CN106083997B - Nannocystin A及其结构类似物的合成 - Google Patents

Nannocystin A及其结构类似物的合成 Download PDF

Info

Publication number
CN106083997B
CN106083997B CN201610522803.2A CN201610522803A CN106083997B CN 106083997 B CN106083997 B CN 106083997B CN 201610522803 A CN201610522803 A CN 201610522803A CN 106083997 B CN106083997 B CN 106083997B
Authority
CN
China
Prior art keywords
compound
reaction
fragment
tripeptide
under
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610522803.2A
Other languages
English (en)
Other versions
CN106083997A (zh
Inventor
叶涛
许正双
廖林萍
周经经
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Qianyan Pharmaceutical R&d Technology Co ltd
Peking University Shenzhen Graduate School
Original Assignee
Shenzhen Qianyan Pharmaceutical R&d Technology Co ltd
Peking University Shenzhen Graduate School
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Qianyan Pharmaceutical R&d Technology Co ltd, Peking University Shenzhen Graduate School filed Critical Shenzhen Qianyan Pharmaceutical R&d Technology Co ltd
Priority to CN201610522803.2A priority Critical patent/CN106083997B/zh
Publication of CN106083997A publication Critical patent/CN106083997A/zh
Application granted granted Critical
Publication of CN106083997B publication Critical patent/CN106083997B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/08Tripeptides
    • C07K5/0802Tripeptides with the first amino acid being neutral
    • C07K5/0804Tripeptides with the first amino acid being neutral and aliphatic
    • C07K5/0808Tripeptides with the first amino acid being neutral and aliphatic the side chain containing 2 to 4 carbon atoms, e.g. Val, Ile, Leu
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/08Tripeptides
    • C07K5/0802Tripeptides with the first amino acid being neutral
    • C07K5/0804Tripeptides with the first amino acid being neutral and aliphatic
    • C07K5/0806Tripeptides with the first amino acid being neutral and aliphatic the side chain containing 0 or 1 carbon atoms, i.e. Gly, Ala
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

本发明涉及大环脂肽Nannocystin A及其结构类似物的合成,利用经典的逆合成分析,成功合成了天然产物Nannocystin A和其结构类似物,合成方法具有很强的医药工业的应用前景。

Description

Nannocystin A及其结构类似物的合成
技术领域
本发明涉及大环脂肽Nannocystin A及其结构类似物的合成,属于有机化学领域。
背景技术
Nannocystin A是由Mark Bronstrup(Holger Hoffmann,etal.Angew.Chem.Int.Ed.2015,54,10145-10148)等人在2015年从myxobacterial genus,Nannocystis sp.中分离得到的一种大环脂肽类化合物。该分子具有一个新型的21元环骨架,其中包含一个三肽和一个带有环氧酰胺的聚酮片段。并通过核磁共振(NMR)技术、分子动力学计算、化学降解和X-射线晶体学确定了该分子的绝对立体构型。在生物活性测试方面,文章显示该分子可在纳摩尔级别通过诱导细胞凋亡而抑制细胞增殖。同年7月,DominicHoepfner(Philipp Krastel,et al.Angew.Chem.Int.Ed.2015,54,10149-10154)等人发表相关文章进一步描述了该分子的特性,并确定了该分子的生物合成基因簇。在针对该分子的生物学研究中,Dominic Hoepfner博士等人认为Nannocystin A的高生物活性是通过真核生物翻译延长因子1α起作用。但是在对该分子构效关系方面的描述,两篇文献的结论并不十分一致。
因此,基于该分子的良好生物活性及其构效关系的相关争议,对该分子的人工合成和构效关系的进一步确证显得尤为必要。可见,完成Nannocystin A的全合成以及类似物的开发将会具有重要的生物学研究意义以及进一步的工业应用前景,其也是目前的研究热点和重点,这也正是本发明得以完成的基础所在和动力所倚。
发明内容
如上所述,为了完成Nannocystin A的全合成以及类似物的开发,本发明人进行了深入研究,在付出大量创造性劳动后,从而完成了本发明。
本发明涉及如下两个方面。
第一个方面,本发明涉及如下式(Ι)所示结构的化合物及其药学上可接受的盐,其中,R1-R9独立地选自H,C1-C6的烷基,C1-C6的烷氧基,卤素,羟基,氨基,硝基,氰基,巯基,苯基。
Figure BDA0001041524810000021
在本发明的所述化合物中,除非另有规定,卤素或卤代中的卤素例如可为F、Cl、Br或I。
在本发明的所述化合物中,C1-C6的烷基的含义是指具有1-6个碳原子的直链或支链烷基,非限定性地例如可为甲基、乙基、正丙基、异丙基、正丁基、仲丁基、异丁基、叔丁基、正戊基、异戊基或正己基等。
本发明的所述化合物中,C1-C6的烷氧基是指上述定义的“C1-C6的烷基”与O原子相连后的基团。
优选的所述式(Ι)所示化合物的结构如下:
Figure BDA0001041524810000022
Figure BDA0001041524810000031
第二个方面,本发明涉及上述化合物的合成方法。由于其结构均较为类似,以化合物1a为例进行详细说明。
1、化合物1a的逆合成分析如下:
Figure BDA0001041524810000032
考虑到1a各酰胺键周围的位阻较大,因此选择在位阻相对较小的双烯键之间进行关环,所用到的反应为Suzuki偶联反应。而片段2和3的酰胺键连接可在DIC条件下进行从而得到关环前体化合物。其中,片段3可经过Mitsunobu反应从化合物7和化合物8连接得到。经过不对称Brown crotylboration反应及 烯烃复分解两步反应化合物8可从化合物17进行制备。切断化合物2的各酰胺键可得到化合物4-6,化合物5和6可分别由L-异亮氨酸和D-酪氨酸经过简单转化进行制备。而片段4中的环氧可由Sharpless不对称环氧化进行构建,而整个片段可由关键反应Vinylogous Mukaiyama aldol反应连接而成。
具体合成路线如下:
1)片段22的合成
Figure BDA0001041524810000041
反应式1:片段22的合成
从已知化合物18出发,在咪唑条件下,与TBDPSCl反应得到化合物19。
进一步的,在DMAP,EDCI条件下化合物19与TMSEOH反应得到化合物6。
进一步的,化合物6利用TFA脱除氨基端Boc保护基,得到化合物20,进一步,以PyAOP为接肽试剂,DIPEA作为碱,化合物20与化合物5连接得 到化合物21。
进一步的,化合物21在TFA存在的条件下,脱除二肽化合物21上的Boc保护基即可得到片段22。
2)片段4的合成
Figure BDA0001041524810000051
反应式2:片段4的合成
起始原料12和13,以TiCl4为路易斯酸,发生关键反应Vinylogous MukaiyamaAldol得到化合物23。
进一步的,得到化合物23后,在活性甲基化物质Meerwein’s salt及大位阻碱质子海绵(proton sponge)作用下得到甲基化产物24。
利用LiBH4还原反应脱除Evens’辅基得到醇类物质25,在Ti(Oi-Pr)4,TBHP,L-(+)-DET,
Figure BDA0001041524810000052
分子筛存在下,经由Sharpless不对称环氧化反应得到化合物26,最后经过1)Dess-Martin氧化反应,在DMP,NaHCO3存在下,以及2)Pinnick氧化反应,在NaClO2,NaH2PO4,2-methyl-2-butene存在下,反应可得到目标片段4。
3)片段2的合成
Figure BDA0001041524810000061
反应式3:片段2的合成
在得到二肽化合物22和环氧片段4之后,在BEP,DIPEA条件下,二肽化合物22和环氧片段4反应,得到三肽片段2。
4)片段3的合成
Figure BDA0001041524810000062
反应式4:片段3的合成
从苯甲醛17出发经过一步不对称Brown crotylboration反应,在t-BuOK,trans-2-butene,n-BuLi,(+)-(IPc)2BOMe,BF3Et2O,NaOH,H2O2存在下反应 可得到化合物16,接着在Hoveyda-Grubbs二代催化剂条件下,与化合物32发生烯烃复分解反应得到化合物8。在PPh3,DEAD存在下,利用Mitsunobu反应链接片段7和8得到酯类化合物27。进一步在TMSOTf,TEA存在下,保护三级羟基得到化合物28,之后在PMe3条件下还原叠氮并在酸性条件下脱除TMS保护基即可得到片段3。
5)化合物1a的合成
Figure BDA0001041524810000071
反应式5:化合物1a的合成
得到三肽化合物2之后,利用TASF脱除三肽硅保护基得到化合物30,接 着在DIC,HOBt,NMM条件下进行三肽30及酯类化合物3的连接得到关环前体31,最后在Pd(PPh3)4,Ag2O的条件下实现Suzuki偶联得到最终产物Nannocystin A(1a)。
6)类似物1b-1g的合成
本发明所设计的类似物旨在研究该类化合物的构效关系并为寻找抗癌活性更好的该类化合物打下基础,鉴于其结构较为类似,所使用的合成方法与上述相似。
具体实施方式
下面通过具体的实例对本发明进行详细说明,但这些例举性实施方式的用途和目的仅用来例举本发明,并非对本发明的实际保护范围构成任何形式的任何限定,更非将本发明的保护范围局限于此。
实施例1
Figure BDA0001041524810000081
氮气保护下,将化合物16(200mg,1.23mmol)和化合物32(0.83mL,4.94mmol)溶解在甲苯(25.0mL)中,加入2,6-二氯苯醌(110mg,0.62mmol),将Hoveyda-Grubbs第二代催化剂(112mg,0.18mmol)溶解在适量甲苯中滴入上述混合物。将反应升温至90℃搅拌反应12小时。反应结束后,恢复到室温,旋干后硅胶柱分离获得无色油状物体8(180mg,51%)。[α]D=+35.8°(c=1,CHCl3). 1H NMR(500MHz,CDCl3)δ7.37-7.27(m,5H),6.63(dd,J=18.0,8.0Hz,1H),5.62(d,J=18.0Hz,1H),4.39(d,J=8.4Hz,1H),2.60-2.51(m,1H),1.28(s,12H),0.84(d,J=6.8Hz,3H).13C NMR(125MHz,CDCl3)δ155.56,142.41,128.29,127.75,126.96,83.27,77.97,48.11,29.71,24.84,16.32.HRMS ESI calcd.for[C17H25BO3Na]+[M+Na]+:311.1794;found:311.1787.
实施例2
Figure BDA0001041524810000091
氮气保护下,将化合物8(75mg,0.26mmol)和7(83mg,0.52mmol)溶解在THF(4mL)中,0℃下依次加入PPh3(272.8mg,1.04mmol)和DEAD(0.17mL,1.04mmol)。接着恢复到室温搅拌反应8小时。反应结束后,加入饱和NaHCO3溶液(5mL),分液,水相用Et2O(2x30mL)萃取,收集并合并有机相,用饱和食盐水(20mL)洗涤,无水Na2SO4干燥。旋干后硅胶柱分离获得无色油状物体27(74.9mg;67%)。[α]D=-39.4°(c=1,CHCl3).1H NMR(500MHz,CDCl3)δ7.36-7.27(m,5H),6.49(dd,J=18.1,6.8Hz,1H),5.86(d,J=6.3Hz,1H),5.45(dd,J=18.1,1.0Hz,1H),3.79(s,1H),2.86-2.80(m,1H),1.26-1.21(m,18H),1.10(d,J=6.8Hz,3H).13CNMR(125MHz,CDCl3)δ168.77,153.05,137.76,128.35,128.24,127.01,83.20,80.69,72.62,69.94,44.33,26.85,25.79,24.70,14.45.HRMS ESI calcd.for[C22H32BN3O5Na]+[M+Na]+:452.2333;found:452.2323.
实施例3
Figure BDA0001041524810000092
将化合物27(159mg,0.37mmol)溶解在无水THF(10mL)中,加入TEA(0.3mL,1.85mmol)后冷却到-50℃,滴加TMSOTf(0.2mL,1.11mmol)。滴加完毕后,保持-50℃搅拌反应15分钟。加入饱和NaHCO3(5mL)溶液猝灭反应,利用乙酸乙酯(3x50mL)反复萃取,合并有机相,用饱和食盐水(15mL)洗涤,无水Na2SO4干燥。旋干后硅胶柱分离获得无色油状物体28(140mg;75%)。[α]D=+13.6°(c=1,CHCl3).1H NMR(500MHz,CDCl3)δ7.34-7.26(m,5H),6.46(dd,J=18.1,7.0Hz,1H),5.78(d,J=6.7Hz,1H),5.39(dd,J=18.1,1.2Hz,1H),3.56(s,1H),2.86-2.77(m,1H),1.32(d,J=13.4Hz,6H),1.22(s,12H),1.10(d,J=6.8Hz,3H),0.09(s,9H).13C NMR(125MHz,CDCl3)δ167.85,153.34,138.22,128.16,127.99,127.29,83.12,80.24,76.54,71.05,44.57,27.99,26.93,24.71,15.02,2.24.HRMS ESI calcd.for[C25H40BN3O5NaSi]+[M+Na]+:524.2728;found:524.2721.
实施例4
Figure BDA0001041524810000101
将化合物28(140mg,0.30mmol)溶解在THF(7.0mL)和H2O(1mL)中并搅拌20分钟。接着将PMe3(1M in THF,0.90mL)溶液滴入上述混合物中,室温搅拌16小时。反应结束后,直接旋干得到白色蜡状物用于下一步。HRMS ESI calcd.for[C25H43BNO5Si]+[M+H]+:476.3004;found:476.2999.
实施例5
Figure BDA0001041524810000102
将化合物29溶解在DCM(2.0mL)中冷却到0℃,加入HCl(0.3mL,1M),0℃下搅拌反应3h。反应结束后,直接旋干得到白色蜡状物用于下一步。HRMS ESI calcd.for[C22H35BNO5]+[M+H]+:404.2608;found:404.2603.
实施例6
Figure BDA0001041524810000103
将化合物12(1.34g,6.84mmol)溶解在DCM(50mL)中冷却到-78℃,滴加TiCl4(1Min CH2Cl2,5mL,5mmol)并在-78℃搅拌反应20分钟。将化合物13(1.70g,4.56mmol)溶解在DCM(15mL)中在-78℃条件下缓慢滴入上述混合物中,接着升温至-30℃搅拌反应18小时。反应结束后,用饱和酒石酸钾钠溶液(30mL)和饱和NaHCO3溶液(30mL)淬灭反应,使之恢复到室温,分液,用乙醚(2x 50mL)反复萃取,收集有机相,用无水Na2SO4干燥,过滤,旋干后硅胶柱分离获得无色油状物体23(1.43g,69%)。[α]D=+12.6°(c=1,CHCl3).1H NMR(500MHz,CDCl3)δ7.41–7.32(m,2H),7.32–7.27(m,1H),7.24–7.15(m,2H), 6.38(s,1H),5.95–5.85(m,1H),4.83–4.72(m,1H),4.35–4.24(m,2H),4.19(dd,J=9.0,5.3Hz,1H),3.35(dd,J=13.5,3.4Hz,1H),2.86(dd,J=13.5,9.3Hz,1H),2.55–2.39(m,2H),1.97(s,3H),1.88(d,J=0.7Hz,3H).13C NMR(125MHz,CDCl3)δ171.27,153.70,148.41,134.90,134.04,132.83,129.42,128.98,127.47,78.48,74.71,66.51,55.27,37.67,34.76,20.77,13.84.HRMS ESIcalcd.for[C19H22NO4NaI]+[M+Na]+:478.0491;found:478.0484.
实施例7
Figure BDA0001041524810000111
氮气保护下,将化合物23(0.92g,2.02mmol)置于一个250mL烘干的圆底烧瓶中,手套箱中称取大位阻碱质子海绵(proton sponge)(2.16g,10.10mmol)及活性甲基化物质三甲基氧鎓四氟硼酸盐(0.59g,4.04mmol)置于上述250mL烘干圆底烧瓶中,加入无水DCM(100mL)作为溶剂,室温搅拌反应3小时。反应结束后,分液,用DCM(2x 50mL)萃取,收集有几液,依次用1N HCl水溶液(30mL),饱和NaHCO3(30mL)洗涤,无水Na2SO4干燥,旋干后硅胶柱分离获得无色油状物体24(0.79g,83%)。[α]D=-53.4°(c=1,CHCl3).1H NMR(500MHz,CDCl3)δ7.40–7.31(m,2H),7.31–7.25(m,1H),7.24–7.14(m,2H),6.29(s,1H),6.01–5.91(m,1H),4.75–4.65(m,1H),4.26(t,J=8.5Hz,1H),4.21–4.13(m,1H),3.76(t,J=6.8Hz,1H),3.35(dd,J=13.5,3.4Hz,1H),3.22(s,3H),2.84(dd,J=13.4,9.3Hz,1H),2.56–2.42(m,1H),2.41–2.29(m,1H),1.91(s,3H),1.79(d,J=0.8Hz,3H).13C NMR(125MHz,CDCl3)δ171.52,147.14,135.13,133.66,132.59,129.43,128.93,127.36,84.61,79.84,66.42,56.48,55.43,37.58,32.70,18.70,13.85.HRMS ESI calcd.for[C19H22NO4NaI]+[M+Na]+:492.0648;found:492.0641.
实施例8
Figure BDA0001041524810000121
氮气保护下,将化合物24(1.14g,2.43mmol)溶解在THF(60mL)和MeOH(1.2mL),冷却至0℃,滴加LiBH4(1.82mL,4.6mmol,2mol/L in THF)后0℃反应3小时。反应结束后,加入NaOH(20mL,1mol/L)恢复到室温后搅拌10分钟,加入水溶液(20mL),利用DCM(2x 50mL)进行萃取,收集有机液,无水Na2SO4干燥,过滤旋干后硅胶柱分离获得无色油状物体25(687.9mg,96%)。[α]D=+3.8°(c=1,CHCl3).1H NMR(500MHz,CDCl3)δ6.19(s,1H),5.37–5.28(m,1H),3.99(s,2H),3.67(t,J=6.8Hz,1H),3.20(s,3H),2.41–2.30(m,1H),2.30–2.14(m,1H),1.76(d,J=1.0Hz,3H),1.65(s,3H).13C NMR(125MHz,CDCl3)δδ147.51,137.14,120.85,85.76,79.05,68.57,56.44,32.10,18.82,13.88.HRMS ESI calcd.for[C10H17O2NaI]+[M+Na]+:319.0171;found:319.0164.
实施例9
Figure BDA0001041524810000122
氮气保护下,将化合物25(690mg,2.33mmol)和L-(+)-DET(0.24mL,1.40mmol)溶解在无水DCM(50mL)加入到装有活化
Figure BDA0001041524810000123
分子筛(1.5g)的圆底烧瓶中,室温搅拌4.5小时。将反应混合物冷却至-35℃,滴加Ti(Oi-Pr)4(340μL,1.20mmol)之后搅拌1.5小时并缓慢升温至-5℃。接着将反应温度降低到-30℃,滴入t-BuOOH(2mL,ca 5.5M in decane,9.32mmol)。将反应升温至0℃反应60小时。反应结束后,加入水溶液(15mL)和EtOAc(15mL)并在室温条件下搅拌1小时。利用硅藻土过滤,乙酸乙酯(200mL)洗涤,收集滤液,依次用15%w/wNa2S2O4(2x 75mL)水溶液、饱和NaHCO3(75mL)和饱和食盐水(100mL)洗涤,无水Na2SO4干燥,过滤旋干后硅胶柱分离获得白色泡沫状物体26(648mg,89%yield)。[α]D=-3.6°(c=1,CHCl3).1HNMR(500MHz,CDCl3)δ6.32(s,1H),3.85(t,J=6.9Hz,1H),3.67(d,J=12.3Hz,1H),3.56(d,J=12.3Hz,1H),3.23(s, 3H),3.07–2.98(m,1H),1.91–1.83(m,2H),1.78(d,J=0.9Hz,3H),1.27(s,3H). 13C NMR(125MHz,CDCl3)δ147.12,83.91,79.81,65.23,60.67,56.91,56.43,32.66,18.67,14.42.HRMS ESI calcd.for[C10H17O3NaI]+[M+Na]+:335.0120;found:335.0116.
实施例10
Figure BDA0001041524810000131
醇26(88mg,0.30mmol)溶解在DCM(20mL)中,冷却至0℃,依次加入NaHCO3(100mg,1.20mmol)和Dess-Martin试剂(382mg,0.90mmol),恢复至室温,搅拌反应1小时。反应结束后,直接旋干后硅胶柱分离获无色油状物体用于下一步氧化反应。将上述无色油状物溶解在两相溶剂t-butanol和H2O(1:1,10mL)中,室温依次加入2-methyl-2-butene(2mL)、NaH2PO4(327mg,2.10mmol)和NaClO2(81mg,0.90mmol)。室温反应12小时,反应结束后,加水(10mL)淬灭反应,用乙酸乙酯(3x20mL)反复萃取,收集有机液,无水Na2SO4干燥,过滤旋干后硅胶柱分离获得无色油状物体4(95mg,98%)。[α]D=+2.2°(c=1,CHCl3).1H NMR(500MHz,CDCl3)δ6.37(s,1H),3.87(t,J=6.7Hz,1H),3.24(s,3H),3.22(M,1H),1.95–1.80(m,2H),1.79(s,3H),1.55(s,3H).13C NMR(125MHz,CDCl3)δ174.92,146.61,83.45,80.28,59.72,57.27,56.55,32.65,18.82,13.14.HRMS ESI calcd.for[C10H15O4NaI]+[M+Na]+:348.9913;found:348.9915.
实施例11
Figure BDA0001041524810000132
将化合物18(633mg,1.81mmol)溶解在DCM(20mL)中冷却至0℃,依次 加入咪唑(492mg,7.24mmol)、TBDPSCl(1.4ml,5.43mmol),升到室温搅拌1小时,反应结束后加入NH4Cl(20mL),用DCM(3x30mL)萃取,合并有机液,依次用水(30mL)和饱和食盐水(30mL)洗涤,无水Na2SO4干燥,滤液旋干得到粗产品直接进行下一步。
将上述粗产品与2-三甲基硅乙醇(0.6ml,3.60mmol)一并溶解在CH2Cl2(20mL)中冷却至0℃,依次加入EDCI(766mg,3.60mmol)和DMAP(30mg,0.18mmol),升至室温后搅拌反应16小时。反应结束后,用乙酸乙酯(40mL)进行萃取,依次用5%柠檬酸(2х12mL),饱和NaHCO3(2х12mL)和饱和食盐水(2х12mL)洗涤,无水Na2SO4干燥。滤液旋干后硅胶柱分离获得无色油状物体6(1.22g,98%)。[α]D=-24.8°(c=1,CHCl3).1H NMR(500MHz,CDCl3)δ7.75–7.72(m,4H),7.43–7.34(m,6H),6.95(s,2H),5.01(d,J=7.6Hz,1H),4.45(d,J=6.6Hz,1H),4.19(t,J=8.7Hz,2H),3.02–2.88(m,2H),1.45(s,9H),1.14(s,9H),0.04(s,9H).13C NMR(125MHz,CDCl3)δ171.37,154.94,147.32,135.24,133.42,130.51,129.74,129.69,127.37,126.04,80.05,64.02,54.40,37.07,28.33,26.72,20.38,17.63,-1.56.HRMS ESI calcd.for[C35H47NO5NaSi2Cl2]+[M+Na]+:710.2268;found:710.2262.
实施例12
Figure BDA0001041524810000141
将化合物6(620mg,0.90mmol)溶解在DCM(10mL)中,滴入三氟乙酸(0.6mL,8.10mmol),室温搅拌反应2小时,反应结束后直接旋干并抽干得到化合物6-1直接用于下一步反应。
将化合物6-1和化合物5(265mg,1.08mmol)溶解在DCM(15mL)冷却至 0℃,依次加入DIPEA(0.8mL,4.50mmol)和PyAOP(703mg,1.35mmol),恢复到室温搅拌反应12小时。反应结束后,加入饱和NH4Cl溶液(5mL),用乙酸乙酯(50mL)进行萃取,收集有机相,依次用饱和NaHCO3(10mL)和饱和食盐水(10mL)洗涤,无水Na2SO4干燥,滤液旋干后硅胶柱分离得到无色油状物质21(265mg,36%)。[α]D=-41.6°(c=1,CHCl3).1H NMR(500MHz,CDCl3)δ7.78–7.67(m,4H),7.44–7.30(m,6H),6.95(s,2H),4.68(d,J=5.9Hz,1H),4.22–4.14(m,2H),3.06–2.84(m,2H),2.75(s,3H),2.12–2.02(m,1H),1.46(s,9H),1.13(s,9H),0.97(dd,J=11.0,6.5Hz,2H),0.91–0.82(m,6H),0.03(s,9H).13C NMR(125MHz,CDCl3)δ170.76,170.39,147.30,135.21,135.18,133.43,130.48,129.67,129.54,127.37,126.02,80.37,63.94,63.14,53.05,36.72,31.62,30.37,28.35,26.69,24.52,20.37,17.64,15.87,10.42,-1.58.HRMS ESI calcd.for[C42H60N2O6NaSi2Cl2]+[M+Na]+:837.3265;found:837.3262.
实施例13
Figure BDA0001041524810000151
将化合物21(26mg,0.03mmol)溶解在DCM(2mL)中,滴入三氟乙酸(0.06mL,0.81mmol),室温搅拌反应2小时,反应结束后直接旋干并抽干得到化合物21-1直接用于下一步反应。
将化合物21-1溶解在MeCN(1.5mL)中,依次加入DIPEA(0.06mL,363μmol)和BEP(20mg,73μmol),将化合物4溶解在DCM(1mL)中滴入上述混合物中,室温下反应过夜。反应结束后,加入乙酸乙酯(10mL),分液,有机相依次用饱和NaHCO3(10mL)和饱和食盐水(10mL)洗涤,无水Na2SO4干燥。滤液旋干后硅胶柱分离得到三肽化合物2(26mg,90%)。[α]D=-43.8°(c=1,CHCl3).1H NMR(500MHz,CDCl3)δ7.75–7.71(m,4H),7.42–7.31(m,6H), 6.95(s,2H),6.60(d,J=7.5Hz,1H),6.35(s,1H),4.73–4.63(m,1H),4.44(d,J=11.4Hz,1H),4.22–4.16(m,2H),3.90(t,J=6.7Hz,1H),3.24(s,3H),3.13–3.08(m,1H),3.04–3.00(m,1H),3.00(s,3H),2.87–2.80(m,1H),2.15(s,1H),1.86–1.77(m,5H),1.48(s,3H),1.13(s,9H),0.98–0.94(m,2H),0.89–0.86(m,6H),0.82–0.79(m,2H),0.04(s,9H).13C NMR(125MHz,CDCl3)δ171.39,170.70,169.22,147.33,146.81,135.23,133.45,130.49,129.73,129.57,127.40,126.07,83.73,80.11,64.10,61.85,60.57,59.23,56.56,53.14,36.64,32.86,31.13,30.90,26.72,24.43,20.39,18.90,17.61,15.65,15.10,10.48,-1.51.HRMS ESIcalcd.for[C47H65N2O7NaSi2Cl2I]+[M+Na]+:1045.2650;found:1045.2644.
实施例14
Figure BDA0001041524810000161
将化合物2(55mg,0.054mmol)溶解在THF(5mL),冷却至0℃加入溶在THF(1mL)的TASF(44mg,0.16mmol)试剂,升至室温搅拌反应12小时,反应结束后加入饱和NH4Cl(10mL)溶液,加入乙酸乙酯(3x 30mL).反复萃取,收集有机相,依次用水(30mL)和饱和食盐水(30mL)洗涤,无水Na2SO4干燥,滤液旋干直接用于下一步。
将化合物3(27mg,0.067mmol)溶解在DMF(3mL)中,依次加入NMM(0.1ml,0.9mmol),HOBt(82mg,0.6mmol)和DIC(31ul,0.201mmol)。将上步所得粗产品溶解在DCM(1mL)中滴入上述混合物中,室温下搅拌过夜。反应结束后,加入饱和NH4Cl(10mL),用乙酸乙酯(3x30mL)反复萃取,合并有机相,依次用水(60mL)和饱和食盐水(30mL)洗涤。无水Na2SO4干燥,滤液旋干后硅胶柱分离得到关环前体化合物31(51mg,88%)。[α]D=-19.8°(c=1,CHCl3).1H NMR(500MHz,CDCl3)δ7.27(d,J=5.1Hz,5H),7.15(s,2H),6.98(s,1H),6.83 (s,1H),6.38(dd,J=18.0,7.1Hz,1H),6.32(s,1H),5.83(s,1H),5.67(d,J=7.7Hz,1H),5.35(d,J=18.1Hz,1H),4.69(dd,J=14.2,8.5Hz,1H),4.40(d,J=8.3Hz,1H),4.32(d,J=11.1Hz,1H),3.85(t,J=6.5Hz,1H),3.20(dd,J=23.7,7.1Hz,2H),3.14(s,3H),3.02(s,3H),2.90-2.86(m,1H),2.84(d,J=6.3Hz,1H),2.09(s,1H),1.79(d,J=6.4Hz,2H),1.77(s,3H),1.42(s,3H),1.22(s,12H),1.13(d,J=6.7Hz,3H),1.09(s,3H),1.03(s,3H),0.86(t,J=7.4Hz,6H),0.73(d,J=6.5Hz,3H).13C NMR(125MHz,CDCl3)δ171.72,170.25,170.03,153.05,146.92,146.88,138.05,130.32,128.94,128.19,127.57,121.28,83.63,83.21,80.52,80.08,76.02,71.57,62.56,60.57,60.35,59.32,56.48,54.09,44.51,36.25,32.96,31.68,31.28,29.71,29.36,26.92,24.74,24.63,18.99,15.63,15.49,15.03,10.50.HRMS ESIcalcd.for[C48H67BN3O11NaCl2I]+[M+Na]+:1092.3188;found:1092.3178.
实施例15
Figure BDA0001041524810000171
将Pd(PPh3)4(10mg,0.009mmol)和Ag2O(33mg,0.14mmol)溶解在脱气的THF/H2O(20mL,v:v=10:1),将溶在脱气THF/H2O(13mL,v:v=10:1)中的化合物31滴入上述混合物中,室温下搅拌反应12小时。反应结束后,用乙酸乙酯(100mL)进行萃取,依次用水(30mL)and饱和食盐水(30mL)进行洗涤,无水Na2SO4干燥,滤液旋干后硅胶柱分离得到化合物1a。[α]D=-29°(c=1,MeOH). 1H NMR(500MHz,DMSO)δ9.77(s,1H),8.61(d,J=10.1Hz,1H),8.05(d,J=9.8Hz,1H),7.56(d,J=7.4Hz,2H),7.37(s,2H),7.32(t,J=7.5Hz,2H),7.25(t,J=7.3Hz,1H),6.45–6.32(m,1H),6.24–6.07(m,2H),5.89(s,1H),5.13(s,1H),4.77–4.63(m,2H),4.47(d,J=11.3Hz,1H),3.62(dd,J=10.3,3.2Hz,1H),3.09(s,3H),2.97(s,3H),2.81(d,J=10.8Hz,1H),2.68–2.58(m,2H),2.48–2.44(m, 1H),2.12(t,J=11.2Hz,1H),1.70(s,3H),1.51–1.37(m,4H),1.22(d,J=12.6Hz,2H),1.14(s,3H),1.03(s,3H),0.98–0.82(m,4H),0.77(t,J=7.3Hz,3H),0.33(d,J=6.6Hz,3H).13C NMR(125MHz,DMSO-)δ170.48,170.34,169.29,168.50,147.19,139.84,138.04,133.29,130.78,129.59,128.65,127.69,126.86,125.91,124.70,121.49,83.78,78.76,71.76,61.15,59.22,59.15,57.91,55.09,52.60,41.77,37.11,30.92,30.29,29.57,28.10,24.53,24.09,14.82,14.38,10.75,9.96,9.69.HRMS ESI calcd.for[C42H55N3O9NaCl2]+[M+Na]+:838.3213;found:838.3211.
采用与上述基本相同的实验步骤相应的替换对应原料化合物合成了化合物1b、1c和1d,其相应的核磁和质谱分析数据如下:
Figure BDA0001041524810000181
1)化合物1b的相关数据:[α]D=-16°(c=1,MeOH).1H NMR (500MHz,MeOH-d4)δ7.38–7.28(m,5H),7.07(d,J=8.5Hz,2H),6.66(d,J=8.5Hz,2H),6.46–6.39(m,1H),6.15(s,1H),6.05–6.00(m,1H),4.65(d,J=3.6Hz,1H),4.54(d,J=11.4Hz,2H),3.71–3.66(m,1H),3.17(s,3H),3.07(s,3H),3.00–2.95(m,1H),2.88–2.85(m,1H),2.74–2.69(m,2H),2.34–2.27(m,1H),2.21–2.16(m,1H),2.06–1.94(m,2H),1.73(s,3H),1.61(s,1H),1.49(s,3H),1.29(d,6H),1.05(d,J=6.9Hz,3H),0.86–0.85(m,2H),0.71(d,J=6.9Hz,3H),0.57(d,J=6.5Hz,3H).13C NMR(125MHz,MeOH-d4)δ171.63,171.49,170.62,169.11,155.99,139.48,136.87,133.24,130.18,129.52,127.93,127.30,127.28,125.64,125.35,114.83,84.38,78.08,61.25,60.38,58.42,56.21,54.60,53.43,42.17,38.57,31.34,31.28,30.87,29.37,24.08,23.64,18.39,15.78,14.17,9.71,9.06.HRMS ESI calcd.for[C42H57N3O8Na]+[M+Na]+:754.4043;found:754.4048
Figure BDA0001041524810000191
2)化合物1c的相关数据:[α]D=-23.60°(c=1,MeOH).1H NMR(500MHz,MeOH-d4)δ7.47–7.39(m,2H),7.37–7.32(m,2H),7.30–7.26(m,1H),7.10–7.00(m,2H),6.73–6.66(m,2H),6.46–6.37(m,1H),6.17(d,J=10.7Hz,1H),6.01(dd,J=15.8,5.9Hz,1H),5.92(s,1H),4.80(s,1H),4.75–4.64(m,2H),4.56(s,1H),3.77(d,J=7.8Hz,1H),3.24(s,3H),3.03(s,3H),2.80–2.70(m,2H),2.59(s,1H),2.22–2.10(m,1H),1.74(s,3H),1.50(s,3H),1.44–1.35(m,2H),1.22(d,J=8.7Hz,6H),1.10(s,3H),1.08–1.01(m,3H).13C NMR(125MHz,MeOH-d4)δ171.71,171.47,170.83,170.01,156.02,136.30,133.28,130.42,130.09,128.31,127.62,127.31,127.11,126.41,125.79,114.88,83.63,80.02,71.47,70.48,60.54,58.56,54.95,54.23,52.81,42.05,37.36,31.03,29.94,26.80,24.74,13.99,12.23,10.74.HRMS ESI calcd.for[C39H51N3O9Na]+[M+Na]+:728.3523;found:728.3513.
Figure BDA0001041524810000192
3)化合物1d的相关数据:[α]D=-28.4°(c=0.5,MeOH).1H NMR(500MHz,MeOH-d4)δ7.51–7.46(m,2H),7.38–7.32(m,2H),7.31–7.24(m,5H),7.21– 7.17(m,1H),6.49–6.41(m,1H),6.18(d,J=10.5Hz,1H),6.05(dd,J=15.3,5.5Hz,1H),5.95(d,J=1.7Hz,1H),4.98–4.92(m,1H),4.65(s,1H),4.53(d,J=11.3Hz,1H),3.74(dd,J=10.1,3.2Hz,1H),3.22(s,3H),3.16–3.11(m,1H),3.08(s,3H),2.95(dd,J=9.7,2.6Hz,1H),2.81–2.75(m,1H),2.74–2.68(m,1H),2.23–2.15(m,1H),1.97–1.90(m,1H),1.75(s,3H),1.63–1.56(m,1H),1.51(s,3H),1.23(s,3H),1.12–1.06(m,6H),1.02–0.92(m,2H),0.86(t,J=7.4Hz,3H),0.43(d,J=6.6Hz,3H).13C NMR(125MHz,MeOH-d4)δ171.54,171.21,170.05,169.34,139.36,136.86,136.70,133.23,129.18,129.02,128.05,127.63,127.04,126.40,126.26,125.46,84.08,80.00,71.89,61.25,60.37,60.07,58.51,54.75,53.29,42.05,38.85,31.45,30.80,29.46,26.96,24.42,24.03,14.18,14.05,10.04,9.80,9.06.
综上所述,发明人付出了大量的创造性劳动,完成了Nannocystin A的全合成以及类似物的开发,这将会具有重要的生物学研究意义以及进一步的工业应用前景。
应当理解,这些实施例的用途仅用于说明本发明而非意欲限制本发明的保护范围。此外,也应理解,在阅读了本发明的技术内容之后,本领域技术人员可以对本发明作各种改动、修改和/或变型,所有的这些等价形式同样落于本申请所附权利要求书所限定的保护范围之内。

Claims (6)

1.化合物1a的制备方法,其特征在于,所述制备方法的合成路线如下:
Figure FDA0002930097330000011
2.根据权利要求1所述的制备方法,其特征在于:三肽化合物2利用TASF脱除三肽硅保护基得到化合物30,接着在DIC、HOBt,NMM条件下进行三肽30及酯类化合物3的连接得到关环前体31,最后在Pd(PPh3)4、Ag2O的条件下实现Suzuki偶联得到最终产物Nannocystin A(1a)。
3.根据权利要求1-2任一项所述的制备方法,其特征在于:所述三肽化合物2和酯类化合物3的合成路线如下:
Figure FDA0002930097330000021
4.根据权利要求3所述的制备方法,其特征在于:三肽片段2合成方法为在BEP、DIPEA条件下,二肽化合物22和环氧片段4反应,得到三肽片段2;酯类化合物3合成方法为苯甲醛17经过一步不对称Brown crotylboration反应,在t-BuOK、反式-2-丁烯、n-BuLi、(+)-(IPc)2BOMe、BF3Et2O、NaOH、H2O2存在下反应可得到化合物16,接着在Hoveyda-Grubbs二代催化剂条件下,与化合物32发生烯烃复分解反应得到化合物8,所述Hoveyda-Grubbs二代催化剂如路线中所示,在PPh3、DEAD存在下,利用Mitsunobu反应链接片段7和8得到酯类化合物27,进一步在TMSOTf、TEA存在下,保护三级羟基得到化合物28,之后在PMe3条件下还原叠氮并在酸性条件下脱除TMS保护基即可得到片段3。
5.根据权利要求4所述的制备方法,其特征在于:环氧片段4的合成路线如下:
Figure FDA0002930097330000031
6.根据权利要求4所述的制备方法,其特征在于:化合物22的合成路线如下:
Figure FDA0002930097330000032
CN201610522803.2A 2016-07-05 2016-07-05 Nannocystin A及其结构类似物的合成 Active CN106083997B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610522803.2A CN106083997B (zh) 2016-07-05 2016-07-05 Nannocystin A及其结构类似物的合成

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610522803.2A CN106083997B (zh) 2016-07-05 2016-07-05 Nannocystin A及其结构类似物的合成

Publications (2)

Publication Number Publication Date
CN106083997A CN106083997A (zh) 2016-11-09
CN106083997B true CN106083997B (zh) 2021-03-26

Family

ID=57213322

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610522803.2A Active CN106083997B (zh) 2016-07-05 2016-07-05 Nannocystin A及其结构类似物的合成

Country Status (1)

Country Link
CN (1) CN106083997B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109280073A (zh) * 2017-07-19 2019-01-29 南开大学 Nannocystins衍生物及其用途
CN109796468B (zh) * 2019-03-26 2021-08-31 南开大学 大环nannocystin衍生物、及其制备方法和用途
CN112321677A (zh) * 2020-10-23 2021-02-05 北京大学深圳研究生院 Nannocystin A的类似物及其制备方法和应用
CN115894607B (zh) * 2022-11-02 2024-01-30 四川大学 一种抗肿瘤的苯丙氨酸缬氨酰衍生物及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE502039T1 (de) * 2007-07-04 2011-04-15 Sanofi Aventis Makrolakton-derivate
JP2012512224A (ja) * 2008-12-17 2012-05-31 サノフイ マクロラクトン誘導体、その製造方法、及びがんの処置のためのその使用

Also Published As

Publication number Publication date
CN106083997A (zh) 2016-11-09

Similar Documents

Publication Publication Date Title
CN106083997B (zh) Nannocystin A及其结构类似物的合成
WO2010113939A1 (ja) ジフェニルメタン化合物
BR112015000232B1 (pt) Método para a síntese de gama, delta-dihidroxi-isoleucina, composto, kit e método para sintetizar uma amatoxina
CN105777871B (zh) 一种环五肽的合成方法
CN109293468B (zh) 一种通过铱催化nhp酯与末端芳基炔烃的脱羧偶联反应合成顺式烯烃的方法
JP3866279B2 (ja) ペプチド連結用の新規な試薬
Branch One-pot, Three-component Synthesis of Fully Substituted 1, 3, 4-Oxadiazole Derivatives from (N-Isocyanoimino) triphenylphosphorane, Aromatic Carboxylic acids and (1R)-(−)-Campherchinon
CN110183347B (zh) 一种含有苯甲基结构的化合物及其应用
Chung et al. Cyclic peptide facial amphiphile preprogrammed to self-assemble into bioactive peptide capsules
CN109678751A (zh) 一种含有二苯甲烷结构的化合物
WO2006104226A1 (ja) 軸不斉を有する光学活性な4級アンモニウム塩およびそれを用いたα−アミノ酸およびその誘導体の製造方法
CN106632214A (zh) 一种大麻酚类化合物的合成方法
TWI716733B (zh) 環胜肽、包含其之醫藥或化妝品組成物及其製備方法
JP5985534B2 (ja) グアニジル基およびアミノ基の保護のためのインドールスルホニル保護基
KR20100116644A (ko) 콤브레타스타틴의 제조 방법
CN114539304B (zh) 一类1,3-氮杂硅烷化合物的合成方法及其应用
Fong et al. Synthesis and biological evaluation of the ascidian blood-pigment halocyamine A
Boitrel et al. l-Prolinoyl chiral picket iron porphyrins evaluated for the enantioselective epoxidation of alkenes
JP4782329B2 (ja) キラル相間移動触媒およびそれを用いた不斉ペプチドの製造方法
WO2020228097A1 (zh) 一种模拟天然产物结构的环肽化合物及其制备方法
CN113173891A (zh) 一种钙敏感受体蛋白拮抗剂衍生的分子探针及在甲状旁腺切除手术中的应用
Papini et al. Diastereoselective Alkylation of Schiff Bases for the Synthesis of Lipidic Unnatural Fmoc‐Protected α‐Amino Acids
Araki et al. A new synthesis of pyrroles by the condensation of cyclopropenes and nitriles mediated by gallium (III) and indium (III) salts
Vallette et al. Room temperature ionic liquids (RTIL’s) are convenient solvents for peptide synthesis!
JP6202431B2 (ja) かご型シルセスキオキサン誘導体

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant