force torque Tr2 when the steering operation by the driver is detected. However, if the first steering reaction force torque Tr1 is reduced, the steering reaction force is different from the steering reaction force during manual operation, which may give the driver a sense of discomfort. Further, by reducing the offset amount due to the target steering angle ⁇ t (that is, reducing the deviation between the actual steering angle ⁇ s and the target steering angle ⁇ t), the steering reaction force torque that directs the actual steering angle ⁇ s toward the target steering angle ⁇ t. However, it becomes difficult to drive along the target traveling track of the own vehicle.
- the reaction force control unit 37 of the present embodiment applies only the second steering reaction force torque Tr2 when the steering operation by the driver is detected as compared with the case where the steering operation is not detected. Reduce. Further, even when the steering operation is detected, the first steering reaction force torque Tr1 when the steering operation is not detected is held.
- the reaction force control unit 37 includes a first steering reaction force torque calculation unit 40, a second steering reaction force torque calculation unit 50, and an adder 60.
- the first steering reaction force torque calculation unit 40 is based on the actual steering angle ⁇ s, the target steering angle ⁇ t, the vehicle speed V, and the first control gain G1 generated by the traveling controller 8, and the first steering reaction force torque Tr1 Is calculated.
- the second steering reaction force torque calculation unit 50 calculates the second steering reaction force torque Tr2 based on the actual steering angle ⁇ s, the target steering angle ⁇ t, and the first control gain G1.
- the adder 60 adds the first steering reaction force torque Tr1 and the second steering reaction force torque Tr2 to calculate the command steering torque Tr, and outputs the command steering torque Tr to the first drive circuit 13.
- the first control gain G1 is a gain that controls the offset amount due to the target steering angle ⁇ t when calculating the first steering reaction force torque Tr1 and the magnitude of the second steering reaction force torque Tr2.
- the traveling controller 8 has a magnitude of the first control gain G1 depending on whether the automatic steering control is on or off, whether the steering operation by the driver is detected, and the reliability of the automatic steering control. To determine.
- the first control gain G1 has a value in the range from the minimum value "0" to the maximum value "1".
- the first control gain G1 is set to "0", and the offset amount of the actual steering angle ⁇ s and the second steering reaction torque Tr2 when calculating the first steering reaction torque Tr1 are set. It becomes “0”, and the automatic steering control by the traveling controller 8 does not work. Therefore, when the automatic steering control is off, the actual steering angle ⁇ s is not offset, and according to the deviation between the steering angle (that is, the steering angle 0 °) and the actual steering angle ⁇ s when the vehicle goes straight, and the vehicle speed V.
- the first steering reaction force torque Tr1 calculated by the first steering reaction force torque calculation unit 40 is applied to the steering wheel.
- the traveling controller 8 When the driver turns on the automatic steering control at the time t11, the traveling controller 8 gradually increases the first control gain G1 from “0" to "1” from the time t11 to the time t12. On the other hand, when the driver or the traveling controller 8 turns off the automatic steering control at the time t13, the traveling controller 8 gradually reduces the first control gain G1 from “1” to "0” from the time t13 to the time t14. ..
- the travel controller 8 calculates the reliability of the automatic steering control when the automatic steering control is on, and determines the magnitude of the first control gain G1 according to the reliability of the automatic steering control.
- the traveling controller 8 may use, for example, the surrounding environment of the own vehicle detected by the external sensor 2, the traveling state of the own vehicle detected by the internal sensor 3, the soundness of the external sensor 2 and the internal sensor 3, the traveling scene, the weather, the time, and the like. Based on, the reliability of the automatic steering control is calculated.
- the traveling controller 8 is smaller than the maximum value "1" at time t22 and automatically steers.
- the first control gain G1 corresponding to the high reliability of control is output. See FIG. 6C.
- the traveling controller 8 stops the automatic steering control and controls the first control at time t32.
- the gain G1 may be reduced and returned to the minimum value “0” at time t33.
- the traveling controller 8 detects the steering operation of the steering wheel 31a by the driver (that is, detects whether or not the driver is steering the steering wheel 31a), and the steering operation is performed. If it is detected, the first control gain G1 is reduced to a value " ⁇ " smaller than the maximum value "1".
- the travel controller 8 calculates the steering torque by the driver based on the output torque of the reaction force actuator 12, and detects the steering operation by the driver. That is, it is possible to detect the steering operation by the driver based on the change in the steering angle of the steering wheel with respect to the output torque of the reaction force actuator 12. The detection of steering operation by the driver is not limited to this.
- a torque sensor that directly detects the steering torque input to the steering wheel by the driver is provided, and the steering operation by the driver is detected by the detection value of the torque sensor. It is also possible to use a known method as appropriate for detecting the steering operation by the driver.
- the traveling controller 8 detects the steering operation by the driver at time t41. To do.
- the traveling controller 8 gradually reduces the first control gain G1 from “1" to " ⁇ " from the time t41 to the time t42.
- the first steering reaction force torque calculation unit 40 calculates the gain setting unit 41, the multiplier 42, the rate limiter 43, the subtractor 44, and the steer-by-wire (SBW) reaction force calculation unit 45.
- the gain setting unit 41 sets the second control gain G2 based on the first control gain G1.
- the second control gain G2 is a gain that controls the offset amount of the actual steering angle ⁇ s by the target steering angle ⁇ t, and is multiplied by the target steering angle ⁇ t by the multiplier 42.
- the product (G2 ⁇ ⁇ t) of the second control gain G2 and the target steering angle ⁇ t is input to the subtractor 44 after the change speed is limited by the rate limiter 43.
- the subtractor 44 offsets the actual steering angle ⁇ s by the target steering angle ⁇ t (G2 ⁇ ⁇ t) multiplied by the second control gain G2.
- the steering-by-wire reaction force calculation unit 45 calculates the steering reaction force based on the offset actual steering angle ⁇ s and the vehicle speed V as the first steering reaction force torque Tr1.
- the second control gain G2 has a value in the range from the minimum value “0” to the maximum value “1”.
- the offset amount of the actual steering angle ⁇ s when calculating the first steering reaction force torque Tr1 becomes “0”.
- the second control gain G2 is "1”
- the offset amount becomes equal to the target steering angle ⁇ t.
- the gain setting unit 41 sets the second control gain G2 to the same value as the first control gain G1. Is set to, and the second control gain G2 is increased together with the first control gain G1.
- the gain setting unit 41 changes.
- the second control gain G2 is set to the same value as the first control gain G1, and the second control gain G2 is increased together with the first control gain G1.
- the gain setting unit 41 changes the value of the automatic steering flag FLG from “0" to "1".
- the value "1" of the automatic steering flag FLG indicates that the first control gain G1 has not yet reached “0” after the first control gain G1 has reached "1".
- the value "0" of the automatic steering flag FLG indicates that the first control gain G1 has not yet reached "1” after the first control gain G1 has reached "0".
- the first control gain G1 and the second control gain G2 become “1" at time t52, and the value of the automatic steering flag FLG changes from "0" to "1".
- the gain setting unit 41 sets the gain setting unit 41. Even if the first control gain G1 becomes smaller than "1”, the second control gain G2 is held at "1".
- the traveling controller 8 detects the steering operation by the driver and reduces the first control gain G1 to “ ⁇ ” which is smaller than “1”.
- the gain setting unit 41 holds the second control gain G2 at “1” even if the first control gain G1 becomes smaller than "1". Therefore, when the steering operation by the driver is detected during automatic steering, the offset amount of the actual steering angle ⁇ s is maintained at the value when the steering operation by the driver is not detected (target steering angle ⁇ t). ..
- the gain setting unit 41 changes the value of the automatic steering flag FLG from “1" to "0". During the period when the value of the automatic steering flag FLG is "0", the gain setting unit 41 gradually reduces the second control gain G2 if the second control gain G2 is larger than the first control gain G1, and the second control gain G2. Is matched with the first control gain G1.
- the first control gain G1 decreases and reaches "0" at the time t55.
- the value of the automatic steering flag FLG changes from “1” to "0”
- the second control gain G2 starts to decrease, reaches "0” at time t56, and becomes equal to the first control gain G1.
- the offset amount of the actual steering angle ⁇ s is reduced to “0” when the automatic steering control transitions from on to off.
- the reliability of the automatic steering control when the reliability of the automatic steering control is lower than the predetermined allowable value, the value of the first control gain G1 becomes smaller than "1", and even if the automatic steering control is turned on, it starts from “0". Does not reach "1". In this case, the value of the automatic steering flag FLG becomes "0". Therefore, when the value of the automatic steering flag FLG is "0", the reliability of the automatic steering control is lower than the permissible value, and the target steering angle ⁇ t may be inaccurate.
- the second control gain G2 is made equal to the first control gain G1 according to the reliability of the automatic steering control. This prevents the offset amount of the actual steering angle ⁇ s when calculating the first steering reaction force torque Tr1 from becoming excessively large. For example, as shown in FIGS. 9A and 9B, even if the driver turns on the automatic steering control at time t61, the reliability of the automatic steering control is low, so that the first control gain G1 does not reach "1".
- the second control gain G2 is set according to the first control gain G1 set by the traveling controller 8.
- 10A and 10B show an example of a change in the second control gain G2 after the value of the automatic steering flag FLG has changed from “1" to "0".
- the driver or the traveling controller 8 turns off the automatic steering control and the first control gain G1 reaches "0" at time t71, the value of the automatic steering flag FLG changes from "1" to "0" and the second control The gain G2 begins to decrease.
- the second control gain G2 continues to decrease.
- the automatic steering control is turned on, the first control gain G1 starts to increase, and when the second control gain G2 becomes equal to the first control gain G1 at time t72, the first control gain G1 becomes "1" thereafter.
- the second control gain G2 and the first control gain G1 become equal until the above.
- the second steering reaction force torque calculation unit 50 includes a rate limiter 51, a subtractor 52, a deviation angle limiter 53, a servo control unit 54, and a multiplier 55.
- the target steering angle ⁇ t is input to the subtractor 52 after the change speed is limited by the rate limiter 51.
- the subtractor 52 calculates the angle deviation ( ⁇ t ⁇ s) between the target steering angle ⁇ t and the actual steering angle ⁇ s.
- the deviation angle limiter 53 limits the upper and lower limit values of the angle deviation ( ⁇ t ⁇ s).
- the servo control unit 54 calculates the rotational torque Tr2 * that causes the actual steering angle ⁇ s to follow the target steering angle ⁇ t by servo control based on the angle deviation ( ⁇ t ⁇ s).
- the servo control unit 54 may calculate the rotational torque Tr2 * including the transient component of the angular deviation ( ⁇ t ⁇ s). As a result, the follow-up response of the actual steering angle ⁇ s can be improved.
- the servo control unit 54 may calculate the rotational torque Tr2 * by PD servo control (proportional differential servo control). That is, the rotational torque Tr2 * may include a proportional component and a differential component of the angular deviation ( ⁇ t ⁇ s).
- the multiplier 55 calculates the product (G1 ⁇ Tr2 *) obtained by multiplying the rotational torque Tr2 * by the first control gain G1 as the second steering reaction force torque Tr2. Therefore, when the first control gain G1 drops to "0" when the automatic steering control transitions from on to off, the second steering reaction force torque Tr2 is reduced to "0" according to the first control gain G1. To torque. Further, when the first control gain G1 drops to " ⁇ " when the steering operation by the driver is detected, the second steering reaction force torque Tr2 is when the steering operation is not detected according to the first control gain G1. Is reduced.
- step S1 the steering angle sensor 19 detects the actual steering angle ⁇ s of the steering wheel 31a.
- step S2 the traveling controller 8 calculates a target steering angle ⁇ t for traveling the own vehicle along the target traveling track.
- step S3 the traveling controller 8 detects the steering operation by the driver.
- step S4 the traveling controller 8 calculates the first control gain G1.
- the first control gain G1 when the steering operation by the driver is detected is set to a value " ⁇ " which is smaller than the value "1" when the steering operation is not detected. Further, when the automatic steering control transitions from on to off, the first control gain G1 decreases from "1" to "0".
- step S5 the gain setting unit 41 of the first steering reaction force torque calculation unit 40 calculates the second control gain G2 based on the first control gain G1.
- the second control gain G2 calculation routine will be described later with reference to FIG. As described above, the second control gain G2 when the steering operation by the driver is detected is held at the value "1" when the steering operation is not detected. Further, when the automatic steering control transitions from on to off, the second control gain G2 decreases from "1" to "0".
- step S6 the multiplier 42 and the subtractor 44 offset the actual steering angle ⁇ s by the product (G2 ⁇ ⁇ t) of the second control gain G2 and the target steering angle ⁇ t.
- step S7 the steer-by-wire reaction force calculation unit 45 calculates the first steering reaction force torque Tr1 based on the offset actual steering angle ⁇ s and the vehicle speed V.
- step S8 the servo control unit 54 calculates the rotational torque Tr2 * that reduces the angle deviation ( ⁇ t ⁇ s) by servo control.
- the multiplier 55 calculates the product (G1 ⁇ Tr2 *) obtained by multiplying the rotational torque Tr2 * by the first control gain G1 as the second steering reaction force torque Tr2.
- step S10 the controller 11 determines whether or not the ignition switch (IGN) of the own vehicle is turned off. If the ignition switch is not turned off (step S10: N), the process returns to step S1. The process ends when the ignition switch is turned off (step S10: Y).
- step S20 the gain setting unit 41 determines whether or not the first control gain G1 is “0”.
- step S20: Y the process proceeds to step S21.
- step S20: N the process proceeds to step S25.
- step S21 the gain setting unit 41 determines whether or not the current value of the automatic steering flag FLG is "1".
- step S21: Y it means that the first control gain G1 has changed from a state in which it is not "0" to "0". In this case, the process proceeds to step S24.
- step S21: N the process proceeds to step S22.
- step S22 the gain setting unit 41 determines whether or not the previous second control gain G2 is “0”. When the second control gain G2 is “0” (step S22: Y), the second control gain G2 calculation routine is terminated without changing the second control gain G2. When the second control gain G2 is not “0” (step S22: N), the process proceeds to step S23. In step S23, the gain setting unit 41 reduces the second control gain G2. After that, the second control gain G2 calculation routine is terminated. In step S24, the gain setting unit 41 sets the value of the automatic steering flag FLG to “0”. After that, the process proceeds to step S23, and the second control gain G2 is set to a value reduced from the previous value “1”. After that, the second control gain G2 calculation routine is terminated.
- step S20: N When the first control gain G1 is not “0" (step S20: N), the gain setting unit 41 determines in step S25 whether or not the first control gain G1 is "1". When the first control gain G1 is “1” (step S25: Y), the process proceeds to step S26. When the first control gain G1 is not “1” (step S25: N), the process proceeds to step S29.
- step S26 the gain setting unit 41 determines whether or not the current value of the automatic steering flag FLG is "0".
- step S26: Y it means that the first control gain G1 has changed from a state other than "1" to "1". In this case, the process proceeds to step S27.
- step S27 the gain setting unit 41 sets the value of the second control gain G2 to “1”.
- step S28 the gain setting unit 41 sets the value of the automatic steering flag FLG to "1". After that, the second control gain G2 calculation routine is terminated. On the other hand, when the value of the automatic steering flag FLG is not "0" in step S26 (step S26: N), the second control gain G2 calculation routine without changing the second control gain G2 from the previous value "1". To finish.
- step S29 the gain setting unit 41 determines whether or not the current value of the automatic steering flag FLG is "1".
- step S29: Y the value of the automatic steering flag FLG is "1"
- step S30: N the value of the automatic steering flag FLG is not "1"
- step S30 the gain setting unit 41 holds the second control gain G2 at “1”. After that, the second control gain G2 calculation routine is terminated.
- step S31 the gain setting unit 41 determines whether or not the second control gain G2 is larger than the first control gain G1. When the second control gain G2 is larger than the first control gain G1 (step S31: Y), the process proceeds to step S23. When the second control gain G2 is not larger than the first control gain G1 (step S31: N), the process proceeds to step S32. In step S32, the gain setting unit 41 sets the second control gain G2 to the same value “1” as the first control gain G1. After that, the second control gain G2 calculation routine is terminated.
- the own vehicle includes a steer-by-wire type steering mechanism in which the steering wheel 31a and the steering wheel are mechanically separated.
- the steering angle sensor 19 detects the actual steering angle ⁇ s of the steering wheel.
- the traveling controller 8 calculates the target steering angle of the steering wheel based on the target steering angle of the steering wheel.
- the reaction force control unit 47, the first drive circuit 13, and the reaction force actuator 12 apply a steering reaction force to the steering wheel according to an angular deviation ( ⁇ t ⁇ s) between the actual steering angle ⁇ s and the target steering angle ⁇ t. ..
- the travel controller 8 detects the steering operation of the steering wheel 31a by the driver.
- the reaction force control unit 47 reduces the steering reaction force according to the angle deviation when the steering operation by the driver is detected, as compared with the case where the steering operation by the driver is not detected.
- the reaction force control unit 47, the first drive circuit 13, and the reaction force actuator 12 provide the first steering reaction force Tr1 according to the angle deviation ( ⁇ t ⁇ s) and the transient component of the angle deviation ( ⁇ t ⁇ s).
- the included second steering reaction force Tr2 is added to generate a steering reaction force applied to the steering wheel 31a.
- the reaction force control unit 47 reduces only the second steering reaction force Tr2 when the steering operation by the driver is detected, as compared with the case where the steering operation by the driver is not detected. As a result, by adding the second steering reaction force Tr2 containing the transient component of the angle deviation ( ⁇ t ⁇ s), the follow-up response of the actual steering angle ⁇ s in the automatic steering control is improved, and the steering operation by the driver can be performed. If it is detected, the driver's steering operation can be facilitated by reducing the second steering reaction force Tr2.
- reaction force control unit 47 changes from a state in which the steering operation by the driver is not detected to a state in which the steering operation by the driver is detected, the reaction force control unit 47 starts from the time when the steering operation by the driver is detected.
- the second steering reaction force Tr2 is gradually reduced according to the elapsed time of. As a result, it is possible to avoid a decrease in steering feeling due to a sudden change in the second steering reaction force Tr2.
- the first steering reaction force torque calculation unit 40 offsets the actual steering angle ⁇ s by the target steering angle ⁇ t, and calculates the first steering reaction force Tr1 according to the offset actual steering angle ⁇ s.
- the first steering reaction force Tr1 is calculated according to the angle deviation ( ⁇ t ⁇ s) between the steering angle ⁇ s and the target steering angle ⁇ t.
- the first steering reaction force torque calculation unit 40 and the second steering reaction force torque calculation unit 50 determine the offset amount of the actual steering angle ⁇ s and the second steering reaction force Tr2 when the automatic steering control transitions from on to off. Reduce.
- the first steering reaction force torque calculation unit 40 and the second steering reaction force torque calculation unit 50 reduce the second steering reaction force Tr2 and reduce the offset amount when the steering operation by the driver is detected during automatic steering.
- the first steering reaction force torque calculation unit 40 calculates the steering reaction force according to the tire lateral force based on the offset actual steering angle ⁇ s and the vehicle speed V of the vehicle as the first steering reaction force Tr1.
- the second steering reaction force torque calculation unit 50 calculates the second steering reaction force by proportional differential control of the angle deviation ( ⁇ t ⁇ s).
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Steering Control In Accordance With Driving Conditions (AREA)
Abstract
ステアリングホイールと操向輪との間が機械的に分離されたステアバイワイヤ式の転舵機構を備える車両の操舵制御方法では、ステアリングホイールの実操舵角を検出し(S1)、操向輪の目標転舵角に基づいて目標操舵角を算出し(S2)、実操舵角と目標操舵角との間の角度偏差に応じてステアリングホイールに操舵反力を付与し(S9)、運転者によるステアリングホイールの操舵操作を検出し(S3)、運転者による操舵操作が検出されている時に、運転者による操舵操作が検出されていない時に比べて、角度偏差に応じた操舵反力を低減する(S4、S8)。
Description
本発明は、操舵制御方法及び操舵制御装置に関する。
特許文献1には、ステアリングホイールと操向輪との間が機械的に分離されたステアバイワイヤ式の転舵機構を備える車両において、車線維持用の操向輪の目標転舵角を算出し、目標転舵角に対応するステアリングホイールの操舵角がステアリングホイールの中立位置となるように操舵反力を付与する操舵制御装置が記載されている。
しかしながら、走行支援制御の目標転舵角に対応する操舵角が中立位置となるように操舵反力を付与すると、走行支援制御と運転者による操舵操作との両立が難しくなることがある。
本発明は、操向輪の転舵角を目標転舵角に追従させる操舵反力を付与する走行支援制御中における運転者の操舵操作を容易にすることを目的とする。
本発明は、操向輪の転舵角を目標転舵角に追従させる操舵反力を付与する走行支援制御中における運転者の操舵操作を容易にすることを目的とする。
本発明の一態様によれば、ステアリングホイールと操向輪との間が機械的に分離されたステアバイワイヤ式の転舵機構を備える車両の操舵制御方法が与えられる。操舵制御方法では、ステアリングホイールの実操舵角を検出し、操向輪の目標転舵角に基づいてステアリングホイールの目標操舵角を算出し、実操舵角と目標操舵角との間の角度偏差に応じてステアリングホイールに操舵反力を付与し、運転者による前記ステアリングホイールの操舵操作を検出し、運転者による操舵操作が検出されている時に、運転者による操舵操作が検出されていない時に比べて、角度偏差に応じた操舵反力を低減する。
本発明の一態様によれば、操向輪の転舵角を目標転舵角に追従させる操舵反力を付与する走行支援制御中において、操向輪の転舵角の目標転舵角への追従性を確保しながら運転者の操舵操作を容易にでき、走行支援制御と運転者による操舵操作とを両立させることができる。
本発明の目的及び利点は、特許請求の範囲に示した要素及びその組合せを用いて具現化され達成される。前述の一般的な記述及び以下の詳細な記述の両方は、単なる例示及び説明であり、特許請求の範囲のように本発明を限定するものでないと解するべきである。
本発明の目的及び利点は、特許請求の範囲に示した要素及びその組合せを用いて具現化され達成される。前述の一般的な記述及び以下の詳細な記述の両方は、単なる例示及び説明であり、特許請求の範囲のように本発明を限定するものでないと解するべきである。
以下、本発明の実施形態について、図面を参照しつつ説明する。
(構成)
図1を参照する。車両制御装置1を搭載する車両(以下、「自車両」と表記する)は、ステアリングホイールと操向輪との間が機械的に分離されたステアバイワイヤ式の転舵機構を備える。車両制御装置1は、操向輪の転舵角と、ステアリングホイールに与える操舵反力を制御する。
(構成)
図1を参照する。車両制御装置1を搭載する車両(以下、「自車両」と表記する)は、ステアリングホイールと操向輪との間が機械的に分離されたステアバイワイヤ式の転舵機構を備える。車両制御装置1は、操向輪の転舵角と、ステアリングホイールに与える操舵反力を制御する。
また、車両制御装置1は、自車両の走行を支援する走行支援制御を行う。走行支援制御は、自車両の周囲の走行環境に基づいて、運転者が関与せずに自車両を自動で運転する自動運転制御と、運転者による自車両の運転を支援する運転支援制御とを含む。
例えば、運転支援制御には、車線維持制御や、先行車の走行軌跡に沿って走行する先行車追従制御、障害物回避のための操舵を補助する操舵補助制御などの操舵支援制御が含まれる。
例えば、運転支援制御には、車線維持制御や、先行車の走行軌跡に沿って走行する先行車追従制御、障害物回避のための操舵を補助する操舵補助制御などの操舵支援制御が含まれる。
車両制御装置1は、外部センサ2と、内部センサ3と、測位装置4と、地図データベース5と、通信装置6と、ナビゲーションシステム7と、走行コントローラ8と、アクセル開度アクチュエータ9と、ブレーキ制御アクチュエータ10と、コントローラ11と、反力アクチュエータ12と、第1駆動回路13と、転舵アクチュエータ14と、第2駆動回路15を備える。添付する図面において地図データベースを「地図DB」と表記する。
外部センサ2は、自車両の周囲環境、例えば自車両の周囲の物体を検出するセンサである。外部センサ2は、例えばカメラ16と測距装置17を含んでよい。
カメラ16と測距装置17は、自車両の周囲に存在する物体(例えば、他車両、歩行者、車線境界線や車線区分線などの白線、道路上又は道路周辺に設けられた信号機、停止線、標識、建物、電柱、縁石、横断歩道等の地物)、自車両に対する物体の相対位置、自車両と物体との間の相対距離等の自車両の周囲環境を検出する。
カメラ16と測距装置17は、自車両の周囲に存在する物体(例えば、他車両、歩行者、車線境界線や車線区分線などの白線、道路上又は道路周辺に設けられた信号機、停止線、標識、建物、電柱、縁石、横断歩道等の地物)、自車両に対する物体の相対位置、自車両と物体との間の相対距離等の自車両の周囲環境を検出する。
カメラ16は、例えばステレオカメラであってよい。カメラ16は、単眼カメラであってもよく、単眼カメラにより複数の視点で同一の物体を撮影して、物体までの距離を計算してもよい。また、単眼カメラによる撮像画像から検出された物体の接地位置に基づいて、物体までの距離を計算してもよい。
測距装置17は、例えば、レーザレンジファインダ(LRF:Laser Range-Finder)、レーダユニット、レーザスキャナユニットであってよい。
カメラ16と測距装置17は、検出した周囲環境の情報である周囲環境情報をナビゲーションシステム7、走行コントローラ8及びコントローラ11へ出力する。
測距装置17は、例えば、レーザレンジファインダ(LRF:Laser Range-Finder)、レーダユニット、レーザスキャナユニットであってよい。
カメラ16と測距装置17は、検出した周囲環境の情報である周囲環境情報をナビゲーションシステム7、走行コントローラ8及びコントローラ11へ出力する。
内部センサ3は、自車両の走行状態を検出するセンサである。内部センサ3は、例えば車速センサ18や操舵角センサ19を備えてよい。
車速センサ18は、自車両の車速Vを検出する。操舵角センサ19は、コラムシャフト回転角、すなわち、ステアリングホイールの実操舵角θs(ハンドル角度)を検出する。
内部センサ3は、例えば自車両に発生する加速度を検出する加速度センサや、自車両の角速度を検出するジャイロセンサを備えてもよい。
内部センサ3は、検出した走行状態の情報である走行状態情報をナビゲーションシステム7、走行コントローラ8及びコントローラ11へ出力する。
車速センサ18は、自車両の車速Vを検出する。操舵角センサ19は、コラムシャフト回転角、すなわち、ステアリングホイールの実操舵角θs(ハンドル角度)を検出する。
内部センサ3は、例えば自車両に発生する加速度を検出する加速度センサや、自車両の角速度を検出するジャイロセンサを備えてもよい。
内部センサ3は、検出した走行状態の情報である走行状態情報をナビゲーションシステム7、走行コントローラ8及びコントローラ11へ出力する。
測位装置4は、複数の航法衛星から電波を受信して自車両の現在位置を取得し、取得した自車両の現在位置を、ナビゲーションシステム7、及び走行コントローラ8へ出力する。測位装置4は、例えばGPS(地球測位システム:Global Positioning System)受信機や、GPS受信機以外の他の全地球型測位システム(GNSS:Global Navigation Satellite System)受信機を有していてもよい。
地図データベース5は、道路地図データを記憶している。
道路地図データは、車線境界線や車線区分線などの白線の形状(車線形状)や座標情報、道路や白線の高度、道路上又は道路周辺に設けられた信号機、停止線、標識、建物、電柱、縁石、横断歩道等の地物の座標情報を含む。
道路地図データは、さらに道路種別、道路の勾配、車線数、制限速度(法定速度)、道幅、合流地点の有無等に関する情報を含んでもよい。道路種別には、例えば一般道路と高速道路が含んでよい。
地図データベース5は、ナビゲーションシステム7、及び走行コントローラ8から参照される。
道路地図データは、車線境界線や車線区分線などの白線の形状(車線形状)や座標情報、道路や白線の高度、道路上又は道路周辺に設けられた信号機、停止線、標識、建物、電柱、縁石、横断歩道等の地物の座標情報を含む。
道路地図データは、さらに道路種別、道路の勾配、車線数、制限速度(法定速度)、道幅、合流地点の有無等に関する情報を含んでもよい。道路種別には、例えば一般道路と高速道路が含んでよい。
地図データベース5は、ナビゲーションシステム7、及び走行コントローラ8から参照される。
通信装置6は、自車両の外部の通信装置との間で無線通信を行う。通信装置6による通信方式は、例えば公衆携帯電話網による無線通信や、車車間通信、路車間通信、又は衛星通信であってよい。
ナビゲーションシステム7、走行コントローラ8及びコントローラ11は、地図データベース5に代えて又は加えて外部の情報処理装置から、通信装置6によって道路地図データを取得してもよい。
ナビゲーションシステム7、走行コントローラ8及びコントローラ11は、地図データベース5に代えて又は加えて外部の情報処理装置から、通信装置6によって道路地図データを取得してもよい。
ナビゲーションシステム7は、自車両の運転者によって地図上に設定された目的地までの経路案内を自車両の乗員に対して行う。ナビゲーションシステム7は、外部センサ2、内部センサ3、測位装置4から入力された各種情報を用いて自車両の現在位置を推定し、目的地までの経路を生成し、乗員に経路案内を行う。ナビゲーションシステム7は、その経路情報を走行コントローラ8へ出力する。
走行コントローラ8は、自車両の走行支援制御を行う。上述の通り、走行支援制御には、運転者が関与せずに自車両を自動で運転する自動運転制御と、運転者による自車両の運転を支援する運転支援制御とが含まれる。
例えば自動運転制御では、走行コントローラ8は、ナビゲーションシステム7から出力された経路情報と、外部センサ2で検出された自車両周囲の物体や車線境界線などの周囲環境と、地図データベース5の道路地図データと、内部センサ3が検出した自車両の走行状態に基づいて、走行している車線上における自車両が走行すべき目標走行軌道を設定する。
また、例えば運転支援制御では、走行コントローラ8は、測位装置4による測位結果と、外部センサ2が検出した周囲環境と、地図データベース5の道路地図データと、内部センサ3が検出した自車両の走行状態に基づいて、走行している車線上における自車両が走行すべき目標走行軌道を設定する。
例えば自動運転制御では、走行コントローラ8は、ナビゲーションシステム7から出力された経路情報と、外部センサ2で検出された自車両周囲の物体や車線境界線などの周囲環境と、地図データベース5の道路地図データと、内部センサ3が検出した自車両の走行状態に基づいて、走行している車線上における自車両が走行すべき目標走行軌道を設定する。
また、例えば運転支援制御では、走行コントローラ8は、測位装置4による測位結果と、外部センサ2が検出した周囲環境と、地図データベース5の道路地図データと、内部センサ3が検出した自車両の走行状態に基づいて、走行している車線上における自車両が走行すべき目標走行軌道を設定する。
走行コントローラ8は、自車両が目標走行軌道に沿って走行するように、アクセル開度アクチュエータ9及びブレーキ制御アクチュエータ10を駆動して、自車両の駆動力及び制動力を制御する。
アクセル開度アクチュエータ9は、車両のアクセル開度を制御する。ブレーキ制御アクチュエータ10は、車両のブレーキ装置の制動動作を制御する。
アクセル開度アクチュエータ9は、車両のアクセル開度を制御する。ブレーキ制御アクチュエータ10は、車両のブレーキ装置の制動動作を制御する。
また走行コントローラ8は、自動操舵制御を含む走行支援制御において、目標走行軌道に沿って自車両を走行させるための操向輪の転舵角(タイヤ角度)の目標値である目標転舵角を算出する。走行コントローラ8は、目標転舵角に対応するステアリングホイールの目標操舵角θtを算出する。走行コントローラ8は、目標操舵角θtをコントローラ11に出力する。
コントローラ11は、操向輪の転舵制御とステアリングホイールの反力制御を行う電子制御ユニット(ECU:Electronic Control Unit)である。本明細書において「反力制御」とは、アクチュエータによりステアリングホイールに与える操舵トルクの制御をいう。また、この反力制御によってステアリングホイールに与える操舵トルクを、操舵反力トルクと表記することがある。
コントローラ11は、プロセッサ20と記憶装置21等の周辺部品とを含む。プロセッサ20は、例えばCPU(Central Processing Unit)、やMPU(Micro-Processing Unit)であってよい。
コントローラ11は、走行コントローラ8と一体の電子制御ユニットであってもよく、別個の電子制御ユニットであってもよい。
コントローラ11は、プロセッサ20と記憶装置21等の周辺部品とを含む。プロセッサ20は、例えばCPU(Central Processing Unit)、やMPU(Micro-Processing Unit)であってよい。
コントローラ11は、走行コントローラ8と一体の電子制御ユニットであってもよく、別個の電子制御ユニットであってもよい。
記憶装置21は、半導体記憶装置、磁気記憶装置及び光学記憶装置を備えてよい。記憶装置21は、レジスタ、キャッシュメモリ、主記憶装置として使用されるROM(Read Only Memory)及びRAM(Random Access Memory)等のメモリを含んでよい。
なお、汎用の半導体集積回路中に設定される機能的な論理回路でコントローラ11を実現してもよい。例えば、コントローラ11はフィールド・プログラマブル・ゲート・アレイ(FPGA:Field-Programmable Gate Array)等のプログラマブル・ロジック・デバイス(PLD:Programmable Logic Device)等を有していてもよい。
なお、汎用の半導体集積回路中に設定される機能的な論理回路でコントローラ11を実現してもよい。例えば、コントローラ11はフィールド・プログラマブル・ゲート・アレイ(FPGA:Field-Programmable Gate Array)等のプログラマブル・ロジック・デバイス(PLD:Programmable Logic Device)等を有していてもよい。
コントローラ11は、ステアリングホイールの実操舵角θsと、車速Vと、走行コントローラ8が決定した目標操舵角θtに応じて、ステアリングホイールへ付与する操舵反力トルク(ステアリングホイールへ付与する回転トルクであり、以下では操舵トルクとも言う)の指令値である指令操舵トルクTrを算出する。なお、コントローラ11は車速が同一であれば、目標操舵角θtと実操舵角θsとの偏差が大きいほど大きな指令操舵トルクTrを算出する。また、指令操舵トルクTrはステアリングホイールに対して、実操舵角θsが目標操舵角θtに一致する方向へ付与する操舵トルクである。
コントローラ11は、指令操舵トルクTrを反力アクチュエータ12に発生させる制御信号を第1駆動回路13へ出力し、反力アクチュエータ12を駆動することにより、算出した操舵反力トルクをステアリングホイールへ付与する。
コントローラ11は、指令操舵トルクTrを反力アクチュエータ12に発生させる制御信号を第1駆動回路13へ出力し、反力アクチュエータ12を駆動することにより、算出した操舵反力トルクをステアリングホイールへ付与する。
コントローラ11は、操舵角センサ19で検出されたステアリングホイールの実操舵角θsに応じて、操向輪の転舵角の指令値である指令転舵角を算出する。
コントローラ11は、算出した指令転舵角を第2駆動回路15に出力し、操向輪の実際の転舵角が指令転舵角となるように転舵アクチュエータ14を駆動する。
コントローラ11は、算出した指令転舵角を第2駆動回路15に出力し、操向輪の実際の転舵角が指令転舵角となるように転舵アクチュエータ14を駆動する。
図2を参照して、自車両の操舵系を説明する。自車両は、操舵部31と、転舵部32と、バックアップクラッチ33を備える。バックアップクラッチ33が開放状態になると、運転者の操舵入力を受け付ける操舵部31と、操向輪である左右前輪34FL、34FRを転舵する転舵部32と、が機械的に分離される。
操舵部31は、ステアリングホイール31aと、コラムシャフト31bと、電流センサ31cと、反力アクチュエータ12と、第1駆動回路13と、操舵角センサ19とを備える。
転舵部32は、ピニオンシャフト32aと、ステアリングギア32bと、ラックギア32cと、ステアリングラック32dと、転舵アクチュエータ14と、第2駆動回路15と、転舵角センサ35を備える。
転舵部32は、ピニオンシャフト32aと、ステアリングギア32bと、ラックギア32cと、ステアリングラック32dと、転舵アクチュエータ14と、第2駆動回路15と、転舵角センサ35を備える。
また、コントローラ11は、ステアリングホイール31aの実操舵角θsに応じて、指令転舵角を決定する転舵制御部36と、実操舵角θsと、車速Vと、走行コントローラ8が決定した目標操舵角θtに応じて、指令操舵トルクTrを決定する反力制御部37を備える。
転舵制御部36及び反力制御部37の機能は、例えばコントローラ11の記憶装置21に格納されたコンピュータプログラムを、プロセッサ20が実行することによって実現されてよい。
反力アクチュエータ12と、第1駆動回路13と、コントローラ11は、操舵制御装置を形成する。
転舵制御部36及び反力制御部37の機能は、例えばコントローラ11の記憶装置21に格納されたコンピュータプログラムを、プロセッサ20が実行することによって実現されてよい。
反力アクチュエータ12と、第1駆動回路13と、コントローラ11は、操舵制御装置を形成する。
操舵部31のステアリングホイール31aは、反力アクチュエータ12によって付与される操舵反力トルクによって回転すると共に、運転者によって付与される操舵トルクの入力を受けて回転する。
コラムシャフト31bは、ステアリングホイール31aと一体に回転する。
反力アクチュエータ12は、例えば電動モータであってよい。反力アクチュエータ12は、コラムシャフト31bと同軸上に配置された出力軸を有する。
反力アクチュエータ12は、第1駆動回路13から出力される指令電流に応じて、ステアリングホイール31aに付与する回転トルクをコラムシャフト31bに出力する。回転トルクを付与することによって、ステアリングホイール31aに操舵反力トルクを発生させる。
コラムシャフト31bは、ステアリングホイール31aと一体に回転する。
反力アクチュエータ12は、例えば電動モータであってよい。反力アクチュエータ12は、コラムシャフト31bと同軸上に配置された出力軸を有する。
反力アクチュエータ12は、第1駆動回路13から出力される指令電流に応じて、ステアリングホイール31aに付与する回転トルクをコラムシャフト31bに出力する。回転トルクを付与することによって、ステアリングホイール31aに操舵反力トルクを発生させる。
第1駆動回路13は、電流センサ31cが検出した反力アクチュエータ12の駆動電流から推定される実際の操舵反力トルクと、反力制御部37から出力される制御信号が示す指令操舵トルクTrとを一致させるトルクフィードバックにより、反力アクチュエータ12へ出力する指令電流を制御する。
操舵角センサ19は、コラムシャフト31bの回転角、すなわち、ステアリングホイール31aの実操舵角θsを検出する。
操舵角センサ19は、コラムシャフト31bの回転角、すなわち、ステアリングホイール31aの実操舵角θsを検出する。
一方で、転舵部32のステアリングギア32bは、ピニオンシャフト32aの回転に応じて、左右前輪34FL、34FRを転舵する。ステアリングギア32bとして、例えば、ラック・アンド・ピニオン式のステアリングギア等を採用してよい。
転舵アクチュエータ14は、例えばブラシレスモータ等の電動モータであってよい。転舵アクチュエータ14の出力軸は、減速機を介してラックギア32cと接続される。
転舵アクチュエータ14は、第2駆動回路15から出力される指令電流に応じて、左右前輪34FL、34FRを転舵するための転舵トルクをステアリングラック32dに出力する。
転舵アクチュエータ14は、例えばブラシレスモータ等の電動モータであってよい。転舵アクチュエータ14の出力軸は、減速機を介してラックギア32cと接続される。
転舵アクチュエータ14は、第2駆動回路15から出力される指令電流に応じて、左右前輪34FL、34FRを転舵するための転舵トルクをステアリングラック32dに出力する。
転舵角センサ35は、転舵アクチュエータ14の出力軸の回転角を検出し、検出した回転角に基づいて左右前輪34FL、34FRの転舵角を検出する。
第2駆動回路15は、転舵角センサ35により検出される実際の転舵角と転舵制御部36からの制御信号が示す指令転舵角とを一致させる角度フィードバックにより、転舵アクチュエータ14への指令電流を制御する。
第2駆動回路15は、転舵角センサ35により検出される実際の転舵角と転舵制御部36からの制御信号が示す指令転舵角とを一致させる角度フィードバックにより、転舵アクチュエータ14への指令電流を制御する。
バックアップクラッチ33は、コラムシャフト31bとピニオンシャフト32aとの間に設けられる。そして、バックアップクラッチ33は、解放状態になると操舵部31と転舵部32とを機械的に切り離し、締結状態になると操舵部31と転舵部32とを機械的に接続する。
次に、反力制御部37により決定される指令操舵トルクTr(すなわち操舵反力トルク)について説明する。
反力制御部37は、第1操舵反力トルクTr1と第2操舵反力トルクTr2とを算出し、第1操舵反力トルクTr1と第2操舵反力トルクTr2とを合計して指令操舵トルクTr=Tr1+Tr2を算出する。
反力制御部37は、第1操舵反力トルクTr1と第2操舵反力トルクTr2とを算出し、第1操舵反力トルクTr1と第2操舵反力トルクTr2とを合計して指令操舵トルクTr=Tr1+Tr2を算出する。
第1操舵反力トルクTr1について説明する。ステアバイワイヤ式の転舵機構では、ステアリングホイール31aと操向輪との間が機械的に分離されている。このため、操向輪に働くタイヤ横力がステアリングホイール31aに伝わらず、ステアリングホイール31aを中立位置(直進時の操舵角であり、操舵角0°の位置)に戻そうとする復元トルク(例えばセルフアライニングトルク)が発生しない。
そこで、反力制御部37は、ステアリングホイール31aが中立位置に戻ろうとする復元トルクとして第1操舵反力トルクTr1を算出する。
例えば反力制御部37は、図3Aに示す特性を持つ第1操舵反力トルクTr1を算出する。反力制御部37は、例えば実操舵角θsと車速Vとに基づく操舵反力を第1操舵反力トルクTr1として算出してよい。
これにより、運転者はタイヤ横力に応じた操舵反力を感じることができるので、ステアバイワイヤ式の転舵機構の操舵感覚が向上する。
例えば反力制御部37は、図3Aに示す特性を持つ第1操舵反力トルクTr1を算出する。反力制御部37は、例えば実操舵角θsと車速Vとに基づく操舵反力を第1操舵反力トルクTr1として算出してよい。
これにより、運転者はタイヤ横力に応じた操舵反力を感じることができるので、ステアバイワイヤ式の転舵機構の操舵感覚が向上する。
一方で、自動操舵制御中では、反力制御部37は実操舵角θsを目標操舵角θtでオフセットして第1操舵反力トルクTr1を算出する。すると、第1操舵反力トルクTr1の特性は図3Bに示すようになり、実操舵角θsと目標操舵角θtとの角度偏差(θt-θs)に応じた操舵反力トルクが算出される。
この結果、第1操舵反力トルクTr1は、目標操舵角θtがステアリングホイール31aの中立位置となるように働く。具体的には例えば、中立位置から右方向への操舵角を正の操舵角として、実操舵角θsが15°であり目標操舵角θtが30°であった場合、実操舵角θsの15°から目標操舵角θtの30°を除算して実操舵角θsをオフセットすると、オフセット後の実操舵角θsは-15°(左方向への操舵角15°)となり、ステアリングホイールには操舵角が-15°の位置から中立位置(操舵角0°の位置)に戻ろうとする操舵反力トルクが付与されて、実操舵角θsと目標操舵角θtとの偏差に応じた操舵反力トルクが付与されることになる。従って、本実施形態においては実操舵角θsを目標操舵角θtでオフセット(減算)した値に応じた操舵反力トルクを付与することによって、実操舵角θsと目標操舵角θtとの偏差(θt‐θs)に応じた操舵反力トルクを付与して、実操舵角θsが目標操舵角θtに追従するように制御している。
この結果、第1操舵反力トルクTr1は、目標操舵角θtがステアリングホイール31aの中立位置となるように働く。具体的には例えば、中立位置から右方向への操舵角を正の操舵角として、実操舵角θsが15°であり目標操舵角θtが30°であった場合、実操舵角θsの15°から目標操舵角θtの30°を除算して実操舵角θsをオフセットすると、オフセット後の実操舵角θsは-15°(左方向への操舵角15°)となり、ステアリングホイールには操舵角が-15°の位置から中立位置(操舵角0°の位置)に戻ろうとする操舵反力トルクが付与されて、実操舵角θsと目標操舵角θtとの偏差に応じた操舵反力トルクが付与されることになる。従って、本実施形態においては実操舵角θsを目標操舵角θtでオフセット(減算)した値に応じた操舵反力トルクを付与することによって、実操舵角θsと目標操舵角θtとの偏差(θt‐θs)に応じた操舵反力トルクを付与して、実操舵角θsが目標操舵角θtに追従するように制御している。
このように第1操舵反力トルクTr1は、ステアバイワイヤ式の転舵機構に対する運転者の操舵操作に対して、ステアリングホイール31aを中立位置に戻す方向に働くように発生させる復元トルクであり、自動操舵制御中だけでなく自動操舵を行わない場合(例えば手動運転中)も発生させる。
したがって、第1操舵反力トルクTr1の大きさは、運転者による操舵操作を阻害しない程度の大きさ(運転者が容易に操舵操作可能な程度の大きさ)に設定する。
したがって、第1操舵反力トルクTr1の大きさは、運転者による操舵操作を阻害しない程度の大きさ(運転者が容易に操舵操作可能な程度の大きさ)に設定する。
一方、自動操舵制御において第1操舵反力トルクTr1のみで実操舵角θsを目標操舵角θtに追従させようとすると、実操舵角θsの追従応答性が不足し、結果として実操舵角θsに応じて転舵される転舵輪(左右前輪34FL、34FR)の転舵角の応答性が不十分となることがある。
そこで反力制御部37は、自動操舵制御中には、実操舵角θsの追従応答性を向上させる第2操舵反力トルクTr2を第1操舵反力トルクTr1に加算して、指令操舵トルクTr=Tr1+Tr2を算出する。
そこで反力制御部37は、自動操舵制御中には、実操舵角θsの追従応答性を向上させる第2操舵反力トルクTr2を第1操舵反力トルクTr1に加算して、指令操舵トルクTr=Tr1+Tr2を算出する。
図3Cを参照する。反力制御部37は、実操舵角θsと目標操舵角θtとの間の角度偏差(θt-θs)に応じた反力トルクを第2操舵反力トルクTr2として算出する。
図3Dを参照する。指令操舵トルクTrは、実線の第1操舵反力トルクTr1と破線の第2操舵反力トルクTr2の合計となる。
実操舵角θsの追従応答性を向上させるために、反力制御部37は、角度偏差(θt-θs)の過渡成分を含んだ第2操舵反力トルクTr2を算出してもよい。過渡成分は、例えば、角度偏差(θt-θs)の速度成分(一回微分値)である。
図3Dを参照する。指令操舵トルクTrは、実線の第1操舵反力トルクTr1と破線の第2操舵反力トルクTr2の合計となる。
実操舵角θsの追従応答性を向上させるために、反力制御部37は、角度偏差(θt-θs)の過渡成分を含んだ第2操舵反力トルクTr2を算出してもよい。過渡成分は、例えば、角度偏差(θt-θs)の速度成分(一回微分値)である。
しかしながら、上記のような第2操舵反力トルクTr2がステアリングホイール31aに付与されていると、運転者にとって過大な操舵反力となり、運転者による操舵操作を阻害する。すなわち、自動操舵制御において実操舵角θsの目標操舵角θtへの十分な追従応答性を得る為に操舵反力トルクを大きくすると運転者による操舵操作が阻害され、一方で運転者による操舵操作を容易にするために操舵反力トルクを小さくすると、実操舵角θsの目標操舵角θtへの十分な追従応答性を得ることが困難となる。
そこで、反力制御部37は自動操舵制御中において、運転者によるステアリングホイール31aの操舵操作が検出されている時には、操舵操作が検出されていない時に比べて、指令操舵トルクTr(すなわち角度偏差に応じた操舵反力)を低減する。これにより自動操舵制御中において、実操舵角θsの目標操舵角θtへの十分な追従応答性を得ると共に運転者による操舵操作が容易になる。
そこで、反力制御部37は自動操舵制御中において、運転者によるステアリングホイール31aの操舵操作が検出されている時には、操舵操作が検出されていない時に比べて、指令操舵トルクTr(すなわち角度偏差に応じた操舵反力)を低減する。これにより自動操舵制御中において、実操舵角θsの目標操舵角θtへの十分な追従応答性を得ると共に運転者による操舵操作が容易になる。
反力制御部37は、運転者による操舵操作が検出されている時に第1操舵反力トルクTr1及び第2操舵反力トルクTr2の両方又はいずれか一方を低減してもよい。
しかし、第1操舵反力トルクTr1を低減すると、手動運転時の操舵反力とは異なる操舵反力になるため、運転者に違和感を与えるおそれがある。
また、目標操舵角θtによるオフセット量を低減する(すなわち実操舵角θsと目標操舵角θtとの偏差を小さくする)ことにより目標操舵角θtの方へ実操舵角θsを向かわせる操舵反力トルクを低減することが考えられるが、自車両の目標走行軌道に沿った走行が困難となる。
しかし、第1操舵反力トルクTr1を低減すると、手動運転時の操舵反力とは異なる操舵反力になるため、運転者に違和感を与えるおそれがある。
また、目標操舵角θtによるオフセット量を低減する(すなわち実操舵角θsと目標操舵角θtとの偏差を小さくする)ことにより目標操舵角θtの方へ実操舵角θsを向かわせる操舵反力トルクを低減することが考えられるが、自車両の目標走行軌道に沿った走行が困難となる。
このため本実施形態の反力制御部37は、図4に示すように、運転者による操舵操作が検出されている時には操舵操作が検出されていない時に比べて第2操舵反力トルクTr2のみを低減する。
さらに、操舵操作が検出されている時でも、操舵操作が検出されていない時の第1操舵反力トルクTr1を保持する。
さらに、操舵操作が検出されている時でも、操舵操作が検出されていない時の第1操舵反力トルクTr1を保持する。
以下、反力制御部37について詳述する。図5を参照する。反力制御部37は、第1操舵反力トルク算出部40と、第2操舵反力トルク算出部50と、加算器60を備える。
第1操舵反力トルク算出部40は、実操舵角θsと、目標操舵角θtと、車速Vと、走行コントローラ8が生成した第1制御ゲインG1とに基づいて、第1操舵反力トルクTr1を算出する。
第1操舵反力トルク算出部40は、実操舵角θsと、目標操舵角θtと、車速Vと、走行コントローラ8が生成した第1制御ゲインG1とに基づいて、第1操舵反力トルクTr1を算出する。
第2操舵反力トルク算出部50は、実操舵角θsと、目標操舵角θtと、第1制御ゲインG1とに基づいて、第2操舵反力トルクTr2を算出する。
加算器60は、第1操舵反力トルクTr1と第2操舵反力トルクTr2を加算して指令操舵トルクTrを算出し、第1駆動回路13へ出力する。
加算器60は、第1操舵反力トルクTr1と第2操舵反力トルクTr2を加算して指令操舵トルクTrを算出し、第1駆動回路13へ出力する。
第1制御ゲインG1は、第1操舵反力トルクTr1を算出する際の目標操舵角θtによるオフセット量と、第2操舵反力トルクTr2の大きさとを制御するゲインである。
走行コントローラ8は、自動操舵制御がオン又はオフのいずれかであるか、運転者による操舵操作が検出されているか否か、自動操舵制御の信頼性に応じて、第1制御ゲインG1の大きさを決定する。
走行コントローラ8は、自動操舵制御がオン又はオフのいずれかであるか、運転者による操舵操作が検出されているか否か、自動操舵制御の信頼性に応じて、第1制御ゲインG1の大きさを決定する。
第1制御ゲインG1は、最小値「0」から最大値「1」までの範囲の値を有する。自動操舵制御がオフである場合には第1制御ゲインG1が「0」とされ、第1操舵反力トルクTr1を算出する際の実操舵角θsのオフセット量と第2操舵反力トルクTr2が「0」となり、走行コントローラ8による自動操舵制御が働かなくなる。従って、自動操舵制御がオフである場合には実操舵角θsはオフセットされず、車両が直進する際の操舵角(すなわち操舵角0°)と実操舵角θsとの偏差及び車速Vに応じて第1操舵反力トルク算出部40で算出された第1操舵反力トルクTr1がステアリングに付与される。
図6Aを参照する。時刻t11において運転者が自動操舵制御をオンにすると、走行コントローラ8は、時刻t11から時刻t12に亘って第1制御ゲインG1を「0」から「1」まで漸増する。
一方で、時刻t13において運転者又は走行コントローラ8が自動操舵制御をオフにすると、走行コントローラ8は、時刻t13から時刻t14に亘って第1制御ゲインG1を「1」から「0」まで漸減する。
一方で、時刻t13において運転者又は走行コントローラ8が自動操舵制御をオフにすると、走行コントローラ8は、時刻t13から時刻t14に亘って第1制御ゲインG1を「1」から「0」まで漸減する。
図6Bを参照する。走行コントローラ8は自動操舵制御がオンである場合に、自動操舵制御の信頼性を算出し、自動操舵制御の信頼性に応じて第1制御ゲインG1の大きさを決定する。
走行コントローラ8は、例えば外部センサ2によって検出される自車両の周囲環境、内部センサ3によって検出される自車両の走行状態、外部センサ2及び内部センサ3の健全性、走行シーン、天候、時刻等に基づいて、自動操舵制御の信頼性を算出する。
走行コントローラ8は、例えば外部センサ2によって検出される自車両の周囲環境、内部センサ3によって検出される自車両の走行状態、外部センサ2及び内部センサ3の健全性、走行シーン、天候、時刻等に基づいて、自動操舵制御の信頼性を算出する。
例えば時刻t21において運転者が自動操舵制御をオンにしても、自動操舵制御の信頼性が所定の許容値よりも低い場合、時刻t22において走行コントローラ8は、最大値「1」よりも小さく自動操舵制御の信頼性の高さに応じた第1制御ゲインG1を出力する。
図6Cを参照する。例えば時刻t31において運転者が自動操舵制御をオンにしても、自動操舵制御の信頼性が所定の許容値よりも低い場合、走行コントローラ8は、自動操舵制御を中止し、時刻t32において第1制御ゲインG1を減少させ、時刻t33において最小値「0」に戻してもよい。
図6Cを参照する。例えば時刻t31において運転者が自動操舵制御をオンにしても、自動操舵制御の信頼性が所定の許容値よりも低い場合、走行コントローラ8は、自動操舵制御を中止し、時刻t32において第1制御ゲインG1を減少させ、時刻t33において最小値「0」に戻してもよい。
図6Dを参照する。走行コントローラ8は自動操舵制御がオンである場合に、運転者によるステアリングホイール31aの操舵操作を検出し(すなわち、運転者がステアリングホイール31aを操舵しているか否かを検出し)、操舵操作が検出されている場合には第1制御ゲインG1を最大値「1」よりも小さな値「α」に低減する。
走行コントローラ8は、例えば、反力アクチュエータ12の出力トルクに基づいて運転者による操舵トルクを算出し、運転者による操舵操作を検出する。すなわち、反力アクチュエータ12の出力トルクに対するステアリングホイールの操舵角の変化に基づいて運転者による操舵操作を検出することが可能である。なお、運転者による操舵操作の検出はこれに限らず、例えば運転者によってステアリングホイールに入力される操舵トルクを直接検出するトルクセンサを設けて、トルクセンサの検出値によって運転者による操舵操作を検出することも可能であり、運転者による操舵操作の検出は適宜公知の手法が適用可能である。
走行コントローラ8は、例えば、反力アクチュエータ12の出力トルクに基づいて運転者による操舵トルクを算出し、運転者による操舵操作を検出する。すなわち、反力アクチュエータ12の出力トルクに対するステアリングホイールの操舵角の変化に基づいて運転者による操舵操作を検出することが可能である。なお、運転者による操舵操作の検出はこれに限らず、例えば運転者によってステアリングホイールに入力される操舵トルクを直接検出するトルクセンサを設けて、トルクセンサの検出値によって運転者による操舵操作を検出することも可能であり、運転者による操舵操作の検出は適宜公知の手法が適用可能である。
いま、運転者による操舵操作が検出されていない状態から運転者による操舵操作が検出されている状態に変化した場合に、時刻t41において走行コントローラ8は、運転者による操舵操作が検出した場合を想定する。
走行コントローラ8は、時刻t41から時刻t42に亘って第1制御ゲインG1を「1」から「α」まで漸減する。
走行コントローラ8は、時刻t41から時刻t42に亘って第1制御ゲインG1を「1」から「α」まで漸減する。
図7を参照する。第1操舵反力トルク算出部40は、ゲイン設定部41と、乗算器42と、レートリミッタ43と、減算器44と、ステアバイワイヤ(SBW)反力算出部45を算出する。
ゲイン設定部41は、第1制御ゲインG1に基づいて第2制御ゲインG2を設定する。第2制御ゲインG2は、目標操舵角θtによる実操舵角θsのオフセット量を制御するゲインであり、乗算器42によって目標操舵角θtに乗算される。
ゲイン設定部41は、第1制御ゲインG1に基づいて第2制御ゲインG2を設定する。第2制御ゲインG2は、目標操舵角θtによる実操舵角θsのオフセット量を制御するゲインであり、乗算器42によって目標操舵角θtに乗算される。
第2制御ゲインG2と目標操舵角θtとの積(G2×θt)は、レートリミッタ43によって変化速度が制限された後に減算器44に入力される。
減算器44は、第2制御ゲインG2を乗算した目標操舵角θt(G2×θt)によって実操舵角θsをオフセットする。
ステアバイワイヤ反力算出部45は、オフセットされた実操舵角θsと車速Vとに基づく操舵反力を、第1操舵反力トルクTr1として算出する。
減算器44は、第2制御ゲインG2を乗算した目標操舵角θt(G2×θt)によって実操舵角θsをオフセットする。
ステアバイワイヤ反力算出部45は、オフセットされた実操舵角θsと車速Vとに基づく操舵反力を、第1操舵反力トルクTr1として算出する。
第2制御ゲインG2は、最小値「0」から最大値「1」までの範囲の値を有する。第2制御ゲインG2が「0」である時には、第1操舵反力トルクTr1を算出する際の実操舵角θsのオフセット量が「0」となる。第2制御ゲインG2が「1」である時にはオフセット量が目標操舵角θtと等しくなる。
第1制御ゲインG1及び第2制御ゲインG2の両方が「0」である状態から第1制御ゲインG1が増加すると、ゲイン設定部41は、第2制御ゲインG2を第1制御ゲインG1と同じ値に設定し、第1制御ゲインG1とともに第2制御ゲインG2を増加させる。
第1制御ゲインG1及び第2制御ゲインG2の両方が「0」である状態から第1制御ゲインG1が増加すると、ゲイン設定部41は、第2制御ゲインG2を第1制御ゲインG1と同じ値に設定し、第1制御ゲインG1とともに第2制御ゲインG2を増加させる。
図8A及び図8Bを参照する。例えば時刻t51にて運転者が自動操舵制御をオンにし、第1制御ゲインG1及び第2制御ゲインG2の両方が「0」である状態から第1制御ゲインG1が増加すると、ゲイン設定部41は、第2制御ゲインG2を第1制御ゲインG1と同じ値に設定し、第1制御ゲインG1とともに第2制御ゲインG2を増加させる。
その後、第1制御ゲインG1及び第2制御ゲインG2が「1」になると、ゲイン設定部41は、自動操舵フラグFLGの値を「0」から「1」へ変更する。
自動操舵フラグFLGの値「1」は、第1制御ゲインG1が「1」に至った後に未だに第1制御ゲインG1が「0」に至ってないことを示す。
反対に自動操舵フラグFLGの値「0」は、第1制御ゲインG1が「0」に至った後に未だに第1制御ゲインG1が「1」に至ってないことを示す。
図8A及び図8Bの例では、時刻t52において第1制御ゲインG1及び第2制御ゲインG2が「1」になり、自動操舵フラグFLGの値が「0」から「1」へ変わる。
自動操舵フラグFLGの値「1」は、第1制御ゲインG1が「1」に至った後に未だに第1制御ゲインG1が「0」に至ってないことを示す。
反対に自動操舵フラグFLGの値「0」は、第1制御ゲインG1が「0」に至った後に未だに第1制御ゲインG1が「1」に至ってないことを示す。
図8A及び図8Bの例では、時刻t52において第1制御ゲインG1及び第2制御ゲインG2が「1」になり、自動操舵フラグFLGの値が「0」から「1」へ変わる。
自動操舵フラグFLGの値が「1」である間、すなわち第1制御ゲインG1が「1」に至った後に未だに第1制御ゲインG1が「0」に至ってない期間では、ゲイン設定部41は、第1制御ゲインG1が「1」よりも小さくなっても、第2制御ゲインG2を「1」に保持する。
図8A及び図8Bの例では、時刻t53において走行コントローラ8が、運転者による操舵操作を検出して第1制御ゲインG1を「1」より小さな「α」に低減する。
図8A及び図8Bの例では、時刻t53において走行コントローラ8が、運転者による操舵操作を検出して第1制御ゲインG1を「1」より小さな「α」に低減する。
ゲイン設定部41は、第1制御ゲインG1が「1」よりも小さくなっても、第2制御ゲインG2を「1」に保持する。
このため自動操舵中に運転者による操舵操作が検出されている時に、実操舵角θsのオフセット量は、運転者による操舵操作が検出されていない時の値(目標操舵角θt)に保持される。
このため自動操舵中に運転者による操舵操作が検出されている時に、実操舵角θsのオフセット量は、運転者による操舵操作が検出されていない時の値(目標操舵角θt)に保持される。
第1制御ゲインG1が「0」へ至ると、ゲイン設定部41は、自動操舵フラグFLGの値を「1」から「0」へ変更する。自動操舵フラグFLGの値が「0」である期間では、ゲイン設定部41は、第2制御ゲインG2が第1制御ゲインG1よりも大きければ第2制御ゲインG2を漸減し、第2制御ゲインG2を第1制御ゲインG1へ一致させる。
図8A及び図8Bの例では、時刻t54において運転者又は走行コントローラ8が自動操舵制御をオフにすると、第1制御ゲインG1が減少して時刻t55において「0」に至る。
すると、自動操舵フラグFLGの値が「1」から「0」へ変わって第2制御ゲインG2が減少を開始し、時刻t56において「0」に至って第1制御ゲインG1と等しくなる。これにより実操舵角θsのオフセット量は、自動操舵制御がオンからオフへ遷移する場合に「0」まで低減される。
図8A及び図8Bの例では、時刻t54において運転者又は走行コントローラ8が自動操舵制御をオフにすると、第1制御ゲインG1が減少して時刻t55において「0」に至る。
すると、自動操舵フラグFLGの値が「1」から「0」へ変わって第2制御ゲインG2が減少を開始し、時刻t56において「0」に至って第1制御ゲインG1と等しくなる。これにより実操舵角θsのオフセット量は、自動操舵制御がオンからオフへ遷移する場合に「0」まで低減される。
上記の通り、自動操舵制御の信頼性が所定の許容値よりも低い場合は、第1制御ゲインG1の値は「1」よりも小さくなり、自動操舵制御がオンになっても「0」から「1」まで到達しない。この場合に自動操舵フラグFLGの値は「0」になる。したがって、自動操舵フラグFLGの値が「0」である場合には、自動操舵制御の信頼性が許容値よりも低く、目標操舵角θtが不正確である可能性がある。
したがって、この場合には第2制御ゲインG2を、自動操舵制御の信頼性に応じた第1制御ゲインG1と等しくする。これにより、第1操舵反力トルクTr1を算出する際の実操舵角θsのオフセット量が過度に大きくなることを防止する。
例えば、図9A及び図9Bに示すように時刻t61にて運転者が自動操舵制御をオンにしても自動操舵制御の信頼性が低いために第1制御ゲインG1が「1」に至らないと、第2制御ゲインG2は、走行コントローラ8が設定した第1制御ゲインG1に応じて設定される。
例えば、図9A及び図9Bに示すように時刻t61にて運転者が自動操舵制御をオンにしても自動操舵制御の信頼性が低いために第1制御ゲインG1が「1」に至らないと、第2制御ゲインG2は、走行コントローラ8が設定した第1制御ゲインG1に応じて設定される。
図10A及び図10Bは、自動操舵フラグFLGの値が「1」から「0」へ変わった後の第2制御ゲインG2の変化の一例を示す。
運転者又は走行コントローラ8が自動操舵制御をオフにして、時刻t71において第1制御ゲインG1が「0」に至ると、自動操舵フラグFLGの値が「1」から「0」へ変わり第2制御ゲインG2が減少を開始する。時刻t71から時刻t72までの期間では、第2制御ゲインG2が第1制御ゲインG1よりも大きいため、第2制御ゲインG2が減少を続ける。
その後に自動操舵制御がオンになり第1制御ゲインG1が増加を開始し、時刻t72において第2制御ゲインG2が第1制御ゲインG1と等しくなると、その後は、第1制御ゲインG1が「1」に至るまで、第2制御ゲインG2と第1制御ゲインG1が等しくなる。
運転者又は走行コントローラ8が自動操舵制御をオフにして、時刻t71において第1制御ゲインG1が「0」に至ると、自動操舵フラグFLGの値が「1」から「0」へ変わり第2制御ゲインG2が減少を開始する。時刻t71から時刻t72までの期間では、第2制御ゲインG2が第1制御ゲインG1よりも大きいため、第2制御ゲインG2が減少を続ける。
その後に自動操舵制御がオンになり第1制御ゲインG1が増加を開始し、時刻t72において第2制御ゲインG2が第1制御ゲインG1と等しくなると、その後は、第1制御ゲインG1が「1」に至るまで、第2制御ゲインG2と第1制御ゲインG1が等しくなる。
図11を参照する。第2操舵反力トルク算出部50は、レートリミッタ51と、減算器52と、偏差角リミッタ53と、サーボ制御部54と、乗算器55を備える。
目標操舵角θtは、レートリミッタ51によって変化速度が制限された後に減算器52に入力される。減算器52は、目標操舵角θtと実操舵角θsとの角度偏差(θt-θs)を算出する。偏差角リミッタ53は、角度偏差(θt-θs)の上下限値を制限する。
目標操舵角θtは、レートリミッタ51によって変化速度が制限された後に減算器52に入力される。減算器52は、目標操舵角θtと実操舵角θsとの角度偏差(θt-θs)を算出する。偏差角リミッタ53は、角度偏差(θt-θs)の上下限値を制限する。
サーボ制御部54は、角度偏差(θt-θs)に基づくサーボ制御により、実操舵角θsを目標操舵角θtに追従させる回転トルクTr2*を算出する。
サーボ制御部54は、角度偏差(θt-θs)の過渡成分を含んだ回転トルクTr2*を算出してもよい。これにより実操舵角θsの追従応答性を向上できる。例えば、サーボ制御部54は、PDサーボ制御(比例微分サーボ制御)により回転トルクTr2*を算出してもよい。すなわち、回転トルクTr2*は、角度偏差(θt-θs)の比例成分と微分成分を含んでもよい。
サーボ制御部54は、角度偏差(θt-θs)の過渡成分を含んだ回転トルクTr2*を算出してもよい。これにより実操舵角θsの追従応答性を向上できる。例えば、サーボ制御部54は、PDサーボ制御(比例微分サーボ制御)により回転トルクTr2*を算出してもよい。すなわち、回転トルクTr2*は、角度偏差(θt-θs)の比例成分と微分成分を含んでもよい。
乗算器55は、回転トルクTr2*に第1制御ゲインG1を乗じた積(G1×Tr2*)を第2操舵反力トルクTr2として算出する。
このため、自動操舵制御がオンからオフへ遷移する場合に第1制御ゲインG1が「0」まで低下すると、第2操舵反力トルクTr2は第1制御ゲインG1に応じて「0」まで低減される。
また、運転者による操舵操作が検出されている時に第1制御ゲインG1が「α」まで低下すると、第2操舵反力トルクTr2は第1制御ゲインG1に応じて操舵操作が検出されていない時よりも低減される。
このため、自動操舵制御がオンからオフへ遷移する場合に第1制御ゲインG1が「0」まで低下すると、第2操舵反力トルクTr2は第1制御ゲインG1に応じて「0」まで低減される。
また、運転者による操舵操作が検出されている時に第1制御ゲインG1が「α」まで低下すると、第2操舵反力トルクTr2は第1制御ゲインG1に応じて操舵操作が検出されていない時よりも低減される。
(動作)
次に、図12を参照して実施形態の操舵制御方法の一例を説明する。
ステップS1において操舵角センサ19は、ステアリングホイール31aの実操舵角θsを検出する。
ステップS2において走行コントローラ8は、目標走行軌道に沿って自車両を走行させるための目標操舵角θtを算出する。
次に、図12を参照して実施形態の操舵制御方法の一例を説明する。
ステップS1において操舵角センサ19は、ステアリングホイール31aの実操舵角θsを検出する。
ステップS2において走行コントローラ8は、目標走行軌道に沿って自車両を走行させるための目標操舵角θtを算出する。
ステップS3において走行コントローラ8は、運転者による操舵操作を検出する。
ステップS4において走行コントローラ8は、第1制御ゲインG1を算出する。
上述の通り、運転者による操舵操作が検出されている時の第1制御ゲインG1は、操舵操作が検出されていない時の値「1」よりも小さな値「α」に設定される。また、自動操舵制御がオンからオフへ遷移する場合には第1制御ゲインG1は「1」から「0」へ減少する。
ステップS4において走行コントローラ8は、第1制御ゲインG1を算出する。
上述の通り、運転者による操舵操作が検出されている時の第1制御ゲインG1は、操舵操作が検出されていない時の値「1」よりも小さな値「α」に設定される。また、自動操舵制御がオンからオフへ遷移する場合には第1制御ゲインG1は「1」から「0」へ減少する。
ステップS5において第1操舵反力トルク算出部40のゲイン設定部41は、第1制御ゲインG1に基づいて第2制御ゲインG2を算出する。第2制御ゲインG2算出ルーチンは図13を参照して後述する。
上述の通り、運転者による操舵操作が検出されている時の第2制御ゲインG2は、操舵操作が検出されていない時の値「1」に保持される。また、自動操舵制御がオンからオフへ遷移する場合には第2制御ゲインG2は「1」から「0」へ減少する。
上述の通り、運転者による操舵操作が検出されている時の第2制御ゲインG2は、操舵操作が検出されていない時の値「1」に保持される。また、自動操舵制御がオンからオフへ遷移する場合には第2制御ゲインG2は「1」から「0」へ減少する。
ステップS6において乗算器42及び減算器44は、第2制御ゲインG2と目標操舵角θtの積(G2×θt)で、実操舵角θsをオフセットする。
ステップS7においてステアバイワイヤ反力算出部45は、オフセットされた実操舵角θsと車速Vとに基づいて第1操舵反力トルクTr1を算出する。
ステップS7においてステアバイワイヤ反力算出部45は、オフセットされた実操舵角θsと車速Vとに基づいて第1操舵反力トルクTr1を算出する。
ステップS8においてサーボ制御部54は、角度偏差(θt-θs)を減少させる回転トルクTr2*をサーボ制御により算出する。乗算器55は、回転トルクTr2*に第1制御ゲインG1を乗じた積(G1×Tr2*)を第2操舵反力トルクTr2として算出する。
ステップS9において第1駆動回路13は、指令操舵トルクTr=Tr1+Tr2で反力アクチュエータ12を駆動する。
ステップS10においてコントローラ11は、自車両のイグニッションスイッチ(IGN)がオフになったか否かを判定する。イグニッションスイッチがオフになっていない場合(ステップS10:N)に処理はステップS1に戻る。イグニッションスイッチがオフになった場合(ステップS10:Y)に処理は終了する。
ステップS10においてコントローラ11は、自車両のイグニッションスイッチ(IGN)がオフになったか否かを判定する。イグニッションスイッチがオフになっていない場合(ステップS10:N)に処理はステップS1に戻る。イグニッションスイッチがオフになった場合(ステップS10:Y)に処理は終了する。
次に、図13を参照してゲイン設定部41による第2制御ゲインG2算出ルーチンを説明する。
ステップS20においてゲイン設定部41は、第1制御ゲインG1が「0」であるか否かを判定する。第1制御ゲインG1が「0」である場合(ステップS20:Y)に処理はステップS21へ進む。第1制御ゲインG1が「0」でない場合(ステップS20:N)に処理はステップS25へ進む。
ステップS20においてゲイン設定部41は、第1制御ゲインG1が「0」であるか否かを判定する。第1制御ゲインG1が「0」である場合(ステップS20:Y)に処理はステップS21へ進む。第1制御ゲインG1が「0」でない場合(ステップS20:N)に処理はステップS25へ進む。
ステップS21においてゲイン設定部41は、現在の自動操舵フラグFLGの値が「1」であるか否かを判定する。自動操舵フラグFLGの値が「1」である場合(ステップS21:Y)には、第1制御ゲインG1が「0」でない状態から「0」に変化したことを意味する。この場合に処理はステップS24へ進む。自動操舵フラグFLGの値が「1」でない場合(ステップS21:N)に処理はステップS22へ進む。
ステップS22においてゲイン設定部41は、前回の第2制御ゲインG2が「0」であるか否かを判断する。第2制御ゲインG2が「0」である場合(ステップS22:Y)には第2制御ゲインG2を変更することなく第2制御ゲインG2算出ルーチンを終了する。第2制御ゲインG2が「0」でない場合(ステップS22:N)に処理はステップS23へ進む。
ステップS23においてゲイン設定部41は、第2制御ゲインG2を低減させる。その後に第2制御ゲインG2算出ルーチンを終了する。
ステップS24においてゲイン設定部41は、自動操舵フラグFLGの値を「0」に設定する。その後に処理はステップS23に進み、第2制御ゲインG2を前回値「1」から低減した値に設定する。その後に第2制御ゲインG2算出ルーチンを終了する。
ステップS23においてゲイン設定部41は、第2制御ゲインG2を低減させる。その後に第2制御ゲインG2算出ルーチンを終了する。
ステップS24においてゲイン設定部41は、自動操舵フラグFLGの値を「0」に設定する。その後に処理はステップS23に進み、第2制御ゲインG2を前回値「1」から低減した値に設定する。その後に第2制御ゲインG2算出ルーチンを終了する。
第1制御ゲインG1が「0」でない場合(ステップS20:N)、ステップS25においてゲイン設定部41は第1制御ゲインG1が「1」であるか否かを判断する。第1制御ゲインG1が「1」である場合(ステップS25:Y)に処理はステップS26へ進む。第1制御ゲインG1が「1」でない場合(ステップS25:N)に処理はステップS29へ進む。
ステップS26においてゲイン設定部41は、現在の自動操舵フラグFLGの値が「0」であるか否かを判定する。自動操舵フラグFLGの値が「0」である場合(ステップS26:Y)には、第1制御ゲインG1が「1」でない状態から「1」に変化したことを意味する。この場合に処理はステップS27へ進む。ステップS27においてゲイン設定部41は、第2制御ゲインG2の値を「1」に設定する。
ステップS28においてゲイン設定部41は、自動操舵フラグFLGの値を「1」に設定する。その後に第2制御ゲインG2算出ルーチンを終了する。
一方で、ステップS26において自動操舵フラグFLGの値が「0」でない場合(ステップS26:N)には、第2制御ゲインG2を前回値「1」から変更することなく第2制御ゲインG2算出ルーチンを終了する。
一方で、ステップS26において自動操舵フラグFLGの値が「0」でない場合(ステップS26:N)には、第2制御ゲインG2を前回値「1」から変更することなく第2制御ゲインG2算出ルーチンを終了する。
ステップS29においてゲイン設定部41は、現在の自動操舵フラグFLGの値が「1」であるか否かを判定する。自動操舵フラグFLGの値が「1」である場合(ステップS29:Y)には、第1制御ゲインG1が「1」になってから未だ「0」に至っていないことを意味する。この場合に処理はステップS30へ進む。自動操舵フラグFLGの値が「1」でない場合(ステップS29:N)に処理はステップS31へ進む。
ステップS30においてゲイン設定部41は、第2制御ゲインG2を「1」に保持する。その後に第2制御ゲインG2算出ルーチンを終了する。
ステップS31においてゲイン設定部41は、第2制御ゲインG2が第1制御ゲインG1よりも大きいか否かを判定する。第2制御ゲインG2が第1制御ゲインG1よりも大きい場合(ステップS31:Y)に処理はステップS23へ進む。第2制御ゲインG2が第1制御ゲインG1よりも大きくない場合(ステップS31:N)に処理はステップS32へ進む。
ステップS32においてゲイン設定部41は、第2制御ゲインG2を第1制御ゲインG1と同じ値「1」に設定する。その後に第2制御ゲインG2算出ルーチンを終了する。
ステップS31においてゲイン設定部41は、第2制御ゲインG2が第1制御ゲインG1よりも大きいか否かを判定する。第2制御ゲインG2が第1制御ゲインG1よりも大きい場合(ステップS31:Y)に処理はステップS23へ進む。第2制御ゲインG2が第1制御ゲインG1よりも大きくない場合(ステップS31:N)に処理はステップS32へ進む。
ステップS32においてゲイン設定部41は、第2制御ゲインG2を第1制御ゲインG1と同じ値「1」に設定する。その後に第2制御ゲインG2算出ルーチンを終了する。
(実施形態の効果)
(1)自車両は、ステアリングホイール31aと操向輪との間が機械的に分離されたステアバイワイヤ式の転舵機構を備える。操舵角センサ19は、ステアリングホイールの実操舵角θsを検出する。走行コントローラ8は、操向輪の目標転舵角に基づいて前記ステアリングホイールの目標操舵角を算出する。反力制御部47、第1駆動回路13及び反力アクチュエータ12は、実操舵角θsと目標操舵角θtとの間の角度偏差(θt-θs)に応じてステアリングホイールに操舵反力を付与する。走行コントローラ8は、運転者によるステアリングホイール31aの操舵操作を検出する。反力制御部47は、運転者による操舵操作が検出されている時に、運転者による操舵操作が検出されていない時に比べて、角度偏差に応じた操舵反力を低減する。
(1)自車両は、ステアリングホイール31aと操向輪との間が機械的に分離されたステアバイワイヤ式の転舵機構を備える。操舵角センサ19は、ステアリングホイールの実操舵角θsを検出する。走行コントローラ8は、操向輪の目標転舵角に基づいて前記ステアリングホイールの目標操舵角を算出する。反力制御部47、第1駆動回路13及び反力アクチュエータ12は、実操舵角θsと目標操舵角θtとの間の角度偏差(θt-θs)に応じてステアリングホイールに操舵反力を付与する。走行コントローラ8は、運転者によるステアリングホイール31aの操舵操作を検出する。反力制御部47は、運転者による操舵操作が検出されている時に、運転者による操舵操作が検出されていない時に比べて、角度偏差に応じた操舵反力を低減する。
これにより、運転者による操舵操作が検出されていない場合には比較的大きな操舵反力をステアリングホイール31aに付与して、自動操舵制御における目標操舵角θtに対する実操舵角θsの追従応答性を向上するとともに、運転者による操舵操作が検出されている場合には操舵操作を阻害しないように操舵反力を低減し、運転者の操舵操作を容易にできる。
(2)反力制御部47、第1駆動回路13及び反力アクチュエータ12は、角度偏差(θt-θs)に応じた第1操舵反力Tr1と、角度偏差(θt-θs)の過渡成分を含んだ第2操舵反力Tr2とを加算して、ステアリングホイール31aに付与する操舵反力を生成する。反力制御部47は、運転者による操舵操作が検出されている時に、運転者による操舵操作が検出されていない時に比べて第2操舵反力Tr2のみを低減する。
これにより、角度偏差(θt-θs)の過渡成分を含んだ第2操舵反力Tr2を加えることにより、自動操舵制御における実操舵角θsの追従応答性を向上するとともに、運転者による操舵操作が検出されている場合には第2操舵反力Tr2を低減することにより運転者の操舵操作を容易にできる。
これにより、角度偏差(θt-θs)の過渡成分を含んだ第2操舵反力Tr2を加えることにより、自動操舵制御における実操舵角θsの追従応答性を向上するとともに、運転者による操舵操作が検出されている場合には第2操舵反力Tr2を低減することにより運転者の操舵操作を容易にできる。
(3)反力制御部47は、運転者による操舵操作が検出されていない状態から運転者による操舵操作が検出されている状態に変化した場合に、運転者による操舵操作が検出された時点からの経過時間に応じて第2操舵反力Tr2を漸減する。
これにより、第2操舵反力Tr2の急変による操舵フィーリングの低下を回避できる。
これにより、第2操舵反力Tr2の急変による操舵フィーリングの低下を回避できる。
(4)第1操舵反力トルク算出部40は、目標操舵角θtにより実操舵角θsをオフセットし、オフセットされた実操舵角θsに応じて第1操舵反力Tr1を算出することにより、実操舵角θsと目標操舵角θtとの間の角度偏差(θt-θs)に応じた第1操舵反力Tr1を算出する。第1操舵反力トルク算出部40と第2操舵反力トルク算出部50は、自動操舵制御がオンからオフへ遷移する場合に、実操舵角θsのオフセット量と第2操舵反力Tr2とを低減する。第1操舵反力トルク算出部40と第2操舵反力トルク算出部50は、自動操舵中に運転者による操舵操作が検出されている時に、第2操舵反力Tr2を低減するとともにオフセット量を運転者による操舵操作が検出されていない時の値に保持する。
これにより運転者による操舵操作が検出されている時に、ステアリングホイール31aの中立位置(操舵反力トルクが0となる位置)を目標操舵角θtにする操舵反力を維持しつつ運転者の操舵操作を容易にできる。
これにより運転者による操舵操作が検出されている時に、ステアリングホイール31aの中立位置(操舵反力トルクが0となる位置)を目標操舵角θtにする操舵反力を維持しつつ運転者の操舵操作を容易にできる。
(5)第1操舵反力トルク算出部40は、オフセットされた実操舵角θsと車両の車速Vとに基づくタイヤ横力に応じた操舵反力を第1操舵反力Tr1として算出する。第2操舵反力トルク算出部50は、角度偏差(θt-θs)の比例微分制御により第2操舵反力を算出する。
これにより、運転者はタイヤ横力に応じた操舵反力を感じることができるので、ステアバイワイヤ式の転舵機構の操舵感覚が向上するとともに、自動操舵制御において目標操舵角θtに対する実操舵角θsの追従応答性を向上できる。
これにより、運転者はタイヤ横力に応じた操舵反力を感じることができるので、ステアバイワイヤ式の転舵機構の操舵感覚が向上するとともに、自動操舵制御において目標操舵角θtに対する実操舵角θsの追従応答性を向上できる。
ここに記載されている全ての例及び条件的な用語は、読者が、本発明と技術の進展のために発明者により与えられる概念とを理解する際の助けとなるように、教育的な目的を意図したものであり、具体的に記載されている上記の例及び条件、並びに本発明の優位性及び劣等性を示すことに関する本明細書における例の構成に限定されることなく解釈されるべきものである。本発明の実施例は詳細に説明されているが、本発明の精神及び範囲から外れることなく、様々な変更、置換及び修正をこれに加えることが可能であると解すべきである。
1…車両制御装置,2…外部センサ,3…内部センサ,4…測位装置,5…地図データベース,6…通信装置,7…ナビゲーションシステム,8…走行コントローラ,9…アクセル開度アクチュエータ,10…ブレーキ制御アクチュエータ,11…コントローラ,12…反力アクチュエータ,13…第1駆動回路,14…転舵アクチュエータ,15…第2駆動回路,16…カメラ,17…測距装置,18…車速センサ,19…操舵角センサ,20…プロセッサ,21…記憶装置,31…操舵部,31a…ステアリングホイール,31b…コラムシャフト,31c…電流センサ,32…転舵部,32a…ピニオンシャフト,32b…ステアリングギア,32c…ラックギア,32d…ステアリングラック,33…バックアップクラッチ,34FL…左前輪,34FR…右前輪,35…転舵角センサ,36…転舵制御部,37…反力制御部,40…第1操舵反力トルク算出部,41…ゲイン設定部,42…乗算器,43…レートリミッタ,44…減算器,45…ステアバイワイヤ反力算出部,47…反力制御部,50…第2操舵反力トルク算出部,51…レートリミッタ,52…減算器,53…偏差角リミッタ,54…サーボ制御部,55…乗算器,60…加算器
Claims (6)
- ステアリングホイールと操向輪との間が機械的に分離されたステアバイワイヤ式の転舵機構を備える車両の操舵制御方法であって、
前記ステアリングホイールの実操舵角を検出し、
前記操向輪の目標転舵角に基づいて前記ステアリングホイールの目標操舵角を算出し、
前記実操舵角と前記目標操舵角との間の角度偏差に応じて前記ステアリングホイールに操舵反力を付与し、
運転者による前記ステアリングホイールの操舵操作を検出し、
前記運転者による操舵操作が検出されている時に、前記運転者による操舵操作が検出されていない時に比べて、前記角度偏差に応じた操舵反力を低減する、
ことを特徴とする操舵制御方法。 - 前記角度偏差に応じた第1操舵反力と、前記角度偏差の過渡成分を含んだ第2操舵反力とを加算して、前記ステアリングホイールに付与する操舵反力を生成し、
前記運転者による操舵操作が検出されている時に、前記運転者による操舵操作が検出されていない時に比べて前記第2操舵反力のみを低減する、
ことを特徴とする請求項1に記載の操舵制御方法。 - 前記運転者による操舵操作が検出されていない状態から前記運転者による操舵操作が検出されている状態に変化した場合に、前記運転者による操舵操作が検出された時点からの経過時間に応じて前記第2操舵反力を漸減する、ことを特徴とする請求項2に記載の操舵制御方法。
- 前記目標操舵角により前記実操舵角をオフセットし、オフセットされた前記実操舵角の値に応じて前記第1操舵反力を算出し、
自動操舵制御中に前記運転者による操舵操作が検出されている時に、前記第2操舵反力を低減するとともに前記オフセット量を前記運転者による操舵操作が検出されていない時の値に保持する、
ことを特徴とする請求項2又は3に記載の操舵制御方法。 - 前記オフセットされた実操舵角と前記車両の車速とに基づくタイヤ横力に応じた操舵反力を前記第1操舵反力として算出し、
前記角度偏差の比例微分制御により前記第2操舵反力を算出する、
ことを特徴とする請求項4に記載の操舵制御方法。 - ステアリングホイールと操向輪との間が機械的に分離されたステアバイワイヤ式の転舵機構を備える車両の操舵制御装置であって、
前記ステアリングホイールに操舵反力を付与する反力アクチュエータと、
前記反力アクチュエータを駆動する駆動回路と、
前記ステアリングホイールの実操舵角を検出し、前記操向輪の目標転舵角に基づいて目標操舵角を算出し、前記実操舵角と前記目標操舵角との間の角度偏差に応じた操舵反力を前記反力アクチュエータに発生させる制御信号を前記駆動回路へ出力するコントローラと、を備え、
前記コントローラは、運転者による前記ステアリングホイールの操舵操作が検出されている時には、前記運転者による操舵操作が検出されていない時に比べて、前記角度偏差に応じた操舵反力を低減する、ことを特徴とする操舵制御装置。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19928312.8A EP3971059B1 (en) | 2019-05-15 | 2019-05-15 | Steering control method and steering control device |
JP2021519217A JP7151883B2 (ja) | 2019-05-15 | 2019-05-15 | 操舵制御方法及び操舵制御装置 |
PCT/JP2019/019397 WO2020230307A1 (ja) | 2019-05-15 | 2019-05-15 | 操舵制御方法及び操舵制御装置 |
US17/610,756 US11603132B2 (en) | 2019-05-15 | 2019-05-15 | Steering control method and steering control device |
CN201980096389.5A CN113825692B (zh) | 2019-05-15 | 2019-05-15 | 转向控制方法及转向控制装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/019397 WO2020230307A1 (ja) | 2019-05-15 | 2019-05-15 | 操舵制御方法及び操舵制御装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020230307A1 true WO2020230307A1 (ja) | 2020-11-19 |
Family
ID=73290281
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/019397 WO2020230307A1 (ja) | 2019-05-15 | 2019-05-15 | 操舵制御方法及び操舵制御装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11603132B2 (ja) |
EP (1) | EP3971059B1 (ja) |
JP (1) | JP7151883B2 (ja) |
CN (1) | CN113825692B (ja) |
WO (1) | WO2020230307A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4039562A1 (en) * | 2021-01-20 | 2022-08-10 | Toyota Jidosha Kabushiki Kaisha | Steering system and control method for steering system |
WO2023062907A1 (ja) * | 2021-10-12 | 2023-04-20 | 日産自動車株式会社 | 操舵制御方法及び操舵装置 |
FR3142165A1 (fr) | 2022-11-17 | 2024-05-24 | Safran Electronics & Defense | Procédé de retour d’effort dans un organe de guidage motorisé de véhicule a conduite assistée |
JP7564048B2 (ja) | 2021-01-20 | 2024-10-08 | トヨタ自動車株式会社 | 操舵システム |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102173996B1 (ko) * | 2019-05-16 | 2020-11-04 | 주식회사 만도 | 조향 제어 장치와 그 방법, 및 조향 제어 시스템 |
DE102020206703B3 (de) * | 2020-05-28 | 2021-11-04 | Volkswagen Aktiengesellschaft | Erzeugen von Lenkhandhabemomenten als haptische Rückmeldung bei Fahrzeuglenksystemen |
US11052940B1 (en) * | 2021-03-12 | 2021-07-06 | Canoo Technologies Inc. | Steer-by-wire systems and methods of operating thereof in vehicles |
US20230014442A1 (en) * | 2021-07-19 | 2023-01-19 | Ford Global Technologies, Llc | Methods and apparatus to correct for steering wheel rotation |
KR102344278B1 (ko) * | 2021-09-17 | 2021-12-27 | 이종석 | 차량 제어장치 |
CN115180017B (zh) * | 2022-08-18 | 2023-10-17 | 苏州轻棹科技有限公司 | 一种对方向盘转角进行补偿的处理方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009051492A (ja) * | 2007-08-02 | 2009-03-12 | Nissan Motor Co Ltd | 車両用操舵制御装置及び方法 |
JP2017202772A (ja) * | 2016-05-12 | 2017-11-16 | 日産自動車株式会社 | 運転支援方法及び運転支援装置 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7377702B2 (en) | 2006-05-23 | 2008-05-27 | Stratos International, Inc. | Cageless, pluggable optoelectronic device which enables belly-to-belly layouts |
KR100867698B1 (ko) * | 2007-07-18 | 2008-11-10 | 현대자동차주식회사 | 자동차의 스티어 바이 와이어 시스템 |
JP5304223B2 (ja) * | 2008-12-25 | 2013-10-02 | 日産自動車株式会社 | 車両用操舵装置、車両用操舵装置付き車両および車両用操舵方法 |
CN103010295B (zh) * | 2011-09-26 | 2015-06-10 | 日产自动车株式会社 | 辅助保持行车道的装置 |
JP6107149B2 (ja) * | 2013-01-11 | 2017-04-05 | 日産自動車株式会社 | 車両用操舵制御装置及び車両用操舵制御方法 |
WO2014115234A1 (ja) | 2013-01-24 | 2014-07-31 | 日産自動車株式会社 | 操舵制御装置 |
JP6032043B2 (ja) * | 2013-02-13 | 2016-11-24 | 日産自動車株式会社 | 車両用操舵制御装置及び車両用操舵制御方法 |
JP2018047885A (ja) * | 2016-09-16 | 2018-03-29 | 国立大学法人東京農工大学 | 車両の操舵装置 |
WO2018142650A1 (ja) * | 2017-02-02 | 2018-08-09 | 日本精工株式会社 | 電動パワーステアリング装置 |
JP6878939B2 (ja) * | 2017-02-14 | 2021-06-02 | 日産自動車株式会社 | 舵角補正方法及び舵角補正装置 |
WO2020031294A1 (ja) * | 2018-08-08 | 2020-02-13 | 日産自動車株式会社 | 操舵制御方法及び操舵制御装置 |
US11352053B2 (en) * | 2019-11-26 | 2022-06-07 | Nsk Ltd. | Turning control device |
-
2019
- 2019-05-15 EP EP19928312.8A patent/EP3971059B1/en active Active
- 2019-05-15 CN CN201980096389.5A patent/CN113825692B/zh active Active
- 2019-05-15 US US17/610,756 patent/US11603132B2/en active Active
- 2019-05-15 JP JP2021519217A patent/JP7151883B2/ja active Active
- 2019-05-15 WO PCT/JP2019/019397 patent/WO2020230307A1/ja unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009051492A (ja) * | 2007-08-02 | 2009-03-12 | Nissan Motor Co Ltd | 車両用操舵制御装置及び方法 |
JP2017202772A (ja) * | 2016-05-12 | 2017-11-16 | 日産自動車株式会社 | 運転支援方法及び運転支援装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3971059A4 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4039562A1 (en) * | 2021-01-20 | 2022-08-10 | Toyota Jidosha Kabushiki Kaisha | Steering system and control method for steering system |
JP7564048B2 (ja) | 2021-01-20 | 2024-10-08 | トヨタ自動車株式会社 | 操舵システム |
WO2023062907A1 (ja) * | 2021-10-12 | 2023-04-20 | 日産自動車株式会社 | 操舵制御方法及び操舵装置 |
JP7565456B2 (ja) | 2021-10-12 | 2024-10-10 | 日産自動車株式会社 | 操舵制御方法及び操舵装置 |
FR3142165A1 (fr) | 2022-11-17 | 2024-05-24 | Safran Electronics & Defense | Procédé de retour d’effort dans un organe de guidage motorisé de véhicule a conduite assistée |
Also Published As
Publication number | Publication date |
---|---|
US11603132B2 (en) | 2023-03-14 |
JP7151883B2 (ja) | 2022-10-13 |
EP3971059A4 (en) | 2022-06-01 |
CN113825692A (zh) | 2021-12-21 |
CN113825692B (zh) | 2022-09-09 |
JPWO2020230307A1 (ja) | 2020-11-19 |
EP3971059A1 (en) | 2022-03-23 |
EP3971059B1 (en) | 2023-04-26 |
US20220227416A1 (en) | 2022-07-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020230307A1 (ja) | 操舵制御方法及び操舵制御装置 | |
JP7004076B2 (ja) | 操舵制御方法及び操舵制御装置 | |
JP6252575B2 (ja) | 自動運転装置 | |
US10793141B2 (en) | Vehicle traveling control apparatus | |
EP2641816B1 (en) | System for indicating an impending vehicle maneuver | |
US9862410B2 (en) | Vehicle steering control apparatus | |
US9789905B2 (en) | Vehicle traveling control apparatus | |
EP3678110A1 (en) | Method for correcting positional error and device for correcting positional error in driving assistance vehicle | |
WO2016110728A1 (ja) | 目標経路生成装置および走行制御装置 | |
JP6801593B2 (ja) | 車両の操舵支援装置および操舵支援制御方法 | |
JP6790991B2 (ja) | 車両の操舵支援装置および操舵支援制御方法 | |
JP7076303B2 (ja) | 車両制御装置 | |
JP7071907B2 (ja) | 車両の走行制御装置 | |
JP6821644B2 (ja) | 車両制御装置及び車両制御方法 | |
US20200114959A1 (en) | Vehicle lateral motion control | |
WO2024062566A1 (ja) | 運転支援方法及び運転支援装置 | |
WO2024013996A1 (ja) | 車両の運転支援方法及び運転支援装置 | |
JP7243828B2 (ja) | 操舵制御方法及び操舵制御装置 | |
WO2024013997A1 (ja) | 車両の運転支援方法及び運転支援装置 | |
JP2023128845A (ja) | 操舵制御方法及び操舵制御装置 | |
JP2022097185A (ja) | 車両制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19928312 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021519217 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019928312 Country of ref document: EP Effective date: 20211215 |