WO2020230227A1 - セルロースナノファイバーカーボンの製造方法 - Google Patents

セルロースナノファイバーカーボンの製造方法 Download PDF

Info

Publication number
WO2020230227A1
WO2020230227A1 PCT/JP2019/018885 JP2019018885W WO2020230227A1 WO 2020230227 A1 WO2020230227 A1 WO 2020230227A1 JP 2019018885 W JP2019018885 W JP 2019018885W WO 2020230227 A1 WO2020230227 A1 WO 2020230227A1
Authority
WO
WIPO (PCT)
Prior art keywords
cellulose nanofiber
carbon
dried
cellulose
nanofiber carbon
Prior art date
Application number
PCT/JP2019/018885
Other languages
English (en)
French (fr)
Inventor
浩伸 蓑輪
正也 野原
三佳誉 岩田
周平 阪本
田口 博章
武志 小松
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to JP2021519067A priority Critical patent/JP7227532B2/ja
Priority to US17/606,562 priority patent/US11851786B2/en
Priority to PCT/JP2019/018885 priority patent/WO2020230227A1/ja
Publication of WO2020230227A1 publication Critical patent/WO2020230227A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/16Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from products of vegetable origin or derivatives thereof, e.g. from cellulose acetate
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/336Preparation characterised by gaseous activating agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/32Apparatus therefor
    • D01F9/324Apparatus therefor for manufacturing filaments from products of vegetable origin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Definitions

  • the present invention relates to a method for producing cellulose nanofiber carbon.
  • Carbon nanofibers generally have an outer diameter of 5 to 100 nm, and have a fibrous shape having a fiber length of 10 times or more the outer diameter. Due to such a unique shape, carbon nanofibers have features such as high conductivity and high specific surface area.
  • Non-Patent Documents 1 and 2 there are an electrode discharge method, a vapor phase growth method, a laser method and the like.
  • a production method capable of mass production a method of producing cellulose nanofiber carbon by heat-treating cellulose derived from a natural product is known.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to improve a method for producing cellulose nanofiber carbon.
  • the method for producing cellulose nanofiber carbon includes a freezing step of freezing a solution or gel containing cellulose nanofibers to obtain a frozen body, and drying the frozen body in a vacuum.
  • the carbonization step includes a drying step of obtaining a dried product and a carbonization step of heating and carbonizing the dried product in an atmosphere that does not burn the dried product.
  • the carbonized product is characterized in that the dried product is heated together with a reducing catalyst. ..
  • the reducing catalyst is iron powder
  • the dried product is heated together with the iron powder
  • the reducing catalyst is iron powder and zinc powder
  • the dried product is heated together with the iron powder and the zinc powder. ..
  • the carbonization step is characterized in that the dried product is heated together with the reducing catalyst and a material that generates a reducing gas by thermal decomposition.
  • the material that generates a reducing gas by the thermal decomposition is sodium hydrogen carbonate
  • the dried product is combined with the reducing catalyst and the sodium hydrogen carbonate. It is characterized by heating.
  • the method for producing cellulose nanofiber carbon is a freezing step of freezing a solution or gel containing cellulose nanofibers to obtain a frozen product, and a drying step of drying the frozen product in a vacuum to obtain a dried product.
  • a carbonization step of heating and carbonizing the dried product together with a reducing catalyst and a material that generates a reducing gas by thermal decomposition in an atmosphere that does not burn is included.
  • the "reducing gas is generated by thermal decomposition".
  • a reducing gas is generated, and the reducing gas enters the cellulose nanofibers, so that the aggregation of the cellulose nanofibers is suppressed and the cellulose nanofiber carbon having a high specific surface area can be produced.
  • FIG. 1 is a diagram showing a method for producing cellulose nanofiber carbon according to the present embodiment.
  • the manufacturing method includes a dispersion step, a freezing step, a drying step, and a carbonization step.
  • the carbon manufacturer prepares a cellulose nanofiber solution or gel.
  • the solid content concentration of the cellulose nanofibers in the prepared cellulose nanofiber solution is preferably 0.001 to 80% by mass, more preferably 0.01 to 30% by mass.
  • Step S1 First, in the dispersion step, the manufacturer uses, for example, a homogenizer, an ultrasonic cleaner, an ultrasonic homogenizer, a magnetic stirrer, a stirrer, a shaker, or the like, and uses a predetermined dispersion medium to prepare cellulose nanofibers. Disperse the cellulose nanofibers contained in the solution.
  • a homogenizer for example, a homogenizer, an ultrasonic cleaner, an ultrasonic homogenizer, a magnetic stirrer, a stirrer, a shaker, or the like.
  • dispersion medium for example, using an aqueous, such as water (H 2 O).
  • aqueous such as water (H 2 O).
  • Other dispersion media include, for example, carboxylic acid, methanol (CH 3 OH), ethanol (C 2 H 5 OH), propanol (C 3 H 7 OH), n-butanol, isobutanol, n-butylamine, dodecane, non-dispersive.
  • Organic systems such as saturated fatty acids, ethylene glycol, MeOH, hexadecane, isoamyl alcohol, octanol, isopropanol, acetone and glycerin may be used. Two or more of all of these may be mixed.
  • the form of the cellulose nanofibers in the cellulose nanofiber solution prepared by the manufacturer is preferably a pre-dispersed form.
  • the dispersion step is unnecessary.
  • a dispersion step is performed.
  • Step S2 Next, in the freezing step, the manufacturer freezes the cellulose nanofiber solution containing the dispersed cellulose nanofibers to obtain a frozen product of the cellulose nanofibers.
  • the cellulose nanofiber solution after the dispersion step is stored in a container such as a test tube, and the periphery of the container is cooled with a cooling material such as liquid nitrogen to freeze the cellulose nanofiber solution contained in the container.
  • the freezing method is not particularly limited as long as the dispersion medium in the cellulose nanofiber solution can be cooled below the freezing point.
  • it may be cooled by putting it in a freezer or the like.
  • the dispersion medium in the solution loses its fluidity, the cellulose nanofibers as dispersoids are fixed, and the three-dimensional network structure (three-dimensional network structure) of the cellulose nanofibers. ) Is constructed.
  • Step S3 Next, in the drying step, the manufacturer dries the frozen cellulose nanofibers obtained in the freezing step in a vacuum to obtain a dried cellulose nanofibers.
  • the frozen dispersion medium is sublimated from the solid state.
  • the frozen cellulose nanofibers obtained in the freezing step are housed in a container such as a flask, and the inside of the container is evacuated.
  • the sublimation point of the dispersion medium is lowered, and the frozen solid state is sublimated to obtain a dried cellulose nanofibers.
  • the degree of vacuum in the container varies depending on the dispersion medium used, but is not particularly limited as long as the degree of vacuum in which the dispersion medium sublimates.
  • the degree of vacuum is preferably 1.0 ⁇ 10 -6 Pa to 1.0 ⁇ 10 -2 Pa.
  • heat may be applied using a heater or the like when the frozen cellulose nanofibers are dried in the drying step.
  • Step S4 Finally, in the carbonization step, the manufacturer spreads a predetermined amount of a reducing catalyst and a material that generates a reducing gas by thermal decomposition in a container such as a pit, and then the cellulose nanofibers obtained in the drying step.
  • the dried product is placed and carbonized by heating the dried product in a non-combustible atmosphere to obtain cellulose nanofiber carbon (carbon material).
  • the reducing catalyst may be any material having a reducing action.
  • metal powders such as titanium, vanadium, chromium, iron, manganese, cobalt, nickel, copper, zinc, ruthenium, palladium, rhodium, silver, gold and platinum.
  • the metal powder may be adsorbed on an insoluble carrier such as activated carbon, alumina, or diatomaceous earth.
  • Metal oxides consisting of one or more of the above-mentioned metal elements, similar metal nitrides, similar ammine complexes, cyano complexes, halogeno complexes, hydroxy complexes, and other inorganic compounds such as metal elements, oxides, and nitrides. Or an inorganic complex or the like may be used. In addition, two or more of all of these may be mixed.
  • the material that generates a reducing gas by thermal decomposition is, for example, an organic compound such as a hydrocarbon.
  • a hydrogen storage alloy composed of an alloy such as magnesium, calcium, titanium, vanadium, manganese, zirconium, nickel, iron, palladium, lanthanum, and renium may be used.
  • Sodium hydrogen carbonate may be used.
  • a dried product of cellulose nanofibers is burned at 200 ° C. to 2000 ° C. in an inert gas atmosphere. More preferably, it may be calcined by firing at 600 ° C. to 1800 ° C.
  • an inert gas such as nitrogen gas or argon gas is used.
  • a reducing gas such as hydrogen gas or carbon monoxide gas may be used, or carbon dioxide gas may be used. Carbon dioxide gas or carbon monoxide gas, which has an activating effect on cellulose nanofiber carbon and is expected to be highly activated, is more preferable.
  • the dispersoid cellulose nanofibers are fixed by the freezing step, and a three-dimensional network structure of the cellulose nanofibers is constructed.
  • the cellulose nanofibers maintaining the three-dimensional network structure are taken out by the drying step, and the cellulose nanofiber carbon is obtained by the carbonization step.
  • the cellulose nanofiber carbon has elasticity because it has a three-dimensional network structure of a co-continuum in which cellulose nanofibers are connected in a mesh pattern. Further, in the carbonization step, the dried cellulose nanofibers are carbonized by heating in a non-combustible atmosphere together with a reducing catalyst and a material that generates a reducing gas by thermal decomposition. It has features such as high conductivity, corrosion resistance, high yield, and high specific surface area.
  • the cellulose nanofiber carbon produced by the production method of the present embodiment is, for example, a battery, a capacitor, a fuel cell, a biofuel cell, a microbial cell, a catalyst, a solar cell, a semiconductor manufacturing process, a medical device, a beauty device, and the like.
  • cellulose nanofiber carbon (Experimental Example 1-5) produced by the production method of the present embodiment and a reducing gas are generated by a reducing catalyst and thermal decomposition in the carbonization step of the present embodiment.
  • An experiment was conducted to compare with cellulose nanofiber carbon (comparative example) produced by a production method that does not use the material to be used.
  • Example 1 In Example 1, 1 g of cellulose nanofibers (manufactured by Nippon Paper Industries, Ltd.) and 10 g of ultrapure water are stirred with a homogenizer (manufactured by SMT) for 12 hours to prepare a dispersion of cellulose nanofibers, and the adjusted solution is prepared.
  • a homogenizer manufactured by SMT
  • the test tube was immersed in liquid nitrogen for 30 minutes to completely freeze the cellulose nanofiber solution.
  • the frozen cellulose nanofiber solution was taken out on a petri dish, placed in a freezing dryer (manufactured by Tokyo Science Instruments Co., Ltd.), and dried in a vacuum of 10 Pa or less to obtain a dried cellulose nanofiber. ..
  • the dried cellulose nanofibers were placed in three alumina pits covered with 1 g, 5 g, and 10 g of iron powder (manufactured by Wako Pure Chemical Industries, Ltd.) having an average particle size of 30 ⁇ m, and placed at 800 ° C. in a nitrogen atmosphere at 2 Cellulous nanofiber carbon was produced by carbonizing the cellulose nanofibers by firing for a long time.
  • iron powder manufactured by Wako Pure Chemical Industries, Ltd.
  • Example 2 In Experimental Example 2, cellulose nanofiber carbon was prepared by the same process as in Example 1 using iron powder (manufactured by Kanto Chemical Co., Inc.) having an average particle size of 70 nm.
  • the yields of Experimental Example 1, Experimental Example 2, and Comparative Example are shown in Table 1.
  • the yield is calculated by ⁇ (weight of cellulose nanofiber carbon after heat treatment ⁇ weight of dried cellulose nanofiber before heat treatment) ⁇ 100 [%] ⁇ .
  • Example 3 In Experimental Example 3, 10 g of iron powder (manufactured by Kanto Chemical Co., Inc.) having an average particle diameter of 70 nm and 1 g, 5 g, and 10 g of zinc powder (manufactured by Wako Junyaku Co., Ltd.) having an average particle diameter of 8 ⁇ m were spread over the dried cellulose nanofibers. Each of the three alumina crucibles was placed in the same process as in Example 1 to prepare cellulose nanofiber carbon.
  • Example 4 cellulose nanofiber carbon was produced by the same process as in Example 3 using the same iron powder as in Experimental Example 3 and zinc powder having an average particle size of 50 nm (manufactured by Kanto Chemical Co., Inc.).
  • Example 5 in order to suppress the aggregation of cellulose nanofibers and increase the specific surface area of the cellulose nanofiber carbons, more reduction is performed by further using sodium hydrogencarbonate, which is a material that generates reducing gas by thermal decomposition. Try to generate sex gas. Specifically, the dried cellulose nanofibers were spread with iron powder and zinc powder, and then 1 g, 5 g, and 10 g of sodium hydrogen carbonate (manufactured by Kanto Chemical Co., Inc.) were placed in each of the three alumina pits. Cellulose nanofiber carbon was prepared by the same process as in Example 4.
  • Table 3 shows the BET specific surface area and porosity of the cellulose nanofiber carbon obtained in Experimental Example 5 and the cellulose nanofiber carbon as a comparative example produced by a production method that does not use sodium hydrogen carbonate. ..
  • the cellulose nanofiber carbon obtained in Experimental Example 5 has a larger specific surface area and porosity than the cellulose nanofiber carbon obtained in Comparative Example, and the larger the amount of sodium hydrogen carbonate, the larger the specific surface area. And it can be grasped that the porosity is increasing. It is considered that this is because sodium hydrogencarbonate was thermally decomposed in the process of heat treatment, and the generated carbon dioxide gas entered the dried body of the cellulose nanofibers, and carbonization proceeded in a state where aggregation was suppressed while being raised.
  • the dried cellulose nanofibers are heated and carbonized in a non-combustible atmosphere together with the reducing catalyst and a material that generates a reducing gas by thermal decomposition. Therefore, cellulose nanofiber carbon having a high specific surface area can be produced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Textile Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)

Abstract

セルロースナノファイバーを含む溶液又はゲルを凍結させて凍結体を得る凍結工程と、当該凍結体を真空中で乾燥させて乾燥体を得る乾燥工程と、当該乾燥体を燃焼させない雰囲気中で加熱して炭化させる炭化工程と、を含み、当該炭化工程では、当該乾燥体を、還元性触媒、更には熱分解により還元性ガスを発生する材料とともに加熱する。

Description

セルロースナノファイバーカーボンの製造方法
 本発明は、セルロースナノファイバーカーボンの製造方法に関する。
 カーボンナノファイバーは、一般に5~100nmの外径を有し、当該外径の10倍以上のファイバ長を有する繊維状の形状を持つ。このような特異な形状を持つので、カーボンナノファイバーは、高導電率及び高比表面積といった特徴を有する。
 従来、カーボンナノファイバーの製造方法としては、例えば、電極放電法、気相成長法、レーザー法等がある(非特許文献1,2)。特に、量産が可能な製造方法としては、天然物由来のセルロースを熱処理することによりセルロースナノファイバーカーボンを製造する方法が知られている。
S. Iijima、外1名、"Single-shell carbon nanotubes of 1-nm diameter"、 Nature、Vol.363、1993年6月17日、p.603-p.605 J. Kong、外2名、"Chemical vapor deposition of methane for single-walled carbon nanotubes"、 Chemical Physics Letters 292、1998年8月14日、p.567- p.574
 しかし、従来の製造方法では、セルロースナノファイバーの乾燥工程や熱処理工程で凝集が起こるため、熱処理時に焼結して高密度となり、製造されたセルロースナノファイバーカーボンの比表面積が小さくなるという課題があった。また、従来の製造方法では、熱処理時にカーボンがガス化して抜けるため、ガス発生に伴う質量減少により、セルロースナノファイバーカーボンの収率が低くなるという課題があった。
 本発明は、上記事情を鑑みてなされたものであり、セルロースナノファイバーカーボンの製造方法を改善することを目的とする。
 上記課題を解決するため、本発明に係るセルロースナノファイバーカーボンの製造方法は、セルロースナノファイバーを含む溶液又はゲルを凍結させて凍結体を得る凍結工程と、前記凍結体を真空中で乾燥させて乾燥体を得る乾燥工程と、前記乾燥体を燃焼させない雰囲気中で加熱して炭化させる炭化工程と、を含み、前記炭化工程では、前記乾燥体を、還元性触媒とともに加熱することを特徴とする。
 上記セルロースナノファイバーカーボンの製造方法において、前記還元性触媒は、鉄粉であり、前記炭化工程では、前記乾燥体を、前記鉄粉とともに加熱することを特徴とする。
 上記セルロースナノファイバーカーボンの製造方法において、前記還元性触媒は、鉄粉と亜鉛粉であり、前記炭化工程では、前記乾燥体を、前記鉄粉と、前記亜鉛粉とともに加熱することを特徴とする。
 上記セルロースナノファイバーカーボンの製造方法において、前記炭化工程では、前記乾燥体を、前記還元性触媒と、熱分解により還元性ガスを発生する材料とともに加熱することを特徴とする。
 上記セルロースナノファイバーカーボンの製造方法において、前記熱分解により還元性ガスを発生する材料は、炭酸水素ナトリウムであり、前記炭化工程では、前記乾燥体を、前記還元性触媒と、前記炭酸水素ナトリウムとともに加熱することを特徴とする。
 本発明によれば、収率が高く、比表面積が大きいセルロースナノファイバーカーボンの製造方法を提供できる。
セルロースナノファイバーカーボンの製造工程を示す図である。
 本実施形態に係るセルロースナノファイバーカーボンの製造方法は、セルロースナノファイバーを含む溶液又はゲルを凍結させて凍結体を得る凍結工程と、当該凍結体を真空中で乾燥させて乾燥体を得る乾燥工程と、当該乾燥体を、還元性触媒、更には熱分解により還元性ガスを発生する材料とともに、燃焼させない雰囲気中で加熱して炭化させる炭化工程と、含む。
 すなわち、セルロースナノファイバーの乾燥体を、還元性触媒とともに、燃焼させない雰囲気中で加熱して炭化させるので、炭素がガス化して生成したCOやCOが当該還元性触媒により還元されて再び炭素化することから、ガス発生に伴う質量減少が抑制され、カーボンの収率が向上する。
 また、セルロースナノファイバーの乾燥体を、還元性触媒と、熱分解により還元性ガスを発生する材料とともに、燃焼させない雰囲気中で加熱して炭化させるので、当該「熱分解により還元性ガスを発生する材料」が加熱された際に還元性ガスが発生し、当該還元性ガスがセルロースナノファイバー内に入り込むことから、セルロースナノファイバーの凝集が抑制され、比表面積の高いセルロースナノファイバーカーボンを製造可能となる。
 以下、本発明を実施する一実施形態について図を参照して説明する。
 図1は、本実施形態に係るセルロースナノファイバーカーボンの製造方法を示す図である。当該製造方法は、図1に示したように、分散工程と、凍結工程と、乾燥工程と、炭化工程と、を含む。当該製造方法の開始にあたり、カーボンの製造者は、セルロースナノファイバー溶液又はゲルを用意する。用意するセルロースナノファイバー溶液内のセルロースナノファイバーの固形分濃度は、0.001~80質量%が好ましく、0.01~30質量%がより好ましい。
 ステップS1;
 まず、分散工程では、製造者は、例えば、ホモジナイザー、超音波洗浄器、超音波ホモジナイザー、マグネチックスターラー、撹拌機、振とう器等を用い、所定の分散媒を用いて、用意したセルロースナノファイバー溶液に含まれるセルロースナノファイバーを分散する。
 分散媒としては、例えば、水(HO)等の水系を用いる。その他、分散媒として、例えば、カルボン酸、メタノール(CHOH)、エタノール(COH)、プロパノール(COH)、n-ブタノール、イソブタノール、n-ブチルアミン、ドデカン、不飽和脂肪酸、エチレングリコール、ヘプタン、ヘキサデカン、イソアミルアルコール、オクタノール、イソプロパノール、アセトン、グリセリン等の有機系を用いてもよい。これら全ての中から2種類以上を混合してもよい。
 尚、製造者が用意するセルロースナノファイバー溶液内のセルロースナノファイバーの形態は、予め分散した形態が好ましい。セルロースナノファイバーが分散した形態のセルロースナノファイバー溶液を用いる場合、当該分散工程は、不要である。セルロースナノファイバーが非分散形態である場合に、分散工程を行う。
 ステップS2;
 次に、凍結工程では、製造者は、分散後のセルロースナノファイバーを含むセルロースナノファイバー溶液を凍結させて、セルロースナノファイバーの凍結体を得る。
 例えば、分散工程後のセルロースナノファイバー溶液を試験管等の容器に収容し、当該容器の周囲を液体窒素等の冷却材で冷却することにより、当該容器に収容したセルロースナノファイバー溶液を凍結する。凍結方法については、特に限定されず、セルロースナノファイバー溶液内の分散媒を凝固点以下に冷却できればよい。例えば、冷却材を用いる方法以外に、冷凍庫等に入れて冷却してもよい。
 当該凍結工程でセルロースナノファイバー溶液を凍結することにより、当該溶液内の分散媒が流動性を失い、分散質であるセルロースナノファイバーが固定され、セルロースナノファイバーの三次元ネットワーク構造(三次元網目構造)が構築される。
 ステップS3;
 次に、乾燥工程では、製造者は、凍結工程で得たセルロースナノファイバーの凍結体を真空中で乾燥させて、セルロースナノファイバーの乾燥体を得る。
 例えば、凍結した分散媒を固体状態から昇華させる。具体的には、凍結工程で得たセルロースナノファイバーの凍結体をフラスコ等の容器に収容し、当該容器の内部を真空引きすることで行う。セルロースナノファイバーの凍結体を真空雰囲気下に配置することにより、分散媒の昇華点が低下し、凍結している固体状態から昇華してセルロースナノファイバーの乾燥体が得られる。
 容器内の真空度は、使用する分散媒によって異なるが、分散媒が昇華する真空度であれば特に制限されない。例えば、分散媒に水(HO)を使用した場合、圧力を0.06MPa以下の真空度にする必要があるが、昇華潜熱として熱が奪われるため、乾燥に時間を要することとなる。このため、真空度は、1.0×10-6Pa~1.0×10-2Paが好適である。
 尚、当該乾燥工程でセルロースナノファイバーの凍結体を乾燥させる際に、ヒーター等を用いて熱を加えてもよい。
 ステップS4;
 最後に、炭化工程では、製造者は、坩堝等の容器内に、還元性触媒、更には熱分解により還元性ガスを発生する材料を所定量敷き詰めた上に、乾燥工程で得たセルロースナノファイバーの乾燥体を置き、燃焼させない雰囲気中で当該乾燥体を加熱して炭化させ、セルロースナノファイバーカーボン(カーボン材料)を得る。
 還元性触媒は、還元作用を有する材料であればよい。例えば、チタン、バナジウム、クロム、鉄、マンガン、コバルト、ニッケル、銅、亜鉛、ルテニウム、パラジウム、ロジウム、銀、金、白金等の金属粉末である。当該金属粉末を、活性炭、アルミナ、珪藻土等の不溶性の担体に吸着させたものでもよい。前述した金属元素のうち1種類又は複数種類からなる金属酸化物、同様の金属窒化物、同様のアンミン錯体、シアノ錯体、ハロゲノ錯体、ヒドロキシ錯体等、金属元素、酸化物、窒化物等の無機化合物や無機錯体等を用いてもよい。その他、これら全ての中から2種類以上を混合してもよい。
 熱分解により還元性ガスを発生する材料は、例えば、炭化水素等の有機化合物である。その他、マグネシウム、カルシウム、チタン、バナジウム、マンガン、ジルコニウム、ニッケル、鉄、パラジウム、ランタン、レニウム等の合金からなる水素吸蔵合金を用いてもよい。炭酸水素ナトリウムを用いてもよい。
 当該炭化工程において、セルロースナノファイバーの炭化方法については、例えば、セルロースナノファイバーの乾燥体を不活性ガス雰囲気中で200℃~2000℃で燃焼させる。より好ましくは、600℃~1800℃で焼成して炭化すればよい。また、セルロースが燃焼しないガスの種類としては、例えば、窒素ガス、アルゴンガス等の不活性ガスを用いる。その他、水素ガス、一酸化炭素ガス等の還元性ガスでもよいし、二酸化炭素ガスでもよい。セルロースナノファイバーカーボンに対して賦活効果を有し、高活性化が期待できる二酸化炭素ガス又は一酸化炭素ガスがより好ましい。
 以上説明したセルロースナノファイバーカーボンの製造方法によれば、凍結工程により、分散質であるセルロースナノファイバーが固定され、セルロースナノファイバーの三次元ネットワーク構造が構築される。また、乾燥工程により、当該三次元ネットワーク構造を維持したセルロースナノファイバーが取り出され、炭化工程により、セルロースナノファイバーカーボンが得られる。
 当該セルロースナノファイバーカーボンは、セルロースナノファイバーが網目状に連なった共連続体の三次元ネットワーク構造を有するので、伸縮性を有する。また、炭化工程において、セルロースナノファイバーの乾燥体を、還元性触媒、更には熱分解により還元性ガスを発生する材料とともに、燃焼させない雰囲気中で加熱して炭化させるので、セルロースナノファイバーカーボンは、高導電性、耐腐食性、高収率、高比表面積といった特徴を有する。
 それ故、本実施形態の製造方法により作製されセルロースナノファイバーカーボンは、例えば、電池、キャパシター、燃料電池、バイオ燃料電池、微生物電池、触媒、太陽電池、半導体製造プロセス、医療用機器、美容器具、フィルター、耐熱材、耐炎材、断熱材、導電材、電磁波シールド材、電磁波ノイズ吸収材、発熱体、マイクロ波発熱体、コーンペーパー、衣服、カーペット、ミラー曇り防止、センサ、タッチパネル等として好適である。
 上記特徴の有無を確認するため、本実施形態の製造方法で作製したセルロースナノファイバーカーボン(実験例1-5)と、本実施形態の炭化工程で還元性触媒及び熱分解により還元性ガスを発生する材料を用いない製造方法で作製したセルロースナノファイバーカーボン(比較例)とを比較する実験を行った。
 (実験例1)
 実施例1では、セルロースナノファイバー(日本製紙株式会社製)1gと超純水10gとをホモジナイザー(エスエムテー製)で12時間撹拌することにより、セルロースナノファイバーの分散液を調整し、調整後の溶液を試験管の中に流し込んだ。そして、当該試験管を液体窒素中に30分間浸すことにより、セルロースナノファイバー溶液を完全に凍結させた。その後、凍結させたセルロースナノファイバー溶液をシャーレ上に取り出し、凍結乾燥機(東京理科器械株式会社製)に入れて、10Pa以下の真空中で乾燥させることにより、セルロースナノファイバーの乾燥体を得た。最後に、当該セルロースナノファイバーの乾燥体を、平均粒径30μmの鉄粉(和光純薬社製)を1g、5g、10g敷き詰めた3つのアルミナ坩堝にそれぞれ入れ、窒素雰囲気下で800℃、2時間の焼成によりセルロースナノファイバーをカーボン化させることで、セルロースナノファイバーカーボンを作製した。
 (実験例2)
 実験例2では、平均粒径が70nmの鉄粉(関東化学社製)を用いて、実施例1と同様のプロセスでセルロースナノファイバーカーボンを作製した。
 (比較例)
 比較例では、実験例1と同様のプロセスで、セルロースナノファイバーの乾燥体を、鉄粉を敷き詰めていないアルミナ坩堝に入れ、水素雰囲気下で800℃、2時間の焼成によりセルロースナノファイバーをカーボン化させることで、セルロースナノファイバーカーボンを作製した。
 ここで、実験例1、実験例2、比較例による収率を表1に示す。収率は、{(熱処理後のセルロースナノファイバーカーボンの重量÷熱処理前のセルロースナノファイバーの乾燥体の重量)×100[%]}で算出される。
Figure JPOXMLDOC01-appb-T000001
 表1より、実験例1,2と比較例とを比較すると、セルロースナノファイバーの乾燥体を鉄粉とともに加熱した方が、カーボンの収率が向上することを把握できる。また、鉄粉の量毎に比較し、更に実験例1と実験例2とを比較すると、鉄粉の量が多いほど、鉄粉の粒径が小さいほど、カーボンの収率が向上することを把握できる。これは、カーボンが炭化する過程でCOガスを発生し、鉄粉の触媒効果により、2CO→C+COとなる還元反応が促進され、当該COガスがカーボンとして再生成されるため、カーボンの収率が向上していると考えられる。当該効果は、鉄粉の粒径が小さく重量当たりの表面積が大きいほど、触媒作用しやすく、鉄粉の粒径が細かいほど、少量の触媒でより大きな効果を発揮できると考えられる。
 (実験例3)
 実験例3では、セルロースナノファイバーの乾燥体を、平均粒径70nmの鉄粉(関東化学社製)を10g、平均粒径8μmの亜鉛粉(和光純薬社製)を1g、5g、10g敷き詰めた3つのアルミナ坩堝にそれぞれ入れ、実施例1と同様のプロセスでセルロースナノファイバーカーボンを作製した。
 (実験例4)
 実験例4では、実験例3と同じ鉄粉と、平均粒径が50nmの亜鉛粉(関東化学社製)とを用いて、実施例3と同様のプロセスでセルロースナノファイバーカーボンを作製した。
 ここで、実験例3、実験例4による収率を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2により、亜鉛粉の量毎に比較し、実験例3と実験例4とを比較すると、亜鉛粉の量が多いほど、粒径が小さいほど、カーボンの収率が向上することを把握できる。これは、カーボンが炭化する過程でCOガスを発生し、鉄粉の触媒効果により、2CO→C+COとなる還元反応が促進され、当該COガスがカーボンとして再生成されるからである。また、更に発生した二酸化炭素が亜鉛粉を触媒として2CO→2CO+Oの還元反応を促進し、再度の鉄粉の触媒効果により、2CO→C+COとなる還元反応が繰返し起こることで、カーボンの生成が増加するからである。これらの作用効果により、鉄粉のみの場合よりもカーボンの収率が向上したと考えられる。
 当該効果は、亜鉛粉の粒径が小さく重量当たりの表面積が大きいほど、触媒作用しやすく、亜鉛粉の粒径が細かいほど、少量の触媒でより大きな効果を発揮できると考えられる。一方で、金属粉の量が多くなるにつれて、収率向上も飽和傾向にあるが、触媒の量が多くなると、反応量に対し触媒過多になる可能性を示唆している。
 (実験例5)
 実施例5では、セルロースナノファイバーの凝集を抑制し、セルロースナノファイバーカーボンの比表面積を高くするため、熱分解により還元性ガスを発生する材料である炭酸水素ナトリウムを更に用いて、より多くの還元性ガスを発生させるようにする。具体的には、セルロースナノファイバーの乾燥体を、鉄粉及び亜鉛粉を敷き詰めた上に、更に炭酸水素ナトリウム(関東化学社製)を1g、5g、10g敷き詰めた3つのアルミナ坩堝にそれぞれ入れ、実施例4と同様のプロセスでセルロースナノファイバーカーボンを作製した。
 ここで、実験例5で得られたセルロースナノファイバーカーボンと、炭酸水素ナトリウムを用いない製造方法で作製した比較例としてのセルロースナノファイバーカーボンと、に係るBET比表面積及び気孔率を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3より、実験例5で得られたセルロースナノファイバーカーボンは、比較例で得られたセルロースナノファイバーカーボンよりも大きな比表面積及び気孔率が得られ、炭酸水素ナトリウムの量が多いほど当該比表面積及び気孔率は大きくなっていることを把握できる。これは、熱処理の過程で炭酸水素ナトリウムが熱分解し、発生した炭酸ガスがセルロースナノファイバーの乾燥体に入り込み、嵩上げされながら凝集が抑えられた状態で炭化が進んだためと考えられる。
 以上より、本実施形態によれば、セルロースナノファイバーを含む溶液又はゲルを凍結させて凍結体を得る凍結工程と、当該凍結体を真空中で乾燥させて乾燥体を得る乾燥工程と、当該乾燥体を還元性触媒とともに燃焼させない雰囲気中で加熱して炭化させる炭化工程と、を行うので、収率が高いセルロースナノファイバーカーボンを製造できる。
 また、本実施形態によれば、当該炭化工程において、セルロースナノファイバーの乾燥体を、上記還元性触媒と、熱分解により還元性ガスを発生する材料とともに、燃焼させない雰囲気中で加熱して炭化させるので、比表面積の高いセルロースナノファイバーカーボンを製造できる。
 S1~S4…ステップ

Claims (5)

  1.  セルロースナノファイバーを含む溶液又はゲルを凍結させて凍結体を得る凍結工程と、
     前記凍結体を真空中で乾燥させて乾燥体を得る乾燥工程と、
     前記乾燥体を燃焼させない雰囲気中で加熱して炭化させる炭化工程と、を含み、
     前記炭化工程では、
     前記乾燥体を、還元性触媒とともに加熱することを特徴とするセルロースナノファイバーカーボンの製造方法。
  2.  前記還元性触媒は、鉄粉であり、
     前記炭化工程では、
     前記乾燥体を、前記鉄粉とともに加熱することを特徴とする請求項1に記載のセルロースナノファイバーカーボンの製造方法。
  3.  前記還元性触媒は、鉄粉と亜鉛粉であり、
     前記炭化工程では、
     前記乾燥体を、前記鉄粉と、前記亜鉛粉とともに加熱することを特徴とする請求項1に記載のセルロースナノファイバーカーボンの製造方法。
  4.  前記炭化工程では、
     前記乾燥体を、前記還元性触媒と、熱分解により還元性ガスを発生する材料とともに加熱することを特徴とする請求項1乃至3のいずれかに記載のセルロースナノファイバーカーボンの製造方法。
  5.  前記熱分解により還元性ガスを発生する材料は、炭酸水素ナトリウムであり、
     前記炭化工程では、
     前記乾燥体を、前記還元性触媒と、前記炭酸水素ナトリウムとともに加熱することを特徴とする請求項4に記載のセルロースナノファイバーカーボンの製造方法。
PCT/JP2019/018885 2019-05-13 2019-05-13 セルロースナノファイバーカーボンの製造方法 WO2020230227A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021519067A JP7227532B2 (ja) 2019-05-13 2019-05-13 セルロースナノファイバーカーボンの製造方法
US17/606,562 US11851786B2 (en) 2019-05-13 2019-05-13 Method for producing cellulose nanofiber carbon
PCT/JP2019/018885 WO2020230227A1 (ja) 2019-05-13 2019-05-13 セルロースナノファイバーカーボンの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/018885 WO2020230227A1 (ja) 2019-05-13 2019-05-13 セルロースナノファイバーカーボンの製造方法

Publications (1)

Publication Number Publication Date
WO2020230227A1 true WO2020230227A1 (ja) 2020-11-19

Family

ID=73289875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/018885 WO2020230227A1 (ja) 2019-05-13 2019-05-13 セルロースナノファイバーカーボンの製造方法

Country Status (3)

Country Link
US (1) US11851786B2 (ja)
JP (1) JP7227532B2 (ja)
WO (1) WO2020230227A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003082535A (ja) * 2001-09-12 2003-03-19 Shigenori Kuga セルロース原料由来の微細繊維状炭素材料およびその製造方法
JP2007055865A (ja) * 2005-08-26 2007-03-08 Ube Ind Ltd ネットワーク状炭素材料
WO2008114524A1 (ja) * 2007-03-20 2008-09-25 The University Of Tokyo セルロースエアロゲル及びその製造方法
JP2009067674A (ja) * 2007-09-11 2009-04-02 Korea Inst Of Energy Research 白金ナノ触媒が担持されたセルロース電極の製造方法、白金ナノ触媒が担持されたセルロース電極、燃料電池用セルロース電極の製造方法、及び、セルロース繊維
JP2015101722A (ja) * 2013-11-25 2015-06-04 台湾カーボンナノチューブテクノロジー股▲ふん▼有限公司 三次元網目状材料の生成方法
US20170098827A1 (en) * 2015-10-05 2017-04-06 Korea Institue of Energy Research Method of preparing minute carbonized cellulose and method of preparing catalyst support using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003082535A (ja) * 2001-09-12 2003-03-19 Shigenori Kuga セルロース原料由来の微細繊維状炭素材料およびその製造方法
JP2007055865A (ja) * 2005-08-26 2007-03-08 Ube Ind Ltd ネットワーク状炭素材料
WO2008114524A1 (ja) * 2007-03-20 2008-09-25 The University Of Tokyo セルロースエアロゲル及びその製造方法
JP2009067674A (ja) * 2007-09-11 2009-04-02 Korea Inst Of Energy Research 白金ナノ触媒が担持されたセルロース電極の製造方法、白金ナノ触媒が担持されたセルロース電極、燃料電池用セルロース電極の製造方法、及び、セルロース繊維
JP2015101722A (ja) * 2013-11-25 2015-06-04 台湾カーボンナノチューブテクノロジー股▲ふん▼有限公司 三次元網目状材料の生成方法
US20170098827A1 (en) * 2015-10-05 2017-04-06 Korea Institue of Energy Research Method of preparing minute carbonized cellulose and method of preparing catalyst support using the same

Also Published As

Publication number Publication date
US11851786B2 (en) 2023-12-26
JPWO2020230227A1 (ja) 2020-11-19
JP7227532B2 (ja) 2023-02-22
US20220205143A1 (en) 2022-06-30

Similar Documents

Publication Publication Date Title
Zhao et al. Bifunctional electrocatalysts for overall water splitting from an iron/nickel‐based bimetallic metal–organic framework/dicyandiamide composite
Yan et al. Iron nanoparticles in situ encapsulated in biochar-based carbon as an effective catalyst for the conversion of biomass-derived syngas to liquid hydrocarbons
Daulbayev et al. Bio-waste-derived few-layered graphene/SrTiO3/PAN as efficient photocatalytic system for water splitting
US11370665B2 (en) Method for producing activated carbon
JP6198810B2 (ja) 触媒担体用炭素材料
JP4979276B2 (ja) ヘテロ原子含有のメソ多孔性炭素の製造方法
US7572427B2 (en) Catalyst supports and carbon nanotubes produced thereon
JP4912044B2 (ja) メソ細孔性炭素とその製造方法、それを利用した燃料電池の電極用担持触媒及び燃料電池
JP2006265005A (ja) ナノ金属または金属酸化物担持活性炭の高効率製造方法
Rish et al. Formation mechanism of nano graphitic structures during microwave catalytic graphitization of activated carbon
Atika et al. Oxygen‐rich porous activated carbon from eucalyptus wood as an efficient supercapacitor electrode
Efimov et al. Comparison of bimetallic Co-Ru nanoparticles supported on highly porous activated carbonized polyacrylonitrile with monometallic ones in ethanol steam reforming
Selvan et al. Pt decorated Artocarpus heterophyllus seed derived carbon as an anode catalyst for DMFC application
Xin et al. Cu cluster embedded porous nanofibers for high-performance CO2 electroreduction
JP6964448B2 (ja) 燃料電池触媒担体用鋳型炭素材料、燃料電池用触媒層、及び燃料電池
Longo et al. Waste biomasses as precursors of catalytic supports in benzaldehyde hydrogenation
Baghel et al. Rapid synthesis of carbon nanotubes from Prosopis Juliflora biochar using microwave irradiation
WO2020230227A1 (ja) セルロースナノファイバーカーボンの製造方法
Altaleb et al. One step molten salt synthesis of nickel nanoparticles incorporated on graphene sheets as non-precious and an effective electrocatalyst for methanol oxidation
JP7260823B2 (ja) セルロースナノファイバーカーボンの製造方法
KR100745567B1 (ko) 수소저장용 나노크기의 니켈이 도핑된 카본나노튜브와 그제조방법
CN110104634B (zh) 三维石墨烯及其制备方法和应用
JP2006281168A (ja) 二層カーボンナノチューブを製造するための触媒とこれを用いる二層カーボンナノチューブの製造方法
JP2011057457A (ja) 水素吸蔵方法、水素吸蔵装置、及び水素吸蔵用炭素材料
KR102531757B1 (ko) 탄소 지지체를 사용한 co2 메탄화 반응용 촉매 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19928808

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021519067

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19928808

Country of ref document: EP

Kind code of ref document: A1