WO2020228400A1 - 无机盐界面诱导组装制备二维有序介孔纳米片的方法 - Google Patents

无机盐界面诱导组装制备二维有序介孔纳米片的方法 Download PDF

Info

Publication number
WO2020228400A1
WO2020228400A1 PCT/CN2020/078361 CN2020078361W WO2020228400A1 WO 2020228400 A1 WO2020228400 A1 WO 2020228400A1 CN 2020078361 W CN2020078361 W CN 2020078361W WO 2020228400 A1 WO2020228400 A1 WO 2020228400A1
Authority
WO
WIPO (PCT)
Prior art keywords
inorganic salt
nanosheet
dimensional
ordered mesoporous
assembly
Prior art date
Application number
PCT/CN2020/078361
Other languages
English (en)
French (fr)
Inventor
邓勇辉
柳亮亮
邹义冬
杨玄宇
Original Assignee
复旦大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 复旦大学 filed Critical 复旦大学
Priority to US17/603,587 priority Critical patent/US20220194811A1/en
Publication of WO2020228400A1 publication Critical patent/WO2020228400A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/126Preparation of silica of undetermined type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/224Oxides or hydroxides of lanthanides
    • C01F17/235Cerium oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/30Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6
    • C01F17/32Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6 oxide or hydroxide being the only anion, e.g. NaCeO2 or MgxCayEuO
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/30Preparation of aluminium oxide or hydroxide by thermal decomposition or by hydrolysis or oxidation of aluminium compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/30Preparation of aluminium oxide or hydroxide by thermal decomposition or by hydrolysis or oxidation of aluminium compounds
    • C01F7/302Hydrolysis or oxidation of gaseous aluminium compounds in the gaseous phase
    • C01F7/304Hydrolysis or oxidation of gaseous aluminium compounds in the gaseous phase of organic aluminium compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/02Oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0022Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof obtained by a chemical conversion or reaction other than those relating to the setting or hardening of cement-like material or to the formation of a sol or a gel, e.g. by carbonising or pyrolysing preformed cellular materials based on polymers, organo-metallic or organo-silicon precursors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • C01P2004/24Nanoplates, i.e. plate-like particles with a thickness from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00008Obtaining or using nanotechnology related materials

Definitions

  • the invention belongs to the technical field of nanoporous materials, and specifically relates to a method for preparing two-dimensional ordered mesoporous nanosheets by the induction assembly of inorganic salt interfaces.
  • nanomaterials due to their unique size structure, stable physical and chemical properties, and special microscopic effects (such as small size effects, quantum size effects, interface effects, macro quantum tunneling effects, etc.) ) And are widely used in catalysis, sensing, adsorption, electrochemistry, bioseparation, drug sustained release, etc. (L. Wu, JJ Willis, ISMCKay, BTDiroll, J. Qin, M.
  • Nanosheet materials have a high specific surface area, surface active sites and high reactivity due to their unique layered structure, which has attracted much attention, especially the monolayer ordered mesoporous nanosheet materials, which gather ordered pores and mesopores.
  • Various performance advantages such as pore size, single layer morphology, and nanometer size have shown outstanding application prospects in nano-catalysis, capacitors, and sensors.
  • the above-mentioned methods have technical defects such as time-consuming, complicated operation, and high cost.
  • the prepared two-dimensional nanosheet materials have defects such as irregular pores, uneven size distribution, low orderliness, and difficulty in controlling the thickness of nano-layers, resulting in
  • the above method cannot be applied to the wide production and application of nano-sheet materials, and cannot be adapted to the preparation of mesoporous nano-sheet materials with various raw materials. For this reason, it is very important to propose a simple, efficient and universally controllable single-layer nanosheet synthesis method.
  • the purpose of the present invention is to provide a method for mass preparation of two-dimensional ordered mesoporous nanosheets by the interface induced assembly of inorganic salts.
  • the method for preparing two-dimensional ordered mesoporous nanosheets with inorganic salt interface induced assembly includes the following specific steps:
  • the pre-configured precursor solution is introduced into the inorganic salt, and the diffusion of the precursor solution in the inorganic salt is guided by physical means such as suction filtration ( ⁇ 0.03MPa) or low-speed centrifugation ( ⁇ 4000rpm) And mass transfer to realize the surface monolayer dispersion interface of the precursor solution;
  • the temperature is increased to 300-600 °C (the heating rate is 1-5 °C/min), and the block copolymer template is removed by calcination at high temperature for 2-3 hours to obtain a layered two-dimensional organic/inorganic hybrid Chemically ordered mesoporous composite material; then heated to 430-630°C in the air in a muffle furnace (the heating rate is 1-5°C/min), and then calcined at high temperature for 2-3h to remove residual carbon to form a highly ordered
  • the mesoscopic structure of the monolayer two-dimensional ordered mesoporous nanosheet material is obtained after the inorganic salt template is dissolved in a large amount of deionized water.
  • the pore size of the mesopores can be adjusted within 18nm-50nm by changing the molecular weight of the copolymer, and the number of nanosheet layers can be adjusted by changing the solubility of the precursor, the suction filtration time or the centrifugal rotation speed To floors 1-5.
  • amphiphilic block copolymer is selected from high molecular weight polymers, which can be commercial polyether templating agents (such as F127), PEO-b-PS, PEO-PPO-PEO, PS-b -One or more of P4VP and other polymers.
  • high molecular weight polymers which can be commercial polyether templating agents (such as F127), PEO-b-PS, PEO-PPO-PEO, PS-b -One or more of P4VP and other polymers.
  • the target nanosheet raw materials used are one or more of metal alkoxides, metal chlorides, metal sulfates, acetylacetonates, inorganic non-metal precursor salts, and phenolic resins; the precursor solutions are used
  • the solvent is one or more of the volatile organic solvents tetrahydrofuran (THF) and ethanol.
  • the soluble inorganic salts used are water-soluble salts such as NaCl, KCl, K 2 SO 4 and the like.
  • the volatile organic solvent is controlled in a gradient temperature control mode, and the procedure is room temperature/12-24h, 35-40°C/15-24h, 95-105°C/15-24h gradient continuous volatile solvent;
  • the N 2 atmosphere heating rate is 1° C./min
  • the air atmosphere heating rate is 1-5° C./min.
  • the target nanosheet material mass percentage is 5wt%-20wt%
  • the block copolymer mass percentage is 1wt%-5wt%
  • the inorganic salt mass percentage is 20wt%- 80wt%
  • other components are solvents.
  • the synthesis of monolayer SiO 2 , Al 2 O 3 and ZrO 2 nanosheets requires the introduction of a small amount of acid solvent to adjust the hydrolysis rate (such as hydrochloric acid and nitric acid).
  • the synthesized nanosheet material can be nanosheets with a variety of different morphologies (such as lamellar, layer-layer, block or amorphous), adjustable size, adjustable thickness, and different materials.
  • the invention adopts a simple two-phase system (THF/ethanol/water-O/W), selects metal or non-metal raw materials with regular morphology and high stability, and performs surface enrichment under the induction of amphiphilic block copolymers -Polymerization-reaction, the precursor solution nucleates on the surface of the soluble inorganic salt-grows to form a unit cell structure, due to the high binding force of the soluble inorganic salt, block copolymer and metal/non-metal raw materials, suction filtration or slow centrifugation is used Physical means realize the monolayer distribution of the precursor liquid on the surface of the inorganic salt.
  • nanosheet materials with controllable thickness and adjustable number of layers on the surface of the inorganic salt, and further use the solvent volatilization-induced self-assembly technology to promote the slow nucleation and growth of the precursor on the surface of the inorganic salt, which is removed by high temperature calcination Template, water-soluble method to remove inorganic salt substrate.
  • the method of the present invention can be applied to two-dimensional ordered mesoporous nanometers of different materials (non-metals or metals and their oxides, chlorides, etc.) and different morphologies (lamellae, layer-layered, massive or amorphous) Synthesis of sheet materials.
  • the synthesized nanosheet material can be adjusted between a single layer and multiple layers, and the thickness of the hole wall is controllable, and the ratio of raw materials is less dependent, the prepared single layer nanosheet material has better water dispersibility and ethanol Dispersibility, hydrophilicity and high temperature resistance are good. After calcination, the pores will not collapse due to the support of inorganic salts.
  • the two-dimensional ordered mesoporous single-layer nanosheet material assembly method reported in the present invention is simple, efficient and convenient, and has high controllability. The pores are highly ordered and the pore size is adjustable. It has universality for nanometer raw materials and is suitable for large-scale Production and easy to guide the synthesis of similar materials, it has important application value in nano-catalysis, sensing, adsorption, electrochemistry, etc.
  • the invention reduces the dependence of the nanosheet material on the ratio of raw materials, improves the order of the nanosheet material pores and the adjustable pore size, avoids the collapse of the pores caused by high-temperature calcination, and exerts
  • the important role of inorganic salts fully demonstrates the protective role of macro-micron materials in the synthesis of micro-nano materials.
  • Figure 1 350°C N 2 calcined monolayer ordered mesoporous TiO 2 nanosheets, Scale bar 100nm.
  • Figure 2 350°C N 2 calcined monolayer ordered mesoporous TiO 2 nanosheets, Scale bar 50nm.
  • Figure 3 Air-calcined monolayer ordered mesoporous TiO 2 nanosheets at 430°C, Scale bar 100nm.
  • Figure 4 Air-calcined monolayer ordered mesoporous TiO 2 nanosheets at 430°C, Scale bar 50nm.
  • the technical solutions of the present invention are described below through specific embodiments, but the protection scope of the present invention is not limited thereto.
  • the present invention first prepares precursor solutions of different raw materials, and then assembles the precursor solutions on the surface of inorganic salts under the induction of volatile solvents.
  • the present invention will be described in further detail below.
  • PEO 117 -b-PS 113 (molecular weight 16700g ⁇ mol -1 , 0.1g) was dissolved and dispersed into 10.0g THF solution, then 2.0g phenolic resin precursor dissolved in THF (20wt%, containing 0.25g phenol and 0.15g) Formaldehyde), continue magnetic stirring at room temperature for 0.5h to form a uniform transparent solution, pour a certain mixed solution into the inorganic salt NaCl solid crystal powder, and filter with a vacuum of ⁇ 0.03MPa for 30-120s (or 3000rpm/3min centrifugation), in NaCl A small amount of precursor solution is attached to the surface of the crystal.
  • the heating rate is 1 °C / min, then the final two-dimensional monolayer ordered mesoporous carbon nanosheets with a pore size of 23nm.
  • PEO 117 -b-PS 113 (molecular weight 16700g ⁇ mol -1 or F127) and tetrabutyl titanate (TBOT, 0.2g) were dissolved and dispersed into 10mL THF solution, then concentrated hydrochloric acid (0.1mL, 37%) and acetic acid were added (0.1mL, 98%), continuous magnetic stirring at room temperature for 0.5h, pour a certain mixed solution into the inorganic salt NaCl solid crystal powder, and filter with a vacuum of ⁇ 0.03MPa for 30-120s (or 3000rpm/3min centrifugation). A small amount of precursor solution is attached to the surface of NaCl crystals.
  • the obtained solid in an open bottle to volatilize the solvent at room temperature for 15 hours, then transfer to a 40°C oven for continuous volatilization for 18 hours, adjust the temperature to 105°C and continue to volatilize for 24 hours; take out the solid at 350°C in a tube type Calcined in the furnace under the protection of N 2 for 2 hours to decompose the template at a heating rate of 1°C/min; then take out the solid in a muffle furnace and calcinate in air at 430°C for 2 hours, with a heating rate of 1°C/min, after the product is cooled Washing with deionized water for 3-5 times to remove the NaCl template, the obtained two-dimensional monolayer ordered mesoporous TiO 2 nanosheets have a pore size of 18 nm.
  • PEO 117 -b-PS 113 (molecular weight 16700g ⁇ mol -1 , 40mg) and ethyl orthosilicate (TEOS, 0.2g) are dissolved and dispersed into 4.0g tetrahydrofuran solution, then 0.1M hydrochloric acid (0.06g) is added, and the magnetic force is maintained at room temperature Stir for 0.5h to form a uniform solution, pour a certain mixed solution into the inorganic salt NaCl solid crystal powder, filter with a vacuum of ⁇ 0.03MPa for 30-120s (or 3000rpm/3min centrifugation), and attach a small amount of precursor solution on the surface of the NaCl crystal Put the obtained solid in an open bottle to volatilize the solvent at room temperature for 18h, then transfer to a 42°C oven for continuous volatilization for 18h, adjust the temperature to 95°C and continue to volatilize for 20h; take out the solid and calcinate in a tube furnace at 350°C under N 2 protection for 3
  • PEO 117 -b-PS 113 (molecular weight 16700g ⁇ mol -1 , 0.1g) was dissolved and dispersed in 10.0g THF solution, then 0.5g aluminum acetylacetonate was added, and then concentrated nitric acid (0.17mL) was added at room temperature and magnetically stirred for 12h at room temperature.
  • a certain mixed solution is poured into the inorganic salt NaCl solid crystal powder, and filtered with a vacuum of ⁇ 0.03MPa for 30-120s (or 3000rpm/3min centrifugation), a small amount of precursor solution is attached to the surface of the NaCl crystal, and the obtained solid is placed in the open
  • the solvent was volatilized in the bottle for 20 hours at room temperature, and then transferred to an oven at 45°C for 22 hours. Adjust the temperature to 98°C and continue to volatilize for 22 hours.
  • the solid was taken out and calcined in a tube furnace at 400°C under N 2 protection for 2 hours to decompose the template.
  • PEO 117 -b-PS 113 (molecular weight 16700g ⁇ mol -1 , 0.1g) was dissolved and dispersed in 10.0g THF solution, then zirconium acetylacetonate (0.3g) was added, followed by concentrated nitric acid (0.15mL) at room temperature and magnetic stirring was continued for 8h , Pour a certain mixed solution into the inorganic salt NaCl solid crystal powder, and filter with a vacuum of ⁇ 0.03MPa for 30-120s (or 3000rpm/3min centrifugation), attach a small amount of precursor solution on the surface of the NaCl crystal, and place the obtained solid Volatilize the solvent at room temperature in an open bottle for 20h, then transfer to a 38°C oven for continuous volatilization for 20h, adjust the temperature to 102°C and continue to volatilize for 24h; take out the solid and calcinate in a tube furnace at 350°C for 3h under the protection of N 2 to decompose the template agent.
  • the rate is 1°C/min. After the product is cooled, it is transferred to a muffle furnace and calcined at 450°C in air for 2 hours. The heating rate is 5°C/min. After the product is cooled, it is washed with deionized water 3-5 times to remove NaCl
  • the template is a two-dimensional monolayer ordered mesoporous ZrO 2 nanosheet.
  • PEO 117 -b-PS 113 (molecular weight 16700g ⁇ mol -1 , 0.1g) was dissolved and dispersed into 4mL N,N-dimethylformamide/ethanol mixed solution, then 0.15g zirconium acetylacetonate and 0.104g TBOT were added at room temperature Continue magnetic stirring for 2 hours, pour a certain mixed solution into the inorganic salt NaCl solid crystal powder, and filter with a vacuum of ⁇ 0.03MPa for 30-120s (or 3000rpm/3min centrifugation), and attach a small amount of precursor solution on the surface of the NaCl crystal.
  • the obtained solid was placed in an open bottle to volatilize the solvent at room temperature for 24h, and then transferred to a 40°C oven for continuous volatilization for 24h, adjust the temperature to 105°C and continue to volatilize for 24h; take out the solid and calcined in a tube furnace at 350°C under N 2 protection for 3h to decompose Template agent, the heating rate is 1°C/min, after the product is cooled, it is transferred to the muffle furnace and calcined in the air at 450°C for 2h. The heating rate is 1°C/min. After the product is cooled, it is washed with deionized water for 3-5 After removing the NaCl template, two-dimensional monolayer ordered mesoporous ZrTiO 4 nanosheets are obtained.
  • PEO 117 -b-PS 113 (molecular weight 16700g ⁇ mol -1 , 0.1g) was dissolved and dispersed in 10.0g THF solution, then 0.4g zirconium acetylacetonate and 0.4g CeCl 3 ⁇ 6H 2 O were added, and magnetic stirring was continued at room temperature for 2 hours.
  • the CeO 2 nanocrystals with a particle size of ⁇ 5nm were synthesized by pyrolysis, and the CeO 2 nanocrystals were treated with 4-hydroxybenzoic acid to make the surface hydrophilic and used as the metal precursor.
  • PEO 117 -b-PS 113 (molecular weight 16700g ⁇ mol -1 , 20 mg) was dissolved and dispersed in 2.0 g of THF solution, 40 mg of modified CeO 2 nanocrystals were dispersed in 2.0 mL of absolute ethanol solution, and the above solution was uniformly mixed and stirred at room temperature for 2 hours.
  • the product After the product is cooled, it is transferred to a muffle furnace and calcined in air at 450°C for 2h. The heating rate is 5°C/min. After the product is cooled, it is washed with deionized water 3-5 times to remove the NaCl template. , The obtained two-dimensional monolayer ordered mesoporous CeO 2 nanosheet has a pore diameter of 27 nm.
  • the template agent is replaced with a higher molecular weight PEO 234 -b-PS 266 (molecular weight 39000g ⁇ mol -1 , 20mg), the final nanoplate pore size is 35nm, replaced with PEO 468 -b-PS 307 (molecular weight 51000g ⁇ mol -1 , 20mg), the final nanosheet pore size is 48nm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Structural Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明属于纳米多孔材料技术领域,具体为一种无机盐界面诱导组装制备二维有序介孔纳米片的方法。本发明以可溶性无机盐为基底、两亲性嵌段共聚物为模板剂,采用真空抽滤或低速离心实现目标前驱体溶液在无机盐晶体界面均匀扩散与传递;利用溶剂挥发诱导共组装技术形成高度有序的单层介孔结构;通过梯度控温奥斯瓦熟化促使有机溶剂挥发并诱导成型,在N 2保护下去除模板剂,得到高度有序的单层二维介孔纳米片材料。所组装的纳米片材料具有较大孔径、规则的球形孔道且有序排列;通过改变前驱体的类型可合成多种介孔金属氧化物、金属单质、无机非金属纳米片。本发明方法简单,原料易得,对纳米材料具有普适性,适于放大生产。

Description

无机盐界面诱导组装制备二维有序介孔纳米片的方法 技术领域
本发明属于纳米多孔材料技术领域,具体涉及一种无机盐界面诱导组装制备二维有序介孔纳米片的方法。
背景技术
近年来,随着纳米材料与纳米技术的快速发展,纳米材料因其独特的尺寸结构、稳定的理化性质、特殊的微观效应(如小尺寸效应、量子尺寸效应、界面效应、宏观量子隧道效应等)而被广泛应用于催化、传感、吸附、电化学、生物分离、药物缓释等方面(L.Wu,J.J.Willis,I.S.McKay,B.T.Diroll,J.Qin,M.Cargnello,C.J.Tassone,Nature.548,197(2017);H.W.Liang,W.Wei,Z.S.Wu,X.Feng,K.Mullen,J.Am.Chem.Soc.135,16002(2013),J.Zhang,T.Wang,P.Liu,Z.Liao,S.Liu,X.Zhuang,M.Chen,E.Zschech,X.Feng,Nat Commun.8,15437(2017).),而优化传统的合成技术与组装方法对大批量生产和应用高性能纳米材料具有重要的作用。
纳米片材料由于其独特的层状结构而具备较高的比表面积、表面活性位点及高反应活性备受关注,尤其是单层有序介孔纳米片材料,聚集了有序孔道、介孔孔径、单层形貌、纳米尺寸等多方面的性能优势,在纳米催化、电容器、传感器等方面表现出突出的应用前景。
然而,针对纳米片材料的合成,尤其是金属氧化物纳米片材料及介孔碳纳米片材料,文献报道及常用的合成方法有水热法、化学刻蚀法、气相沉积法等(Z.Sun,T.Liao,Y.Dou,S.M.Hwang,M.S.Park,L.Jiang,J.H.Kim,S.X.Dou,Nat Commun.5,1(2014);J.Ping,Z.Fan,M.Sindoro,Y.Ying,H.Zhang,Adv.Funct.Mater.27,1605817(2017);S.Yang,Y.Gong,J.Zhang,L.Zhan,L.Ma,Z.Fang,R.Vajtai,X.Wang,P.M.Ajayan,Adv.Mater.25,2452(2013);Q.Chen,Y.Yang,Z.Cao,Q.Kuang,G.Du,Y.Jiang,Z.Xie,L.Zheng,Angew.Chem.128,9167(2016).)。通常上述方法具有耗时长、操作复杂、成本高等技 术缺陷,同时制备出的二维纳米片材料存在孔道不规则、尺寸分布不均、有序度不高及纳米层厚度难以控制等缺陷,从而导致上述方法无法应用于纳米片材料的广泛生产与应用,且不能适应多种原料的介孔纳米片材料的制备。为此,提出一种简便、高效且具有普适性的可控单层纳米片合成方法至关重要。
尽管国内外学者采用溶剂挥发诱导自组装技术成功合成了多种高度有序、形貌结构多样、性能优异的纳米介孔材料,但主要是集中于块状、棒状、线状纳米材料的合成。而采用无机盐作为基底合成有序介孔材料的方法还未有过报道,关于EICA技术组装二维单层纳米片涉及较少,且难以实现单层纳米片的组装与修饰。
发明内容
本发明的目的在于提供一种无机盐界面诱导组装大批量制备二维有序介孔纳米片的方法。
本发明所提出的无机盐界面诱导组装制备二维有序介孔纳米片的方法,具体步骤为:
(1)以大分子量两亲性嵌段共聚物为模板,配置一定比例的纳米材料前驱体溶液;
(2)以可溶性无机盐为基底,将预配置的前驱体溶液引入无机盐中,通过抽滤(<0.03MPa)或低速离心(<4000rpm)的物理手段引导前驱体溶液在无机盐中的扩散与传质,实现前驱体溶液的表面单层分散界面;
(3)利用溶剂挥发诱导共组装(EICA)原理,以梯度控温方式调控挥发性有机溶剂的缓慢或中速挥发,实现分子前驱体与共聚物在无机盐表面的自组装;
(4)在N 2保护下于升温至300-600℃(升温速率为1-5℃/min),高温煅烧2-3h,去除嵌段共聚物模板剂,得到层状二维有机/无机杂化有序介孔复合材料;随后在马弗炉中在空气下升温至430-630℃(升温速率为1-5℃/min),高温煅烧2-3h,去除残碳,形成具有高度有 序的介观结构,以大量去离子水溶解无机盐模板后得到单层二维有序介孔纳米片材料。
本发明制备的二维有序介孔纳米片材料,介孔的孔径尺寸可改变共聚物分子量在18nm-50nm内调节,纳米片层层数通过改变前驱体溶度、抽滤时间或离心转速调节至1-5层。
本发明中,所述的两亲性嵌段共聚物选用大分子量聚合物,可以是商业化的聚醚类模板剂(如F127)、PEO-b-PS、PEO-PPO-PEO、PS-b-P4VP等其中的一种或多种聚合物。
本发明中,所使用的目标纳米片原料是金属醇盐、金属氯盐、金属硫酸盐、乙酰丙酮物、无机非金属前驱体盐、酚醛树脂中的一种或多种;前驱体溶液所使用的溶剂为挥发性有机溶剂四氢呋喃(THF)、乙醇中的一种或多种。
本发明中,采用的可溶性无机盐为NaCl、KCl、K 2SO 4等水溶性盐。
本发明中,所述以梯度控温方式调控挥发性有机溶剂,其程序为室温/12-24h、35-40℃/15-24h、95-105℃/15-24h的梯度连续挥发溶剂;
本发明中,高温煅烧时,N 2氛围升温速率为升温速率为1℃/min,空气氛围升温速率为1-5℃/min。
本发明中,在单层纳米片材料溶液相组装体系中,目标纳米片原料质量百分比为5wt%-20wt%,嵌段共聚物质量百分比为1wt%-5wt%,无机盐质量百分比为20wt%-80wt%,其它组分为溶剂。单层SiO 2、Al 2O 3和ZrO 2纳米片的合成需要引入少量酸溶剂调节水解速率(如盐酸和硝酸)。
本发明中,所合成的纳米片材料可以为多种不同形貌(如片层状、层-层状、块状或无定型)、尺寸可调、厚度可调和不同材质的纳米片。
本发明采用简单的两相体系(THF/乙醇/水-O/W),选用形貌规则、稳定性高的金属或非金属原料,在两亲性嵌段共聚物的诱导下进行表面富集-聚合-反应,前驱体溶液在可溶性无机盐表面成核-生长形成晶胞结构,由于可溶性无机盐、嵌段共聚物及金属/非金属原料结合力较高,采用抽 滤或慢速离心的物理手段实现前驱液在无机盐表面单层分布。因此,很容易在无机盐表面形成厚度可控、层数可调的纳米片材料,且进一步借助溶剂挥发诱导自组装技术促进前驱体在无机盐表面的慢速成核与生长,通过高温煅烧去除模板剂,水溶法去除无机盐基底。本发明方法可以应用于不同材质(非金属或金属及其氧化物、氯化物等)、不同形貌(片层状、层-层状、块状或无定型)的二维有序介孔纳米片材料的合成。
本发明由于合成的纳米片材料在单层和多层之间可调节,且孔壁厚度可控,对原料比例依赖性较小,制备的单层纳米片材料具有较好的水分散性和乙醇分散性,亲水性和耐高温性较好,煅烧后由于无机盐支撑而孔道不坍塌。本发明所报道的二维有序介孔单层纳米片材料组装方法简单、高效便捷且具有高度可控性,孔道高度有序、孔径可调,对纳米原料具有普适性,适合于大规模生产且便于指导同类材料的合成,在纳米催化、传感、吸附、电化学等方面具有重要的应用价值。
本发明与传统的合成方式相比,降低了纳米片材料对原料配比的依赖性,提高了纳米片材料孔道的有序性和孔径大小可调性,避免高温煅烧引发的孔道坍塌,发挥了无机盐的重要作用,充分展示了宏观微米材料在微观纳米材料合成中的保护作用。
附图说明
图1:350℃ N 2煅烧单层有序介孔TiO 2纳米片,Scale bar 100nm。
图2:350℃ N 2煅烧单层有序介孔TiO 2纳米片,Scale bar 50nm。
图3:430℃空气煅烧单层有序介孔TiO 2纳米片,Scale bar 100nm。
图4:430℃空气煅烧单层有序介孔TiO 2纳米片,Scale bar 50nm。
具体实施方式
下面通过具体实施例来说明本发明的技术方案,但本发明的保护范围不限于此。本发明首先配置出不同原料的前驱体溶液,再将前驱体溶液在挥发性溶剂的诱导下在无机盐表面组装,下面将对本发明作进一步详细描述。
实施例1:
PEO 117-b-PS 113(分子量16700g·mol -1,0.1g)溶解分散到10.0g THF 溶液中,然后加入2.0g溶于THF的酚醛树脂前驱液(20wt%,含0.25g苯酚和0.15g甲醛),室温持续磁力搅拌0.5h形成均匀透明溶液,将一定混合溶液倒入无机盐NaCl固体晶体粉末中,以<0.03MPa的真空进行抽滤30-120s(或3000rpm/3min离心),在NaCl晶体表面附着少量前驱体溶液,将所得固体置于敞口瓶中室温挥发溶剂12h,后转移至35℃烘箱中持续挥发15h,调节温度至100℃继续挥发15h;取出固体于300℃管式炉中N 2保护下煅烧3h以分解模板剂,升温速率为1℃/min,待产物冷却后用去离子水洗涤3-5次以去除NaCl模板,所得的二维单层有序介孔聚合物纳米片孔径为27nm。若将煅烧条件调整为600℃管式炉中N 2保护下煅烧3h,升温速率为1℃/min,则最后所得的二维单层有序介孔碳纳米片孔径为23nm.
实施例2:
PEO 117-b-PS 113(分子量16700g·mol -1或F127)和钛酸四丁酯(TBOT,0.2g)溶解分散到10mL THF溶液中,然后加入浓盐酸(0.1mL,37%)和醋酸(0.1mL,98%),室温持续磁力搅拌0.5h,将一定混合溶液倒入无机盐NaCl固体晶体粉末中,以<0.03MPa的真空进行抽滤30-120s(或3000rpm/3min离心),在NaCl晶体表面附着少量前驱体溶液,将所得固体置于敞口瓶中室温挥发溶剂15h,后转移至40℃烘箱中持续挥发18h,调节温度至105℃继续挥发24h;取出固体于350℃管式炉中N 2保护下煅烧2h以分解模板剂,升温速率为1℃/min;随后取出固体于马弗炉中在空气下以430℃煅烧2h,升温速率为1℃/min,待产物冷却后用去离子水洗涤3-5次以去除NaCl模板,所得的二维单层有序介孔TiO 2纳米片孔径为18nm。
实施例3:
PEO 117-b-PS 113(分子量16700g·mol -1,40mg)和正硅酸乙酯(TEOS,0.2g)溶解分散到4.0g四氢呋喃溶液中,然后加入0.1M盐酸(0.06g),室温持续磁力搅拌0.5h形成均匀溶液,将一定混合溶液倒入无机盐NaCl固体晶体粉末中,以<0.03MPa的真空进行抽滤30-120s(或3000rpm/3min离心),在NaCl晶体表面附着少量前驱体溶液,将所得固体置于敞口瓶中室温挥发溶剂18h,后转移至42℃烘箱中持续挥发18h,调节温度 至95℃继续挥发20h;取出固体于350℃管式炉中N 2保护下煅烧3h以分解模板剂,升温速率为1℃/min;随后取出固体于马弗炉中在空气下以600℃煅烧2h,升温速率为1℃/min,待产物冷却后用去离子水洗涤3-5次以去除NaCl模板,所得的二维单层有序介孔SiO 2纳米片孔径为25nm。
实施例4:
PEO 117-b-PS 113(分子量16700g·mol -1,0.1g)溶解分散到10.0g THF溶液中,然后加入0.5g乙酰丙酮铝,随后加入浓硝酸(0.17mL)室温持续磁力搅拌12h,将一定混合溶液倒入无机盐NaCl固体晶体粉末中,以<0.03MPa的真空进行抽滤30-120s(或3000rpm/3min离心),在NaCl晶体表面附着少量前驱体溶液,将所得固体置于敞口瓶中室温挥发溶剂20h,后转移至45℃烘箱中持续挥发22h,调节温度至98℃继续挥发22h;取出固体于400℃管式炉中N 2保护下煅烧2h以分解模板剂,升温速率为3℃/min;待产物冷却后转移至马弗炉中在空气下以630℃煅烧3h,升温速率为1℃/min,待产物冷却后用去离子水洗涤3-5次以去除NaCl模板,即得到二维单层有序介孔Al 2O 3纳米片。
实施例5:
PEO 117-b-PS 113(分子量16700g·mol -1,0.1g)溶解分散到10.0g THF溶液中,然后加入乙酰丙酮锆(0.3g),随后加入浓硝酸(0.15mL)室温持续磁力搅拌8h,将一定混合溶液倒入无机盐NaCl固体晶体粉末中,以<0.03MPa的真空进行抽滤30-120s(或3000rpm/3min离心),在NaCl晶体表面附着少量前驱体溶液,将所得固体置于敞口瓶中室温挥发溶剂20h,后转移至38℃烘箱中持续挥发20h,调节温度至102℃继续挥发24h;取出固体于350℃管式炉中N 2保护下煅烧3h以分解模板剂,升温速率为1℃/min,待产物冷却后转移至马弗炉中在空气下以450℃煅烧2h,升温速率为5℃/min,待产物冷却后用去离子水洗涤3-5次以去除NaCl模板,即得到二维单层有序介孔ZrO 2纳米片。
实施例6:
PEO 117-b-PS 113(分子量16700g·mol -1,0.1g)溶解分散到4mL N,N-二甲基甲酰胺/乙醇混合溶液中,然后加入0.15g乙酰丙酮锆和0.104g TBOT,室温持续磁力搅拌2h,将一定混合溶液倒入无机盐NaCl固体晶体 粉末中,以<0.03MPa的真空进行抽滤30-120s(或3000rpm/3min离心),在NaCl晶体表面附着少量前驱体溶液,将所得固体置于敞口瓶中室温挥发溶剂24h,后转移至40℃烘箱中持续挥发24h,调节温度至105℃继续挥发24h;取出固体于350℃管式炉中N 2保护下煅烧3h以分解模板剂,升温速率为1℃/min,待产物冷却后转移至马弗炉中在空气下以450℃煅烧2h,升温速率为1℃/min,待产物冷却后用去离子水洗涤3-5次以去除NaCl模板,即得到二维单层有序介孔ZrTiO 4纳米片。
实施例7:
PEO 117-b-PS 113(分子量16700g·mol -1,0.1g)溶解分散到10.0g THF溶液中,然后加入0.4g乙酰丙酮锆和0.4g CeCl 3·6H 2O,室温持续磁力搅拌2h,将一定混合溶液倒入无机盐NaCl固体晶体粉末中,以<0.03MPa的真空进行抽滤30-120s(或3000rpm/3min离心),在NaCl晶体表面附着少量前驱体溶液,将所得固体置于敞口瓶中室温挥发溶剂24h,后转移至35℃烘箱中持续挥发24h,调节温度至95℃继续挥发24h;取出固体于350℃管式炉中N 2保护下煅烧3h以分解模板剂,升温速率为1℃/min,待产物冷却后转移至马弗炉中在空气下以450℃煅烧2h,升温速率为5℃/min,待产物冷却后用去离子水洗涤3-5次以去除NaCl模板,即所得二维单层有序介孔Ce 0.5Zr 0.5O 2纳米片。
实施例8:
以热解法合成粒径<5nm的CeO 2纳米晶,采用4-羟基苯甲酸对CeO 2纳米晶进行表面亲水性处理后作为金属前驱体,取PEO 117-b-PS 113(分子量16700g·mol -1,20mg)溶解分散到2.0g THF溶液中,40mg修饰后的CeO 2纳米晶分散于2.0mL无水乙醇溶液中,将上述溶液混合均匀室温搅拌2h。将一定混合溶液倒入无机盐NaCl固体晶体粉末中,以<0.03MPa的真空进行抽滤30-120s(或3000rpm/3min离心),在NaCl晶体表面附着少量前驱体溶液,将所得固体置于敞口瓶中室温挥发溶剂20h,后转移至40℃烘箱中持续挥发24h,调节温度至100℃继续挥发24h;取出固体于350℃管式炉中N 2保护下煅烧3h以分解模板剂,升温速率为1℃/min,待产物冷却后转移至马弗炉中在空气下以450℃煅烧2h,升温速率为5℃/min,待产物冷却后用去离子水洗涤3-5次以去除NaCl模板,所得的二维单层有 序介孔CeO 2纳米片孔径为27nm。若将模板剂替换成更大分子量的PEO 234-b-PS 266(分子量39000g·mol -1,20mg),则最终纳米片孔径为35nm,替换成PEO 468-b-PS 307(分子量51000g·mol -1,20mg),则最终纳米片孔径为48nm。
以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术人员无需创造性劳动就可以根据本发明的构思作出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。

Claims (7)

  1. 一种无机盐界面诱导组装制备二维有序介孔纳米片的方法,其特征在于,具体步骤为:
    (1)以大分子量两亲性嵌段共聚物为模板,配置纳米材料前驱体溶液;
    (2)以可溶性无机盐为基底,将预配置的前驱体溶液引入无机盐中,通过抽滤(<0.03MPa)或低速离心(<4000rpm)的物理手段引导前驱体溶液在无机盐中的扩散与传质,实现前驱体溶液的表面单层分散界面;
    (3)利用溶剂挥发诱导共组装原理,以梯度控温方式调控挥发性有机溶剂的缓慢或中速挥发,实现分子前驱体与共聚物在无机盐表面的自组装;
    (4)在N 2保护下升温至300-600℃,高温煅烧2-3h,去除嵌段共聚物模板剂,得到层状二维有机/无机杂化有序介孔复合材料,随后在马弗炉中在空气升温至430-630℃,高温煅烧2-3h,去除残碳,形成具有高度有序的介观结构,以大量去离子水溶解无机盐模板后得到单层二维有序介孔纳米片材料。
  2. 根据权利要求1所述的方法,其特征在于,所述的两亲性嵌段共聚物选用大分子量聚合物如商业化的聚醚类模板剂(如F127)、PEO-b-PS、PEO-PPO-PEO、PS-b-P4VPP中的一种或多种;
    所使用的目标纳米片原料选自金属醇盐、金属氯盐、金属硫酸盐、乙酰丙酮物、无机非金属前驱体盐、酚醛树脂中的一种或多种;
    前驱体溶液所使用的溶剂为挥发性有机溶剂四氢呋喃、乙醇中的一种或多种。
  3. 根据权利要求2所述的方法,其特征在于,所用的可溶性无机盐选自NaCl、KCl或K 2SO 4
  4. 根据权利要求1-3之一所述的方法,其特征在于,所述以梯度控温方式调控挥发性有机溶剂,其程序为室温/12-24h、35-40℃/15-24h、95-105℃/15-24h的梯度连续挥发溶剂。
  5. 根据权利要求4所述的方法,其特征在于,高温煅烧时,升温速 率为1-5℃/min。
  6. 根据权利要求1或4所述的方法,其特征在于,在单层纳米片材料溶液相组装体系中,目标纳米片原料质量百分比为5wt%-20wt%,嵌段共聚物质量百分比为1wt%-5wt%,无机盐质量百分比为20wt%-80wt%,其它组分为溶剂。
  7. 一种由权利要求1-6之一所述方法制备得到的二维有序介孔纳米片材料,介孔的孔径尺寸可改变共聚物分子量在18nm-50nm内调节,纳米片层层数通过改变前驱体溶度、抽滤时间或离心转速调节至1-5层。
PCT/CN2020/078361 2019-05-11 2020-03-09 无机盐界面诱导组装制备二维有序介孔纳米片的方法 WO2020228400A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/603,587 US20220194811A1 (en) 2019-05-11 2020-03-09 Method for preparing two-dimensional ordered mesoporous nanosheets by inorganic salt interface-induced assembly

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910391031.7 2019-05-11
CN201910391031.7A CN110127661B (zh) 2019-05-11 2019-05-11 无机盐界面诱导组装制备二维有序介孔纳米片的方法

Publications (1)

Publication Number Publication Date
WO2020228400A1 true WO2020228400A1 (zh) 2020-11-19

Family

ID=67573321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/078361 WO2020228400A1 (zh) 2019-05-11 2020-03-09 无机盐界面诱导组装制备二维有序介孔纳米片的方法

Country Status (3)

Country Link
US (1) US20220194811A1 (zh)
CN (1) CN110127661B (zh)
WO (1) WO2020228400A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110127661B (zh) * 2019-05-11 2022-06-21 复旦大学 无机盐界面诱导组装制备二维有序介孔纳米片的方法
CN112246266B (zh) * 2020-09-30 2022-07-15 宁夏大学 一种厚度可精确控制的二维碳纳米片及其制备方法
CN113013411B (zh) * 2021-02-07 2022-05-10 杭州职业技术学院 氧化亚钴分级介孔纳米球@二氧化钛@碳复合材料及其制备和应用
CN114604872B (zh) * 2022-03-03 2023-08-18 山东宝龙达新材料有限公司 一种纳米片状二氧化硅及制备方法
CN114632943B (zh) * 2022-03-21 2023-10-03 中国科学院苏州纳米技术与纳米仿生研究所 一种二维金属纳米片及其制备方法与应用
CN115196640B (zh) * 2022-07-08 2023-05-12 太原理工大学 一种煤矸石基介孔氧化硅材料及其制备方法
CN115259137B (zh) * 2022-07-27 2023-12-05 复旦大学 一种二维介孔碳纳米片及其制备方法与应用
CN115259188B (zh) * 2022-08-02 2024-02-27 郑州大学 一种片状氧化铝夹心复合材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101823706A (zh) * 2009-03-04 2010-09-08 复旦大学 一种具有超大孔径壁厚可控的有序介孔碳材料及其制备方法
CN104538595A (zh) * 2014-12-10 2015-04-22 南京师范大学 嵌入式纳米金属负载型碳纳米片锂离子电池负极材料及其制备方法和应用
CN105129856A (zh) * 2015-09-14 2015-12-09 复旦大学 酚醛树脂预聚物辅助合成的大孔径有序介孔金属氧化物材料及其制备方法
CN105523538A (zh) * 2016-01-05 2016-04-27 上海交通大学 一种二维有序介孔碳片及其制备方法和应用
CN110127661A (zh) * 2019-05-11 2019-08-16 复旦大学 无机盐界面诱导组装制备二维有序介孔纳米片的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008021256A2 (en) * 2006-08-11 2008-02-21 Aqua Resources Corporation Nanoplatelet metal hydroxides and methods of preparing same
US10680300B2 (en) * 2016-09-19 2020-06-09 Sparkle Power Llc Supercapattery employing carbon nanosheets in the electrodes
CN108417475B (zh) * 2018-01-27 2020-07-03 安徽师范大学 一种基于界面诱导生长的金属纳米结构阵列的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101823706A (zh) * 2009-03-04 2010-09-08 复旦大学 一种具有超大孔径壁厚可控的有序介孔碳材料及其制备方法
CN104538595A (zh) * 2014-12-10 2015-04-22 南京师范大学 嵌入式纳米金属负载型碳纳米片锂离子电池负极材料及其制备方法和应用
CN105129856A (zh) * 2015-09-14 2015-12-09 复旦大学 酚醛树脂预聚物辅助合成的大孔径有序介孔金属氧化物材料及其制备方法
CN105523538A (zh) * 2016-01-05 2016-04-27 上海交通大学 一种二维有序介孔碳片及其制备方法和应用
CN110127661A (zh) * 2019-05-11 2019-08-16 复旦大学 无机盐界面诱导组装制备二维有序介孔纳米片的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIANGLIANG LIU ET AL.: "A Universal Lab-on-Salt-Particle Approach to 2D Single-Layer Ordered Mesoporous Materials", ADV. MATER., vol. 32, no. 10, 29 January 2020 (2020-01-29), XP055752993, ISSN: 1521-4095 *

Also Published As

Publication number Publication date
CN110127661B (zh) 2022-06-21
CN110127661A (zh) 2019-08-16
US20220194811A1 (en) 2022-06-23

Similar Documents

Publication Publication Date Title
WO2020228400A1 (zh) 无机盐界面诱导组装制备二维有序介孔纳米片的方法
Guo et al. Synthesis and characterization of carbon sphere-silica core–shell structure and hollow silica spheres
Gao et al. A novel approach to extract SiO2 from fly ash and its considerable adsorption properties
JP4159021B2 (ja) 新規なテンプレート除去法によりコントロールされた細孔を持つミクロ−メソポーラス金属酸化物の製造方法
CN104141181B (zh) 一种含有SiO2掺杂的ZrO2纤维的制备方法
Resende et al. Simple sol–gel process to obtain silica-coated anatase particles with enhanced TiO2-SiO2 interfacial area
TWI458685B (zh) 二氧化鈦奈米粉體及其製造方法
Truong et al. Controlled synthesis of titania using water-soluble titanium complexes: A review
Bu et al. Preparation and formation mechanism of porous TiO 2 films using PEG and alcohol solvent as double-templates
Bai et al. Bio-template route for facile fabrication of Cd (OH) 2@ yeast hybrid microspheres and their subsequent conversion to mesoporous CdO hollow microspheres
Balaganapathi et al. PEG assisted synthesis of porous TiO2 using sol-gel processing and its characterization studies
CN104746178B (zh) 一种具有多级结构的硅酸盐双层空心纳米纤维的制备方法
CN108975378A (zh) 一种氧化镝粉体的制备方法
Zou et al. One-step sol-gel preparation of ultralow-refractive-index porous coatings with mulberry-like hollow silica nanostructures
Miki et al. Preparation of nanoporous TiO2 film with large surface area using aqueous sol with trehalose
CN110642240A (zh) 一种基于多颗小尺寸催化剂形成的复合催化剂合成高纯度碳纳米线圈的方法
JP2003519074A (ja) ナノメートル寸法の粒子からのメソ構造物質の製造法
CN105129765A (zh) 一种高度有序介孔碳球及其制备方法
Zhang et al. Influences of acids on morphology and properties of TiO2 grown on electrospun PVDF fibers
CN101456561B (zh) 一种纳米莫来石粉体的制备方法
Cao et al. Self-assembly and synthesis mechanism of vanadium dioxide hollow microspheres
Zhang et al. Sol–gel synthesis of titania hollow spheres
CN111470529A (zh) 形貌可调的钛酸锶纳米材料的制备方法
CN108393080A (zh) 一种纳米碳/氧化钛多孔微球的制备方法
CN106430303B (zh) 一种混合结构的分级二氧化钛及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20805660

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20805660

Country of ref document: EP

Kind code of ref document: A1