WO2020228209A1 - 显示面板 - Google Patents

显示面板 Download PDF

Info

Publication number
WO2020228209A1
WO2020228209A1 PCT/CN2019/106079 CN2019106079W WO2020228209A1 WO 2020228209 A1 WO2020228209 A1 WO 2020228209A1 CN 2019106079 W CN2019106079 W CN 2019106079W WO 2020228209 A1 WO2020228209 A1 WO 2020228209A1
Authority
WO
WIPO (PCT)
Prior art keywords
display area
sub
pixel
transparent
display panel
Prior art date
Application number
PCT/CN2019/106079
Other languages
English (en)
French (fr)
Inventor
张明
杨杰
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US16/623,079 priority Critical patent/US11296151B2/en
Publication of WO2020228209A1 publication Critical patent/WO2020228209A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/353Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/828Transparent cathodes, e.g. comprising thin metal layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1213Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being TFTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/352Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels the areas of the RGB subpixels being different
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • H10K59/65OLEDs integrated with inorganic image sensors

Definitions

  • the present application relates to the field of display technology, and in particular to a display panel and a display device with a higher light transmittance in a transparent display area.
  • OLEDs Organic light-emitting diodes
  • OLEDs have the advantages of self-luminescence, high contrast, wide viewing angle, low power consumption, and bendable. Therefore, they are loved by the public and developers.
  • flexible OLED is gradually occupying the market because of its remarkable bending resistance and lightness.
  • high-screen-to-body ratio and even full-screen display devices have also become the focus of development and research and market development trends.
  • the under-screen camera technology in which a transparent display area is provided on the display panel and the camera assembly is arranged below the transparent display area has become the main technical means for increasing the screen ratio of the display panel and realizing a full screen.
  • the camera assembly if the camera assembly is placed under the display panel, the camera function and light capturing capability of the camera assembly will be affected by the display panel.
  • the purpose of the present application is to solve the above-mentioned problems and provide a display panel with a high light transmittance in a transparent display area and a display device using the display panel.
  • the display panel described in this application adopts the following technical solutions.
  • a display panel has a transparent display area and a conventional display area surrounding the transparent display area, the transparent display area and the conventional display area both include a plurality of sub-pixel units and the sub-pixel density in the two areas is the same, Wherein, the pixel area of the sub-pixel units in the transparent display area is smaller than the pixel area of the sub-pixel units in the conventional display area; the display panel includes a substrate, and TFT circuits and sub-pixels stacked on the substrate in sequence.
  • a pixel electrode and a photo-spacer layer and wherein the TFT circuit includes a plurality of metal traces; the photo-spacer layer has a plurality of openings, and each of the openings corresponds to and exposes a sub-pixel electrode; the transparent The opening width of the photo spacer layer of the display area is smaller than the opening width of the photo spacer layer of the conventional display area.
  • the orthographic projection of the first electrode of the transparent display area on the substrate completely covers the TFT circuit.
  • the metal wiring of the portion of the TFT circuit in the transparent display area that exceeds the size of the first electrode is made of a transparent electrode material.
  • the opening width of the photo spacer layer in the transparent display area is 0.5-0.8 times the opening width of the photo spacer layer in the conventional display area.
  • a display panel having a transparent display area and a conventional display area surrounding the transparent display area, wherein the transparent display area and the conventional display area both include a plurality of sub-pixel units and the sub-pixel density in the two areas is the same
  • the pixel area of the sub-pixel unit in the transparent display area is smaller than the pixel area of the sub-pixel unit in the conventional display area.
  • the display panel includes a substrate, and a TFT circuit, a first electrode, and a photo spacer layer stacked on the substrate in sequence, wherein the TFT circuit includes a plurality of metal traces.
  • the photo spacer layer has a plurality of openings, and each of the openings corresponds to and exposes one of the first electrodes.
  • the photo spacer layer is made of one or more layers of polyacrylate or polyimide.
  • the opening width of the photo spacer layer of the transparent display area is smaller than the opening width of the photo spacer layer of the conventional display area.
  • the opening width of the photo spacer layer in the transparent display area is 0.5-0.8 times the opening width of the photo spacer layer in the conventional display area.
  • the orthographic projection of the first electrode of the transparent display area on the substrate completely covers the TFT circuit.
  • part of the metal traces of the TFT circuit in the transparent display area are made of transparent electrode materials.
  • the metal wiring of the portion of the TFT circuit in the transparent display area that exceeds the size of the first electrode is made of a transparent electrode material.
  • the first electrode is a sub-pixel electrode.
  • the TFT circuit includes a first buffer layer, a second buffer layer, an active layer, a gate insulating layer, a gate electrode, an interlayer dielectric layer, a source/drain electrode, and a flat layer which are sequentially stacked on the substrate. .
  • the transparent display area and the conventional display area both include one or more of R sub-pixel units, G sub-pixel units, and B sub-pixel units.
  • the R sub-pixel units, G sub-pixel units, and B sub-pixel units of the transparent display area and the conventional display area are separately arranged in columns.
  • the R sub-pixels, G sub-pixels, and B sub-pixels of the transparent display area and the regular display area are respectively rectangular, circular or square.
  • the application also provides a display device, the display device includes a display panel and a camera assembly; wherein the display panel has a transparent display area and a conventional display area surrounding the transparent display area, the transparent display The area and the conventional display area each include a plurality of sub-pixel units and the sub-pixel density in the two areas is the same, and the pixel area of the sub-pixel unit in the transparent display area is smaller than the pixel area of the sub-pixel unit in the conventional display area And wherein the camera assembly has a camera, and the camera corresponds to the transparent display area of the display panel. The camera assembly has a camera, and the camera corresponds to the transparent display area of the display panel.
  • the shape and size of the transparent display area match the shape and size of the camera.
  • the advantage of the present application is that the sub-pixel density of the transparent display area of the display panel described in this application is the same as that of the conventional display area, thereby ensuring a good display effect of the transparent display area and the display uniformity of the entire display panel;
  • the pixel area of the sub-pixel unit in the transparent display area of the display panel is smaller than the pixel area of the sub-pixel unit in the conventional display area, thereby reducing the metal aperture ratio of the transparent display area, thereby increasing the light transmittance of the transparent display area;
  • the TFT circuit size of the sub-pixel unit in the transparent display area of the display panel is smaller than the width of the first electrode or the part that exceeds the size of the first electrode adopts a transparent wire, thereby further improving the light transmittance of the transparent display area;
  • the overall sub-pixel density of the display panel described in the application is the same, which can simplify the FMM manufacturing difficulty and improve the evaporation yield.
  • the camera assembly of which is arranged under the display panel can increase the screen-to-body ratio, which is beneficial to realize a full-screen design; at the same time, the light transmittance of the transparent display area is higher, which can enhance the
  • the camera assembly has a strong light capturing ability and imaging effect.
  • FIG. 1 is a top view of the display device described in this application.
  • FIG. 2 is a schematic diagram of the structure of the display device according to the present application.
  • FIG. 3 is a schematic diagram of a partial structure of the display panel of the present application.
  • FIG. 4 is a schematic diagram of a cross-sectional structure of the display panel of the present application.
  • the present application provides a display panel 10 having a transparent display area 10a and a conventional display area 10b surrounding the transparent display area 10a.
  • the transparent display area 10a includes a plurality of first-type sub-pixel units 510
  • the conventional display area 10b includes a plurality of second sub-pixel units 520
  • the sub-pixel density of the above two areas is the same.
  • the pixel area of the sub-pixel unit 500 in the transparent display area 10a is smaller than the pixel area of the sub-pixel unit 500 in the conventional display area 10b.
  • the pixel area of the first type of sub-pixel unit 510 is smaller than the pixel area of the second type of sub-pixel unit 520.
  • the display effect of the display panel 10 is related to its sub-pixel density and total pixel area.
  • the total area of the pixels is the sum of the pixel areas of all sub-pixel units.
  • An increase in the total area of the pixels increases the display definition, and a decrease in the total area of the pixels increases the light transmittance of the display panel 10.
  • the sub-pixel density intuitively gives the uniformity and density of the distribution of sub-pixel units.
  • the transparent display area 10a and the conventional display area 10b in the display panel 10a of the present application have the same sub-pixel density, which reduces the pixel area of the sub-pixel unit 500 in the transparent display area 10a, thereby reducing the The total area of the pixels in the transparent display area 10a further reduces the metal aperture ratio of the transparent display area 10a, and ultimately increases the light transmittance of the transparent display area 10a. If the sub-pixel density of the transparent display area 10a is the same as that of the conventional display area 10b, the sub-pixel units 500 are evenly distributed, which ensures the uniformity of the display of the display panel 10a and reduces the display difference of the display panel 10. In addition, the entire panel of the display panel 10 has the same sub-pixel density, thereby simplifying the Fine Metal Mask (FMM) and reducing the manufacturing difficulty and cost of the display panel 10.
  • FMM Fine Metal Mask
  • the display panel 10b includes a plurality of sub-pixel units 500.
  • the sub-pixel unit 500 includes the first-type sub-pixel unit 510 and the second-type sub-pixel unit 520.
  • the first type of sub-pixel unit 510 includes a first R sub-pixel unit 511, a first G sub-pixel unit 512, and a first B sub-pixel unit 513 arranged in columns;
  • the second type of sub-pixel unit 520 includes The second R sub-pixel unit 521, the second G sub-pixel unit 522, and the second B sub-pixel unit 523 are arranged in columns.
  • the column spacing between the first G sub-pixel unit 512 is c
  • the spacing between the second G sub-pixel unit 522 and the first G sub-pixel unit 512 is b
  • the pixel pitch of the G sub-pixel units of the display panel 10 is the same, that is, the pixel density of the G sub-pixel units of the display panel 10 is the same.
  • the center distance between the R, G, and B sub-pixel units in the transparent display area 10a and the conventional display area 10b can be adjusted to realize the sub-pixels in the transparent display area 10a and the conventional display area 10b.
  • the density of the cells 500 is the same.
  • the pixel area of the first R sub-pixel unit 511 is smaller than the pixel area of the second R sub-pixel unit 521; the pixel area of the first G sub-pixel unit 512 is smaller than that of the second G sub-pixel unit 522
  • the pixel area of the first B sub-pixel unit 513 is smaller than the pixel area of the second B sub-pixel unit 523. Therefore, the total pixel area of the transparent display area 10a is smaller than the total pixel area of the conventional display area 10b. That is to say, if the pixel density is the same, reducing the pixel area of the sub-pixel unit 500 in the local display area can reduce the total area of the pixels in the local display area.
  • the pitch of the sub-pixel units 500 of the display panel 10 is the same, and the pixel area of the first-type sub-pixel units 510 of the transparent display area 10a is reduced, so that the transparent display area 10a can be compared with the conventional one.
  • the density of sub-pixels in the display area 10b is the same, while the total area of pixels in the transparent display area 10a is reduced. Therefore, in the transparent display area 10a of the display panel 10 of this embodiment, the sub-pixel density is unchanged, the aperture ratio is reduced, and the light transmittance is increased.
  • the total area of the transparent display area 10a is the sum of the total area of the pixels and the non-pixel area.
  • the transparent display area 10a is arranged with poor light transmittance in the non-pixel area.
  • the area occupied by lines and components may increase the light transmittance of layout lines or components, so as to increase the area of the high light transmittance area in the transparent display area 10a, and further increase the light transmittance of the transparent display area 10a ,
  • the light capturing capability and imaging effect of the camera assembly 20 can also be further improved.
  • the display panel 10 includes a substrate 100, a TFT circuit 200 disposed on the substrate, a first electrode 300 disposed on the TFT circuit 200, and a stack disposed on the first electrode 300.
  • Light spacer layer 400 is included in the TFT circuit 200.
  • the TFT circuit 200 includes a plurality of metal traces.
  • the photo spacer layer 400 has a plurality of openings 410, each of the openings 410 corresponds to and exposes one of the first electrodes 300, and the width of the opening 410 in the transparent display area 10a is smaller than that of the conventional display area 10b The width of the inner opening 410.
  • the TFT circuit 200 can control the emission of each sub-pixel unit 500, or can control the amount of light emission of each sub-pixel unit 500.
  • the TFT circuit 200 includes a first buffer layer 210, a second buffer layer 220, an active layer 230, and a gate insulating layer 240 stacked on the substrate 100 in a direction away from the substrate 100. , The gate 250, the interlayer metal dielectric layer 260, the source/drain 270, and the flat layer 280.
  • the TFT circuit 200 includes metal traces. Wherein, the orthographic projection of the first electrode 300 of the transparent display area 10a on the substrate 100 completely covers the TFT circuit 200; or, part of the metal of the TFT circuit 200 in the transparent display area 10a
  • the wiring is made of a transparent electrode material; or, the metal wiring of the TFT circuit 200 of the transparent display area 10a beyond the size of the first electrode 300 is made of a transparent electrode material.
  • the TFT circuit 200 can further improve the light transmittance of the transparent display area 10a by hiding its metal traces or adopting transparent traces made of transparent electrode materials.
  • the transparent electrode material is made of at least one of ITO and IGZO.
  • ITO Indium tin oxide
  • IGZO indium gallium zinc oxide
  • ITO and IGZO have very good transparency and conductivity.
  • ITO and IGZO due to the better transparency of ITO and IGZO, it can prevent the non-transparent wiring from blocking the ambient light incident light of the transparent display area 10a, thereby improving the light transmittance of the transparent display area 10a; on the other hand, Since ITO and IGZO have good conductivity, they can quickly transfer current as a transparent trace.
  • the driving TFT circuit of the pixel in the transparent display area 10a can quickly drive the pixel in the transparent display area 10a to emit light. So as to realize the normal display screen.
  • a first electrode 300 is provided on the side of the TFT circuit 200 away from the substrate 100, and the first electrode layer 300 is electrically connected to the TFT circuit 200.
  • the first electrode 300 is a sub-pixel electrode.
  • the first electrode 300 may form a transparent electrode (transmissive and reflective) or a reflective electrode or a metal electrode.
  • the first electrode 300 When the first electrode 300 forms a transparent electrode (transmissive) electrode, it can be made of indium tin oxide (ITO), indium zinc oxide (IZO), zinc oxide (ZnO), indium oxide (In2O3), indium gallium oxide ( IGO) or aluminum zinc (AZO) one or more transparent electrode materials are mixed and formed.
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • ZnO zinc oxide
  • In2O3 indium oxide
  • IGO indium gallium oxide
  • AZO aluminum zinc
  • the first electrode 300 When the first electrode 300 forms a reflective electrode, it can be made of silver (Ag), magnesium (Mg), aluminum (Al), platinum (Pt), palladium (Pd), gold (Au), nickel (Ni), neodymium ( Nd), iridium (Ir), chromium (Cr), or any of these materials are mixed to form a reflective layer, and made of indium tin oxide (ITO), indium zinc oxide (IZO), zinc oxide (ZnO), indium oxide Transparent electrode materials such as (In2O3) form an auxiliary layer, and overlap to form a reflective electrode layer.
  • the structure and material of the first electrode 300 are not limited to this, and may vary.
  • the first electrode 300 When the first electrode 300 forms a metal electrode, it can be made of silver (Ag), magnesium (Mg), aluminum (Al), platinum (Pt), palladium (Pd), gold (Au), nickel (Ni), neodymium ( Nd), iridium (Ir), chromium (Cr) and other metal electrode materials are mixed together.
  • the first electrode 300 When the first electrode 300 is a reflective electrode and a metal electrode, the first electrode 300 can also play a role of shielding or reflecting light, thereby preventing the self-luminous or ambient light of the display panel 10 from penetrating into the active layer. 230 can also play a role in protecting the active layer 230.
  • a photo spacer layer 400 is formed on the side of the first electrode 300 away from the substrate 100.
  • the photo spacer layer 400 has a plurality of openings 410, and each of the openings 410 corresponds to One of the first electrodes 300 is exposed.
  • the photo spacer layer 400 is used to define sub-pixels through the opening 410 corresponding to each first electrode 300 (that is, exposing the central part of each first electrode 300 opening).
  • the photo spacer layer 400 can support the fine metal mask that is vapor-deposited to prevent the fine metal mask from being dented and damaged during the vapor deposition process.
  • the photo spacer layer 400 may be formed of a suitable organic material among materials such as polyacrylate and polyimide, or a single material layer or a composite material layer including a suitable inorganic material.
  • a suitable organic material among materials such as polyacrylate and polyimide, or a single material layer or a composite material layer including a suitable inorganic material.
  • the entire surface of the first electrode 300 and the layer on which it is located is used to form a photo spacer layer 400 using materials such as polyacrylate or polyimide, and then the photo spacer layer 400 is patterned to form A plurality of openings 410 are provided to expose the center of the first electrode 300.
  • the photo spacer layer 400 defines the shape or size of each sub-pixel by etching different patterns.
  • the photo spacer layer 400 defines the R, G, and B sub-pixels to be rectangular, square, and circular, respectively.
  • the area of the first type of sub-pixel 510 can be reduced.
  • the display panel 10 further includes an organic light emitting layer stacked on the first electrode 300 and a second electrode stacked on the organic light emitting layer.
  • the first electrode, the organic light-emitting layer, and the second electrode layer form an organic light-emitting unit, and the organic light-emitting layer can emit light through the principle of electroluminescence by applying a voltage between the first electrode 300 and the second electrode.
  • the organic light emitting layer is coated and disposed on the first electrode 300. Specifically, the organic light-emitting layer is vapor-deposited in the opening 410. Wherein, the organic light-emitting layer is composed of light-emitting material layers.
  • the luminescent material layer includes one or more of a red light luminescent material layer, a green light material layer, a blue light material layer or a white light luminescent material layer. Common luminescent materials include small molecule luminescent materials, polymer luminescent materials, and dendrimer luminescent materials. Generally speaking, a vacuum evaporation process is often used for small-molecule luminescent materials, and a spin coating or inkjet process is mostly used for polymer luminescent materials. The above-mentioned process can be selected for dendrimer luminescent materials according to their molecular weight.
  • the second electrode layer is located on a side of the organic light-emitting layer opposite to the first electrode 300. Wherein, the self-luminous light of the organic light-emitting layer passes through the second electrode layer.
  • the second electrode is a cathode.
  • the second electrode layer may be transparent electrode materials such as indium tin oxide (ITO), indium zinc oxide (IZO), zinc oxide (ZnO) or indium oxide (In2O3), or aluminum (Al), silver (Ag) ) Or lithium (Li) and other metal electrode materials.
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • ZnO zinc oxide
  • In2O3 indium oxide
  • Al aluminum
  • Al silver
  • Ag silver
  • Li lithium
  • the organic light emitting unit further includes at least one organic layer, and the organic layer is a hole injection layer (HIM), a hole transport layer (HTM), an electron injection layer (EIL), or an electron transport layer (ETL) .
  • HIM hole injection layer
  • HTM hole transport layer
  • EIL electron injection layer
  • ETL electron transport layer
  • the substrate 100 is transparent or has a high light transmittance in the visible light band.
  • the substrate 100 may be made of glass materials, quartz, metal materials, or materials including polyethylene terephthalate (PET), polyethylene naphthalate (PEN), or polyimide. Suitable materials are formed from plastic materials.
  • the substrate 110 is a flexible substrate, and the flexible substrate may be a PI substrate with better bending resistance and higher light transmittance.
  • the first buffer layer 210 and the second buffer layer 220 are sequentially stacked on the substrate 100.
  • the first buffer layer 210 or the second buffer layer 220 may have suitable materials including PET, PEN, polyacrylate, and/or polyimide, and form a layer in the form of a single layer or a multilayer stack. ⁇ Like structure.
  • the first buffer layer 210 or the second buffer layer 220 may also be formed of silicon oxide or silicon nitride, or may include a composite layer of organic materials and/or inorganic materials.
  • the first buffer layer 210 or the second buffer layer 220 may be formed on the entire surface of the substrate 100, or may be formed by being patterned.
  • the active layer 230 is disposed on a side of the second buffer layer 220 away from the substrate 100, and a channel region is formed on the active layer 230.
  • the active layer 230 may be formed of an amorphous silicon layer, a silicon oxide layer, a metal oxide, a polysilicon layer, or an organic semiconductor material.
  • the active layer 230 is formed by forming polysilicon from amorphous silicon and then performing ion-type doping.
  • the ion doping includes doping both ends of the polysilicon into N-type, and then heavily doping the N-type. , To enhance conductivity.
  • the gate insulating layer (GI) 240 is located on the side of the active layer 230 away from the substrate 100.
  • the material of the gate insulating layer 240 is one or more of silicon oxide (SiOx) or silicon nitride (SiNx).
  • the gate 250 is stacked on a side of the gate insulating layer 240 away from the substrate 100.
  • the gate layer 250 is stacked above the channel region of the active layer 230.
  • the gate 250 may have various arrangements, such as a bottom gate, a top gate, or a double gate, which is not limited in this application.
  • an interlayer dielectric layer (ILD) 260 is formed on the gate 250.
  • the interlayer dielectric layer 260 is used to connect the active layer 230, the gate 240 and the first
  • the electrode layer 300 is insulated.
  • the interlayer dielectric layer 260 is respectively provided with a first via hole and a second via hole on both sides of the channel region of the active layer 230 respectively.
  • the ILD layer 260 is SiOx or SiNx or a composite layer of SiNx and SiOx.
  • the interlayer dielectric layer (ILD) 260 is deposited and formed by a plasma enhanced chemical vapor deposition process.
  • a source/drain 270 is formed on the interlayer dielectric layer 260, and the source/drain 270 penetrates the interlayer dielectric through the first via and the second via respectively
  • the layers 270 are connected to the doped regions of the active layer 230 respectively.
  • the source/drain 270 may be made of aluminum (Al), platinum (Pt), palladium (Pd), silver (Ag), magnesium (Mg), gold (Au), nickel (Ni), neodymium ( Nd), iridium (Ir), chromium (Cr), lithium (Li), calcium (Ca), molybdenum (Mo), titanium (Ti), tungsten (W) and copper (Cu) or at least other suitable alloys A single material layer or composite material layer of one material is formed.
  • a planarization layer (PLN) 280 is formed on the source/drain layer 270.
  • the flat layer 270 is made of a transparent material to increase the light transmittance of the transparent display area 10a.
  • the flat layer 280 may also be an opaque material.
  • a black matrix black matrix, BM.
  • the present application also provides a display device 1.
  • the display device 1 includes a display panel 10 and a camera assembly 20 that are stacked, wherein the display panel 10 adopts the In the display panel 10, the camera assembly 20 has a camera, and the camera corresponds to the transparent display area 10a of the display panel 10. In addition, the shape and size of the transparent display area 10a match the camera.
  • the transparent display area 10a is a closed circle.
  • the shape and size of the transparent display area 10a and the camera in the display device 1 may be modified according to actual design requirements, which is not limited in this application.
  • the transparent display area 10a when shooting, the transparent display area 10a does not emit light; at this time, the imaging light signal of the object, that is, its diffuse reflection light signal, enters through the display panel 10 sequentially.
  • the camera of the camera assembly 20 In the camera of the camera assembly 20, a photographed image of the subject is obtained.
  • the camera assembly 20 is in a non-operating state, the organic light-emitting unit of the transparent display area 10a emits light, and the self-luminous light of the organic light-emitting layer emits for display.
  • the camera assembly 20 in the display device 1 described in the present application is arranged under the display panel 10, which can increase the screen-to-body ratio and facilitate the realization of a full-screen design; the light of the transparent display area 10a of the display device 1 described in the present application If the transmittance is higher, the amount of incident light of the camera assembly 20 will increase, and the imaging effect of the camera assembly 20 will be better; the sub-pixel density of the entire display panel 10 of the display device 1 of the present application is uniform, which can simplify FMM manufacturing difficulty , Improve the vapor deposition, reduce the manufacturing cost and manufacturing difficulty of the display device 1.
  • the subject of this application can be manufactured and used in industry and has industrial applicability.

Abstract

一种显示面板,所述显示面板具有一透明显示区域及包围所述透明显示区域的常规显示区域,其中,所述透明显示区和所述常规显示区内均包括多个子像素单元并且两个区域内的子像素密度相同,所述透明显示区域内的子像素单元的像素面积小于所述常规显示区域内的子像素单元的像素面积。

Description

显示面板 技术领域
本申请涉及显示技术领域,尤其涉及一种透明显示区域透光率较高的显示面板和显示装置。
背景技术
有机发光二极管(OLED)具有自发光、高对比、广视角、低功耗以及可弯折等优点,因此,它受到了大众和研发者的喜爱。其中,柔性OLED更是因其显著的抗弯折性能和轻薄性等特点逐渐占领市场。在此基础上,高屏占比乃至全面屏的显示装置也已经成为开发研究的重点和市场发展趋势。
以手机显示面板为例,增加手机显示面板的占屏比和手机外观的美观性,已经成为手机屏幕的主流设计。但是,手机屏幕除了显示功能外,摄像、听筒以及话筒等部件也会影响手机占屏比和美观性。
因此,在显示面板上设置一透明显示区域并将摄像头组件设置在透明显示区域的下方的屏下摄像头技术已经成为提高显示面板的占屏比以及实现全面屏的主要技术手段。但是,摄像头组件设放置在显示面板的下方,则摄像头组件的摄像功能及光捕捉能力都会受到显示面板的影响。为了提高屏下摄像头的光捕捉能力和成像效果,需要提高透明显示区域的环境光线的穿透率。
技术问题
当前,现有技术中较多采用降低像素密度的技术方案,以提高透明显示区域光线穿透率。上述技术方案能达到提高光线穿透率、提高摄像头成像效果的目的,但是会影响透明显示区域的显示效果,造成显示面板的显示差异较大、显示不均匀等问题。而且,由于透明显示区域和常规显示区域的像素密度不同,会造成金属掩膜板(Fine Metal Mask, FMM)制作难度大,显示面板制作成本较高等问题。
因此,亟需提供一种透明显示区域的透光率较高的显示面板,以解决上述问题。
技术解决方案
本申请的目的在于解决上述问题,提供一种透明显示区域的光透过率较高的显示面板以及使用所述显示面板的显示装置。
为了实现上述目的,本申请所述显示面板采取了以下技术方案。
一种显示面板,具有一透明显示区域及包围所述透明显示区域的常规显示区域,所述透明显示区域和所述常规显示区域均包括多个子像素单元并且两个区域内的子像素密度相同,其中,所述透明显示区域内的子像素单元的像素面积小于所述常规显示区域的子像素单元的像素面积;所述显示面板包括基板、以及依次层叠设置在所述基板上的TFT电路、子像素电极和光间隔物层,并且其中,所述TFT电路包括多条金属走线;所述光间隔物层具有多个开口,每一所述开口对应并暴露一所述子像素电极;所述透明显示区域的所述光间隔物层的开口宽度小于所述常规显示区域的所述光间隔物层的开口宽度。
进一步,所述透明显示区域的所述第一电极在所述基板上的正投影完全覆盖所述TFT电路。
进一步,所述透明显示区域的所述TFT电路超出所述第一电极尺寸部分的金属走线由透明电极材料制成。
进一步,所述透明显示区域的所述光间隔物层的开口宽度为所述常规显示区域的所述光间隔物层的开口宽度的0.5-0.8倍。
一种显示面板,具有一透明显示区域及包围所述透明显示区域的常规显示区域,其中所述透明显示区域和所述常规显示区域均包括多个子像素单元并且两个区域内的子像素密度相同,所述透明显示区域内的子像素单元的像素面积小于所述常规显示区域的子像素单元的像素面积。
进一步,所述显示面板包括基板、以及依次层叠设置在所述基板上的TFT电路、第一电极和光间隔物层,其中所述TFT电路包括多条金属走线。
进一步,所述光间隔物层具有多个开口,每一所述开口对应并暴露一所述第一电极。
进一步,所述光间隔物层由聚丙烯酸酯或聚酰亚胺中的一种或多层制成。
进一步,所述透明显示区域的所述光间隔物层的开口宽度小于所述常规显示区域的所述光间隔物层的开口宽度。
进一步,所述透明显示区域的所述光间隔物层的开口宽度为所述常规显示区域的所述光间隔物层的开口宽度的0.5-0.8倍。
进一步,所述透明显示区域的所述第一电极在所述基板上的正投影完全覆盖所述TFT电路。
进一步,所述透明显示区域的所述TFT电路的部分金属走线由透明电极材料制成。
进一步,所述透明显示区域的所述TFT电路超出所述第一电极尺寸部分的金属走线由透明电极材料制成。
进一步,所述第一电极为子像素电极。
进一步,所述TFT电路包括依次层叠设置在所述基板上的第一缓冲层、第二缓冲层、有源层、栅极绝缘层、栅极、层间介质层、源/漏极以及平坦层。
进一步,所述透明显示区域以及所述常规显示区域均包括R子像素单元、G子像素单元以及B子像素单元中的一种或多种。
进一步,所述透明显示区域以及所述常规显示区域的R子像素单元、G子像素单元以及B子像素单元分别单独成列排列设置。
进一步,所述透明显示区域和所述常规显示区域的R子像素、G子像素以及B子像素分别为矩形、圆形或正方形。
本申请还提供一种显示装置,所述显示装置包括一项显示面板和一摄像头组件;其中,所述显示面板具有一透明显示区域及包围所述透明显示区域的常规显示区域,所述透明显示区域和所述常规显示区域均包括多个子像素单元并且两个区域内的子像素密度相同,所述透明显示区域内的子像素单元的像素面积小于所述常规显示区域的子像素单元的像素面积;并且其中,所述摄像头组件具有一摄像头,所述摄像头与所述显示面板的透明显示区域相对应。所述摄像头组件具有一摄像头,所述摄像头与所述显示面板的透明显示区域相对应。
进一步,所述透明显示区域的形状和尺寸与所述摄像头的形状和尺寸相匹配。
有益效果
本申请的优点在于:本申请所述显示面板的透明显示区域与常规显示区域的子像素密度相同,从而保证所述透明显示区域良好的显示效果以及整个显示面板的显示均匀性;本申请所述显示面板的透明显示区域的子像素单元的像素面积小于所述常规显示区域的子像素单元的像素面积,从而降低了透明显示区域的金属开口率,进而提高了透明显示区域透光率;本申请所述显示面板的透明显示区域的子像素单元的TFT电路尺寸小于其第一电极的宽度或者超出第一电极的尺寸的部分采用透明导线,从而进一步提高了透明显示区域的光线穿透率;本申请所述显示面板整体子像素密度相同,从而能简化FMM制作难度,提升蒸镀良率。
本申请所述的显示装置,其摄像头组件设置在所述显示面板下方能提高屏占比,有利于实现全面屏设计;同时,所述透明显示区域的光线穿透率较高,能增强所述摄像头组件的光捕捉能力较强和成像效果。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是本申请所述显示装置的俯视图。
图2是本申请所述显示装置的结构示意图。
图3是本申请所述显示面板的局部结构示意图。
图4是本申请所述显示面板的截面结构示意图。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
如图1、图2所示,本申请提供一种显示面板10,所述显示面板10具有一透明显示区域10a及包围所述透明显示区域10a的常规显示区域10b。
请参考图3,所述透明显示区域10a包括多个第一类子像素单元510,所述常规显示区域10b包括多个第二子像素单元520,并且上述两个区域的子像素密度相同。其中,所述透明显示区域内10a的子像素单元500的的像素面积小于所述常规显示区域10b的子像素单元500的的像素面积。也就是说,所述第一类子像素单元510的像素面积小于所述第二类子像素单元520的像素面积。
所述显示面板10的显示效果与其子像素密度和像素总面积相关。其中,所述像素总面积为所有子像素单元的像素面积之和,像素总面积增大则显示清晰度提高,像素总面积减少则显示面板10的光透过率提高。而所述子像素密度则直观给出子像素单元的分布的均匀性和疏密程度。
本申请所述显示面板10a中所述透明显示区域10a与所述常规显示区域10b的子像素密度相同,减小所述透明显示区域10a内的子像素单元500的像素面积,从而减少了所述透明显示区域10a内的像素总面积,进而降低了所述透明显示区域10a的金属开口率,最终提高了所述透明显示区域10a的光线的穿透率。所述透明显示区域10a的子像素密度与所述常规显示区域10b相同,则子像素单元500分布均匀,保证了所述显示面板10a显示的均匀性,降低了所述显示面板10的显示差异。此外,所述的显示面板10的整个面板具有相同的子像素密度,从而简化了精细金属掩膜板(Fine Metal Mask, FMM),降低了显示面板10的制作难度和制作成本。
请继续参考图2。所述显示面板10b包括多个子像素单元500。所述子像素单元500包括所述第一类子像素单元510和所述第二类子像素单元520。所述第一类子像素单元510包括成列排列设置的第一R子像素单元511、第一G子像素单元512以及第一B子像素单元513;所述第二类子像素单元520包括成列排列设置的第二R子像素单元521、第二G子像素单元522以及第二B子像素单元523。
请继续参考图2。所述第一G子像素单元512间的列间距为c,所述第二G子像素单元522及所述第一G子像素单元512的间距为b,所述第二G子像素单元522的列间距为a,则a、b、和c三者的关系为:a=b=c。
也就是说,所述显示面板10的G子像素单元的像素间距相同,即所述显示面板10的G子像素单元的像素密度相同。进一步,可以通过调节所述透明显示区域10a与所述常规显示区域10b内R、G、B子像素单元的中心间距,以实现所述透明显示区域10a与所述常规显示区域10b内的子像素单元500的密度相同。
同时,所述第一R子像素单元511的像素面积小于所述第二R子像素单元521的像素面积;所述第一G子像素单元512的像素面积小于所述第二G子像素单元522的像素面积;所述第一B子像素单元513的像素面积小于所述第二B子像素单元523的像素面积。所以,所述透明显示区域10a的像素总面积小于所述常规显示区域10b的像素总面积。也就是说,像素密度相同,减小局部显示区域的子像素单元500的像素面积,能减小所局部显示区域的像素总面积。
本实施例中,所述显示面板10的子像素单元500的间距相同,减小透明显示区域10a的第一类子像素单元510的像素面积,从而能实现所述透明显示区域10a与所述常规显示区域10b的子像素密度相同,而所述透明显示区域10a的像素总面积减少的技术效果。因此,在本实施例所述显示面板10的透明显示区域10a的子像素密度不变、开口率降低、透光率提高。
所述透明显示区域10a总面积为像素总面积与非像素面积之和,在像素总面积一定的情况下,通过减少所述透明显示区域10a的非像素面积区域内的透光性较差的布置线路和元器件等占用的面积或者提高布置线路或元器件的透光性,从而可以提高所述透明显示区域10a内高透光率区域的面积,进一步提高所述透明显示区域10a的透光率,也可以进一步改进摄像头组件20的光捕捉能力和成像效果。
请参考图4,所述显示面板10包括基板100、设置在所述基板上的TFT电路200、设置在所述TFT电路200上的第一电极300以及层叠设置在所述第一电极300上的光间隔物层400。其中,所述TFT电路200包括多条金属走线。所述光间隔物层400具有多个开口410,每一所述开口410对应并暴露一所述第一电极300,并且所述透明显示区10a内的开口410的宽度小于所述常规显示区10b内开口410的宽度。
请继续参考图4,所述TFT电路200可以控制每个子像素单元500的发射,或者可以控制每个所述子像素单元500光发射的量。
本实施例中,所述TFT电路200在远离所述基板100的方向上包括依次层叠设置在基板100上的第一缓冲层210、第二缓冲层220、有源层230、栅极绝缘层240、栅极250、层间金属介质层260、源/漏极270以及平坦层280。
所述TFT电路200包括金属走线。其中,所述透明显示区域10a的所述第一电极300在所述基板100上的正投影完全覆盖所述TFT电路200;或者,所述透明显示区域10a内的所述TFT电路200的部分金属走线由透明电极材料制成;或者,所述透明显示区域10a的所述TFT电路200的超出所述第一电极300尺寸部分的金属走线由透明电极材料制成。也就是说,所述TFT电路200可以通过隐藏设置其金属走线或采用由透明电极材料制成的透明走线等方法,进一步提高所述透明显示区域内10a的光线穿透率。
具体实施时,所述透明电极材料由ITO和IGZO中的至少一种制成。氧化铟锡 (Indium Tin Oxides,ITO)和铟镓锌氧化物 (indium gallium zinc oxide,IGZO)具有很好的透明性和导电性。一方面,由于ITO和IGZO的透明性较好,能够避免非透明走线对所述透明显示区10a的环境光入射光线的遮挡,从而所述提高透明显示区10a透光性;另一方面,由于ITO和IGZO的导电性较好,作为透明走线能够快速传递电流,当需要显示画面时,所述透明显示区10a中的像素的驱动TFT电路能够快速驱动透明显示区10a中的像素发光,从而实现正常显示画面。
请继续参考图4,在所述TFT电路200背离所述基板100的一侧设置一第一电极300,所述第一电极层300和所述TFT电路200电连接。本实施例中,所述第一电极300为子像素电极。
具体实施时,所述第一电极300可以形成透明电极(透反射式)或反射电极或金属电极。
当所述第一电极300形成透明电极(透反射式)电极时,可以由氧化铟锡(ITO)、氧化铟锌(IZO)、氧化锌 (ZnO)、氧化铟(In2O3)、氧化铟镓(IGO)或氧化铝锌(AZO)一种或多种透明电极材料混合形成。
当所述第一电极300形成反射电极时,可由银(Ag)、镁(Mg)、铝(Al)、铂(Pt)、钯(Pd)、金(Au)、镍(Ni)、钕(Nd)、铱(Ir)、铬(Cr)、或这些材料中的任何材料混合形成的反射层,和由氧化铟锡(ITO)、氧化铟锌(IZO)、氧化锌 (ZnO)、氧化铟(In2O3)等透明电极材料形成辅助层,相叠加形成反射电极层这里第一电极300的结构和材料不限于此,并且可以变化。
当所述第一电极300形成金属电极时,可由银(Ag)、镁(Mg)、铝(Al)、铂(Pt)、钯(Pd)、金(Au)、镍(Ni)、钕(Nd)、铱(Ir)、铬(Cr)等金属电极材料中的一种或多种混合构成。
当所述第一电极300为反射电极和金属电极时,所述第一电极300还能起到遮光或反光作用,从而能防止所述显示面板10的自发光或环境光线穿透到有源层230,还能起到保护有源层230的作用。
请继续参考图4,在所述第一电极300背离所述基板100的一侧形成一光间隔物层400,所述光间隔物层400具有多个开口410,每一所述开口410对应并暴露一所述第一电极300。所述光间隔物层400通过对应每个第一电极300的开口410(即暴露每个第一电极300中心部分开口)来用于限定子像素。此外,所述光间隔物层400能支撑蒸镀的精细金属掩膜板,防止蒸镀过程中所述精细金属掩膜板发生凹陷损坏。
具体实施时,所述光间隔物层400可以由诸如聚丙烯酸酯和聚酰亚胺等材料中合适的有机材料或包括合适的无机材料的单一材料层或复合材料层形成。在实际制程中,在所述第一电极300及其所在层的整个表面利用聚丙烯酸酯或聚酰亚胺等材料形成光间隔物层400,然后将所述光间隔物层400进行图案化形成多个开口410,以暴露所述第一电极300的中心。
也就是,所述光间隔物层400通过蚀刻不同图案来限定每个子像素的形状或尺寸。例如,在本实施例中,所述光间隔物层400将所述R、G以及B子像素分别限定为矩形、正方形和圆形。同时,通过调整所述透明显示区域10a内的开口的尺寸,能减小所述第一类子像素510的面积。
所述显示面板10还包括层叠设置在所述第一电极300上的有机发光层以及层叠设置在有机发光层上的第二电极。
其中,所述第一电极、有机发光层以及第二电极层形成一有机发光单元,通过在第一电极300和第二电极之间施加电压可以使所述有机发光层通过电致原理发光。
所述有机发光层包覆设置在所述第一电极300上。具体地,所述有机发光层蒸镀在所述开口410内。其中,所述有机发光层由发光材料图层组成。所述发光材料图层包括红光发光材料图层、绿光材料图层、蓝光材料图层或白光发光材料图层中的一种或多种。常见的发光材料包括小分子发光材料、高分子发光材料、树状物发光材料。一般来说,小分子发光材料常采用真空蒸镀工艺,高分子发光材料多采用旋转涂覆或喷墨工艺,树状物发光材料可根据分子量大小选择上述工艺。
所述第二电极层位于所述有机发光层的与所述第一电极300相对的一侧。其中,所述有机发光层的自发光光线通过所述所述第二电极层穿出。本实施例中,所述第二电极为阴极。
具体实施时,所述第二电极层可采用氧化铟锡(ITO)、氧化铟锌(IZO)、氧化锌(ZnO)或氧化铟(In2O3)等透明电极材料或铝(Al)、银(Ag) 或锂(Li)等金属电极材料制成。
具体实施时,所述有机发光单元还包括至少一有机层,所述有机层为空穴注入层(HIM)、空穴传输层(HTM)、电子注入层(EIL)或电子传输层(ETL)。
请继续参考图4,所述基板100为透明或者在可见光波段具有较高的透光率。具体地,所述基板100可以由诸如玻璃材料、石英、金属材料或包括聚对苯二甲酸乙二醇酯(PET)、聚萘二甲酸乙二醇酯(PEN)或聚酰亚胺等的塑胶材料中合适的材料形成。
在本实施例中,所述基板110为柔性基板,所述柔性基板可以采用抗弯折性能较好和光透过率较高的PI基板。
请继续参考图4,所述第一缓冲层210和所述第二缓冲层220依次层叠设置在所述基板100上。所述第一缓冲层210或所述第二缓冲层220可以具有包括PET、PEN、聚丙烯酸酯和/或聚酰亚胺等材料中合适的材料,以单层或多层堆叠的形式形成层状结构。所述第一缓冲层210或所述第二缓冲层220还可以由氧化硅或氮化硅形成,或者可以包括有机材料和/或无机材料的复合层。所述第一缓冲层210或所述第二缓冲层220可以形成在基板100的整个表面上,也可以通过被图案化来形成。
请继续参考图4,所述有源层230设置在所述第二缓冲层220背离所述基板100的一侧,并且所述有源层230上形成有沟道区。具体实施时,所述有源层230可以由非晶硅层、氧化硅层金属氧化物、多晶硅层或者有机半导体材料形成。
本实施例中,所述有源层230由非晶硅形成多晶硅后进行离子型掺杂形成,其中离子掺杂包括将多晶硅的两端掺杂为N型,然后对该N型进行重型掺杂,以增强导电性。
请继续参考图4,所述栅极绝缘层(GI)240位于所述有源层230背离所述基板100的一侧。所述栅极绝缘层240的材料由氧化硅(SiOx)或氮化硅(SiNx) 中的一种或多种。
请继续参考图4,所述栅极250层叠设置在所述栅极绝缘层240背离所述基板100的一侧。在本实施例中,所述栅极层250叠设置在所述有源层230的沟道区的上方。应理解,所述栅极250可以存在多种布置方式,例如底栅式、顶栅式或双栅式,本申请在此不作限定。
请继续参考图4,在所述栅极250上形成层间介质层(ILD)260,所述层间介质层260用于将所述有源层230、所述栅极240与所述第一电极层300绝缘。并且,所述层间介质层260的分别位于所述有源层230的沟道区的两侧分别设置有第一过孔和第二过孔。
具体实施时。所述ILD层260为SiOx或SiNx或者SiNx和SiOx的复合层。在实际制程中,所述层间介质层(ILD)260采用等离子增强化学气相沉积工艺沉积形成。
请继续参考图4,在所述层间介质层260上形成源/漏极270,所述源/漏极270分别通过所述第一过孔和所述第二过孔贯穿所述层间介质层270并分别连接到所述有源层230的掺杂区。
考虑到导电性,源/漏极270可以由包括铝(Al)、铂(Pt)、钯(Pd)、银(Ag)、镁(Mg)、金(Au)、镍(Ni)、钕(Nd)、铱(Ir)、铬(Cr)、锂(Li)、钙(Ca)、钼(Mo)、钛(Ti)、钨(W)和铜(Cu)或其他合适的合金中的至少一种材料的单一材料层或复合材料层形成。
请继续参考图4,在所述源/漏极层270上形成一平坦层(PLN)280。本实施例中,所述平坦层270为透明材料,以提高所述透明显示区域10a光线穿透率,当然,本领域的技术人员可以理解的是,所述平坦层280也可以为不透明材料,以作为黑矩阵(black matrix,BM)。
如图1和图2所示,本申请还提供一种显示装置1,所述显示装置1包括层叠设置的一显示面板10和一摄像组件20,其中,所述显示面板10采用本申请所述的显示面板10,所述摄像头组件20具有一摄像头,且所述摄像头与所述显示面板10的透明显示区域10a相对应。并且,所述透明显示区域10a的形状和尺寸与所述摄像头相匹配。
在本实施例中,所述透明显示区域10a为封闭的圆形。具体实施时,所述显示装置1中的所述透明显示区域10a和摄像头的形状和尺寸等可以根据实际设计要求进行改动,本申请对此不作限定。
在本申请实施例所提供的显示装置1中,当进行拍摄时,所述透明显示区域10a不发光;此时,拍摄物的成像光信号即其漫反射光信号,依次穿过显示面板10入射至所述摄像头组件20的摄像头中,获得拍摄物的拍摄影像。不拍摄时,所述摄像头组件20处于非工作状态,所述透明显示区域10a的有机发光单元自发光,所述有机发光层的自发光光线射出进行显示。
本申请所述的显示装置1中所述摄像头组件20设置在所述显示面板10下方,能提高屏占比,有利于实现全面屏设计;本申请所述显示装置1的透明显示区域10a的光透过率较高,则所述摄像头组件20的入射光量增多,进而摄像头组件20的成像效果较好;本申请所述显示装置1的整个显示面板10的子像素密度均匀,能简化FMM制作难度,提升蒸镀良,降低显示装置1的制作成本和制作难度。
以上所述仅是本申请的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。在此处键入本发明的实施方式描述段落。
工业实用性
本申请的主题可以在工业中制造和使用,具备工业实用性。

Claims (20)

  1. 一种显示面板,具有一透明显示区域及包围所述透明显示区域的常规显示区域,其中所述透明显示区域和所述常规显示区域均包括多个子像素单元并且两个区域内的子像素密度相同,其中,所述透明显示区域内的子像素单元的像素面积小于所述常规显示区域的子像素单元的像素面积;
    所述显示面板包括基板、以及依次层叠设置在所述基板上的TFT电路、子像素电极和光间隔物层,并且其中,
    所述TFT电路包括多条金属走线;
    所述光间隔物层具有多个开口,每一所述开口对应并暴露一所述子像素电极;所述透明显示区域的所述光间隔物层的开口宽度小于所述常规显示区域的所述光间隔物层的开口宽度。
  2. 如权利要求1所述的显示面板,其中,所述透明显示区域的所述第一电极在所述基板上的正投影完全覆盖所述TFT电路。
  3. 如权利要求1所述的显示面板,其中,所述透明显示区域的所述TFT电路超出所述第一电极尺寸部分的金属走线由透明电极材料制成。
  4. 如权利要求1所述的显示面板,其中,所述透明显示区域的所述光间隔物层的开口宽度为所述常规显示区域的所述光间隔物层的开口宽度的0.5-0.8倍。
  5. 一种显示面板,具有一透明显示区域及包围所述透明显示区域的常规显示区域,其中所述透明显示区域和所述常规显示区域均包括多个子像素单元并且两个区域内的子像素密度相同,其中,所述透明显示区域内的子像素单元的像素面积小于所述常规显示区域的子像素单元的像素面积。
  6. 如权利要求5所述的显示面板,其中,所述显示面板包括基板、以及依次层叠设置在所述基板上的TFT电路、第一电极和光间隔物层,其中所述TFT电路包括多条金属走线。
  7. 如权利要求6所述的显示面板,其中,所述光间隔物层具有多个开口,每一所述开口对应并暴露一所述第一电极。
  8. 如权利要求7所述的显示面板,其中,所述光间隔物层由聚丙烯酸酯或聚酰亚胺中的一种或多层制成。
  9. 如权利要求7所述的显示面板,其中,所述透明显示区域的所述光间隔物层的开口宽度小于所述常规显示区域的所述光间隔物层的开口宽度。
  10. 如权利要求6所述的显示面板,其中,所述透明显示区域的所述光间隔物层的开口宽度为所述常规显示区域的所述光间隔物层的开口宽度的0.5-0.8倍。
  11. 如权利要求6所述的显示面板,其中,所述透明显示区域的所述第一电极在所述基板上的正投影完全覆盖所述TFT电路。
  12. 如权利要求6所述的显示面板,其中,所述透明显示区域的所述TFT电路的部分金属走线由透明电极材料制成。
  13. 如权利要求6所述的显示面板,其中,所述透明显示区域的所述TFT电路超出所述第一电极尺寸部分的金属走线由透明电极材料制成。
  14. 如权利要求6所述的显示面板,其中,所述第一电极为子像素电极。
  15. 如权利要求6所述的显示面板,其中,所述TFT电路包括依次层叠设置在所述基板上的第一缓冲层、第二缓冲层、有源层、栅极绝缘层、栅极、层间介质层、源/漏极以及平坦层。
  16. 如权利要求5所述的显示面板,其中,所述透明显示区域以及所述常规显示区域均包括R子像素单元、G子像素单元以及B子像素单元中的一种或多种。
  17. 如权利要求16所述的显示面板,其中,所述透明显示区域以及所述常规显示区域的R子像素单元、G子像素单元以及B子像素单元分别单独成列排列设置。
  18. 如权利要求16所述的显示面板,其中,所述透明显示区域和所述常规显示区域的R子像素、G子像素以及B子像素分别为矩形、圆形或正方形。
  19. 一种显示装置,所述显示装置包括一显示面板和一摄像头组件;其中,所述显示面板具有一透明显示区域及包围所述透明显示区域的常规显示区域,所述透明显示区域和所述常规显示区域均包括多个子像素单元并且两个区域内的子像素密度相同,所述透明显示区域内的子像素单元的像素面积小于所述常规显示区域的子像素单元的像素面积; 并且其中,
    所述摄像头组件具有一摄像头,所述摄像头与所述显示面板的透明显示区域相对应。
  20. 如权利要求19所述的显示装置,其中,所述透明显示区域的形状和尺寸与所述摄像头的形状和尺寸相匹配。
PCT/CN2019/106079 2019-05-15 2019-09-17 显示面板 WO2020228209A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/623,079 US11296151B2 (en) 2019-05-15 2019-09-17 Display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910406243.8A CN110098238A (zh) 2019-05-15 2019-05-15 显示面板
CN201910406243.8 2019-05-15

Publications (1)

Publication Number Publication Date
WO2020228209A1 true WO2020228209A1 (zh) 2020-11-19

Family

ID=67448194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/106079 WO2020228209A1 (zh) 2019-05-15 2019-09-17 显示面板

Country Status (3)

Country Link
US (1) US11296151B2 (zh)
CN (1) CN110098238A (zh)
WO (1) WO2020228209A1 (zh)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110098238A (zh) * 2019-05-15 2019-08-06 武汉华星光电半导体显示技术有限公司 显示面板
CN110491918A (zh) 2019-08-09 2019-11-22 武汉华星光电半导体显示技术有限公司 显示面板及显示装置
CN110783390B (zh) * 2019-10-31 2023-02-24 武汉天马微电子有限公司 一种显示面板及显示装置
CN110783487A (zh) * 2019-10-31 2020-02-11 Oppo广东移动通信有限公司 显示装置及电子设备
CN110890026B (zh) * 2019-12-05 2021-10-15 昆山国显光电有限公司 显示面板及显示装置
CN110930883B (zh) * 2019-12-12 2021-09-10 昆山国显光电有限公司 显示面板和显示装置
KR20210081571A (ko) * 2019-12-24 2021-07-02 엘지디스플레이 주식회사 유기발광 표시장치
KR20220000559A (ko) * 2020-06-26 2022-01-04 엘지디스플레이 주식회사 투명 표시장치
CN111863895A (zh) * 2020-07-16 2020-10-30 武汉华星光电半导体显示技术有限公司 一种可折叠显示屏
CN111885230A (zh) * 2020-07-17 2020-11-03 Oppo广东移动通信有限公司 电子设备、显示屏及其显示方法
CN111863900A (zh) * 2020-07-21 2020-10-30 武汉华星光电半导体显示技术有限公司 一种显示面板及其制备方法、显示装置
KR20220022002A (ko) * 2020-08-14 2022-02-23 삼성디스플레이 주식회사 금속 마스크 및 이를 이용하여 제조된 표시 장치
CN114586167B (zh) * 2020-09-30 2023-12-26 京东方科技集团股份有限公司 一种显示基板及显示装置
CN112365807B (zh) * 2020-11-11 2022-09-23 厦门天马微电子有限公司 显示面板及显示装置
CN112490269A (zh) * 2020-11-26 2021-03-12 Oppo广东移动通信有限公司 显示组件、柔性显示组件和显示装置
US20220310709A1 (en) * 2020-11-27 2022-09-29 Chengdu Boe Optoelectronics Technology Co., Ltd. Display substrate, mask, and display device
CN112750965A (zh) * 2021-01-05 2021-05-04 武汉华星光电半导体显示技术有限公司 显示面板、显示面板的制作方法以及显示装置
CN113299219A (zh) * 2021-06-01 2021-08-24 合肥维信诺科技有限公司 显示面板
WO2023077523A1 (en) * 2021-11-08 2023-05-11 Huawei Technologies Co., Ltd. Display panel, under-display camera device, and display device
CN116052529A (zh) * 2022-05-13 2023-05-02 荣耀终端有限公司 一种折叠显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101128939A (zh) * 2005-02-28 2008-02-20 卡西欧计算机株式会社 薄膜晶体管面板
US20110175097A1 (en) * 2010-01-21 2011-07-21 Samsung Mobile Display Co., Ltd. Organic light emitting display device
US20160276615A1 (en) * 2015-03-18 2016-09-22 Samsung Display Co., Ltd. Organic light emitting display panel and method of manufacturing the same
CN108922900A (zh) * 2018-06-28 2018-11-30 厦门天马微电子有限公司 一种显示装置及其显示方法
CN110098238A (zh) * 2019-05-15 2019-08-06 武汉华星光电半导体显示技术有限公司 显示面板

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4917582B2 (ja) 2008-07-25 2012-04-18 住友化学株式会社 アクティブマトリクス基板、ディスプレイパネル、表示装置およびアクティブマトリクス基板の製造方法
KR101107178B1 (ko) 2009-07-20 2012-01-25 삼성모바일디스플레이주식회사 유기 발광 표시 장치
CN107229360B (zh) 2016-03-23 2020-03-10 群创光电股份有限公司 触控面板、其制造方法及触控显示装置
CN206451466U (zh) * 2017-02-14 2017-08-29 广东欧珀移动通信有限公司 显示屏及电子装置
CN109285860A (zh) 2017-07-21 2019-01-29 京东方科技集团股份有限公司 一种电致发光显示面板、显示装置及其获取图像显示方法
CN109697396A (zh) * 2017-10-24 2019-04-30 华为终端(东莞)有限公司 一种有机电致发光显示面板、显示模组及电子设备
CN108766990A (zh) * 2018-06-05 2018-11-06 武汉华星光电半导体显示技术有限公司 显示面板
CN109300951B (zh) * 2018-09-30 2020-09-08 上海天马微电子有限公司 显示面板及其制作方法以及电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101128939A (zh) * 2005-02-28 2008-02-20 卡西欧计算机株式会社 薄膜晶体管面板
US20110175097A1 (en) * 2010-01-21 2011-07-21 Samsung Mobile Display Co., Ltd. Organic light emitting display device
US20160276615A1 (en) * 2015-03-18 2016-09-22 Samsung Display Co., Ltd. Organic light emitting display panel and method of manufacturing the same
CN108922900A (zh) * 2018-06-28 2018-11-30 厦门天马微电子有限公司 一种显示装置及其显示方法
CN110098238A (zh) * 2019-05-15 2019-08-06 武汉华星光电半导体显示技术有限公司 显示面板

Also Published As

Publication number Publication date
US11296151B2 (en) 2022-04-05
CN110098238A (zh) 2019-08-06
US20210335913A1 (en) 2021-10-28

Similar Documents

Publication Publication Date Title
US11296151B2 (en) Display panel
CN109524443B (zh) 一种oled基板及oled显示装置
US11812648B2 (en) Pixel array and display device
US9093669B2 (en) Transparent organic light emitting display device and method for manufacturing the same
CN107611280B (zh) 有机发光二极管基板及其制造方法
US9062852B2 (en) Organic light emitting display panel and method of manufacturing the same
US10964772B2 (en) OLED plate, display panel and display device using the same
WO2017080339A1 (zh) 阵列基板及其制备方法、显示装置
WO2020192051A1 (zh) 显示面板及其制备方法
US10403696B2 (en) Organic light emitting display device and method of fabricating the same
US9859351B2 (en) Organic light-emitting diode display
CN112470287A (zh) 一种显示基板及相关装置
US11233103B2 (en) Organic light-emitting display apparatus
US20240008335A1 (en) Display substrate, display device and high-precision metal mask
WO2021227029A1 (zh) 显示基板及其制备方法、显示装置
KR20160006520A (ko) 유기전계발광 표시장치 및 그 제조방법
WO2022141444A1 (zh) 显示面板及显示装置
US10573205B2 (en) Flexible display device and method for manufacturing flexible display device
CN110212111B (zh) 显示基板及制作方法、显示面板、显示装置
KR20140084603A (ko) 양 방향 표시형 유기전계 발광소자 및 이의 제조 방법
KR20100137272A (ko) 유기전계발광 표시장치 및 그 제조방법
US20220399528A1 (en) Organic light-emitting display substrate and display device
US20220352275A1 (en) Oled display panel and method of manufacturing same
CN114464645A (zh) 柔性显示装置及其制造方法
CN114846616A (zh) 一种显示基板及相关装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19929092

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19929092

Country of ref document: EP

Kind code of ref document: A1