WO2020224577A1 - 显示装置 - Google Patents

显示装置 Download PDF

Info

Publication number
WO2020224577A1
WO2020224577A1 PCT/CN2020/088697 CN2020088697W WO2020224577A1 WO 2020224577 A1 WO2020224577 A1 WO 2020224577A1 CN 2020088697 W CN2020088697 W CN 2020088697W WO 2020224577 A1 WO2020224577 A1 WO 2020224577A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
transistor
code
detection
chip
Prior art date
Application number
PCT/CN2020/088697
Other languages
English (en)
French (fr)
Inventor
王明良
Original Assignee
惠科股份有限公司
重庆惠科金渝光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠科股份有限公司, 重庆惠科金渝光电科技有限公司 filed Critical 惠科股份有限公司
Priority to US17/417,473 priority Critical patent/US11404018B2/en
Publication of WO2020224577A1 publication Critical patent/WO2020224577A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3685Details of drivers for data electrodes
    • G09G3/3688Details of drivers for data electrodes suitable for active matrices only
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3674Details of drivers for scan electrodes
    • G09G3/3677Details of drivers for scan electrodes suitable for active matrices only
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3696Generation of voltages supplied to electrode drivers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0271Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping
    • G09G2320/0276Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping for the purpose of adaptation to the characteristics of a display device, i.e. gamma correction
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/043Preventing or counteracting the effects of ageing
    • G09G2320/045Compensation of drifts in the characteristics of light emitting or modulating elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/043Preventing or counteracting the effects of ageing
    • G09G2320/046Dealing with screen burn-in prevention or compensation of the effects thereof
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/12Test circuits or failure detection circuits included in a display system, as permanent part thereof

Definitions

  • This application relates to the field of display technology, and in particular to a display device.
  • TFT thin film transistor
  • a display device is provided.
  • a display device includes:
  • Gamma chip used to provide gamma voltage
  • the detection resistor has a first end and a second end, and the first end is grounded;
  • the display panel includes a plurality of sub-pixels, a plurality of driving transistors, and at least one detecting transistor; the gate of the driving transistor receives the gate-on voltage, the first electrode of the driving transistor receives the gamma voltage, so The second electrode of the driving transistor is electrically connected to the corresponding sub-pixel; the gate of the detection transistor receives the gate-on voltage, the first electrode of the detection transistor receives a test voltage, and the The second electrode is electrically connected to the second end of the detection resistor;
  • a control module electrically connected to the second end of the detection resistor
  • the driving transistor is an N-type transistor
  • the first electrode has a drain and the second electrode has a source.
  • the control module controls the power chip to increase The output of the gate turn-on voltage
  • the driving transistor is a P-type transistor
  • the first electrode has a source and the second electrode has a drain.
  • the control module controls the power chip to decrease The output of the gate turn-on voltage.
  • a display device includes:
  • Gamma chip used to output gamma voltage
  • a data driving chip electrically connected to the gamma chip, for outputting the gamma voltage according to a certain timing
  • a power chip for outputting the gate turn-on voltage and the power voltage of the data driving chip, and the power chip includes a digital-to-analog conversion module;
  • the detection resistor has a first end and a second end, and the first end is grounded;
  • the display panel includes a plurality of sub-pixels, a plurality of driving transistors, and at least one detecting transistor; the gate of the driving transistor receives the gate-on voltage, the drain of the driving transistor receives the gamma voltage, the The source of the driving transistor is electrically connected to the corresponding sub-pixel; the gate of the detection transistor receives the gate-on voltage, the drain of the detection transistor receives the power supply voltage of the data driving chip, the detection transistor The source of is electrically connected to the second end of the detection resistor;
  • An analog-to-digital conversion module for converting the power supply voltage of the data driving chip and the voltage on the detection resistor into corresponding digital signals
  • the timing control chip includes a voltage storage unit and a control unit;
  • the voltage storage unit is electrically connected to the control unit, and includes an initial code area and a plurality of step table code areas, the initial code area stores initial voltage codes, each The step table code area stores different step codes;
  • the control unit is electrically connected to the analog-to-digital conversion module and the voltage storage unit, and is used to calculate the test voltage and the voltage of the detection resistor Voltage difference, and read the initial voltage code in the initial code area and the step code in the step table code area according to the voltage difference, and then add the initial voltage code and the step code Obtain a new voltage code, and then transmit the new voltage code to the digital-to-analog conversion module to output a corresponding gate turn-on voltage;
  • control unit controls the power chip to increase the output of the gate turn-on voltage.
  • the above-mentioned display device since the detection resistor and the detection transistor are added, the aging of the detection transistor can be detected by the decrease of the voltage of the detection resistor, and the aging of the transistor can be detected to effectively reflect the driving transistor. Aging status.
  • the above-mentioned display device controls the power chip to increase or decrease the output of the gate turn-on voltage according to the decrease in the voltage of the detection resistor, so that the gate voltage of the driving transistor can be increased or decreased when the driving transistor is aging and the impedance increases.
  • the absolute value of the gate-source voltage VGS is increased, thereby reducing the channel resistance of the conductive channel, thereby effectively preventing the second pole current (actual charging current) from decreasing, thereby ensuring consistent brightness of the display device during long-term use. Therefore, the display device of the present application can effectively prevent the display from darkening after long-term use.
  • Fig. 1 is a schematic diagram of a display device in an embodiment
  • FIG. 2 is a partial enlarged schematic diagram of the display device shown in FIG. 1;
  • Fig. 3 is a partial enlarged schematic diagram of a display device in another embodiment
  • Fig. 4 is a partial enlarged schematic diagram of a display device in another embodiment.
  • the display device includes a power chip 100, a gamma chip 200, and a display panel 300.
  • the power chip 100 is used to output the gate turn-on voltage VG.
  • the gamma chip 200 is used to output gamma voltage.
  • the display panel 300 includes a plurality of sub-pixels 310 of various colors, such as a red sub-pixel R, a green sub-pixel G, and a blue sub-pixel B. At the same time, the display panel 300 further includes a plurality of driving transistors 320 for driving each sub-pixel 310.
  • the driving transistor 320 is an active array switch. Specifically, the gate of each driving transistor 320 receives the gate-on voltage VG to turn on the corresponding sub-pixel 310. The first pole of each driving transistor 320 receives the corresponding gamma voltage to provide power to the corresponding sub-pixel 310.
  • the second electrode of each driving transistor 320 is electrically connected to the corresponding sub-pixel 310 to charge the corresponding sub-pixel 310.
  • the driving transistor 320 is an N-type transistor, the first electrode has a drain and the second electrode has a source.
  • the driving transistor 320 is a P-type transistor, the first electrode has a source and the second electrode has a drain.
  • the display panel further includes at least one detection transistor 330.
  • the detection transistor 330 is used for aging detection.
  • the detecting transistor 330 and the driving transistor 320 can be formed through the same process, so that they can have the same performance parameters, so that the aging of the detecting transistor 330 can more accurately reflect the aging of the driving transistor 320.
  • the display device further includes a detection resistor 400.
  • the detection resistor 400 is a fixed-value resistor with a fixed resistance, and has a first end 410 and a second end 420 for electrical connection.
  • the first terminal 410 is grounded, and the second terminal 420 is electrically connected to the second electrode of the detection transistor 330.
  • the gate of the detecting transistor 330 is the same as the gate of the driving transistor 320, and also receives the gate-on voltage VG to form a conductive channel.
  • the first electrode of the detection transistor 330 receives a test voltage VT, thereby forming a current path in the conductive channel between the first electrode and the second electrode.
  • the test voltage VT can be directly output by the power chip 100, of course, can also be output by other driving parts.
  • the number of detection transistors 330 can also be set to be greater than one.
  • three identical detection transistors 330 can be arranged in parallel and then connected in series with the detection resistor 400.
  • the equivalent impedance of each detection transistor 330 is also set to be R1.
  • the voltage V1 on the detection resistor 400 VDD*R/(R+1/3R1). Therefore, the average aging condition of the three detecting transistors 330 can be used to determine the aging condition of each driving transistor 320, thereby increasing the detection reliability.
  • the voltage V1 on the detection resistor 400 and the impedance R1 of the detection transistor 330 have a negative correlation.
  • the detection transistor 330 like the driving transistor 320, will gradually age with the use of the display device, and its equivalent impedance R1 will gradually increase. Therefore, as the transistor ages, V1 will become smaller and smaller, and the aging degree of the detecting transistor 330 can be detected through V1, and then the aging degree of the driving transistor 320 can be reflected.
  • the display device further includes a control module 500.
  • the control module 500 is electrically connected to the second end 420 of the detection resistor 400, and can control the gamma chip 200 to output different gamma voltages according to the voltage of the detection resistor 400.
  • the driving transistor 320 and the detecting transistor 330 are located in the same display device, and both receive the same gate-on voltage VG. Therefore, the aging degree of the two is close.
  • the aging condition of the detecting transistor 330 can reflect the aging condition of the driving transistor. When the voltage of the detecting resistor 400 decreases, it means that the impedance of the detecting transistor 330 and the driving transistor 320 increases due to aging.
  • the control module 500 controls the power chip 100 to increase the output of the gate turn-on voltage VG, and then can increase the gate voltage when the driving transistor 320 is aging and its own impedance increases, thereby Increase the absolute value of the gate-source voltage VGS, thereby reducing the channel resistance of the conductive channel.
  • the driving transistor 320 is an N-type transistor.
  • the control module 500 controls the power chip 100 to reduce the output of the gate turn-on voltage VG, so that when the driving transistor 320 is aging and its own impedance increases, the voltage of its gate can be reduced. , Thereby increasing the absolute value of the gate-source voltage VGS, thereby reducing the channel resistance of the conductive channel.
  • the channel resistance of the conductive channel becomes smaller, thereby effectively preventing the second pole current (actual charging current) of the driving transistor 320 flowing to the sub-pixel 210 from decreasing. Therefore, the present application can effectively prevent the display device from becoming low in brightness after long-term use.
  • the control module 500 includes a control unit 510 for controlling the output of the gate turn-on voltage VG.
  • the display device also includes an analog-to-digital conversion module 600.
  • the analog-to-digital conversion module 600 can convert an analog signal into a digital signal.
  • the input terminal of the analog-to-digital conversion module 600 is used to collect the voltage of the detection resistor 400, and its output terminal is electrically connected to the control unit 500, so that the voltage of the detection resistor 400 can be converted into a digital signal, so that the control unit can analyze the data (detection The voltage of the resistor 400) is processed.
  • the aging of the detecting transistor 330 causes the impedance to increase, which in turn causes the output second pole current to decrease to a certain extent. That is to say, the aging of the driving transistor causes the impedance to increase, which in turn causes the output second pole current to decrease to affect the brightness.
  • the control unit 500 controls the power chip 100 to increase the output of the gate turn-on voltage VG, thereby reducing the channel of the conduction channel of the transistors (the detection transistor 330 and the driving transistor 320) Resistance to prevent the decrease of the second pole current.
  • the "set voltage value" can be set according to actual needs.
  • the control unit 500 controls the power chip 100 to reduce the output of the gate turn-on voltage VG at this time, thereby reducing the conduction channel of the transistors (the detection transistor 330 and the driving transistor 320). Channel resistance, thereby preventing the reduction of the second pole current.
  • the "set voltage value" can be set according to actual needs.
  • control module 500 also includes a control unit 510 for controlling the output of the gate turn-on voltage VG.
  • the display device also includes an analog-to-digital conversion module 600, and the input terminal of the analog-to-digital conversion module 600 is also used to collect the voltage of the detection resistor 400, and its output terminal is also electrically connected to the control unit 500.
  • the input terminal of the analog-to-digital conversion module 600 also collects the test voltage VT.
  • the analog-to-digital conversion module 600 includes two analog-to-digital conversion units 610.
  • One of the analog-to-digital conversion units 610 collects the voltage of the detection resistor 400, and the other analog-to-digital conversion unit 610 collects the test voltage VT.
  • the control unit 510 is also used to calculate the voltage difference dV between the test voltage VT and the voltage of the detection resistor 400, and control the output of the gate turn-on voltage VG according to the voltage difference dV.
  • the voltage value of the test voltage VT is fixed, and the voltage V1 of the detection resistor 400 decreases as the detection transistor 330 ages. Therefore, the voltage difference dV between the test voltage VT and the voltage of the detection resistor 400 increases as the detection transistor 330 ages.
  • the voltage difference dV is greater than the set voltage difference, it means that the aging of the driving transistor 320 causes the impedance to increase, which in turn causes the output second pole current to decrease, which affects the display brightness of the display device.
  • the control unit 500 controls the power chip 100 to increase the output of the gate turn-on voltage VG, thereby reducing the channel resistance of the conduction channel of the transistors (the detection transistor 330 and the driving transistor 320) , Thereby preventing the reduction of the second pole current.
  • the "set voltage difference" here can be set according to actual needs.
  • the control unit 500 controls the power chip 100 to reduce the output of the gate turn-on voltage VG, thereby reducing the channel of the conduction channel of the transistors (the detection transistor 330 and the driving transistor 320) Resistance to prevent the decrease of the second pole current.
  • the "set voltage difference" here can be set according to actual needs.
  • the analog-to-digital conversion module 600 has errors when converting analog signals to digital signals. Therefore, in this embodiment, the test voltage VT and the voltage of the detection resistor 400 are collected, and both voltages are converted by the analog-to-digital conversion module 600, and then the difference is made. In this way, the conversion error of the analog-to-digital conversion module 600 can be reduced, and further A more accurate result is obtained, so that the control unit 510 can more accurately control the output of the power chip 100 to the gate turn-on voltage VG.
  • control unit 510 receives the digital signal converted by the analog-to-digital conversion module 600. In other embodiments, the control unit 510 can also directly receive analog signals (the voltage of the detection resistor 400 and the test voltage VT).
  • the control unit 510 can control the power chip 100 to increase (or decrease) the gate turn-on voltage VG in many ways.
  • the control module 500 includes a control unit 510 and a voltage storage unit 520.
  • the power chip 100 also includes a digital-to-analog conversion module 110.
  • the voltage storage unit 520 is electrically connected to the control unit 510 and includes an initial code area 521 and at least one compensation code area 522.
  • the initial code area 521 stores initial voltage codes. When the number of compensation code areas 522 is greater than 1, each compensation code area 522 stores different compensation voltage codes.
  • the control unit 510 When detecting a decrease in the voltage of the resistor 400, the control unit 510 reads the initial voltage code in the initial code area 521 and the compensation voltage code in the compensation code area 522, and then adds the initial voltage code and the compensation voltage code to obtain a new The voltage code is then transmitted to the digital-to-analog conversion module 110 to output the corresponding gate-on voltage VG. Specifically, the control unit 510 may perform transmission through a certain transmission protocol or the like.
  • the driving crystal is an N-type transistor
  • the voltage V1 of the detection resistor 400 is greater than a set voltage value (or the voltage difference between the test voltage VT and the voltage V1 of the detection resistor 400 is greater than the set voltage In case of difference)
  • the power chip 100 can directly output the initial gate-on voltage VG.
  • the control module 500 reads The initial voltage code in the initial code area 521 and the compensation voltage code in a compensation code area 522 are taken, and the power supply chip 100 is controlled to output an increased gate turn-on voltage to prevent the display device from darkening.
  • the control module 500 reads the initial voltage code of 521 in the initial code area and the compensation voltage code in another compensation code area 522 and outputs another change Large gate turn-on voltage to prevent the display device from darkening, and so on.
  • the compensation code area 522 may be set as a step table code area, and the compensation voltage code may be a step code.
  • the step code is to gradually increase the gate turn-on voltage VG.
  • the control unit 510 gradually increases the output of the gate-on voltage VG according to the voltage difference dV.
  • the voltage V1 of the detection resistor 400 is still less than the set voltage value (or the voltage difference between the test voltage VT and the voltage V1 of the detection resistor 400 is greater than the set voltage difference) , And then increase the gate turn-on voltage VG by one ⁇ VG (that is, add two ⁇ VG) and output, so as to accumulate sequentially until the gate turn-on voltage VG is sufficient, that is, until the voltage V1 of the detection resistor 400 is not less than the set voltage value (Or the voltage difference between the test voltage VT and the voltage V1 of the detection resistor 400 is not greater than the set voltage difference).
  • the adjustment accuracy of the gate turn-on voltage VG can be ensured, and it will not increase too much, and different ⁇ VG can be intelligently increased under different aging degrees, and the gate turn-on voltage VG can be changed from insufficient to sufficient , And then more perfectly compensate the aging process of the driving transistor 320.
  • the embodiment of the present application may also set the compensation code area 522 instead of the step table code area. For example, every time the gate-on voltage VG is insufficient, the same ⁇ VG is fixedly increased, and the gate-on voltage VG is changed from insufficient to sufficient. This application does not restrict this.
  • the structure of the voltage storage unit 520 may also be different from the foregoing embodiment.
  • the voltage storage part 520 includes at least one voltage code area 523.
  • the voltage code area 523 directly stores the new voltage code.
  • different voltage code areas 523 store different new voltage codes.
  • the control unit 510 is used to read the new voltage code in the voltage code area 523, and transmit the new voltage code to the digital-to-analog conversion module 110 to output the corresponding gate-on voltage VG.
  • the voltage code area 523 directly stores new voltage codes corresponding to different gate turn-on voltages VG, so that the control unit 510 can directly read the new voltage codes. Therefore, this embodiment can simplify the control process of the control unit 510 and save the storage space of the voltage storage unit 520.
  • the display device further includes a control circuit board 700.
  • the power chip 100, the gamma chip 200, the detection resistor 400 and the control module 500 are all arranged on the control circuit board 600. That is, the detection resistor 400 and the control module 500 can be arranged on the control circuit board 600 where the power chip 100 and the gamma chip 200 are located, thereby facilitating circuit layout of the resistors.
  • the display device may also include a timing control chip 800 also located on the control circuit board 600.
  • the control module 500 may be specifically located in the timing control chip 800.
  • the control unit 500 may be the central processing unit of the timing control chip 800, thereby increasing the compatibility of the system.
  • the display panel 300 has a display area 300 a and a non-display area 300 b surrounding the display area 300 a.
  • the sub-pixel 310 and the driving transistor 320 are located in the display area 300a, and can display in the display area.
  • the detection transistor 330 is located in the non-display area 300b, thereby reducing the influence on the wiring and light emission of the display area 300a.
  • the display device further includes a data driving chip 900.
  • the data driving chip 900 is electrically connected to the gamma chip 200 and the driving transistor 320, and then outputs the gamma voltage output by the gamma chip 200 to the driving transistor 320 according to a certain timing.
  • the power supply voltage of the data driving chip 900 is output by the power supply chip 100, which is similar to the gamma voltage output by normal display. Therefore, the present application uses the power supply voltage of the data driving chip 900 as the test voltage VT. On the one hand, there is no need to output another voltage, which makes the system compatible. On the other hand, the working conditions of the detecting transistor 330 and the driving transistor 320 are closer, so that the aging of the detecting transistor 330 can more accurately reflect the aging state of the driving transistor 320.
  • the display device includes a gamma chip 200, a data driving chip 900, a power chip 100, a detection resistor 400, a display panel 300, an analog-to-digital conversion module 600, and a timing control chip 800 .
  • the gamma chip 200 is used to output gamma voltage.
  • the data driving chip 900 is electrically connected to the gamma chip 200 for outputting the gamma voltage according to a certain timing.
  • the power chip 100 is used to output the gate turn-on voltage VG and the power voltage of the data driving chip 900.
  • the power chip 100 includes a digital-to-analog conversion module 110.
  • the detection resistor 400 has a first end 410 and a second end 420 for electrical connection, and the first end 410 is grounded.
  • the display panel 300 includes a plurality of sub-pixels 310, a plurality of driving transistors 320, and at least one detecting transistor 330.
  • the driving transistor 320 is an N-type transistor, the gate of which receives the gate-on voltage VG, and the drain of which receives the gamma voltage.
  • the source of the driving transistor 320 is electrically connected to the corresponding sub-pixel 310.
  • the gate of the detection transistor 330 receives the gate-on voltage VG.
  • the drain of the detecting transistor 330 receives the power supply voltage of the data driving chip.
  • the source of the detecting transistor 330 is electrically connected to the second end 420 of the detecting resistor 400.
  • the analog-to-digital conversion module 600 is used to convert the power supply voltage of the data driving chip 700 and the voltage on the detection resistor 400 into corresponding digital signals.
  • the timing control chip 800 includes a voltage storage unit 520 and a control unit 510.
  • the voltage storage unit 520 is electrically connected to the control unit 510 and includes an initial code area 521 and a plurality of step table code areas 522.
  • the initial code area 521 stores initial voltage codes.
  • Each step table code area 522 stores different step codes.
  • the control unit 510 is electrically connected to the analog-to-digital conversion module 600 and the voltage storage unit 520.
  • the control unit 510 controls the power chip 100 to increase the output of the gate turn-on voltage VG.
  • the "set voltage difference" here can be set according to actual needs. Therefore, this embodiment can increase the output of the gate turn-on voltage VG when the display device is used for a long time and the driving transistor 320 is seriously aging, thereby preventing the brightness from decreasing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of El Displays (AREA)

Abstract

一种显示装置包括:电源芯片(100),用于输出栅极开启电压;伽马芯片(200),用于提供伽马电压;侦测电阻(400),具有用于电连接的第一端(410)以及第二端(420),第一端(410)接地;显示面板(300),包括多个子像素(310)、多个驱动晶体管(320)以及至少一个侦测晶体管(330);驱动晶体管(320)的栅极接受栅极开启电压(VG),驱动晶体管(320)的第一极接受伽马电压,驱动晶体管(320)的第二极电连接相应子像素(310);侦测晶体管(330)的栅极接受栅极开启电压(VG),侦测晶体管(330)的第一极接受一测试电压(VT),侦测晶体管(330)的第二极电连接侦测电阻(400)的第二端(420);控制模块(500),电连接侦测电阻(400)的第二端(420),用于当侦测电阻(400)的电压的减小时控制电源芯片(100)增加或减少栅极开启电压(VG)的输出。

Description

显示装置
相关申请的交叉引用
本申请要求于2019年05月06日提交中国专利局、申请号为2019103714561、发明名称为“显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及显示技术领域,特别是涉及一种显示装置。
背景技术
这里的陈述仅提供与本申请有关的背景信息,而不必然地构成现有技术。
随着显示技术的发展,各种显示装置(例如,液晶电视)应用于人们的生产、生活中,为人们提供便利。显示装置的各成像子像素通常是通过薄膜晶体管(Thin Film Transistor,TFT)来驱动的。TFT式显示装置具有高响应度、高亮度、高对比度等优点,因此成为目前的主流显示装置。
但是,随着长期地使用,显示装置内部的薄膜晶体管会逐渐老化。这会导致其进行显示的子像素充电不足,因此会带来显示偏暗的问题,进而影响装置使用寿命。
发明内容
根据本申请的多个实施例,提供一种显示装置。
一种显示装置,包括:
电源芯片,用于输出栅极开启电压;
伽马芯片,用于提供伽马电压;
侦测电阻,具有第一端以及第二端,所述第一端接地;
显示面板,包括多个子像素、多个驱动晶体管以及至少一个侦测晶体管;所述驱动晶体管的栅极接受所述栅极开启电压,所述驱动晶体管的第一极接受所述伽马电压,所述驱动晶体管的第二极电连接相应的子像素;所述侦测晶体管的栅极接受所述栅极开启电压,所述侦测晶体管的第一极接受一测试电压,所述侦测晶体管的第二极电连接所述侦测电阻的所述第二端;
控制模块,电连接所述侦测电阻的第二端;
当所述驱动晶体管为N型晶体管时,所述第一极为漏极,所述第二极为源极,当所述侦测电阻的电压的减小时,所述控制模块控制所述电源芯片增加所述栅极开启电压的输出;
当所述驱动晶体管为P型晶体管时,所述第一极为源极,所述第二极为漏极,当所述侦测电阻的电压的减小时,所述控制模块控制所述电源芯片减小所述栅极开启电压的输出。
一种显示装置,包括:
伽马芯片,用于输出伽马电压;
数据驱动芯片,电连接所述伽马芯片,用于将所述伽马电压按照一定时序输出;
电源芯片,用于输出栅极开启电压以及所述数据驱动芯片的电源电 压,且所述电源芯片包括数模转换模块;
侦测电阻,具有第一端以及第二端,所述第一端接地;
显示面板,包括多个子像素、多个驱动晶体管以及至少一个侦测晶体管;所述驱动晶体管的栅极接受所述栅极开启电压,所述驱动晶体管的漏极接受所述伽马电压,所述驱动晶体管的源极电连接相应子像素;所述侦测晶体管的栅极接受所述栅极开启电压,所述侦测晶体管的漏极接受所述数据驱动芯片的电源电压,所述侦测晶体管的源极电连接所述侦测电阻的所述第二端;
模数转换模块,用于将所述数据驱动芯片的电源电压以及所述侦测电阻上的电压转换为相应数字信号;
时序控制芯片,包括电压存储部以及控制单元;所述电压存储部电连接所述控制单元,且包括初始代码区以及多个步进表代码区,所述初始代码区存储有初始电压代码,各所述步进表代码区存储有不同的步进代码;所述控制单元电连接所述模数转换模块以及所述电压存储部,用于计算所述测试电压与所述侦测电阻的电压的电压差,并根据所述电压差而读取所述初始代码区中的初始电压代码以及步进表代码区中的步进代码,然后将所述初始电压代码与所述步进代码相加后得到新电压代码,再将所述新电压代码传输给所述数模转换模块而输出相应栅极开启电压;
每当所述电压差大于设定电压差值时,所述控制单元控制所述电源芯片增加所述栅极开启电压的输出。
根据上述显示装置,由于增设了侦测电阻以及侦测晶体管,进而可以通过侦测电阻的电压的减小来侦测侦测晶体管的老化情况,并通过侦测晶体管的老化情况而有效反应驱动晶体管的老化状况。同时,上述显示装置 根据侦测电阻的电压的减小时控制电源芯片增加或减小栅极开启电压的输出,进而可以使得驱动晶体管在老化而阻抗增加时,增加或减小其栅极的电压,进而增加栅源电压VGS的绝对值,进而降低导电沟道的沟道电阻,从而有效防止其第二极电流(实际充电电流)降低,进而保证显示装置在长期使用时亮度一致。因此,本申请的显示装置可以有效防止在长期使用后显示变暗。
附图说明
图1为一个实施例中显示装置的示意图;
图2为图1所示显示装置的局部放大示意图;
图3为另一个实施例中显示装置的局部放大示意图;
图4为又一个实施例中显示装置的局部放大示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
在一个实施例中,参考图1以及图2,显示装置包括电源芯片100、伽马芯片200、以及显示面板300。电源芯片100用于输出栅极开启电压VG。伽马芯片200用于输出伽马电压。
显示面板300包括多个各种颜色的子像素310,例如:红色子像素R、绿色子像素G以及蓝色子像素B。同时,显示面板300还包括用于驱动各子像素310的多个驱动晶体管320。驱动晶体管320为主动阵列开关。具 体地,各驱动晶体管320的栅极均接受栅极开启电压VG,进而打开相应子像素310。各驱动晶体管320的第一极均接受相应伽马电压,进而为相应子像素310提供电源。各驱动晶体管320的第二极均电连接相应子像素310,进而为相应子像素310进行充电。当驱动晶体管320为N型晶体管时,第一极为漏极,第二极为源极。当驱动晶体管320为P型晶体管时,第一极为源极,第二极为漏极。
此外,在本实施例中,显示面板还包括至少一个侦测晶体管330。侦测晶体管330用于进行老化侦测。侦测晶体管330与驱动晶体管320可以经过同样的工艺过程形成,使得二者可以具有相同的性能参数,进而使得侦测晶体管330的老化情况可以比较准确的反应驱动晶体管320的老化情况。
为了实现对侦测晶体管330的老化侦测,显示装置还包括侦测电阻400。侦测电阻400为阻值固定的定值电阻,并且具有用于电连接的第一端410以及第二端420。其中,第一端410接地,而第二端420电连接侦测晶体管330的第二极。
同时,侦测晶体管330的栅极与驱动晶体管320的栅极一样,同样接受栅极开启电压VG进而形成导电沟道。而侦测晶体管330的第一极接受一测试电压VT,进而在第一极与第二极之间的导电沟道中形成电流通路。该测试电压VT可以由电源芯片100直接输出,当然也可以由其他驱动部分输出。
设定侦测晶体管330的等效阻抗为R1,侦测电阻400的阻抗为R,测试电压VT为VDD,侦测电阻400上的电压为V1。那么,参考图1,当侦测晶体管330的数量为一个时,V1=VDD*R/(R+R1)。
当然,为了增加侦测可信性,也可以设置侦测晶体管330的数量大于1。具体地,例如可以设置三个相同的侦测晶体管330并联后与侦测电阻400串联。设定各侦测晶体管330的等效阻抗也均为R1。此时,侦测电阻400上的电压V1=VDD*R/(R+1/3R1)。因此,可以根据三个侦测晶体管330的平均老化情况,来判断各驱动晶体管320的老化情况,进而增加了侦测可靠性。
由以上关系可知,侦测电阻400上的电压V1与侦测晶体管330的阻抗R1呈负相关关系。而侦测晶体管330与驱动晶体管320一样,会随着显示装置的使用而逐渐老化,其等效阻抗R1会逐渐增大。因此,随着晶体管的老化,V1会越来越小,进而可以通过V1来侦测侦测晶体管330的老化程度,进而反应驱动晶体管320的老化程度。
请参阅图2,在本实施例中,显示装置还包括控制模块500。控制模块500电连接侦测电阻400的第二端420,进而可以根据侦测电阻400的电压来控制伽马芯片200输出不同的伽马电压。
驱动晶体管320与侦测晶体管330位于同样的显示装置,二者接受同样的栅极开启电压VG。因此,二者老化程度接近。侦测晶体管330的老化情况可以反应驱动晶体管的老化情况。在侦测电阻400的电压减小时,表示侦测晶体管330以及驱动晶体管320因老化而阻抗增加。
若驱动晶体管320为N型晶体管,则此时控制模块500控制电源芯片100增加栅极开启电压VG的输出,进而可以在驱动晶体管320老化而导致自身阻抗增加时,增加其栅极的电压,从而增加栅源电压VGS的绝对值,进而减小导电沟道的沟道电阻。图2所示的实施例中,驱动晶体管320为N型晶体管时。
若驱动晶体管320为P型晶体管,则此时控制模块500控制电源芯片100减小栅极开启电压VG的输出,进而可以在驱动晶体管320老化而导致自身阻抗增加时,减小其栅极的电压,从而增加栅源电压VGS的绝对值,进而减小导电沟道的沟道电阻。
导电沟道的沟道电阻变小,进而有效防止驱动晶体管320的流向子像素210的第二极电流(实际充电电流)降低。因此,本申请可以有效防止显示装置在长时间使用后亮度变低。
在一个实施例中,参考图2,控制模块500包括用于控制栅极开启电压VG的输出的控制单元510。显示装置还包括模数转换模块600。模数转换模块600可以将模拟信号转变为数字信号。
模数转换模块600的输入端用于采集侦测电阻400的电压,其输出端电连接控制单元500,进而可将侦测电阻400的电压转换为数字信号,而便于控制单元对数据(侦测电阻400的电压)进行处理。
每当侦测电阻400的电压小于设定电压值时,说明侦测晶体管330老化导致阻抗增加,进而导致输出的第二极电流降低到一定程度。即说明,驱动晶体管老化导致阻抗增加,进而导致输出的第二极电流降低到影响亮度。
若驱动晶体管320为N型晶体管,则此时控制单元500控制电源芯片100增加栅极开启电压VG的输出,进而可以减小晶体管(侦测晶体管330以及驱动晶体管320)的导电沟道的沟道电阻,从而防止第二极电流的减小。这里的“设定电压值”可以根据实际需求进行设置。
若驱动晶体管320为P型晶体管,则此时控制单元500控制电源芯片100减小栅极开启电压VG的输出,进而可以减小晶体管(侦测晶体管330 以及驱动晶体管320)的导电沟道的沟道电阻,从而防止第二极电流的减小。这里的“设定电压值”可以根据实际需求进行设置。
在另一个实施例中,控制模块500也包括用于控制栅极开启电压VG的输出的控制单元510。显示装置也包括模数转换模块600,且模数转换模块600的输入端也用于采集侦测电阻400的电压,其输出端也电连接控制单元500。
模数转换模块600的输入端除了采集侦测电阻400的电压以外,还采集测试电压VT。此时,可以设置模数转换模块600包括两个模数转换单元610。其中一个模数转换单元610采集侦测电阻400的电压,另一个模数转换单元610采集测试电压VT。控制单元510还用于计算测试电压VT与侦测电阻400的电压的电压差dV,并根据该电压差dV而控制栅极开启电压VG的输出。
测试电压VT的电压值固定,侦测电阻400的电压V1随着侦测晶体管330的老化而降低。因此,测试电压VT与侦测电阻400的电压的电压差dV随着侦测晶体管330的老化而增加。
当电压差dV大于设定电压差值时,即说明驱动晶体管320老化导致阻抗增加,进而导致输出的第二极电流降低,而影响显示装置的显示亮度。
若驱动晶体管320为N型晶体管,则此时控制单元500控制电源芯片100增加栅极开启电压VG的输出,进而减小晶体管(侦测晶体管330以及驱动晶体管320)的导电沟道的沟道电阻,从而防止第二极电流的减小。这里的“设定电压差值”可以根据实际需求进行设置。
若驱动晶体管320为P型晶体管,则此时控制单元500控制电源芯片100减小栅极开启电压VG的输出,进而减小晶体管(侦测晶体管330以及 驱动晶体管320)的导电沟道的沟道电阻,从而防止第二极电流的减小。这里的“设定电压差值”可以根据实际需求进行设置。
模数转换模块600进行模拟信号到数字信号的转换时是有误差的。所以,本实施例采集测试电压VT以及侦测电阻400的电压,这两个电压都经过模数转换模块600转换,再去做差,这样便可以降低掉模数转换模块600的转换误差,进而得出更加准确的结果,以便于控制单元510更加准确的控制电源芯片100对栅极开启电压VG的输出。
上述实施例中,控制单元510接受经过模数转换模块600转换的数字信号。在其他实施例中,控制单元510也可以直接接受模拟信号(侦测电阻400的电压以及测试电压VT)。
控制单元510控制电源芯片100增加(或减少)栅极开启电压VG的方式也可以有多种。
在一个实施例中,继续参考图2,控制模块500包括控制单元510以及电压存储部520。电源芯片100还包括数模转换模块110。电压存储部520电连接控制单元510,且包括初始代码区521以及至少一个补偿代码区522。初始代码区521存储有初始电压代码。当补偿代码区522数量大于1时,各补偿代码区522存储有不同的补偿电压代码。
当侦测电阻400的电压的减小时,控制单元510读取初始代码区中521的初始电压代码以及补偿代码区522中的补偿电压代码,然后将初始电压代码与补偿电压代码相加后得到新电压代码,再将新电压代码传输给数模转换模块110而输出相应栅极开启电压VG。具体地,控制单元510可以通过一定的传输协议等方式进行传输。
具体地,若驱动晶体为N型晶体管,显示装置开始使用时,侦测电阻 400的电压V1大于一设定电压值(或者测试电压VT与侦测电阻400的电压V1的电压差大于设定电压差值)时,可以由电源芯片100直接输出初始的栅极开启电压VG。
而在显示装置使用一段时间后,侦测电阻400的电压V1小于设定电压值(或者测试电压VT与侦测电阻400的电压V1的电压差大于设定电压差值)时,控制模块500读取初始代码区中521的初始电压代码以及一个补偿代码区522中的补偿电压代码,而控制电源芯片100输出一个增大的栅极开启电压,来防止显示装置显示变暗。
当补偿代码区522的数量大于一个时,类似上述步骤,在显示装置又使用一段时间后,当侦测电阻400的电压V1又一次小于设定电压值(或者测试电压VT与侦测电阻400的电压V1的电压差(VT-V1)大于设定电压差值)时,控制模块500读取初始代码区中521的初始电压代码以及又一个补偿代码区522中的补偿电压代码而输出又一个更大的栅极开启电压,来防止显示装置显示变暗,依此类推。
在本申请实施例中,可以设置补偿代码区522为步进表代码区,补偿电压代码为步进代码。步进代码是逐步增加栅极开启电压VG的。控制单元510根据电压差dV而逐步增加栅极开启电压VG的输出。
具体地,当侦测电阻400的电压V1小于设定电压值(或者测试电压VT与侦测电阻400的电压V1的电压差大于设定电压差值)时,即栅极开启电压VG不足时,先使栅极开启电压VG增加一个△VG。当侦测到栅极开启电压VG还是不足,仍然是侦测电阻400的电压V1小于设定电压值(或者测试电压VT与侦测电阻400的电压V1的电压差大于设定电压差值)时,再使栅极开启电压VG增加一个△VG(即增加两个△VG)而输出,这样依 次累计,直到栅极开启电压VG充足,即直到侦测电阻400的电压V1不小于设定电压值(或者测试电压VT与侦测电阻400的电压V1的电压差不大于设定电压差值)。
此时,可以保证栅极开启电压VG的调整精度,不至于使其增加过多,并且可以实现在不同的老化程度下智能增加不同的△VG,而将栅极开启电压VG由不足转为充足,进而更完美地补偿驱动晶体管320的老化过程。
当然,本申请实施例也可以设置补偿代码区522不为步进表代码区。例如,也可以在每次栅极开启电压VG不足时,固定增加相同的△VG,而将栅极开启电压VG由不足转为充足。本申请对此不做限制。
并且,在另一个实施例中,电压存储部520的结构也可以与上述实施例不同。
参考图3,电压存储部520包括至少一个电压代码区523。电压代码区523直接存储有新电压代码。当电压代码区523的数量大于一个时,不同的电压代码区523存储有不同的新电压代码。当侦测电阻的电压的减小时,控制单元510用于读取电压代码区523中的新电压代码,并将新电压代码传输给数模转换模块110而输出相应栅极开启电压VG。
此时,电压代码区523直接存储有对应不同栅极开启电压VG的新电压代码,进而使得控制单元510可以直接读取新电压代码即可。因此,本实施例可以简化控制单元510的控制过程,且节约电压存储部520的存储空间。
在一个实施例中,参考图1,显示装置还包括控制电路板700。电源芯片100、伽马芯片200、侦测电阻400以及控制模块500均设置在控制电路板600上。即侦测电阻400以及控制模块500可以设置在电源芯片100 以及伽马芯片200所在的控制电路板600上,进而便于对电阻进行电路布局。
具体地,显示装置还可以包括同样位于控制电路板600上的时序控制芯片800。控制模块500可以具体位于时序控制芯片800内。此时,控制单元500可以为时序控制芯片800的中央处理器,进而增加了系统的兼容性。
在一个实施例中,继续参考图1,显示面板300具有显示区300a与包围显示区300a的非显示区300b。子像素310以及驱动晶体管320位于显示区300a,进而可以在显示区进行显示。侦测晶体管330位于非显示区300b,进而减少对显示区300a的布线以及出光等的影响。
在一个实施例中,继续参考图1,显示装置还包括数据驱动芯片900。数据驱动芯片900电连接伽马芯片200以及驱动晶体管320,进而将伽马芯片200输出的伽马电压按照一定时序输出至驱动晶体管320。
数据驱动芯片900的电源电压由电源芯片100输出,其与正常显示所输出的伽马电压相近。因此,本申请将数据驱动芯片900的电源电压作为测试电压VT。一方面,无需另外输出一个电压,使得系统兼容性较好。另一方面也使得侦测晶体管330与驱动晶体管320的工作情况更加接近,进而可以使得侦测晶体管330的老化能更准确的反应驱动晶体管320的老化状态。
在另一个实施例中,参考图1以及图4,显示装置包括伽马芯片200、数据驱动芯片900、电源芯片100、侦测电阻400、显示面板300、模数转换模块600以及时序控制芯片800。
伽马芯片200用于输出伽马电压。数据驱动芯片900电连接伽马芯片 200,用于将伽马电压按照一定时序输出。电源芯片100用于输出栅极开启电压VG以及数据驱动芯片900的电源电压。且电源芯片100包括数模转换模块110。侦测电阻400,具有用于电连接的第一端410以及第二端420,第一端410接地。
显示面板300包括多个子像素310、多个驱动晶体管320以及至少一个侦测晶体管330。驱动晶体管320为N型晶体管,其栅极接受栅极开启电压VG,且其漏极接受伽马电压。驱动晶体管320的源极电连接相应子像素310。侦测晶体管330的栅极接受栅极开启电压VG。侦测晶体管330的漏极接受数据驱动芯片的电源电压。侦测晶体管330的源极电连接侦测电阻400的第二端420。
模数转换模块600用于将数据驱动芯片700的电源电压以及侦测电阻400上的电压转换为相应数字信号。
时序控制芯片800包括电压存储部520以及控制单元510。电压存储部520电连接控制单元510,且包括初始代码区521以及多个步进表代码区522。初始代码区521存储有初始电压代码。各步进表代码区522存储有不同的步进代码。控制单元510电连接模数转换模块600以及电压存储部520。用于计算测试电压VT与侦测电阻400的电压的电压差,并根据电压差而读取初始代码区521中的初始电压代码以及步进表代码区522中的步进代码,然后将初始电压代码与步进代码相加后得到新电压代码,再将新电压代码传输给数模转换模块110而输出相应栅极开启电压VG。
当电压差大于设定电压差值时,控制单元510控制电源芯片100增加所述栅极开启电压VG的输出。这里的“设定电压差值”可以根据实际需求进行设置。因此,本实施例可以在显示装置长期使用使得驱动晶体管320 老化较严重时,增加栅极开启电压VG的输出,而防止亮度下降。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (16)

  1. 一种显示装置,包括:
    电源芯片,设置为输出栅极开启电压;
    伽马芯片,设置为提供伽马电压;
    侦测电阻,具有第一端以及第二端,所述第一端接地;
    显示面板,包括多个子像素、多个驱动晶体管以及至少一个侦测晶体管;所述驱动晶体管的栅极接受所述栅极开启电压,所述驱动晶体管的第一极接受所述伽马电压,所述驱动晶体管的第二极电连接相应的子像素;所述侦测晶体管的栅极接受所述栅极开启电压,所述侦测晶体管的第一极接受一测试电压,所述侦测晶体管的第二极电连接所述侦测电阻的所述第二端;
    控制模块,电连接所述侦测电阻的第二端;
    当所述驱动晶体管为N型晶体管时,所述第一极为漏极,所述第二极为源极,当所述侦测电阻的电压的减小时,所述控制模块控制所述电源芯片增加所述栅极开启电压的输出;
    当所述驱动晶体管为P型晶体管时,所述第一极为源极,所述第二极为漏极,当所述侦测电阻的电压的减小时,所述控制模块控制所述电源芯片减小所述栅极开启电压的输出。
  2. 根据权利要求1所述的显示装置,其中所述控制模块包括控制单元,设置为控制所述栅极开启电压的输出;
    所述显示装置还包括模数转换模块,所述模数转换模块的输入端设置为采集所述侦测电阻的电压,所述模数转换模块的输出端电连接所述控制单元;
    当所述驱动晶体管为N型晶体管时,当所述侦测电阻的电压小于设定电压值时,所述控制单元控制所述电源芯片增加所述栅极开启电压的输出;
    当所述驱动晶体管为P型晶体管时,当所述侦测电阻的电压小于设定电压值时,所述控制单元控制所述电源芯片减少所述栅极开启电压的输出。
  3. 根据权利要求1所述的显示装置,其中所述控制模块包括控制单元,设置为控制所述栅极开启电压的输出;
    所述显示装置还包括模数转换模块,所述模数转换模块的输入端设置为采集所述测试电压以及所述侦测电阻的电压,所述模数转换模块的输出端电连接所述控制单元;
    所述控制单元还设置为计算所述测试电压与所述侦测电阻的电压的电压差;当所述驱动晶体管为N型晶体管时,当所述电压差大于设定电压差值时,所述控制单元控制所述电源芯片增加所述栅极开启电压的输出;
    当所述驱动晶体管为P型晶体管时,当所述电压差大于设定电压差值时,所述控制单元控制所述电源芯片减少所述栅极开启电压的输出。
  4. 根据权利要求1所述的显示装置,其中所述控制模块包括控制单元以及电压存储部,所述电源芯片还包括数模转换模块;
    所述电压存储部电连接所述控制单元,且包括初始代码区以及至少一个补偿代码区,所述初始代码区存储有初始电压代码,所述补偿代码区存储有补偿电压代码;
    当所述侦测电阻的电压的减小时,所述控制单元设置为读取所述初始代码区中的初始电压代码以及补偿代码区中的补偿电压代码,然后将所述初始电压代码与所述补偿电压代码相加后得到新电压代码,再将所述新电压代码传输给所述数模转换模块而输出相应栅极开启电压。
  5. 根据权利要求4所述的显示装置,其中所述补偿代码区为步进表代码区,所述补偿电压代码为步进代码,所述控制单元设置为根据所述电压差而逐步 控制栅极开启电压的输出。
  6. 根据权利要求1所述的显示装置,其中所述控制模块包括控制单元以及电压存储部,所述电源芯片还包括数模转换模块;
    所述电压存储部电连接所述控制单元且包括至少一个电压代码区,所述电压代码区存储有新电压代码;
    当所述侦测电阻的电压的减小时,所述控制单元设置为读取所述电压代码区中的新电压代码,并将所述新电压代码传输给所述数模转换模块而输出相应栅极开启电压。
  7. 根据权利要求1所述的显示装置,其中所述显示装置还包括控制电路板,所述电源芯片、所述伽马芯片、所述侦测电阻以及所述控制模块均设置于所述控制电路板上。
  8. 根据权利要求1所述的显示装置,其中所述显示面板包括显示区与包围所述显示区的非显示区,所述驱动晶体管位于所述显示区,所述侦测晶体管位于所述非显示区。
  9. 根据权利要求1所述的显示装置,其中所述显示装置还包括数据驱动芯片,所述数据驱动芯片电连接所述伽马芯片以及所述驱动晶体管,设置为将所述伽马电压按照一定时序输出至所述驱动晶体管;
    所述测试电压为所述数据驱动芯片的电源电压。
  10. 根据权利要求1所述的显示装置,其中所述侦测晶体管的栅极接受所述栅极开启电压进而形成导电沟道,所述侦测晶体管的第一极接受所述测试电压,进而在所述侦测晶体管的第一极与第二极之间的所述导电沟道中形成电流通路。
  11. 根据权利要求1所述的显示装置,其中三个侦测晶体管并联后与所述侦测 电阻串联,各侦测晶体管的等效阻抗均为R1,所述侦测电阻的阻抗为R,则所述侦测电阻上的电压V1=VDD*R/(R+1/3R1),其中VDD为所述测试电压。
  12. 一种显示装置,包括:
    伽马芯片,设置为输出伽马电压;
    数据驱动芯片,电连接所述伽马芯片,设置为将所述伽马电压按照一定时序输出;
    电源芯片,设置为输出栅极开启电压以及所述数据驱动芯片的电源电压,且所述电源芯片包括数模转换模块;
    侦测电阻,具有第一端以及第二端,所述第一端接地;
    显示面板,包括多个子像素、多个驱动晶体管以及至少一个侦测晶体管;所述驱动晶体管的栅极接受所述栅极开启电压,所述驱动晶体管的漏极接受所述伽马电压,所述驱动晶体管的源极电连接相应子像素;所述侦测晶体管的栅极接受所述栅极开启电压,所述侦测晶体管的漏极接受所述数据驱动芯片的电源电压,所述侦测晶体管的源极电连接所述侦测电阻的所述第二端;
    模数转换模块,设置为将所述数据驱动芯片的电源电压以及所述侦测电阻上的电压转换为相应数字信号;
    时序控制芯片,包括电压存储部以及控制单元;所述电压存储部电连接所述控制单元,且包括初始代码区以及多个步进表代码区,所述初始代码区存储有初始电压代码,各所述步进表代码区存储有不同的步进代码;所述控制单元电连接所述模数转换模块以及所述电压存储部,设置为计算所述测试电压与所述侦测电阻的电压的电压差并根据所述电压差而读取所述初始代码区中的初始电压代码以及步进表代码区中的步进代码,然后将所述初始电压代码与所述步进代码相加后得到新电压代码,再将所述新电压代码传输给所述数 模转换模块而输出相应栅极开启电压;
    当所述电压差大于设定电压差值时,所述控制单元控制所述电源芯片增加所述栅极开启电压的输出。
  13. 根据权利要求12所述的显示装置,其中所述显示装置还包括控制电路板,所述电源芯片、所述伽马芯片、所述侦测电阻以及所述控制模块均设置于所述控制电路板上。
  14. 根据权利要求12所述的显示装置,其中所述显示面板包括显示区与包围所述显示区的非显示区,所述驱动晶体管位于所述显示区,所述侦测晶体管位于所述非显示区。
  15. 根据权利要求12所述的显示装置,其中所述侦测晶体管的栅极接受所述栅极开启电压进而形成导电沟道,所述侦测晶体管的第一极接受所述测试电压,进而在所述侦测晶体管的第一极与第二极之间的所述导电沟道中形成电流通路。
  16. 根据权利要求12所述的显示装置,其中三个侦测晶体管并联后与所述侦测电阻串联,各侦测晶体管的等效阻抗均为R1,所述侦测电阻的阻抗为R,则所述侦测电阻上的电压V1=VDD*R/(R+1/3R1),其中VDD为所述测试电压。
PCT/CN2020/088697 2019-05-06 2020-05-06 显示装置 WO2020224577A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/417,473 US11404018B2 (en) 2019-05-06 2020-05-06 Display device preventing dimming in display during long-term use

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910371456.1 2019-05-06
CN201910371456.1A CN110322850B (zh) 2019-05-06 2019-05-06 显示装置

Publications (1)

Publication Number Publication Date
WO2020224577A1 true WO2020224577A1 (zh) 2020-11-12

Family

ID=68113366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/088697 WO2020224577A1 (zh) 2019-05-06 2020-05-06 显示装置

Country Status (3)

Country Link
US (1) US11404018B2 (zh)
CN (1) CN110322850B (zh)
WO (1) WO2020224577A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110322850B (zh) * 2019-05-06 2020-12-08 惠科股份有限公司 显示装置
CN110288956B (zh) 2019-05-06 2021-11-30 重庆惠科金渝光电科技有限公司 显示装置
US11571803B2 (en) * 2019-05-30 2023-02-07 Milwaukee Electric Tool Corporation Power tool with combined chip for wireless communications and power tool control
CN112951173B (zh) * 2021-02-04 2022-11-25 重庆先进光电显示技术研究院 一种栅极开启电压产生电路、显示面板驱动装置及显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070042465A (ko) * 2005-10-18 2007-04-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시장치 및 이 표시장치를 구비하는 전자기기
US20120091997A1 (en) * 2010-10-14 2012-04-19 Shanghai Tianma Micro-electronics Co., Ltd. Detecting circuit for pixel electrode voltage of flat panel display device
CN106935193A (zh) * 2017-05-12 2017-07-07 京东方科技集团股份有限公司 Oled驱动补偿电路、oled显示面板及其驱动方法
CN110322850A (zh) * 2019-05-06 2019-10-11 惠科股份有限公司 显示装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7274363B2 (en) * 2001-12-28 2007-09-25 Pioneer Corporation Panel display driving device and driving method
JP4534031B2 (ja) * 2003-03-06 2010-09-01 グローバル・オーエルイーディー・テクノロジー・リミテッド・ライアビリティ・カンパニー 有機el表示装置
US7071905B1 (en) * 2003-07-09 2006-07-04 Fan Nong-Qiang Active matrix display with light emitting diodes
JP4822387B2 (ja) * 2004-08-31 2011-11-24 東北パイオニア株式会社 有機elパネルの駆動装置
US7928936B2 (en) * 2006-11-28 2011-04-19 Global Oled Technology Llc Active matrix display compensating method
US8194063B2 (en) * 2009-03-04 2012-06-05 Global Oled Technology Llc Electroluminescent display compensated drive signal
US8339386B2 (en) * 2009-09-29 2012-12-25 Global Oled Technology Llc Electroluminescent device aging compensation with reference subpixels
KR101034738B1 (ko) * 2009-11-10 2011-05-17 삼성모바일디스플레이주식회사 유기전계발광 표시장치
KR101751998B1 (ko) * 2010-07-22 2017-06-28 엘지디스플레이 주식회사 유기 발광다이오드 표시장치 및 그 구동방법
CN103531148B (zh) * 2013-10-31 2015-07-08 京东方科技集团股份有限公司 一种交流驱动的像素电路、驱动方法及显示装置
KR101676259B1 (ko) * 2014-10-01 2016-11-16 엘지디스플레이 주식회사 유기 발광 표시 장치
CN104280970B (zh) * 2014-11-06 2017-12-22 上海天马微电子有限公司 阵列基板及液晶显示面板
KR102232695B1 (ko) * 2014-11-10 2021-03-29 삼성디스플레이 주식회사 감마 전압 생성 장치, 이를 포함하는 유기 발광 표시 장치 및 감마 전압 생성 방법
CN104900186B (zh) * 2015-06-15 2017-05-31 京东方科技集团股份有限公司 Oled像素电路及其显示装置
CN106773383A (zh) * 2016-12-14 2017-05-31 武汉华星光电技术有限公司 一种显示面板
CN106847180B (zh) * 2017-04-24 2019-01-22 深圳市华星光电半导体显示技术有限公司 Oled显示装置的亮度补偿系统及亮度补偿方法
US10782334B2 (en) * 2017-08-16 2020-09-22 Infineon Technologies Ag Testing MOS power switches
CN109243369A (zh) * 2018-09-28 2019-01-18 昆山国显光电有限公司 显示面板、像素电路的驱动方法及显示装置
CN110288956B (zh) * 2019-05-06 2021-11-30 重庆惠科金渝光电科技有限公司 显示装置
KR20210012093A (ko) * 2019-07-23 2021-02-03 삼성디스플레이 주식회사 표시장치의 열화 보상 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070042465A (ko) * 2005-10-18 2007-04-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시장치 및 이 표시장치를 구비하는 전자기기
US20120091997A1 (en) * 2010-10-14 2012-04-19 Shanghai Tianma Micro-electronics Co., Ltd. Detecting circuit for pixel electrode voltage of flat panel display device
CN106935193A (zh) * 2017-05-12 2017-07-07 京东方科技集团股份有限公司 Oled驱动补偿电路、oled显示面板及其驱动方法
CN110322850A (zh) * 2019-05-06 2019-10-11 惠科股份有限公司 显示装置

Also Published As

Publication number Publication date
CN110322850A (zh) 2019-10-11
US20220059047A1 (en) 2022-02-24
CN110322850B (zh) 2020-12-08
US11404018B2 (en) 2022-08-02

Similar Documents

Publication Publication Date Title
WO2020224577A1 (zh) 显示装置
US10403218B2 (en) Mura compensation circuit and method, driving circuit and display device
WO2019184407A1 (zh) 显示面板及其电压调节方法、显示装置
US9812061B2 (en) Display apparatus and operation method thereof
KR20050052674A (ko) 광감지 패널과, 이를 갖는 광감지 장치 및 이의 구동 방법
WO2014046029A1 (ja) データ線駆動回路、それを備える表示装置、およびデータ線駆動方法
US8599182B2 (en) Power sequence control circuit, and gate driver and LCD panel having the same
CN103700331A (zh) 平面显示器及其临界电压感测电路与方法
CN111312173A (zh) 一种像素电路及像素驱动的方法
WO2020224583A1 (zh) 显示装置
TWI498867B (zh) 影像顯示系統、感測電路與感測並補償電晶體之臨界電壓偏移之方法
CN112951132B (zh) 检测电路、驱动电路、显示面板及其驱动方法
TWI732254B (zh) 顯示裝置及畫素電路
US9543954B2 (en) Driver circuit with device variation compensation and operation method thereof
US9240155B2 (en) Driving circuit and driving method thereof and liquid crystal display
WO2024001094A1 (zh) 像素补偿方法、像素补偿装置及显示装置
US11900843B2 (en) Display device and display driving method
US20220293037A1 (en) Array substrate, driving method thereof, and display apparatus
WO2020199553A1 (zh) 电平转换控制电路与电平转换电路
US11295693B2 (en) Gate driving circuit, current adjusting method thereof and display device
CN112201212B (zh) 一种显示装置及其驱动方法
KR20060099315A (ko) Lcd소스 구동회로용 오프셋 보상장치
TWI455105B (zh) 顯示面板
CN110534046B (zh) 阵列基板、显示设备、数据补偿方法
US11367378B2 (en) Driving method and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20802177

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20802177

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17.05.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20802177

Country of ref document: EP

Kind code of ref document: A1