WO2020228640A1 - 一种锌离子荧光探针化合物及其制备方法与应用 - Google Patents

一种锌离子荧光探针化合物及其制备方法与应用 Download PDF

Info

Publication number
WO2020228640A1
WO2020228640A1 PCT/CN2020/089423 CN2020089423W WO2020228640A1 WO 2020228640 A1 WO2020228640 A1 WO 2020228640A1 CN 2020089423 W CN2020089423 W CN 2020089423W WO 2020228640 A1 WO2020228640 A1 WO 2020228640A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorescent probe
probe compound
acid
dimethyltetrahydroquinoline
compound according
Prior art date
Application number
PCT/CN2020/089423
Other languages
English (en)
French (fr)
Inventor
陈修文
郭子茵
张子萍
陈旭燕
朱忠智
杨志海
Original Assignee
五邑大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 五邑大学 filed Critical 五邑大学
Priority to US16/964,853 priority Critical patent/US11530212B2/en
Publication of WO2020228640A1 publication Critical patent/WO2020228640A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • G01N33/1813Water specific cations in water, e.g. heavy metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • C09K11/07Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials having chemically interreactive components, e.g. reactive chemiluminescent compositions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N21/643Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/188Metal complexes of other metals not provided for in one of the previous groups
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6439Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" with indicators, stains, dyes, tags, labels, marks

Definitions

  • the invention relates to the field of organic luminescent materials, in particular to a zinc ion fluorescent probe compound, a preparation method thereof and application in zinc ion detection.
  • Zinc ion is one of the essential trace elements in organisms, has important physiological functions, and is a component of many kinds of proteins and enzymes in the human body. Zinc ions are widely involved in physiological activities. Too much or too little content of zinc ions can cause disorders of biological functions. The highly sensitive detection of zinc ions has a reference role in disease diagnosis. Therefore, selective identification and detection of zinc ions are of great significance to related research in the fields of chemistry, biology, and clinical medicine. Molecular probes can detect the concentration and distribution of the target in real time, so it has the potential for real-time analysis and detection of zinc ions in organisms.
  • Fluorescent probes have the advantages of low cost, simple operation, low detection limit, good selectivity and real-time monitoring, etc., and they have received extensive attention in metal ion detection. Because the fluorescence-enhanced sensing material can reduce detection errors and accurately detect complex systems, multiple detection objects can be used to detect different analytes at the same time.
  • the currently reported Zn 2+ fluorescent chemical probes are still subject to some limitations in practical applications, such as: some are not specific enough and are easily interfered by other metal ions; some are difficult to synthesize and have complex structures; some membranes penetrate Poor performance; some require organic solvents to assist in the detection of zinc ions, which increases the toxicity of the detection system and limits the application of fluorescent probes in biological systems. Therefore, there is a lack of a Zn 2+ fluorescent probe chemical that has high sensitivity, good selectivity, superior performance, and can realize water phase detection.
  • the purpose of the present invention is to provide a zinc ion fluorescent probe compound and its preparation method and application.
  • the fluorescent probe compound of the present invention has high selectivity and sensitivity to Zn 2+ and can be used as a fluorescent probe.
  • the probe is used in the field of zinc ion detection.
  • the present invention adopts the following technical solutions.
  • a fluorescent probe compound whose name is 2-(7-(2,8-dimethylquinolin-6-yl)-5,6,7,8-tetrahydro-1,8-naphthyridine-2 -Base) phenol, which has the following structural formula:
  • the preparation method of the above-mentioned fluorescent probe compound includes the following steps:
  • the reaction is carried out in the absence of air.
  • the air isolation condition is under nitrogen protection.
  • the molar ratio of the 2,8-dimethyltetrahydroquinoline to the 2-(2-phenolyl)-1,8-naphthyridine is 1:0.5-1.
  • the metal catalyst is one or more of copper acetate, copper triflate, copper sulfate, copper chloride, cuprous chloride, ferric chloride, cobalt acetate, cobalt chloride, and manganese acetate
  • the mass of the metal catalyst is 1-5% of the mass of the 2,8-dimethyltetrahydroquinoline.
  • inexpensive metal catalysts can be used to effectively achieve catalysis, which greatly reduces production costs.
  • the acid is one or more of formic acid, acetic acid, methanesulfonic acid, benzoic acid, p-toluenesulfonic acid, hydrochloric acid, trifluoromethanesulfonic acid, and trifluoroacetic acid; the quality of the acid is the 10-100% of the mass of 2,8-dimethyltetrahydroquinoline.
  • the solvent is ethanol, tert-amyl alcohol, isopropanol, 1,4-dioxane, N,N-dimethylformamide, dimethyl sulfoxide, toluene, p-xylene, water One or more.
  • the volume molar ratio of the solvent to the 2,8-dimethyltetrahydroquinoline is 0.5-3 mL: 0.5 mmol.
  • the purification is column chromatography purification.
  • the eluent purified by column chromatography is a mixed solution of petroleum ether: dichloromethane: ethyl acetate with a volume ratio of 0.5-50:0-20:1.
  • the application of the above-mentioned fluorescent probe compound in zinc ion detection includes application in fluorescent probe, high sensitivity sensor or zinc ion detection instrument.
  • the present invention uses 2,8-dimethyltetrahydroquinoline and 2-(2-phenolyl)-1,8-naphthyridine as the main raw materials to synthesize fluorescent probe compounds.
  • the synthesis steps are simple and the method is safe to operate.
  • the raw materials are non-toxic and low in price.
  • excitation fluorescence probe compound of the present invention and an emission spectrum in the visible region, Zn 2+ selectivity and high sensitivity, high chemical stability, having good water solubility, Zn 2+ may be carried out in an aqueous environment
  • the detection can be effectively applied to fluorescent probes, high-sensitivity sensors or zinc ion detection instruments.
  • Figure 1 is a proton nuclear magnetic resonance spectrum of the fluorescent probe compound of the present invention
  • Figure 2 is a carbon nuclear magnetic resonance spectrum of the fluorescent probe compound of the present invention.
  • Figure 3 is a graph showing the results of the fluorescence performance test of the fluorescent probe compound of the present invention under different metal ion conditions
  • Fig. 4 is a graph showing the result of the fluorescence performance test of the fluorescent probe compound of the present invention at different Zn 2+ concentrations;
  • Figure 5 is a graph showing the relationship between the fluorescence intensity and the mole fraction of Zn 2+ ;
  • Figure 6 is a graph showing the high-resolution detection results of the fluorescent probe compound of the present invention.
  • a method for preparing a fluorescent probe compound includes the following steps:
  • High resolution mass spectrometry electrospray ionization mass spectrometry: theoretical calculation value of C 25 H 24 N 3 O[M+H] + : 382.1914; test data: 382.1917.
  • the fluorescent probe compound is inferred to be 2-(7-(2,8-dimethylquinolin-6-yl)-5,6,7,8-tetrahydro-1,8-naphthyridine- 2-yl)phenol, which has the following structural formula:
  • a method for preparing a fluorescent probe compound includes the following steps:
  • a method for preparing a fluorescent probe compound includes the following steps:
  • a method for preparing a fluorescent probe compound includes the following steps:
  • a method for preparing a fluorescent probe compound includes the following steps:
  • a method for preparing a fluorescent probe compound includes the following steps:
  • the reaction was stirred at °C for 5 hours to obtain a crude product; the crude product was purified by column chromatography to obtain a fluorescent probe compound; the yield of the preparation method was 64%, and the characterization result of the fluorescent probe compound was the same as in Example 1.
  • the fluorescence performance test of the fluorescent probe compound of the present invention is carried out. It includes the following steps:
  • the metal ions include: Mg 2+ , Fe 2+ , Cu + , Cu 2+ , Sn 4+ , Co 2+ , Mn 2+ , K + , Li + , Ba 2+ , Ca 2+ , Cd 2+ , Ni 2+ , Fe 3+ , Al 3+ and Zn 2+ ; the solutions are respectively prepared from the corresponding hydrochloride. Weigh a certain amount of metal salt, dissolve it in 10 mL of distilled water, prepare a 10 -2 mol/L metal ion solution, and store it for later use.
  • Blank solution preparation Take 0.5mL prepared probe solution and mix with 2.5mL water and 2mL methanol solution.
  • the zinc ion fluorescent probe compound has almost no change in the detection of Zn 2+ , indicating that the designed zinc ion fluorescent probe compound probe has strong selectivity to Zn 2+ and can Meet actual application requirements.
  • the Zn 2+ concentration is 0, 5 ⁇ 10 -8 M, 1 ⁇ 10 -7 M, 2 ⁇ 10 -7 M, 4 ⁇ 10 -7 M, 6 ⁇ 10 -7 M in order.
  • the detection range of the compound for Zn 2+ is from 0.05 ⁇ M to 20 ⁇ M, and the detection limit is 5 ⁇ 10 -8 M, indicating that the compound has a good detection ability for Zn 2+ and has high practical application value.

Abstract

本发明涉及有机发光材料领域,具体涉及一种锌离子荧光探针化合物、其制备方法与在锌离子检测方面的应用。本发明的荧光探针化合物的名称为2-(7-(2,8-二甲基喹啉-6-基)-5,6,7,8-四氢-1,8-萘啶-2-基)苯酚,以2,8-二甲基四氢喹啉和2-(2-苯酚基)-1,8-萘啶为主要原料合成得到。本发明的合成步骤简单、方法操作安全、原料无毒、价格低廉。经荧光性能测试表明,本发明的荧光探针化合物对Zn2+选择性以及灵敏度高,化学稳定性好,尤其适用于水环境体系中Zn2+的检测,而且激发和发射光谱均在可见光区,可作为荧光探针应用于锌离子检测领域。

Description

一种锌离子荧光探针化合物及其制备方法与应用 技术领域
本发明涉及有机发光材料领域,具体涉及一种锌离子荧光探针化合物、其制备方法与在锌离子检测方面的应用。
背景技术
锌离子是生物体必需的微量元素之一,具有重要的生理功能,在人体内是多种蛋白质和酶的组成成分。锌离子广泛的参与生理活动,其含量过多或过少都会引起生物体功能的紊乱,对锌离子的高灵敏检测对疾病诊断具有参考作用。因此,选择性识别和检测锌离子,对化学、生物学、临床医学等领域的相关研究具有十分重要的意义。分子探针可对目标物的浓度、分布等信息进行实时检测,因此具有对生物体内的锌离子进行实时分析检测的潜质。
荧光探针具有成本较低、操作简单、检测限低、选择性好以及实时监测等优点,在金属离子检测中得到广泛关注。因荧光增强传感材料可减少检测错误,对复杂体系检测准确,可同时用多种检测物对不同分析物进行检测。但是,目前报道的Zn 2+荧光化学探针在实际应用中仍受到一些限制,如:有的专一性不够,容易受其它金属离子的干扰;有的合成困难、结构复杂;有的膜渗透性能欠佳;有的在锌离子的检测过程中需要有机溶剂的助溶,增加了检测体系毒性,限制了荧光探针在生物体系中的应用。因此,缺乏一种灵敏性高、选择性好、性能优越且同时能实现水相检测的Zn 2+的荧光探针化学物。
发明内容
针对现有技术的不足,本发明的目的在于提供一种锌离子荧光探针化合物及其制备方法与应用,本发明的荧光探针化合物对Zn 2+具有高选择性以及高灵敏度,可作为荧光探针应用于锌离子检测领域。
本发明采用以下技术方案。
一种荧光探针化合物,其名称为2-(7-(2,8-二甲基喹啉-6-基)-5,6,7,8-四氢-1,8-萘啶-2-基)苯酚,具有如下结构式:
Figure PCTCN2020089423-appb-000001
上述的荧光探针化合物的制备方法,包括以下步骤:
将2,8-二甲基四氢喹啉、2-(2-苯酚基)-1,8-萘啶、金属催化剂、酸和溶剂混合均匀,在 80℃-160℃下反应5-24小时,得到粗产物;粗产物经过提纯即得到荧光探针化合物。
上述制备方法所涉及的反应方程式以及原理如下:
Figure PCTCN2020089423-appb-000002
本发明中,在金属催化剂(M)的催化下,0.5当量的2,8-二甲基四氢喹啉(化合物1,总量为1.5当量)完全脱氢生成化合物1'和[MH 2]。同时,2-(2-苯酚基)-1,8-萘啶(化合物2)在[MH 2]作用下生成化合物2-1,然后1当量的化合物1在酸的作用下生成化合物1-1。类似于Friedel-Crafts反应,富电子的化合物1-1通过共轭加成与化合物2-1生成化合物3-1,然后化合物3-1通过互变异构变为化合物3。
优选地,反应在隔绝空气条件下进行。
进一步优选地,隔绝空气条件为在氮气保护下。
优选地,所述2,8-二甲基四氢喹啉与所述2-(2-苯酚基)-1,8-萘啶的摩尔比为1:0.5-1。
优选地,所述金属催化剂为醋酸铜、三氟甲磺酸铜、硫酸铜、氯化铜、氯化亚铜、氯化铁、醋酸钴、氯化钴、醋酸锰中的一种或多种;所述金属催化剂的质量为所述2,8-二甲基四氢喹啉质量的1-5%。
本发明中,采用廉价的金属催化剂即可有效地实现催化,大大降低了生产成本。
优选地,所述酸为甲酸、乙酸、甲磺酸、苯甲酸、对甲苯磺酸、盐酸、三氟甲磺酸、三氟乙酸中的一种或多种;所述酸的质量为所述2,8-二甲基四氢喹啉质量的10-100%。
优选地,所述溶剂为乙醇、叔戊醇、异丙醇、1,4-二氧六环、N,N-二甲基甲酰胺、二甲基亚砜、甲苯、对二甲苯、水中的一种或多种。
优选地,所述溶剂与所述2,8-二甲基四氢喹啉的体积摩尔比为0.5-3mL:0.5mmol。
优选地,所述提纯为柱层析提纯。
进一步优选地,所述柱层析提纯的洗脱液为石油醚:二氯甲烷:乙酸乙酯体积比0.5-50:0-20:1的混合溶液。
上述的荧光探针化合物在锌离子检测中的应用,其包括在荧光探针、高敏度传感器或锌离子检测仪器中的应用。
本发明的有益效果
(1)本发明通过2,8-二甲基四氢喹啉和2-(2-苯酚基)-1,8-萘啶为主要原料合成荧光探针化合物,其合成步骤简单、方法操作安全、原料无毒、价格低廉。
(2)本发明的荧光探针化合物的激发和发射光谱在可见光区,Zn 2+选择性以及灵敏度高,化学稳定性高,具有较好的水溶性,可在水环境体系中进行Zn 2+的检测,能有效应用于荧光探针、高敏度传感器或锌离子检测仪器中。
附图说明
图1是本发明的荧光探针化合物的核磁共振氢谱图;
图2是本发明的荧光探针化合物的核磁共振碳谱图;
图3是本发明的荧光探针化合物在不同金属离子条件下的荧光性能测试结果图;
图4是本发明的荧光探针化合物在不同Zn 2+浓度时的荧光性能测试结果图;
图5是荧光强度随Zn 2+的摩尔分数变化的函数关系图;
图6是本发明的荧光探针化合物的高分辨率检测结果图。
具体实施方式
下面通过实施例详细说明本发明。
实施例1
一种荧光探针化合物的制备方法,包括以下步骤:
将0.161g 2,8-二甲基四氢喹啉(1mmol)、0.111g 2-(2-苯酚基)-1,8-萘啶(0.5mmol)、0.0016g三氟甲磺酸铜(2,8-二甲基四氢喹啉质量的1%)、0.08g三氟甲磺酸(2,8-二甲基四氢喹啉质量的50%)、1.5mL甲苯混合均匀,在氮气保护、80℃下搅拌反应24小时,得到粗产物;粗产物经过柱层析提纯即得到荧光探针化合物;该制备方法的产率为78%,荧光探针化合物呈黄色固体。
所得的荧光探针化合物的核磁共振氢谱以及碳谱如图1和图2所示,结构表征数据如下:
核磁共振氢谱数据: 1H NMR(400MHz,CDCl 3)δ7.80(d,J=8.3Hz,1H),7.61(d,J=8.0Hz,1H),7.36(d,J=13.1Hz,2H),7.21(d,J=7.7Hz,1H),7.16–7.06(m,2H),7.02(d,J=7.8Hz,1H),6.82(d,J=8.1Hz,1H),6.74(t,J=7.5Hz,1H),5.24(s,1H),4.57(s,1H),2.80–2.69(m,4H),2.69(s,3H),2.64(s,3H),2.60–2.50(m,1H),2.12–2.03(m,1H),1.99–1.87(m,1H)。
碳谱数据: 13C NMR(101MHz,CDCl 3)δ159.27,158.00,154.01,153.05,146.62,139.92,137.68,137.26,136.27,130.48,127.84,126.23,126.16,122.53,122.02,119.64,118.66,118.19,114.12,108.27,55.67,29.82,25.59,24.89,18.13。
高分辨质谱(电喷雾电离质谱):C 25H 24N 3O[M+H] +的理论计算值:382.1914;测试数 据:382.1917。
根据以上数据推定得到的荧光探针化合物为2-(7-(2,8-二甲基喹啉-6-基)-5,6,7,8-四氢-1,8-萘啶-2-基)苯酚,其具有如下结构式:
Figure PCTCN2020089423-appb-000003
实施例2
一种荧光探针化合物的制备方法,包括以下步骤:
将0.121g 2,8-二甲基四氢喹啉(0.75mmol)、0.111g 2-(2-苯酚基)-1,8-萘啶(0.5mmol)、0.002g的醋酸钴(2,8-二甲基四氢喹啉质量的2%)、0.012g的对甲苯磺酸(2,8-二甲基四氢喹啉质量的10%)、1.2mL甲苯混合均匀,在氮气保护、130℃下搅拌反应15小时,得到粗产物;粗产物经过柱层析提纯即得到荧光探针化合物;该制备方法的产率为69%,荧光探针化合物的表征结果与实施例1相同。
实施例3
一种荧光探针化合物的制备方法,包括以下步骤:
将0.129g 2,8-二甲基四氢喹啉(0.8mmol)、0.089g 2-(2-苯酚基)-1,8-萘啶(0.4mmol)、0.006g的醋酸铜(2,8-二甲基四氢喹啉质量的5%)、0.065g的三氟乙酸(2,8-二甲基四氢喹啉质量的50%)、1.2mL叔戊醇混合均匀,在氮气保护、100℃下搅拌反应10小时,得到粗产物;粗产物经过柱层析提纯即得到荧光探针化合物;该制备方法的产率为76%,荧光探针化合物的表征结果与实施例1相同。
实施例4
一种荧光探针化合物的制备方法,包括以下步骤:
将0.064g 2,8-二甲基四氢喹啉(0.4mmol)、0.089g 2-(2-苯酚基)-1,8-萘啶(0.4mmol)、0.002g的氯化铜(2,8-二甲基四氢喹啉质量的3%)、0.064g的对甲苯磺酸(2,8-二甲基四氢喹啉质量的100%)、1.2mL对二甲苯混合均匀,在氮气保护、150℃下搅拌反应10小时,得到粗产物;粗产物经过柱层析提纯即得到荧光探针化合物;该制备方法的产率为81%,该荧光探针化合物的表征结果与实施例1相同。
实施例5
一种荧光探针化合物的制备方法,包括以下步骤:
将0.129g 2,8-二甲基四氢喹啉(0.8mmol)、0.111g 2-(2-苯酚基)-1,8-萘啶(0.5mmol)、0.006g的氯化铁(2,8-二甲基四氢喹啉质量的5%)、0.077g的甲磺酸(2,8-二甲基四氢喹啉质量的 60%)、1mL甲苯混合均匀,在氮气保护、160℃下搅拌反应12小时,得到粗产物;粗产物经过柱层析提纯即得到荧光探针化合物;该制备方法的产率为77%,该荧光探针化合物的表征结果与实施例1相同。
实施例6
一种荧光探针化合物的制备方法,包括以下步骤:
将0.161g 2,8-二甲基四氢喹啉(1mmol)、0.111g 2-(2-苯酚基)-1,8-萘啶(0.5mmol)、0.008g的醋酸锰(2,8-二甲基四氢喹啉质量的5%)、0.097g三氟甲磺酸(2,8-二甲基四氢喹啉质量的60%)、1mL对二甲苯混合均匀,在氮气保护、160℃下搅拌反应5小时,得到粗产物;粗产物经过柱层析提纯即得到荧光探针化合物;该制备方法的产率为64%,该荧光探针化合物的表征结果与实施例1相同。
实验例
对本发明的荧光探针化合物进行荧光性能测试。包括以下步骤:
(1)探针溶液配制:
配置浓度为100μM的2-(7-(2,8-二甲基喹啉-6-基)-5,6,7,8-四氢-1,8-萘啶-2-基)苯酚的甲醇溶液,即为探针溶液,常温保存。
(2)金属离子溶液配制:
所述金属离子包括:Mg 2+、Fe 2+、Cu +、Cu 2+、Sn 4+、Co 2+、Mn 2+、K +、Li +、Ba 2+、Ca 2+、Cd 2+、Ni 2+、Fe 3+、Al 3+和Zn 2+;其溶液分别由对应的盐酸盐制备。分别称取一定量的金属盐,溶于10mL蒸馏水中,配制成10 -2mol/L的金属离子溶液,保存备用。
(3)荧光性能测试:
实验例1
待测液配制:取0.5mL配制的探针溶液和0.5mL配制的金属离子溶液,与4mL CH 3OH-H 2O(v:v=1:1)溶液混合,得到该金属离子的待测液。
空白液配制:取0.5mL配制的探针溶液与2.5mL水和2mL甲醇溶液混合。
利用荧光光谱对待测液的荧光强度进行分析,分析结果如图3所示。
由图3可知,待测液中,当金属离子为Mg 2+、Fe 2+、Cu +、Cu 2+、Sn 4+、Co 2+、Mn 2+、K +、Li +、Ba 2+、Ca 2+、Cd 2+、Ni 2+、Fe 3+、Al 3+时,其荧光强度变化较小。仅Zn 2+待测液的荧光强度出现明显的荧光衰减(各待测液统一标记为“锌离子荧光探针化合物+M”,F 0为空白液荧光,F为待测液荧光,测量在254nm波长处的紫外吸收,F与F 0的比例作为强度变化)。
实验例2
为了进一步验证该锌离子荧光探针化合物对锌离子的专一性,进行了竞争实验。将Zn 2+ 溶液(10μM)与相同浓度的上述其他任意一种金属离子溶液一并加入步骤(1)所配制的探针溶液中,分别测试其它竞争离子对该锌离子荧光探针化合物Zn 2+选择性的影响,测试结果如图3所示(各测试液统一标记为“锌离子荧光探针化合物+M+Zn”)。可以看出,加入其它竞争离子前后,该锌离子荧光探针化合物对Zn 2+的检测几乎没有变化,说明设计的锌离子荧光探针化合物探针对Zn 2+具有很强的选择性,能满足实际应用需求。
实验例3
在步骤(1)配制的探针溶液中添加不同浓度的Zn 2+,测试其荧光性能,以确定该锌离子荧光探针化合物的Zn 2+检测范围及检测限。测试结果如图4所示,Zn 2+浓度依次为0、5×10 -8M、1×10 -7M、2×10 -7M、4×10 -7M、6×10 -7M、8×10 -7M、1×10 -6M、2×10 -6M、4×10 -6M,而荧光强度从上到下对应依次减弱,表明该荧光探针化合物的荧光强度随着Zn 2+浓度的增加逐渐减弱,当Zn 2+浓度达到4×10 -6M时,该化合物的荧光强度出现了大幅度的衰减。该化合物对Zn 2+检测范围从0.05μM到20μM,其检测限为5×10 -8M,表明该化合物对Zn 2+的检测能力较好,具有较高的实际应用价值。
实验例4
为了进一步确认探针与金属离子之间的作用机理,我们利用Job’s plot进行了初步分析。具体操作方法如下:在保证总浓度恒定的情况下(10μM),测试探针和金属离子不同摩尔比时在426nm的荧光发射光谱,并根据结果绘制荧光强度随Zn 2+摩尔分数变化的函数关系图,如图5所示。
由图5可知,当锌离子的摩尔分数达到0.51时,出现一处拐点,说明锌离子与探针之间是以1:1的关系进行配位的。同时,高分辨率检测的数据也进一步证实了以上实验结果,如图6所示,在m/z 513.0353处出现一个主要的信号峰,该分子量与C 25H 21Cl 2N 3OZn的分子量一致,其计算值为513.0347,在误差范围之内。根据以上结果,我们推测一个可能的配位结构(图6中所示的结构式)。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其它的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (9)

  1. 一种荧光探针化合物,其特征在于,所述化合物的名称为2-(7-(2,8-二甲基喹啉-6-基)-5,6,7,8-四氢-1,8-萘啶-2-基)苯酚,具有如下结构式:
    Figure PCTCN2020089423-appb-100001
  2. 权利要求1所述的荧光探针化合物的制备方法,其特征在于,包括以下步骤:
    在隔绝空气条件下,将2,8-二甲基四氢喹啉、2-(2-苯酚基)-1,8-萘啶、金属催化剂、酸和溶剂混合均匀,在80℃-160℃下反应5-24小时,得到粗产物;粗产物经过提纯即得到荧光探针化合物;
    所述金属催化剂为醋酸铜、三氟甲磺酸铜、硫酸铜、氯化铜、氯化铁、醋酸钴、氯化钴、醋酸锰中的一种或多种;
    所述酸为乙酸、甲磺酸、苯甲酸、对甲苯磺酸、盐酸、三氟甲磺酸、三氟乙酸中的一种或多种;
    所述溶剂为乙醇、叔戊醇、异丙醇、1,4-二氧六环、N,N-二甲基甲酰胺、二甲基亚砜、甲苯、对二甲苯中的一种或多种。
  3. 根据权利要求2所述的荧光探针化合物的制备方法,其特征在于,所述2,8-二甲基四氢喹啉与所述2-(2-苯酚基)-1,8-萘啶的摩尔比为1:0.5-1。
  4. 根据权利要求2所述的荧光探针化合物的制备方法,其特征在于,所述金属催化剂的质量为所述2,8-二甲基四氢喹啉质量的1-5%。
  5. 根据权利要求2所述的荧光探针化合物的制备方法,其特征在于,所述酸的质量为所述2,8-二甲基四氢喹啉质量的10-100%。
  6. 根据权利要求2所述的荧光探针化合物的制备方法,其特征在于,所述溶剂与所述2,8-二甲基四氢喹啉的体积摩尔比为0.5-3mL:0.5mmol。
  7. 根据权利要求2所述的荧光探针化合物的制备方法,其特征在于,所述提纯为柱层析提纯。
  8. 根据权利要求7所述的荧光探针化合物的制备方法,其特征在于,所述柱层析提纯的洗脱液为石油醚:二氯甲烷:乙酸乙酯体积比0.5-50:0-20:1的混合溶液。
  9. 权利要求1中任一项所述的荧光探针化合物在锌离子检测中的应用,所述应用是非疾病诊断,或非疾病治疗的。
PCT/CN2020/089423 2019-05-13 2020-05-09 一种锌离子荧光探针化合物及其制备方法与应用 WO2020228640A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/964,853 US11530212B2 (en) 2019-05-13 2020-05-09 Fluorescent probe compound for zinc ion, as well as preparation method and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910393175.6A CN110117282B (zh) 2019-05-13 2019-05-13 一种锌离子荧光探针化合物及其制备方法与应用
CN201910393175.6 2019-05-13

Publications (1)

Publication Number Publication Date
WO2020228640A1 true WO2020228640A1 (zh) 2020-11-19

Family

ID=67522236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/089423 WO2020228640A1 (zh) 2019-05-13 2020-05-09 一种锌离子荧光探针化合物及其制备方法与应用

Country Status (3)

Country Link
US (1) US11530212B2 (zh)
CN (1) CN110117282B (zh)
WO (1) WO2020228640A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114214059A (zh) * 2021-11-18 2022-03-22 淮阴工学院 氟离子荧光探针及其制备方法和应用

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109053725B (zh) * 2018-08-24 2021-06-08 五邑大学 一种2-(四氢喹啉-6-基)-四氢-1,8-萘啶类化合物及其制备方法与应用
CN110117282B (zh) * 2019-05-13 2020-07-10 五邑大学 一种锌离子荧光探针化合物及其制备方法与应用
CN113402449A (zh) * 2021-06-22 2021-09-17 玉林师范学院 一种用于锌离子快速检测的化合物及其制备方法
CN114409635B (zh) * 2022-01-25 2024-02-09 五邑大学 一种化合物及其制备方法与应用
CN114835642B (zh) * 2022-04-04 2024-01-30 哈尔滨理工大学 一种接力识别锌离子和草甘膦的荧光探针制备方法与应用
CN115043881B (zh) * 2022-07-04 2023-12-15 中国科学院兰州化学物理研究所 一种金属离子配合物荧光探针及其制备与在检测氯仿气体分子中的应用
CN115353491B (zh) * 2022-07-28 2023-12-29 南京林业大学 一种脱氢枞酸基双苯并咪唑水杨醛三离子功能型荧光探针的制备方法及应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050250214A1 (en) * 2004-05-05 2005-11-10 Gee Kyle R Zinc binding compounds and their method of use
JP2005325074A (ja) * 2004-05-14 2005-11-24 Tokyo Univ Of Science 化合物、化合物の製造方法及びアポトーシス細胞の検出方法
CN105038769A (zh) * 2015-07-21 2015-11-11 渤海大学 一种基于8-氨基喹啉衍生物荧光探针及其合成方法和应用
CN107523292A (zh) * 2017-09-08 2017-12-29 徐州医科大学 一种锌离子荧光探针、制备方法及检测锌离子含量的方法
CN107628997A (zh) * 2017-09-30 2018-01-26 河南理工大学 一种基于喹啉衍生物的荧光探针及其制备方法和应用
CN109293651A (zh) * 2018-11-19 2019-02-01 大连大学 一种水溶液中检测锌离子的比率荧光探针化合物及其检测方法
CN110117282A (zh) * 2019-05-13 2019-08-13 五邑大学 一种锌离子荧光探针化合物及其制备方法与应用

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007089781A2 (en) * 2006-01-30 2007-08-09 University Of North Dakota Divalent metal ion sensors and binders
CN101446547A (zh) * 2008-11-06 2009-06-03 郑州大学 一种锌、铜离子荧光探针及其制备方法与应用
CN102925136B (zh) * 2012-10-23 2014-12-24 大连大学 一种Zn2+比率荧光探针化合物和制备方法及应用
CN107118206A (zh) * 2017-04-07 2017-09-01 同济大学 一类喹啉‑二吡啶衍生物Zn2+荧光探针及其应用
CN108250211B (zh) * 2018-01-13 2019-12-06 常州大学 一种用于检测Zn2+的荧光探针及其制备方法
CN108299402B (zh) * 2018-03-15 2021-03-02 曲阜师范大学 一种多功能超灵敏Zn2+双光子检测荧光分子探针的制备方法及应用
CN109053725B (zh) * 2018-08-24 2021-06-08 五邑大学 一种2-(四氢喹啉-6-基)-四氢-1,8-萘啶类化合物及其制备方法与应用
CN109180705B (zh) * 2018-09-26 2021-06-08 五邑大学 一种荧光化合物及其制备方法和应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050250214A1 (en) * 2004-05-05 2005-11-10 Gee Kyle R Zinc binding compounds and their method of use
JP2005325074A (ja) * 2004-05-14 2005-11-24 Tokyo Univ Of Science 化合物、化合物の製造方法及びアポトーシス細胞の検出方法
CN105038769A (zh) * 2015-07-21 2015-11-11 渤海大学 一种基于8-氨基喹啉衍生物荧光探针及其合成方法和应用
CN107523292A (zh) * 2017-09-08 2017-12-29 徐州医科大学 一种锌离子荧光探针、制备方法及检测锌离子含量的方法
CN107628997A (zh) * 2017-09-30 2018-01-26 河南理工大学 一种基于喹啉衍生物的荧光探针及其制备方法和应用
CN109293651A (zh) * 2018-11-19 2019-02-01 大连大学 一种水溶液中检测锌离子的比率荧光探针化合物及其检测方法
CN110117282A (zh) * 2019-05-13 2019-08-13 五邑大学 一种锌离子荧光探针化合物及其制备方法与应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114214059A (zh) * 2021-11-18 2022-03-22 淮阴工学院 氟离子荧光探针及其制备方法和应用
CN114214059B (zh) * 2021-11-18 2024-03-12 淮阴工学院 氟离子荧光探针及其制备方法和应用

Also Published As

Publication number Publication date
CN110117282A (zh) 2019-08-13
US20210147412A1 (en) 2021-05-20
US11530212B2 (en) 2022-12-20
CN110117282B (zh) 2020-07-10

Similar Documents

Publication Publication Date Title
WO2020228640A1 (zh) 一种锌离子荧光探针化合物及其制备方法与应用
AU2020102262A4 (en) Use of ratiometric fluorescent probe in measurement of peroxynitrite anion
AU757901B2 (en) Detection of analytes by fluorescent lanthanide chelates
He et al. A new rhodamine-thiourea/Al3+ complex sensor for the fast visual detection of arginine in aqueous media
Hu et al. Sulfonyl rhodamine hydrazide: A sensitive and selective chromogenic and fluorescent chemodosimeter for copper ion in aqueous media
Tian et al. A novel turn-on Schiff-base fluorescent sensor for aluminum (III) ions in living cells
CN106220640B (zh) 一类汞离子荧光探针及其制备方法和应用
Huo et al. The synthesis, characterization of three isomers of rhodamine derivative and their application in copper (II) ion recognition
CN113979998B (zh) 基于1,8-萘酰亚胺为母体的铝离子检测荧光探针及其制备方法和应用
AU2020102202A4 (en) Ratiometric fluorescent probe for ph measurment and preparation method and use thereof
CN105294539A (zh) 一种铝离子荧光探针化合物及其制备方法
CN112724040B (zh) 一类基于四苯乙烯结构的阳离子荧光探针
Cui et al. A highly sensitive and selective fluorescent probe for N 2 H 4 in air and living cells
Hu et al. Synthesis, structural characterization, and fluorescent chemosensory properties of novel molecular clips based on diethoxycarbonyl glycoluril
Munusamy et al. A sensitive and selective BINOL based ratiometric fluorescence sensor for the detection of cyanide ions
Kim et al. Determination of water content in aprotic organic solvents using 8-hydroxyquinoline based fluorescent probe
CN108088828A (zh) 一种双柱芳烃汞离子荧光传感器及其制备和应用
CN113087651B (zh) 一种含有吲哚基团的化合物及其制备方法和应用
CN109206351A (zh) 一种基于花菁结构测钯离子的近红外荧光探针、其制备方法及应用
CN106800548A (zh) 8‑苯并咪唑喹啉衍生物比率型pH探针及其制备方法和应用
CN111233767B (zh) 一种蒽基双吡唑类化合物及其制备方法和应用
CN115651006B (zh) 一种具有大斯托克斯位移的过氧化氢比率型近红外荧光探针及其制备方法与应用
CN111848671A (zh) 一种过氧亚硝酰阴离子比率远红外荧光探针、制备方法和应用
CN110713826B (zh) 基于邻炔基苯并唑的铜离子检测探针及其制备方法和应用
CN110511191A (zh) 一种检测有机溶剂中水含量的荧光探针及其制备方法与应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20806824

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20806824

Country of ref document: EP

Kind code of ref document: A1