WO2020228097A1 - 一种模拟天然产物结构的环肽化合物及其制备方法 - Google Patents

一种模拟天然产物结构的环肽化合物及其制备方法 Download PDF

Info

Publication number
WO2020228097A1
WO2020228097A1 PCT/CN2019/092373 CN2019092373W WO2020228097A1 WO 2020228097 A1 WO2020228097 A1 WO 2020228097A1 CN 2019092373 W CN2019092373 W CN 2019092373W WO 2020228097 A1 WO2020228097 A1 WO 2020228097A1
Authority
WO
WIPO (PCT)
Prior art keywords
cyclic peptide
compound
peptide compound
mimics
acid
Prior art date
Application number
PCT/CN2019/092373
Other languages
English (en)
French (fr)
Inventor
陈弓
李博
李兴华
韩博扬
何刚
Original Assignee
南开大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南开大学 filed Critical 南开大学
Priority to US17/610,783 priority Critical patent/US20220315623A1/en
Publication of WO2020228097A1 publication Critical patent/WO2020228097A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/06Dipeptides
    • C07K5/06008Dipeptides with the first amino acid being neutral
    • C07K5/06017Dipeptides with the first amino acid being neutral and aliphatic
    • C07K5/06034Dipeptides with the first amino acid being neutral and aliphatic the side chain containing 2 to 4 carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/08Tripeptides
    • C07K5/0802Tripeptides with the first amino acid being neutral
    • C07K5/0804Tripeptides with the first amino acid being neutral and aliphatic
    • C07K5/0808Tripeptides with the first amino acid being neutral and aliphatic the side chain containing 2 to 4 carbon atoms, e.g. Val, Ile, Leu
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/06Dipeptides
    • C07K5/06008Dipeptides with the first amino acid being neutral
    • C07K5/06078Dipeptides with the first amino acid being neutral and aromatic or cycloaliphatic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/08Tripeptides
    • C07K5/0802Tripeptides with the first amino acid being neutral
    • C07K5/0804Tripeptides with the first amino acid being neutral and aliphatic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/08Tripeptides
    • C07K5/0802Tripeptides with the first amino acid being neutral
    • C07K5/0812Tripeptides with the first amino acid being neutral and aromatic or cycloaliphatic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/08Tripeptides
    • C07K5/0827Tripeptides containing heteroatoms different from O, S, or N
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/10Tetrapeptides
    • C07K5/1002Tetrapeptides with the first amino acid being neutral
    • C07K5/1005Tetrapeptides with the first amino acid being neutral and aliphatic
    • C07K5/101Tetrapeptides with the first amino acid being neutral and aliphatic the side chain containing 2 to 4 carbon atoms, e.g. Val, Ile, Leu
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/10Tetrapeptides
    • C07K5/1002Tetrapeptides with the first amino acid being neutral
    • C07K5/1016Tetrapeptides with the first amino acid being neutral and aromatic or cycloaliphatic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/10Tetrapeptides
    • C07K5/1024Tetrapeptides with the first amino acid being heterocyclic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/10Tetrapeptides
    • C07K5/1027Tetrapeptides containing heteroatoms different from O, S, or N
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/06Linear peptides containing only normal peptide links having 5 to 11 amino acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/50Cyclic peptides containing at least one abnormal peptide link
    • C07K7/54Cyclic peptides containing at least one abnormal peptide link with at least one abnormal peptide link in the ring
    • C07K7/56Cyclic peptides containing at least one abnormal peptide link with at least one abnormal peptide link in the ring the cyclisation not occurring through 2,4-diamino-butanoic acid

Definitions

  • the invention belongs to the field of polypeptide chemical synthesis, and specifically relates to a cyclic peptide compound that simulates the structure of a natural product and a preparation method thereof.
  • cyclic peptide compounds Many natural products in nature are cyclic peptide compounds. In addition to ester bonds, amide bonds and disulfide bonds, there is a cyclic peptide backbone structure supported by aromatic rings in the cyclic peptide link structure in natural products. , Hisbispetin A, celogentin C and mauritine A all have good biological activity.
  • the cyclic peptide backbone supported by the aromatic ring is synthesized through biological pathways. It is usually enzymatically catalyzed.
  • the side chains of hydrophobic and aromatic amino acids are formed by carbon-hydrogen functionalization to form a link structure to construct a natural cyclic peptide. product.
  • This relatively rigid, planar and hydrophobic link structure can be fully integrated into the overall skeleton of the cyclic peptide to form a unique 3D support structure.
  • the link structure supported by the aromatic ring has a more direct control over the overall polypeptide skeleton, thus providing a powerful design element to help chemists. Create this benign cyclic peptide molecule.
  • this reaction is limited to the composition of the polypeptide substrate and the shorter polypeptide chain length, and most substrates require the use of meta-substitutions with less tension. Iodophenylalanine to complete the link structure.
  • the inventor’s research group reported a method using AQ as the guiding group to carry out intramolecular arylation reactions to construct cyclic peptides (Zhang, X.; Chen, G. Nat. Chem. 2018,10,540,A General Strategy for Synthesis of Cyclophane-Braced Peptide Macrocycles via Palladium-Catalyzed Intramolecular sp 3 CH Arylation.).
  • the purpose of the present invention is to provide a cyclic peptide compound that mimics the structure of natural products and a preparation method thereof.
  • the cyclic peptide compound of the present invention has diversified arylation reaction sites, which can be extended to most hydrophobic amino acids (amino acids connected to PA at the N-terminus) side chain ⁇ -methyl or methylene group. Overcome the shortcomings of the limitations of the original available amino acid types.
  • the present invention carries out intramolecular arylation reaction at the ⁇ -position of various hydrophobic amino acids at the N-terminal of the peptide chain to construct a cyclic peptide, which effectively constructs a novel aromatic ring supporting cyclic peptide compound.
  • the aromatic ring support structure of this type of cyclic peptide can be fully integrated into the backbone of the cyclic peptide molecule to form a novel 3D structure similar to natural products (hisbispetin A, celogentin C and mauritine A), and has good rigidity and complex three-dimensional structure. Chemistry, this provides a very favorable support for the subsequent construction of cyclic peptide library and high-throughput drug screening.
  • a precursor of a cyclic peptide compound that mimics the structure of natural products and has the following general structural formula:
  • the DG is a guiding group; AA 1 to AAn represent the peptide chain, n represents the length of the peptide chain, and the range of n is 3-10; wherein the peptide segment corresponding to AA 3 to AAn contains at least one aryl iodide Side chain, the part of the peptide segment containing the aryl iodide side chain is denoted as AX; * is the chiral center, Represents an alkyl side chain.
  • AX in the above general formula refers to the overall structure containing the side chain of aryl iodide, namely
  • AX in the peptide chain is 3-iodophenylalanine, 3-iodotyrosine, 3-iodo-p-methoxyphenylalanine, 4-iodophenylalanine Or one or more of the compounds assembled with aryl iodobenzene on the side chains of lysine, serine and glutamic acid.
  • the method for assembling aryl iodobenzene with side chains of lysine, serine and glutamic acid can be referred to: Zhang, X.; Chen, G. Nat. Chem. 2018, 10, 540; A General Strategy for Synthesis of Cyclophane-Braced Peptide Macrocycles via Palladium-Catalyzed Intramolecular sp 3 CH Arylation.
  • the AX is located at the end of the peptide segment corresponding to AA 3 to AAn.
  • the AX also includes 3-iodobenzylamine or 3-iodophenylethylamine.
  • the amino acids other than AX in the peptide chain are selected from ⁇ -amino acids, 3-aminopropionic acid, 4-aminobutyric acid, 5-aminovaleric acid, 6-aminobutyric acid, 7-aminobutyric acid, and 7-aminobutyric acid.
  • the ⁇ -amino acid is glycine, alanine, proline, N-Me-alanine, 2-aminobutyric acid, 2-aminovaleric acid, valine, isoleucine Amino acid, leucine, tert-leucine, phenylalanine, threonine, serine, lysine, arginine, glutamic acid, glutamine, aspartic acid, asparagine, tryptophan Acid, cysteine, methionine, tyrosine, histidine or cyclohexylglycine.
  • the alkyl side chain is ethyl, propyl, isopropyl, isobutyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, allyl or phenyl .
  • the DG is any one of the following groups:
  • PA the effect of PA is the best among all the above guiding groups.
  • the principle of PA is that the bidentate coordination metal Pd is used to activate C-H.
  • the function principle of the above-mentioned guiding group is the same as that of PA for bidentate guiding intramolecular arylation, and both can realize the construction of cyclic peptide.
  • FIG. 1 The specific structure of the precursor of the cyclic peptide compound of the present invention is shown in FIG. 1.
  • the present invention also provides a cyclic peptide compound prepared by an intramolecular arylation reaction from the precursor of the cyclic peptide compound, which has the following general structural formula:
  • the peptide chain structure of the cyclic peptide compound corresponds to the peptide chain structure of the precursor of the cyclic peptide compound.
  • the present invention also provides a method for preparing a cyclic peptide compound that simulates the structure of a natural product, which includes the following steps: a compound of formula I, a divalent palladium catalyst and a silver salt undergo an intramolecular arylation reaction in a solvent under heating and stirring. Construct a cyclic peptide to produce a compound of formula II;
  • the concentration of the compound of formula I in the solvent is 50-200 mM, and the molar ratio of the compound of formula I: divalent palladium catalyst: silver salt is 1:0.05-0.15:1.5-3.0.
  • the solvent is any of hexafluoroisopropanol, chlorobenzene, trifluoroethanol, dichloroethane, tert-amyl alcohol, water, or a mixed solvent of hexafluoroisopropanol and water One; the volume ratio of water to hexafluoroisopropanol in the mixed solvent is 1:0-1:2.
  • the divalent palladium catalyst is Pd(CH 3 CN) 4 (BF 4 ) 2 , Pd(OAc) 2 , Pd(TFA) 2 , Pd(OPiv) 2 or Pd(CH 3 CN)
  • the silver salt is one of silver acetate, silver benzoate, silver carbonate, silver oxide or silver phosphate.
  • reaction conditions of the intramolecular arylation reaction are heating temperature 110-130° C. and reaction time 6-48 hours.
  • the previous work of the subject group of the present invention is to introduce an alkyl side chain with an AQ guide group as an arylation site, the difficulty of intramolecular ring closure is less, because this alkyl chain is far away from the polypeptide backbone, Pd and AQ The coordination will not be affected by the amide bond on the polypeptide backbone, so the intramolecular arylation is relatively smooth.
  • the side chain of the polypeptide backbone is used as the reaction site.
  • the coordination site uses the N atom of the first amino acid of the PA itself and the polypeptide.
  • the position occurs in the polypeptide backbone, and the amide bond on the polypeptide backbone has the ability to coordinate with metal Pd. Therefore, the introduction of the guide group is a competitive combination with the metal Pd with the amide bond and then the subsequent arylation reaction occurs.
  • the PA targeting group is greatly interfered by other amide bonds on the polypeptide.
  • the present invention utilizes the strategy of guiding group to coordinate with metal Pd at a fixed site to carry out C-H activation reaction so as to generate intramolecular arylation reaction to construct cyclic peptide.
  • PA is used as the guiding group, and its coordination ability is stronger than the amide bond.
  • the arylation reaction sites are diversified, thereby forming cyclic peptide skeletons with different supporting structures.
  • the intramolecular arylation process of the present invention firstly, the divalent palladium metal is coordinated with PA, followed by hydrocarbon activation to form a penta-pentacyclic palladium intermediate, and further oxidative addition with aryl iodide to form tetravalent palladium
  • the intermediate undergoes reduction and elimination to obtain intramolecular arylation products.
  • the whole cycle process is relatively smooth and the yield is good, so no additives are needed to promote the reaction.
  • the intramolecular arylation reaction of the present invention can be carried out in water: we speculate that water as a solvent may not participate in the cycle of divalent palladium and tetravalent palladium.
  • the weak acidity of water weakens the coordination ability of free amino groups and carboxyl groups to palladium , Thereby promoting the PA-directed CH arylation reaction, while the existing intramolecular arylation reaction basically cannot be carried out in water.
  • the PA guiding group of the present invention is obviously different from the AQ mentioned in the background art in the guiding process and removal;
  • the arylation sites are diverse and can be extended to the ⁇ -position methyl or methylene group of the side chain of most hydrophobic amino acids (the amino acid whose N-terminus is connected to PA). It overcomes the shortcomings of the limitation of the original selectable amino acid types; and in the cyclic peptide compound of the present invention, the size of the cyclic peptide chain can be changed from tripeptide to decapeptide.
  • the composition of amino acids in the polypeptide chain covers almost all types, no matter it is Hydrophobic or hydrophilic amino acids greatly broaden the application range of hydrocarbon activation and prove that C-H functionalization can still be carried out in the presence of interfering polar groups.
  • the types of amino acids are no longer limited, and they have a broader group selection for future active drug molecule screening.
  • the permutation and combination of various amino acids with different properties will create a larger library of cyclic peptide molecules; in addition,
  • the diversification of the aryl coupling part makes the backbone of the cyclic peptide also diversified, enriching the 3D structure of the cyclic peptide, which provides the possibility to find the three-dimensional structure of the polypeptide that can be efficiently combined with the protein; forming a cyclic peptide
  • the structure is more rigid and has a more complex stereochemical structure.
  • the ring-closure product of the present invention after intramolecular arylation reaction has new chirality generation, which makes the stereochemistry of cyclic peptide molecules more complicated, and natural product molecules in nature have abundant and complex chiral centers.
  • the cyclic peptide created by the present invention can be closer to the characteristics of molecules created in nature; furthermore, the more chiral centers in the molecule, the more complex the stereochemistry, and the more possibilities to stand out in the process of drug screening.
  • the raw material (precursor linear peptide, compound of formula I) of the cyclic peptide compound of the present invention is simple and efficient to prepare.
  • Classic solid-phase peptide synthesis methods are used.
  • Most substrates can be obtained through this strategy, and Most of the substrates can be directly subjected to the next step without any purification, which saves time, has better yield and higher purity, and overcomes the cumbersome defects of raw material preparation in liquid phase synthesis of peptides.
  • the preparation process of the cyclic peptide compound of the present invention can not only perform the reaction in an organic solvent, but also use water as a solvent for the reaction.
  • Amino acids with polar side chains such as lysine, serine, arginine, threonine, glutamic acid, glutamine, etc., can be carried out in an unprotected state without additional additives, using water as a solvent
  • the intramolecular arylation reaction makes the reaction process more green, simple and efficient. This strategy not only proves the effectiveness of Pd-catalyzed hydrocarbon activation, but also provides a very good orthogonal reaction strategy for peptide chemistry.
  • the guiding group PA not only acts as a guiding group in the reaction system, but because its removal is very simple and efficient, it is almost used as a protecting group, and PA is often used in peptide chemistry.
  • PA is often used in peptide chemistry.
  • Figure 1 is the specific compound structural formula corresponding to the compound of general formula I (precursor of cyclic peptide compound) of the present invention
  • Figure 2 is the specific compound structural formula corresponding to the compound of general formula II (cyclic peptide compound) of the present invention
  • Figure 3 shows the reaction equation of formula I compound to formula II compound.
  • N-terminal condensation guiding group Take 2-picolinic acid (PA-COOH) as an example, dissolve PA-COOH (3.0equiv), ethyl 2-oxime cyanoacetate (3.0equiv) into NMP and make Clarify the solution, then add DIC (3.3equiv) to it and react at room temperature for 5 minutes, then add the reaction solution to the solid phase synthesis tube, and react at room temperature for 1.5 hours. Then the reaction solvent was drained, washed twice with DMF, DCM and Et 2 O respectively, and the resin was air-dried at room temperature.
  • PA-COOH 2-picolinic acid
  • Preparation method 2 Preparation of linear peptides with amide at the C-terminus (Albericio, F. Angew. Chem., Int. Ed. 2017, 56, 314.)
  • Rink-Amide-AM resin i) Rink-Amide-AM resin; ii) removal of Fmoc protecting group; iii) amino acid condensation; iv) N-terminal condensation guiding group; v) cleavage of Rink-Amide-AM resin.
  • the crude polypeptide prepared by the above method with an amide bond at the C-terminus has high purity and can be directly used in the subsequent synthesis of cyclic peptide compounds. If purification is required, it can be purified by the preparative HPLC method in the prior art.
  • Example 10-16 The preparation method of Example 10-16 is basically the same as that of Example 6, except that the divalent palladium metal catalyst used in Examples 10-16 is different, as shown in Table 2.
  • the preparation method of Examples 17-24 is basically the same as the preparation method of Example 14, except that the silver salt used in Examples 17-24 is different, as shown in Table 3.
  • the preparation method of Examples 25-29 is basically the same as the preparation method of Example 14, except that the additives selected in Examples 25-29 are different, as shown in Table 4.
  • Example 14 has a higher yield when no additives are added.
  • the preparation method of Examples 30-33 is basically the same as that of Example 14, except that the concentration of Pd(CH 3 CN) 4 (BF 4 ) 2 used in Examples 30-33 is different, and the reaction time is extended to 12h , As shown in Table 5.
  • the preparation method of Examples 34-37 is basically the same as that of Example 33, except that the concentration of the reactants selected in Examples 34-37 is different, as shown in Table 6.
  • the compound of formula I (43.4mg, 0.05mmol, 1.0equiv), AgOAc (12.6mg, 0.075mmol, 1.5equiv) and Pd(CH 3 CN) 4 (BF 4 ) 2 (2.2 mg, 10 mol%) were weighed in In an 8mL reaction flask (sealed with a PTFE cap), add 2ml of solvent, then add the solvent at room temperature and stir for 5 minutes, then heat to 110°C-130°C for 12-48 hours. The reaction was cooled to room temperature, and 5 mL of acetone was added to the reaction system for dilution, and then filtered with diatomaceous earth.
  • the guiding group of the present invention has the same principle of action, and is the same as PA for bidentate guiding intramolecular arylation, and both can realize the construction of cyclic peptides.
  • PA has the best effect.
  • the product 10 (53.5mg, 0.1mmol, 1.0equiv) was dissolved in THF/H 2 O (2:1, v/v) and stirred at room temperature; the hydrochloric acid solution (1.5M, 1mL) was slowly added to the system, Then zinc powder (98.1mg, 1.5mmol, 15.0equiv) was added and stirred at room temperature for 1.5h. After TLC monitoring the completion of the raw material reaction, NaHCO 3 was added to adjust the pH to 7-8, and then Fmoc-Cl (77.6 mg, 0.3 mmol, 3.0 equiv) was added to it, and the reaction was carried out at room temperature for 6 hours.
  • Example 77 The method for removing PA in Example 77 is basically the same as that in Example 76. The difference is that after the guiding group PA of product 4 is removed, a further condensation reaction with L-pyroglutamic acid is performed to obtain product 36.
  • test data of product 4-42 is as follows:
  • the product 6b should be a conformational isomer, which has different ratios in different deuterated solvents.
  • Product 8 is a mixture of diastereomers in a ratio of 2:1
  • the product 16 is the two separated diastereomers, denoted as 16-1 and 16-2.
  • the product 19 is the two separated diastereomers and is designated 19-1 and 19-2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Peptides Or Proteins (AREA)

Abstract

涉及一种模拟天然产物结构的环肽化合物及其制备方法。制备方法为:式I化合物、二价钯催化剂和银盐在加热、搅拌作用下在溶剂中进行分子内芳基化反应构建环肽,生成式II化合物。所制备的环肽化合物,芳基化位点具有多样性,可扩展到大部分的疏水性氨基酸(N-端与PA相连的氨基酸)的侧链γ-位甲基或者亚甲基进行分子内芳基化反应构建环肽,克服了原有可选择氨基酸种类局限的缺点,有效地构建了新颖的芳环支撑型环肽化合物。这类环肽的芳环支撑结构能够完全整合入环肽分子的骨架当中,形成新颖的类似天然产物的3D结构,为后续进行环肽分子库的构建以及高通量药物筛选提供了非常有利的支撑。

Description

一种模拟天然产物结构的环肽化合物及其制备方法 技术领域
本发明属于多肽化学合成领域,具体涉及一种模拟天然产物结构的环肽化合物及其制备方法。
背景技术
现阶段,合成化学对于发展小分子药物(MW<500D)来说已经得到了非常显著的提升。但是化学家在探索更大的“中分子”(500-2000D)用于药物研究方面却是非常的滞后。而这一类分子在小分子药物以及生物药之间占据了非常大的空间,在干预和调节一些非常棘手的生物途径中,拥有着非常大的潜能,例如蛋白质-蛋白质相互作用。为了能够充分自由的探索这一领域进行药物发现,新的策略用于设计和构建相对较大的且具有多样性的结构以及生物物理学性质的分子是非常有必要的。环肽化合物具有着各种手性砌块的组合,以及被限制的三维拓扑结构,从而提供了一个非常便捷和通用的平台产生大量的结构多样化的“中分子”。
自然界中的天然产物有很多是环肽化合物,天然产物中的环肽链接结构,除了酯键、酰胺键和二硫键之外,还有一种芳环支撑的环肽骨架结构,其中许多分子如,hisbispetin A,celogentin C和mauritine A都有着较好的生物活性。
Figure PCTCN2019092373-appb-000001
在自然界中通过生物途径合成这种芳环支撑的环肽骨架,通常是酶催化的方式在具有疏水性氨基酸和芳香性氨基酸的侧链通过碳-氢功能化反应形成链接结构从而构建环肽天然产物。这种较为刚性的、平面的且疏水性的链接结构能够完全整合到环肽的整体骨架中,形成独特的3D支撑结构。而且跟弱的非共价键相互作用,如氢键作用相比,芳环支撑的链接结构对多肽整体骨架有着更为直接的控制力,从而提供了一种强大的设计元素帮助化学家们去创造这种良性的环肽分子。
但是,对于这种芳环支撑的环肽分子的研究仍然处于初始阶段。现阶段,金属催化的直接分子内芳基化反应也彰显出了一定的优势来创造这一类的环肽分子。Noisier/Albericio课题组和王欢课题组都独立报道了Pd催化的、以多肽骨架为导向分子内芳基化反应,从而构筑了N-端由Phth保护的丙氨酸侧链β位甲基与苯丙氨酸侧链苯环链接结构。虽然这一反应的好处 在于没有使用额外加入的导向基团,但是这个反应局限于多肽底物的组成以及较短的多肽链长度,而且绝大多数底物需要使用张力较小的间位取代的碘代苯丙氨酸去完成链接结构。2018年,本发明人课题组报道了一种以AQ为导向基团,通过金属Pd催化的方法,进行分子内芳基化反应构建环肽(Zhang,X.;Chen,G.Nat.Chem.2018,10,540,A General Strategy for Synthesis of Cyclophane-Braced Peptide Macrocycles via Palladium-Catalyzed Intramolecular sp 3C-H Arylation.)。这一反应可以非常高效地进行,但是其引入含有AQ的烷基链嵌入多肽骨架,只能局限于直链羧酸的羰基β-位进行分子内芳基化反应,很多种氨基酸无法得到利用。
因此,在芳环支撑型环肽化合物的合成构建中,如何拓展分子内芳基化的反应位点是目前需要解决的技术问题。
发明内容
本发明的目的是提供一种模拟天然产物结构的环肽化合物及其制备方法。本发明的环肽化合物,芳基化反应位点具有多样性,可以扩展到大部分的疏水性氨基酸(N-端与PA相连的氨基酸)的侧链γ-位甲基或者亚甲基进行,克服了原有可选择氨基酸种类局限的缺点。本发明在肽链N-端多种疏水性氨基酸的γ-位进行分子内芳基化反应构建环肽,有效地构建了新颖的芳环支撑型环肽化合物。这类环肽的芳环支撑结构能够完全整合入环肽分子的骨架当中,形成新颖的类似天然产物(hisbispetin A,celogentin C和mauritine A)的3D结构,而且具有较好的刚性且复杂的立体化学,这为后续进行环肽分子库的构建以及高通量药物筛选提供了非常有利的支撑。
为实现上述目的,本发明采用如下技术方案:
一种模拟天然产物结构的环肽化合物前体,具有如下结构通式:
Figure PCTCN2019092373-appb-000002
所述DG为导向基团;AA 1至AAn代表肽链,n代表肽链的长度,n的取值范围为3-10;其中AA 3至AAn对应的肽链段中至少含有一个芳基碘侧链,将肽链段中含有芳基碘侧链的部分记为AX;*为手性中心,
Figure PCTCN2019092373-appb-000003
代表烷基侧链。需要特别说明的是,上述通式中的AX指的是包含芳基碘侧链的整体结构,即
Figure PCTCN2019092373-appb-000004
作为上述技术方案的进一步优选,所述肽链中的AX为3-碘苯丙氨酸、3-碘酪氨酸、3-碘对甲氧基苯丙氨酸、4-碘苯丙氨酸或者在赖氨酸、丝氨酸、谷氨酸的侧链组装上芳基碘苯后的化合物中的一种及一种以上。(赖氨酸、丝氨酸、谷氨酸的侧链组装芳基碘苯的方法可参考:Zhang,X.;Chen,G.Nat.Chem.2018,10,540;A General Strategy for Synthesis of Cyclophane-Braced Peptide Macrocycles via Palladium-Catalyzed Intramolecular sp 3C-H Arylation.)
作为上述技术方案的进一步优选,所述AX位于AA 3至AAn对应的肽链段中的末端。
作为上述技术方案的进一步优选,所述AX还包括3-碘苄胺或3-碘苯乙胺。
作为上述技术方案的进一步优选,所述肽链中除AX以外的氨基酸选自α-氨基酸、3-氨基丙酸、4-氨基丁酸、5-氨基戊酸、6-氨基丁酸、7-氨基庚酸或8-氨基辛酸。
作为上述技术方案的进一步优选,所述α-氨基酸为甘氨酸、丙氨酸、脯氨酸、N-Me-丙氨酸、2-氨基丁酸、2-氨基戊酸、缬氨酸、异亮氨酸、亮氨酸、叔亮氨酸、苯丙氨酸、苏氨酸、丝氨酸、赖氨酸、精氨酸、谷氨酸、谷氨酰胺、天冬氨酸、天冬酰胺、色氨酸、半胱氨酸、甲硫氨酸、酪氨酸、组氨酸或环己基甘氨酸。
作为上述技术方案的进一步优选,所述烷基侧链为乙基、丙基、异丙基、异丁基、环丙基、环丁基、环戊基、环己基、烯丙基或苯基。
作为上述技术方案的进一步优选,所述DG为以下基团中的任意一种:
Figure PCTCN2019092373-appb-000005
本发明的导向基团中,PA的效果为以上所有导向基中最优。PA的作用原理为双齿配位金属Pd,从而进行C-H活化。上述导向基团的作用原理与PA同为双齿导向分子内芳基化,均可以实现环肽的构建。
本发明的环肽化合物前体的具体结构如图1所示。
本发明还提供了环肽化合物前体通过分子内芳基化反应制备的环肽化合物,具有如下结构通式:
Figure PCTCN2019092373-appb-000006
其中,环肽化合物的肽链结构与环肽化合物前体的肽链结构对应。
作为上述技术方案的优选,所述环肽化合物的具体结构如图2所示。
本发明还提供了一种模拟天然产物结构的环肽化合物的制备方法,包括以下步骤:式Ⅰ化合物、二价钯催化剂和银盐在加热、搅拌作用下在溶剂中进行分子内芳基化反应构建环肽,生成式Ⅱ化合物;
Figure PCTCN2019092373-appb-000007
作为上述制备方法的进一步改进,式Ⅰ化合物在溶剂中的浓度为50-200mM,所述式Ⅰ化合物:二价钯催化剂:银盐的摩尔比为1:0.05-0.15:1.5-3.0。
作为上述制备方法的进一步改进,所述溶剂为六氟异丙醇、氯苯、三氟乙醇、二氯乙烷、叔戊醇、水、或六氟异丙醇与水的混合溶剂中的任意一种;所述混合溶剂中水与六氟异丙醇的体积比为1:0-1:2。
作为上述制备方法的进一步改进,所述二价钯催化剂为Pd(CH 3CN) 4(BF 4) 2、Pd(OAc) 2、Pd(TFA) 2、Pd(OPiv) 2或Pd(CH 3CN) 2Cl 2中的一种;所述银盐为醋酸银、苯甲酸银、碳酸银、氧化银或磷酸银中的一种。
作为上述制备方法的进一步改进,所述分子内芳基化反应的反应条件为加热温度110-130℃,反应时间6-48小时。
本发明的反应原理:
本发明课题组之前的工作是引入带有AQ导向基的烷基侧链作为芳基化位点时,其分子内关环的难度要小,因为这段烷基链远离多肽骨架,Pd与AQ进行配位的时候不会受到多肽骨架上酰胺键的影响,因此分子内芳基化的进行比较顺利。
而本发明是在多肽骨架的侧链上作为反应位点,PA导向基团在氨基酸侧链进行芳基化时,配位点利用了PA本身与多肽上的第一个氨基酸的N原子,配位发生在多肽骨架内,而多肽骨架上的酰胺键本身就具备与金属Pd配位的能力,因此导向基的引入则是属于同酰胺键竞争性的与金属Pd结合再发生后续芳基化反应,PA导向基团受到多肽上其它酰胺键的干扰会大。
本发明利用导向基策略,与金属Pd配位在固定位点进行C-H活化反应从而发生分子内芳基化反应构建环肽。是而本发明中PA作为导向基,其配位能力强于酰胺键。本发明则以 PA导向进行分子内芳基化时,与AQ相比来说,芳基化的反应位点具有多样性,从而形成多种不同支撑结构的环肽骨架。
在这些具有芳基化位点的氨基酸中其侧链烷基关环难易程度如下:
异丙基(CH 3)>环丙基(CH 2)>异丁基(CH 3)>苯基(CH)环戊基(CH 2)>环己基(CH 2)>乙基(CH 3)>丙基(CH 2)
本发明分子内芳基化历程:二价钯金属先与PA发生配位,随后发生碳氢活化形成五五并环的环钯中间体,进一步与芳基碘部分发生氧化加成形成四价钯中间体,最后经历还原消除得到分子内芳基化产物。整个循环过程进行较为顺利,产率较好,因此无需加入任何添加剂来促进反应。
本发明分子内芳基化反应可以在水中进行:我们推测水作为溶剂,可能并没有参与二价钯与四价钯的循环过程,水的弱酸性削弱了游离氨基以及羧基对于钯的配位能力,从而促进了PA导向的C-H芳基化反应,而现有的分子内芳基化反应基本无法在水中进行。
本发明的PA导向基团与背景技术中提到AQ在导向过程与以及脱除方面明显不同;
背景技术(Zhang,X.;Chen,G.Nat.Chem.2018,10,540;A General Strategy for Synthesis of Cyclophane-Braced Peptide Macrocycles via Palladium-Catalyzed Intramolecular sp 3C-H Arylation.)中的AQ(8-氨基喹啉)的价格要高,发挥导向基的作用时,是需要跟羧基发生缩合反应(由于AQ上氨基弱的亲核性,则需要活性较高的缩合剂与羧基进行反应),通常在羧基的β-位的CH 2或者CH 3进行C-H官能团化反应;PA(2-吡啶甲酸)商业非常易于获取且非常廉价,它发挥导向基作用时,是需要跟氨基部分发生缩合反应,通常在氨基的γ-位的CH 3或者CH 2进行C-H官能团化反应。AQ的脱除虽然有一些报道的相关方法,但是AQ在多肽体系中是无法用已有报道的方法将其脱除,只能将AQ转化为MQ之后再进行脱除,且脱除的效率并不高。而PA则可以利用锌和稀盐酸的方法可以在室温下快速高效的脱除,并且也适用于多肽体系,因此由于其高效性,基本将其可以看作为多肽化学中的保护基策略。
有益效果
1.现阶段利用C‐H活化策略构建芳环支撑的环肽策略的局限在于,多数只能在丙氨酸,或者苯丙氨酸的β‐位甲基或者亚甲基进行分子内芳基化反应,而且环肽的大小以及氨基酸组成都比较受限;再者引入含有AQ的烷基链嵌入多肽骨架,也是只能局限于直链羧酸的羰基β‐位进行分子内芳基化,使很多种氨基酸无法得到利用。而本发明的环肽化合物,芳基化位点具有多样性,可以扩展到大部分的疏水性氨基酸(N‐端与PA相连的氨基酸)的侧链γ‐位甲基或者亚甲基进行,克服了原有可选择氨基酸种类局限的缺点;而且本发明的环肽化合物中,环肽链的大小可以从三肽做到十肽,多肽链中氨基酸的构成囊括了几乎所有的类型,无论是 疏水性还是亲水性的氨基酸,大大拓宽了碳氢活化应用范围,证明了在具有干扰的极性基团存在下,仍然可以进行C‐H官能化反应。这样使得氨基酸的种类不再受到局限,拥有更为广阔的基团选择性用于今后的活性药物分子筛选,各种不同性质的氨基酸进行排列组合会创造出更为庞大的环肽分子库;另外,芳基偶联部分多样化,使得环肽的骨架也随之具有多样性,丰富了环肽的3D结构,这为寻找能与蛋白高效相结合的多肽立体空间结构提供了可能;形成环肽结构更为刚性,且具有更为复杂的立体化学结构。
2.本发明经分子内芳基化反应后的关环产物有新的手性生成,使得环肽分子的立体化学更为复杂,自然界中的天然产物分子就具有丰富且复杂的手性中心,本发明创造的环肽可以更贴近自然界创造分子的特点;再者,分子中手性中心越多,立体化学越复杂,在药物筛选过程中,便具有更多脱颖而出的可能性。
3.本发明环肽化合物的原料(前体直链肽,即式Ⅰ化合物)制备起来简单高效,选用经典的固相多肽合成方法,绝大多数底物都可以通过这一策略拿到,且大多数底物无需任何纯化便可以直接进行下一步反应,节省时间,收率较好,纯度较高,克服了液相合成多肽中原料制备繁琐的缺陷。
4.本发明环肽化合物的制备过程不但可以在有机溶剂进行反应,也可以以水作为溶剂进行反应。具有极性侧链的氨基酸,如赖氨酸,丝氨酸,精氨酸,苏氨酸,谷氨酸,谷氨酰胺等,可以在无保护的状态下,无需额外的添加剂,以水为溶剂进行分子内芳基化反应,反应过程更加绿色、简单和高效。这一策略不仅仅证明了Pd催化的碳氢活化的有效性,而且也为多肽化学提供了非常好的正交反应策略。
5.本发明环肽化合物的合成中,导向基PA在反应体系中不仅作为导向基的作用,由于其脱除非常简单高效,几乎将其看做保护基使用,而且PA在多肽化学中也常常作为多肽N‐端修饰的基团进行活性药物分子筛选。
附图说明
图1为本发明通式Ⅰ化合物(环肽化合物前体)对应的具体化合物结构式;
图2为本发明通式Ⅱ化合物(环肽化合物)对应的具体化合物结构式;
图3为式Ⅰ化合物制备式Ⅱ化合物的反应方程式。
具体实施方式
下面结合具体实施方式,进一步阐述本发明。
一、关环前体线性直链肽(即式Ⅰ化合物)的制备
制备通法一:C-端为甲酯的直链肽制备(Albericio,F.Angew.Chem.,Int.Ed.2017,56,314.,Stapled Peptides by Late-Stage C(sp 3)-H Activation.)
Figure PCTCN2019092373-appb-000008
i)2-Cl-trt树脂的上载;ii)Fmoc保护基的脱除;iii)氨基酸缩合;iv)N-端缩合导向基团;v)2-Cl-trt树脂的裂解;vi)C-端甲酯化。
i)2-Cl-trt树脂的上载:将2-Cl-trt树脂称重于固相合成管中,加入5%DIPEA/DCM溶液将树脂溶胀10分钟,随后抽干溶剂;随后Fmoc-AA-OH(1.2equiv)和DIPEA(6.0equiv)溶解到DCM中,待溶液澄清后,加入到固相合成管中与树脂混匀后,在室温下进行振摇反应。1.5小时后,将反应溶剂抽干,分别以DMF、DCM洗两遍进行下一步反应。
ii)Fmoc保护基的脱除:将20%哌啶/DMF加入到固相合成管中振摇反应10分钟,随后抽掉反应溶剂,以DMF,DCM分别洗两遍;再将上述操作重复一遍完成Fmoc保护基的脱除。
iii)氨基酸缩合:将Fmoc-AA-OH(3.0equiv),2-肟氰乙酸乙酯(3.0equiv)溶解到NMP中并制成澄清溶液,随后向其中加入DIC(3.3equiv)并于冰水浴下反应5min,随后再将反应溶液加入到固相合成管中,室温下反应1.5小时。再将反应溶剂抽干,分别以DMF,DCM洗两遍,进行下一步脱保护反应。
iv)N-端缩合导向基团:以2-吡啶甲酸(PA-COOH)为例,将PA-COOH(3.0equiv),2-肟氰乙酸乙酯(3.0equiv)溶解到NMP中并制成澄清溶液,随后向其中加入DIC(3.3equiv)并于室温下反应5min,随后再将反应溶液加入到固相合成管中,室温下反应1.5小时。再将反应溶剂抽干,分别以DMF,DCM和Et 2O洗两遍,室温下晾干树脂。
v)2-Cl-trt树脂的裂解:将三氟乙醇、醋酸和二氯甲烷按照1:1:3体积比制得裂解液,随后将其加入到固相合成管中,室温下反应1小时,随后将裂解液抽掉并收集;再加入另一波裂解液,再进行反应1小时,再次将裂解液收集。将两次裂解液合并,并且蒸去溶剂,抽干后得到C-端为游离羧基的多肽粗品。
vi)C-端甲酯化:将C-端为游离羧基的多肽以无水甲醇溶解,随后冰水浴下,向其中缓慢加入二氯亚砜(5.0equiv)。缓慢恢复至室温,并且持续反应3小时,其间由LCMS监测反应,反应完成后,将溶剂蒸去,得到的甲酯化产物以乙酸乙酯萃取,并以饱和碳酸氢钠洗两遍, 饱和食盐水洗两遍,无水硫酸钠干燥。蒸去乙酸乙酯后,得到最终产品。
制备通法二:C-端为酰胺的直链肽制备(Albericio,F.Angew.Chem.,Int.Ed.2017,56,314.)
Figure PCTCN2019092373-appb-000009
i)Rink-Amide-AM树脂;ii)Fmoc保护基的脱除;iii)氨基酸缩合;iv)N-端缩合导向基团;v)Rink-Amide-AM树脂的裂解。
ii,ii已经iv的步骤与上述相同;
v)Rink-Amide-AM树脂的裂解:将三氟乙酸和水按照95:5的体积比制得裂解液,随后将其加入到固相合成管中,室温下反应2小时,随后将裂解液收集,除去溶剂,向残留物中加入冷乙醚将多肽沉淀出来,随后通过离心得到C-端为酰胺键的多肽粗品。
上述方法制备的C-端为酰胺键的多肽粗品基本纯度很高,可以直接用于后续环肽化合物的合成,如需要纯化,通过现有技术中的制备HPLC方法进行纯化即可。
二、本发明的环肽化合物及其对应的制备方法
实施例1-9反应溶剂的筛选:
Figure PCTCN2019092373-appb-000010
将直链多肽(编号S4)(43.4mg,0.05mmol,1.0equiv),AgOAc(12.6mg,0.075mmol,1.5equiv)和Pd(OAc) 2(2.2mg,10mol%)称重于8mL反应瓶中(以PTFE盖子密封),随后室温下加入2mL溶剂搅拌5分钟后,再加热升温至110℃反应6小时。将反应冷却至室温,反应体系中加入5mL丙酮稀释,再以硅藻土过滤,将得到的滤液蒸干得到油状物,通过柱层析纯化得到最终的白色的关环产物。实施例1-9的区别仅在于反应溶剂的不同,具体如表1所示。
表1反应溶剂的筛选
Figure PCTCN2019092373-appb-000011
a:LCMS Yield
从实施例1-9的结果可以看出,当溶剂选择为HFIP时,产率较高。
实施例10-16
不同二价钯金属催化剂的筛选:
Figure PCTCN2019092373-appb-000012
实施例10-16的制备方法与实施例6的制备方法基本相同,区别仅在于实施例10-16选用的二价钯金属催化剂有所不同,具体如表2所示。
Figure PCTCN2019092373-appb-000013
a:LCMS Yield
从实施例10-16的结果可以看出,当钯金属催化剂选择为Pd(CH 3CN) 4(BF 4) 2时,产率较高。
实施例17-24
不同银盐的筛选:
Figure PCTCN2019092373-appb-000014
实施例17-24的制备方法与实施例14的制备方法基本相同,区别仅在于实施例17-24选用的银盐有所不同,具体如表3所示。
表3不同银盐的筛选
Figure PCTCN2019092373-appb-000015
a:LCMS Yield
从实施例17-24的结果可以看出,当银盐选择为实施例14的AgOAc时,产率较高。
实施例25-29
添加剂的筛选:
Figure PCTCN2019092373-appb-000016
实施例25-29的制备方法与实施例14的制备方法基本相同,区别仅在于实施例25-29选用的添加剂有所不同,具体如表4所示。
表4添加剂的筛选
Figure PCTCN2019092373-appb-000017
a:LCMS Yield
从实施例25-29的结果可以看出,当不加添加剂时实施例14对应的产率较高。
实施例30-33
Pd(CH 3CN) 4(BF 4) 2催化剂浓度的筛选:
Figure PCTCN2019092373-appb-000018
实施例30-33的制备方法与实施例14的制备方法基本相同,区别仅在于实施例30-33选用的Pd(CH 3CN) 4(BF 4) 2浓度有所不同,反应时间延长至12h,具体如表5所示。
表5 Pd(CH 3CN) 4(BF 4) 2催化剂浓度的筛选
Figure PCTCN2019092373-appb-000019
a:LCMS Yield at 12h b:isolated yield
从实施例30-33的结果可以看出,当Pd(CH 3CN) 4(BF 4) 2浓度为10mol%,实施例33对应的产率较高。
实施例34-37
反应物浓度的筛选:
Figure PCTCN2019092373-appb-000020
实施例34-37的制备方法与实施例33的制备方法基本相同,区别仅在于实施例34-37选用的反应物浓度有所不同,具体如表6所示。
表6 HFIP反应物浓度的筛选
Figure PCTCN2019092373-appb-000021
a:LCMS Yield at 12h
从实施例34-37的结果可以看出,当HFIP溶剂添加量为200nM时,实施例37对应的产 率较高。
实施例38-75
将式Ⅰ化合物(43.4mg,0.05mmol,1.0equiv),AgOAc(12.6mg,0.075mmol,1.5equiv)和Pd(CH 3CN) 4(BF 4) 2(2.2mg,10mol%),称重于8mL反应瓶中(以PTFE盖子密封),加入溶剂2ml,随后室温下加入溶剂搅拌5分钟后,再加热升温至110℃-130℃反应12-48小时。将反应冷却至室温,反应体系中加入5mL丙酮稀释,再以硅藻土过滤,将得到的滤液蒸干得到油状物,通过柱层析纯化得到最终的关环产物。实施例38-75中式Ⅰ化合物的具体选择以及具体的反应条件如表7所示,其中式Ⅰ化合物见图1所示;式Ⅱ化合物见图2所示,式Ⅰ化合物制备式Ⅱ化合物的反应通式如图4所示。
表7实施例38-75的反应条件
Figure PCTCN2019092373-appb-000022
Figure PCTCN2019092373-appb-000023
本发明实施例61、64采用的混合溶剂中H 2O与HFIP的摩尔比9:1;实施例62、65、66采用的混合溶剂中H 2O与HFIP的摩尔比1:2。
本发明导向基团的作用原理相同,与PA同为双齿导向分子内芳基化,均可以实现环肽的构建。但本发明的导向基团中,PA的效果最优。
三、产物中PA导向基团的脱除
实施例76
Figure PCTCN2019092373-appb-000024
将产物10(53.5mg,0.1mmol,1.0equiv)溶解于THF/H 2O(2:1,v/v)中并于室温下搅拌;向体系中缓慢加入盐酸溶液(1.5M,1mL),随后再将锌粉(98.1mg,1.5mmol,15.0equiv)加入并在室温下搅拌1.5h。TLC监测原料反应完全后,加入NaHCO 3将pH调节至7-8,再向其中加入Fmoc-Cl(77.6mg,0.3mmol,3.0equiv),室温下反应6小时。随后向体系中加入适量的水,乙酸乙酯萃取三遍,合并有机相,再以饱和食盐水洗两遍,无水硫酸钠干燥。蒸去乙酸乙酯后,得到的粗品通过柱层析得到产物35(58.7mg,90%).
实施例77
Figure PCTCN2019092373-appb-000025
实施例77的脱除PA的方法与实施例76基本相同,其不同之处在于产物4的导向基团PA被脱除后,又进行一步与L-焦谷氨酸的缩合反应得到产物36。
四、产物结构表征
产物4-42的测试数据如下:
产物4:
HRMS:Calcd for C 41H 50N 6NaO 7[M+Na +]:761.3633;found:761.3633
1H NMR(400MHz,CDCl 3)δ8.68(d,J=7.8Hz,1H),8.60(d,J=4.2Hz,1H),7.68(t,J=7.4Hz,1H),7.62(d,J=7.6Hz,1H),7.43(d,J=5.6Hz,2H),7.24–7.12(m,5H),6.92–6.80(m,3H),6.65(d,J=5.2Hz,3H),5.03(t,J=8.4Hz,1H),4.69(s,1H),4.13–4.05(m,1H),4.00(t,J=9.2Hz,1H),3.84(d,J=6.2Hz,1H),3.70(s,3H),3.66–3.60(m,1H),3.56(d,J=13.6Hz,1H),3.33(dd,J=13.6,5.2Hz,1H),3.15–2.94(m,4H),2.63(d,J=13.8Hz,1H),2.56–2.44(m,2H),1.77(s,1H),1.63–1.47(m,2H),1.43–1.29(m,3H),0.93(d,J=6.8Hz,3H),0.70(d,J=5.4,6H),0.64(d,J=5.2,6H).
13C NMR(100MHz,CDCl 3)δ173.2,171.1,170.5,170.4,169.6,165.2,148.8,148.4,137.6,134.6,134.5,129.6,128.9,128.4,127.1,126.6,122.2,61.0,54.8,54.0,52.9,52.3,52.2,45.3,39.8,37.5,37.2,36.2,35.3,30.9,29.7,29.3,24.9,22.7,21.7,21.3,15.7,1.07.
产物5:
HRMS:Calcd for C 40H 49N 6O 7[M+H +]:725.3657;found:725.3656
1H NMR(400MHz,CDCl 3)δ8.63(d,J=4.4Hz,1H),8.59(d,J=8.2Hz,1H),7.70(t,J=7.2Hz,1H),7.63(d,J=7.6Hz,1H),7.49–7.44(m,1H),7.21(d,J=4.6Hz,3H),7.00(d,J=7.4Hz,2H),6.92(s,3H),6.80(d,J=6.4Hz,1H),6.73(d,J=8.6Hz,1H),4.96–4.85(m,2H),4.12(t,J=8.8Hz,1H),4.05–3.98(m,1H),3.82(s,3H),3.68(d,J=7.2Hz,1H),3.65–3.57(m,2H),3.41–3.30(m,2H),3.21(dd,J=14.0,3.4Hz,1H),3.05–2.99(m,1H),2.95(d,J=16.4Hz,1H),2.77–2.67(m,1H),2.47(dd,J=11.4,6.4Hz,1H),2.30(dd,J=14.4,11.6Hz,1H),1.99–1.76(m,4H),1.68–1.59(m,1H),1.41(d,J=6.4Hz,4H),0.79(d,J=5.2Hz,3H),0.72(d,J=5.4Hz,3H).
13C NMR(100MHz,CDCl 3)δ172.7,171.5,171.1,170.6,170.5,165.7,148.7,148.6,138.3,137.6,137.5,134.9,130.3,129.0,128.4,126.9,126.5,122.4,60.4,55.0,53.6,53.2,52.6,49.0,46.0,39.9,36.4,34.7,33.2,30.7,30.6,24.9,22.8,21.9,21.2.
产物6a:
HRMS:Calcd for C 42H 53N 6O 7[M+H +]:753.3970;found:753.3975
1H NMR(400MHz,CDCl 3)δ8.73(d,J=8.0Hz,1H),8.66(d,J=4.2Hz,1H),7.86(d,J=7.8Hz,1H),7.75(t,J=7.6Hz,1H),7.64(d,J=9.2Hz,1H),7.51–7.45(m,1H),7.22–7.14(m,6H),7.05–6.97(m,4H),6.69(d,J=5.0Hz,1H),5.04(t,J=8.8Hz,1H),4.81(d,J=5.8Hz,1H),4.46(t,J=9.2Hz,1H),4.19(d,J=7.4Hz,1H),4.13–4.03(m,1H),3.73(s,3H),3.62(t,J=15.0Hz,2H),3.47–3.38(m,1H),3.26–3.12(m,3H),2.89–2.80(m,1H),2.35(dd,J=12.0,5.8Hz,1H),2.30–2.22(m,1H),1.96–1.84(m,1H),1.83–1.73(m,2H),1.37(d,J=7.2Hz,3H),1.25(s,2H),0.88(d,J=7.2Hz,3H),0.79(d,J=5.8Hz,3H),0.70(d,J=5.8Hz,3H).
13C NMR(100MHz,CDCl 3)δ172.4,172.0,171.8,171.6,171.1,165.5,148.8,148.6,141.8,138.1,137.6,128.9,128.8,128.7,128.3,128.1,127.0,126.9,126.4,122.5,61.1,55.1,54.4,53.4,53.0,52.4,46.4,43.4,40.2,39.7,37.2,36.8,31.0,24.9,22.6,22.0,21.5,20.7,11.3.
产物6b:
HRMS:Calcd for C 42H 53N 6O 7[M+H +]:753.3970;found:753.3974
产物6b应为构象异构体,其在不同氘代溶剂具有不同的比例。
1H NMR(400MHz,CDCl3,ratio of isomer=2.5:1)δ8.83(d,J=8.6Hz,1H),8.62(dd,J=11.4,4.4Hz,2H),8.12(d,J=7.6Hz,1H),7.88(d,J=7.8Hz,1H),7.72(t,J=7.0Hz,1H),7.53–7.43(m,3H),7.30(d,J=7.6Hz,2H),7.18(t,J=5.2Hz,5H),7.08(t,J=8.8Hz,2H),6.97(d,J=6.4Hz,3H),6.23(d,J=4.4Hz,1H),5.35(t,J=5.2Hz,1H),5.04–4.96(m,1H),4.92(td,J=8.0,3.6Hz,1H),4.51(d,J=8.4Hz,1H),4.03–3.97(m,1H),3.79(s,3H),3.77(s,1H),3.60(s,1H),3.53(dd,J=11.8,6.4Hz,3H),3.46(d,J=7.8Hz,1H),3.24(dd,J=19.6,10.6Hz,2H),3.16(s,1H),3.12–3.04(m,1H),3.00(d,J=14.6Hz,2H),2.36–2.26(m,1H),2.22(t,J=7.6Hz,1H),2.10(t,J=14.0Hz,2H),2.02(s,1H),1.89(d,J=7.8Hz,3H),1.79–1.70(m,2H),1.63(s,7H),1.18(t,J=7.2Hz,5H),0.89(t,J=11.2Hz,5H),0.82(d,J=5.8Hz,4H).
1H NMR(400MHz,Acetone,ratio of isomer=1.3:1)δ8.77(d,J=9.4Hz,1H),8.71(dd,J=9.8,4.7Hz,2H),8.16(d,J=7.8Hz,1H),8.06(t,J=8.6Hz,1H),8.00(d,J=7.8Hz,1H),7.95(dt,J=7.8,3.8Hz,1H),7.64(dd,J=11.2,6.4Hz,2H),7.50–7.46(m,1H),7.39(d,J=8.8Hz,1H),7.33(d,J=7.2Hz,2H),7.31–7.26(m,3H),7.23(d,J=6.8Hz,4H),7.21–7.14(m,10H),7.13(s,1H),7.12–7.07(m,2H),6.99(d,J=7.6Hz,1H),5.35(t,J=4.8Hz,1H),4.83(d,J=10.8Hz,1H),4.78(d,J=11.4Hz,2H),4.73(d,J=9.4Hz,2H),4.66(d,J=4.2Hz,1H),4.15–4.06(m,1H),3.97(dt,J=10.2,6.2Hz,2H),3.75(s,1H),3.72(s,3H),3.71(s,2H),3.63(s,1H),3.57–3.50(m, 2H),3.50–3.42(m,2H),3.23(dd,J=19.6,10.8Hz,2H),3.16(d,J=4.2Hz,2H),3.13–3.02(m,4H),2.93(s,3H),2.82(s,5H),2.41–2.29(m,1H),2.14(t,J=7.4Hz,1H),1.85(d,J=5.8Hz,4H),1.72–1.50(m,5H),1.48–1.39(m,4H),1.12(t,J=7.4Hz,4H),1.06–0.97(m,4H),0.88(t,J=6.6Hz,4H),0.84(d,J=6.6Hz,3H),0.78(d,J=2.2Hz,3H),0.76(d,J=2.4Hz,3H),0.71(d,J=6.4Hz,3H).
产物7:
HRMS:Calcd for C 37H 49N 6O 7[M+H +]:689.3657;found:689.3661
1H NMR(400MHz,CDCl 3)δ8.71(d,J=8.3Hz,1H),8.57(d,J=4.6Hz,1H),8.12(d,J=7.8Hz,1H),7.82(t,J=7.8Hz,1H),7.42(dd,J=7.4,4.8Hz,1H),7.28(d,J=7.8Hz,1H),7.18(d,J=5.8Hz,2H),7.09(s,1H),7.07–7.00(m,3H),6.39(d,J=7.8Hz,1H),4.74–4.67(m,1H),4.53(t,J=8.5Hz,1H),4.46(dd,J=8.2,2.8Hz,1H),4.42–4.33(m,2H),4.10–4.05(m,1H),3.79(s,3H),3.70–3.64(m,1H),3.47(dd,J=17.2,3.8Hz,1H),3.24(dd,J=13.6,2.6Hz,1H),3.04(dd,J=13.6,10.2Hz,1H),2.86(dd,J=13.8,6.6Hz,1H),2.60(dd,J=13.8,9.2Hz,1H),2.32–2.21(m,1H),2.20–2.14(m,3H),2.05–1.99(m,1H),1.76–1.56(m,9H),1.44–1.33(m,1H),1.18(d,J=14.2Hz,2H),1.09(dd,J=21.0,8.6Hz,3H),0.99(t,J=7.4Hz,3H).
13C NMR(100MHz,CDCl 3)δ172.5,171.7,170.8,170.5,169.3,164.1,149.6,148.4,140.3,137.3,131.2,129.2,127.5,127.2,126.4,122.2,100.4,60.9,56.0,54.1,53.8,52.6,48.2,45.0,42.7,40.3,36.6,36.3,29.7,29.5,29.1,26.2,25.8,25.7,24.8,22.7,12.6.
产物8:
产物8为非对映异构体混合物,比例为2:1
HRMS:Calcd for C 42H 53N 6O 8[M+H +]:769.3919;found:769.3922
1H NMR(400MHz,CDCl 3)δ9.16(d,J=9.4Hz,1H),8.69–8.52(m,2H),8.18(d,J=7.8Hz,1H),7.88(t,J=7.8Hz,1H),7.82(d,J=7.8Hz,1H),7.71(t,J=7.6Hz,1H),7.57–7.51(m,1H),7.50–7.41(m,2H),7.24(d,J=7.4Hz,2H),7.21–7.16(m,3H),7.13(d,J=7.6Hz,3H),7.11–7.05(m,2H),6.95(d,J=8.2Hz,1H),6.84(d,J=7.4Hz,1H),6.79(d,J=8.4Hz,2H),6.72(t,J=6.8Hz,2H),6.56(d,J=8.2Hz,1H),5.12(d,J=9.4Hz,1H),4.87(ddd,J=17.4,8.0,4.4Hz,2H),4.73–4.52(m,2H),4.48(d,J=7.4Hz,1H),4.29(dd,J=15.4,9.4Hz,2H),4.15(dd,J=13.8,7.0Hz,1H),3.80(s,3H),3.73(s,1H),3.70(s,3H),3.68(s,1H),3.53–3.45(m,1H),3.30(ddd,J=20.4,14.4,5.4Hz,1H),3.18(dd,J=14.0,3.6Hz,1H),3.09(d,J=2.8Hz,1H),2.99(d,J=4.8Hz,1H),2.97–2.94(m,1H),2.92(d,J=8.2Hz,1H),2.87(dd,J=8.4,5.8Hz,1H),2.80(dd,J=15.8, 7.6Hz,1H),2.74(s,1H),2.62(s,1H),2.43(dd,J=11.0,6.4Hz,1H),2.21(d,J=8.8Hz,1H),2.16(d,J=2.6Hz,1H),2.01–1.88(m,4H),1.87–1.77(m,1H),1.74–1.62(m,1H),1.59–1.45(m,3H),1.41–1.29(m,3H),1.08–0.99(m,6H),0.91–0.78(m,10H),0.74(d,J=6.2Hz,1H).
产物9:
HRMS:Calcd for C 31H 39N 6O 7[M+H +]:607.2875;found:607.2878
1H NMR(600MHz,CDCl 3)δ8.92(d,J=7.8Hz,1H),8.66(d,J=4.6Hz,1H),8.06(d,J=7.8Hz,1H),7.94(s,1H),7.90(d,J=7.8Hz,1H),7.87(s,1H),7.55–7.50(m,1H),6.99(d,J=7.8Hz,2H),6.94(d,J=7.8Hz,2H),6.75(d,J=6.6Hz,1H),4.88(d,J=3.4Hz,1H),4.26–4.20(m,2H),4.05(dd,J=15.6,5.4Hz,1H),3.90(d,J=6.6Hz,1H),3.87(s,2H),3.79(s,3H),3.65(s,1H),3.62(d,J=6.0Hz,1H),3.36(dd,J=14.0,5.6Hz,1H),3.15(dd,J=14.0,3.2Hz,1H),2.86(d,J=13.8Hz,1H),2.53(d,J=13.8Hz,1H),2.45(d,J=5.8Hz,1H),2.22(t,J=12.2Hz,1H),2.00(s,1H),1.89(s,1H),1.72(s,1H),1.42(s,3H),1.03(s,3H).
产物10:
HRMS:Calcd for C 28H 34N 5O 6[M+H +]:536.2504;found:536.2508
1H NMR(400MHz,CDCl 3)δ8.61(d,J=4.6Hz,1H),8.51(d,J=8.8Hz,1H),8.16(d,J=7.8Hz,1H),7.85(td,J=7.8,1.6Hz,1H),7.49–7.42(m,1H),7.13(d,J=8.0Hz,2H),6.87(s,2H),6.67(d,J=8.6Hz,1H),6.52(dd,J=8.6,4.0Hz,1H),4.97(dd,J=7.2,4.6Hz,1H),4.75(d,J=8.8Hz,1H),4.44(dd,J=17.4,9.0Hz,1H),3.86(t,J=7.6Hz,1H),3.75(d,J=4.6Hz,3H),3.71–3.63(m,2H),3.40(dd,J=17.4,4.2Hz,1H),3.22(dd,J=13.4,2.2Hz,1H),3.02(dd,J=13.4,5.6Hz,1H),2.81(dd,J=14.2,3.8Hz,1H),2.68(dd,J=11.6,5.0Hz,1H),2.46–2.34(m,1H),2.13(dd,J=11.0,4.8Hz,1H),2.03(dd,J=11.8,5.2Hz,1H),1.94–1.83(m,1H),1.79(dd,J=19.4,8.2Hz,1H),1.39(d,J=7.0Hz,3H).
13C NMR(100MHz,CDCl 3)δ172.0,170.8,170.2,168.7,164.4,149.9,148.2,137.9,137.4,132.2,130.3,129.3,128.0,126.3,122.5,77.4,77.1,76.8,61.2,55.3,53.0,52.1,48.0,43.0,39.2,37.6,37.1,29.7,25.8,23.1.
产物11:
HRMS:Calcd for C 38H 47N 6O 5[M+H +]:667.3602;found:667.3607
1H NMR(400MHz,CDCl 3)δ8.74(d,J=8.4Hz,1H),8.66(d,J=4.4Hz,1H),8.04(d,J=8.4Hz,2H),7.80(td,J=7.8,1.4Hz,1H),7.50(dd,J=7.4,4.8Hz,1H),7.28(t,J=5.4Hz,3H),7.24(d,J=7.8Hz,1H),7.19(t,J=6.8Hz,2H),7.14(d,J=8.2Hz,1H),7.09–7.00(m,2H),6.40(d,J =3.8Hz,1H),5.23(dd,J=15.8,9.8Hz,1H),5.19–5.11(m,1H),4.75–4.69(m,1H),3.99–3.87(m,2H),3.79(dd,J=14.8,3.4Hz,1H),3.60(d,J=8.0Hz,1H),3.57–3.46(m,2H),2.99(t,J=13.6Hz,2H),2.73(dd,J=13.8,4.8Hz,1H),2.47–2.37(s,1H),2.09(dd,J=12.6,6.2Hz,1H),1.92–1.86(m,1H),1.84–1.72(m,1H),1.70–1.57(m,2H),1.34–1.28(m,3H),0.84(d,J=5.8Hz,3H),0.80(d,J=7.2Hz,3H),0.74(d,J=5.8Hz,3H).
13C NMR(100MHz,CDCl 3)δ172.9,172.0,171.9,171.5,148.8,148.5,138.6,137.7,136.5,129.9,129.0,128.3,128.2,127.1,126.8,126.6,126.4,122.5,61.2,55.9,52.7,52.1,46.6,42.6,40.4,38.7,37.5,37.4,36.3,32.0,25.0,22.5,22.1,21.7,14.9.
产物12:
HRMS:Calcd for C 50H 69N 10O 11S[M+H +]:1017.4863;found:1017.4863
1H NMR(400MHz,DMSO)δ9.02(d,J=8.8Hz,1H),8.68(d,J=4.6Hz,1H),8.32(d,J=5.4Hz,1H),8.20(d,J=4.4Hz,1H),8.05–7.99(m,2H),7.94(t,J=5.4Hz,1H),7.83(d,J=7.6Hz,1H),7.74(d,J=7.4Hz,1H),7.64(dd,J=7.8,3.6Hz,1H),7.11(t,J=7.6Hz,1H),7.02(s,1H),6.96(t,J=6.8Hz,2H),6.69(s,1H),6.39(s,1H),4.64–4.54(m,1H),4.46(t,J=8.2Hz,1H),4.05(t,J=7.0Hz,1H),3.99–3.91(m,1H),3.85(dd,J=16.8,7.2Hz,1H),3.70(s,3H),3.65(d,J=5.4Hz,2H),3.39(dd,J=16.6,4.2Hz,1H),3.21–3.14(m,1H),3.03(s,2H),2.95(s,2H),2.87(dd,J=13.8,9.4Hz,1H),2.78(d,J=10.8Hz,1H),2.47(s,3H),2.41(s,3H),2.08–2.01(m,1H),1.99(m,3H),1.64(m,1H),1.55(s,1H),1.43(m,1H),1.40(s,8H),1.30(m,2H),1.23(m,1H),1.16(dd,J=14.0,6.6Hz,1H),0.83(m,9H).
产物13:
HRMS:Calcd for C 49H 70N 9O 12[M+H +]:976.5138;found:976.5141
1H NMR(400MHz,CDCl 3)δ8.59(dd,J=14.0,6.2Hz,2H),7.96(d,J=7.8Hz,1H),7.91–7.78(m,2H),7.67(s,1H),7.60(d,J=9.2Hz,1H),7.52–7.45(m,1H),7.23(s,1H),7.14(d,J=7.8Hz,2H),7.06(d,J=9.6Hz,1H),7.00(d,J=7.6Hz,2H),5.06(t,J=8.8Hz,1H),4.93(dd,J=15.2,7.2Hz,1H),4.72(t,J=8.4Hz,1H),4.59(dd,J=13.2,6.6Hz,1H),4.55–4.42(m,2H),4.02(m,2H),3.90–3.82(m,1H),3.77(s,3H),3.72–3.68(m,1H),3.65(d,J=5.6Hz,1H),3.55(dd,J=16.8,4.8Hz,1H),3.05(dd,J=24.8,10.4Hz,2H),2.92–2.84(m,1H),2.73(s,3H),2.45–2.38(m,1H),2.31(d,J=6.8Hz,1H),2.22(d,J=5.8Hz,2H),2.04(dd,J=12.8,5.6Hz,2H),1.83(dd,J=12.4,7.8Hz,1H),1.75–1.69(m,3H),1.59(d,J=10.4Hz,1H),1.49(s,9H),1.44(d,J=7.8Hz,3H),1.26(s,2H),0.85(t,J=6.6Hz,6H),0.78(d,J=6.4Hz,3H).
产物14:
HRMS:Calcd for C 27H 35N 4O 5[M+H +]:495.2602;found:495.2602
1H NMR(400MHz,CDCl 3)δ8.88(d,J=9.2Hz,1H),8.65(d,J=4.4Hz,1H),8.20(d,J=7.8Hz,1H),7.86(t,J=7.6Hz,1H),7.49–7.42(m,1H),7.23(d,J=7.6Hz,1H),7.13(d,J=7.4Hz,1H),6.94(d,J=7.6Hz,1H),6.89(s,1H),6.23(d,J=8.6Hz,1H),6.12(d,J=10.0Hz,1H),4.83–4.73(m,2H),4.09(d,J=10.0Hz,1H),3.85(s,3H),3.35(dd,J=13.6,4.8Hz,1H),2.87–2.75(m,2H),2.54(dd,J=14.6,3.4Hz,1H),2.40(d,J=3.6Hz,1H),1.32(d,J=7.0Hz,4H),0.92(s,9H).
13C NMR(100MHz,CDCl 3)δ172.1,170.7,169.8,164.8,149.8,148.5,141.2,137.3,136.1,129.6,129.2,127.5,126.7,126.4,122.5,60.9,56.0,52.5,39.9,38.2,37.6,33.8,26.3,21.3.
产物15a:
HRMS:Calcd for C 27H 34N 5O 4[M+H +]:492.2605;found:492.2608
1H NMR(400MHz,CDCl 3,非对映异构体,d.r.=3:1)δ8.70(t,J=5.6Hz,1H),8.65(d,J=4.2Hz,2H),8.53(s,1H),8.26(d,J=4.2Hz,1H),8.19(d,J=7.8Hz,1H),8.04(s,1H),7.97(d,J=7.6Hz,1H),7.89(t,J=7.8Hz,1H),7.72(t,J=7.6Hz,1H),7.57(d,J=10.6Hz,1H),7.55–7.49(m,1H),7.37(t,J=7.6Hz,1H),7.34–7.29(m,1H),7.14(t,J=7.4Hz,3H),7.05(s,1H),6.79(s,1H),6.48(s,1H),6.35(d,J=5.6Hz,1H),5.03(dd,J=10.2,4.8Hz,1H),4.64(dd,J=17.4,9.4Hz,1H),4.16(dd,J=16.0,6.8Hz,1H),4.06(dd,J=10.6,7.2Hz,2H),3.90(t,J=8.6Hz,1H),3.82(dd,J=13.0,6.0Hz,1H),3.74–3.69(m,2H),3.67(d,J=5.6Hz,1H),3.59(dd,J=20.4,9.2Hz,1H),3.55–3.48(m,1H),3.46–3.29(m,3H),3.18(s,1H),3.06(d,J=13.8Hz,1H),2.93(d,J=14.8Hz,1H),2.62–2.45(m,2H),2.35–2.20(m,2H),2.14(d,J=11.2Hz,1H),1.98(s,1H),1.85(s,1H),1.77–1.58(m,2H),1.43(d,J=7.2Hz,3H),1.32(d,J=7.2Hz,1H),1.28(d,J=7.2Hz,1H),0.90(d,J=7.2Hz,3H).
产物15b:
HRMS:Calcd for C 27H 34N 5O 4[M+H +]:492.2605;found:492.2607
1H NMR(400MHz,CDCl 3)δ8.70(d,J=7.8Hz,1H),8.66(d,J=4.4Hz,1H),8.19(d,J=7.8Hz,1H),7.89(t,J=7.6Hz,1H),7.67(s,1H),7.54–7.48(m,1H),7.39(t,J=7.6Hz,1H),7.13(t,J=7.4Hz,2H),6.91(s,1H),6.76(s,1H),4.36(d,J=7.6Hz,1H),4.00(dd,J=15.8,6.2Hz,1H),3.74–3.57(m,3H),3.56–3.46(m,3H),3.10(dd,J=13.4,2.8Hz,1H),3.07–2.96(m,1H), 2.77–2.66(m,1H),2.40(dd,J=16.4,8.8Hz,2H),2.09(dd,J=13.4,5.6Hz,2H),1.92–1.81(m,2H),1.69–1.58(m,2H),1.55–1.45(m,1H),1.17(t,J=7.4Hz,3H).
13C NMR(100MHz,CDCl 3)δ170.3,148.6,137.5,130.4,129.7,128.1,126.3,122.7,60.0,51.8,46.6,45.4,38.1,36.6,33.6,30.9,21.8,21.5,12.6.
产物16为分离出的两个非对映异构体,记为16-1和16-2。
产物16-1
HRMS:Calcd for C 41H 49N 6O 7[M+H +]:737.3657;found:737.3661
1H NMR(400MHz,CDCl 3)δ8.62(d,J=4.8Hz,1H),8.57(d,J=5.2Hz,1H),7.69–7.62(m,2H),7.50(d,J=7.6Hz,1H),7.42(t,J=6.4Hz,1H),7.15(d,J=7.6Hz,6H),7.02(d,J=3.2Hz,2H),6.95(d,J=7.6Hz,2H),6.06(d,J=7.4Hz,1H),4.63(dd,J=14.8,7.6Hz,1H),4.48(dt,J=11.6,5.8Hz,1H),4.33(t,J=8.0Hz,1H),4.18(d,J=7.2Hz,1H),3.79–3.72(m,1H),3.69(s,3H),3.57(dd,J=10.0,5.4Hz,1H),3.48–3.40(m,1H),3.14(dd,J=13.6,4.0Hz,1H),3.02(dd,J=14.2,6.2Hz,1H),2.86(dd,J=14.4,8.0Hz,1H),2.73(dd,J=13.6,8.0Hz,1H),2.64–2.50(m,2H),1.98(dd,J=16.8,9.4Hz,2H),1.78–1.61(m,3H),1.49(s,2H),1.19(dd,J=14.8,8.6Hz,1H),0.96(dd,J=11.6,5.8Hz,1H),0.87(d,J=5.6Hz,3H),0.82(d,J=5.2Hz,3H).
产物16-2:
HRMS:Calcd for C 41H 49N 6O 7[M+H +]:737.3657;found:737.3658
1H NMR(400MHz,CDCl 3)δ8.75(d,J=6.0Hz,1H),8.66(s,1H),7.96(s,1H),7.84–7.71(m,3H),7.48(s,1H),7.32(s,1H),7.22(t,J=7.6Hz,4H),7.16–7.10(m,2H),7.07(d,J=6.4Hz,1H),,6.45(s,1H),6.24(d,J=9.0Hz,1H),5.01(s,1H),4.91(d,J=5.8Hz,1H),3.96–3.85(m,2H),3.79(s,3H),3.65(d,J=11.2Hz,1H),3.42–3.13(m,5H),2.72(d,J=5.6Hz,1H),2.41(dd,J=15.2,7.8Hz,1H),2.23(s,1H),1.84(s,1H),1.77–1.62(m,3H),1.51(d,J=6.4Hz,4H),1.37–1.28(m,2H),1.15(d,J=5.8Hz,1H),0.84(d,J=4.8Hz,3H),0.74(d,J=5.2Hz,3H).
产物17:
HRMS:Calcd for C 29H 35N 5O 6[M+H +]:550.2660;found:550.2662
1H NMR(400MHz,CDCl 3)δ8.27(d,J=4.6Hz,1H),7.92(d,J=7.8Hz,1H),7.79(d,J=8.2Hz,1H),7.71(t,J=7.8Hz,1H),7.40–7.32(m,1H),7.21(d,J=8.8Hz,2H),7.01(s,1H),6.92(s,1H),6.89–6.81(m,2H),6.73(d,J=6.2Hz,1H),5.45(d,J=7.6Hz,1H),5.21(s,1H),4.58(dd,J=17.4,8.4Hz,1H),3.85(d,J=4.0Hz,1H),3.64(s,3H),3.59(s,1H),3.54(d,J=4.0Hz,1H), 3.16(dd,J=14.2,5.2Hz,1H),3.05(d,J=12.2Hz,1H),2.26(dd,J=16.0,8.4Hz,1H),1.24(d,J=7.6Hz,1H),1.05(s,10H),0.99(d,J=6.4Hz,2H),0.94(s,1H).
13C NMR(100MHz,CDCl 3)δ171.4,169.3,164.2,149.2,147.9,137.2,136.9,135.7,133.0,128.2,127.0,126.4,122.4,63.9,53.2,52.1,50.6,43.0,32.6,26.7,21.4,19.8,4.8.
产物18:
HRMS:Calcd for C 31H 38N 5O 6[M+H +]:576.2817;found:576.2816
1H NMR(400MHz,CDCl 3)δ8.62(d,J=4.0Hz,1H),8.46(d,J=9.0Hz,1H),8.18(d,J=8.0Hz,1H),7.86(t,J=7.0Hz,1H),7.49–7.41(m,1H),7.18–7.12(m,2H),6.94(dd,J=28.4,7.2Hz,2H),6.82(d,J=8.6Hz,1H),6.10(s,1H),5.06(s,1H),4.67(d,J=9.0Hz,1H),4.62(dd,J=17.8,9.6Hz,1H),3.86(t,J=7.8Hz,1H),3.74(s,3H),3.72–3.63(m,2H),3.47(dd,J=17.6,4.0Hz,1H),3.28(d,J=11.6Hz,1H),3.05(dd,J=13.2,5.4Hz,1H),2.40(t,J=10.0Hz,1H),2.19(dd,J=21.4,13.4Hz,3H),2.04(d,J=16.8Hz,3H),1.92–1.84(m,3H),1.79–1.69(m,2H),1.47(dd,J=23.6,13.8Hz,2H).
13C NMR(100MHz,CDCl 3)δ172.1,170.7,170.3,168.4,164.3,150.0,148.2,143.5,137.3,132.8,132.2,129.2,128.4,127.2,126.3,122.6,61.8,58.6,56.3,53.2,52.2,48.1,46.8,46.1,42.9,37.1,36.2,34.9,29.8,29.4,26.8,26.2,25.9,18.5.
产物19为分离出的两个非对映异构体,记为19-1和19-2。
产物19-1:
HRMS:Calcd for C 30H 36N 5O 6[M+H +]:562.2660;found:562.2657
1H NMR(400MHz,CDCl 3)δ9.21(s,1H),8.59(d,J=4.4Hz,1H),8.24(d,J=4.0Hz,1H),8.08(d,J=7.8Hz,1H),7.82(t,J=7.0Hz,1H),7.46(dd,J=6.8,5.0Hz,1H),7.15(s,2H),7.01(d,J=9.8Hz,3H),4.84–4.71(m,1H),4.27(dd,J=14.6,7.0Hz,1H),4.13(d,J=7.4Hz,1H),3.76(s,3H),3.62–3.53(m,2H),3.46–3.35(m,3H),2.95(dd,J=10.4,4.6Hz,1H),2.73(dd,J=14.2,12.6Hz,1H),2.61(dd,J=11.2,6.4Hz,1H),2.51(dd,J=14.4,9.6Hz,1H),2.44–2.33(m,1H),2.14–2.01(m,2H),1.94–1.82(m,2H),1.80–1.60(m,3H),1.58–1.44(m,1H).
13C NMR(100MHz,CDCl 3)δ172.2,171.7,170.5,169.8,164.4,148.5,148.2,142.3,137.4,135.2,130.4,127.1,126.6,125.6,122.7,61.1,52.8,52.4,52.1,49.3,46.5,45.3,45.2,36.5,31.0,30.6,26.9,24.5,22.1.
产物19-2:
HRMS:Calcd for C 30H 36N 5O 6[M+H +]:562.2660;found:562.2659
1H NMR(400MHz,CDCl 3)δ8.65(d,J=8.8Hz,1H),8.61(d,J=4.4Hz,1H),8.17(d,J=7.8Hz,1H),7.85(t,J=7.2Hz,1H),7.51–7.43(m,1H),7.15(d,J=7.8Hz,2H),7.00(s,1H),6.91(s,2H),6.54(d,J=8.4Hz,1H),6.26(s,1H),5.04(d,J=9.0Hz,1H),4.98(s,1H),4.50(dd,J=17.4,8.8Hz,1H),4.22(dd,J=14.0,7.0Hz,1H),4.14(s,1H),4.06–3.94(m,1H),3.79(s,3H),3.70(dd,J=12.2,6.6Hz,2H),3.46(dd,J=17.4,3.8Hz,1H),3.23(d,J=11.4Hz,1H),3.07(dd,J=13.4,5.6Hz,1H),2.81–2.70(m,1H),2.46(dd,J=18.8,10.8Hz,1H),2.21–2.11(m,2H),2.04(d,J=7.6Hz,2H),1.90(dd,J=16.6,6.2Hz,2H),1.79–1.67(m,3H).
13C NMR(100MHz,CDCl 3)δ172.2,171.0,170.2,168.5,164.3,149.9,148.3,141.8,137.4,132.7,126.3,122.5,60.7,53.2,51.3,50.4,47.8,43.1,37.1,35.2,32.0,29.6,25.5,22.3.
产物20:
HRMS:Calcd for C 26H 31N 5O 4[M+H +]:478.2449;found:478.2448
1H NMR(400MHz,Acetone)δ8.79(d,J=8.8Hz,1H),8.70(d,J=4.4Hz,1H),8.40(d,J=4.4Hz,2H),8.27(s,2H),8.18(d,J=7.7Hz,1H),8.05(dd,J=13.6,6.0Hz,3H),7.96(d,J=7.6Hz,2H),7.89(t,J=7.2Hz,3H),7.67–7.61(m,1H),7.60–7.51(m,1H),7.50–7.43(m,2H),7.35–7.26(m,2H),7.16(s,3H),7.00(d,J=6.8Hz,1H),6.91(d,J=7.6Hz,3H),6.77(d,J=7.2Hz,2H),6.65(t,J=7.6Hz,2H),4.93–4.86(m,2H),4.38(d,J=8.4Hz,1H),4.32(dd,J=16.5,8.8Hz,3H),4.24–4.17(m,1H),4.01(dd,J=13.2,6.6Hz,4H),3.81–3.72(m,2H),3.72–3.66(m,2H),3.61–3.51(m,2H),3.50–3.47(m,2H),3.45–3.42(m,1H),3.38(dd,J=9.2,4.9Hz,2H),3.17–3.08(m,2H),3.02–2.94(m,1H),2.94–2.84(m,4H),2.83(s,5H),2.80(s,4H),2.76–2.70(m,1H),2.51(d,J=5.2Hz,1H),2.47(d,J=4.8Hz,1H),2.45–2.41(m,2H),2.39(d,J=2.2Hz,1H),2.36(d,J=2.2Hz,1H),2.33–2.27(m,2H),2.25–2.19(m,2H),2.16–2.09(m,2H),2.01–1.94(m,4H),1.78(t,J=12.8Hz,2H),1.56(dd,J=17.2,10.3Hz,1H),1.36(d,J=7.2Hz,3H),1.21(d,J=6.8Hz,7H).
产物21:
HRMS:Calcd for C 27H 33N 4O 7[M+H +]:525.2344;found:525.2347
1H NMR(400MHz,CDCl 3)δ8.48(d,J=8.8Hz,1H),8.43(s,1H),8.01(d,J=7.4Hz,1H),7.66(t,J=7.6Hz,1H),7.57(d,J=6.8Hz,1H),7.26–7.20(m,1H),7.06(d,J=1.8Hz,1H),7.04(s,1H),7.02(s,1H),7.01–6.99(m,1H),6.67(d,J=9.0Hz,1H),6.57(d,J=8.6Hz,1H),5.11(s,1H),4.96(d,J=11.0Hz,1H),4.62(d,J=9.0Hz,1H),4.41(s,1H),3.88(t,J=10.0Hz,1H),3.55(s, 3H),2.77(d,J=12.8Hz,1H),2.03(dd,J=28.6,16.0Hz,2H),1.87(d,J=6.4Hz,1H),0.95(d,J=5.6Hz,3H),0.77(dd,J=14.2,6.0Hz,6H).
13C NMR(100MHz,CDCl3)δ171.0,164.7,148.4,141.4,137.2,133.9,130.8,129.9,128.6,127.3,126.3,122.3,109.9,77.3,77.0,76.7,58.4,56.6,53.0,50.8,42.1,37.6,32.3,19.1,18.3,18.2.产物22:
HRMS:Calcd for C 34H 40N 5O 6[M+H +]:614.2973;found:614.2977
1H NMR(400MHz,CDCl 3)δ8.78(d,J=6.8Hz,1H),8.69–8.51(m,3H),8.09(t,J=6.8Hz,2H),7.91–7.79(m,4H),7.76(s,1H),7.61(s,1H),7.49(s,2H),7.47–7.41(m,2H),7.38(d,J=3.4Hz,2H),7.19(dd,J=19.0,6.6Hz,6H),7.11(d,J=5.4Hz,4H),6.72(d,J=6.0Hz,1H),6.47(s,1H),6.15(s,1H),6.06(s,1H),4.70(d,J=5.2Hz,1H),4.64(s,3H),4.50(s,1H),4.36(s,1H),3.72(s,3H),3.71(s,2H),3.41(d,J=9.2Hz,1H),3.17(d,J=13.8Hz,4H),2.96(ddd,J=21.6,20.8,14.0Hz,4H),2.82(dd,J=13.6,7.6Hz,1H),2.64(d,J=11.4Hz,3H),2.42(s,1H),2.02(s,3H),1.88(s,1H),1.45(d,J=12.8Hz,8H),1.04(d,J=6.2Hz,3H),0.94(d,J=5.6Hz,2H).
产物23:
HRMS:Calcd for C 44H 50N 5O 9[M+H +]:792.3603;found:792.3604
1H NMR(400MHz,DMSO)δ8.73–8.66(m,2H),8.57(t,J=9.6Hz,2H),8.09–8.01(m,2H),7.68–7.62(m,1H),7.42–7.25(m,10H),7.19(t,J=7.6Hz,2H),7.10(d,J=7.6Hz,1H),7.03(d,J=7.6Hz,1H),6.87(s,1H),5.35(d,J=13.6Hz,1H),5.20–5.11(m,2H),4.97(s,2H),4.88(t,J=10.9Hz,2H),4.67–4.58(m,2H),2.97–2.86(m,2H),2.74(d,J=10.4Hz,1H),2.61–2.53(m,2H),2.29–2.17(m,1H),2.13(s,1H),2.11–1.94(m,1H),1.84–1.73(m,1H),1.62(d,J=7.6Hz,1H),1.48(dd,J=13.6,7.2Hz,1H),1.35–1.26(m,4H),0.85(d,J=5.6Hz,3H).
13C NMR(101MHz,DMSO)δ172.0,171.8,171.5,170.6,163.3,156.1,149.2,148.7,140.9,138.2,137.3,136.6,135.9,128.7,128.5,128.4,128.2,128.0,127.8,127.0,126.0,124.2,121.9,66.3,65.1,64.6,55.8,51.8,50.0,41.1,36.4,33.2,31.4,29.4,29.2,29.1,28.8,26.1,22.5,16.7.
产物25:
HRMS:Calcd for C 31H 42N 7O 5[M+H +]:592.3242;found:592.3242
1H NMR 600MHz,CD 3COOD)δ8.62(s,1H),8.58(d,J=4.4Hz,1H),8.06(d,J=8.0Hz,1H),7.98(d,J=7.2Hz,1H),7.87(dd,J=15.0,7.4Hz,1H),7.50(s,1H),7.16(d,J=7.8Hz,1H),7.11(d,J=7.2Hz,1H),6.99(s,2H),6.83(d,J=7.6Hz,1H),4.96(d,J=9.2Hz,1H),4.80(d,J=9.2Hz,1H),4.28(s,1H),4.19(s,1H),4.10(s,1H),3.63(d,J=24.6Hz,1H),3.59–3.52(m,1H),3.48 (s,1H),3.29(d,J=12.0Hz,1H),3.04(d,J=10.2Hz,1H),2.94(s,3H),2.72(t,J=12.4Hz,2H),2.63–2.56(m,1H),2.50–2.38(m,1H),2.27–2.17(m,1H),2.08(dd,J=18.8,4.8Hz,1H),1.62(s,4H),1.48(s,3H),1.27(d,J=6.4Hz,3H),1.09(d,J=8.0Hz,3H).
产物26:
HRMS:Calcd for C 30H 38N 7O 6[M+H +]:592.2878;found:592.2879
1H NMR(600MHz,CD 3OD)δ8.78(d,J=4.0Hz,1H),8.74(d,J=4.0Hz,1H),8.15(s,1H),8.14(s,1H),8.02(d,J=4.0Hz,2H),7.64(s,2H),7.31(d,J=7.6Hz,1H),7.24(d,J=6.6Hz,2H),7.15(d,J=7.6Hz,1H),7.11(d,J=7.8Hz,1H),7.06(d,J=7.0Hz,2H),6.97(d,J=7.2Hz,1H),4.84(s,1H),4.76–4.70(m,1H),4.37(s,1H),4.23–4.18(m,1H),4.05(d,J=6.2Hz,1H),3.96(s,1H),3.76(dd,J=17.2,7.2Hz,2H),3.57(dd,J=19.2,11.4Hz,1H),3.41–3.35(m,2H),3.20–3.15(m,2H),3.08(dd,J=11.6,6.2Hz,2H),2.85(d,J=17.6Hz,2H),2.79(t,J=13.6Hz,1H),2.71(s,2H),2.60(s,3H),2.35–2.15(m,11H),2.10–2.00(m,3H),1.93(d,J=5.6Hz,2H),1.41(d,J=6.8Hz,3H),1.21(d,J=7.2Hz,3H).
产物27:
HRMS:Calcd for C 29H 37N 6O 6[M+H +]:565.2769;found:565.2772
1H NMR(400MHz,DMSO)δ8.75(d,J=4.4Hz,1H),8.67(d,J=8.8Hz,1H),8.07(t,J=9.4Hz,2H),7.67(s,1H),7.46(d,J=9.6Hz,1H),7.30(s,1H),7.25(s,1H),6.98(s,4H),6.29(s,1H),5.13(d,J=4.0Hz,1H),4.77(d,J=8.8Hz,1H),4.41–4.21(m,2H),4.09(s,2H),3.65(s,2H),3.00(d,J=9.6Hz,1H),2.89(s,1H),2.59(d,J=10.6Hz,1H),2.34(d,J=9.6Hz,1H),2.00(s,4H),1.87(s,1H),1.78(s,1H),1.33(d,J=6.8Hz,3H),0.85(d,J=4.8Hz,3H).
产物28:
HRMS:Calcd for C 31H 42N 9O 5[M+H +]:620.3303;found:620.3307
1H NMR(400MHz,CD 3OD)δ8.74(d,J=7.6Hz,2H),8.54(s,1H),8.12(d,J=7.6Hz,1H),8.06(d,J=7.6Hz,1H),8.02–7.96(m,2H),7.66–7.57(m,2H),7.30(d,J=7.6Hz,1H),7.22–7.02(m,6H),6.95(d,J=7.6Hz,1H),4.82(s,1H),4.72(d,J=4.8Hz,1H),4.34(t,J=7.2Hz,1H),4.25(s,1H),4.05(d,J=6.8Hz,1H),3.92(s,1H),3.74(s,2H),3.61–3.53(m,1H),3.40–3.33(m,1H),3.24–3.08(m,7H),2.99–2.90(m,1H),2.84(d,J=14.0Hz,1H),2.80–2.65(m,3H),2.60–2.52(m,3H),2.10–1.99(m,4H),1.98–1.89(m,4H),1.86(d,J=5.6Hz,2H),1.61–1.47(m,5H),1.39(d,J=6.4Hz,3H),1.20(d,J=7.2Hz,3H).
产物29:
HRMS:Calcd for C 34H 45N 8O 7[M+H +]:677.3406;found:677.3406
1H NMR(400MHz,DMSO)δ8.97(s,1H),8.77(d,J=4.6Hz,1H),8.03(d,J=8.2Hz,1H),7.98–7.91(m,2H),7.69–7.64(m,1H),7.59(d,J=5.4Hz,1H),7.44(d,J=8.2Hz,1H),7.40(s,1H),7.30(s,1H),7.26(s,1H),7.14–7.07(m,1H),7.04(s,1H),7.01(d,J=7.8Hz,1H),6.91(t,J=7.6Hz,1H),6.83(s,1H),6.71(s,1H),4.21–4.12(m,1H),3.95(d,J=8.4Hz,1H),3.77(d,J=5.4Hz,1H),3.37(d,J=6.4Hz,1H),2.96(d,J=11.0Hz,3H),2.62(t,J=12.6Hz,1H),2.41(t,J=6.4Hz,2H),2.34(dd,J=14.8,7.6Hz,1H),2.01(s,3H),1.88–1.75(m,2H),1.35(d,J=6.6Hz,1H),1.07(dd,J=13.8,8.4Hz,1H),0.95(m,1H),0.88(s,9H).
产物30:
HRMS:Calcd for C 54H 80N 17O 13[M+H +]:1174.6116;found:1174.6118
1H NMR(600MHz,CD 3OD,6:1 mixture of diastereoisomers)δ8.68–8.65(m,1H),8.51(s,2H),8.14–8.09(m,1H),8.02–7.98(m,1H),7.61(dd,J=7.2,5.2Hz,1H),7.19(s,3H),7.17(d,J=4.8Hz,1H),5.35(dd,J=12.4,7.6Hz,1H),5.01(d,J=4.8Hz,1H),4.62(dd,J=8.4,4.0Hz,1H),4.55–4.52(m,1H),4.47–4.39(m,3H),4.38–4.31(m,2H),4.10(t,J=13.2Hz,1H),4.03–3.90(m,4H),3.86–3.82(m,2H),3.78–3.71(m,2H),3.70–3.58(m,3H),3.35(s,2H),3.24–3.19(m,2H),3.19–3.11(m,2H),3.02–2.94(m,2H),2.94–2.89(m,3H),2.40–2.28(m,5H),2.21(m,4H),2.16–2.07(m,3H),2.02(m,5H),1.96–1.82(m,5H),1.77(dd,J=13.6,5.6Hz,1H),1.70(dd,J=14.8,8.0Hz,4H),1.67–1.59(m,3H),1.42(dd,J=27.6,4.4Hz,2H),1.36–1.31(m,2H),0.91(d,J=7.2Hz,3H).
产物31:
HRMS:Calcd for C 27H 30N 5O 6[M-H +]:520.2202;found:520.2200
1H NMR(400MHz,MeOD)δ8.79(s,1H),8.11(d,J=7.6Hz,1H),8.01(t,J=7.2Hz,1H),7.67–7.58(m,1H),7.25–7.04(m,3H),6.77(s,1H),4.78(d,J=5.6Hz,2H),4.28(dd,J=17.2,2.4Hz,1H),4.17(d,J=6.4Hz,1H),3.72(s,2H),3.49(d,J=17.2Hz,1H),3.35(s,3H),3.25(d,J=13.2Hz,1H),3.03(dd,J=13.2,5.2Hz,1H),2.78(dd,J=23.6,10.4Hz,2H),2.46–2.34(m,1H),2.21–2.16(m,2H),2.06–1.92(m,2H),1.91–1.82(m,1H),1.36(d,J=5.2Hz,3H).
产物32:
HRMS:Calcd for C 31H 44N 9O 5[M+H +]:622.3460;found:622.3458
1H NMR(400MHz,DMSO)δ8.72(d,J=4.4Hz,1H),8.67–8.59(m,2H),8.56(d,J=8.0Hz,1H),8.06(q,J=7.6Hz,2H),7.71–7.64(m,1H),7.60(d,J=8.4Hz,2H),7.53(s,1H),7.12(t,J= 7.6Hz,2H),7.00(s,1H),6.99–6.93(m,2H),6.92(s,1H),4.81(d,J=9.2Hz,1H),4.54(t,J=6.4Hz,1H),4.45(dd,J=14.0,7.2Hz,1H),4.26–4.17(m,1H),3.12(d,J=6.4Hz,2H),2.96(d,J=8.8Hz,2H),2.65(d,J=12.0Hz,1H),2.28(m,1H),2.16–1.99(m,2H),1.61(s,2H),1.52–1.39(m,2H),0.88(s,3H),0.87(s,3H),0.82(d,J=6.4Hz,3H).
产物33:
HRMS:Calcd for C 37H 50N 11O 9[M+H +]:792.3787;found:792.3787
1H NMR(600MHz,DMSO,)δ8.70(dd,J=9.2,7.8Hz,2H),8.13(s,3H),8.08(d,J=7.8Hz,2H),8.06–8.01(m,2H),7.99(d,J=7.8Hz,1H),7.73(d,J=8.4Hz,1H),7.65(dd,J=9.0,3.0Hz,1H),7.58(s,1H),7.42(s,1H),7.26(s,1H),7.13(d,J=7.8Hz,2H),7.02(d,J=7.8Hz,2H),6.84(s,1H),4.88(d,J=10.8Hz,1H),4.62(dd,J=14.4,7.2Hz,1H),4.47–4.43(m,1H),4.39(td,J=9.6,3.6Hz,1H),4.08(q,J=6.6Hz,1H),3.93(dd,J=17.4,6.0Hz,1H),3.15–3.07(m,4H),2.99(t,J=11.4Hz,2H),2.77(dd,J=14.4,9.6Hz,1H),2.58–2.53(m,1H),2.34–2.25(m,2H),2.13(s,2H),1.94(t,J=11.4Hz,1H),1.88–1.82(m,4H),1.69–1.67(m,1H),1.60–1.58(m,3H),1.49–1.45(m,1H),0.89(d,J=6.6Hz,3H).
产物34:
HRMS:Calcd for C 58H 93N 14O 11[M+H +]:1161.7143;found:1161.7143;产物34为未分离的非对映异构体,比例为2:1。
产物35:
HRMS:Calcd for C 37H 41N 4O 7[M+H +]:653.2970;found:653.2969
1H NMR(400MHz,CDCl 3)δ7.83–7.77(m,2H),7.68–7.62(m,2H),7.40(ddd,J=24.4,15.2,7.2Hz,5H),7.06(d,J=6.8Hz,1H),6.82(d,J=7.2Hz,1H),6.75(d,J=6.0Hz,2H),6.67(d,J=8.4Hz,1H),6.18(dd,J=9.2,3.6Hz,1H),5.17(d,J=8.0Hz,1H),4.99(dd,J=7.2,4.8Hz,1H),4.65(dd,J=10.8,6.4Hz,1H),4.57(dd,J=17.6,9.2Hz,1H),4.37(dd,J=10.8,6.0Hz,1H),4.22(dd,J=13.6,7.2Hz,2H),3.87(t,J=7.6Hz,1H),3.60(s,3H),3.57–3.52(m,1H),3.47(dd,J=17.6,4.0Hz,1H),3.20(dd,J=13.4,2.2Hz,1H),3.03(dd,J=13.2,5.6Hz,1H),2.73(dd,J=14.2,4.0Hz,1H),2.58–2.46(m,1H),2.23–2.04(m,3H),2.00–1.91(m,1H),1.84(dd,J=18.4,7.6Hz,1H),1.31(d,J=7.6Hz,3H).
13C NMR(100MHz,CDCl 3)δ172.0,170.8,170.2,168.7,164.4,149.9,148.2,137.9,137.4,132.2,130.3,129.3,128.0,127.8,126.3,125.1,124.8,120.1,77.4,77.1,76.8,61.2,55.3,53.0,52.1,48.0,43.0,39.2,37.6,37.1,29.7,25.8,23.1.
产物36:
HRMS:Calcd for C 40H 53N 6O 8[M+H +]:745.3919;found:745.3919
1H NMR(400MHz,CDCl 3)δ9.13(d,J=6.4Hz,1H),8.13(s,1H),7.34(d,J=7.6Hz,2H),7.28(d,J=7.6Hz,1H),7.25(s,1H),7.20(dd,J=11.6,6.6Hz,2H),6.93(d,J=6.8Hz,2H),6.85(d,J=7.2Hz,3H),6.63(d,J=5.6Hz,1H),4.88(dd,J=13.8,5.8Hz,1H),4.75(d,J=4.0Hz,1H),4.32–4.23(m,1H),4.11–4.04(m,1H),3.99–3.88(m,2H),3.75(s,3H),3.60(dd,J=22.0,10.0Hz,2H),3.45(dd,J=13.6,4.8Hz,1H),3.08(dd,J=23.6,9.2Hz,3H),2.85(dd,J=14.0,11.2Hz,1H),2.77–2.62(m,3H),2.59–2.45(m,4H),1.82(s,1H),1.68–1.60(m,2H),1.38–1.19(m,4H),0.92(d,J=7.2Hz,3H),0.79(d,J=5.6Hz,3H),0.69(d,J=5.6Hz,3H).
13C NMR(100MHz,CDCl 3)δ180.0,174.6,173.0,172.6,170.7,170.5,169.1,137.9,134.8,129.6,129.3,128.4,126.8,77.4,77.1,76.8,61.3,58.6,54.8,54.3,53.9,52.9,52.4,45.6,40.0,38.0,37.8,35.6,35.1,29.5,25.3,25.1,22.8,21.7,16.1.
产物37:
1H NMR(400MHz,CDCl 3)δ8.66(d,J=7.7Hz,1H),8.59(d,J=4.7Hz,1H),7.66(t,J=7.0Hz,1H),7.49(d,J=7.7Hz,1H),7.47–7.38(m,1H),7.25(s,1H),7.21–7.12(m,5H),7.06(d,J=4.5Hz,1H),6.96(d,J=7.6Hz,2H),6.71(d,J=6.7Hz,1H),6.59(d,J=8.4Hz,1H),5.47(s,1H),5.24(s,1H),4.97–4.85(m,2H),4.51(dd,J=14.7,7.7Hz,1H),4.06–3.97(m,1H),3.68(d,J=7.8Hz,1H),3.66–3.58(m,1H),3.46(dd,J=15.2,3.2Hz,1H),3.34–3.22(m,3H),3.04(dd,J=15.9,10.0Hz,3H),2.38(dd,J=12.1,5.9Hz,1H),2.00(s,1H),1.86(s,2H),1.80–1.66(m,2H),1.59(s,2H),1.35(d,J=7.5Hz,2H),1.33(s,1H),0.85(d,J=7.0Hz,1H),0.72(d,J=6.1Hz,3H),0.67(d,J=6.2Hz,3H).
产物38:
1H NMR(400MHz,Acetone)δ8.61-8.54(m,2H),8.10-8.02(m,2H),7.97(td,J=7.6,1.6Hz,1H),7.85-7.78(m,1H),7.61-7.57(m,1H),7.57-7.54(m,1H),7.50(td,J=7.2,1.6Hz,2H),7.38(dd,J=7.2,1.6Hz,1H),7.21(s,4H),6.97(d,J=7.2Hz,1H),5.69-5.64(m,1H),4.60-4.55(m,1H),4.45–4.33(m,2H),4.03(d,J=8.4Hz,1H),3.74(s,3H),3.72–3.65(m,1H),3.54-3.45(m,3H),3.24(dd,J=13.6,5.2Hz,1H),3.07-3.02(m,1H),1.96-1.71(m,4H).
产物39:HRMS:Calcd for C 27H 34N 5O 7[M+H +]:540.2453;found:540.2455
产物40:HRMS:Calcd for C 27H 33N 6O 6[M+H +]:537.2456;found:537.2459
产物41:HRMS:Calcd for C 27H 33N 6O 8[M+H +]:581.2354;found:581.2353
产物42:HRMS:Calcd for C 25H 34N 5O 7[M+H +]:516.2453;found:516.2457
产物43:
1H NMR(400MHz,CDCl 3)δ8.70(d,J=7.6Hz,1H),8.62(d,J=4.4Hz,1H),7.63(t,J=7.8Hz,1H),7.44(dd,J=12.8,6.6Hz,2H),7.37(d,J=7.4Hz,1H),7.25(s,2H),7.22(d,J=3.4Hz, 2H),7.02(t,J=10.0Hz,4H),6.83(s,1H),6.72(d,J=8.2Hz,1H),6.22(s,1H),5.55(s,1H),4.90(s,1H),4.78(d,J=7.8Hz,1H),4.08(t,J=8.4Hz,1H),3.94(s,1H),3.88(d,J=7.6Hz,1H),3.64(dd,J=20.6,9.8Hz,1H),3.55(d,J=13.2Hz,1H),3.46(d,J=13.4Hz,1H),3.33(t,J=10.0Hz,2H),3.26–3.09(m,3H),3.04(dd,J=13.6,5.8Hz,1H),2.68(dd,J=14.2,3.8Hz,1H),2.55(s,1H),2.30(dd,J=11.8,6.4Hz,1H),2.23(t,J=7.2Hz,2H),1.90(dd,J=12.4,6.6Hz,1H),1.86–1.74(m,1H),1.61(d,J=14.4Hz,3H),1.59–1.48(m,3H),1.48–1.40(m,3H),1.36(s,3H),1.10(d,J=7.0Hz,3H),0.81(d,J=5.8Hz,3H),0.73(d,J=5.8Hz,3H).
产物44:
1H NMR(400MHz,CDCl 3)δ8.60(d,J=4.4Hz,1H),8.50(d,J=8.8Hz,1H),8.03(d,J=7.6Hz,1H),7.83(dd,J=8.4,7.2Hz,1H),7.44(dd,J=6.8,5.2Hz,1H),7.17(dd,J=16.0,7.2Hz,2H),7.05(s,2H),6.91(d,J=7.8Hz,1H),6.59(d,J=8.8Hz,1H),5.07–5.00(m,1H),3.89(s,3H),3.87–3.81(m,2H),3.80–3.71(m,1H),3.60–3.46(m,2H),3.37(dd,J=14.3,4.3Hz,1H),3.19(t,J=13.6Hz,1H),3.13–3.01(m,2H),2.81–2.71(m,1H),2.67(dd,J=20.0,8.7Hz,2H),2.30(d,J=13.1Hz,1H),2.08(s,1H),2.02–1.92(m,1H),1.87–1.79(m,2H),1.12(d,J=6.8Hz,3H).
以上仅是本发明的优选实施方式,应当指出的是,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (15)

  1. 一种模拟天然产物结构的环肽化合物前体,其特征在于具有如下结构式I的通式:
    Figure PCTCN2019092373-appb-100001
    所述DG为导向基团;AA 1至AAn代表肽链,n代表肽链的长度,n的取值范围为3-10;其中AA 3至AAn对应的肽链段中至少含有一个芳基碘侧链,将肽链段中含有芳基碘侧链的部分记为AX;*为手性中心,
    Figure PCTCN2019092373-appb-100002
    代表烷基侧链。
  2. 根据权利要求1所述的一种模拟天然产物结构的环肽化合物前体,其特征在于,所述肽链中的AX为3-碘苯丙氨酸、3-碘酪氨酸、3-碘对甲氧基苯丙氨酸、4-碘苯丙氨酸或者在赖氨酸、丝氨酸、谷氨酸的侧链组装上芳基碘苯后的化合物中的一种或一种以上。
  3. 根据权利要求1-2任一所述的一种模拟天然产物结构的环肽化合物前体,其特征在于,所述AX位于AA 3至AAn对应的肽链段中的末端。
  4. 根据权利要求3所述的一种模拟天然产物结构的环肽化合物前体,其特征在于,所述AX还包括3-碘苄胺或3-碘苯乙胺中的一种。
  5. 根据权利要求1-4任一所述的一种模拟天然产物结构的环肽化合物前体,其特征在于,所述肽链中除AX以外的氨基酸选自α-氨基酸、3-氨基丙酸、4-氨基丁酸、5-氨基戊酸、6-氨基丁酸、7-氨基庚酸或8-氨基辛酸。
  6. 根据权利要求5所述的一种模拟天然产物结构的环肽化合物前体,其特征在于,所述α-氨基酸为甘氨酸、丙氨酸、脯氨酸、N-Me-丙氨酸、2-氨基丁酸、2-氨基戊酸、缬氨酸、异亮氨酸、亮氨酸、叔亮氨酸、苯丙氨酸、苏氨酸、丝氨酸、赖氨酸、精氨酸、谷氨酸、谷氨酰胺、天冬氨酸、天冬酰胺、色氨酸、半胱氨酸、甲硫氨酸、酪氨酸、组氨酸或环己基甘氨酸。
  7. 根据权利要求1-2任一所述的一种模拟天然产物结构的环肽化合物前体,其特征在于,所述烷基侧链为乙基、丙基、异丙基、异丁基、环丙基、环丁基、环戊基、环己基、烯丙基或苯基。
  8. 根据权利要求1-2任一所述的一种模拟天然产物结构的环肽化合物,其特征在于,所述DG为以下基团中的任意一种:
    Figure PCTCN2019092373-appb-100003
  9. 根据权利要求1-8任一所述的一种模拟天然产物结构的环肽化合物前体制备的环肽化合物,其特征在于,所述环肽化合物前体通过分子内芳基化反应制备环肽化合物,具有如下结构式II通式:
    Figure PCTCN2019092373-appb-100004
    其中,环肽化合物的肽链结构与环肽化合物前体的肽链结构对应。
  10. 根据权利要求9所述的一种模拟天然产物结构的环肽化合物前体制备的环肽化合物,其特征在于,所述环肽化合物具体选自:
    Figure PCTCN2019092373-appb-100005
    Figure PCTCN2019092373-appb-100006
  11. 根据权利要求1-8任一所述的一种模拟天然产物结构的环肽化合物前体制备环肽化合物的制备方法,其特征在于,包括以下步骤:式Ⅰ化合物、二价钯催化剂和银盐在加热、搅拌作用下在溶剂中进行分子内芳基化反应构建环肽,生成式Ⅱ化合物;其中所述式II化合物结构式如下:
    Figure PCTCN2019092373-appb-100007
  12. 根据权利要求11所述的一种模拟天然产物结构的环肽化合物的制备方法,其特征在于,式Ⅰ化合物在溶剂中的浓度为20-100mM,所述式Ⅰ化合物:二价钯催化剂:银盐的摩尔比为1:0.05-0.15:1.5-3.0。
  13. 根据权利要求11-12任一所述的一种模拟天然产物结构的环肽化合物的制备方法,其特征在于,所述溶剂为六氟异丙醇、氯苯、三氟乙醇、二氯乙烷、叔戊醇、水、或六氟异丙醇与水的混合溶剂中的任意一种;所述混合溶剂中水与六氟异丙醇的体积比为1:0-1:2。
  14. 根据权利要求11-13任一所述的一种模拟天然产物结构的环肽化合物的制备方法,其特征在于,所述二价钯催化剂为Pd(CH 3CN) 4(BF 4) 2、Pd(OAc) 2、Pd(TFA) 2、Pd(OPiv) 2或Pd(CH 3CN) 2Cl 2中的一种;所述银盐为醋酸银、苯甲酸银、碳酸银、氧化银或磷酸银中的一种。
  15. 根据权利要求11-14任一所述的一种模拟天然产物结构的环肽化合物的制备方法,其特征在于,分子内芳基化反应的反应条件为加热温度110-130℃,反应时间6-48小时。
PCT/CN2019/092373 2019-05-13 2019-06-21 一种模拟天然产物结构的环肽化合物及其制备方法 WO2020228097A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/610,783 US20220315623A1 (en) 2019-05-13 2019-06-21 Cyclic Peptide Compound Simulating Natural Product Structure, And Method For Preparation Thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910393083.8 2019-05-13
CN201910393083.8A CN110183513B (zh) 2019-05-13 2019-05-13 一种模拟天然产物结构的环肽化合物及其制备方法

Publications (1)

Publication Number Publication Date
WO2020228097A1 true WO2020228097A1 (zh) 2020-11-19

Family

ID=67714452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/092373 WO2020228097A1 (zh) 2019-05-13 2019-06-21 一种模拟天然产物结构的环肽化合物及其制备方法

Country Status (3)

Country Link
US (1) US20220315623A1 (zh)
CN (1) CN110183513B (zh)
WO (1) WO2020228097A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112250734B (zh) * 2020-09-30 2023-06-09 南开大学 以赖氨酸、酪氨酸为锚点三组分协同反应合成环肽的方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106995483A (zh) * 2017-04-05 2017-08-01 南开大学 一种新型大环环肽化合物的合成方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106995483A (zh) * 2017-04-05 2017-08-01 南开大学 一种新型大环环肽化合物的合成方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HE, G. ET AL.: "Syntheses and Transformations of α-Amino Acids via Palladium-Catalyzed Auxiliary-Directed sp3 C−H Functionalization", ACC. CHEM. RES., vol. 49, 25 March 2016 (2016-03-25), XP55752917, DOI: 20200119174417A *
HE, G. ET AL.: "Total Synthesis of Hibispeptin A via Pd-Catalyzed C(sp3)−H Arylation with Sterically Hindered Aryl Iodides", ORG. LETT., vol. 16, 9 December 2014 (2014-12-09), XP55752919, DOI: 20200119174905A *
NOISIER, A. F. M. ET AL.: "C-H Functionalization in the Synthesis of Amino Acids and Peptides", CHEMICAL REVIEWS, vol. 114, 21 August 2014 (2014-08-21), XP55752914, DOI: 20200119174012A *
ZHANG, X. K. ET AL.: "A general strategy for synthesis of cyclophane-braced peptide macrocycles via palladium-catalysed intramolecular sp3 C-H arylation", NATURE CHEMISTRY, vol. 10, 2 April 2018 (2018-04-02), XP036928977, DOI: 20200119173810 *

Also Published As

Publication number Publication date
CN110183513A (zh) 2019-08-30
US20220315623A1 (en) 2022-10-06
CN110183513B (zh) 2021-04-27

Similar Documents

Publication Publication Date Title
KR102337328B1 (ko) 용액상 gap 펩타이드 합성을 위한 시스템 및 방법
CN109678751A (zh) 一种含有二苯甲烷结构的化合物
CN112236436B (zh) 一种用于溶液相肽合成的方法及其保护策略
WO2003059933A2 (en) Conformationally constrained c-backbone cyclic peptides
CN110183347A (zh) 一种含有苯甲基结构的化合物及其应用
WO2020228097A1 (zh) 一种模拟天然产物结构的环肽化合物及其制备方法
CN106083997B (zh) Nannocystin A及其结构类似物的合成
CN113683651A (zh) 一种GalNAc中间体的制备方法
CN109928908B (zh) 一种用于抗体药物偶联物的药物-连接子mc-mmaf的制备方法及其中间体
JP2022518601A (ja) 抗体薬物複合体用薬物リンカーmc-mmafの調製方法及びその中間体
CN110256277A (zh) 一种含有芴环结构的化合物及其应用
CA2546506C (fr) Procede de synthese du perindopril et de ses sels pharmaceutiquement acceptables
US5541289A (en) Phosphine containing amino acids and peptides and methods of preparing and using same
TW202112725A (zh) 肽化合物的製造方法、保護基形成用試藥及縮合多環芳香族烴化合物
CN1058260C (zh) Nα-2-(4-硝基苯磺酰)乙氧羰基-氨基酸
CN106749497B (zh) 套索多肽的化学全合成
JP4782329B2 (ja) キラル相間移動触媒およびそれを用いた不斉ペプチドの製造方法
CN114874227A (zh) 一种用于酰胺合成的催化剂及其制备与应用
WO2007060860A1 (ja) ピロールイミダゾールポリアミドの固相自動合成
CN108129348B (zh) 叠氮三氟甲氧基化合物及其合成方法
JP4950436B2 (ja) 高度にフッ素化されたアルコール誘導体と再利用が容易な使用法
CN114478324B (zh) 一种活性化合物及其在侧链羧基类化合物保护的应用
CN113024637B (zh) 一种以水溶性炔酰胺作为缩合剂制备卡非佐米的方法
JP2011173822A (ja) 金属錯体アレイとその製造法及び材料
CN111978213B (zh) 用于多肽环化的多官能团化合物及其制备方法和用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19928850

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19928850

Country of ref document: EP

Kind code of ref document: A1