WO2020230228A1 - ロケータ装置およびその精度評価システム、gnss受信機、測位方法およびgnss受信機のデータ出力方法 - Google Patents
ロケータ装置およびその精度評価システム、gnss受信機、測位方法およびgnss受信機のデータ出力方法 Download PDFInfo
- Publication number
- WO2020230228A1 WO2020230228A1 PCT/JP2019/018893 JP2019018893W WO2020230228A1 WO 2020230228 A1 WO2020230228 A1 WO 2020230228A1 JP 2019018893 W JP2019018893 W JP 2019018893W WO 2020230228 A1 WO2020230228 A1 WO 2020230228A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- positioning
- gnss
- data
- autonomous
- unit
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/38—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
- G01S19/39—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/42—Determining position
- G01S19/48—Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/38—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
- G01S19/39—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/42—Determining position
- G01S19/48—Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system
- G01S19/49—Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system whereby the further system is an inertial position system, e.g. loosely-coupled
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/10—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
- G01C21/12—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
- G01C21/16—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
- G01C21/165—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/26—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
- G01C21/28—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/38—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
- G01S19/39—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/42—Determining position
- G01S19/45—Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement
- G01S19/47—Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement the supplementary measurement being an inertial measurement, e.g. tightly coupled inertial
Definitions
- the present invention relates to a locator device that measures the current position.
- GNSS positioning that uses data received from GNSS (Global Navigation Satellite System) satellites such as GPS (Global Positioning System) satellites, and autonomous sensors such as speed sensors and orientation sensors are output.
- GNSS Global Navigation Satellite System
- GPS Global Positioning System
- autonomous sensors such as speed sensors and orientation sensors
- autonomous navigation positioning for positioning using the data to be performed
- composite positioning for positioning using both the data received from the GNSS satellite and the data output by the autonomous sensor.
- GNSS data the data received by the GNSS receiver from the GNSS satellite
- autonomous sensor data the data output by the autonomous sensor
- GNSS positioning position the position obtained as a result of GNSS positioning
- autonomous navigation position the position calculated as a result of autonomous navigation positioning
- composite positioning position the position obtained as a result of combined positioning
- Combined positioning can be expected to have higher accuracy than GNSS positioning and autonomous navigation positioning.
- the position of the vehicle is determined by combined positioning using the data received from the GNSS satellite by the GNSS receiver mounted on the vehicle and the data output by the autonomous sensor of the vehicle.
- a locator device for estimating is disclosed.
- the compound positioning is a combination of a tightly coupled method that calculates the compound positioning position collectively from GNSS data and autonomous sensor data, and the result of GNSS positioning (GNSS positioning position) and the result of autonomous navigation positioning (autonomous navigation position).
- GNSS positioning position GNSS positioning position
- autonomous navigation position GNSS positioning position
- loosely coupled method that calculates the positioning position. In an environment where satellite signals from GNSS satellites are sufficiently captured, there is almost no difference between the tightly coupled method and the loosely coupled method, but when the number of GNSS satellites that can capture satellite signals decreases, the tightly coupled method is more accurate. Easy to maintain.
- the time of the GNSS data and the time of the autonomous sensor data do not usually match.
- compound positioning is performed using GNSS data and autonomous sensor data whose times are different from each other, an error occurs in the positioning result.
- Patent Document 1 the interpolation value of the GNSS positioning position corresponding to the time of the autonomous sensor data is obtained, and the composite positioning is performed using the autonomous sensor data and the interpolation value of the GNSS positioning position to shift the time. The error caused by is corrected.
- Patent Document 2 when the time of the GNSS data and the time of the autonomous sensor data match, the composite positioning is performed, and the calculated composite positioning position is compared with the autonomous navigation position at the same time to correct the correction amount. By calculating and adding the correction amount to the autonomous navigation position at the current time, the error caused by the time lag is corrected.
- the present invention has been made to solve the above problems, and can improve the accuracy of composite positioning by suppressing an error caused by a time lag between GNSS data and autonomous sensor data.
- An object of the present invention is to provide a locator device capable of supporting any of loosely coupled composite positioning.
- the locator device acquires the GNSS data acquisition unit, which is the data received from the GNSS satellite by the GNSS receiver, from the GNSS receiver, and the autonomous sensor data, which is the data output by the autonomous sensor.
- a correction amount calculation unit that calculates the correction amount of autonomous navigation positioning based on the correction amount, and a second composite positioning position by correcting the second autonomous navigation position that is the result of the second autonomous navigation positioning using the correction amount. It is provided with an autonomous navigation position correction unit that calculates and outputs a second composite positioning position as a measurement result of the current position.
- the correction amount of the autonomous navigation positioning is calculated based on the difference between the first composite positioning position and the first autonomous navigation position calculated by using the interpolated value of the autonomous sensor data.
- the second autonomous navigation position which is the latest autonomous navigation position
- the correction amount the second composite positioning position as the measurement result of the current position is calculated.
- the behavior of the autonomous sensor data is more stable than that of the GNSS data, there is an advantage that it can be interpolated with high accuracy.
- the autonomous sensor data is interpolated instead of interpolating the result of autonomous navigation positioning, it is possible to support both loosely coupled composite positioning and tightly coupled composite positioning.
- FIG. It is a block diagram of the positioning system including the locator device which concerns on Embodiment 1.
- FIG. It is a figure for demonstrating operation of a data synchronization part. It is a figure for demonstrating the operation of the compound positioning unit, the autonomous navigation positioning unit, the correction amount calculation unit, and the autonomous navigation position correction unit.
- It is a flowchart which shows the operation of the locator device which concerns on Embodiment 1.
- FIG. It is a figure which shows the hardware configuration example of a locator device. It is a figure which shows the hardware configuration example of a locator device.
- FIG. It is a figure for demonstrating operation of the GNSS receiver which concerns on Embodiment 2.
- FIG. 2 It is a block diagram of the GNSS receiver which concerns on Embodiment 2.
- FIG. 2 is a block diagram of the accuracy evaluation system of the locator device which concerns on Embodiment 3.
- FIG. It is a flowchart which shows the operation of the accuracy evaluation system of the locator device which concerns on Embodiment 3.
- FIG. 1 is a configuration diagram of a positioning system according to the first embodiment.
- the positioning system includes a GNSS receiver 1, an autonomous sensor 2, and a locator device 10.
- the positioning system is mounted on the vehicle, and the vehicle equipped with the positioning system is hereinafter referred to as "own vehicle".
- the positioning system may not be permanently installed in the own vehicle, and may be built on a portable device such as a mobile phone, a smartphone, or a portable navigation device.
- the system configuration is such that the GNSS receiver 1 and the autonomous sensor 2 are externally attached to the locator device 10, the GNSS receiver 1 and the autonomous sensor 2 may be built in the locator device 10.
- the GNSS receiver 1 receives the satellite signal transmitted from the GNSS satellite, decodes the satellite signal, and outputs the extracted RAW data as GNSS data.
- the GNSS receiver 1 also has a GNSS positioning function using GNSS data, and also outputs a GNSS positioning position that is the result of the GNSS positioning.
- the autonomous sensor 2 is, for example, a gyro sensor, an acceleration sensor, a vehicle speed sensor, or the like of the own vehicle, and autonomously obtains data necessary for autonomous navigation positioning such as the orientation (yaw angle, roll angle, pitch angle) and speed of the own vehicle. Output as sensor data.
- the autonomous sensor 2 may include other sensors that can be used for autonomous navigation, such as a camera and LiDAR (Light Detection and Ringing).
- the locator device 10 calculates the current position of the own vehicle by combined positioning using the GNSS data output by the GNSS receiver 1 and the autonomous sensor data output by the autonomous sensor 2.
- the locator device 10 includes a GNSS data acquisition unit 11, an autonomous sensor data acquisition unit 12, a data synchronization unit 13, a composite positioning unit 14, an autonomous navigation positioning unit 15, a correction amount calculation unit 16, and an autonomous navigation position.
- the correction unit 17 is provided.
- the GNSS data acquisition unit 11, the autonomous sensor data acquisition unit 12, the data synchronization unit 13, the composite positioning unit 14, the autonomous navigation positioning unit 15, the correction amount calculation unit 16, and the autonomous navigation position correction unit 17 are all in the locator device 10. It does not have to be built-in, for example some of them may be built on an external server. By constructing a part of the configuration of the locator device 10 on the server, the calculation load on the locator device 10 can be reduced.
- the GNSS data acquisition unit 11 acquires GNSS data, which is RAW data received from the GNSS satellite by the GNSS receiver 1, from the GNSS receiver 1, attaches a time stamp indicating the time to the GNSS data, and then obtains the GNSS data.
- the time stamp of the GNSS data is the time when the GNSS data acquisition unit 11 acquires the GNSS data.
- the time of the GNSS data may be the time when the GNSS receiver 1 starts decoding the satellite signal or the time when the decoding of the satellite signal is completed.
- the timing at which the GNSS data acquisition unit 11 acquires the GNSS data is when the GNSS receiver 1 transmits the GNSS data, and the GNSS data acquisition unit 11 cannot control the timing.
- the autonomous sensor data acquisition unit 12 acquires the autonomous sensor data (yaw angle, roll angle, pitch angle, speed, etc.) of the own vehicle output by the autonomous sensor 2, and attaches a time stamp indicating the time to the autonomous sensor data. Then, the autonomous sensor data is stored.
- the time stamp of the autonomous sensor data is the time when the autonomous sensor data acquisition unit 12 acquires the autonomous sensor data.
- the timing at which the autonomous sensor data acquisition unit 12 acquires the autonomous sensor data is when the autonomous sensor data acquisition unit 12 transmits the autonomous sensor data, and the autonomous sensor data acquisition unit 12 cannot control the timing. Can not.
- the data synchronization unit 13 monitors the operations of the GNSS data acquisition unit 11 and the autonomous sensor data acquisition unit 12, and when the autonomous sensor data acquisition unit 12 acquires the autonomous sensor data, the most recently acquired data is the GNSS. Determine whether it is data or autonomous sensor data. At this time, if the most recently acquired data is GNSS data, the data synchronization unit 13 refers to the time stamp of the latest GNSS data and calculates the interpolated value of the autonomous sensor data corresponding to that time. .. That is, when the autonomous sensor data acquisition unit 12 acquires the autonomous sensor data after the GNSS data acquisition unit 11 has acquired the GNSS data, the data synchronization unit 13 has the autonomous sensor data corresponding to the time of the latest GNSS data. Calculate the interpolated value.
- the method of interpolating the autonomous sensor data may be any method, and for example, known interpolation methods such as spline interpolation and linear interpolation can be used.
- the acquired autonomous sensor data DD [t 1] at time t 1, GNSS data DG followed time t 2 [t 2] is obtained, followed by a time t 3 the autonomous sensor data DD [t
- the data synchronization unit 13 determines the interpolated value DD [t 2 ] of the autonomous sensor data corresponding to the time t 2 of the latest GNSS data DG [t 2 ] at the timing of time t 3 (hereinafter, “Autonomous sensor data DD [t 2 ] (interpolated value)”) is calculated.
- the acquired autonomous sensor data DD [t 4] In the subsequent time t 4, the data obtained recently an autonomous sensor data DD [t 3], not a GNSS data, at time t 4 At the timing, the autonomic sensor data is not interpolated.
- the subsequent time t 5 GNSS data DG [t 5] is obtained, when the subsequent time t 6 to the autonomous sensor data DD [t 6] are acquired, data synchronization section 13, at time t 6,
- the interpolated value DD [t 5 ] of the autonomous sensor data corresponding to the time t 5 of the latest GNSS data DG [t 5 ] (hereinafter referred to as “autonomous sensor data DD [t 5 ] (interpolated value)”) is calculated.
- the most recently acquired data is the autonomous sensor data DD [t 6 ], not the GNSS data, so the time t 7 At the timing of, the interpolation processing of the autonomous sensor data is not performed.
- the composite positioning unit 14 converts the latest GNSS data and the interpolated value of the autonomous sensor data corresponding to the time of the GNSS data. Perform the compound positioning used.
- This composite positioning may be a tightly coupled method in which the composite positioning position is calculated collectively from the interpolated values of the GNSS data and the autonomous sensor data, or the GNSS positioning result (GNSS positioning position) using the GNSS data and the autonomous sensor data.
- a loosely coupled method may be used in which the composite positioning position is calculated using the result of autonomous navigation positioning (autonomous navigation position) using the interpolated value of.
- the composite positioning position calculated by the composite positioning unit 14 is referred to as a “first composite positioning position”.
- the data synchronization unit 13 obtains the autonomous sensor data itself (yaw angle, roll angle, pitch angle, traveling speed, etc. of the own vehicle) acquired by the autonomous sensor data acquisition unit 12. Need to interpolate.
- the data synchronization unit 13 may interpolate the position and orientation data of the own vehicle calculated from the autonomous sensor data.
- the composite positioning unit 14, autonomy and GNSS data DG [t 2] sensor data DD [t 2] perform complex positioning using the (interpolated value), FIG.
- the first composite positioning position PC1 [t 2 ] shown in 3 is calculated.
- the composite positioning unit 14, GNSS data DG [t 5] autonomous sensor data DD [t 5] make composite positioning using the (interpolated value), first shown in FIG. 3
- the composite positioning position PC1 [t 5 ] of is calculated.
- the composite positioning unit 14 performs composite positioning using the GNSS data DG [t 8 ] and the autonomous sensor data DD [t 8 ] (interpolated value), and the first one shown in FIG.
- the composite positioning position PC1 [t 8 ] is calculated.
- the autonomous navigation positioning unit 15 uses the first autonomous navigation positioning using the interpolated value of the autonomous sensor data calculated by the data synchronization unit 13 and the second autonomous sensor data using the latest autonomous sensor data acquired by the autonomous sensor data acquisition unit 12.
- the autonomous navigation position calculated by the first autonomous navigation positioning is referred to as a "first autonomous navigation position”
- the autonomous navigation position calculated by the second autonomous navigation positioning is referred to as a "second autonomous navigation position”.
- the autonomous navigation positioning unit 15 includes a first autonomous navigation positioning using autonomous sensor data DD [t 2] (the interpolated value), the most recent of the autonomous sensor data
- the second autonomous navigation positioning is performed using the DD [t 3 ], and the first autonomous navigation position PD1 [t 2 ] and the second autonomous navigation position PD2 [t 3 ] shown in FIG. 3 are calculated.
- the autonomous navigation positioning unit 15 performs the second autonomous navigation positioning using the latest autonomous sensor data DD [t 4], a second autonomous navigation position shown in FIG. 3 PD2 [ t 4 ] is calculated.
- the autonomous navigation positioning unit 15 performs the first autonomous navigation positioning using the autonomous sensor data DD [t 5 ] (interpolated value) and the latest autonomous sensor data DD [t 6 ].
- the second autonomous navigation positioning used is performed, and the first autonomous navigation position PD1 [t 5 ] and the second autonomous navigation position PD2 [t 6 ] shown in FIG. 3 are calculated.
- the autonomous navigation positioning unit 15 performs the second autonomous navigation positioning using the latest autonomous sensor data DD [t 7 ], and performs the second autonomous navigation positioning PD2 [2] shown in FIG. t 7 ] is calculated.
- the autonomous navigation positioning unit 15 performs the first autonomous navigation positioning using the autonomous sensor data DD [t 8 ] (interpolated value) and the latest autonomous sensor data DD [t 9 ].
- the second autonomous navigation positioning used is performed, and the first autonomous navigation position PD1 [t 8 ] and the second autonomous navigation position PD2 [t 9 ] shown in FIG. 3 are calculated.
- the correction amount calculation unit 16 has a first composite positioning position that is the result of the composite positioning by the composite positioning unit 14 and a first autonomous navigation position that is the result of the first autonomous navigation positioning by the autonomous navigation positioning unit 15. Based on the difference, the correction amount of autonomous navigation positioning is calculated.
- the correction amount calculating unit 16 a first composite measurement position PC1 [t 2] and the first autonomous navigation position PD1 shown in Figures 3 and [t 2] Is calculated as the correction amount ⁇ C [t 2 ]. Further, at time t 6, the correction amount calculating unit 16, a difference between the first composite measurement position PC1 shown in FIG. 3 [t 5] the first autonomous navigation position PD1 [t 5], correction amount Calculated as ⁇ C [t 5 ]. Further, at the timing of time t 9 , the correction amount calculation unit 16 corrects the difference between the first composite positioning position PC1 [t 8 ] and the first autonomous navigation position PD1 [t 8 ] shown in FIG. Calculated as ⁇ C [t 8 ].
- the autonomous navigation position correction unit 17 corrects the second autonomous navigation position, which is the result of the second autonomous navigation positioning, by using the latest correction amount calculated by the correction amount calculation unit 16. Calculate the composite positioning position.
- the locator device 10 outputs the second composite positioning position calculated by the autonomous navigation position correction unit 17 as a measurement result of the current position of the own vehicle.
- the autonomous navigation position correcting unit 17 adding the correction amount [Delta] C [t 2] to the second autonomous navigation position PD2 [t 3] shown in FIG. 3 Then, the second composite positioning position PC2 [t 3 ] is calculated. Further, at time t 4, the autonomous navigation position correcting unit 17, by adding the correction amount [Delta] C [t 2] to the second autonomous navigation position PD2 [t 4] shown in FIG. 3, the second composite The positioning position PC2 [t 4 ] is calculated. Further, at the timing of time t 6 , the autonomous navigation position correction unit 17 adds the correction amount ⁇ C [t 5 ] to the second autonomous navigation position PD2 [t 6 ] shown in FIG.
- the positioning position PC2 [t 6 ] is calculated. Further, at the timing of time t 7 , the autonomous navigation position correction unit 17 adds the correction amount ⁇ C [t 5 ] to the second autonomous navigation position PD2 [t 7 ] shown in FIG. 3, thereby forming a second composite. The positioning position PC2 [t 7 ] is calculated. Further, at the timing of time t 9 , the autonomous navigation position correction unit 17 adds the correction amount ⁇ C [t 8 ] to the second autonomous navigation position PD2 [t 9 ] shown in FIG. 3, thereby forming a second composite. The positioning position PC2 [t 9 ] is calculated.
- the locator device 10 at each timing of time t 3 , t 4 , t 6 , t 7 , and t 9 , as the measurement result of the current position, the second compound positioning position PC2 [t 3 ], PC2 [t 4 ], PC2 [t 6 ], PC2 [t 7 ], PC2 [t 9 ] are output.
- time t 3, t 4, t 6 , t 7, t 9 is timing when the autonomous sensor data DD [t] is obtained. Therefore, it can be said that the locator device 10 operates based on the time axis of the autonomous sensor 2.
- the difference between the first composite positioning position (PC1) and the first autonomous navigation position (PD1) calculated by using the interpolated value of the autonomous sensor data The correction amount of the autonomous navigation positioning is calculated based on the correction amount, and the second autonomous navigation position (PD2), which is the latest autonomous navigation position, is corrected by using the correction amount, so that the second autonomous navigation position as a measurement result of the current position is obtained.
- the composite positioning position (PC2) of is calculated.
- the behavior of the autonomous sensor data is more stable than that of the GNSS data, there is an advantage that it can be interpolated with high accuracy. Furthermore, since the autonomous sensor data is interpolated instead of interpolating the result of autonomous navigation positioning, it is possible to support both loosely coupled composite positioning and tightly coupled composite positioning.
- the GNSS data acquisition unit 11 acquires the GNSS data at an arbitrary timing when the GNSS data is output from the GNSS receiver 1.
- the data synchronization unit 13 receives the data most recently acquired by the GNSS data acquisition unit 11 and the autonomous sensor data acquisition unit 12. It is confirmed whether or not the data is GNSS data (step S101).
- the data synchronization unit 13 When the data most recently acquired by the GNSS data acquisition unit 11 and the autonomous sensor data acquisition unit 12 is GNSS data (YES in step S101), the data synchronization unit 13 has the autonomous sensor data corresponding to the time of the latest GNSS data.
- the interpolated value of is calculated (step S102).
- the composite positioning unit 14 calculates the first composite positioning position (PC1) corresponding to the time of the latest GNSS data by performing composite positioning using the interpolated values of the latest GNSS data and the autonomous sensor data.
- the autonomous navigation positioning unit 15 calculates the first autonomous navigation position (PD1) corresponding to the time of the latest GNSS data by performing the first autonomous navigation positioning using the interpolated value of the autonomous sensor data. (Step S104).
- the correction amount calculation unit 16 determines the autonomous navigation positioning based on the difference between the first composite positioning position (PC1) calculated in step S103 and the first autonomous navigation position (PD1) calculated in step S104.
- the correction amount ( ⁇ C) of is calculated (step S105).
- the autonomous navigation positioning unit 15 performs the second autonomous navigation positioning using the latest autonomous sensor data acquired in step S101 to determine the second autonomous navigation position (PD2) corresponding to the current time. Calculate (step S106). After that, the autonomous navigation position correction unit 17 corrects the second autonomous navigation position (PD2) using the correction amount calculated in step S105, thereby reducing the error caused by the time difference between the GNSS data and the autonomous sensor data. The removed second composite positioning position (PC2) is calculated (step S107). Then, the autonomous navigation position correction unit 17 outputs the second composite positioning position (PC2) from the locator device 10 as the measurement result of the current position of the own vehicle (step S108).
- step S101 if the data most recently acquired by the GNSS data acquisition unit 11 and the autonomous sensor data acquisition unit 12 is autonomous sensor data (NO in step S101), steps S102 to S105 are not executed, and steps S102 to S105 are not executed. Move to S106.
- the value of the correction amount ( ⁇ C) for autonomous navigation positioning is not updated (that is, the value of the correction amount ( ⁇ C) calculated in step S103 most recently is maintained). Therefore, in the example of FIG. 3, for example, the correction amount added to the second autonomous navigation position PD2 [t 4 ] corresponding to the time t 4 is the second autonomous navigation position PD 2 [t 4 ] corresponding to the time t 3 . It is the same as the correction amount added to t 3 ] (both are correction amounts ⁇ C [t 2 ]).
- the locator device 10 repeatedly executes the above steps S100 to S108. However, for example, when it becomes necessary to suppress the processing load of the locator device 10, the acquisition cycle of GNSS data and the acquisition cycle of autonomous sensor data (execution cycle of step S101) are automatically lowered, or the correction amount is adjusted. Processing may be performed to reduce the processing load of the locator device 10, such as lowering the update frequency (execution frequency of steps S102 to S105).
- the locator device 10 is one of such sensors. Can be used as. For example, by collating the information of the current position of the own vehicle output by the locator device 10 with the highly accurate map information, even in an environment where it is difficult for the camera or the like to operate normally (for example, backlight, heavy rain, heavy fog, etc.). The position and target route of the own vehicle can be specified with high accuracy, and automatic driving can be continued.
- the route guidance at the lane level becomes possible by using the position of the own vehicle and the highly accurate map information specified by the locator device 10. Specifically, it guides you to change lanes to the appropriate lane when your vehicle is not traveling in the appropriate lane, determines whether your vehicle is traveling in the opposite lane, and then reverses. If so, it is possible to issue a warning.
- Augmented Reality which displays additional information on the actual scenery around the vehicle by using a display device that displays an image on a screen that the driver can see, such as a head-up display.
- AR Augmented Reality
- the position of the own vehicle can be specified with high accuracy, which can contribute to the improvement of the reliability of the AR technology.
- FIG. 5 and 6 are diagrams showing an example of the hardware configuration of the locator device 10, respectively.
- Each function of the component of the locator device 10 shown in FIG. 1 is realized by, for example, the processing circuit 50 shown in FIG. That is, the locator device 10 acquires the GNSS data, which is the data received from the GNSS satellite by the GNSS receiver 1, from the GNSS receiver 1, acquires the autonomous sensor data, which is the data output by the autonomous sensor 2, and obtains the GNSS data.
- the autonomous sensor data is acquired after the acquisition, the interpolated value of the autonomous sensor data corresponding to the time of the latest GNSS data is calculated, and the composite positioning and the autonomous sensor data using the interpolated values of the latest GNSS data and the autonomous sensor data are used.
- the first autonomous navigation positioning using the interpolated value and the second autonomous navigation positioning using the latest autonomous sensor data are performed, and the first combined positioning position and the first autonomous navigation positioning which are the results of the combined positioning are performed.
- the correction amount of the autonomous navigation positioning is calculated based on the difference from the first autonomous navigation position which is the result of the above, and the correction amount is used to correct the second autonomous navigation position which is the result of the second autonomous navigation positioning.
- the processing circuit 50 may be dedicated hardware, or may be a processor (Central Processing Unit (CPU), processing unit, arithmetic unit, microprocessor, microprocessor, etc.) that executes a program stored in the memory. It may be configured by using a DSP (also called a Digital Signal Processor)).
- DSP Digital Signal Processor
- the processing circuit 50 may be, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), or an FPGA (Field-Programmable). GateArray), or a combination of these, etc.
- the functions of the components of the locator device 10 may be realized by individual processing circuits, or these functions may be collectively realized by one processing circuit.
- FIG. 6 shows an example of the hardware configuration of the locator device 10 when the processing circuit 50 is configured by using the processor 51 that executes the program.
- the functions of the components of the locator device 10 are realized by software (software, firmware, or a combination of software and firmware).
- the software or the like is described as a program and stored in the memory 52.
- the processor 51 realizes the functions of each part by reading and executing the program stored in the memory 52. That is, the locator device 10 is a process of acquiring GNSS data which is data received from the GNSS satellite by the GNSS receiver 1 from the GNSS receiver 1 when executed by the processor 51, and data output by the autonomous sensor 2.
- the process of calculating the correction amount of the autonomous navigation positioning based on the difference between the first compound positioning position which is the result of the above and the first autonomous navigation position which is the result of the first autonomous navigation positioning, and the correction amount are used.
- a memory 52 for storing a program to be executed as a result is provided. In other words, it can be said that this program causes the computer to execute the procedure and method of operation of the components of the locator device 10.
- the memory 52 is a non-volatile or non-volatile memory such as a RAM (RandomAccessMemory), a ROM (ReadOnlyMemory), a flash memory, an EPROM (ErasableProgrammableReadOnlyMemory), or an EEPROM (ElectricallyErasableProgrammableReadOnlyMemory). Volatile semiconductor memory, HDD (Hard Disk Drive), magnetic disk, flexible disk, optical disk, compact disk, mini disk, DVD (Digital Versatile Disc) and its drive device, etc., or any storage medium used in the future. You may.
- RAM RandomAccessMemory
- ROM ReadOnlyMemory
- flash memory an EPROM (ErasableProgrammableReadOnlyMemory), or an EEPROM (ElectricallyErasableProgrammableReadOnlyMemory).
- Volatile semiconductor memory Volatile semiconductor memory, HDD (Hard Disk Drive), magnetic disk, flexible disk, optical disk, compact disk,
- the present invention is not limited to this, and a configuration in which a part of the components of the locator device 10 is realized by dedicated hardware and another part of the components is realized by software or the like may be used.
- the function is realized by the processing circuit 50 as dedicated hardware, and for some other components, the processing circuit 50 as the processor 51 is stored in the memory 52. It is possible to realize the function by reading and executing it.
- the locator device 10 can realize each of the above-mentioned functions by hardware, software, or a combination thereof.
- the accuracy of the time of the GNSS data is important because it affects the accuracy of the correction amount ( ⁇ C) of the autonomous navigation calculated by the correction amount calculation unit 16.
- a GNSS receiver 1 that enables the locator device 10 to accurately record the time of GNSS data.
- the GNSS receiver 1 performs decoding processing for extracting GNSS data (RAW data) from satellite signals and positioning processing (GNSS positioning) using GNSS data. Since the amount of GNSS data is large and the positioning process also takes a certain amount of time, the GNSS receiver 1 outputs the GNSS data after the GNSS receiver 1 receives the satellite signal, and the GNSS data is acquired by the locator device 10. There will be a time lag before.
- RAW data GNSS data
- GNSS positioning positioning
- GNSS receiver 1 prior to the time T 3 to output data such as GNSS data and positioning result, as shown in FIG. 7, the decoding of the satellite signal receiving satellite signals A notification to the locator device 10 is output at the start time T 1 or at the time T 2 when the decoding of the satellite signal is completed, as shown in FIG.
- the GNSS data acquisition unit 11 of the locator device 10 records the time T 1 or T 2 notified from the GNSS receiver 1 and acquires the GNSS data at the time T 3.
- the accuracy of the time of the GNSS data recognized by the locator device 10 is improved, and the accuracy of the correction amount ( ⁇ C) of the autonomous navigation calculated by the correction amount calculation unit 16 is improved, so that the autonomous navigation position correction unit 17 calculates.
- the accuracy of the measurement result of the second compound positioning position (PC2) that is, the current position of the own vehicle is also improved.
- FIG. 9 is a configuration diagram of the GNSS receiver 1 according to the second embodiment.
- the GNSS receiver 1 includes an RF (Radio Frequency) unit 101, a decoding unit 102, a positioning calculation unit 103, a notification output unit 104, and a data output unit 105.
- RF Radio Frequency
- the RF unit 101 performs reception processing of the satellite signal transmitted from the GNSS satellite.
- the decoding unit 102 acquires GNSS data (RAW data) from the satellite signal by decoding the satellite signal.
- the positioning calculation unit 103 performs GNSS positioning to calculate the current position of the GNSS receiver 1 by performing a positioning calculation using the GNSS data acquired by the decoding unit 102.
- the notification output unit 104 outputs a notification to the locator device 10 at a time T 1 when the decoding unit 102 starts decoding the satellite signal or a time T 2 when the decoding unit 102 completes decoding the satellite signal.
- the data output unit 105 after the decoding unit 102 has completed the decoding of the satellite signal, specifically, at the time T 3 the positioning calculation unit 103 has completed the GNSS positioning, GNSS data, positioning calculations the decoding unit 102 obtains Data such as the positioning result of unit 103 is output to the locator device 10.
- the GNSS receiver 1 can also be realized with the hardware configuration as shown in FIG. 5 or FIG.
- the GNSS receiver 1 performs reception processing of the satellite signal transmitted from the GNSS satellite, acquires GNSS data by decoding the satellite signal, and obtains the satellite signal.
- the processing circuit 50 is provided for outputting a notification when the decoding of the satellite signal is started or completed, and outputting GNSS data after the decoding of the satellite signal is completed.
- the GNSS receiver 1 when the GNSS receiver 1 has the configuration shown in FIG. 6, the GNSS receiver 1 performs a process of receiving a satellite signal transmitted from the GNSS satellite and decoding the satellite signal when executed by the processor 51. As a result, the process of acquiring GNSS data, the process of outputting a notification when the decoding of the satellite signal is started or completed, and the process of outputting the GNSS data after the decoding of the satellite signal is completed are executed as a result.
- a memory 52 for storing a program to be used is provided.
- FIG. 10 is a configuration diagram of an accuracy evaluation system for the locator device 10 according to the third embodiment.
- the configuration of the positioning system of FIG. 10 is obtained by further connecting the surveying device 3, the reference data acquisition unit 18, and the accuracy evaluation unit 19 to the locator device 10 with respect to the configuration of FIG.
- the reference data acquisition unit 18 and the accuracy evaluation unit 19 may be built in the locator device 10.
- the surveying device 3 receives the satellite signal transmitted from the GNSS satellite, and uses the GNSS data (RAW data) extracted from the satellite signal to perform positioning with higher accuracy than the GNSS receiver 1. Positioning performed by the surveying device 3 is not limited to GNSS positioning. For example, when the surveying device 3 has a built-in high-precision autonomous sensor, composite positioning using the autonomous sensor data acquired by the autonomous sensor is performed. It may be done. Hereinafter, the position obtained as the positioning result of the surveying device 3 is referred to as a “high-precision positioning position”.
- the surveying device 3 is hardware different from the GNSS receiver 1, but since both perform positioning calculations using the GNSS data received from the same GNSS satellite, the surveying device 3 is basically used.
- the time of the high-precision positioning position to be output is synchronized with the time of the GNSS data output by the GNSS receiver 1.
- the reference data acquisition unit 18 acquires high-precision positioning position data from the surveying device 3 and inputs the data to the accuracy evaluation unit 19.
- the accuracy evaluation unit 19 acquires the first composite positioning position (PC1) calculated by the composite positioning unit 14 of the locator device 10 and compares the time of the first composite positioning position with the high-precision positioning position at the same time. As a result, the accuracy of the first composite positioning position is evaluated, and the evaluation result (for example, the error of the first composite positioning position based on the high-precision positioning position) is output.
- FIG. 11 is a flowchart showing the operation of the accuracy evaluation system of the locator device 10 according to the third embodiment.
- the flow of FIG. 11 is obtained by adding steps S110 and S111 described below between steps S103 and S104 of the flow of FIG. Since the other steps are the same as the flow of FIG. 4, only steps S110 and S111 will be described here.
- the reference data acquisition unit 18 acquires the high-precision positioning position data at an arbitrary timing when the high-precision positioning position is output from the surveying device 3. ..
- the accuracy evaluation unit 19 when the composite positioning unit 14 calculates the first composite positioning position corresponding to the time of the latest GNSS data in step S103, the accuracy evaluation unit 19 has the same time as the latest GNSS data. It is confirmed whether or not the reference data acquisition unit 18 has acquired the high-precision positioning position of (step S110).
- step S110 If the high-precision positioning position at the same time as the latest GNSS data has been acquired (YES in step S110), the accuracy evaluation unit 19 sets the first compound positioning position calculated in step S103 to the high at the same time. Accuracy The accuracy of the first composite positioning position is evaluated by comparing with the positioning position (step S111). If the high-precision positioning position at the same time as the latest GNSS data is not acquired (NO in step S110), step S103 is not executed.
- the accuracy of the locator device 10 can be evaluated based on the high-precision positioning position which is the positioning result of the surveying device 3. Further, since the time of the first compound positioning position calculated by the compound positioning unit 14 and the time of the high-precision positioning position calculated by the surveying device 3 are both based on the time of the GNSS data, the first compound is used. The positioning position can be directly compared with the high-precision positioning position. Therefore, this evaluation system has an advantage that the accuracy of the locator device 10 can be evaluated without modifying the high-precision positioning position.
- the result of the accuracy evaluation by the accuracy evaluation unit 19 is used, for example, when the manufacturer of the locator device 10 determines the specifications of the locator device 10, or confirms whether or not each locator device 10 satisfies the specifications. Can be used for testing. In addition, when the accuracy decreases at a specific time or a specific position, it can be used to identify the location and improve the accuracy.
- each embodiment can be freely combined, and each embodiment can be appropriately modified or omitted.
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Automation & Control Theory (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
- Navigation (AREA)
- Traffic Control Systems (AREA)
Abstract
ロケータ装置(10)において、GNSSデータ取得部(11)は、GNSS受信機(1)がGNSS衛星から受信したGNSSデータを取得する。自律センサデータ取得部(12)は、自律センサ(2)が出力する自律センサデータを取得する。データ同期部(13)は、直近のGNSSデータの時刻に対応する自律センサデータの補間値を算出する。複合測位部(14)は、直近のGNSSデータおよび自律センサデータの補間値を用いた複合測位を行う。自律航法測位部(15)は、自律センサデータの補間値を用いた第1の自律航法測位、および、最新の自律センサデータを用いた第2の自律航法測位を行う。修正量算出部(16)は、複合測位の結果と第1の自律航法測位の結果との差に基づいて自律航法測位の修正量を算出する。自律航法位置修正部(17)は、修正量を用いて第2の自律航法測位の結果を修正することで現在位置を算出する。
Description
本発明は、現在位置の測定を行うロケータ装置に関するものである。
現在位置の測定方法としては、GPS(Global Positioning System)衛星などのGNSS(Global Navigation Satellite System)衛星から受信したデータを用いて測位する「GNSS測位」、速度センサや方位センサなどの自律センサが出力するデータを用いて測位する「自律航法測位」、GNSS衛星から受信したデータと自律センサが出力するデータとの両方を用いて測位する「複合測位」などが知られている。
本明細書では、GNSS受信機がGNSS衛星から受信したデータ(いわゆる「RAWデータ」)を「GNSSデータ」、自律センサが出力するデータを「自律センサデータ」という。また、GNSS測位の結果として得られた位置を「GNSS測位位置」、自律航法測位の結果として算出された位置を「自律航法位置」、複合測位の結果として得られた位置を「複合測位位置」という。
複合測位は、GNSS測位および自律航法測位よりも高精度な測位が期待できる。例えば、下記の特許文献1,2には、車両に搭載されたGNSS受信機がGNSS衛星から受信したデータと、当該車両の自律センサが出力するデータとを用いた複合測位によって、当該車両の位置を推定するロケータ装置が開示されている。
複合測位には、GNSSデータと自律センサデータとから一括して複合測位位置を演算する密結合方式と、GNSS測位の結果(GNSS測位位置)と自律航法測位の結果(自律航法位置)とから複合測位位置を演算する疎結合方式とがある。GNSS衛星からの衛星信号が十分に捕捉されている環境下では、密結合方式と疎結合方式との差は殆どないが、衛星信号を捕捉できるGNSS衛星が少なくなると、密結合方式の方が精度を維持しやすい。
ここで、GNSS受信機と自律センサとは別のハードウェアであるため、通常、GNSSデータの時刻と自律センサデータの時刻とは一致しない。互いに時刻の異なるGNSSデータと自律センサデータとを用いて複合測位を行うと、測位結果に誤差が生じる。この対策として、特許文献1では、自律センサデータの時刻に対応するGNSS測位位置の補間値を求め、自律センサデータとGNSS測位位置の補間値とを用いて複合測位を行うことで、時刻のずれに起因する誤差を補正している。また、特許文献2では、GNSSデータの時刻と自律センサデータの時刻とが一致したときに複合測位を行い、算出された複合測位位置をそれと同時刻の自律航法位置と比較することで修正量を算出し、当該修正量を現在時刻の自律航法位置に加えることで、時刻のずれに起因する誤差を補正している。
特許文献1の技術では、GNSS測位の結果であるGNSS測位位置(緯度、軽度など)を補間するため、密結合複合測位を行うことができない。GNSSデータ(RAWデータ)を補間すれば密結合複合測位は可能であるが、GNSSデータは挙動が複雑であるため精度良く補間することは難しい。
また、上述したように、GNSS受信機と自律センサとは別のハードウェアであるため、通常、GNSSデータの時刻と自律センサデータの時刻とは一致しない。そのため、特許文献2の技術では、補正量を算出できるタイミングが殆ど存在しない可能性があり、その場合、十分な精度を維持するのが困難になる。
本発明は以上のような課題を解決するためになされたものであり、GNSSデータと自律センサデータの時刻ずれに起因する誤差を抑制することで複合測位の精度を向上でき、密結合複合測位および疎結合複合測位のいずれにも対応できるロケータ装置を提供することを目的とする。
本発明に係るロケータ装置は、GNSS受信機がGNSS衛星から受信したデータであるGNSSデータを、GNSS受信機から取得するGNSSデータ取得部と、自律センサが出力するデータである自律センサデータを取得する自律センサデータ取得部と、GNSSデータ取得部がGNSSデータを取得した後に自律センサデータ取得部が自律センサデータを取得すると、直近のGNSSデータの時刻に対応する自律センサデータの補間値を算出するデータ同期部と、直近のGNSSデータおよび自律センサデータの補間値を用いた複合測位を行う複合測位部と、自律センサデータの補間値を用いた第1の自律航法測位、および、最新の自律センサデータを用いた第2の自律航法測位を行う自律航法測位部と、複合測位の結果である第1の複合測位位置と第1の自律航法測位の結果である第1の自律航法位置との差に基づいて自律航法測位の修正量を算出する修正量算出部と、修正量を用いて第2の自律航法測位の結果である第2の自律航法位置を修正することで第2の複合測位位置を算出し、第2の複合測位位置を現在位置の測定結果として出力する自律航法位置修正部と、を備えるものである。
本発明に係るロケータ装置では、自律センサデータの補間値を用いて算出された第1の複合測位位置と第1の自律航法位置との差に基づいて自律航法測位の修正量が算出され、当該修正量を用いて最新の自律航法位置である第2の自律航法位置が修正されることで、現在位置の測定結果としての第2の複合測位位置が算出される。これにより、現在位置の測定結果に、GNSSデータと自律センサデータとの時刻ずれに起因する誤差が生じることが抑制される。また、自律センサデータはGNSSデータに比べて挙動が安定しているため、精度良く補間可能という利点もある。さらに、自律航法測位の結果を補間するのではなく、自律センサデータを補間するため、疎結合複合測位と密結合複合測位のいずれにも対応可能である。
本発明の目的、特徴、態様、および利点は、以下の詳細な説明と添付図面とによって、より明白となる。
<実施の形態1>
図1は、実施の形態1に係る測位システムの構成図である。図1のように、当該測位システムは、GNSS受信機1と、自律センサ2と、ロケータ装置10とを備えている。本実施の形態では、測位システムは車両に搭載されているものとし、以下、当該測位システムが搭載された車両を「自車両」という。ただし、当該測位システムの全部または一部は、自車両に常設されていなくてもよく、例えば携帯電話やスマートフォン、ポータブルナビゲーション装置などの携帯型機器上に構築されていてもよい。また、ここではGNSS受信機1および自律センサ2がロケータ装置10に外付けされるシステム構成としたが、GNSS受信機1および自律センサ2はロケータ装置10に内蔵されてもよい。
図1は、実施の形態1に係る測位システムの構成図である。図1のように、当該測位システムは、GNSS受信機1と、自律センサ2と、ロケータ装置10とを備えている。本実施の形態では、測位システムは車両に搭載されているものとし、以下、当該測位システムが搭載された車両を「自車両」という。ただし、当該測位システムの全部または一部は、自車両に常設されていなくてもよく、例えば携帯電話やスマートフォン、ポータブルナビゲーション装置などの携帯型機器上に構築されていてもよい。また、ここではGNSS受信機1および自律センサ2がロケータ装置10に外付けされるシステム構成としたが、GNSS受信機1および自律センサ2はロケータ装置10に内蔵されてもよい。
GNSS受信機1は、GNSS衛星から送信された衛星信号を受信し、衛星信号をデコードして抽出したRAWデータを、GNSSデータとして出力する。また、GNSS受信機1は、GNSSデータを用いたGNSS測位の機能も有しており、GNSS測位の結果であるGNSS測位位置も出力する。
自律センサ2は、例えば、自車両のジャイロセンサ、加速度センサ、車速センサなどであり、自車両の方位(ヨー角、ロール角およびピッチ角)や速度など、自律航法測位に必要なデータを、自律センサデータとして出力する。なお、自律センサ2には、カメラやLiDAR(Light Detection and Ranging)など、自律航法に利用可能な他のセンサ類を含んでいてもよい。
ロケータ装置10は、GNSS受信機1が出力するGNSSデータと自律センサ2が出力する自律センサデータとを用いる複合測位により自車両の現在位置を算出する。図1に示すように、ロケータ装置10は、GNSSデータ取得部11、自律センサデータ取得部12、データ同期部13、複合測位部14、自律航法測位部15、修正量算出部16および自律航法位置修正部17を備えている。ただし、GNSSデータ取得部11、自律センサデータ取得部12、データ同期部13、複合測位部14、自律航法測位部15、修正量算出部16および自律航法位置修正部17の全てがロケータ装置10に内蔵されている必要はなく、例えば、それらの一部は外部のサーバー上に構築されていてもよい。ロケータ装置10の構成の一部をサーバー上に構築することで、ロケータ装置10にかかる演算負荷を低減することができる。
GNSSデータ取得部11は、GNSS受信機1がGNSS衛星から受信したRAWデータであるGNSSデータをGNSS受信機1から取得し、GNSSデータに時刻を表すタイムスタンプを付した上で、当該GNSSデータを記憶する。本実施の形態では、GNSSデータのタイムスタンプの時刻は、GNSSデータ取得部11がGNSSデータを取得した時刻とする。ただし、後述するように、GNSSデータの時刻は、GNSS受信機1が衛星信号のデコードを開始した時刻、あるいは、衛星信号のデコードが完了した時刻であってもよい。なお、GNSSデータ取得部11がGNSSデータを取得するタイミングは、GNSS受信機1がGNSSデータを送信したときであり、GNSSデータ取得部11側でそのタイミングを制御することはできない。
自律センサデータ取得部12は、自律センサ2が出力する自律センサデータ(自車両のヨー角、ロール角、ピッチ角、速度など)を取得し、自律センサデータに時刻を表すタイムスタンプを付した上で、自律センサデータを記憶する。本実施の形態では、自律センサデータのタイムスタンプの時刻は、自律センサデータ取得部12が自律センサデータを取得した時刻とする。なお、自律センサデータ取得部12が自律センサデータを取得するタイミングは、自律センサデータ取得部12が自律センサデータを送信したときであり、自律センサデータ取得部12側でそのタイミングを制御することはできない。
データ同期部13は、GNSSデータ取得部11および自律センサデータ取得部12の動作を監視し、自律センサデータ取得部12が自律センサデータを取得したときに、その直近に取得されたデータが、GNSSデータであるか自律センサデータであるかを判定する。このとき、直近に取得されたデータがGNSSデータであった場合、データ同期部13は、直近のGNSSデータのタイムスタンプの時刻を参照し、その時刻に対応する自律センサデータの補間値を算出する。すなわち、データ同期部13は、GNSSデータ取得部11がGNSSデータを取得した後に、自律センサデータ取得部12が自律センサデータを取得した場合に、直近のGNSSデータの時刻に対応する自律センサデータの補間値を算出する。なお、自律センサデータを補間する方法は任意の方法でよく、例えば、スプライン補間、線形補間など公知の補間方法を用いることができる。
例えば図2のように、時刻t1に自律センサデータDD[t1]が取得され、続く時刻t2にGNSSデータDG[t2]が取得され、続く時刻t3に自律センサデータDD[t3]が取得された場合、データ同期部13は、時刻t3のタイミングで、直近のGNSSデータDG[t2]の時刻t2に対応する自律センサデータの補間値DD[t2](以下「自律センサデータDD[t2](補間値)」という)を算出する。
また、続く時刻t4で自律センサデータDD[t4]が取得されても、その直近に取得されたデータは自律センサデータDD[t3]であり、GNSSデータではないため、時刻t4のタイミングでは、自律センサデータの補間処理は行われない。
そして、続く時刻t5にGNSSデータDG[t5]が取得され、続く時刻t6に自律センサデータDD[t6]が取得されると、データ同期部13は、時刻t6のタイミングで、直近のGNSSデータDG[t5]の時刻t5に対応する自律センサデータの補間値DD[t5](以下「自律センサデータDD[t5](補間値)」という)を算出する。
同様に、続く時刻t7で自律センサデータDD[t7]が取得されても、その直近に取得されたデータは自律センサデータDD[t6]であり、GNSSデータではないため、時刻t7のタイミングでは、自律センサデータの補間処理は行われない。
そして、続く時刻t8にGNSSデータDG[t8]が取得され、続く時刻t9に自律センサデータDD[t9]が取得されると、データ同期部13は、時刻t9のタイミングで、直近のGNSSデータDG[t8]の時刻t8に対応する自律センサデータの補間値DD[t8](以下「自律センサデータDD[t8](補間値)」という)を算出する。
図1に戻り、複合測位部14は、データ同期部13が自律センサデータの補間値を算出した場合に、直近のGNSSデータと、当該GNSSデータの時刻に対応する自律センサデータの補間値とを用いた複合測位を行う。この複合測位は、GNSSデータと自律センサデータの補間値とから一括して複合測位位置を演算する密結合方式でもよいし、GNSSデータを用いたGNSS測位の結果(GNSS測位位置)と自律センサデータの補間値を用いた自律航法測位の結果(自律航法位置)とを用いて複合測位位置を演算する疎結合方式でもよい。以下、複合測位部14により算出される複合測位位置を「第1の複合測位位置」という。
複合測位部14が密結合複合測位を行う場合、データ同期部13は、自律センサデータ取得部12が取得した自律センサデータそのもの(自車両のヨー角、ロール角、ピッチ角、走行速度など)を補間する必要がある。一方、複合測位部14が疎結合複合測位を行う場合は、データ同期部13は、自律センサデータから算出した自車両の位置および方位のデータを補間してもよい。
図2の例であれば、時刻t3のタイミングで、複合測位部14は、GNSSデータDG[t2]と自律センサデータDD[t2](補間値)を用いた複合測位を行い、図3に示す第1の複合測位位置PC1[t2]を算出する。また、時刻t6のタイミングで、複合測位部14は、GNSSデータDG[t5]と自律センサデータDD[t5](補間値)とを用いた複合測位を行い、図3に示す第1の複合測位位置PC1[t5]を算出する。また、時刻t9のタイミングで、複合測位部14は、GNSSデータDG[t8]と自律センサデータDD[t8](補間値)を用いた複合測位を行い、図3に示す第1の複合測位位置PC1[t8]を算出する。
自律航法測位部15は、データ同期部13が算出した自律センサデータの補間値を用いた第1の自律航法測位と、自律センサデータ取得部12が取得した最新の自律センサデータを用いた第2の自律航法測位とを行う。以下、第1の自律航法測位により算出される自律航法位置を「第1の自律航法位置」、第2の自律航法測位により算出される自律航法位置を「第2の自律航法位置」という。
図2の例であれば、時刻t3のタイミングで、自律航法測位部15は、自律センサデータDD[t2](補間値)を用いた第1の自律航法測位と、最新の自律センサデータDD[t3]を用いた第2の自律航法測位を行い、図3に示す第1の自律航法位置PD1[t2]および第2の自律航法位置PD2[t3]を算出する。また、時刻t4のタイミングで、自律航法測位部15は、最新の自律センサデータDD[t4]を用いた第2の自律航法測位を行い、図3に示す第2の自律航法位置PD2[t4]を算出する。また、時刻t6のタイミングで、自律航法測位部15は、自律センサデータDD[t5](補間値)を用いた第1の自律航法測位と、最新の自律センサデータDD[t6]を用いた第2の自律航法測位を行い、図3に示す第1の自律航法位置PD1[t5]および第2の自律航法位置PD2[t6]を算出する。また、時刻t7のタイミングで、自律航法測位部15は、最新の自律センサデータDD[t7]を用いた第2の自律航法測位を行い、図3に示す第2の自律航法位置PD2[t7]を算出する。また、時刻t9のタイミングで、自律航法測位部15は、自律センサデータDD[t8](補間値)を用いた第1の自律航法測位と、最新の自律センサデータDD[t9]を用いた第2の自律航法測位を行い、図3に示す第1の自律航法位置PD1[t8]および第2の自律航法位置PD2[t9]を算出する。
修正量算出部16は、複合測位部14による複合測位の結果である第1の複合測位位置と、自律航法測位部15による第1の自律航法測位の結果である第1の自律航法位置との差に基づいて、自律航法測位の修正量を算出する。
図2の例であれば、時刻t3のタイミングで、修正量算出部16は、図3に示す第1の複合測位位置PC1[t2]と第1の自律航法位置PD1[t2]との差を、修正量ΔC[t2]として算出する。また、時刻t6のタイミングで、修正量算出部16は、図3に示す第1の複合測位位置PC1[t5]と第1の自律航法位置PD1[t5]との差を、修正量ΔC[t5]として算出する。また、時刻t9のタイミングで、修正量算出部16は、図3に示す第1の複合測位位置PC1[t8]と第1の自律航法位置PD1[t8]との差を、修正量ΔC[t8]として算出する。
自律航法位置修正部17は、修正量算出部16により算出された最新の修正量を用いて、第2の自律航法測位の結果である第2の自律航法位置を修正することで、第2の複合測位位置を算出する。ロケータ装置10は、自律航法位置修正部17が算出した第2の複合測位位置を、自車両の現在位置の測定結果として出力する。
図2の例であれば、時刻t3のタイミングで、自律航法位置修正部17は、図3に示す第2の自律航法位置PD2[t3]に修正量ΔC[t2]を加算することで、第2の複合測位位置PC2[t3]を算出する。また、時刻t4のタイミングで、自律航法位置修正部17は、図3に示す第2の自律航法位置PD2[t4]に修正量ΔC[t2]を加算することで、第2の複合測位位置PC2[t4]を算出する。また、時刻t6のタイミングで、自律航法位置修正部17は、図3に示す第2の自律航法位置PD2[t6]に修正量ΔC[t5]を加算することで、第2の複合測位位置PC2[t6]を算出する。また、時刻t7のタイミングで、自律航法位置修正部17は、図3に示す第2の自律航法位置PD2[t7]に修正量ΔC[t5]を加算することで、第2の複合測位位置PC2[t7]を算出する。また、時刻t9のタイミングで、自律航法位置修正部17は、図3に示す第2の自律航法位置PD2[t9]に修正量ΔC[t8]を加算することで、第2の複合測位位置PC2[t9]を算出する。
よって、ロケータ装置10からは、時刻t3,t4,t6,t7,t9の各タイミングで、現在位置の測定結果として、第2の複合測位位置PC2[t3],PC2[t4],PC2[t6],PC2[t7],PC2[t9]が出力される。図2から分かるように、時刻t3,t4,t6,t7,t9は、自律センサデータDD[t]が取得されるタイミングである。従って、ロケータ装置10は、自律センサ2の時間軸をベースとして動作するものと言える。
このように、実施の形態1に係るロケータ装置10では、自律センサデータの補間値を用いて算出された第1の複合測位位置(PC1)と第1の自律航法位置(PD1)との差に基づいて自律航法測位の修正量が算出され、当該修正量を用いて最新の自律航法位置である第2の自律航法位置(PD2)が修正されることで、現在位置の測定結果としての第2の複合測位位置(PC2)が算出される。これにより、現在位置の測定結果に、GNSSデータと自律センサデータとの時刻ずれに起因する誤差が生じることが抑制される。また、自律センサデータはGNSSデータに比べて挙動が安定しているため、精度良く補間可能という利点もある。さらに、自律航法測位の結果を補間するのではなく、自律センサデータを補間するため、疎結合複合測位と密結合複合測位のいずれにも対応可能である。
次に、図4のフローチャートを参照しつつ、実施の形態1に係るロケータ装置10の動作を説明する。なお、図4のフローチャートには記載されていないが、GNSSデータ取得部11は、GNSS受信機1からGNSSデータが出力された任意のタイミングで、GNSSデータを取得している。
ロケータ装置10が起動し、自律センサデータ取得部12が自律センサデータを取得すると(ステップS100)、データ同期部13は、GNSSデータ取得部11および自律センサデータ取得部12が直近に取得したデータがGNSSデータであったか否かを確認する(ステップS101)。
GNSSデータ取得部11および自律センサデータ取得部12が直近に取得したデータがGNSSデータであった場合(ステップS101でYES)、データ同期部13は、直近のGNSSデータの時刻に対応する自律センサデータの補間値を算出する(ステップS102)。続いて、複合測位部14が、直近のGNSSデータおよび自律センサデータの補間値を用いた複合測位を行うことで、直近のGNSSデータの時刻に対応する第1の複合測位位置(PC1)を算出する(ステップS103)。さらに、自律航法測位部15が、自律センサデータの補間値を用いた第1の自律航法測位を行うことで、直近のGNSSデータの時刻に対応する第1の自律航法位置(PD1)を算出する(ステップS104)。そして、修正量算出部16が、ステップS103で算出された第1の複合測位位置(PC1)とステップS104で算出された第1の自律航法位置(PD1)との差に基づいて、自律航法測位の修正量(ΔC)を算出する(ステップS105)。
次に、自律航法測位部15が、ステップS101で取得された最新の自律センサデータを用いた第2の自律航法測位を行うことで、現在時刻に対応する第2の自律航法位置(PD2)を算出する(ステップS106)。その後、自律航法位置修正部17が、ステップS105で算出された修正量を用いて第2の自律航法位置(PD2)を修正することで、GNSSデータと自律センサデータの時刻ずれに起因する誤差を取り除いた第2の複合測位位置(PC2)を算出する(ステップS107)。そして、自律航法位置修正部17は、第2の複合測位位置(PC2)を自車両の現在位置の測定結果としてロケータ装置10から出力する(ステップS108)。
なお、ステップS101において、GNSSデータ取得部11および自律センサデータ取得部12が直近に取得したデータが自律センサデータであった場合(ステップS101でNO)は、ステップS102~S105は実行されず、ステップS106へ移行する。この場合、自律航法測位の修正量(ΔC)の値は更新されない(つまり、直近にステップS103で算出された修正量(ΔC)の値が維持される)。このため、図3の例では、例えば、時刻t4に対応する第2の自律航法位置PD2[t4]に加算される修正量が、時刻t3に対応する第2の自律航法位置PD2[t3]に加算される補正量と同じ(どちらも修正量ΔC[t2])になる。
ロケータ装置10は、以上のステップS100~S108の処理を、繰り返し実行する。ただし、例えばロケータ装置10の処理負荷を抑制する必要が生じた場合には、自動的に、GNSSデータの取得周期や自律センサデータの取得周期(ステップS101の実行周期)を下げたり、修正量の更新頻度(ステップS102~S105の実行頻度)を下げたりするなど、ロケータ装置10の処理負荷を低減させる処理が行われてもよい。
なお、以上の説明では、自車両の位置の算出についてのみ説明したが、ロケータ装置10においては、例えば、自車両の高度、方位、横移動量など、位置以外のデータに対しても、同様にGNSSデータと自律センサデータの時刻ずれに起因する誤差を取り除く処理が行われる。
ここで、ロケータ装置10が出力する現在位置の測定結果の用途としては、以下のようなものが考えられる。
自車両の自動運転制御においては、自車両の周辺状況を把握する必要があり、そのためにカメラやミリ波レーダ等のセンサ類が利用されるが、ロケータ装置10はそのようなセンサ類の一つとして利用することができる。例えば、ロケータ装置10が出力した自車両の現在位置の情報を、高精度な地図情報と照合することで、カメラ等が正常に動作困難な環境(例えば、逆光、大雨、濃霧など)においても、自車両の位置および目標経路を高精度に特定して、自動運転を継続させることができる。
また、自車両のカーナビゲーションシステムにおいて、ロケータ装置10が特定した自車両の位置と高精度な地図情報を利用することで、レーンレベルでの経路案内が可能になる。具体的には、自車両が適切なレーンを走行していないときに適切なレーンへの車線変更を案内することや、自車両がレーンを逆走していないかどうかを判断し、逆走していれば警告を発することなどが可能となる。
また近年では、例えばヘッドアップディスプレイなど、運転者が見通せる画面に画像を表示する表示装置を用いて、自車両周辺の現実の風景に付加情報を重ね合わせて表示する拡張現実(Augmented Reality:AR)技術の開発が進んでいる。このような技術の信頼性を向上させるためには、自車両の位置を正しく判断することが重要になる。例えば、ヘッドアップディスプレイが自車両周辺の風景にAR画像を重ね合わせて表示する場合に、ヘッドアップディスプレイが認識している自車両の位置に誤差があると、風景に対するAR画像の表示位置がずれ、AR画像の視認性が低下するためである。ロケータ装置10が特定した自車両の位置と高精度な地図情報を利用することで、自車両の位置を高精度で特定できるため、AR技術の信頼性向上に寄与できる。
図5および図6は、それぞれロケータ装置10のハードウェア構成の例を示す図である。図1に示したロケータ装置10の構成要素の各機能は、例えば図5に示す処理回路50により実現される。すなわち、ロケータ装置10は、GNSS受信機1がGNSS衛星から受信したデータであるGNSSデータをGNSS受信機1から取得し、自律センサ2が出力するデータである自律センサデータを取得し、GNSSデータを取得した後に自律センサデータを取得すると、直近のGNSSデータの時刻に対応する自律センサデータの補間値を算出し、直近のGNSSデータおよび自律センサデータの補間値を用いた複合測位、自律センサデータの補間値を用いた第1の自律航法測位、および、最新の自律センサデータを用いた第2の自律航法測位を行い、複合測位の結果である第1の複合測位位置と第1の自律航法測位の結果である第1の自律航法位置との差に基づいて自律航法測位の修正量を算出し、修正量を用いて第2の自律航法測位の結果である第2の自律航法位置を修正することで第2の複合測位位置を算出し、第2の複合測位位置を現在位置の測定結果として出力する、ための処理回路50を備える。処理回路50は、専用のハードウェアであってもよいし、メモリに格納されたプログラムを実行するプロセッサ(中央処理装置(CPU:Central Processing Unit)、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、DSP(Digital Signal Processor)とも呼ばれる)を用いて構成されていてもよい。
処理回路50が専用のハードウェアである場合、処理回路50は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、またはこれらを組み合わせたものなどが該当する。ロケータ装置10の構成要素の各々の機能が個別の処理回路で実現されてもよいし、それらの機能がまとめて一つの処理回路で実現されてもよい。
図6は、処理回路50がプログラムを実行するプロセッサ51を用いて構成されている場合におけるロケータ装置10のハードウェア構成の例を示している。この場合、ロケータ装置10の構成要素の機能は、ソフトウェア等(ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせ)により実現される。ソフトウェア等はプログラムとして記述され、メモリ52に格納される。プロセッサ51は、メモリ52に記憶されたプログラムを読み出して実行することにより、各部の機能を実現する。すなわち、ロケータ装置10は、プロセッサ51により実行されるときに、GNSS受信機1がGNSS衛星から受信したデータであるGNSSデータをGNSS受信機1から取得する処理と、自律センサ2が出力するデータである自律センサデータを取得する処理と、GNSSデータを取得した後に自律センサデータを取得すると、直近のGNSSデータの時刻に対応する自律センサデータの補間値を算出する処理と、直近のGNSSデータおよび自律センサデータの補間値を用いた複合測位、自律センサデータの補間値を用いた第1の自律航法測位、および、最新の自律センサデータを用いた第2の自律航法測位を行う処理と、複合測位の結果である第1の複合測位位置と第1の自律航法測位の結果である第1の自律航法位置との差に基づいて自律航法測位の修正量を算出する処理と、修正量を用いて第2の自律航法測位の結果である第2の自律航法位置を修正することで第2の複合測位位置を算出し、第2の複合測位位置を現在位置の測定結果として出力する処理と、が結果的に実行されることになるプログラムを格納するためのメモリ52を備える。換言すれば、このプログラムは、ロケータ装置10の構成要素の動作の手順や方法をコンピュータに実行させるものであるともいえる。
ここで、メモリ52は、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリー、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read Only Memory)などの、不揮発性または揮発性の半導体メモリ、HDD(Hard Disk Drive)、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD(Digital Versatile Disc)およびそのドライブ装置等、または、今後使用されるあらゆる記憶媒体であってもよい。
以上、ロケータ装置10の構成要素の機能が、ハードウェアおよびソフトウェア等のいずれか一方で実現される構成について説明した。しかしこれに限ったものではなく、ロケータ装置10の一部の構成要素を専用のハードウェアで実現し、別の一部の構成要素をソフトウェア等で実現する構成であってもよい。例えば、一部の構成要素については専用のハードウェアとしての処理回路50でその機能を実現し、他の一部の構成要素についてはプロセッサ51としての処理回路50がメモリ52に格納されたプログラムを読み出して実行することによってその機能を実現することが可能である。
以上のように、ロケータ装置10は、ハードウェア、ソフトウェア等、またはこれらの組み合わせによって、上述の各機能を実現することができる。
<実施の形態2>
実施の形態1に係るロケータ装置10において、GNSSデータの時刻の精度は、修正量算出部16が算出する自律航法の修正量(ΔC)の精度に影響するため重要である。実施の形態2では、ロケータ装置10がGNSSデータの時刻を精度良く記録することを可能にするGNSS受信機1を提案する。
実施の形態1に係るロケータ装置10において、GNSSデータの時刻の精度は、修正量算出部16が算出する自律航法の修正量(ΔC)の精度に影響するため重要である。実施の形態2では、ロケータ装置10がGNSSデータの時刻を精度良く記録することを可能にするGNSS受信機1を提案する。
上述したように、GNSS受信機1は、衛星信号からGNSSデータ(RAWデータ)を抽出するデコード処理や、GNSSデータを用いた測位処理(GNSS測位)を行う。GNSSデータはデータ量が多く、測位処理にも一定の時間がかかるため、GNSS受信機1が衛星信号を受信してから、GNSS受信機1がGNSSデータを出力し、ロケータ装置10に取得されるまでにタイムラグが生じる。
そこで、実施の形態2では、GNSS受信機1が、GNSSデータや測位結果などのデータを出力する時刻T3に先立って、図7のように、衛星信号を受信して当該衛星信号のデコードを開始する時刻T1、あるいは、図8のように、衛星信号のデコードが完了した時刻T2に、ロケータ装置10に対する通知を出力する構成とする。
また、実施の形態2においては、ロケータ装置10のGNSSデータ取得部11は、GNSS受信機1から通知を受けた時刻T1またはT2を記録し、時刻T3でGNSSデータを取得したときに、そのGNSSデータに時刻T1またはT2を表すタイムスタンプを付す。これにより、ロケータ装置10が認識するGNSSデータの時刻の精度が向上し、修正量算出部16が算出する自律航法の修正量(ΔC)の精度が向上するため、自律航法位置修正部17が算出する第2の複合測位位置(PC2)、すなわち自車両の現在位置の測定結果の精度も向上する。
図9は、実施の形態2に係るGNSS受信機1の構成図である。図9のように、GNSS受信機1は、RF(Radio Frequency)部101、デコード部102、測位演算部103、通知出力部104およびデータ出力部105を備えている。
RF部101は、GNSS衛星から送信された衛星信号の受信処理を行う。デコード部102は、衛星信号のデコードを行うことで、衛星信号からGNSSデータ(RAWデータ)を取得する。測位演算部103は、デコード部102が取得したGNSSデータを用いた測位演算を行うことで、GNSS受信機1の現在位置を算出するGNSS測位を行う。通知出力部104は、デコード部102が衛星信号のデコードを開始した時刻T1または完了した時刻T2に、ロケータ装置10への通知を出力する。データ出力部105は、デコード部102が衛星信号のデコードを完了した後、具体的には、測位演算部103がGNSS測位を完了した時刻T3に、デコード部102が取得したGNSSデータや測位演算部103の測位結果などのデータをロケータ装置10へ出力する。
なお、GNSS受信機1も、図5あるいは図6のようなハードウェア構成で実現可能である。例えば、GNSS受信機1を図5の構成とする場合、GNSS受信機1は、GNSS衛星から送信された衛星信号の受信処理を行い、衛星信号をデコードすることでGNSSデータを取得し、衛星信号のデコードを開始した時または完了した時に通知を出力し、衛星信号のデコードを完了した後にGNSSデータを出力する、ための処理回路50を備える。
また、GNSS受信機1を図6の構成とする場合、GNSS受信機1は、プロセッサ51により実行されるときに、GNSS衛星から送信された衛星信号を受信する処理と、衛星信号をデコードすることでGNSSデータを取得する処理と、衛星信号のデコードを開始した時または完了した時に通知を出力する処理と、衛星信号のデコードを完了した後にGNSSデータを出力する処理と、が結果的に実行されることになるプログラムを格納するためのメモリ52を備える。
<実施の形態3>
図10は、実施の形態3に係るロケータ装置10の精度評価システムの構成図である。図10の測位システムの構成は、図1の構成に対し、ロケータ装置10に測量用機器3、基準データ取得部18および精度評価部19をさらに接続したものである。なお、基準データ取得部18および精度評価部19は、ロケータ装置10に内蔵されていてもよい。
図10は、実施の形態3に係るロケータ装置10の精度評価システムの構成図である。図10の測位システムの構成は、図1の構成に対し、ロケータ装置10に測量用機器3、基準データ取得部18および精度評価部19をさらに接続したものである。なお、基準データ取得部18および精度評価部19は、ロケータ装置10に内蔵されていてもよい。
測量用機器3は、GNSS衛星から送信された衛星信号を受信し、衛星信号から抽出したGNSSデータ(RAWデータ)を用いて、GNSS受信機1よりも精度の高い測位を行う。測量用機器3で行われる測位はGNSS測位に限られず、例えば、測量用機器3が高精度な自律センサを内蔵する場合には、当該自律センサにより取得される自律センサデータを用いた複合測位が行われてもよい。以下、測量用機器3の測位結果として得られる位置を「高精度測位位置」という。
ここで、測量用機器3はGNSS受信機1とは別のハードウェアであるが、両者は同じGNSS衛星から受信したGNSSデータを用いた測位演算を行うため、基本的に、測量用機器3が出力する高精度測位位置の時刻は、GNSS受信機1が出力するGNSSデータの時刻と同期したものとなる。
基準データ取得部18は、測量用機器3から高精度測位位置のデータを取得して、当該データを精度評価部19に入力する。精度評価部19は、ロケータ装置10の複合測位部14が算出した第1の複合測位位置(PC1)を取得し、当該第1の複合測位位置の時刻と同時刻の高精度測位位置と比較することで、第1の複合測位位置の精度を評価し、その評価結果(例えば、高精度測位位置を基準とする第1の複合測位位置の誤差など)を出力する。
図11は、実施の形態3に係るロケータ装置10の精度評価システムの動作を示すフローチャートである。図11のフローは、図4のフローのステップS103とステップS104との間に、以下に説明するステップS110,S111を追加したものである。その他のステップは、図4のフローと同様であるため、ここではステップS110,S111についてのみ説明する。なお、図11のフローチャートには記載されていないが、基準データ取得部18は、測量用機器3から高精度測位位置が出力された任意のタイミングで、高精度測位位置のデータを取得している。
実施の形態3の精度評価システムでは、ステップS103で複合測位部14が直近のGNSSデータの時刻に対応する第1の複合測位位置を算出すると、精度評価部19が、直近のGNSSデータと同時刻の高精度測位位置を基準データ取得部18が取得しているか否かを確認する(ステップS110)。
直近のGNSSデータと同時刻の高精度測位位置が取得されていれば(ステップS110でYES)、精度評価部19は、ステップS103で算出された第1の複合測位位置を、それと同時刻の高精度測位位置と比較することで、第1の複合測位位置の精度を評価する(ステップS111)。直近のGNSSデータと同時刻の高精度測位位置が取得されていなければ(ステップS110でNO)、ステップS103は実行されない。
実施の形態3に係るロケータ装置10の評価システムによれば、測量用機器3の測位結果である高精度測位位置を基準にしてロケータ装置10の精度評価を行うことができる。また、複合測位部14が算出する第1の複合測位位置の時刻と、測量用機器3が算出する高精度測位位置の時刻は、どちらもGNSSデータの時刻がベースであるため、第1の複合測位位置は高精度測位位置と直接比較することができる。よって、この評価システムには、高精度測位位置に手を加えることなく、ロケータ装置10の精度評価を行えるという利点がある。
精度評価部19による精度評価の結果は、例えば、ロケータ装置10の製造者が、ロケータ装置10の仕様を定める際に利用したり、個々のロケータ装置10がその仕様を満たしているかどうかを確認するための試験に利用したりできる。また、特定の時刻や特定の位置で精度が低下する場合に、その箇所を特定して精度の改善を図ることにも利用できる。
なお、本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略したりすることが可能である。
本発明は詳細に説明されたが、上記した説明は、すべての態様において、例示であって、この発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。
1 GNSS受信機、2 自律センサ、3 測量用機器、10 ロケータ装置、11 GNSSデータ取得部、12 自律センサデータ取得部、13 データ同期部、14 複合測位部、15 自律航法測位部、16 修正量算出部、17 自律航法位置修正部、18 基準データ取得部、19 精度評価部、101 RF部、102 デコード部、103 測位演算部、104 通知出力部、105 データ出力部、DD 自律センサデータ、DG GNSSデータ、PC1 第1の複合測位位置、PC2 第2の複合測位位置、PD1 第1の自律航法位置、PD2 第2の自律航法位置、ΔC 修正量。
Claims (8)
- GNSS受信機がGNSS衛星から受信したデータであるGNSSデータを、前記GNSS受信機から取得するGNSSデータ取得部と、
自律センサが出力するデータである自律センサデータを取得する自律センサデータ取得部と、
前記GNSSデータ取得部が前記GNSSデータを取得した後に前記自律センサデータ取得部が前記自律センサデータを取得すると、直近の前記GNSSデータの時刻に対応する前記自律センサデータの補間値を算出するデータ同期部と、
直近の前記GNSSデータおよび前記自律センサデータの前記補間値を用いた複合測位を行う複合測位部と、
前記自律センサデータの前記補間値を用いた第1の自律航法測位、および、最新の前記自律センサデータを用いた第2の自律航法測位を行う自律航法測位部と、
前記複合測位の結果である第1の複合測位位置と前記第1の自律航法測位の結果である第1の自律航法位置との差に基づいて自律航法測位の修正量を算出する修正量算出部と、
前記修正量を用いて前記第2の自律航法測位の結果である第2の自律航法位置を修正することで第2の複合測位位置を算出し、前記第2の複合測位位置を現在位置の測定結果として出力する自律航法位置修正部と、
を備えるロケータ装置。 - 前記複合測位は、前記GNSSデータと前記自律センサデータの前記補間値とから一括して前記第1の複合測位位置を演算する密結合複合測位である
請求項1に記載のロケータ装置。 - 前記複合測位は、前記GNSSデータを用いた測位演算の結果と前記自律センサデータの前記補間値を用いた測位演算の結果とから前記第1の複合測位位置を演算する疎結合複合測位である
請求項1に記載のロケータ装置。 - 前記GNSSデータの時刻は、前記GNSS受信機が前記GNSS衛星から受信した衛星信号のデコードを開始した時刻または完了した時刻である
請求項1に記載のロケータ装置。 - 請求項1に記載のロケータ装置と、
前記GNSS衛星から受信したデータを用いた測位を行う測量用機器から、測位結果である高精度測位位置のデータを取得する基準データ取得部と、
前記第1の複合測位位置を、それと同時刻の前記高精度測位位置と比較することで、前記第1の複合測位位置の精度を評価する精度評価部と、
を備えるロケータ装置の精度評価システム。 - GNSS衛星から送信された衛星信号の受信処理を行うRF部と、
前記衛星信号をデコードすることでGNSSデータを取得するデコード部と、
前記デコード部が前記衛星信号のデコードを開始した時または完了した時に、通知を出力する通知出力部と、
前記デコード部が前記衛星信号のデコードを完了した後に、前記GNSSデータを出力するデータ出力部と、
を備えるGNSS受信機。 - ロケータ装置により行われる測位方法であって、
GNSS受信機がGNSS衛星から受信したデータであるGNSSデータを、前記ロケータ装置のGNSSデータ取得部が、前記GNSS受信機から取得し、
前記ロケータ装置の自律センサデータ取得部が、自律センサが出力するデータである自律センサデータを取得し、
前記GNSSデータ取得部が前記GNSSデータを取得した後に、前記自律センサデータ取得部が前記自律センサデータを取得すると、前記ロケータ装置のデータ同期部が、直近の前記GNSSデータの時刻に対応する前記自律センサデータの補間値を算出し、
前記ロケータ装置の複合測位部が、直近の前記GNSSデータおよび前記自律センサデータの前記補間値を用いた複合測位を行い、
前記ロケータ装置の自律航法測位部が、前記自律センサデータの前記補間値を用いた第1の自律航法測位、および、最新の前記自律センサデータを用いた第2の自律航法測位を行い、
前記ロケータ装置の修正量算出部が、前記複合測位の結果である第1の複合測位位置と前記第1の自律航法測位の結果である第1の自律航法位置との差に基づいて自律航法測位の修正量を算出し、
前記ロケータ装置の自律航法位置修正部が、前記修正量を用いて前記第2の自律航法測位の結果である第2の自律航法位置を修正することで第2の複合測位位置を算出し、前記第2の複合測位位置を現在位置の測定結果として出力する、
測位方法。 - GNSS受信機のデータ出力方法であって、
前記GNSS受信機のRF部が、GNSS衛星から送信された衛星信号の受信処理を行い、
前記GNSS受信機のデコード部が、前記衛星信号をデコードすることでGNSSデータを取得し、
前記デコード部が前記衛星信号のデコードを開始した時または完了した時に、前記GNSS受信機の通知出力部が、通知を出力し、
前記デコード部が前記衛星信号のデコードを完了した後に、前記GNSS受信機のデータ出力部が、前記GNSSデータを出力する、
GNSS受信機のデータ出力方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/018893 WO2020230228A1 (ja) | 2019-05-13 | 2019-05-13 | ロケータ装置およびその精度評価システム、gnss受信機、測位方法およびgnss受信機のデータ出力方法 |
US17/601,308 US11874384B2 (en) | 2019-05-13 | 2019-05-13 | Locator, accuracy evaluation system therefor, and positioning method |
JP2021519068A JP6929492B2 (ja) | 2019-05-13 | 2019-05-13 | ロケータ装置およびその精度評価システムならびに測位方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/018893 WO2020230228A1 (ja) | 2019-05-13 | 2019-05-13 | ロケータ装置およびその精度評価システム、gnss受信機、測位方法およびgnss受信機のデータ出力方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020230228A1 true WO2020230228A1 (ja) | 2020-11-19 |
Family
ID=73289881
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/018893 WO2020230228A1 (ja) | 2019-05-13 | 2019-05-13 | ロケータ装置およびその精度評価システム、gnss受信機、測位方法およびgnss受信機のデータ出力方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11874384B2 (ja) |
JP (1) | JP6929492B2 (ja) |
WO (1) | WO2020230228A1 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20210152549A (ko) | 2019-05-01 | 2021-12-15 | 스위프트 내비게이션, 인크. | 고-무결성 위성 포지셔닝을 위한 시스템 및 방법 |
EP4103973A4 (en) | 2020-02-14 | 2024-06-05 | Swift Navigation, Inc. | SYSTEM AND METHOD FOR RECONVERGENCE OF GNSS POSITION ESTIMATES |
US11550067B2 (en) | 2020-12-17 | 2023-01-10 | Swift Navigation, Inc. | System and method for fusing dead reckoning and GNSS data streams |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012063261A (ja) * | 2010-09-16 | 2012-03-29 | Denso Corp | 車両用位置検出装置 |
JP2012185111A (ja) * | 2011-03-08 | 2012-09-27 | Seiko Epson Corp | 測位装置、測位方法 |
US20150130664A1 (en) * | 2010-11-12 | 2015-05-14 | Position Imaging, Inc. | Position tracking system and method using radio signals and inertial sensing |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009222438A (ja) | 2008-03-13 | 2009-10-01 | Toyota Motor Corp | 移動体用測位装置 |
WO2019231464A1 (en) * | 2018-06-01 | 2019-12-05 | Wärtsilä SAM Electronics GmbH | Method, device and apparatus for autonomous docking of marine vessel |
-
2019
- 2019-05-13 WO PCT/JP2019/018893 patent/WO2020230228A1/ja active Application Filing
- 2019-05-13 US US17/601,308 patent/US11874384B2/en active Active
- 2019-05-13 JP JP2021519068A patent/JP6929492B2/ja active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012063261A (ja) * | 2010-09-16 | 2012-03-29 | Denso Corp | 車両用位置検出装置 |
US20150130664A1 (en) * | 2010-11-12 | 2015-05-14 | Position Imaging, Inc. | Position tracking system and method using radio signals and inertial sensing |
JP2012185111A (ja) * | 2011-03-08 | 2012-09-27 | Seiko Epson Corp | 測位装置、測位方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2020230228A1 (ja) | 2021-10-14 |
US20220179103A1 (en) | 2022-06-09 |
US11874384B2 (en) | 2024-01-16 |
JP6929492B2 (ja) | 2021-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102463176B1 (ko) | 위치 추정 장치 및 방법 | |
US11441907B2 (en) | Positioning device and positioning method | |
US9405016B2 (en) | System and method for complex navigation using dead reckoning and GPS | |
US8185308B2 (en) | Angular velocity correcting device, angular velocity correcting method, and navigation device | |
JP5270184B2 (ja) | 衛星航法/推測航法統合測位装置 | |
EP2657920B1 (en) | Driving assist device | |
JP6929492B2 (ja) | ロケータ装置およびその精度評価システムならびに測位方法 | |
JP5074950B2 (ja) | 航法装置 | |
JP5762656B2 (ja) | 車両位置表示制御装置および車両位置特定プログラム | |
JP7034379B2 (ja) | 車両測位装置 | |
JP6248559B2 (ja) | 車両用走行軌跡算出装置 | |
JP2008008628A (ja) | 自車位置決定装置 | |
CN111982179B (zh) | 异常检测设备、异常检测方法以及计算机可读介质 | |
US7428461B2 (en) | Walker navigation device, walker navigation method, and program | |
JP7407947B2 (ja) | 車両制御装置 | |
JP2014089047A (ja) | 測位装置、測位方法、および測位プログラム | |
WO2020031711A1 (ja) | 車両制御装置 | |
JP2020056740A (ja) | 位置補正システム、車載機、位置補正方法、および位置補正プログラム | |
US12111403B2 (en) | Error and integrity evaluation via motion prediction | |
JP4983770B2 (ja) | 変換係数の導出方法およびナビゲーション装置 | |
JP2007033278A (ja) | 自車位置算出装置およびその算出方法 | |
JP2023149060A (ja) | スケールファクタ推定装置、スケールファクタ推定方法、及びスケールファクタ推定プログラム | |
JP5914316B2 (ja) | 方位測定装置 | |
CN116734880A (zh) | 车辆的无人驾驶定位方法及装置 | |
JP2020170007A (ja) | 電子機器、測位制御方法及びプログラム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19929010 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021519068 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19929010 Country of ref document: EP Kind code of ref document: A1 |