WO2020228098A1 - 一种辐射降温材料及其制备方法和应用 - Google Patents

一种辐射降温材料及其制备方法和应用 Download PDF

Info

Publication number
WO2020228098A1
WO2020228098A1 PCT/CN2019/092486 CN2019092486W WO2020228098A1 WO 2020228098 A1 WO2020228098 A1 WO 2020228098A1 CN 2019092486 W CN2019092486 W CN 2019092486W WO 2020228098 A1 WO2020228098 A1 WO 2020228098A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
functional layer
radiation cooling
cooling material
radiation
Prior art date
Application number
PCT/CN2019/092486
Other languages
English (en)
French (fr)
Inventor
徐绍禹
王明辉
Original Assignee
宁波瑞凌新能源科技有限公司
宁波瑞凌新能源材料研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波瑞凌新能源科技有限公司, 宁波瑞凌新能源材料研究院有限公司 filed Critical 宁波瑞凌新能源科技有限公司
Priority to MYPI2019005976A priority Critical patent/MY194738A/en
Priority to AU2019246842A priority patent/AU2019246842B1/en
Priority to TW108131761A priority patent/TWI725533B/zh
Publication of WO2020228098A1 publication Critical patent/WO2020228098A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D7/00Producing flat articles, e.g. films or sheets
    • B29D7/01Films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/005Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/302Conductive
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the invention relates to the field of materials science and technology, in particular to a radiation cooling material and a preparation method and application thereof.
  • Radiation cooling is an effective cooling method. Radiation cooling utilizes the basic physical principle that all surfaces of objects greater than absolute zero radiate energy in the form of electromagnetic waves.
  • the outer space temperature outside the atmosphere is close to absolute zero. Therefore, the temperature of outer space close to absolute zero is a kind of "cold source". Infrared radiation can transmit heat from the earth's surface to outer space.
  • a large number of documents indicate that the earth's atmospheric window is transparent to infrared radiation (thermal radiation) in the 7-14 ⁇ m band.
  • the invention aims to provide a radiation cooling material and its preparation method and application.
  • the present invention provides a radiation cooling material.
  • the radiation cooling material has a multilayer structure and includes a first functional layer for radiation cooling, an encapsulation layer and a protective layer, and the first functional layer includes at least one polymer layer
  • the first functional layer has a transmittance of not less than 0.8 for solar radiation with a wavelength range of 0.25-2.5 ⁇ m/0.25-3 ⁇ m/0.3-2.5 ⁇ m/0.3-3 ⁇ m, and a wavelength range of 7-14 ⁇ m/8-
  • the 13 ⁇ m/7-13 ⁇ m/8-14 ⁇ m infrared band radiation has an emissivity of not less than 0.8;
  • the encapsulation layer is arranged on the first surface of the first functional layer, and the protective layer is arranged on the first surface and Opposite second surface; wherein, the first surface refers to the surface on either side of the first functional layer, and the second surface is the surface on the other side opposite to the first surface.
  • the radiation cooling material further includes a second functional layer disposed on the first surface of the first functional layer, between the first functional layer and the encapsulation layer between.
  • the present invention also provides a method for preparing the radiation cooling material, including:
  • a first functional layer which has a transmittance of not less than 0.8 for solar radiation with a wavelength range of 0.25-2.5 ⁇ m/0.25-3 ⁇ m/0.3-2.5 ⁇ m/0.3-3 ⁇ m, and a wavelength range of 7 Radiation in the infrared band of -14 ⁇ m/8-13 ⁇ m/7-13 ⁇ m/8-14 ⁇ m has an emissivity not less than 0.8;
  • a protective layer is provided on the second surface of the first functional layer.
  • the method further includes: providing a second functional layer on the first surface of the first functional layer; The step of setting an encapsulation layer outside the second functional layer.
  • the present invention also provides an application method of the radiation cooling material as described above, including: arranging the radiation cooling material on a heat dissipation body, and thermally connecting the first functional layer and the heat dissipation body.
  • heat is transferred from the heat dissipation body to the radiation cooling material, and then the first functional layer in the radiation cooling material emits heat outward, thereby achieving radiation cooling.
  • the present invention also provides a composite material containing the radiation cooling material.
  • the composite material is composed of the radiation cooling material and the substrate.
  • the substrate can be metal, plastic, rubber, asphalt, glass, waterproof material, textile or braid.
  • the radiation cooling material of the present invention is based on the basic principle of radiation cooling.
  • the emissivity of the material in the infrared band (7-14 ⁇ m/8-13 ⁇ m/7-13 ⁇ m/8-14 ⁇ m) is not less than 0.8, it can be achieved Radiation under direct sunlight during the day cools down.
  • this material can achieve better transmittance and can be applied to the transmittance Areas with special requirements, such as sun rooms, etc., to achieve the dual effects of light transmission and radiation cooling.
  • the radiation cooling material of the present invention through thermal communication with the surface of the heat dissipation body, can emit the heat in the heat dissipation body through the atmospheric window in the manner of infrared radiation, which can effectively reduce the temperature of the heat dissipation body without consuming additional energy. It is mainly used on the outer surface of the heat dissipation body that needs to be cooled.
  • the radiation cooling material provides a radiant cooling power from 6W/m 2 to 2640W/m 2 at a working temperature of -170°C to 200°C.
  • the radiation cooling material provides a radiant cooling power from 388W/m 2 to 2640W/m 2 at a working temperature of 20°C to 200°C.
  • the encapsulation layer is provided on the first surface of the first functional layer or the second functional layer for encapsulating the first functional layer or the second functional layer.
  • the protection prevents oxidation, discoloration, corrosion, aging, etc. of the first functional layer and the second functional layer, while the encapsulation layer acts as an adhesive to fix the radiation cooling material on the surface of the heat dissipation body.
  • the protective layer is arranged on a second surface opposite to the first surface of the first functional layer, and is used to protect the first functional layer, the second functional layer and the encapsulation layer, especially when When the radiation cooling material is used outdoors, it needs to withstand the test of harsh climatic conditions. Due to the particularity of the material, the radiation cooling material with the protective layer has good weather resistance and excellent performance. The heat resistance, oxidation resistance, chemical resistance, abrasion resistance and corrosion resistance.
  • the protective layer and the encapsulation layer are respectively arranged on the outer surfaces of the first functional layer and the second functional layer to maintain the reflectance, transmittance, and transmittance of the first functional layer and the second functional layer.
  • the stability of the emissivity plays a very important role.
  • Fig. 1 is a schematic structural diagram of a transmissive radiation cooling material provided by an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a reflective/semi-transparent radiation cooling material provided by an embodiment of the present invention
  • FIG. 3 is a schematic flow chart of a method for preparing a radiation cooling material provided by an embodiment of the present invention
  • Figure 4 is a graph showing the relationship between wavelength and emissivity in the first functional layer containing dielectric particles with different mass ratios
  • Fig. 5 is a graph of the relationship between wavelength and reflectance and transmittance in the first functional layer
  • Fig. 6 is a graph of the relationship between wavelength and reflectivity in second functional layers of different thicknesses
  • Fig. 7 is a graph of the relationship between wavelength and transmittance in second functional layers of different thicknesses
  • Figure 8a is a diagram showing the temperature measurement points of houses A and B;
  • Figure 8b is another temperature measurement point diagram showing houses A and B;
  • Figure 8c is a graph of temperature measurement points at different positions on the surface of outdoor and display room A;
  • Figure 8d is a graph showing different longitudinal temperature measurement points of house A
  • Figure 8e is a graph of temperature measurement points at different positions on the surface of outdoor and display room B;
  • Figure 8f is a graph showing different longitudinal temperature measurement points of house B
  • Figure 9a is a schematic diagram of temperature measurement points in cars C and D;
  • Figure 9b is the temperature curve diagram of the temperature measurement point in the car C
  • Figure 9c is a temperature curve diagram of the temperature measurement point in the car D.
  • Figure 9d is a curve diagram of the temperature difference between the temperature measurement points in the same position in cars C and D;
  • Figure 10a is a schematic diagram of temperature measurement points in the car 1 with the roller shutter E and the car 2 with the roller shutter F;
  • Figure 10b is a graph of temperature measurement points in the car 1 with the roller shutter E and the car 2 with the roller shutter F;
  • Figure 10c is a graph of the temperature difference between the car 1 with the roller shutter E and the car 2 with the roller shutter F at the same location;
  • Figure 11a is a schematic diagram of temperature measurement points in greenhouses G and H;
  • Figure 11b is the temperature curve diagram of the temperature measurement points in the greenhouse G and H;
  • Figure 11c is a graph of the temperature difference between the temperature measurement points in the greenhouse G and H at the same position.
  • the low-temperature magnetization stabilization processing method of the permanent magnetic material provided in the present application will be further described below.
  • an embodiment of the present invention provides a radiation cooling material.
  • the radiation cooling material has a multilayer structure, and includes a first functional layer 10 for radiation cooling, an encapsulation layer 30 and a protective layer 40, and the first functional layer 10 includes at least one polymer layer.
  • the first functional layer 10 has a transmittance of not less than 0.8 for solar radiation with a wavelength range of 0.25-2.5 ⁇ m/0.25-3 ⁇ m/0.3-2.5 ⁇ m/0.3-3 ⁇ m, and a wavelength range of 8-13 ⁇ m/7 Radiation in the infrared band of -13 ⁇ m/8-14 ⁇ m has an emissivity not lower than 0.8.
  • the encapsulation layer 30 is disposed on the first surface of the first functional layer 10, and the protective layer 40 is disposed on the second surface opposite to the first surface.
  • the first functional layer 10 has a transmittance of not less than 0.8 for solar radiation with a wavelength range of 0.25-2.5 ⁇ m/0.25-3 ⁇ m/0.3-2.5 ⁇ m/0.3-3 ⁇ m, and a wavelength range of 8-
  • the 13 ⁇ m/8-14 ⁇ m infrared band radiation has an emissivity not lower than 0.8.
  • the radiation cooling material may further include a second functional layer 20 disposed on the first surface of the first functional layer 10 and between the first functional layer 10 And the encapsulation layer 30.
  • the second functional layer 20 has a transmittance of 0-95% for solar radiation with a wavelength range of 0.25-2.5 ⁇ m/0.25-3 ⁇ m/0.3-2.5 ⁇ m/0.3-3 ⁇ m, and a transmittance of a wavelength range of 0.25-2.5 ⁇ m/0.25-3 ⁇ m/0.3-2.5 ⁇ m/0.3-3 ⁇ m.
  • the solar radiation of 2.5 ⁇ m/0.25-3 ⁇ m/0.3-2.5 ⁇ m/0.3-3 ⁇ m has a reflectivity of 5% to 100%.
  • the second functional layer 20 has a transmittance of 0-95% for solar radiation with a wavelength range of 0.25-2.5 ⁇ m/0.25-3 ⁇ m/0.3-2.5 ⁇ m, and a transmittance of 0-95% for a wavelength range of 0.25-2.5 ⁇ m/0.25-
  • the solar radiation of 3 ⁇ m/0.3-2.5 ⁇ m has a reflectivity of 5%-100%.
  • the second functional layer has a transmittance of 0-95% to solar radiation with a wavelength range of 0.4-0.7 ⁇ m/0.38-0.78 ⁇ m/0.4-0.76 ⁇ m, and a transmittance of 0.4-0.7 ⁇ m/0.38 to a wavelength range of 0.4-0.7 ⁇ m/0.38.
  • Solar radiation of -0.78 ⁇ m/0.4-0.76 ⁇ m has a reflectivity of 5% to 100%.
  • the first surface of the first functional layer 10 is provided with an encapsulation layer 30 and the second surface is provided with a protective layer 40, which constitutes a transmissive radiation cooling material.
  • the transmissive radiation cooling material includes a protective layer 40, a first functional layer 10, and an encapsulation layer 30 from top to bottom.
  • a second functional layer 20 is provided on the first surface of the first functional layer 10, and an encapsulation layer 30 is provided on the outside of the second functional layer 20.
  • the second surface is provided with a protective layer 40, which constitutes a reflective/semi-transparent radiation cooling material, and its absorption rate is very small, almost zero.
  • the reflective/semi-transmissive radiation cooling material includes a protective layer 40, a first functional layer 10, a second functional layer 20, and an encapsulation layer 30 from top to bottom.
  • the reflective radiation cooling material has a reflectivity of not less than 0.8 for solar radiation with a wavelength range of 0.25-2.5 ⁇ m/0.25-3 ⁇ m/0.3-2.5 ⁇ m/0.3-3 ⁇ m.
  • the semi-transparent radiation cooling material has a transmittance of 1%-95% to solar radiation with a wavelength range of 0.25-2.5 ⁇ m/0.25-3 ⁇ m/0.3-2.5 ⁇ m/0.3-3 ⁇ m, preferably It is 5%-95%, more preferably 20%-70%.
  • the structure of the radiation cooling material may take the form of a film, a sheet or a coating, and the first functional layer 10 thereof may be used to be configured to communicate with the heat dissipation body to be cooled.
  • the first functional layer includes at least a polymer layer.
  • the polymer layer includes a polymer and dielectric particles, and the dielectric particles are dispersed in the polymer.
  • the first functional layer may include only a polymer, or may include a polymer and dielectric particles dispersed in the polymer.
  • the dielectric particles may be micron-sized particles.
  • the polymer layer may include at least one first polymer layer and at least one second polymer layer arranged at intervals, that is, two polymer layers.
  • dielectric particles are dispersed in the polymer of any one of the two polymer layers, or dielectric particles are dispersed in the polymer of both polymer layers, or two polymers No dielectric particles may be provided in the polymer of the layer.
  • the polymer layer may also include at least one first polymer layer, at least one second polymer layer, and at least one third polymer layer that are spaced apart from each other, that is, it includes three polymer layers.
  • any one of the three polymer layers or any two polymer layers has dielectric particles dispersed in the polymer, or the three polymer layers have dielectric particles dispersed in the polymer, or There may be no dielectric particles in the polymer of the three polymer layers.
  • the first polymer layer When only the first polymer layer is included, it is a single-layer structure; when it includes at least two polymer layers, it is a multi-layer structure.
  • the components in each polymer layer in the multilayer structure may be the same or different from each other.
  • the first polymer layer, the second polymer layer, and the third polymer layer are represented by X, Y, and Z, respectively, and the structure of the polymer layer can be X, YX, YXY, YXYX, YXYXY, XYZ, YXZ, XZY, XYZXYZ etc.
  • the Y layer and the Z layer can be set to have the functions of reflection, emission, absorption, transmission, weather resistance, stain resistance, hydrophobicity, increase the adhesion of the upper and lower layers, support or protection according to their positions in the layered structure.
  • the difference in refractive index between the dielectric particles and the first polymer layer is less than 0.5.
  • the difference in refractive index between the dielectric particles and the first polymer layer is greater than 0.1 and less than 0.5.
  • the diameter of the dielectric particles is between 1 ⁇ m and 200 ⁇ m, preferably, the diameter of the dielectric particles is between 1 ⁇ m and 200 ⁇ m, preferably between 5 ⁇ m and 30 ⁇ m, and more preferably 10 ⁇ m. ⁇ 2 ⁇ m.
  • the configuration of the dielectric particles may be a sphere, an ellipsoid, a cube, a cuboid, a rod, a polyhedron, or other indefinite shapes.
  • the mass ratio of the dielectric particles in the first functional layer is not more than 30%, for example, between 0.3% and 30%. Considering that the mass ratio of dielectric particles in the first functional layer is too small, it will affect the radiant cooling effect of the first functional layer, and the mass ratio of dielectric particles in the first functional layer is too large, which will affect the first functional layer.
  • the mass ratio of the dielectric particles in the first functional layer is preferably between 0.1% and 20%, and more preferably, 0.3% to 5%.
  • the volume ratio of the dielectric particles in the first functional layer is not more than 30%.
  • the dielectric particles are organic particles or inorganic particles or a combination of organic particles and inorganic particles. among them,
  • Organic particles are one or more of acrylic resin particles, silicone resin particles, nylon resin particles, polystyrene resin particles, polyester resin particles and polyurethane resin particles; inorganic particles are two Silicon oxide (SiO 2 ), silicon carbide (SiC), aluminum hydroxide (Al(OH) 3 ), aluminum oxide (Al 2 O 3 ), zinc oxide (ZnO), barium sulfide (BaS), magnesium silicate (MgSiO) 3 ), one or more of barium sulfate (BaSO 4 ), calcium carbonate (CaCO 3 ) and titanium dioxide (TiO 2 ).
  • the inorganic particles are one or more of silicon dioxide (SiO 2 ), titanium dioxide (TiO 2 ), and magnesium silicate (MgSiO 3 ) .
  • the polymer of the polymer layer is a thermoplastic polymer, a thermosetting polymer, or a combination of a thermoplastic polymer and a thermosetting polymer.
  • the thermoplastic polymer can use one or more of the following materials: poly-4-methyl-1-pentene (TPX), polyethylene terephthalate (PET), polyethylene naphthalate Alcohol esters (PEN), polyethylene terephthalate-1,4-cyclohexanedimethanol (PCT), polyethylene terephthalate-1,4-cyclohexanedimethanol (PETG and PCTG) , Polyethylene Terephthalate Acetate (PCTA), Polymethyl Methacrylate (PMMA), Polycarbonate (PC), Acrylonitrile Styrene Copolymer (SAN), Acrylonitrile Butadiene- Styrene terpolymer (ABS), polyvinyl chloride (PVC), polypropylene (PP), polyethylene (PE), EPDM (EPDM), polyolefin elastomer (POE), polyamide ( PA), ethylene-vinyl acetate copolymer (EVA), ethylene-methyl acrylate copolymer (EMA), polyamide ( PA
  • thermosetting polymer can use one or more of the following materials: polyethersulfone derivative copolymer (PES), diallyl diethylene glycol carbonate polymer (CR-39), two-component polyurethane (PU ).
  • PES polyethersulfone derivative copolymer
  • CR-39 diallyl diethylene glycol carbonate polymer
  • PU two-component polyurethane
  • the material of the polymer layer may be one or a combination of PVC, PMMA, PC, PS, EVA, POE, PP, PE, TPX, PETG, PCTG, and PET.
  • the color of the polymer layer may be transparent.
  • the material of the polymer layer may be poly-4-methyl-1-pentene (TPX), polyethylene terephthalate (PET), polyethylene naphthalate (PEN) , Poly 1,4-cyclohexanedimethanol terephthalate (PCT), polyethylene terephthalate-1,4-cyclohexanedimethanol (PETG and PCTG), polyterephthalate A mixture of one or more of ethylene glycol formate-acetate (PCTA), polymethyl methacrylate (PMMA), and polycarbonate (PC).
  • TPX poly-4-methyl-1-pentene
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PCT Poly 1,4-cyclohexanedimethanol terephthalate
  • PETG and PCTG polyethylene terephthalate-1,4-cyclohexanedimethanol
  • PCTA ethylene glycol formate-acetate
  • PMMA polymethyl methacrylate
  • PC polycarbonate
  • the layered structure of the polymer layer is YXY.
  • This special layered structure gives the polymer layer a stable performance, and the Y layer is also To support and protect the X layer.
  • the polymer layer includes a second polymer layer, a first polymer layer, and a second polymer layer from top to bottom.
  • the material of the first polymer layer is PET/PEN, and the thickness of the first polymer layer is 50 ⁇ m to 150 ⁇ m, the material of the second polymer layer is PET/PEN, and the thickness of the second polymer layer is 5 ⁇ m to 20 ⁇ m.
  • the layered structure of the polymer layer can be selected as YX, that is, it includes a first polymer layer and a second polymer layer spaced apart from each other.
  • the material of the layer is PET/PEN
  • the thickness of the first polymer layer is 30 ⁇ m-60 ⁇ m
  • the material of the second polymer layer is PET/PEN
  • the thickness of the second polymer layer is 5 ⁇ m-10 ⁇ m.
  • the main component of the encapsulation layer includes at least one of polyurethane adhesive, acrylic adhesive, and epoxy resin, preferably polyurethane pressure sensitive adhesive and acrylic pressure sensitive adhesive, and more preferably two-component polyurethane adhesive.
  • Pressure-sensitive adhesive and acrylic pressure-sensitive adhesive are used to encapsulate and protect the first functional layer or the second functional layer, and at the same time function as an adhesive.
  • the encapsulation layer has the dual functions of protecting the second functional layer and/or the first functional layer and bonding.
  • the encapsulation layer may be provided on the second functional layer or the functional layer by laminating or coating.
  • the second functional layer includes at least one metal layer, or at least one ceramic material layer, or a combination of at least one metal layer and at least one ceramic material layer.
  • the mixed arrangement of the metal layer and the ceramic material layer can simultaneously improve the reflectivity and prevent the metal layer from being oxidized.
  • the material of the metal layer is selected from a metal layer of silver, aluminum, chromium, titanium, copper, or nickel, or a metal alloy layer including at least one element of silver, aluminum, chromium, titanium, copper, and nickel.
  • the material of the ceramic material layer includes aluminum oxide, titanium oxide, silicon oxide, niobium oxide, zinc oxide, indium oxide, tin oxide, silicon nitride, titanium nitride, aluminum silicide, zinc sulfide, indium sulfide, One or more of tin sulfide, magnesium fluoride, and calcium fluoride.
  • the structure of the second functional layer may include: silver, aluminum, silver + aluminum, silver + silicon, silver + titanium, aluminum + silicon, aluminum + titanium, silver + aluminum + titanium, Silver + aluminum + silicon, silver + silicon oxide, aluminum + silicon oxide, silicon oxide + silver + silicon, silicon oxide + aluminum + silicon, silicon oxide + silver, silicon oxide + aluminum, silicon oxide + silver + aluminum + silicon nitride , Silver + silicon aluminum alloy, silicon oxide + silver + silicon oxide + silver + silicon oxide, silicon oxide + silver + aluminum oxide + aluminum + silicon aluminum alloy, etc.
  • the thickness of the second functional layer can be adjusted above 1 nm, preferably between 5 nm and 500 nm, more preferably between 50 nm and 200 nm.
  • the second functional layer includes at least one metal layer, and the material of the metal layer is aluminum, silver or titanium.
  • the material of the metal layer is aluminum, silver or titanium.
  • at least one surface of the metal layer is provided with at least one ceramic material layer.
  • the ceramic material is preferably a metal-like oxide layer, such as silicon oxide, silicon nitride or magnesium fluoride. The ceramic material layer can simultaneously improve reflectivity, weather resistance, wear resistance, oxidation and corrosion resistance.
  • the protective layer includes an Organofluorine Polymer layer, a Resistant Silicone Polymers layer, a Fluorosilicone Copolymer Resin layer, and a polyethylene-nylon (PE/PA) composite layer.
  • PE/PA polyethylene-nylon
  • the protective layer material has excellent optical properties, weather resistance and barrier properties, and further has excellent transparency, heat resistance, oxidation resistance, chemical resistance, and corrosion resistance.
  • the organic fluoropolymer layer includes one or more of the following materials: polytetrafluoroethylene (PTFE) layer, perfluoro(ethylene propylene) copolymer (FEP) layer, polyperfluoroalkoxy resin (PFA) Layer, polychlorotrifluoroethylene (PCTFE) layer, ethylene-chlorotrifluoroethylene copolymer (ECTFE) layer, ethylene-tetrafluoroethylene copolymer (ETFE) layer, polyvinylidene fluoride (PVDF) layer and polyvinyl fluoride ( PVF) layer.
  • PTFE polytetrafluoroethylene
  • FEP perfluoro(ethylene propylene) copolymer
  • PFA polyperfluoroalkoxy resin
  • PCTFE polychlorotrifluoroethylene
  • ECTFE ethylene-chlorotrifluoroethylene copolymer
  • ETFE ethylene-tetrafluoroethylene copolymer
  • PVDF poly
  • the material of the organic fluoropolymer layer is polytetrafluoroethylene
  • PTFE vinyl fluoride
  • PVDF polyvinylidene fluoride
  • ECTFE ethylene-chlorotrifluoroethylene copolymer
  • the protective layer includes a polytetrafluoroethylene (PTFE) layer, a polyvinylidene fluoride (PVDF) layer, a polyvinyl fluoride (PVF) layer, an ethylene-tetrafluoroethylene copolymer (ETFE) layer, and an ethylene-trifluorochloroethylene layer.
  • PTFE polytetrafluoroethylene
  • PVDF polyvinylidene fluoride
  • PVDF polyvinyl fluoride
  • EFE ethylene-tetrafluoroethylene copolymer
  • ECTFE polyethylene-nylon
  • PE/PA polypropylene-nylon
  • PP/PA polypropylene-nylon
  • the thickness of the encapsulation layer is between 1 ⁇ m and 500 ⁇ m, preferably between 5 ⁇ m and 100 ⁇ m.
  • the thickness of the protective layer is between 1 ⁇ m and 300 ⁇ m, preferably 5 to 150 ⁇ m or 2 to 50 ⁇ m.
  • the thickness of the first functional layer is between 5 ⁇ m and 500 ⁇ m, preferably between 10 ⁇ m and 200 ⁇ m.
  • the thickness of the second functional layer can be adjusted above 1 nm, for example, between 5 nm and 500 nm, according to different requirements for transparency of the radiation cooling material.
  • the transmittance of the radiation cooling material to sunlight can be adjusted between 0-95%, forming a reflective/semi-transparent radiation cooling material.
  • the radiation cooling material of the embodiment of the present invention can provide radiation cooling power from 6W/m 2 to 2640W/m 2 at an operating temperature of -170°C to 200°C.
  • the radiation cooling material of the embodiment of the present invention can be combined with metal, plastic, rubber, asphalt, glass products, waterproof materials, textiles, braids and other materials to form composite materials.
  • the embodiment of the present invention discloses a radiation cooling material, which can exist in the form of a thin film, that is, a radiation cooling film; it can also exist in the form of a sheet or a coating.
  • the radiation cooling material can be divided into a reflective radiation cooling film, a transmissive radiation cooling film and a semi-transparent radiation cooling film.
  • the reflective radiation cooling film has the functions of reflection and radiation cooling.
  • the reflective radiation cooling film includes a first functional layer and a second functional layer in contact with the first functional layer for reflecting sunlight
  • the second functional layer includes a metal layer, a metal substrate, and/or a ceramic material layer.
  • the first functional layer is characterized by having an infrared light emissivity of 0.8 to 1.0, and more preferably 0.9-1.0, for the infrared wavelength range of 7-14 ⁇ m/8-13 ⁇ m/7-13 ⁇ m/8-14 ⁇ m.
  • the reflective radiation cooling film has a reflectivity of 0.8 to 1, preferably 0.9 to 1, for sunlight in the wavelength range of 0.25-2.5 ⁇ m/0.25-3 ⁇ m/0.3-2.5 ⁇ m/0.3-3 ⁇ m.
  • the transmissive radiation cooling film has the functions of both light transmission and radiation cooling, and the transmissive radiation cooling film includes a first functional layer.
  • the first functional layer is characterized by having an infrared light emissivity of 0.8 to 1.0, preferably 0.9-1.0, for the infrared wavelength range of 7-14 ⁇ m/8-13 ⁇ m/7-13 ⁇ m/8-14 ⁇ m.
  • the transmissive radiation cooling film has an absorption rate of 0 to 0.3 for the wavelength range of 0.25-2.5 ⁇ m/0.25-3 ⁇ m/0.3-2.5 ⁇ m/0.3-3 ⁇ m.
  • the semi-transmissive radiation cooling film has the functions of light transmission, reflection and radiation cooling.
  • the semi-transmissive radiation cooling film includes a first functional layer, and also includes a contact with the first functional layer for reflecting sunlight
  • the second functional layer includes a metal layer, a metal substrate and/or a ceramic material layer.
  • the first functional layer is characterized by having an infrared light emissivity of 0.8 to 1.0, preferably 0.9-1.0, for the infrared wavelength range of 7-14 ⁇ m/8-13 ⁇ m/7-13 ⁇ m/8-14 ⁇ m.
  • the transmissivity of the semi-permeable radiation cooling film to solar energy can be adjusted between 1%-95%, preferably 5%-95%, and more preferably 20%-70%.
  • the present invention provides an embodiment.
  • the radiation cooling material includes a first functional layer, an encapsulation layer and a protective layer.
  • the encapsulation layer is disposed on a first surface of the first functional layer, and the protective layer is disposed on a second surface opposite to the first surface.
  • the first functional layer includes a polymer layer.
  • the material of the first functional layer is PET, the thickness is 150 ⁇ m, the dielectric particles are SiO 2 , and the diameter of the dielectric particles is 6 ⁇ m.
  • the material of the encapsulation layer is a two-component polyurethane pressure sensitive adhesive; the material of the protective layer is polyvinylidene fluoride (PVDF).
  • PVDF polyvinylidene fluoride
  • FIG. 4 is a diagram showing the relationship between wavelength and emissivity in the first functional layer containing dielectric particles with different mass ratios in this embodiment.
  • the mass ratio of SiO 2 in the first functional layer is 2%, 4%, 6% and 8% respectively
  • the relationship between wavelength and emissivity in the first functional layer with different mass ratios of SiO 2 is shown in Fig. 4
  • the first functional layer containing SiO 2 has a higher mass ratio of SiO 2 increased by 7-14 ⁇ m infrared emissivity, but has no significant absorption effect in the solar spectrum. Please refer to FIG.
  • the transmissive radiation cooling material A is defined as the transmissive radiation cooling material A.
  • the present invention also provides an embodiment.
  • the radiation cooling material includes a first functional layer, a second functional layer, an encapsulation layer and a protective layer.
  • the second functional layer is disposed on a first surface of the first functional layer
  • the protective layer is disposed on a second surface opposite to the first surface.
  • the packaging layer is disposed on the second functional layer.
  • the first functional layer includes a polymer layer.
  • the material of the first functional layer is PET, the thickness is 150 ⁇ m, the dielectric particles are SiO 2 , the diameter of the dielectric particles is 6 ⁇ m, and the mass ratio of the dielectric particles SiO 2 in the first functional layer Is 4%.
  • the material of the encapsulation layer is acrylic pressure-sensitive adhesive; the material of the protective layer is fluorosilicone copolymer resin.
  • FIG. 6 is a graph of the relationship between wavelength and reflectivity in the second functional layer with different thicknesses in this embodiment.
  • the structure of the second functional layer (from top to bottom) is aluminum + silicon oxide, and the thickness ratio of the aluminum layer to the silicon oxide layer is 1:1.
  • the graph of the relationship between the wavelength and the reflectivity in the second functional layer is shown in FIG.
  • FIG. 7 is a graph of the relationship between wavelength and transmittance in the second functional layer with different thicknesses in this embodiment.
  • the graph of the relationship between wavelength and transmittance in the second functional layer is shown in Figure 7.
  • the transmittance of the second functional layer at 300 ⁇ 2500nm increases with the thickness of the second functional layer. Increases and decreases.
  • the thickness of the second functional layer in this embodiment is 30 nm as the semi-transparent radiation cooling material B.
  • the thickness of the selective functional layer is 80 nm, 100 nm, and 150 nm, since its transmittance is less than 5%, it is defined as a reflective radiation cooling material.
  • the thickness of the second functional layer of this embodiment is 80 nm as the reflective radiation cooling material C.
  • the present invention also provides another embodiment.
  • the radiation cooling material includes a first functional layer, an encapsulation layer and a protective layer.
  • the first functional layer includes two polymer layers.
  • the encapsulation layer is disposed on a first surface of the first functional layer, and the protective layer is disposed on a second surface opposite to the first surface.
  • the material of the first functional layer is PEN
  • the thickness is 100 ⁇ m
  • the dielectric particles are silicone resin particles
  • the diameter of the dielectric particles is 10 ⁇ m.
  • the silicone resin particles of the dielectric particles are in the first functional layer.
  • the mass ratio in 5% is 5%.
  • the material of the encapsulation layer is a two-component polyurethane pressure-sensitive adhesive; the material of the protective layer is ethylene-vinyl alcohol copolymer (EVOH).
  • the first functional layer has a transmittance of 92% to sunlight with a wavelength range of 0.25-2.5 ⁇ m/0.25-3 ⁇ m/0.3-2.5 ⁇ m/0.3-3 ⁇ m, and a wavelength range of 7-14 ⁇ m/8-13 ⁇ m/
  • the infrared emissivity of the infrared band of 7-13 ⁇ m/8-14 ⁇ m is 0.94.
  • the present invention also provides another embodiment.
  • the radiation cooling material includes a first functional layer, an encapsulation layer and a protective layer.
  • the first functional layer includes two polymer layers.
  • the encapsulation layer is disposed on a first surface of the first functional layer, and the protective layer is disposed on a second surface opposite to the first surface.
  • the material of the first functional layer is PC
  • the thickness is 80 ⁇ m
  • the dielectric particles are MgSiO 3
  • the diameter of the dielectric particles is 11 ⁇ m
  • the mass ratio of the dielectric particles MgSiO 3 in the first functional layer is Is 9%.
  • the material of the encapsulation layer is a two-component polyurethane pressure-sensitive adhesive
  • the material of the protective layer is an organic silicon polymer.
  • the first functional layer has a transmittance of 90% to sunlight with a wavelength range of 0.25-2.5 ⁇ m/0.25-3 ⁇ m/0.3-2.5 ⁇ m/0.3-3 ⁇ m, and a wavelength range of 7-14 ⁇ m/8-13 ⁇ m/
  • the infrared emissivity of the infrared band of 7-13 ⁇ m/8-14 ⁇ m is 0.91.
  • the present invention also provides another embodiment.
  • the radiation cooling material includes a first functional layer, a second functional layer, an encapsulation layer and a protective layer.
  • the second functional layer is disposed on a first surface of the first functional layer
  • the protective layer is disposed on a second surface opposite to the first surface.
  • the packaging layer is disposed on the second functional layer.
  • the first functional layer includes two polymer layers.
  • the material of the first functional layer is PMMA
  • the thickness is 70 ⁇ m
  • the dielectric particles are nylon-based resin particles
  • the diameter of the dielectric particles is 5 ⁇ m
  • the nylon-based resin particles are formed in the first functional layer.
  • the mass ratio is 4%.
  • the second functional layer is magnesium fluoride, the thickness of the second functional layer is 20 nm, the material of the encapsulation layer is epoxy resin; the material of the protective layer is polyethylene-nylon (PE/PA) composite film.
  • the radiation cooling material has a transmittance of 55% to sunlight with a wavelength range of 0.25-2.5 ⁇ m/0.25-3 ⁇ m/0.3-2.5 ⁇ m/0.3-3 ⁇ m, and a wavelength range of 7-14 ⁇ m/8-13 ⁇ m/7
  • the emissivity of infrared light in the infrared band of -13 ⁇ m/8-14 ⁇ m is 0.93.
  • the present invention also provides another embodiment.
  • the radiation cooling material includes a first functional layer, a second functional layer, an encapsulation layer and a protective layer.
  • the second functional layer is disposed on a first surface of the first functional layer
  • the protective layer is disposed on a second surface opposite to the first surface.
  • the packaging layer is disposed on the second functional layer.
  • the first functional layer includes two polymer layers.
  • the material of the first functional layer is PETG/PCTG
  • the thickness is 35 ⁇ m
  • the dielectric particles are polystyrene resin particles
  • the diameter of the dielectric particles is 15 ⁇ m
  • the dielectric particles are polystyrene resin particles.
  • the mass ratio of the first functional layer is 10%.
  • the second functional layer is silicon nitride, the thickness of the second functional layer is 25nm, the material of the encapsulation layer is acrylic pressure sensitive adhesive; the material of the protective layer is polyethylene-nylon (PE/PA) composite membrane.
  • the radiation cooling material has a transmittance of 40% to sunlight with a wavelength range of 0.25-2.5 ⁇ m/0.25-3 ⁇ m/0.3-2.5 ⁇ m/0.3-3 ⁇ m, and a wavelength range of 7-14 ⁇ m/8-13 ⁇ m/7
  • the emissivity of infrared light in the infrared band of -13 ⁇ m/8-14 ⁇ m is 0.92.
  • an embodiment of the present invention also provides a method for preparing the radiation cooling material as described above.
  • the radiation cooling material can be divided into a reflection type radiation cooling film, a semi-transmission type radiation cooling film and a transmission type radiation cooling film.
  • the preparation method may include:
  • a first functional layer is prepared, the first functional layer includes at least one polymer layer, and the first functional layer responds to solar radiation with a wavelength range of 0.25-2.5 ⁇ m/0.25-3 ⁇ m/0.3-2.5 ⁇ m/0.3-3 ⁇ m Have a transmittance of not less than 0.8, and have an emissivity of not less than 0.8 for radiation in the infrared band with a wavelength range of 7-14 ⁇ m/8-13 ⁇ m/7-13 ⁇ m/8-14 ⁇ m;
  • a protective layer is provided on the second surface of the first functional layer.
  • the preparation method may include:
  • a first functional layer is prepared, the first functional layer includes at least one polymer layer, and the first functional layer responds to solar radiation with a wavelength range of 0.25-2.5 ⁇ m/0.25-3 ⁇ m/0.3-2.5 ⁇ m/0.3-3 ⁇ m Have a transmittance of not less than 0.8, and have an emissivity of not less than 0.8 for radiation in the infrared band with a wavelength range of 7-14 ⁇ m/8-13 ⁇ m/7-13 ⁇ m/8-14 ⁇ m;
  • a second functional layer is provided on the first surface of the first functional layer, and an encapsulation layer is provided on the outside of the second functional layer;
  • a protective layer is provided on the second surface of the first functional layer.
  • the step of providing the second functional layer can be selected or not selected according to the transparency requirements of the radiation cooling material. Without the second functional layer, the transparency of the material can be improved, and a transmission type radiation cooling material can be made. At this time, the transmission type radiation cooling material is required to have a wavelength range of 0.25-2.5 ⁇ m/0.25-3 ⁇ m/0.3-2.5 ⁇ m/ The transmittance of solar radiation of 0.3-3 ⁇ m is not less than 0.8. Setting the second functional layer can improve the reflectivity of the material and make a reflective/semi-transparent radiation cooling material.
  • the material of the second functional layer is required to have a wavelength range of 0.25-2.5 ⁇ m /0.25-3 ⁇ m/0.3-2.5 ⁇ m/0.3-3 ⁇ m solar radiation reflectivity is not less than 0.8, for semi-transparent radiation cooling materials, the material of the second functional layer is required to have a wavelength range of 0.25-2.5 ⁇ m/0.25-
  • the transmittance of solar radiation of 3 ⁇ m/0.3-2.5 ⁇ m/0.3-3 ⁇ m is 1%-95%, preferably 5%-95%, more preferably 20%-70%.
  • preparing the first functional layer includes: dispersing dielectric particles in a polymer to form the polymer layer.
  • the dielectric particles may be inorganic particles or organic particles or a combination of both.
  • preparing the first functional layer may specifically include:
  • the polymer and dielectric particles are processed into a layered polymer layer as the first functional layer.
  • the preparation method of single-layer extrusion or multi-layer co-extrusion or melt film formation can include: polymer raw material transportation ⁇ 50 ⁇ 150°Cdrying ⁇ 220 ⁇ 280°Cmelt extrusion ⁇ casting ⁇ cooling (cold)
  • the roll temperature is set to 20 ⁇ 150°C) ⁇ traction ⁇ winding.
  • the main steps of the melt film forming method include casting and film blowing processes.
  • the film blowing process may include an upward blowing cooling process or a downward blowing water cooling process.
  • the preparation method of biaxial stretching can include: raw material conveying ⁇ 150 ⁇ 180°Cdrying ⁇ 250 ⁇ 280°Cmelt extrusion ⁇ casting ⁇ cooling (cold roll temperature is set to 15 ⁇ 30°C) ⁇ longitudinal stretching ( Infrared heating temperature is 200 ⁇ 300°C, longitudinal stretch ratio is 1.5:1 ⁇ 4.5:1) ⁇ transverse stretch (setting temperature is 150 ⁇ 190°C, lateral stretch ratio is 1.5:1 ⁇ 4.5:1) ⁇ traction ⁇ It is made by rewinding.
  • the preparation method of biaxial stretching can also be carried out at the same time of longitudinal stretching and transverse stretching, which is completed in one step.
  • preparing the first functional layer further includes: single-layer or multi-layer coating or solution film formation on the prepared polymer layer.
  • single-layer extrusion or multi-layer co-extrusion or melt film formation or biaxial stretching + single-layer or multi-layer coating or solution film formation can be used to process the prepared polymer into a polymer layer as the second A functional layer substrate; then the polymer and the dielectric particles are mixed to form a polymer layer with dielectric particles dispersed therein; and then coated by single-layer or multi-layer coating or solution film formation On the substrate, it serves as the first functional layer.
  • the first functional layer prepared in this way may include at least one polymer layer dispersed with dielectric particles.
  • the main steps of single-layer or multi-layer coating or solution film formation can include: unwinding ⁇ surface treatment (surface treatment is mainly for dust removal and corona, which is used to maintain the cleanliness of the substrate and improve adhesion) ⁇ coating ⁇ drying ⁇ Rewinding.
  • the coating is to coat a mixture of polymer and dielectric particles on the substrate.
  • disposing the second functional layer on the first surface of the first functional layer may specifically include:
  • the second functional layer is deposited on the second surface of the first functional layer through magnetron sputtering process, evaporation coating process, ion sputtering process, electroplating process or electron beam coating process.
  • the main steps of the magnetron sputtering process can include: vacuuming to a vacuum of 10 -2 to 10 -6 Pa ⁇ unwinding (unwinding speed is 1 to 500 m/min) ⁇ filling gas (gas is argon, Nitrogen, oxygen or air) ⁇ ion cleaning ⁇ coating in vacuum chamber (coating power is 1 ⁇ 100KW) ⁇ winding.
  • the main steps of the evaporation coating process can include: vacuuming to a vacuum of 10 -2 ⁇ 10 -6 Pa ⁇ unwinding (unwinding speed is 1 to 500 m/min) ⁇ filling gas (gas is argon, nitrogen, oxygen Or air) ⁇ ion cleaning ⁇ pre-evaporation ⁇ evaporation coating ⁇ winding.
  • the main steps of the ion sputtering process can include: vacuuming to a vacuum of 10 -2 to 10 -6 Pa ⁇ unwinding (unwinding speed is 1 to 500 m/min) ⁇ filling gas (gas is argon, nitrogen, Oxygen or air) ⁇ ion cleaning ⁇ coating (coating power is 1 ⁇ 100KW) ⁇ winding.
  • disposing an encapsulation layer outside the second functional layer may specifically include: disposing the encapsulation layer on the second functional layer or the first functional layer by bonding or coating.
  • the encapsulation layer can play the role of encapsulating and protecting the second functional layer and/or the functional layer, and at the same time can play the role of an adhesive.
  • the main components may include one or more of polyurethane pressure sensitive adhesive, acrylic pressure sensitive adhesive, epoxy resin and other materials.
  • disposing an encapsulation layer on the first surface of the first functional layer may specifically include: preparing on the second surface of the first functional layer by coating or bonding or multi-layer co-extrusion. Form a protective layer.
  • a polytetrafluoroethylene (PTFE) layer a perfluoro(ethylene propylene) copolymer (FEP) layer, a polyperfluoroalkoxy resin (PFA) layer, and a polychlorotrifluoroethylene (PTFE) layer can be applied by coating.
  • PTFE polytetrafluoroethylene
  • FEP perfluoro(ethylene propylene) copolymer
  • PFA polyperfluoroalkoxy resin
  • PTFE polychlorotrifluoroethylene
  • PCTFE ethylene-chlorotrifluoroethylene copolymer
  • ECTFE ethylene-chlorotrifluoroethylene copolymer
  • ETFE ethylene-tetrafluoroethylene copolymer
  • PVDF polyvinylidene fluoride
  • PVF polyvinyl fluoride
  • silicone polymerization Resistant Silicone Polymers layer Fluorosilicone Copolymer Resin layer
  • PE/PA polyethylene-nylon
  • EVOH ethylene-vinyl alcohol copolymer
  • the coating solution of the PP/PA) composite film layer is coated on the second surface of the first functional layer to form a protective layer.
  • the main steps can include: unwinding ⁇ surface treatment (surface treatment is mainly dust removal and corona, which acts as a maintenance base Material cleanliness and improve adhesion) ⁇ coating ⁇ drying ⁇ winding.
  • a polytetrafluoroethylene (PTFE) layer a perfluoro(ethylene propylene) copolymer (FEP) layer, a polyperfluoroalkoxy resin (PFA) layer, and a polychlorotrifluoroethylene (PTFE) layer can be laminated.
  • PTFE polytetrafluoroethylene
  • FEP perfluoro(ethylene propylene) copolymer
  • PFA polyperfluoroalkoxy resin
  • PTFE polychlorotrifluoroethylene
  • PCTFE ethylene-chlorotrifluoroethylene copolymer
  • ECTFE ethylene-chlorotrifluoroethylene copolymer
  • ETFE ethylene-tetrafluoroethylene copolymer
  • PVDF polyvinylidene fluoride
  • PVF polyvinyl fluoride
  • silicone polymerization Resistant Silicone Polymers layer Fluorosilicone Copolymer Resin layer, polyethylene-nylon (PE/PA) composite film layer, ethylene-vinyl alcohol copolymer (EVOH) layer or polypropylene-nylon (PP) layer /PA)
  • PE/PA polyethylene-nylon
  • EVOH ethylene-vinyl alcohol copolymer
  • PP polypropylene-nylon
  • An embodiment of the present invention also provides a composite material, which includes the radiation cooling material as described above, and is formed by a composite of the radiation cooling material and other materials.
  • the composite material may be composited by the radiation cooling material and metal, plastic, rubber, asphalt, glass products, waterproof materials, textiles or braids.
  • the metal, plastic, rubber, asphalt, glass products, waterproof material, textile or braid materials mentioned here are not exhaustive, and the composite material may also be a composite of the radiation cooling material and other materials.
  • the outdoor membrane material can be a high-strength flexible film material to prepare a composite membrane material with radiation cooling and cooling functions, which can be used in membrane structure buildings, tents, parasols, etc., which can greatly reduce outdoor The temperature level in the air-conditioning facility.
  • the radiation cooling material is combined with the waterproof membrane to prepare a waterproof membrane with radiation cooling and cooling functions, which is applied to roofs, roads, etc.
  • Radiation cooling materials are combined with glass to prepare glass with radiation cooling and cooling functions, which are used in buildings, solar photovoltaic modules and systems, automobiles, etc.
  • the prepared product has a passive radiation cooling and cooling function, and the heat is directly transferred to the radiation cooling material, and the heat is radiated from the functional layer of the radiation cooling material.
  • the present invention also provides an application method of the radiation cooling material as described above for cooling.
  • the method may include: arranging the first functional layer in the radiation cooling material to communicate with the heat dissipation body, especially in thermal communication with the surface of the heat dissipation body; transferring heat from the heat dissipation body to the radiation cooling material; The first functional layer in the radiation cooling material emits heat outward, in particular, the functional layer in the radiation cooling material radiates heat.
  • the heat radiated by the sun to the heat dissipating body or the heat in/on the heat dissipating body can be transferred to the radiation cooling material and then emitted out to achieve the effect of cooling.
  • the radiation cooling material can be set on the roof, window or external wall of a building, on a certain part of the photovoltaic module, on the roof, window or car body of an automobile, and on outdoor composite membrane materials such as membrane structure buildings, tents, etc.
  • Parasols, outdoor products such as clothing, hats, gloves, shoes, special clothing/helmets (special clothing for high-altitude and field operations), etc., ordinary greenhouses, greenhouses or smart greenhouses used in the agriculture, animal husbandry and aquaculture industries, etc., in the aerospace field Outside the heat dissipation surface of the spacecraft instrument, outside the structural parts exposed to the space environment, outside the multi-layer heat insulation components, etc., outside the transportation tools used for cold chain transportation, and outdoor cabinets such as outdoor integrated cabinets, communication cabinets, power distribution cabinets, and electrical cabinets , Containers (including ordinary containers, containers that need to maintain constant temperature and cold chain logistics), etc., storage tanks such as LNG storage tanks, windows and curtains, outdoor communication equipment such as outdoor cabinets, base stations or radio frequency units, etc.,
  • the embodiments of the present invention provide a radiation cooling material, its preparation method, its composite material and its application method.
  • the radiation cooling material of the present invention based on the basic principle of radiation cooling, has an emissivity higher than 0.8 in the infrared band (7-14 ⁇ m/8-13 ⁇ m/7-13 ⁇ m/8-14 ⁇ m), which can achieve radiation under direct sunlight during the day Cooling, and based on different application areas, in some applications that require light transmission, the dual effects of light transmission and radiant cooling can be achieved by adjusting the transmittance of the radiation cooling material.
  • the second functional layer is introduced to make the reflectance of this material in the solar radiation band (0.25-2.5 ⁇ m/0.25-3 ⁇ m/0.3-2.5 ⁇ m/0.3-3 ⁇ m) as high as possible, and in the infrared band (7-14 ⁇ m) /8-13 ⁇ m/7-13 ⁇ m/8-14 ⁇ m) emissivity is also as high as possible, so the radiation cooling effect is better.
  • the radiation cooling material of the present invention through thermal communication with the surface of the heat dissipation body, can emit the heat in the heat dissipation body through the atmospheric window in the manner of infrared radiation, and can effectively reduce the temperature of the heat dissipation body without consuming additional energy.
  • the radiation cooling material of the present invention has a wide range of applications, including construction, photovoltaic modules and systems, automobiles, outdoor supplies, agriculture, animal husbandry and aquaculture, aerospace, cold chain transportation, outdoor tanks, textile industry, outdoor communication equipment, industry Equipment, public facilities, cooling water system, energy system (such as: air conditioning/refrigeration/heating system combination), energy-saving equipment, etc., as well as outdoor equipment and facilities that require cooling or heat dissipation.
  • the radiation cooling material can be applied to construction fields including industrial buildings, commercial buildings, residential buildings and public buildings.
  • the radiation cooling material can be applied to industrial equipment, such as outdoor power distribution cabinets.
  • the radiation cooling material can be applied to public facilities, such as street lamps and their radiators, toilet roof walls, and the road surface of stadiums.
  • the radiation cooling material can be applied to outdoor equipment and facilities that require cooling or heat dissipation.
  • Reflective radiation cooling materials C (0.25 ⁇ 2.5) are pasted on the outside of the roof and four walls. The ⁇ m reflectance is 90.2%, and the 7-14 ⁇ m emissivity is 92.2%).
  • the outdoor exhibition room pasted with reflective radiation cooling materials is defined as exhibition room A.
  • a thermocouple with a data logger is used to measure and record 9 test points on the surface and inside of exhibition room A for 24 hours in a day The temperature changes inside.
  • Show room B use a thermocouple with a data logger to measure and record the temperature changes of 9 test points on the surface and inside of show room B in the same day and time period as show room A.
  • the distribution of test points in the display room A and the display room B is the same, as shown in Figure 8a and Figure 8b.
  • A1 is the test point of the lower surface temperature of the radiation cooling material at the middle position of the roof of the display house A
  • A6 is the test point of the lower surface temperature of the radiation cooling material at the middle position of the outer surface of the east wall of the display house
  • a A7 is the test point at the middle of the outer surface of the west wall of display house A
  • A8 is the middle position of the outer surface of the south wall of display house A
  • A9 is the test point of the lower surface temperature of the radiation cooling material at the middle of the outer surface of the north wall of the display room A
  • A2, A3, A4, A5 are the same vertical line perpendicular to the ground in the display room A , Test points for air temperature at different heights from the ground. As shown in Figure 8b, the outdoor ambient temperature was also tested.
  • B1, B6, B7, B8, and B9 are the middle position of the outer surface of the roof of the display house B, the middle position of the outer surface of the east wall, the middle position of the outer surface of the west wall, and the south.
  • B2, B3, B4, B5 are the same vertical line perpendicular to the ground in the display room B, and different heights from the ground Test point for air temperature.
  • FIG 8c the temperature measurement point curve diagram of different positions on the surface of outdoor and display house A. It can be seen from Figure 8c that when the radiant cooling material is pasted on the outer surface of the display room A, the temperature of the outer surface of the display room A and the lower surface of the radiant cooling material (including the roof and the four directions of south, east, north and west) are lower than the outdoor environment temperature. The highest drop is about 10°C.
  • the temperature of the outer surface (including the roof and the four directions of southeast, southeast, northwest) of the display room B without radiation cooling materials is about 30°C higher than the outdoor temperature. It can be seen from Fig. 8c and Fig. 8e that the surface temperature of the display room A with the radiation cooling material is about 37°C lower than that of the display room B without the radiation cooling material.
  • the application of radiation cooling materials in the solar photovoltaic field can solve the problem of excessively high working temperature of solar cells and improve the photoelectric conversion rate of solar photovoltaic modules.
  • a transmissive radiation cooling material A (visible light transmittance 91.2%, 8-13 ⁇ m infrared emissivity 93.1%) is arranged on the outer surface of the front glass of the photovoltaic module.
  • the outer surface of the front glass of the photovoltaic module is not treated in any way.
  • Example 2-1 and Comparative Example 2-2 Test the temperature and output power of Example 2-1 and Comparative Example 2-2 in the same place at different times on the same day.
  • the test component is a P-type monocrystalline silicon component. A typical day in August is selected for the test.
  • the test site is at North Latitude 29 Near °, the temperature measurement point is placed in the middle of the bottom of the module backplane, and is not affected by light.
  • the test data is shown in the following table:
  • radiation cooling materials When radiation cooling materials are used in the automotive field, they have the following application methods: 1 directly install the radiation cooling materials on the roof, sunroof, body or body glass of the car; 2 combine the radiation cooling materials with the original The components are combined to prepare components with radiant cooling function. For example, the skylight is made into a skylight with radiation cooling function; the glass is made into glass with a radiation cooling function.
  • Existing GAC Trumpchi GS8 car C has a transmissive radiation cooling material A attached to the outside of the glass (transparent radiation cooling material has a transmittance of 91.2% and an average emissivity of 7-14 ⁇ m is 92.2%), inside the car Set 5 temperature measuring points, measuring point C1: front seat shoulder high air temperature; measuring point C2: middle seat shoulder high air temperature; measuring point C3: rear seat shoulder high air temperature; measuring point C4: inside the top of the front body Surface temperature; measuring point C5: the inner surface temperature of the top of the middle body.
  • the temperature data is tested every 30min, the test duration is 24h, and the test result is shown in Figure 9b.
  • Figure 9a is a schematic diagram of the temperature measurement points in cars C and D.
  • Figure 9b is the temperature curve of the temperature measurement point in the car C.
  • Figure 9c is the temperature curve diagram of the temperature measurement point in the car D.
  • Figure 9d is a graph of the temperature difference between the temperature measurement points in the same position in the cars C and D.
  • the temperature of the five temperature measurement points of car C with the transmissive radiant refrigeration material is lower than the temperature of the corresponding five temperature measurement points of car D.
  • the maximum temperature difference between measuring points C1 and D1 can reach 9°C
  • the maximum temperature difference between measuring points C2 and D2 can reach 10°C
  • the maximum temperature difference between measuring points C3 and D3 can reach 9°C
  • the maximum temperature difference between measuring points C4 and D4 can reach 18°C
  • the maximum temperature difference between C5 and D5 can reach 13°C. It shows that the application of radiation cooling materials to automobile glass has a certain cooling effect on the interior space of the car, and the cooling effect is significant.
  • 1Radiant refrigeration materials are used in automobiles, which can greatly reduce the temperature of the roof, sunroof, body or body glass and other parts and the interior of the car, solve the problem of parking heating under the sun exposure, thereby prolonging the life and safety of the car, and increasing the comfort of the car ;
  • 2Radiant refrigeration materials used in automobiles can achieve a certain energy saving effect, reduce the energy consumption of automobile air conditioning, extend the cruising range, and reduce CO 2 emissions.
  • radiant cooling technology When radiant cooling technology is applied to the field of curtains, it has the following application methods: 1Attach a film or paint with radiant cooling function to the curtain; 2Combine radiant cooling technology with common curtain raw materials on the market to prepare a radiant Cooling curtains.
  • Coat the reflective radiation cooling material C (with a reflectivity of 90.2% and an infrared emissivity of 93.1% at 8-13 ⁇ m) in the form of paint on the surface of the roller blind E, and install the roller blind E on the XXX model car 1 In the sunroof, the coating surface faces the sunroof, and the temperature changes at the three temperature measuring points E1, E2, E3 in the car 1 with the roller shutter E are tested.
  • roller blind F of the same size, material and style as roller blind E, without any treatment on the surface of roller blind F, install roller blind F in the sunroof of car 2 of the same model as car 1, test and install the roller blind The temperature changes of F1, F2, F3, 3 temperature measurement points in F's car 2.
  • the temperature measuring points E1, E2, and E3 are respectively: the inner surface of the car sunroof, the surface of the roller shutter (toward the sunroof), and the indoor air measuring point; F1, F2, F3 are the same positions corresponding to E1, E2, E3 3 temperature measuring points.
  • Fig. 10a is a schematic diagram of temperature measurement points in the car 1 with the roller blind E and the car 2 with the roller blind F.
  • Fig. 10b is a graph of temperature measurement points in the car 1 with roller blind E and the car 2 with roller blind F.
  • Fig. 10c is a graph of the temperature difference between the car 1 with the roller blind E and the car 2 with the roller blind F at the same location.
  • the surface temperature of the roller blind E coated with radiant refrigeration material can be reduced by 35°C at most relative to the surface temperature of the roller blind F.
  • roller blind coated with radiant refrigeration material can reduce the air temperature in car 1 by up to 15°C relative to the air temperature in car 2.
  • the temperature difference between car 1 and car 2 is proportional to the temperature inside the car. The higher the temperature, the greater the temperature difference.
  • Combining radiation cooling materials with agricultural, animal husbandry and aquaculture greenhouses can reduce the damage of high temperature in summer and tropical areas to crops, increase yield and quality, reduce the incidence of diseases caused by high temperature in livestock, increase the slaughter rate, and have high comprehensive economic benefits.
  • the principle is that the heat in the greenhouse is continuously transferred to the outer space (-270°C) through the atmospheric window in the form of infrared radiation through the radiation cooling material.
  • the electromagnetic wave radiation wavelength is adjusted to increase the infrared emissivity and enhance the heat radiation efficiency.
  • the use of radiation cooling materials in agricultural greenhouses 1 It can ensure high transmittance in the visible light range to meet the sufficient sunlight required for the growth of the agriculture, animal husbandry and aquatic industries; 2 Reduce the ultraviolet transmittance and reduce the harm of ultraviolet rays to the agriculture, animal husbandry and aquatic industries; 3Reduce the temperature in the greenhouse to promote the growth of agriculture, animal husbandry and aquaculture.
  • the transmittance of the transparent radiation cooling material is 91.2%, and the average infrared emissivity of 8-10 ⁇ m is 93.8%.
  • Figure 11a is a schematic diagram of temperature measurement points in greenhouses G and H.
  • G1, G2, and G3 are the inner surface of the glass on the south side of the simulated greenhouse G, the air at the center of the glass greenhouse, and the temperature measurement points on the top inner surface of the glass greenhouse; H1, H2, and H3 are the same as the simulated greenhouse G The temperature measurement point at the corresponding location;
  • Figure 11b is the temperature curve diagram of the temperature measurement points in the greenhouse G and H.
  • Figure 11c is a graph of the temperature difference between the temperature measurement points in the greenhouse G and H at the same position.
  • the greenhouse with the transmissive radiation cooling material has obvious passive cooling effect.
  • the cooling effect is proportional to the temperature in the greenhouse. The higher the temperature in the greenhouse, the more obvious the cooling effect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)

Abstract

一种辐射降温材料及其制备方法和应用。辐射降温材料为多层结构,包括第一功能层(10),封装层(30)以及保护层(40),其结构可采取膜、薄片或涂层等形式。第一功能层(10)包括至少一层聚合物层;第一功能层(10)对波长范围为0.25-2.5μm/0.25-3μm/0.3-2.5μm/0.3-3μm的太阳辐射具有不低于0.8的透射率,且对波长范围为7-14μm/8-13μm/7-13μm/8-14μm的红外波段的辐射具有不低于0.8的发射率;封装层(30)设置于第一功能层(10)的第一面,保护层(40)设置于和第一面相对的第二面。辐射降温材料可实现在白天太阳直射下的辐射降温。通过辐射降温材料与散热主体的表面热连通,可有效降低散热主体的温度,且无需消耗额外的能源。应用领域包括建筑、光伏组件及系统、汽车、户外用品、农牧水产业、航空航天、冷链运输、室外箱柜罐、纺织、室外通讯设备、工业设备、公用设施、冷却水系统、能源系统、节能设备装置等。

Description

一种辐射降温材料及其制备方法和应用
相关申请
本申请要求2019年5月13日申请的,申请号为201910395714.X,名称为“一种辐射降温材料及其制备方法和应用”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本发明涉及材料科学技术领域,具体涉及一种辐射降温材料及其制备方法和应用。
背景技术
目前,全球变暖的趋势不断加剧,尤其在赤道附近低纬度地区,建筑物和汽车等在户外直接暴露于太阳照射下的物体,内部温度很高,需要消耗大量的能源来降温。
辐射降温是一种有效的降温方法,辐射降温利用了所有大于绝对零度的物体表面都在以电磁波的形式向外辐射能量的基本物理学原理。大气层外的外太空温度接近于绝对零度,因此外太空的温度接近绝对零度是一种“冷源”,红外辐射可将地球表面的热量传输到外太空。大量文献表明,地球的大气窗口在7-14μm波段范围对红外辐射(热辐射)是透明的。
现有的辐射降温材料应用至对透光有要求的场合时,难以兼顾透射率以及辐射制冷的效率。
发明内容
本发明旨在提供一种辐射降温材料及其制备方法和应用。
本发明提供一种辐射降温材料,所述辐射降温材料为多层结构,包括用于辐射降温的第一功能层,以及封装层和保护层,所述第一功能层包括至少一层聚合物层;所述第一功能层对波长范围为0.25-2.5μm/0.25-3μm/0.3-2.5μm/0.3-3μm的太阳辐射具有不低于0.8的透射率,对波长范围为7-14μm/8-13μm/7-13μm/8-14μm的红外波段的辐射具有不低于0.8的发射率;所述封装层设置于所述第一功能层的第一面,所述保护层设置于和第一面相对的第二面;其中,第一面是指第一功能层的任一侧的表面,第二面是与第一面相对的另一侧的表面。
在一些实施方式中,所述辐射降温材料还包括第二功能层,所述第二功能层设置于所述第一功能层的第一面,介于所述第一功能层和所述封装层之间。
本发明还提供一种辐射降温材料的制备方法,包括:
制备第一功能层,所述第一功能层对波长范围为0.25-2.5μm/0.25-3μm/0.3-2.5μm/0.3-3μm的太阳辐射具有不低于0.8的透射率,对波长范围为7-14μm/8-13μm/7-13μm/8-14μm的红外波段的辐射具有不低于0.8的发射率;
在所述第一功能层的第一面设置封装层;
在所述第一功能层的第二面设置保护层。
在制备第一功能层的步骤之后,在所述第一功能层的第二面设置保护层的步骤之前,还包括:在所述第一功能层的第一面设置第二功能层,在第二功能层的外面设置封装层的步骤。
本发明还提供一种如上所述辐射降温材料的应用方法,包括:将所述辐射降温材料设于散热主体,并使所述第一功能层与所述散热主体热连通。该应用方法中,热量从所述散热主体传递给辐射降温材料,再由所述辐射降温材料中的第一功能层向外发射热量,从而实现辐射降温。
本发明还提供一种包含所述辐射降温材料的复合材料。
可选地,所述复合材料由所述辐射降温材料与基材复合而成。该基材可为金属、塑料、橡胶、沥青、玻璃制品、防水材料、纺织物或编织物。
本发明所述辐射降温材料具有以下优点:
本发明的辐射降温材料,基于辐射降温的基本原理,当该种材料在红外波段(7-14μm/8-13μm/7-13μm/8-14μm)的发射率不低于0.8,就可以实现在白天太阳直射下的辐射降温。另外,基于对波长范围为0.25-2.5μm/0.25-3μm/0.3-2.5μm的太阳辐射具有不低于0.8的透射率,因此,此材料可实现较好的透射率,可应用至对透射率有特殊要求的领域,如阳光房等,从而实现透光和辐射制冷的双重效果。
本发明的辐射降温材料,通过与散热主体的表面进行热连通,可以把散热主体内的热量以红外辐射的方式通过大气窗口发射出去,可有效降低散热主体的温度,且无需消耗额外的能源,主要应用在需要 降温的散热主体的外表面,其应用领域广泛,包括建筑、光伏组件、汽车、户外用品、农牧水产业、航空航天、冷链运输、室外箱柜罐、纺织、室外通讯设备、工业设备、公用电气电子设施、冷却水系统、能源系统(如:空调/制冷/供暖系统)、节能设备装置等户外亟需降温或散热的设备、设施,辐射降温材料还可用于提高太阳能电池、传统电厂甚至水处理的效率。进一步地,在所述第一功能层和所述封装层之间设置第二功能层。限定该第二功能层在太阳辐射波段(0.25-2.5μm/0.25-3μm/0.3-2.5μm/0.3-3μm)的反射率为5~100%,在红外波段(7-14μm/8-13μm/7-13μm/8-14μm)的发射率不低于0.8,此第二功能层可进一步将太阳辐射进行反射。因此,更加提高了所述辐射降温材料的辐射降温效果,所述辐射降温材料在-170℃~200℃的工作温度下提供从6W/m 2~2640W/m 2的辐射制冷功率,进一步地所述辐射降温材料在20℃~200℃的工作温度下提供从388W/m 2~2640W/m 2的辐射制冷功率。
本发明所述辐射降温材料,所述封装层设置于所述第一功能层的第一面或者所述第二功能层上用于对所述第一功能层或所述第二功能层进行封装保护,防止所述第一功能层和所述第二功能层的氧化、变色、腐蚀、老化等,同时所述封装层起到胶粘剂的作用,将所述辐射降温材料固定在散热主体的表面。
所述保护层设置于与所述第一功能层的第一面相对的第二面,用于对所述第一功能层、所述第二功能层和所述封装层进行保护,尤其当所述辐射降温材料在户外使用时,需要经受严苛的气候条件的考验,本发明所述保护层由于其材料的特殊性,带有所述保护层的所述辐射降温材料耐候性好且具有优异的耐热性、耐氧化性、耐药品性、耐磨性和防腐性。
在所述第一功能层和所述第二功能层的外面分别设置所述保护层和所述封装层,对维持所述第一功能层和所述第二功能层的反射率、透射率和发射率的稳定性有很大的决定作用。
附图说明
为了更清楚地说明本发明实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1本发明实施例提供的一种透射型的辐射降温材料的结构示意图;
图2是本发明实施例提供的一种反射型/半透型的辐射降温材料的结构示意图;
图3是本发明实施例提供的一种辐射降温材料的制备方法的流程示意图;
图4是含有不同质量比的介电粒子的第一功能层中波长与发射率的关系图;
图5是第一功能层中波长与反射率和透射率关系的曲线图;
图6是不同厚度的第二功能层中波长与反射率关系的曲线图;
图7是不同厚度的第二功能层中波长与透射率关系的曲线图;
图8a是展示屋A和B的测温点图;
图8b是展示屋A和B的另一个测温点图;
图8c是室外及展示屋A表面不同位置的测温点曲线图;
图8d是展示屋A纵向不同测温点曲线图;
图8e是室外及展示屋B表面不同位置的测温点曲线图;
图8f是展示屋B纵向不同测温点曲线图;
图9a是汽车C和D内测温点的示意图;
图9b是汽车C内测温点的温度曲线图;
图9c是汽车D内测温点的温度曲线图;
图9d是汽车C和D内同样位置测温点温差的曲线图;
图10a是安装卷帘E的汽车1和安装卷帘F的汽车2内测温点示意图;
图10b是安装卷帘E的汽车1和安装卷帘F的汽车2内测温点的温度曲线图;
图10c是安装卷帘E的汽车1和安装卷帘F的汽车2内同样位置测温点温差的曲线图;
图11a是大棚G和H内测温点的示意图;
图11b是大棚G和H内测温点的温度曲线图;
图11c是大棚G和H内同样位置测温点温差的曲线图。
具体实施方式
以下将对本申请提供的永磁材料的低温稳磁处理方法作进一步说明。
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”等是用于区别不同的对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
下面通过具体实施例,分别进行详细的说明。
请参考图1和图2,本发明的一个实施例,提供一种辐射降温材料。
该辐射降温材料为多层结构,包括用于辐射降温的第一功能层10,以及封装层30和保护层40,所述第一功能层10包括至少一层聚合物层。所述第一功能层10对波长范围为0.25-2.5μm/0.25-3μm/0.3-2.5μm/0.3-3μm的太阳辐射具有不低于0.8的透射率,且对波长范围为8-13μm/7-13μm/8-14μm的红外波段的辐射具有不低于0.8的发射率。所述封装层30设置于所述第一功能层10的第一面,所述保护层40设置于和第一面相对的第二面。优选地,所述第一功能层10对波长范围为0.25-2.5μm/0.25-3μm/0.3-2.5μm/0.3-3μm的太阳辐射具有不低于0.8的透射率,且对波长范围为8-13μm/8-14μm的红外波段的辐射具有不低于0.8的发射率。
在一些实施例中,所述辐射降温材料还可包括第二功能层20,所述第二功能层20设置于所述第一功能层10的第一面,介于所述第一功能层10和所述封装层30之间。可选地,所述第二功能层20对波长范围为0.25-2.5μm/0.25-3μm/0.3-2.5μm/0.3-3μm的太阳辐射具有0~95%的透射率,对波长范围为0.25-2.5μm/0.25-3μm/0.3-2.5μm/0.3-3μm的太阳辐射具有5%~100%的反射率。优选地,所述第二功能层20对波长范围为0.25-2.5μm/0.25-3μm/0.3-2.5μm的太阳辐射具有0~95%的透射率,对波长范围为0.25-2.5μm/0.25-3μm/0.3-2.5μm的太阳辐射具有5%~100%的反射率。更优选地,所述第二功能层对波长范围为0.4-0.7μm/0.38-0.78μm/0.4-0.76μm的太阳辐射具有0~95%的透射率,对波长范围为0.4-0.7μm/0.38-0.78μm/0.4-0.76μm的太阳辐射具有5%~100%的反射率。
请参考图1,一些实施例中,所述第一功能层10的第一面设置有封装层30,第二面设置有保护层40,构成透射型的辐射降温材料。如图1所示,透射型的辐射降温材料,从上到下依次包括:保护层40、第一功能层10、封装层30。
请参考图2,另一些实施例中,所述第一功能层10的第一面设置有第二功能层20,所述第二功能层20外面设置有封装层30,第一功能层10的第二面设置有保护层40,构成反射型/半透型的辐射降温材料,其吸收率很小,几乎为0。如图2所示,反射型/半透型的辐射降温材料,从上到下依次包括:保护层40、第一功能层10、第二功能层20、封装层30。可选地,该种反射型的辐射降温材料,其对波长范围为0.25-2.5μm/0.25-3μm/0.3-2.5μm/0.3-3μm的太阳辐射的反射率不低于0.8。
可选地,该种半透型的辐射降温材料,其对波长范围为0.25-2.5μm/0.25-3μm/0.3-2.5μm/0.3-3μm的太阳辐射的透射率为1%-95%,优选为5%-95%,更优选为20%-70%。
所述辐射降温材料的结构可采取膜、薄片或涂层的形式,其第一功能层10可用来设置成与待降温的散热主体相连通。
其中,所述第一功能层至少包括聚合物层,可选地,所述聚合物层中包括聚合物和介电粒子,所述介电粒子分散于所述聚合物中。第一功能层可以仅包括聚合物,也可以包括聚合物以及分散于聚合物中的介电粒子。本文中,所述介电粒子可以是微米级粒子。
可选地,所述聚合物层可包括相互间隔设置的至少一层第一聚合物层和至少一层第二聚合物层,即包括两个聚合物层。可选地,两个聚合物层中的任一个聚合物层的聚合物内分散设置有介电粒子,或者两个聚合物层的聚合物内都分散设置有介电粒子,或者两个聚合物层的聚合物内可以均不设介电粒子。
可选地,所述聚合物层也可以包括相互间隔设置的至少一层第一聚合物层、至少一层第二聚合物层和至少一层第三聚合物层,即包括三个聚合物层。可选地,三个聚合物层中的任一个或任两个聚合物层的聚合物内分散设置有介电粒子,或者三个聚合物层的聚合物内都分散设置有介电粒子,或者三个聚合物层的聚合物内可以均不设介电粒子。
当仅包括第一聚合物层时,为单层结构;至少包括两个聚合物层时,为多层结构。多层结构中的每一个聚合物层中的成分彼此之间可以相同,也可以不同。
第一聚合物层、第二聚合物层、第三聚合物层分别用X、Y、Z表示,则聚合物层的结构可以为X、YX、YXY、YXYX、YXYXY、XYZ、YXZ、XZY、XYZXYZ等。所述Y层、Z层可以根据在层状结构中所属的位置设置成具有反射、发射、吸收、传递、耐候、耐沾污、疏水、增加上下层附着力、支撑或保护等的作用。
可选地,所述介电粒子与所述第一聚合物层的折射率之差小于0.5。优选地,所述介电粒子与所述第一聚合物层的折射率之差大于0.1小于0.5。
可选地,所述介电粒子的粒径在1μm到200μm之间,优选地,所述介电粒子的粒径在1μm到200μm之间,优选为5μm到30μm之间,更有选为10μm±2μm。
可选地,所述介电粒子的构型可以是球体、椭球体、正方体、长方体、棒状、多面体或其他不定形状等等。
可选地,所述介电粒子在所述第一功能层中所占的质量比不大于30%,例如在0.3%~30%之间。考虑到介电粒子在所述第一功能层中的质量比太小会影响第一功能层的辐射制冷效果,介电粒子在所述第一功能层中的质量比太大会影响第一功能层的透射率和成膜性,所述介电粒子在所述第一功能层中所占的质量比优选在0.1%到20%之间,更优选地,0.3%到5%。
可选地,所述介电粒子在所述第一功能层中所占的体积比不大于30%。
可选地,所述介电粒子为有机系粒子或无机系粒子或有机系粒子与无机系粒子的组合。其中,
有机系粒子为丙烯酸系树脂粒子、有机硅系树脂粒子、尼龙系树脂粒子、聚苯乙烯系树脂粒子、聚酯系树脂粒子和聚氨酯系树脂粒子中的一种或多种;无机系粒子为二氧化硅(SiO 2)、碳化硅(SiC)、氢氧化铝(Al(OH) 3)、氧化铝(Al 2O 3)、氧化锌(ZnO)、硫化钡(BaS)、硅酸镁(MgSiO 3)、硫酸钡(BaSO 4)、碳酸钙(CaCO 3)和二氧化钛(TiO 2)中的一种或多种。考虑到无机系粒子在聚合物中的分散均匀性,优选地,该无机系粒子为二氧化硅(SiO 2)、二氧化钛(TiO 2)和硅酸镁(MgSiO 3)中的一种或多种。
可选地,所述聚合物层的聚合物为热塑性聚合物、热固性聚合物、或热塑性聚合物与热固性聚合物的组合。
其中,热塑性聚合物可采用以下材料中的一种或多种:聚4-甲基-1-戊烯(TPX)、聚对苯二甲酸乙二醇酯(PET)、聚萘二甲酸乙二醇酯(PEN)、聚对苯二甲酸1,4-环己烷二甲醇酯(PCT)、聚对苯二甲酸乙二醇酯-1,4-环己烷二甲醇酯(PETG和PCTG)、聚对苯二甲酸乙二醇-醋酸酯(PCTA)、聚甲基丙烯酸甲酯(PMMA)、聚碳酸酯(PC)、丙烯腈苯乙烯共聚物(SAN)、丙烯腈-丁二烯-苯乙烯的三元共聚物(ABS)、聚氯乙烯(PVC)、聚丙烯(PP)、聚乙烯(PE)、三元乙丙橡胶(EPDM)、聚烯烃弹性体(POE)、聚酰胺(PA)、乙烯-醋酸乙烯共聚物(EVA)、乙烯-丙烯酸甲酯共聚物(EMA)聚甲基丙烯酸羟乙酯(HEMA)、聚四氟乙烯(PTFE)、全氟(乙烯丙烯)共聚物(FEP)、聚全氟烷氧基树脂(PFA)、聚三氟氯乙烯(PCTFE)、乙烯-三氟氯乙烯共聚物(ECTFE)、乙烯-四氟乙烯共聚物(ETFE)、聚偏氟乙烯(PVDF)和聚氟乙烯(PVF)、热塑性聚氨酯(TPU)、聚苯乙烯(PS)。
其中,热固性聚合物可采用以下材料中的一种或多种:聚醚砜衍生共聚物(PES)、双烯丙基二甘醇碳酸酯聚合物(CR-39)、双组分聚氨酯(PU)。
进一步可选地,聚合物层的材料可以为PVC、PMMA、PC、PS、EVA、POE、PP、PE、TPX、PETG、PCTG、PET中的一种或多种的组合。
可选地,聚合物层的颜色可以是透明的。
进一步可选地,聚合物层的材料可以为聚4-甲基-1-戊烯(TPX)、聚对苯二甲酸乙二醇酯(PET)、聚萘二甲酸乙二醇酯(PEN)、聚对苯二甲酸1,4-环己烷二甲醇酯(PCT)、聚对苯二甲酸乙二醇酯-1,4-环己烷二甲醇酯(PETG和PCTG)、聚对苯二甲酸乙二醇-醋酸酯(PCTA)、聚甲基丙烯酸甲酯(PMMA)、聚碳酸酯 (PC)中的一种或多种的混合物。
从成本、工艺及结构的稳定性方面考虑,优选地,所述聚合物层的层状结构为YXY,这种特殊的层状结构,赋予了聚合物层性能的稳定,其中的Y层还起到了支撑及保护X层的作用。即所述聚合物层从上到下包括第二聚合物层、第一聚合物层、第二聚合物层,该第一聚合物层的材料为PET/PEN,第一聚合物层的厚度为50μm~150μm,第二聚合物层的材料为PET/PEN,第二聚合物层的厚度为5μm~20μm。
从降低成本及优化结构方面考虑,更优选地,所述聚合物层的层状结构可选为YX,即包括相互间隔设置的第一聚合物层和第二聚合物层,该第一聚合物层的材料为PET/PEN,第一聚合物层的厚度为30μm~60μm,第二聚合物层的材料为PET/PEN,第二聚合物层的厚度为5μm~10μm。
可选地,所述封装层的主要成分包括聚氨酯类胶粘剂、丙烯酸类胶粘剂、环氧树脂中的至少一种,优选聚氨酯类压敏胶和丙烯酸类压敏胶,更优选为双组分聚氨酯类压敏胶、丙烯酸类压敏胶,用于对所述第一功能层或所述第二功能层进行封装保护,同时起到胶粘剂的作用。也就是说,封装层具有保护第二功能层和/或第一功能层和粘结的双重作用。
所述封装层可以是通过贴合的方式或者涂布的方式设置在第二功能层或功能层上。
可选地,所述第二功能层包括至少一层金属层,或至少一层陶瓷材料层,或至少一层金属层和至少一层陶瓷材料层的组合。金属层和陶瓷材料层的混合设置可以同时具有提高反射率和防止金属层被氧化的作用。
可选地,所述金属层的材料选自银、铝、铬、钛、铜或镍的金属层,或包括银、铝、铬、钛、铜和镍中至少一种元素的金属合金层。
可选地,所述陶瓷材料层的材料包括氧化铝、氧化钛、氧化硅、氧化铌、氧化锌、氧化铟、氧化锡、氮化硅、氮化钛、硅化铝、硫化锌、硫化铟、硫化锡、氟化镁、氟化钙中的一种或多种。
一些实施例中,第二功能层的结构(从上到下)可包括:银、铝、银+铝、银+硅、银+钛、铝+硅、铝+钛、银+铝+钛、银+铝+硅、银+氧化硅、铝+氧化硅、氧化硅+银+硅、氧化硅+铝+硅、氧化硅+银、氧化硅+铝、氧化硅+银+铝+氮化硅、银+硅铝合金、氧化硅+银+氧化硅+银+氧化硅、氧化硅+银+氧化铝+铝+硅铝合金等。
可选地,对于反射型的辐射降温材料,第二功能层的厚度可以在1nm以上调节,优选5nm到500nm之间,更优选为50nm到200nm之间。
优选方案中,所述第二功能层至少包括一层金属层,该金属层的材料为铝、银或钛,可选地,金属层至少一个面设置有至少一层陶瓷材料层。陶瓷材料优选为类金属氧化物层,比如:氧化硅、氮化硅或氟化镁,陶瓷材料层可以同时起到提高反射率和耐候耐磨耐氧化防腐的功能。
进一步,所述保护层包括有机氟聚合物(Organofluorine Polymer)层、有机硅聚合物(Resistant Silicone Polymers)层、氟硅共聚物树脂(Fluorosilicone Copolymer Resin)层、聚乙烯-尼龙(PE/PA)复合膜层、乙烯-乙烯醇共聚物(EVOH)层、聚丙烯-尼龙(PP/PA)复合膜层中的一种或多种。所述保护层材料因具有优良的光学性能、耐候性能和阻隔性能,进而具有优异的透明度、耐热性、耐氧化性、耐药品性、和防腐性。所述有机氟聚合物层包括以下材料中的一种或多种:聚四氟乙烯(PTFE)层、全氟(乙烯丙烯)共聚物(FEP)层、聚全氟烷氧基树脂(PFA)层、聚三氟氯乙烯(PCTFE)层、乙烯-三氟氯乙烯共聚物(ECTFE)层、乙烯-四氟乙烯共聚物(ETFE)层、聚偏氟乙烯(PVDF)层和聚氟乙烯(PVF)层。考虑到气候条件的多样化及使用场所的复杂化,选择耐热性、耐氧化性、耐药品性和防腐性更好的材料,优选地,所述有机氟聚合物层的材料为聚四氟乙烯(PTFE)、聚偏氟乙烯(PVDF)和乙烯-三氟氯乙烯共聚物(ECTFE)中的一种或多种。
可选地,保护层包括聚四氟乙烯(PTFE)层、聚偏氟乙烯(PVDF)层、聚氟乙烯(PVF)层、乙烯-四氟乙烯共聚物(ETFE)层、乙烯-三氟氯乙烯共聚物(ECTFE)层、聚乙烯-尼龙(PE/PA)复合膜层、乙烯-乙烯醇共聚物(PE/PA or EVOH)层、聚丙烯-尼龙(PP/PA)复合膜层。
可选地,所述封装层的厚度在1μm到500μm之间,优选5μm到100μm之间。
可选地,所述保护层的厚度在1μm到300μm之间,优选5~150μm或者2~50μm。
可选地,所述第一功能层的厚度在5μm到500μm之间,优选10μm到200μm之间。
当所述辐射降温材料包含第二功能层时,根据辐射降温材料对透明性的不同要求,所述第二功能层的厚度可在1nm以上调节,例如在5nm到500nm之间。根据第二功能层的厚度及材质的不同,辐射降温材料对于太阳光的透射率可以实现在0~95%之间调整,形成反射型/半透型的辐射降温材料。
进一步地,本发明实施例的辐射降温材料,可在-170℃~200℃的工作温度下提供从6W/m 2~2640W/m 2的辐射降温制冷功率。
进一步地,本发明实施例的辐射降温材料,可以与金属、塑料、橡胶、沥青、玻璃制品、防水材料、纺织物、编织物等材料复合而形成复合材料。
如上,本发明实施例公开了一种辐射降温材料,该材料可以薄膜的方式存在,即,辐射降温薄膜;也可以以薄片或涂层等形式存在。
根据工作方式的不同,该辐射降温材料可分为反射型辐射降温薄膜、透射型的辐射降温薄膜和半透型的辐射降温薄膜。下面分别进一步说明:
1.1反射型的辐射降温薄膜
反射型的辐射降温薄膜同时具有反射和辐射降温制冷的功能,反射型的辐射降温薄膜包括第一功能层,还包括与所述第一功能层相接触的用于反射太阳光的第二功能层,该第二功能层包括金属层、金属衬底和/或陶瓷材料层。
第一功能层的特征在于对波长范围为7-14μm/8-13μm/7-13μm/8-14μm的红外波段的红外光发射率为0.8至1.0,更优选为0.9-1.0。反射型的辐射降温薄膜对波长范围0.25-2.5μm/0.25-3μm/0.3-2.5μm/0.3-3μm的太阳光的反射率为0.8至1,优选为0.9至1。
1.2透射型的辐射降温薄膜
透射型的辐射降温薄膜同时具有透光和辐射降温制冷的功能,透射型的辐射降温薄膜包括第一功能层。
第一功能层的特征在于对波长范围为7-14μm/8-13μm/7-13μm/8-14μm的红外波段的红外光发射率为0.8至1.0,优选为0.9-1.0。
透射型的辐射降温薄膜对波长范围为0.25-2.5μm/0.25-3μm/0.3-2.5μm/0.3-3μm的太阳光的吸收率为0至0.3。
1.3半透型的辐射降温薄膜
半透型的辐射降温薄膜同时具有透光、反射和辐射降温制冷的功能,半透型的辐射降温薄膜包括第一功能层,还包括与所述第一功能层相接触的用于反射太阳光的第二功能层,该第二功能层包括金属层、金属衬底和/或陶瓷材料层。
第一功能层的特征在于对波长范围为7-14μm/8-13μm/7-13μm/8-14μm的红外波段的红外光发射率为0.8至1.0,优选为0.9-1.0。
半透型的辐射降温薄膜对于太阳能的透射率可以实现在1%-95%之间调整,优选为5%-95%,更优选为20%-70%。
下面,结合若干具体实施例,具体说明不同类型的辐射降温材料中,不同材料层的参数变化与性能的关系。
本发明提供一个实施例,该辐射降温材料包括第一功能层、封装层和保护层。所述封装层设置于所述第一功能层的第一面,所述保护层设置于和第一面相对的第二面。所述第一功能层包括一个聚合物层。该实施例中,第一功能层的材料为PET,厚度为150μm,介电粒子为SiO 2,介电粒子的粒径为6μm。该封装层的材料为双组分聚氨酯类压敏胶;该保护层的材料为聚偏氟乙烯(PVDF)。图4为该实施例中,含有不同质量比的介电粒子的第一功能层中波长与发射率的关系图。SiO 2在第一功能层中所占的质量比分别为2%、4%、6%和8%时,含有不同质量比SiO 2的第一功能层中波长与发射率的关系如图4所示,由图4可得知,含有SiO 2的第一功能层,较多质量比的SiO 2的含量增加了7~14μm红外线的发射率,而在太阳光谱中没有显著的吸收效果。请参考图5,是本该实施例中第一功能层中波长与反射率和透射率关系的曲线图(其中介电粒子SiO 2在第一功能层中所占的质量比为4%)。由图5可得知,第一功能层在300~2500nm的透射率平均在90%左右,反射率平均在10%左右,在太阳光谱中没有显著的吸收效果。此时,将此实施例中介电粒子SiO 2在第一功能层中所占的质量比为4%的材料定义为透射型的辐射降温材料A。
本发明还提供一个实施例,该辐射降温材料包括第一功能层、第二功能层、封装层和保护层。所述第二功能层设置于所述第一功能层的第一面,所述保护层设置于和第一面相对的第二面。所述封装层设置于所述第二功能层。所述第一功能层包括一个聚合物层。该实施例中,第一功能层的材料为PET,厚度为150μm,介电粒子为SiO 2,介电粒子的粒径为6μm,介电粒子SiO 2在第一功能层中所占的质量比为4%。所述封装层的材料为丙烯酸类压敏胶;所述保护层的材料为氟硅共聚物树脂。请参考图6,是该实施例中,不同厚度的第二功能层中波长与反射率关系的曲线图。所述第二功能层的结构(从上到下)为铝+氧化硅,铝层和氧化硅层的厚度比为1:1,当所述第二功能层的厚度为30nm、50nm、80nm、100nm、150nm时,第二功能层中波长与反射率关系的曲线图如图6所示,第二功能层在300~2500nm的反射率随着第二功能层厚度的增加而增加。请参考图7,是该实施例中,不同厚度的第二功能层中波长与透射率关系的曲线图。当第二功能层的厚度为30nm、50nm时,第二功能层中波长与透射率关系的曲线图如图7所示,第二功能层在300~2500nm的透射率随着第二功能层厚度的增加而减小。其中第二功能层的厚度为30nm、50nm时由于其透射率为5%以上,定义为半透型的辐射降温材料。其中该实施例第二功能层的厚度为30nm作为半透型的辐射降温材料B。当选择性功能层的厚度为80nm、100nm、150nm时由于其透射率为5%以下,定义为反射型的辐射降温材料。其中该实施例第二功能层的厚度为80nm作为反射型的辐射降温材料C。
本发明还提供以下实施例:
本发明还提供另一实施例,该辐射降温材料包括第一功能层、封装层和保护层。所述第一功能层包括两个聚合物层。所述封装层设置于所述第一功能层的第一面,所述保护层设置于和第一面相对的第二面。该实施例中,第一功能层的材料为PEN,厚度为100μm,介电粒子为有机硅系树脂粒子,介电粒子的粒径为10μm,介电粒子有机硅系树脂粒子在第一功能层中所占的质量比为5%。该封装层的材料为双组分聚氨酯类压敏胶;该保护层的材料为乙烯-乙烯醇共聚物(EVOH)。所述第一功能层对波长范围为0.25-2.5μm/0.25-3μm/0.3-2.5μm/0.3-3μm的太阳光的透射率为92%,且对波长范围为7-14μm/8-13μm/7-13μm/8-14μm的红外波段的红外线的发射率为0.94。
本发明还提供另一实施例,该辐射降温材料包括第一功能层、封装层和保护层。所述第一功能层包括两个聚合物层。所述封装层设置于所述第一功能层的第一面,所述保护层设置于和第一面相对的第二面。该实施例中,第一功能层的材料为PC,厚度为80μm,介电粒子为MgSiO 3,介电粒子的粒径为11μm,介电粒子MgSiO 3在第一功能层中所占的质量比为9%。该封装层的材料为双组分聚氨酯类压敏胶;该保护层的材料为有机硅聚合物。所述第一功能层对波长范围为0.25-2.5μm/0.25-3μm/0.3-2.5μm/0.3-3μm的太阳光的透射率为90%,且对波长范围为7-14μm/8-13μm/7-13μm/8-14μm的红外波段的红外线的发射率为0.91。
本发明还提供另一实施例,该辐射降温材料包括第一功能层、第二功能层、封装层和保护层。所述第二功能层设置于所述第一功能层的第一面,所述保护层设置于和第一面相对的第二面。所述封装层设置于所述第二功能层上。所述第一功能层包括两层聚合物层。该实施例中,第一功能层的材料为PMMA,厚度为70μm,介电粒子为尼龙系树脂粒子,介电粒子的粒径为5μm,介电粒子尼龙系树脂粒子在第一功能层中所占的质量比为4%。所述第二功能层为氟化镁,所述第二功能层的厚度为20nm,该封装层的材料为环氧树脂;该保护层的材料为聚乙烯-尼龙(PE/PA)复合膜。所述辐射降温材料对波长范围为0.25-2.5μm/0.25-3μm/0.3-2.5μm/0.3-3μm的太阳光的透射率为55%,且对波长范围为7-14μm/8-13μm/7-13μm/8-14μm的红外波段的红外光的发射率为0.93。
本发明还提供另一实施例,该辐射降温材料包括第一功能层、第二功能层、封装层和保护层。所述第二功能层设置于所述第一功能层的第一面,所述保护层设置于和第一面相对的第二面。所述封装层设置于所述第二功能层上。所述第一功能层包括两层聚合物层。该实施例中,第一功能层的材料为PETG/PCTG,厚度为35μm,介电粒子为聚苯乙烯系树脂粒子,介电粒子的粒径为15μm,介电粒子聚苯乙烯系树脂粒子在第一功能层中所占的质量比为10%。所述第二功能层为氮化硅,所述第二功能层的厚度为25nm,该封装层的材料为丙烯酸类压敏胶;该保护层的材料为聚乙烯-尼龙(PE/PA)复合膜。所述辐射降温材料对波长范围为0.25-2.5μm/0.25-3μm/0.3-2.5μm/0.3-3μm的太阳光的透射率为40%,且对波长范围为7-14μm/8-13μm/7-13μm/8-14μm的红外波段的红外光的发射率为0.92。
请参考图3,本发明的一个实施例,还提供一种如上文所述辐射降温材料的制备方法。该辐射降温材料可分为反射型的辐射降温薄膜、半透型的辐射降温薄膜和透射型的辐射降温薄膜。
对于透射型的辐射降温薄膜,制备方法可包括:
制备第一功能层,所述第一功能层包括至少一层聚合物层,所述第一功能层对波长范围为0.25-2.5μm/0.25-3μm/0.3-2.5μm/0.3-3μm的太阳辐射具有不低于0.8的透射率,对波长范围为7-14μm/8-13μm/7-13μm/8-14μm的红外波段的辐射具有不低于0.8的发射率;
在所述第一功能层的第一面设置封装层;
在所述第一功能层的第二面设置保护层。
对于半透型的辐射降温薄膜,制备方法可包括:
制备第一功能层,所述第一功能层包括至少一层聚合物层,所述第一功能层对波长范围为0.25-2.5μm/0.25-3μm/0.3-2.5μm/0.3-3μm的太阳辐射具有不低于0.8的透射率,对波长范围为7-14μm/8-13μm/7-13μm/8-14μm的红外波段的辐射具有不低于0.8的发射率;
在所述第一功能层的第一面设置第二功能层,在第二功能层的外面设置封装层;
在所述第一功能层的第二面设置保护层。
也就是说,可以根据辐射降温材料的透明性要求,选择或不选择设置第二功能层的步骤。不设置第二功能层,可以提高材料的透明性,制成透射型的辐射降温材料,此时要求透射型的辐射降温材料对波长范围为0.25-2.5μm/0.25-3μm/0.3-2.5μm/0.3-3μm的太阳辐射的透射率不低于0.8。设置第二功能层,可以提高材料的反射性,制成反射型/半透型的辐射降温材料,此时对于反射型的辐射降温材料要求第二功能层的材料对波长范围为0.25-2.5μm/0.25-3μm/0.3-2.5μm/0.3-3μm的太阳辐射的反射率不低于0.8,对于半透型的辐射降温材料要求第二功能层的材料对波长范围为0.25-2.5μm/0.25-3μm/0.3-2.5μm/0.3-3μm的太阳辐射的透射率为1%-95%,优选为5%-95%,更优选为20%-70%。
可选地,制备第一功能层包括:将介电粒子分散于聚合物中形成所述聚合物层。其中,所述介电粒子可以采用无机系粒子或有机系粒子或两者的组合。
一些实施例中,制备第一功能层可具体包括:
采用单层挤塑、多层共挤、熔融成膜或双向拉伸的方式,将聚合物与介电粒子加工成层状结构的聚合物层,作为第一功能层。
其中,单层挤塑或多层共挤或熔融成膜的制备方式,其制备过程可包括:聚合物原料输送→50~150℃干燥→220~280℃熔融挤出→流延→冷却(冷辊温度设置为20~150℃)→牵引→收卷制得。
所述熔融成膜方法的主要步骤包括流延和吹膜工艺。吹膜工艺可包括上吹风冷工艺或下吹水冷工艺。
双向拉伸的制备方式,其制备过程可包括:原料输送→150~180℃干燥→250~280℃熔融挤出→流延→冷却(冷辊温度设置为15~30℃)→纵向拉伸(红外线加热温度为200~300℃,纵向拉伸比为1.5:1~4.5:1)→横向拉伸(定型温度为150~190℃,横向拉伸比为1.5:1~4.5:1)→牵引→收卷制得。
双向拉伸的制备方式也可以纵向拉伸和横向拉伸同时进行,一步完成。
可选地,制备第一功能层还包括:对制成的聚合物层进行单层或多层涂覆或溶液成膜。
即,可采用单层挤塑或多层共挤或熔融成膜或双向拉伸+单层或多层涂覆或溶液成膜的方式,将准备好的聚合物加工成聚合物层,作为第一功能层的基材;然后将所述聚合物和所述介电粒子混合形成内部分散有介电粒子的聚合物层;再通过单层或多层涂覆或溶液成膜的方式,涂覆在所述基材上,作为第一功能层。采用该种方式制备的第一功能层,可包括至少一层分散有介电粒子的聚合物层。
单层或多层涂覆或溶液成膜的主要步骤可包括:放卷→表面处理(表面处理主要为除尘、电晕,作用为保持基材清洁度和提高粘接力)→涂布→干燥→收卷。所说的涂布是在基材上涂布聚合物与介电粒子的混合物。
一些实施例中,在所述第一功能层的第一面设置第二功能层可具体包括:
通过磁控溅射工艺、蒸发镀膜工艺、离子溅射工艺、电镀工艺或电子束镀膜工艺,将第二功能层沉积在第一功能层的第二面。
其中磁控溅射工艺的主要步骤可包括:抽真空至真空度为10 -2~10 -6Pa→放卷(放卷速度为1~500m/min)→充入气体(气体为氩气、氮气、氧气或空气)→离子清洁→真空室镀膜(镀膜功率为1~100KW)→收卷。
蒸发镀膜工艺的主要步骤可包括:抽真空至真空度为10 -2~10 -6Pa→放卷(放卷速度为1~500m/min)→充入气体(气体为氩气、氮气、氧气或空气)→离子清洁→预蒸发→蒸发镀膜→收卷。
离子溅射工艺的主要步骤可包括:抽真空至真空度为10 -2~10 -6Pa→放卷(放卷速度为1~500m/min)→充入气体(气体为氩气、氮气、氧气或空气)→离子清洁→镀膜(镀膜功率为1~100KW)→收卷。
一些实施例中,在第二功能层的外面设置封装层可具体包括:通过贴合的方式或者通过涂布的方式,将封装层设置在第二功能层或第一功能层上。封装层可以起到对第二功能层和/或功能层进行封装保护的作用,同时可起到胶粘剂的作用。其主要成分可包括聚氨酯类压敏胶、丙烯酸类压敏胶、环氧树脂等材料中的一种或多种。
一些实施例中,在所述第一功能层的第一面设置封装层可具体包括:通过涂布或贴合或多层共挤的方式,在所述第一功能层的第二面制备、形成保护层。
可选地,可以通过涂布的方式将聚四氟乙烯(PTFE)层、全氟(乙烯丙烯)共聚物(FEP)层、聚全氟烷氧基树脂(PFA)层、聚三氟氯乙烯(PCTFE)层、乙烯-三氟氯乙烯共聚物(ECTFE)层、乙烯-四氟乙烯共聚物(ETFE)层、聚偏氟乙烯(PVDF)层、聚氟乙烯(PVF)层、有机硅聚合物(Resistant Silicone Polymers)层、氟硅共聚物树脂(Fluorosilicone Copolymer Resin)层、聚乙烯-尼龙(PE/PA)复合膜层聚、乙烯-乙烯醇共聚物(EVOH)层、聚丙烯-尼龙(PP/PA)复合膜层的涂布液涂在第一功能层的第二面,形成保护层,主要步骤可包括:放卷→表面处理(表面处理主要为除尘、电晕,作用为保持基材清洁度和提高粘接力)→涂布→干燥→收卷。
可选地,可以通过贴合的方式将聚四氟乙烯(PTFE)层、全氟(乙烯丙烯)共聚物(FEP)层、聚全氟烷氧基树脂(PFA)层、聚三氟氯乙烯(PCTFE)层、乙烯-三氟氯乙烯共聚物(ECTFE)层、乙烯-四氟乙烯共聚物(ETFE)层、聚偏氟乙烯(PVDF)层、聚氟乙烯(PVF)层、有机硅聚合物(Resistant Silicone Polymers)层、氟硅共聚物树脂(Fluorosilicone Copolymer Resin)层、聚乙烯-尼龙(PE/PA)复合膜层、乙烯-乙烯醇共聚物(EVOH)层或聚丙烯-尼龙(PP/PA)复合膜层设置在第一功能层的第二面,形成保护层中。
可选地,将聚四氟乙烯(PTFE)层、全氟(乙烯丙烯)共聚物(FEP)层、聚全氟烷氧基树脂(PFA)层、聚三氟氯乙烯(PCTFE)层、乙烯-三氟氯乙烯共聚物(ECTFE)层、乙烯-四氟乙烯共聚物(ETFE)层、聚偏氟乙烯(PVDF)层、聚氟乙烯(PVF)层、有机硅聚合物(Resistant Silicone Polymers)层、氟硅共聚物树脂(Fluorosilicone Copolymer Resin)层、聚乙烯-尼龙(PE/PA)复合膜层、乙烯-乙烯醇共聚物(EVOH)层或聚丙烯-尼龙(PP/PA)复合膜层,与功能层原料一起通过多层共挤的方式形成在第一功能层表面,制备过程可包括:原料输送→50~150℃干燥→220~280℃熔融挤出→流延→冷却(冷辊温度设置为20~150℃)→牵引→收卷制得。
本发明的一个实施例,还提供一种复合材料,该复合材料包含如上文所述的辐射降温材料,由所述辐射降温材料与其它材料复合而成。
可选地,所述复合材料可以由所述辐射降温材料与金属、塑料、橡胶、沥青、玻璃制品、防水材料、纺织物或编织物材料复合而成。但需要理解,这里所述金属、塑料、橡胶、沥青、玻璃制品、防水材料、纺织物或编织物材料并非穷举,所述复合材料还可以由所述辐射降温材料与其它材料复合而成。
举例说明如下:
1)与织物的结合
将辐射降温材料与织物相结合,制备出具有辐射降温制冷功能的织物,应用于服装、帽子、窗帘、天幕帘、天棚帘、帐篷、伞、手套、鞋、特种服装(高空、野外作业的特种服装)等。
2)与户外膜材的结合
将辐射降温材料与户外膜材相结合,户外膜材可以为高强度柔性薄膜材料,制备出具有辐射降温制冷功能的复合膜材,应用于膜结构建筑、帐篷、阳伞等,可以大幅降低户外无空调配备设施内的温度水平。
3)与防水卷材的结合
将辐射降温材料与防水卷材相结合,制备出具有辐射降温制冷功能的防水卷材,应用于屋顶、路面等。
4)与玻璃的结合
辐射降温材料与玻璃相结合,制备出具有辐射降温制冷功能的玻璃,应用于建筑物、太阳能光伏组件及系统、汽车等。
5)与金属的结合
将辐射降温材料与金属相结合,制备出具有辐射降温制冷功能的金属,应用于冷收集器、阴凉库屋顶、水箱等。
6)与其他产品相结合的应用方式
将辐射降温材料与其他需要降温环境的产品相结合,所制备的产品具有被动的辐射降温制冷功能,热量直接传递给辐射降温材料,从辐射降温材料的功能层辐射热量。
本发明还提供一种如上文所述辐射降温材料用于降温的应用方法。该方法可包括:将所述辐射降温材料中的第一功能层设置成与散热主体相连通,特别是与散热主体的表面进行热连通;将热量从所述散热主体传递给辐射降温材料;由所述辐射降温材料中的第一功能层向外发射热量,特别的,从辐射降温材料中功能层辐射热量。
这样,太阳向所述散热主体辐射的热量或者所述散热主体内/上的热量,就可以传递至所述辐射降温材料进而发射出去,实现降温的效果。
所述辐射降温材料可以设置于建筑物的屋顶、窗口或外墙上,光伏组件中的某一部件上,汽车的车顶、窗口或车身上,户外复合膜材上如膜结构建筑、帐篷、阳伞等,户外用品上如服装、帽子、手套、鞋、特种服装/头盔(高空、野外作业的特种服装)等,农牧水产业所用的普通大棚、温室大棚或智能大棚上等,航空航天领域中航天器仪器散热面外面、暴露于空间环境的结构件外面、多层隔热组件外面等,冷链运输所用运输工具外面,室外箱柜上如室外综合柜、通信柜、配电柜、电气柜、集装箱(包括普通集装箱、需要保持恒温及冷链物流的集装箱)等,存储罐体上例如液化天然气存储罐,窗及窗帘上,室外通讯设备如室外机柜、基站或射频单元上等,工业设备例如工业用仪器仪表及其机柜上等、公用设施例如路灯及其散热器件上、空调例如空调室外机的外面、冷却水系统上、能源系统上(如:空调/制冷/供暖系统)、节能设备装置上,以及户外极需降温或散热的设备、设施,辐射降温材料还可用于提高太阳能电池、传统电厂甚至水处理的效率。
如上所述,本发明实施例提供了一种辐射降温材料、其制备方法、其复合材料及其应用方法。
本发明的辐射降温材料,基于辐射降温的基本原理,在红外波段(7-14μm/8-13μm/7-13μm/8-14μm)的发射率高于0.8,可以实现在白天太阳直射下的辐射降温,并且基于应用领域的不同,在一些需要透光的应用场所,可以通过调节辐射降温材料的透射率实现透光和辐射制冷的双重效果。进一步地,引入第二功能层,使该种材料在太阳辐射波段(0.25-2.5μm/0.25-3μm/0.3-2.5μm/0.3-3μm)的反射率尽可能高,在红外波段(7-14μm/8-13μm/7-13μm/8-14μm)的发射率也尽可能高,从而,其辐射降温效果更好。
本发明的辐射降温材料,通过与散热主体的表面进行热连通,可以把散热主体内的热量以红外辐射的方式通过大气窗口发射出去,可有效降低散热主体的温度,且无需消耗额外的能源。
本发明的辐射降温材料,其应用领域广泛,包括建筑、光伏组件及系统、汽车、户外用品、农牧水产业、航空航天、冷链运输、室外箱柜罐、纺织行业、室外通讯设备、工业设备、公用设施、冷却水系统、能源系统(如:空调/制冷/供暖系统结合)、节能设备装置等,以及户外极需降温或散热的设备、设施。
进一步地,所述辐射降温材料可以应用于建筑领域包括工业建筑、商业建筑、居民住宅建筑和公共建筑。
进一步地,所述辐射降温材料可以应用于工业设备,例如户外配电柜。
进一步地,所述辐射降温材料可以应用于公用设施,例如路灯及其散热器件、厕所屋顶墙面、场馆的路面。
进一步地,所述辐射降温材料可以应用于户外极需降温或散热的设备、设施。
本发明还可通过下列非限制性示例来进一步理解。
示例1:建筑
为了说明辐射制降温材料的降温制冷效果,下面以所述辐射降温材料应用于建筑为例进行说明。
实施例1-1
将不锈钢材质,内部长宽高分别为5m、4m、3m的展示屋,放置在某一地区室外空旷的地方,在屋顶和四面墙的外面都贴上反射型的辐射降温材料C(0.25~2.5μm反射率为90.2%,7~14μm发射率为92.2%)。这里将贴上反射型的辐射降温材料的室外展示屋定义为展示屋A,用带有数据记录仪的热电偶测量和记录展示屋A表面和内部共9个测试点在某一天内24个小时内的温度变化。
对比例1-2
将同样大小、材质、结构和形状的展示屋,放置在与展示屋A环境一致的地方,但屋顶和四面墙的外面都不贴辐射降温材料,这里将未贴辐射降温材料的展示屋定义为展示屋B,用带有数据记录仪的热电偶测量和记录展示屋B表面和内部共9个测试点在与展示屋A同一天同一时间段内的温度变化。展示屋A和展示屋B测试点的分布相同,如图8a和图8b所示。
图8a和图8b中A1为展示屋A屋顶外表面正中间位置处、辐射降温材料下表面温度的测试点,A6为展示屋A东侧墙外表面正中间位置处、辐射降温材料下表面温度的测试点,A7为展示屋A西侧墙外表面正中间位置处、辐射降温材料下表面温度的测试点、A8为展示屋A南侧墙外表面正中间位置处、辐射降温材料下表面温度的测试点、A9为展示屋A北侧墙外表面正中间位置处、辐射降温材料下表面温度的测试点,A2、A3、A4、A5为展示屋A内与地面垂直的同一竖直线上,离地面不同高度地方空气温度的测试点。如图8b所示,还测试了户外的环境温度。
图8a和图8b中B1、B6、B7、B8、B9分别为展示屋B的屋顶外表面正中间位置处、东侧墙外表面正中间位置处、西侧墙外表面正中间位置处、南侧墙外表面正中间位置处、北侧墙外表面正中间位置处温度的测试点,B2、B3、B4、B5为展示屋B内与地面垂直的同一竖直线上,离地面不同高度地方空气温度的测试点。
请参考图8c,室外及展示屋A表面不同位置的测温点曲线图。由图8c可知,将辐射降温材料贴在展示屋A外表面上时,展示屋A外表面、辐射降温材料下表面(包括屋顶和东南西北四个方向)的温度均比户外环境温度低,温度最高下降了10℃左右。
由图8d可知,贴了辐射降温材料的展示屋A,全天24h其室内纵向上不同点的温度均低于环境温度,与户外相比温度最高下降了10℃左右;且随着日照时间增加,逐步出现距离屋顶越近温度越低的现象,说明辐射降温材料具有明显的被动式辐射制冷效果。
由图8e可知,未贴辐射降温材料的展示屋B外表面(包括屋顶和东南西北四个方向)的温度比户外温度最高高30℃左右。由图8c和图8e可知,贴了辐射降温材料的展示屋A比未贴辐射降温材料的展示屋B表面温度最高低37℃左右。
由图8f可知,未贴辐射降温材料的展示屋B,其纵向上不同点的温度差较大,且越接近展示屋的屋顶,温度越高,温度分层较明显。
示例2:光伏组件
将辐射降温材料应用于太阳能光伏领域,可以解决太阳能电池工作温度过高问题,提高太阳能光伏组件的光电转化率。
为了说明辐射降温材料的降温制冷效果,下面举例说明。
实施例2-1
将透射型的辐射降温材料A(可见光透射率为91.2%、8~13μm的红外发射率为93.1%),设置在光伏组件正面玻璃的外表面。
对比例2-2
同样的光伏组件(保证组件出厂I-V性能高度一致),光伏组件正面玻璃的外表面不做任何处理。
测试实施例2-1和对比例2-2在同一地方同一天不同时刻的温度和输出功率,试验组件为P型单晶硅组件,选取八月某一典型日进行试验,试验地点在北纬29°附近,温度测点置于组件背板下方中间位置,且不受光照影响,测试数据见下表:
表1-1实施例2-1和对比例2-2温度和输出功率对比
Figure PCTCN2019092486-appb-000001
由表1-1可知,①正面设置了辐射降温材料的组件,背板表面温度明显比没贴膜的组件更低;②设置辐射降温材料组件的输出功率比没设置辐射降温材料组件的输出功率高;③设置辐射降温材料组件的输出功率与没设置辐射降温材料组件的输出功率的差值在中午时达到最大,辐射降温材料在中午时的制冷效果最好;④通过辐射降温材料可长久有效地降低光伏组件的表面温度,提高光电转化率,增加输出功率。
示例3:汽车
辐射降温材料应用于汽车领域时,具有以下的应用方式:①直接将辐射降温材料设置在汽车的车顶、天窗、车身或车身玻璃等部位上;②在生产汽车时将辐射降温材料与原来的部件相结合,制备出具有辐射制冷功能的部件。如:将天窗制备成具有辐射降温功能的天窗;将玻璃制备成具有辐射制冷功能的玻璃等。
将辐射降温材料应用于汽车,具有以下的效果:
1、大幅降低车顶、天窗、车身或车身玻璃等部位和车内的温度,解决太阳暴晒下驻车升温问题,从而延长了汽车寿命和安全性,增加了汽车内部的舒适度;
2、降低空调能耗,延长续航里程。
为了说明辐射降温材料产品的效果,下面举例说明。
实施例3-1
现有广汽传祺GS8的汽车C,在玻璃外面贴上透射型的辐射降温材料A(透明的辐射降温材料的透射率为91.2%,7~14μm的平均发射率为92.2%),在汽车里面设置5个测温点,测点C1:前座齐肩高空气温度;测点C2:中座齐肩高空气温度;测点C3:后座齐肩高空气温度;测点C4:前车身顶部内表面温度;测点C5:中车身顶部内表面温度。每隔30min测试一次温度数据,测试持续时间为24h,测试结果如图9b。
对比例3-2
现有与汽车C同样型号的汽车D,汽车D在玻璃不做任何处理,在汽车D内部分别设置与汽车C内部位置相同的测温点,分别为D1、D2、D3、D4、D5,将汽车D放置在与汽车C环境一致的地方,每隔30min测试一次温度数据,测试持续时间为24h,测试结果如图9c。
图9a是汽车C和D内测温点的示意图。
图9b是汽车C内测温点的温度曲线图。
图9c是汽车D内测温点的温度曲线图。
图9d是汽车C和D内同样位置测温点温差的曲线图。
由图9b、9c、9d可得:
在同一时刻,贴了透射的辐射制冷材料的汽车C的5个测温点温度比汽车D中对应的5个测温点的温度低。其中测点C1与D1的最大温差可达9℃、测点C2与D2的最大温差可达10℃、测点C3与D3的最大温差可达9℃、测点C4与D4的最大温差可达18℃、测点C5与D5的最大温差可达13℃。说明辐射降温材料应用到汽车玻璃上对车内空间起到了一定的降温效果,且降温效果显著。
结论:
①辐射制冷材料应用于汽车,可大幅降低车顶、天窗、车身或车身玻璃等部位和车内温度,解决 太阳暴晒下驻车升温问题,从而延长汽车寿命和安全性,增加汽车内部的舒适度;
②辐射制冷材料应用于汽车,可达到一定的节能效果,降低汽车空调能耗,延长续航里程,减少CO 2的排放。
示例4:窗帘领域
将辐射制冷技术应用于窗帘领域时,具有以下的应用方式:①将具有辐射制冷功能的薄膜或涂料附着在窗帘上;②将辐射制冷技术与市场上普通的窗帘原材料相结合,制备出具有辐射制冷作用的窗帘。
为了说明辐射降温材料的效果,下面举例说明。
实施例4-1
将涂料形式的反射型的辐射降温材料C(反射率为90.2%,在8~13μm的红外发射率为93.1%)涂布于卷帘E的表面,将卷帘E安装在XXX型号汽车1的天窗内,涂布面朝向天窗,测试安装卷帘E的汽车1内E1、E2、E3,3个测温点的温度变化。
测温点的温度变化。
对比例4-2
现有与卷帘E同样大小、材质和款式的卷帘F,在卷帘F的表面不做任何处理,将卷帘F安装在与汽车1同样型号的汽车2的天窗内,测试安装卷帘F的汽车2内F1、F2、F3,3个测温点的温度变化。
其中,测温点E1、E2、E3分别为:汽车天窗内表面、卷帘表面(朝向天窗一侧)、室内空气测点;F1、F2、F3为与E1、E2、E3相对应相同位置的3个测温点。
图10a是安装卷帘E的汽车1和安装卷帘F的汽车2内测温点示意图。
图10b是安装卷帘E的汽车1和安装卷帘F的汽车2内测温点的温度曲线图。
图10c是安装卷帘E的汽车1和安装卷帘F的汽车2内同样位置测温点温差的曲线图。
由图10c可知:
①涂布了辐射制冷材料的卷帘E表面温度相对于卷帘F表面温度最高可下降35℃。
②涂布了辐射制冷材料的卷帘可使汽车1内的空气温度相对于汽车2内的空气温度最高可下降15℃。
③汽车1与汽车2内的温差与汽车内温度成正比,温度越高,温差越大。
结论:
①说明通过辐射制冷材料反射的太阳辐照的可见光与近红外部分能量仍然能够有效穿透白玻璃,向外部环境排散。辐射制冷材料布置于白玻璃内侧仍能够发挥可观的辐射制冷功效。
②辐射降温材料涂布在卷帘上具有明显的被动式降温效果。
示例5:农牧水产业
将辐射降温材料与农牧水产业大棚结合,可减缓夏天及热带地区高温对农作物的损害,提高产量和品质,减少牲畜因高温引起的疾病发病率,提高出栏率,综合经济效益高。
原理是通过辐射降温材料将大棚内的热量以红外辐射的方式透过大气窗口向外太空(-270℃)源源不断传递。通过调节超材料里面的微纳结构设计与尺寸控制调控电磁波辐射波长,使红外发射率提高,增强热辐射效率。
将辐射降温材料运用在农业大棚上:①可以保证可见光范围内的高透射率,满足农牧水产业生长所需的充足阳光;②降低紫外透过率,减少紫外线对农牧水产业的危害;③降低大棚内的温度,促进农牧水产业的生长。
为了说明农牧水产业用辐射降温材料的效果,下面举例说明。
实施例5-1
将模拟温室大棚G放置于空旷的地方,将透射型的辐射降温材料A粘贴在大棚G的外表面,透明的辐射降温材料透射率在91.2%,8~10μm的红外平均发射率为93.8%。
对其内部的温度选取不同的测温点进行测试。
对比例5-2
将与模拟温室大棚G同样大小、形状、材质、结构的大棚H放置在与大棚G环境一致的地方,对其内部的温度选取与大棚G同样的测温点进行对比测试。
图11a是大棚G和H内测温点的示意图。
其中,G1、G2、G3分别为模拟温室大棚G内正南面玻璃的内表面、玻璃温室内中心位置空气、玻璃温室内顶部内表面的测温点;H1、H2、H3为与模拟温室大棚G相对应位置的测温点;
图11b是大棚G和H内测温点的温度曲线图。
图11c是大棚G和H内同样位置测温点温差的曲线图。
由图11b可知,①贴了透射型的辐射降温材料的大棚G内部温度比未贴透射型的辐射降温材料的大棚H内的温度低;
由图11c可知,实验大棚与对比大棚温差与大棚内温度成正比,大棚内温度越高,温差越大,温差最大可达到7℃。
由以上结论可知,贴了透射型的辐射降温材料的大棚具有明显的被动式降温效果。降温效果与大棚内温度成正比,大棚内温度越高,降温效果越明显。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详细描述的部分,可以参见其它实施例的相关描述。
上述实施例仅用以说明本发明的技术方案,而非对其限制;本领域的普通技术人员应当理解:其依然可以对上述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (21)

  1. 一种辐射降温材料,其特征在于,
    所述辐射降温材料为多层结构,包括用于辐射降温的第一功能层,以及封装层和保护层,所述第一功能层包括至少一层聚合物层;
    所述第一功能层对波长范围为0.25-2.5μm/0.25-3μm/0.3-2.5μm/0.3-3μm的太阳辐射具有不低于0.8的透射率,且对波长范围为7-14μm/8-13μm/7-13μm/8-14μm的红外波段的辐射具有不低于0.8的发射率;
    所述封装层设置于所述第一功能层的第一面,所述保护层设置于和第一面相对的第二面。
  2. 根据权利要求1所述的辐射降温材料,其特征在于,
    所述辐射降温材料还包括第二功能层,所述第二功能层设置于所述第一功能层的第一面,介于所述第一功能层和所述封装层之间;
    所述第二功能层对波长范围为0.25-2.5μm/0.25-3μm/0.3-2.5μm/0.3-3μm的太阳辐射具有0~95%的透射率,对波长范围为0.25-2.5μm/0.25-3μm/0.3-2.5μm/0.3-3μm的太阳辐射具有5%~100%的反射率。
  3. 根据权利要求1所述的辐射降温材料,其特征在于,
    所述辐射降温材料还包括第二功能层,所述第二功能层设置于所述第一功能层的第一面,介于所述第一功能层和所述封装层之间;
    所述第二功能层对波长范围为0.4-0.7μm/0.38-0.78μm/0.4-0.76μm的太阳辐射具有0~95%的透射率,对波长范围为0.4-0.7μm/0.38-0.78μm/0.4-0.76μm的太阳辐射具有5~100%的反射率。
  4. 根据权利要求1或2或3所述的辐射降温材料,其特征在于,
    所述聚合物层包括聚合物和介电粒子,所述介电粒子分散于所述聚合物中,所述介电粒子与所述聚合物层中的聚合物的折射率之差大于0.1小于0.5。
  5. 根据权利要求4所述的辐射降温材料,其特征在于,
    所述介电粒子的粒径在1μm到200μm之间;
    所述介电粒子在所述第一功能层中所占的质量比不大于30%。
  6. 根据权利要求4所述的辐射降温材料,其特征在于,
    所述介电粒子为有机系粒子或无机系粒子或有机系粒子与无机系粒子的组合;其中,
    有机系粒子为丙烯酸系树脂粒子、有机硅系树脂粒子、尼龙系树脂粒子、聚苯乙烯系树脂粒子、聚酯系树脂粒子和聚氨酯系树脂粒子中的一种或多种;
    无机系粒子为二氧化硅、碳化硅、氢氧化铝、氧化铝、氧化锌、硫化钡、硅酸镁、硫酸钡、碳酸钙和二氧化钛中的一种或多种。
  7. 根据权利要求1或2或3所述的辐射降温材料,其特征在于,
    所述聚合物层为热塑性聚合物、或热固性聚合物、或热塑性聚合物与热固性聚合物的组合,其中,
    热塑性聚合物采用以下材料中的一种或多种:聚4-甲基-1-戊烯、聚对苯二甲酸乙二醇酯、聚萘二甲酸乙二醇酯、聚对苯二甲酸1,4-环己烷二甲醇酯、聚对苯二甲酸乙二醇酯-1,4-环己烷二甲醇酯、聚对苯二甲酸乙二醇-醋酸酯、聚甲基丙烯酸甲酯、聚碳酸酯、丙烯腈苯乙烯共聚物、丙烯腈-丁二烯-苯乙烯的三元共聚物、聚氯乙烯、聚丙烯、聚乙烯、三元乙丙橡胶、聚烯烃弹性体、聚酰胺、乙烯-醋酸乙烯共聚物、乙烯-丙烯酸甲酯共聚物、聚甲基丙烯酸羟乙酯、聚四氟乙烯、全氟(乙烯丙烯)共聚物、聚全氟烷氧基树脂、聚三氟氯乙烯、乙烯-三氟氯乙烯共聚物、乙烯-四氟乙烯共聚物、聚偏氟乙烯和聚氟乙烯、热塑性聚氨酯、聚苯乙烯;
    热固性聚合物采用以下材料中的一种或多种:聚醚砜衍生共聚物、双烯丙基二甘醇碳酸酯聚合物、双组分聚氨酯。
  8. 根据权利要求1或2或3所述的辐射降温材料,其特征在于,
    所述保护层包括有机氟聚合物层、有机硅聚合物层、氟硅共聚物树脂层、聚乙烯-尼龙复合膜层、乙烯-乙烯醇共聚物层、聚丙烯-尼龙复合膜层中的一种或多种。
  9. 根据权利要求8所述的辐射降温材料,其特征在于,
    所述有机氟聚合物层包括以下材料中的一种或多种:聚四氟乙烯层、全氟(乙烯丙烯)共聚物层、聚全氟烷氧基树脂层、聚三氟氯乙烯层、乙烯-三氟氯乙烯共聚物层、乙烯-四氟乙烯共聚物层、聚偏氟乙烯层 和聚氟乙烯层。
  10. 根据权利要求1或2或3所述的辐射降温材料,其特征在于,
    所述封装层包括聚氨酯类压敏胶、丙烯酸类压敏胶、环氧树脂中的至少一种。
  11. 根据权利要求2或3所述的辐射降温材料,其特征在于,
    所述第二功能层包括至少一层金属层,或至少一层陶瓷材料层,或至少一层金属层和至少一层陶瓷材料层的组合。
  12. 根据权利要求11所述的辐射降温材料,其特征在于,
    所述金属层为银、铝、铬、钛、铜或镍的金属层,或包括银、铝、铬、钛、铜和镍中至少一种元素的金属合金层;
    所述陶瓷材料层的材料包括氧化铝、氧化钛、氧化硅、氧化铌、氧化锌、氧化铟、氧化锡、氮化硅、氮化钛、硅化铝、硫化锌、硫化铟、硫化锡、氟化镁、氟化钙中的一种或多种。
  13. 根据权利要求1所述的辐射降温材料,其特征在于,
    所述封装层的厚度在1μm到500μm之间;
    所述保护层的厚度在1μm到300μm之间;
    所述第一功能层的厚度在5μm到500μm之间。
  14. 根据权利要求2所述的辐射降温材料,其特征在于,所述第二功能层的厚度在1nm到500nm之间。
  15. 一种辐射降温材料的制备方法,其特征在于,包括:
    制备第一功能层,所述第一功能层包括至少一层聚合物层,所述第一功能层对波长范围为0.25-2.5μm/0.25-3μm/0.3-2.5μm/0.3-3μm的太阳辐射具有不低于0.8的透射率,对波长范围为7-14μm/8-13μm/7-13μm/8-14μm的红外波段的辐射具有不低于0.8的发射率;
    在所述第一功能层的第一面设置封装层;以及
    在所述第一功能层的第二面设置保护层。
  16. 根据权利要求15所述的方法,其特征在于,在制备所述第一功能层的步骤之后,在所述第一功能层的第二面设置保护层的步骤之前,还包括:在所述第一功能层的第一面设置第二功能层,在第二功能层的外面设置封装层的步骤,具体包括:
    通过磁控溅射工艺、蒸发镀膜工艺、离子溅射工艺、电镀工艺或电子束镀膜工艺,将第二功能层沉积在第一功能层的第一面。
  17. 根据权利要求15所述的方法,其特征在于,在所述第一功能层的第一面设置封装层具体包括:
    通过贴合的方式,或者通过涂布的方式,将所述封装层设置于第一功能层上。
  18. 根据权利要求15所述的方法,其特征在于,在所述第一功能层的第二面设置保护层包括:
    通过涂布、贴合或多层共挤的方式,将所述保护层设置于所述第一功能层的第二面。
  19. 一种如权利要求1-14中任一所述辐射降温材料的应用方法,其特征在于,包括:
    将所述辐射降温材料设于散热主体,并使所述第一功能层与所述散热主体热连通。
  20. 一种包含如权利要求1-14中任一所述辐射降温材料的复合材料,其特征在于,所述复合材料由所述辐射降温材料与基材复合而成。
  21. 根据权利要求20所述的复合材料,其特征在于,所述基材为金属、塑料、橡胶、沥青、防水材料、纺织物、编织物中的至少一种。
PCT/CN2019/092486 2019-05-13 2019-06-24 一种辐射降温材料及其制备方法和应用 WO2020228098A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
MYPI2019005976A MY194738A (en) 2019-05-13 2019-06-24 Radiative cooling material, method for making the same and application thereof
AU2019246842A AU2019246842B1 (en) 2019-05-13 2019-06-24 Radiative cooling material, method for making the same and application thereof
TW108131761A TWI725533B (zh) 2019-05-13 2019-09-03 一種輻射降溫材料及其製備方法和應用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910395714.X 2019-05-13
CN201910395714.XA CN110103559A (zh) 2019-05-13 2019-05-13 一种辐射降温材料及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2020228098A1 true WO2020228098A1 (zh) 2020-11-19

Family

ID=67489710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/092486 WO2020228098A1 (zh) 2019-05-13 2019-06-24 一种辐射降温材料及其制备方法和应用

Country Status (3)

Country Link
CN (1) CN110103559A (zh)
TW (1) TWI725533B (zh)
WO (1) WO2020228098A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021109955A (ja) * 2019-12-31 2021-08-02 寧波瑞凌新能源科技有限公司Ningbo Radi−Cool Advanced Energy Technologies Co., Ltd. ベースフィルム、複合フィルム、及び複合フィルムを含む製品

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111751916A (zh) * 2019-12-30 2020-10-09 宁波瑞凌新能源科技有限公司 一种阻隔层膜结构及其应用
SG11202007260TA (en) 2019-07-31 2021-03-30 Ningbo Radi Cool Advanced Energy Technologies Co Ltd Solar reflecting film and preparation method thereof
CN110744900A (zh) * 2019-10-29 2020-02-04 厦门银蚁新能源科技有限公司 一种辐射制冷薄膜及其制备方法和用途
JP6944013B2 (ja) * 2019-11-06 2021-10-06 寧波瑞凌新能源科技有限公司Ningbo Radi−Cool Advanced Energy Technologies Co., Ltd. 放射冷却生地及び製品
CN112984836A (zh) * 2019-12-17 2021-06-18 南京工业大学 一种被动式冷热双效材料
CN111733390A (zh) * 2019-12-30 2020-10-02 宁波瑞凌新能源科技有限公司 一种用于双反射层膜中的复合阻隔材料及其应用
CN111421906A (zh) * 2020-04-03 2020-07-17 中国建筑股份有限公司 一种荧光制冷tpo防水卷材及其制备方法
CN111483200A (zh) * 2020-04-15 2020-08-04 武汉大学 一种结合辐射制冷和发汗冷却的复合薄膜
CN111877963B (zh) * 2020-07-09 2023-05-02 河南五方合创建筑设计有限公司 一种辐射制冷透光遮阳装置
CN111730920B (zh) * 2020-07-30 2020-11-17 宁波瑞凌新能源科技有限公司 功能膜结构及其制备方法、制冷膜和制冷制品
KR102225794B1 (ko) * 2020-08-11 2021-03-11 고려대학교 산학협력단 다층 구조로 이루어진 복사 냉각 소자
KR102271456B1 (ko) * 2020-11-24 2021-07-02 고려대학교 산학협력단 나노 또는 마이크로 입자로 구현되는 페인트 도막층을 포함하는 복사 냉각 소자
WO2022114673A1 (ko) * 2020-11-24 2022-06-02 롯데케미칼 주식회사 복사냉각 다층 필름
CN112724436A (zh) * 2020-12-28 2021-04-30 陕西科技大学 一种超疏水辐射自降温材料及其制备方法
CN112693190A (zh) * 2021-01-04 2021-04-23 东风柳州汽车有限公司 表面结构件及其制备方法
CN113025219B (zh) * 2021-03-10 2022-08-12 南开大学 可拉伸辐射冷却胶带及其制备方法和应用
TWI747794B (zh) * 2021-06-07 2021-11-21 鄭立銘 窗簾塗層及包含該窗簾塗層的蜂巢式窗簾
TWI789897B (zh) * 2021-07-07 2023-01-11 香港商王氏港建移動科技有限公司 在電子電路或組件中有用的金屬聚合物界面
TWI808520B (zh) * 2021-10-29 2023-07-11 國立清華大學 輻射冷却裝置及其製備方法和應用
CN114838520B (zh) * 2022-04-28 2023-06-06 武汉理工大学 一种基于功能记忆材料的温敏辐射降温装置及制备方法
CN116301091B (zh) * 2023-05-19 2023-08-04 浙江农林大学 一种适用于辐射冷暖窗户的温控智能管理系统
CN116813961B (zh) * 2023-08-25 2023-12-22 南京助天中科科技发展有限公司 一种增强大气窗口发射率的辐射制冷薄膜及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103287014A (zh) * 2013-06-27 2013-09-11 裴刚 满足太阳能集热和辐射制冷的选择性吸收发射复合材料
CN105957912A (zh) * 2016-07-01 2016-09-21 中国科学技术大学 一种多功能的光谱选择性封装材料
CN205900562U (zh) * 2016-07-01 2017-01-18 中国科学技术大学 一种多功能的光谱选择性封装材料
CN106590456A (zh) * 2016-11-24 2017-04-26 浙江歌瑞新材料有限公司 一种含氟功能耐候薄膜及其制备工艺
CN108891115A (zh) * 2018-08-24 2018-11-27 宁波瑞凌节能环保创新与产业研究院 一种可实现被动式降温的辐射制冷薄膜
US20190086164A1 (en) * 2016-02-29 2019-03-21 The Regents Of The University Of Colorady, A Body Corporate Radiative cooling structures and systems
CN109651973A (zh) * 2018-12-19 2019-04-19 宁波瑞凌新能源科技有限公司 一种高反射率辐射制冷膜

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103287014A (zh) * 2013-06-27 2013-09-11 裴刚 满足太阳能集热和辐射制冷的选择性吸收发射复合材料
US20190086164A1 (en) * 2016-02-29 2019-03-21 The Regents Of The University Of Colorady, A Body Corporate Radiative cooling structures and systems
CN105957912A (zh) * 2016-07-01 2016-09-21 中国科学技术大学 一种多功能的光谱选择性封装材料
CN205900562U (zh) * 2016-07-01 2017-01-18 中国科学技术大学 一种多功能的光谱选择性封装材料
CN106590456A (zh) * 2016-11-24 2017-04-26 浙江歌瑞新材料有限公司 一种含氟功能耐候薄膜及其制备工艺
CN108891115A (zh) * 2018-08-24 2018-11-27 宁波瑞凌节能环保创新与产业研究院 一种可实现被动式降温的辐射制冷薄膜
CN109651973A (zh) * 2018-12-19 2019-04-19 宁波瑞凌新能源科技有限公司 一种高反射率辐射制冷膜

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021109955A (ja) * 2019-12-31 2021-08-02 寧波瑞凌新能源科技有限公司Ningbo Radi−Cool Advanced Energy Technologies Co., Ltd. ベースフィルム、複合フィルム、及び複合フィルムを含む製品
JP7149983B2 (ja) 2019-12-31 2022-10-07 寧波瑞凌新能源科技有限公司 ベースフィルム、複合フィルム、及び複合フィルムを含む製品

Also Published As

Publication number Publication date
TWI725533B (zh) 2021-04-21
TW202041363A (zh) 2020-11-16
CN110103559A (zh) 2019-08-09

Similar Documents

Publication Publication Date Title
WO2020228098A1 (zh) 一种辐射降温材料及其制备方法和应用
Li et al. Fundamentals, materials, and applications for daytime radiative cooling
Zeyghami et al. A review of clear sky radiative cooling developments and applications in renewable power systems and passive building cooling
Chen et al. Development of radiative cooling and its integration with buildings: A comprehensive review
JP7023978B2 (ja) 放射冷却機能塗料及びその応用
Gentle et al. A subambient open roof surface under the Mid‐Summer sun
Chae et al. Scalable and paint-format microparticle–polymer composite enabling high-performance daytime radiative cooling
Farooq et al. Emerging radiative materials and prospective applications of radiative sky cooling-A review
Zhang et al. Cover shields for sub-ambient radiative cooling: A literature review
AU2019246842B1 (en) Radiative cooling material, method for making the same and application thereof
Chan et al. Potential passive cooling methods based on radiation controls in buildings
KR101949541B1 (ko) 에너지 차폐 플라스틱 필름
CN207965438U (zh) 一种多功能复合玻璃
CN210617539U (zh) 一种辐射降温材料及其复合材料
Mandal et al. Radiative cooling and thermoregulation in the earth's glow
Laatioui et al. Zinc monochalcogenide thin films ZnX (X= S, Se, Te) as radiative cooling materials
KR102225804B1 (ko) 기판의 광특성을 활용한 복사냉각소자
US20220381524A1 (en) Systems and Methods for Spectrally Selective Thermal Radiators with Partial Exposures to Both the Sky and the Terrestrial Environment
CN205153944U (zh) 一种透明的节能百叶片
CN109906840A (zh) 一种辐射制冷幕布
Gangisetty et al. A review of nanoparticle material coatings in passive radiative cooling systems including skylights
CN209918250U (zh) 一种辐射制冷帘
US20090044919A1 (en) Reflective window blinds
Wang et al. Passive daytime radiative cooling materials toward real-world applications
CN103640302B (zh) 一种3层共挤双向拉伸功能聚酯薄膜结构

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019552631

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19928342

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 19928342

Country of ref document: EP

Kind code of ref document: A1