WO2020224583A1 - 显示装置 - Google Patents

显示装置 Download PDF

Info

Publication number
WO2020224583A1
WO2020224583A1 PCT/CN2020/088739 CN2020088739W WO2020224583A1 WO 2020224583 A1 WO2020224583 A1 WO 2020224583A1 CN 2020088739 W CN2020088739 W CN 2020088739W WO 2020224583 A1 WO2020224583 A1 WO 2020224583A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
gamma
transistor
detection resistor
display device
Prior art date
Application number
PCT/CN2020/088739
Other languages
English (en)
French (fr)
Inventor
王明良
Original Assignee
重庆惠科金渝光电科技有限公司
惠科股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆惠科金渝光电科技有限公司, 惠科股份有限公司 filed Critical 重庆惠科金渝光电科技有限公司
Priority to US17/294,879 priority Critical patent/US11295694B2/en
Publication of WO2020224583A1 publication Critical patent/WO2020224583A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3685Details of drivers for data electrodes
    • G09G3/3688Details of drivers for data electrodes suitable for active matrices only
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/006Electronic inspection or testing of displays and display drivers, e.g. of LED or LCD displays
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3696Generation of voltages supplied to electrode drivers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/027Details of drivers for data electrodes, the drivers handling digital grey scale data, e.g. use of D/A converters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/043Preventing or counteracting the effects of ageing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0673Adjustment of display parameters for control of gamma adjustment, e.g. selecting another gamma curve

Definitions

  • This application relates to the field of display technology, and in particular to a display device.
  • TFT thin film transistor
  • a display device is provided.
  • a display device includes:
  • Gamma chip used to output gamma voltage
  • the detection resistor has a first end and a second end for electrical connection, and the first end is grounded;
  • the display panel includes a plurality of sub-pixels, a plurality of driving transistors, and at least one detecting transistor; the gate of the driving transistor receives the gate-on voltage, the first electrode of the driving transistor receives the gamma voltage, so The second electrode of the driving transistor is electrically connected to the corresponding sub-pixel; the gate of the detection transistor receives the gate-on voltage, the first electrode of the detection transistor receives a test voltage, and the second electrode of the detection transistor Two poles are electrically connected to the second end of the detection resistor;
  • the control module is electrically connected to the second end of the detection resistor, and is used to control the gamma chip to increase the output of the gamma voltage when the voltage of the detection resistor decreases.
  • a display device includes:
  • the gamma chip includes a digital-to-analog conversion module and two voltage storage modules, each of the voltage storage modules stores a different voltage code, and the digital-to-analog conversion module is used to convert the voltage code into the gamma voltage.
  • a data driving chip electrically connected to the gamma chip, for outputting the gamma voltage according to a certain timing
  • a power supply chip for outputting the gate turn-on voltage and the power supply voltage of the data driving chip
  • the detection resistor has a first end and a second end for electrical connection, and the first end is grounded;
  • the display panel includes a plurality of sub-pixels, a plurality of driving transistors, and at least one detecting transistor; the gate of the driving transistor receives the gate-on voltage, the first electrode of the driving transistor receives the gamma voltage, so The second electrode of the driving transistor is electrically connected to the corresponding sub-pixel; the gate of the detection transistor receives the gate-on voltage, and the first electrode of the detection transistor receives the power supply voltage of the data driving chip.
  • the second terminal of the detecting transistor is electrically connected to the second terminal of the detecting resistor;
  • Two switch units, the switch unit and the voltage storage module are arranged in a one-to-one correspondence, and both ends of the switch unit are electrically connected to the corresponding voltage storage module and the digital-to-analog conversion module.
  • the switch units are all electrically connected to the second end of the detection resistor, and switch on and off in opposite states according to the voltage of the detection resistor;
  • the two switch units are switched on and off, thereby increasing the output of the gamma voltage.
  • the aging of the detection transistor can be detected by the decrease of the voltage of the detection resistor, and the aging of the transistor can be detected to effectively reflect the driving transistor. Aging status.
  • the above-mentioned display device controls the gamma chip to increase the output of the gamma voltage according to the decrease of the voltage of the detection resistance, so that when the driving transistor is aging and the impedance increases, the voltage of the first electrode can be increased, thereby effectively preventing the The two-pole current (the actual charging current) is reduced, thereby ensuring that the display device has a consistent brightness during long-term use. Therefore, the display device of the present application can effectively prevent the display from darkening after long-term use.
  • Fig. 1 is a schematic diagram of a display device in an embodiment
  • FIG. 2 is a partial enlarged schematic diagram of the display device shown in FIG. 1;
  • Fig. 3 is a partial enlarged schematic diagram of a display device in another embodiment
  • Fig. 4 is a partial enlarged schematic diagram of a display device in another embodiment.
  • the display device provided in this application can be applied to LCD TVs, computer monitors, etc.
  • the display device includes a power chip 100, a gamma chip 200, and a display panel 300.
  • the power chip 100 is used to output the gate turn-on voltage VG.
  • the gamma chip 200 is used to output gamma voltage.
  • the display panel 300 includes a plurality of sub-pixels 310 of various colors, such as a red sub-pixel R, a green sub-pixel G, and a blue sub-pixel B.
  • the display panel 300 further includes a plurality of driving transistors 320 for driving each sub-pixel 310.
  • the driving transistor 320 may be a thin film transistor. Specifically, the gate of each driving transistor 320 receives the gate-on voltage VG to turn on the corresponding sub-pixel 310. The first pole of each driving transistor 320 receives the corresponding gamma voltage to provide power to the corresponding sub-pixel 310.
  • the second electrode of each driving transistor 320 is electrically connected to the corresponding sub-pixel 310 to charge the corresponding sub-pixel 310.
  • the sub-pixel 310 includes a pixel electrode, a common electrode, liquid crystal molecules between the pixel electrode and the common electrode, and the like.
  • Each sub-pixel 310 corresponds to a pixel electrode, and each sub-pixel can share a common electrode.
  • the second electrode of the driving transistor 320 is electrically connected to the corresponding sub-pixel 310.
  • the second electrode of the driving transistor 320 is electrically connected to the pixel electrode of the corresponding sub-pixel 310.
  • the first electrode here can be a drain or a source; correspondingly, the second electrode can be a source or a drain.
  • the driving transistor is an N-type transistor
  • the first electrode has a drain and the second electrode has a source.
  • the driving transistor is a P-type transistor
  • the first pole is a source and the second pole is a drain.
  • the driving transistor is an N-type transistor.
  • the display panel further includes at least one detection transistor 330.
  • the detection transistor 330 is used for aging detection.
  • the detection transistor 330 and the driving transistor 320 can be thin film transistors of the same conductivity type formed through the same process, so that both can have the same performance parameters, so that the aging of the detection transistor 330 can more accurately reflect the driving transistor. 320's aging situation.
  • the conductivity type refers to the multiple sub-types in the conduction channel when the thin film transistor is turned on.
  • the display device further includes a detection resistor 400.
  • the detection resistor 400 is a fixed-value resistor with a fixed resistance, and has a first end 410 and a second end 420 for electrical connection.
  • the first terminal 410 is grounded, and the second terminal 420 is electrically connected to the second electrode of the detection transistor 330.
  • the gate of the detecting transistor 330 is the same as the gate of the driving transistor 320, and also receives the gate-on voltage VG to form a conductive channel.
  • the first electrode of the detection transistor 330 receives a test voltage VT, thereby forming a current path in the conductive channel between the first electrode and the second electrode.
  • the test voltage VT can be directly output by the power chip 100, of course, can also be output by other driving parts.
  • V1 VDD*R/(R+R1). It can be seen that V1 and R1 have a negative correlation.
  • the detection transistor 330 like the driving transistor 320, will gradually age with the use of the display device, and its equivalent impedance R1 will gradually increase. Therefore, as the transistor ages, V1 will become smaller and smaller, and the aging degree of the detecting transistor 330 can be detected through V1, and then the aging degree of the driving transistor 320 can be reflected.
  • the display device further includes a control module 500.
  • the control module 500 is electrically connected to the second end 420 of the detection resistor 400, and can control the gamma chip 200 to output different gamma voltages according to the voltage of the detection resistor 400.
  • the driving transistor 320 and the detecting transistor 330 are located in the same display device, and both receive the same gate-on voltage VG. Therefore, the aging degree of the two is close.
  • the aging condition of the detecting transistor 330 can reflect the aging condition of the driving transistor.
  • the control module 500 controls the gamma chip 200 to increase the output of the gamma voltage, thereby increasing the voltage of the first pole of the driving transistor 320 when its own impedance increases due to aging, thereby effectively preventing the driving transistor 320 from flowing to the sub-pixels.
  • the second pole current (actual charging current) of 210 decreases. Therefore, the present application can effectively prevent the display device from becoming low in brightness after long-term use.
  • the gamma chip 200 includes a digital-to-analog conversion module 210 and two voltage storage modules 220.
  • the voltage storage module 220 is a storage module (such as a memory) in which a voltage code is written and stored in advance.
  • the digital-to-analog conversion module 210 is used to convert the voltage code into a gamma voltage for output.
  • control module 500 includes two switch units 510.
  • the two switch units 510 and the two voltage storage modules 220 are correspondingly arranged one by one. Both ends of each switch unit 510 are electrically connected to the corresponding voltage storage module 220 and the digital-to-analog conversion module 210 respectively, so as to control the on-off between each voltage storage module 220 and the digital-to-analog conversion module 210 respectively.
  • the two switch units 510 can be arranged on the gamma chip 200, of course, can also be arranged in other positions.
  • the two switch units 510 are both electrically connected to the second end of the detection resistor 400 and can receive the voltage V1 signal of the detection resistor 400.
  • the two switch units 510 are switched on and off in opposite states according to the voltage V1 of the detection resistor 400, so that each switch unit 510 can be switched on and off directly according to the voltage of the detection resistor 400, thereby simplifying System circuit structure.
  • the two switch units 510 may be respectively configured as two transistors with opposite conductivity types. That is, one of the switch units 510 is a P-type transistor (specifically may be a P-type metal oxide semiconductor field effect (MOS) transistor), and the other switch unit 510 is an N-type transistor (specifically may be an N-type metal oxide semiconductor field effect). (MOS) transistor).
  • the conductivity type is opposite, that is, the conductive multiple sub-types in the conductive channel are reversed.
  • the conductive multiples in the conduction channel of the P-type transistor are holes, and the conductive multiples in the conductive channel of the N-type transistor are electrons.
  • the detection transistor 330 is not aging or has a low degree of aging, when the voltage V1 of the detection resistor 400 is relatively large, that is, at a high level, the N-type transistor is turned on and the P-type transistor is turned off. On, the voltage storage module 220 electrically connected to the N-type transistor and the digital-to-analog conversion module 210 are turned on, and the initial gamma voltage is output.
  • the detection transistor 330 is seriously aging. Therefore, when the voltage V1 of the detection resistor 400 is small, that is, low level, the N-type transistor is turned off and the P-type transistor is turned on.
  • the voltage storage module 220 electrically connected to the P-type transistor and the digital-to-analog conversion module 210 are turned on to output a gamma voltage with a larger voltage value.
  • the two switch units 510 can also be arranged in other forms, which is not limited in this application.
  • each switch unit 510 can also be controlled in other ways.
  • the gamma chip 200 includes a digital-to-analog conversion module 210 and at least two voltage storage modules 220.
  • Each voltage storage module 210 stores different voltage codes.
  • the control module 500 correspondingly includes the same number of switch units 510 as the voltage storage modules.
  • the switch unit 510 and the voltage storage module 220 are arranged in one-to-one correspondence. Both ends of each switch unit 510 are electrically connected to the corresponding voltage storage module 220 and the digital-to-analog conversion module 210 respectively.
  • control module 500 further includes a control unit 520.
  • the control unit 520 may be electrically connected to the second end 420 of the detection resistor 400 to collect the voltage of the detection resistor 400.
  • the control unit 520 switches and closes the switch unit 510, so that the gamma voltage output by the digital-to-analog conversion module 210 after the switch unit 510 is switched and closes is greater than that of the digital-to-analog conversion module 210.
  • the gamma voltage output before closing the switch unit 510 can be set according to actual needs.
  • the voltage V1 of the detection resistor 400 is greater than a set voltage value.
  • one of the switch units 510 is closed, so that a corresponding voltage storage module 220 is electrically connected to the digital-to-analog conversion module 210, and
  • the digital-to-analog conversion module 210 converts the voltage code into an initial gamma voltage for output.
  • the control module 500 switches to close the other switch 510, so that the other corresponding voltage storage module 220 is electrically connected to the digital-to-analog converter
  • the module 210 outputs another increased gamma voltage to prevent the display device from dimming.
  • the control module 500 switches to close another switch 510 again , So that another corresponding voltage storage module 220 is electrically connected to the digital-to-analog conversion module 210 to output a larger gamma voltage to prevent the display device from darkening.
  • control unit 520 switches from closing one switch unit 510 to closing another switch unit 510, and then outputs a larger gamma voltage.
  • the control unit 520 and the switch unit 510 through the cooperation of the control unit 520 and the switch unit 510, it is easy and controllable to realize that the display device applies different gamma voltages during different periods of use to achieve consistent brightness, which effectively prevents the display device from being used for a long time. The brightness becomes low.
  • control form of the control unit 520 to the switch unit 510 may also be different from the foregoing form.
  • control unit 520 not only collects the voltage of the detection resistor 400, but also collects the test voltage VT.
  • the control unit 520 may be electrically connected to the power chip 100 to collect the test voltage VT.
  • the control unit 520 calculates the voltage difference dV between the test voltage VT and the voltage of the detection resistor 400, and controls the on and off of each switch unit 510 according to the voltage difference dV. Specifically, the voltage value of the test voltage VT is fixed, and the voltage V1 of the detection resistor 400 decreases as the detection transistor 330 ages. Therefore, the voltage difference dV between the test voltage VT and the voltage of the detection resistor 400 increases as the detection transistor 330 ages.
  • the control unit 520 switches from closing one switch unit 510 to closing another switch unit 510, thereby making The gamma voltage output by the digital-analog conversion module 210 after the switch unit 510 is switched and closed is greater than the gamma voltage output by the digital-analog conversion module 210 before the switch unit 510 is switched and closed.
  • the "set voltage difference" here can be set according to actual needs.
  • the display device further includes a control circuit board 600.
  • the power chip 100, the gamma chip 200 and the detection resistor 400 are all arranged on the control circuit board 600. That is, the detection resistor 400 can be arranged on the control circuit board 600 where the power chip 100 and the gamma chip 200 are located, thereby facilitating circuit layout of the resistors.
  • the display panel 300 has a display area 300a and a non-display area 300b surrounding the display area 300a.
  • the sub-pixel 310 and the driving transistor 320 are located in the display area 300a, and can display in the display area.
  • the detection transistor 330 is located in the non-display area 300b, thereby reducing the influence on the wiring and light emission of the display area 300a.
  • the display device further includes a data driving chip 700.
  • the data driving chip 700 is electrically connected to the gamma chip 200 and the driving transistor 320, and further outputs the gamma voltage output by the gamma chip 200 to the driving transistor 320 according to a certain timing.
  • the power supply voltage (usually 3.3V) of the data driving chip 700 is output by the power supply chip 100, which is similar to the gamma voltage (usually 0-14V) output by normal display. Therefore, in this embodiment, the power supply voltage of the data driving chip 700 is used as the test voltage VT. On the one hand, there is no need to output another voltage, which makes the system compatible. On the other hand, the working conditions of the detecting transistor 330 and the driving transistor 320 are closer, so that the aging of the detecting transistor 330 can more accurately reflect the aging state of the driving transistor 320.
  • the number of detection transistors 330 may be greater than one.
  • three identical detection transistors 330 can be arranged in parallel and then connected in series with the detection resistor 400.
  • the voltage V1 on the detection resistor 400 VDD*R/(R+1/3R1), where R1 is the equivalent impedance of the detection transistor 330, R is the impedance of the detection resistor 400, and VDD is the test voltage VT. Therefore, the average aging condition of the three detecting transistors 330 can be used to determine the aging condition of each driving transistor 320, thereby increasing the detection reliability.
  • the display device includes a gamma chip 200, a data driving chip 700, a power chip 100, a detection resistor 400, a display panel 300, and two switch units 510.
  • the gamma chip 200 includes a digital-to-analog conversion module 210 and two voltage storage modules 220. Each voltage storage module stores 220 has a different voltage code.
  • the digital-to-analog conversion module 210 is used to convert the voltage code into a gamma voltage for output.
  • the data driving chip 700 is electrically connected to the gamma chip 200. It can output the gamma voltage according to a certain timing.
  • the power chip 100 is used to output the gate turn-on voltage VG and the power voltage of the data driving chip 700.
  • the detection resistor 400 has a first end 410 and a second end 420 for electrical connection. The first end 410 is grounded.
  • the display panel 300 includes a plurality of sub-pixels 310, a plurality of driving transistors 329, and at least one detecting transistor 330.
  • the gate of the driving transistor 320 receives the gate-on voltage VG.
  • the first pole of the driving transistor 320 receives the gamma voltage.
  • the second pole 320 of the driving transistor is electrically connected to the corresponding sub-pixel 310.
  • the gate of the detection transistor 330 receives the gate-on voltage VG.
  • the first electrode of the detecting transistor 330 receives the power voltage of the data driving chip 700.
  • the second terminal of the detecting transistor 330 is electrically connected to the second terminal of the detecting resistor 400.
  • the switch unit 510 and the voltage storage module 220 are arranged correspondingly. Both ends of each switch unit 510 are electrically connected to the corresponding voltage storage module 220 and the digital-to-analog conversion module 210 respectively.
  • the two switch units 510 are both electrically connected to the second end 420 of the detection resistor 400, and switch on and off in opposite states according to the voltage of the detection resistor 400.
  • this embodiment can increase the output of the gamma voltage when the display device is used for a long time, and the driving transistor 320 is seriously aging, so as to prevent the brightness from decreasing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

一种显示装置,其包括:电源芯片(100),用于输出栅极开启电压;伽马芯片(200),用于输出伽马电压;侦测电阻(400),具有用于电连接的第一端(410)以及第二端(420),第一端(410)接地;显示面板(300),包括多个子像素(310)、多个驱动晶体管(320)以及至少一个侦测晶体管(330);驱动晶体管(320)的栅极接受栅极开启电压,驱动晶体管(320)的第一极接受伽马电压,驱动晶体管(320)的第二极电连接相应子像素(310);侦测晶体管(330)的栅极接受栅极开启电压,侦测晶体管(330)的第一极接受一测试电压,侦测晶体管(330)的第二极电连接侦测电阻(400)的第二端;控制模块(500),电连接侦测电阻的第二端,用于当侦测电阻的电压的减小时控制伽马芯片增加伽马电压的输出。显示装置可以防止在长期使用后显示变暗。

Description

显示装置
相关申请的交叉引用
本申请要求于2019年05月06日提交中国专利局、申请号为2019103711883、发明名称为“显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及显示技术领域,特别是涉及一种显示装置。
背景技术
这里的陈述仅提供与本申请有关的背景信息,而不必然地构成现有技术。
随着显示技术的发展,各种显示装置(例如,液晶电视)应用于人们的生产、生活中,为人们提供便利。显示装置的各成像子像素通常是通过薄膜晶体管(Thin Film Transistor,TFT)来驱动的。TFT式显示装置具有高响应度、高亮度、高对比度等优点,因此成为目前的主流显示装置。
但是,随着长期地使用,显示装置内部的薄膜晶体管会逐渐老化。这会导致其进行显示的子像素充电不足,因此会带来显示偏暗的问题,进而影响装置使用寿命。
发明内容
根据本申请的多个实施例,提供一种显示装置。
一种显示装置,包括:
电源芯片,用于输出栅极开启电压;
伽马芯片,用于输出伽马电压;
侦测电阻,具有用于电连接的第一端以及第二端,所述第一端接地;
显示面板,包括多个子像素、多个驱动晶体管以及至少一个侦测晶体管;所述驱动晶体管的栅极接受所述栅极开启电压,所述驱动晶体管的第一极接受所述伽马电压,所述驱动晶体管的第二极电连接相应子像素;所述侦测晶体管的栅极接受所述栅极开启电压,所述侦测晶体管的第一极接受一测试电压,所述侦测晶体管的第二极电连接所述侦测电阻的所述第二端;
控制模块,电连接所述侦测电阻的第二端,用于当所述侦测电阻的电压的减小时控制所述伽马芯片增加所述伽马电压的输出。
一种显示装置,包括:
伽马芯片,包括数模转换模块以及两个电压存储模块,各所述电压存储模块存储有不同的电压代码,所述数模转换模块用于将所述电压代码转换成所述伽马电压而输出;
数据驱动芯片,电连接所述伽马芯片,用于将所述伽马电压按照一定时序输出;
电源芯片,用于输出栅极开启电压以及所述数据驱动芯片的电源电压;
侦测电阻,具有用于电连接的第一端以及第二端,所述第一端接地;
显示面板,包括多个子像素、多个驱动晶体管以及至少一个侦测晶体管;所述驱动晶体管的栅极接受所述栅极开启电压,所述驱动晶体管的第一极接受所述伽马电压,所述驱动晶体管的第二极电连接相应子像素;所述侦测晶体管的栅极接受所述栅极开启电压,所述侦测晶体管的第一极接受所述数据 驱动芯片的电源电压,所述侦测晶体管的第二极电连接所述侦测电阻的所述第二端;
两个开关单元,所述开关单元与所述电压存储模块一一对应设置,且所述开关单元的两端分别电连接相应的所述电压存储模块与所述数模转换模块,两个所述开关单元均电连接所述侦测电阻的所述第二端,且根据所述侦测电阻的电压进行相反状态的通断;
所述侦测电阻的电压小于设定电压值时,两个所述开关单元切换通断状态,进而增加所述伽马电压的输出。
根据上述显示装置,由于增设了侦测电阻以及侦测晶体管,进而可以通过侦测电阻的电压的减小来侦测侦测晶体管的老化情况,并通过侦测晶体管的老化情况而有效反应驱动晶体管的老化状况。同时,上述显示装置根据侦测电阻的电压的减小时控制伽马芯片增加伽马电压的输出,进而可以使得驱动晶体管在老化而阻抗增加时,增加其第一极的电压,而有效防止其第二极电流(实际充电电流)降低,进而保证显示装置在长期使用时亮度一致。因此,本申请的显示装置可以有效防止在长期使用后显示变暗。
附图说明
图1为一个实施例中显示装置的示意图;
图2为图1所示显示装置的局部放大示意图;
图3为另一个实施例中显示装置的局部放大示意图;
图4为又一个实施例中显示装置的局部放大示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
本申请提供的显示装置,可以应用于液晶电视、电脑显示器等。
在一个实施例中,参考图1,显示装置包括电源芯片100、伽马芯片200、以及显示面板300。电源芯片100用于输出栅极开启电压VG。伽马芯片200用于输出伽马电压。
参考图2,显示面板300包括多个各种颜色的子像素310,例如:红色子像素R、绿色子像素G以及蓝色子像素B。同时,显示面板300还包括用于驱动各子像素310的多个驱动晶体管320。驱动晶体管320可以为薄膜晶体管。具体地,各驱动晶体管320的栅极均接受栅极开启电压VG,进而打开相应子像素310。各驱动晶体管320的第一极均接受相应伽马电压,进而为相应子像素310提供电源。各驱动晶体管320的第二极均电连接相应子像素310,进而为相应子像素310进行充电。具体地,子像素310包括像素电极、公共电极以及像素电极与公共电极之间的液晶分子等。每个子像素310均对应一个像素电极,各子像素可以共用一个公共电极。驱动晶体管320的第二极电连接相应子像素310。具体的,驱动晶体管320的第二极电连接相应子像素310的像素电极。
这里的第一极可以为漏极,也可以为源极;相应的,第二极可以为源极,也可以为漏极。具体地,当驱动晶体管为N型晶体管时,第一极为漏极,而第二极为源极。当驱动晶体管为P型晶体管时,第一极为源极,而第二极为漏级。图2中示出的实施例中,驱动晶体管为N型晶体管。
此外,在本实施例中,显示面板还包括至少一个侦测晶体管330。侦测 晶体管330用于进行老化侦测。侦测晶体管330与驱动晶体管320可以为经过同样的工艺过程形成的导电类型相同的薄膜晶体管,使得二者可以具有相同的性能参数,进而使得侦测晶体管330的老化情况可以比较准确的反应驱动晶体管320的老化情况。导电类型是指薄膜晶体管导通时的导电沟道中的多子类型。
为了实现对侦测晶体管330的老化侦测,显示装置还包括侦测电阻400。侦测电阻400为阻值固定的定值电阻,并且具有用于电连接的第一端410以及第二端420。第一端410接地,而第二端420电连接侦测晶体管330的第二极。
同时,侦测晶体管330的栅极与驱动晶体管320的栅极一样,同样接受栅极开启电压VG进而形成导电沟道。而侦测晶体管330的第一极接受一测试电压VT,进而在其第一极与第二极之间的导电沟道中形成电流通路。该测试电压VT可以由电源芯片100直接输出,当然也可以由其他驱动部分输出。
设定侦测晶体管330的等效阻抗为R1,侦测电阻400的阻抗为R,测试电压VT为VDD,侦测电阻400上的电压为V1。那么,当侦测晶体管330的数量为一个时,V1=VDD*R/(R+R1)。由此可见,V1与R1呈负相关关系。而侦测晶体管330与驱动晶体管320一样,会随着显示装置的使用而逐渐老化,其等效阻抗R1会逐渐增大。因此,随着晶体管的老化,V1会越来越小,进而可以通过V1来侦测侦测晶体管330的老化程度,进而反应驱动晶体管320的老化程度。
请参阅图2,在本实施例中,显示装置还包括控制模块500。控制模块500电连接侦测电阻400的第二端420,进而可以根据侦测电阻400的电压来控制伽马芯片200输出不同的伽马电压。
驱动晶体管320与侦测晶体管330位于同样的显示装置,二者接受同样的栅极开启电压VG。因此,二者老化程度接近。侦测晶体管330的老化情况可以反映驱动晶体管的老化情况。当侦测电阻400的电压减小时,表示侦测晶体管330以及驱动晶体管320因老化而阻抗增加。此时,控制模块500控制伽马芯片200增加伽马电压的输出,进而可以在驱动晶体管320老化而导致自身阻抗增加时,增加其第一极的电压,进而有效防止驱动晶体管320的流向子像素210的第二极电流(实际充电电流)降低。因此,本申请可以有效防止显示装置在长时间使用后亮度变低。
在一个实施例中,伽马芯片200包括数模转换模块210以及两个电压存储模块220。电压存储模块220为预先写入并存储有电压代码的存储模块(例如存储器)。数模转换模块210用于将电压代码转换成伽马电压而输出。
同时,控制模块500包括两个开关单元510。两个开关单元510与两个电压存储模块220一一相应设置。每个开关单元510的两端均分别电连接与其相应的电压存储模块220与数模转换模块210,进而分别控制各电压存储模块220与数模转换模块210之间的通断。两个开关单元510可以设置于伽马芯片200上,当然也可以设置于其他位置。
两个开关单元510均电连接侦测电阻400的第二端,进而可以接受侦测电阻400的电压V1信号。
同时在本实施例中,两个开关单元510根据侦测电阻400的电压V1进行相反状态的通断,进而使得各开关单元510可以直接根据侦测电阻400的电压大小而进行通断,进而简化系统电路结构。
具体地,两个开关单元510可以分别设置为两个导电类型相反的晶体管。即,其中一个开关单元510为P型晶体管(具体可以为P型金属氧化物半导 体场效应(MOS)晶体管),另一个开关单元510为N型晶体管(具体可以为N型金属氧化物半导体场效应(MOS)晶体管)。导电类型相反即导电沟道中的导电多子类型相反,P型晶体管导电沟道中的导电多子为空穴,N型晶体管导电沟道中的导电多子为电子。
当显示装置开始使用时,由于侦测晶体管330未老化或者老化程度较低,因此,当侦测电阻400的电压V1较大,即为高电平时,N型晶体管导通,而P型晶体管断开,进而使得N型晶体管电连接的电压存储模块220与数模转换模块210导通,进而输出初始伽马电压。
当显示装置使用一段时间后,侦测晶体管330老化程度严重,因此,当侦测电阻400的电压V1较小,即为低电平时,N型晶体管断开,而P型晶体管导通,进而使得P型晶体管电连接的电压存储模块220与数模转换模块210导通,进而输出电压值更大的伽马电压。当然,两个开关单元510也可以设置成其他形式,本申请对此并不做限制。
当然,在本申请实施例中,各开关单元510的通断也可以根据其他方式来控制。
在另一个实施例中,参考图3,伽马芯片200包括数模转换模块210以及至少两个电压存储模块220。各电压存储模块210存储有不同的电压代码。同时控制模块500相应的包括数量与电压存储模块相同的开关单元510。开关单元510与电压存储模块220一一对应设置。每个开关单元510的两端均分别电连接与其相应的电压存储模块220与数模转换模块210。
并且,控制模块500还包括控制单元520。控制单元520可以电连接侦测电阻400的第二端420,进而采集侦测电阻400的电压。当侦测电阻400的电压小于设定电压值时,控制单元520切换闭合开关单元510,进而使得 数模转换模块210在切换闭合开关单元510后输出的伽马电压大于数模转换模210块切换闭合开关单元510前输出的伽马电压。这里的“设定电压值”可以根据实际需求进行设置。
具体地,显示装置开始使用时,侦测电阻400的电压V1大于一设定电压值,此时闭合其中一个开关单元510,进而使得一个相应的电压存储模块220电连接数模转换模块210,并通过数模转换模块210将电压代码转化为初始的伽马电压进行输出。
而在显示装置使用一段时间后,当侦测电阻400的电压V1小于设定电压值时,控制模块500切换成闭合另一个开关510,进而使得另一个相应的电压存储模块220电连接数模转换模块210而输出另一个增大的伽马电压,来防止显示装置显示变暗。
当开关单元510数量大于两个时,类似上述步骤,在显示装置又使用一段时间后,侦测电阻400的电压V1又一次小于设定电压值时,控制模块500再次切换成闭合又一个开关510,进而使得又一个相应的电压存储模块220电连接数模转换模块210而输出又一个更大的伽马电压,来防止显示装置显示变暗。
依次类推,每当侦测电阻400的电压小于设定电压值时,控制单元520由闭合一个开关单元510切换成闭合另一个其他的开关单元510,进而输出更大的伽马电压。
因此,本实施例通过控制单元520与开关单元510的配合,简便易控地实现显示装置在不同的使用时期应用不同的伽马电压而达到一致的亮度,即有效防止显示装置在长时间使用后亮度变低。
当然,控制单元520对开关单元510的控制形式也可与上述形式不同。
例如,在又一个实施例中,参考图4,控制单元520除了采集侦测电阻400的电压以外,还采集测试电压VT。测试电压VT由电源芯片100输出时,控制单元520可以电连接电源芯片100而采集测试电压VT。
采集完电压后,控制单元520计算测试电压VT与侦测电阻400的电压的电压差dV,并根据该电压差dV而控制各开关单元510的通断。具体地,测试电压VT的电压值固定,侦测电阻400的电压V1随着侦测晶体管330的老化而降低。因此,测试电压VT与侦测电阻400的电压的电压差dV随着侦测晶体管330的老化而增加。
所以,可以设置每当测试电压VT与侦测电阻400的电压的电压差dV大于设定电压差值时,控制单元520由闭合一个开关单元510切换成闭合另一个其他的开关单元510,进而使得数模转换模块210在切换闭合开关单元510后输出的伽马电压大于数模转换模210块切换闭合开关单元510前输出的伽马电压。这里的“设定电压差值”可以根据实际需求设置。
在一个实施例中,显示装置还包括控制电路板600。电源芯片100、伽马芯片200与侦测电阻400均设置在控制电路板600上。即侦测电阻400可以设置在电源芯片100以及伽马芯片200所在的控制电路板600上,进而便于对电阻进行电路布局。
在一个实施例中,显示面板300具有显示区300a与包围显示区300a的非显示区300b。子像素310以及驱动晶体管320位于显示区300a,进而可以在显示区进行显示。侦测晶体管330位于非显示区300b,进而减少对显示区300a的布线以及出光等的影响。
在一个实施例中,显示装置还包括数据驱动芯片700。数据驱动芯片700电连接伽马芯片200以及驱动晶体管320,进而将伽马芯片200输出的伽马 电压按照一定时序输出至驱动晶体管320。
数据驱动芯片700的电源电压(通常为3.3V)由电源芯片100输出,其与正常显示所输出的伽马电压(通常为0-14V)相近。因此,本实施例将数据驱动芯片700的电源电压作为测试电压VT。一方面,无需另外输出一个电压,使得系统兼容性较好。另一方面也使得侦测晶体管330与驱动晶体管320的工作情况更加接近,进而可以使得侦测晶体管330的老化能更准确的反应驱动晶体管320的老化状态。
在一个实施例中,为了增加侦测可信性,侦测晶体管330的数量可以大于1。具体地,例如可以设置三个相同的侦测晶体管330并联后与侦测电阻400串联。此时,侦测电阻400上的电压V1=VDD*R/(R+1/3R1),其中,R1为侦测晶体管330的等效阻抗,R为侦测电阻400的阻抗,VDD为测试电压VT。因此,可以根据三个侦测晶体管330的平均老化情况,来判断各驱动晶体管320的老化情况,进而增加了侦测可靠性。
在一个实施例中,显示装置包括伽马芯片200、数据驱动芯片700、电源芯片100、侦测电阻400、显示面板300以及两个开关单元510。
伽马芯片200包括数模转换模块210以及两个电压存储模块220。各电压存储模块存储220有不同的电压代码。数模转换模块210用于将电压代码转换成伽马电压而输出。数据驱动芯片700电连接伽马芯片200。其可以将伽马电压按照一定时序输出。电源芯片100,用于输出栅极开启电压VG以及数据驱动芯片700的电源电压。侦测电阻400具有用于电连接的第一端410以及第二端420。第一端410接地。
显示面板300包括多个子像素310、多个驱动晶体管329以及至少一个侦测晶体管330。驱动晶体管320的栅极接受栅极开启电压VG。驱动晶体管 320的第一极接受伽马电压。驱动晶体管的第二极320电连接相应子像素310。侦测晶体管330的栅极接受栅极开启电压VG。侦测晶体管330的第一极接受数据驱动芯片700的电源电压。侦测晶体管330的第二极电连接侦测电阻400的第二端。
开关单元510与电压存储模块220相应设置。每个开关单元510的两端均分别电连接相应的电压存储模块220与数模转换模块210。两个开关单元510均电连接侦测电阻400的第二端420,且根据侦测电阻400的电压进行相反状态的通断。
侦测电阻400的电压小于设定电压值时,两个开关单元510切换通断状态,使得数模转换模块210电连接的电压存储模块220进而切换,进而增加伽马电压的输出。因此,本实施例可以在显示装置长期使用使得驱动晶体管320老化较严重时,增加伽马电压的输出,而防止亮度下降。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (15)

  1. 一种显示装置,包括:
    电源芯片,配置为输出栅极开启电压;
    伽马芯片,配置为输出伽马电压;
    侦测电阻,具有第一端以及第二端,所述第一端接地;
    显示面板,包括多个子像素、多个驱动晶体管以及至少一个侦测晶体管;所述驱动晶体管的栅极接受所述栅极开启电压,所述驱动晶体管的第一极接受所述伽马电压,所述驱动晶体管的第二极电连接相应的子像素;所述侦测晶体管的栅极接受所述栅极开启电压,所述侦测晶体管的第一极接受一测试电压,所述侦测晶体管的第二极电连接所述侦测电阻的所述第二端;
    控制模块,电连接所述侦测电阻的第二端,配置为当所述侦测电阻的电压的减小时控制所述伽马芯片增加所述伽马电压的输出。
  2. 根据权利要求1所述的显示装置,其中所述伽马芯片包括数模转换模块以及两个电压存储模块,各所述电压存储模块存储有不同的电压代码,所述数模转换模块配置为将所述电压代码转换成所述伽马电压而输出;
    所述控制模块包括两个开关单元,所述开关单元与所述电压存储模块一一对应设置,且所述开关单元的两端分别电连接相应的所述电压存储模块与所述数模转换模块;所述两个开关单元均电连接所述侦测电阻的所述第二端,并根据所述侦测电阻的电压进行相反状态的通断。
  3. 根据权利要求2所述的显示装置,其中所述两个开关单元分别为两个导电类型相反的晶体管。
  4. 根据权利要求3所述的显示装置,其中一个开关单元为P型晶体管,另一个开关单元为N型晶体管;
    当侦测电阻的电压为高电平时,所述N型晶体管导通,而所述P型晶体管断开;
    当侦测电阻的电压为低电平时,所述N型晶体管断开,而所述P型晶体管导通。
  5. 根据权利要求1所述的显示装置,其中所述伽马芯片包括数模转换模块以及至少两个电压存储模块,各所述电压存储模块存储有不同的电压代码,所述数模转换模块配置为将所述电压代码转换成所述伽马电压而输出;
    所述控制模块包括控制单元以及数量与所述电压存储模块相同的开关单元;所述开关单元与所述电压存储模块一一对应设置,且所述开关单元的两端分别电连接相应的所述电压存储模块与所述数模转换模块;所述控制单元配置为采集所述侦测电阻的电压,并且当所述侦测电阻的电压小于设定电压值时,所述控制单元切换闭合所述开关单元,进而使得所述数模转换模块在切换闭合所述开关单元后输出的伽马电压大于所述数模转换模块切换闭合所述开关单元前输出的伽马电压。
  6. 根据权利要求2所述的显示装置,其中所述伽马芯片包括数模转换模块以及至少两个电压存储模块,各所述电压存储模块存储有不同的电压代码,所述数模转换模块配置为将所述电压代码转换成所述伽马电压而输出;
    所述控制模块包括控制单元以及数量与所述电压存储模块相同的开关单元;所述开关单元与所述电压存储模块一一对应设置,且所述开关单元的两端分别电连接相应的所述电压存储模块与所述数模转换模块;所述控制单元配置为采集所述测试电压以及所述侦测电阻的电压,并计算所述测试电压与所述侦测电阻的电压的电压差,并且当所述电压差大于设定电压差值时,所述控制单元切换闭合所述开关单元,进而使得所述数模转换模块在切换闭合所述 开关单元后输出的伽马电压大于所述数模转换模块切换闭合所述开关单元前输出的伽马电压。
  7. 根据权利要求1所述的显示装置,其中所述显示装置还包括控制电路板,所述电源芯片、所述伽马芯片与所述侦测电阻均设置于所述控制电路板上。
  8. 根据权利要求1所述的显示装置,其中所述显示面板具有显示区与包围所述显示区的非显示区,所述子像素以及驱动晶体管位于显示区,所述侦测晶体管位于所述非显示区。
  9. 根据权利要求1所述的显示装置,其中所述第一极为漏极,所述第二极为源极。
  10. 根据权利要求1所述的显示装置,其中多个侦测晶体管并联后与所述侦测电阻串联。
  11. 一种显示装置,包括:
    伽马芯片,包括数模转换模块以及两个电压存储模块,各所述电压存储模块存储有不同的电压代码,所述数模转换模块配置为将所述电压代码转换成所述伽马电压而输出;
    数据驱动芯片,电连接所述伽马芯片,配置为将所述伽马电压按照一定时序输出;
    电源芯片,配置为输出栅极开启电压以及所述数据驱动芯片的电源电压;
    侦测电阻,具有第一端以及第二端,所述第一端接地;
    显示面板,包括多个子像素、多个驱动晶体管以及至少一个侦测晶体管;所述驱动晶体管的栅极接受所述栅极开启电压,所述驱动晶体管的第一极接受所述伽马电压,所述驱动晶体管的第二极电连接相应子像素;所述侦测晶体管的栅极接受所述栅极开启电压,所述侦测晶体管的第一极接受所述数据驱 动芯片的电源电压,所述侦测晶体管的第二极电连接所述侦测电阻的所述第二端;
    两个开关单元,所述开关单元与所述电压存储模块一一对应设置,且所述开关单元的两端分别电连接相应的所述电压存储模块与所述数模转换模块,两个所述开关单元均电连接所述侦测电阻的所述第二端,且根据所述侦测电阻的电压进行相反状态的通断;
    所述侦测电阻的电压小于设定电压值时,两个所述开关单元切换通断状态,进而增加所述伽马电压的输出。
  12. 根据权利要求11所述的显示装置,其中所述两个开关单元分别为两个导电类型相反的晶体管。
  13. 根据权利要求12所述的显示装置,其中一个开关单元为P型晶体管,另一个开关单元为N型晶体管;
    当侦测电阻的电压为高电平时,所述N型晶体管导通,而所述P型晶体管断开;
    当侦测电阻的电压为低电平时,所述N型晶体管断开,而所述P型晶体管导通。
  14. 根据权利要求11所述的显示装置,其中所述显示装置还包括控制电路板,所述电源芯片、所述伽马芯片与所述侦测电阻均设置于所述控制电路板上。
  15. 根据权利要求11所述的显示装置,其中所述显示面板具有显示区与包围所述显示区的非显示区,所述子像素以及驱动晶体管位于显示区,所述侦测晶体管位于所述非显示区。
PCT/CN2020/088739 2019-05-06 2020-05-06 显示装置 WO2020224583A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/294,879 US11295694B2 (en) 2019-05-06 2020-05-06 Display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910371188.3A CN110288956B (zh) 2019-05-06 2019-05-06 显示装置
CN201910371188.3 2019-05-06

Publications (1)

Publication Number Publication Date
WO2020224583A1 true WO2020224583A1 (zh) 2020-11-12

Family

ID=68001785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/088739 WO2020224583A1 (zh) 2019-05-06 2020-05-06 显示装置

Country Status (3)

Country Link
US (1) US11295694B2 (zh)
CN (1) CN110288956B (zh)
WO (1) WO2020224583A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110322850B (zh) * 2019-05-06 2020-12-08 惠科股份有限公司 显示装置
CN110288956B (zh) * 2019-05-06 2021-11-30 重庆惠科金渝光电科技有限公司 显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6870322B1 (en) * 2002-10-17 2005-03-22 Eastman Kodak Company Organic EL display device having adjustable offset voltage
CN1846243A (zh) * 2003-09-02 2006-10-11 皇家飞利浦电子股份有限公司 有源矩阵显示装置
CN1897093A (zh) * 2005-07-08 2007-01-17 三星电子株式会社 显示装置及其控制方法
CN101449311A (zh) * 2006-02-10 2009-06-03 伊格尼斯创新有限公司 用于发光装置显示器的方法和系统
CN110288956A (zh) * 2019-05-06 2019-09-27 重庆惠科金渝光电科技有限公司 显示装置
CN110322850A (zh) * 2019-05-06 2019-10-11 惠科股份有限公司 显示装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101200966B1 (ko) * 2006-01-19 2012-11-14 삼성디스플레이 주식회사 공통 전압 생성 회로 및 이를 포함하는 액정 표시 장치
KR101485584B1 (ko) * 2008-08-06 2015-01-28 삼성디스플레이 주식회사 액정 표시 장치 및 그것의 구동 방법
CN102446475B (zh) * 2010-10-14 2016-08-31 上海天马微电子有限公司 平板显示装置的像素电极电压检测电路
CN103531148B (zh) * 2013-10-31 2015-07-08 京东方科技集团股份有限公司 一种交流驱动的像素电路、驱动方法及显示装置
CN104280970B (zh) * 2014-11-06 2017-12-22 上海天马微电子有限公司 阵列基板及液晶显示面板
CN104900186B (zh) * 2015-06-15 2017-05-31 京东方科技集团股份有限公司 Oled像素电路及其显示装置
KR102555060B1 (ko) * 2016-09-30 2023-07-17 엘지디스플레이 주식회사 액정표시장치와 그 구동 방법
CN106935193A (zh) * 2017-05-12 2017-07-07 京东方科技集团股份有限公司 Oled驱动补偿电路、oled显示面板及其驱动方法
US10782334B2 (en) * 2017-08-16 2020-09-22 Infineon Technologies Ag Testing MOS power switches
CN207097427U (zh) * 2017-11-07 2018-03-13 深圳市华星光电半导体显示技术有限公司 Oled像素驱动电路、阵列基板及显示装置
KR102555210B1 (ko) * 2017-12-29 2023-07-12 엘지디스플레이 주식회사 발광 표시 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6870322B1 (en) * 2002-10-17 2005-03-22 Eastman Kodak Company Organic EL display device having adjustable offset voltage
CN1846243A (zh) * 2003-09-02 2006-10-11 皇家飞利浦电子股份有限公司 有源矩阵显示装置
CN1897093A (zh) * 2005-07-08 2007-01-17 三星电子株式会社 显示装置及其控制方法
CN101449311A (zh) * 2006-02-10 2009-06-03 伊格尼斯创新有限公司 用于发光装置显示器的方法和系统
CN110288956A (zh) * 2019-05-06 2019-09-27 重庆惠科金渝光电科技有限公司 显示装置
CN110322850A (zh) * 2019-05-06 2019-10-11 惠科股份有限公司 显示装置

Also Published As

Publication number Publication date
CN110288956A (zh) 2019-09-27
US11295694B2 (en) 2022-04-05
US20220005434A1 (en) 2022-01-06
CN110288956B (zh) 2021-11-30

Similar Documents

Publication Publication Date Title
CN106652911B (zh) Oled像素驱动电路及oled显示装置
CN103247262B (zh) 像素电路及其驱动方法、显示装置
US10916214B2 (en) Electrical level processing circuit, gate driving circuit and display device
WO2020224577A1 (zh) 显示装置
CN104240639A (zh) 一种像素电路、有机电致发光显示面板及显示装置
CN105679242A (zh) 像素电路及其驱动方法
WO2013104222A1 (zh) 静电释放保护电路及其工作方法
CN103198793A (zh) 像素电路及其驱动方法、显示装置
CN109064985B (zh) 一种过流保护电路及显示装置
WO2020224583A1 (zh) 显示装置
US10553159B2 (en) Pixel circuit, display panel and display device
CN112017589A (zh) 多灰阶像素驱动电路及显示面板
CN101859542A (zh) 有机发光二极管显示装置及其有机发光二极管像素电路
TW201928930A (zh) 畫素電路
CN103198788A (zh) 一种像素电路、有机电致发光显示面板及显示装置
US11532267B2 (en) Pixel driving circuit with light-emitting control sub-circuit and display control sub-circuit and driving method therefor, display panel and display apparatus
US20190114967A1 (en) Pixel driving circuit, display device, and driving method
CN111312173A (zh) 一种像素电路及像素驱动的方法
TWI717855B (zh) 畫素電路及顯示裝置
CN203325407U (zh) 像素电路和有机发光显示器
CN111402782A (zh) 一种数字驱动像素电路及数字驱动像素的方法
CN203134328U (zh) 像素电路及其显示装置
CN201757973U (zh) 有机发光显示器的驱动电路
WO2020199553A1 (zh) 电平转换控制电路与电平转换电路
CN106782339A (zh) 一种像素驱动电路及其驱动方法、显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20802907

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20802907

Country of ref document: EP

Kind code of ref document: A1