WO2020224169A1 - 光引发聚合制备乙烯基醚类聚合物的方法 - Google Patents

光引发聚合制备乙烯基醚类聚合物的方法 Download PDF

Info

Publication number
WO2020224169A1
WO2020224169A1 PCT/CN2019/107807 CN2019107807W WO2020224169A1 WO 2020224169 A1 WO2020224169 A1 WO 2020224169A1 CN 2019107807 W CN2019107807 W CN 2019107807W WO 2020224169 A1 WO2020224169 A1 WO 2020224169A1
Authority
WO
WIPO (PCT)
Prior art keywords
vinyl ether
polymerization
halogenated hydrocarbon
photo
alkyl group
Prior art date
Application number
PCT/CN2019/107807
Other languages
English (en)
French (fr)
Inventor
朱健
黄晓飞
李佳佳
李娜
潘向强
朱秀林
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Priority to US16/961,909 priority Critical patent/US11498984B2/en
Priority to AU2019427990A priority patent/AU2019427990B2/en
Publication of WO2020224169A1 publication Critical patent/WO2020224169A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F116/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F116/12Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an ether radical
    • C08F116/14Monomers containing only one unsaturated aliphatic radical
    • C08F116/16Monomers containing no hetero atoms other than the ether oxygen
    • C08F116/18Acyclic compounds
    • C08F116/20Monomers containing three or more carbon atoms in the unsaturated aliphatic radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F116/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F116/12Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an ether radical
    • C08F116/14Monomers containing only one unsaturated aliphatic radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F116/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F116/12Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an ether radical
    • C08F116/14Monomers containing only one unsaturated aliphatic radical
    • C08F116/16Monomers containing no hetero atoms other than the ether oxygen
    • C08F116/18Acyclic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F16/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F16/12Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an ether radical
    • C08F16/14Monomers containing only one unsaturated aliphatic radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/06Metallic compounds other than hydrides and other than metallo-organic compounds; Boron halide or aluminium halide complexes with organic compounds containing oxygen
    • C08F4/26Metallic compounds other than hydrides and other than metallo-organic compounds; Boron halide or aluminium halide complexes with organic compounds containing oxygen of manganese, iron group metals or platinum group metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2438/00Living radical polymerisation

Definitions

  • the invention relates to the technical field of polymer preparation, in particular to a method for preparing vinyl ether polymers by photo-initiated polymerization.
  • Vinyl ether polymers are mainly used to make adhesives, coatings, oil viscosity modifiers, plasticizers, hair sprays, etc. due to their excellent flexibility, solubility and cohesiveness, and non-toxic and harmless. .
  • the use of "living" polymerization methods to prepare polymers with controllable molecular weight and molecular weight distribution has always been a hot issue in polymerization methodology. Since the report of living anionic polymerization in 1956, both living cationic polymerization and living free radical polymerization have developed tremendously.
  • vinyl ether monomers can only be realized by cationic polymerization due to the particularity of their structure, that is, the oxygen atom in the alkoxy group is directly connected to the double bond.
  • the key to realizing living polymerization is to use halogenated hydrocarbons or cationic RAFT reagents to inhibit the increase of the concentration of cationic species, thereby reducing its side reactions to achieve the purpose of preparing controllable polymers.
  • these systems are still very sensitive to the magazines in the system such as water.
  • visible light has been widely used in various living polymerization systems as a green energy source.
  • This stimulation method not only has the advantages of low energy consumption, low price and commercial availability, but more importantly, it can be controlled in time and space.
  • the degree of polymerization can be controlled by the length of light, or the polymerization can be realized by switching the light source. The reaction proceeds and stops.
  • the object of the present invention is to provide a method for preparing vinyl ether polymers by photo-initiated polymerization.
  • the method uses manganese decacarbonyl and organic halogenated hydrocarbons to treat vinyl ether monomers under visible light. Carry out cationic polymerization to prepare vinyl ether polymers with controllable molecular weight and narrow molecular weight distribution.
  • the invention provides a method for preparing vinyl ether polymers by photo-initiated polymerization, which comprises the following steps:
  • the vinyl ether monomers represented by formula (1) are subjected to the action of organic halogenated hydrocarbons and manganese decacarbonyl (Mn 2 (CO) 10 ) under illumination conditions with a wavelength of 365-550 nm
  • Light-initiated polymerization reaction occurs at -25°C to 25°C, and the vinyl ether polymer is obtained after the reaction is completed:
  • R is an alkyl group or a halogenated alkyl group, and the number of carbon atoms in the alkyl group or a halogenated alkyl group is 1-10.
  • the number of carbon atoms in the alkyl group or haloalkyl group is 2-5.
  • the structural formula of the vinyl ether monomer is Wherein X is halogen.
  • X in the vinyl ether monomer is chlorine, referred to as Cl-EVE for short.
  • X in the organic halogenated hydrocarbon is bromine. That is, the structural formula of organic halogenated hydrocarbon is as follows:
  • the molar ratio of vinyl ether monomers, organic halogenated hydrocarbons and manganese decacarbonyl is 100-500:1:0.01-0.5.
  • the molar ratio of vinyl ether monomers, organic halogenated hydrocarbons and manganese decacarbonyl is 200-500:1:0.05-0.5.
  • the molar ratio of vinyl ether monomers, organic halogenated hydrocarbons and manganese decacarbonyl is 200:1:0.05-0.5 or 200-500:1:0.2.
  • the polymerization time is 5min-5h.
  • the polymerization time is 10min-60min; more preferably, the polymerization time is 20min-40min.
  • the reaction temperature is 0-25°C, more preferably, the reaction temperature is 0-10°C.
  • reaction process may not use an organic solvent, or it may be carried out in an organic solvent.
  • the organic solvent is one or more of toluene, n-hexane, ethyl acetate and dichloromethane.
  • reaction after the reaction is completed, it also includes the steps of dissolving the obtained polymer in tetrahydrofuran, then precipitating in methanol, filtering and drying.
  • the protective atmosphere is preferably a nitrogen atmosphere.
  • Manganese decacarbonyl and halogenated hydrocarbons can simultaneously generate carbon free radicals and manganese pentacarbonyl bromide under light, while manganese pentacarbonyl bromide can be used as an oxidant to directly oxidize free radicals to carbocations.
  • the halogenated hydrocarbons in the system can be catalyzed The process is converted to carbocations to initiate polymerization.
  • the present invention has at least the following advantages:
  • the present invention provides a light-initiated controllable cationic polymerization method with simple components. Under a specific wavelength of light, a catalyst generated in situ is used to prepare vinyl ether polymers with controllable molecular weight and molecular weight distribution. An effective method.
  • the reagents used in this method are all commercially available, do not require additional purification, react under visible light conditions, and have many advantages such as environmental friendliness and simple operation.
  • vinyl ether polymers such as polyisobutyl vinyl ether with controllable molecular weight and narrow molecular weight distribution can be prepared.
  • Figure 1 is the kinetic curve (A), the monomer conversion curve with time (B) and the molar ratio of [IBVE]:[EBP]:[Mn 2 (CO) 10 ] at 200:1:0.2.
  • Figure 2 shows the carbon nuclear magnetic (2A-2B), hydrogen nuclear magnetic (2C-2D) and macromolecular mass spectrum (2E-2F) of the obtained polymer when IBVE is selected as the monomer;
  • Figure 3 shows the GPC elution curve of each polymer obtained by selecting different halogenated hydrocarbons
  • Figure 4 is the GPC elution curve of each polymer obtained in different solvents
  • Figure 5 shows the GPC elution curve of each polymer obtained by selecting different monomers.
  • Table 1 shows the polymerization results of different halogenated hydrocarbons under the above conditions for different times.
  • the calculation formula of M n,th is as follows: [M] 0 /[halogenated hydrocarbon] 0 ⁇ conversion rate ⁇ M+M EBP ).
  • reaction temperature is 0°C; the reaction temperature in Example 12 is 25°C, and the reaction temperature in Example 13 is -25°C.
  • Figure 1 is the kinetic curve (A), the monomer conversion curve with time (B) and the molar ratio of [IBVE]:[EBP]:[Mn 2 (CO) 10 ] at 200:1:0.2.
  • the GPC elution curve (C) of the obtained polymer In Figure C, from right to left, the reaction time corresponding to the curve increases sequentially.
  • Figure 2 shows the carbon nuclear magnetic (2A-2B), hydrogen nuclear magnetic (2C-2D) and macromolecular mass spectra (2E-2F) of the obtained polymer when the monomer is selected as IBVE.
  • Figure 2B is a partial enlarged view of 2A
  • Figure 2D is a partial enlarged view of 2C
  • Figure 2F is an enlarged view of box a in 2E.

Abstract

本发明涉及一种光引发聚合制备乙烯基醚类聚合物的方法,包括以下步骤:将乙烯基醚类单体在有机卤代烃与十羰基锰的作用下,在波长为365-550nm的光照条件下于-25℃至25℃下发生光引发聚合反应,反应完全后得到所述乙烯基醚类聚合物。该方法通过利用十羰基锰及有机卤代烃在可见光作用下对乙烯基醚类单体进行阳离子聚合,制备分子量可控,分子量分布较窄的乙烯基醚类聚合物。。

Description

光引发聚合制备乙烯基醚类聚合物的方法 技术领域
本发明涉及聚合物制备技术领域,尤其涉及一种光引发聚合制备乙烯基醚类聚合物的方法。
背景技术
乙烯基醚类聚合物由于具有优良的柔韧性、可溶性与粘结性,而且无毒无害,所以主要用来制作粘合剂、涂料、油类粘度改性剂、增塑剂、喷发胶等。而利用“活性”聚合方法制备分子量及分子量分布可控的聚合物一直是聚合方法学中的热点问题。自从1956年活性阴离子聚合报道以来,活性阳离子聚合以及活性自由基聚合都得到了巨大发展。而乙烯基醚类单体由于其结构的特殊性,即烷氧基中的氧原子与双键直接相连,导致该类聚合物只能通过阳离子聚合的方法实现。活性阳离子最早是在上世纪八十年代首次报道,随后众多不同的活性阳离子聚合体系不断得到报道。这些方法大部分通过利用过渡金属配合物对卤代烃中的碳卤键进行活化从而产生增长阳离子种。后来,受到活性自由基聚合方法中的可逆加成-断裂链转移(RAFT)聚合方法的启发,一种阳离子型的RAFT试剂被合成了。在这种方法中,通过外加的路易斯酸引发聚合反应,通过阳离子型RAFT试剂对聚合进行调控,从而制备分子量及分子量分布可控的聚乙烯基醚。在这些体系中,其实现活性聚合的关键在于利用卤代烃或阳离子型RAFT试剂抑制增长阳离子种的浓度,从而降低其副反应以达到制备可控聚合物的目的。尽管如此,这些体系对于体系中的杂志例如水仍然非常敏感。近年来,可见光作为一种绿色能源被广泛应用于各种活性聚合体系。该刺激手段不仅具有低能耗,价格低廉并且商业可得的优点,更重要的是可以实现时间和空间上的控制,例如通过光照时间长短可以控制聚合反应进行的程度,或者通过光源的开关实现聚合反应的进行和停止。将光引发应用于可控阳离子聚合目前也已成为一个重要的研究方向。目前已报道的方法主要有两种:一种是将传统阳离子RAFT聚合中的路易斯酸引发剂换成一种光敏型的鎓盐引发剂,通过光照使鎓盐氧化阳离子型RAFT试剂产生初始阳离子引发种,其聚合过程与传统阳离子RAFT聚合类似;另一种是利用光敏剂十羰基锰与卤代烃在光照下生成碳自由基,再利用外加的鎓盐将其氧化为碳阳离子,从而引发聚合。这些方法组分复杂,有些还需要额外合成调控试剂。
发明内容
为解决上述技术问题,本发明的目的是提供一种光引发聚合制备乙烯基醚类聚合物的方法,该方法通过利用十羰基锰及有机卤代烃在可见光作用下对乙烯基醚类单体进行阳离子聚合,制备分子量可控,分子量分布较窄的乙烯基醚类聚合物。
本发明提供了一种光引发聚合制备乙烯基醚类聚合物的方法,包括以下步骤:
在保护气氛中,将式(1)所示的乙烯基醚类单体在有机卤代烃与十羰基锰(Mn 2(CO) 10)的作用下,在波长为365-550nm的光照条件下于-25℃至25℃下发生光引发聚合反应,反应完全后得到所述乙烯基醚类聚合物:
Figure PCTCN2019107807-appb-000001
其中,R为烷基或卤代烷基,所述烷基或卤代烷基中的碳原子数为1-10个。
优选地,烷基或卤代烷基中的碳原子数为2-5个。
优选地,乙烯基醚类单体的结构式为
Figure PCTCN2019107807-appb-000002
Figure PCTCN2019107807-appb-000003
其中,X为卤素。优选地,乙烯基醚类单体中的X为氯,简称为Cl-EVE。
进一步地,有机卤代烃的结构式为
Figure PCTCN2019107807-appb-000004
Figure PCTCN2019107807-appb-000005
其中,X为卤素。
优选地,有机卤代烃中的X为溴。即有机卤代烃的结构式如下:
Figure PCTCN2019107807-appb-000006
进一步地,乙烯基醚类单体、有机卤代烃与十羰基锰的摩尔比为100-500:1:0.01-0.5。
优选地,乙烯基醚类单体、有机卤代烃与十羰基锰的摩尔比为200-500:1:0.05-0.5。
更优选地,乙烯基醚类单体、有机卤代烃与十羰基锰的摩尔比为200:1:0.05-0.5或 200-500:1:0.2。
进一步地,聚合时间为5min-5h。优选地,聚合时间为10min–60min;更优选地,聚合时间为20min-40min。
优选地,反应温度为0-25℃,更优选地,反应温度为0-10℃。
进一步地,反应过程中可以不使用有机溶剂,也可以在有机溶剂中进行。
进一步地,有机溶剂为甲苯、正己烷、乙酸乙酯和二氯甲烷中的一种或几种。
进一步地,反应完全后还包括将所得聚合物在四氢呋喃中溶解,然后在甲醇中沉淀、过滤并烘干的步骤。
进一步地,保护气氛优选氮气气氛。
本发明的方法的原理如下:
十羰基锰与卤代烃在光照下可以同时生成碳自由基及五羰基溴化锰,而五羰基溴化锰可作为氧化剂将自由基直接氧化为碳阳离子,体系中的卤代烃通过该催化过程转变为碳阳离子从而引发聚合。
借由上述方案,本发明至少具有以下优点:
本发明提供了一种组分简单的光引发可控阳离子聚合方法,在特定波长的光照下,利用原位生成的催化剂,为制备分子量及分子量分布可控的乙烯基醚类聚合物提供了一种行之有效的方法。该方法所用试剂都是商业可得的,无需额外提纯,在可见光条件下反应,具有环境友好,操作简单等诸多优点。
采用本发明的方法可制备分子量可控,分子量分布较窄的聚异丁基乙烯基醚等乙烯基醚类聚合物。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合附图详细说明如后。
附图说明
图1是[IBVE]:[EBP]:[Mn 2(CO) 10]的摩尔比为200:1:0.2条件下动力学曲线(A)、单体转化率随时间的变化曲线(B)以及所得聚合物的GPC流出曲线(C);
图2为单体选择IBVE时,所得聚合物的碳谱核磁(2A-2B),氢谱核磁(2C-2D)以及大分子质谱(2E-2F);
图3为选用不同卤代烃所得各聚合物的GPC流出曲线;
图4为在不同溶剂中所得各聚合物的GPC流出曲线;
图5为选用不同单体所得各聚合物的GPC流出曲线。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
本发明以下实施例中,核磁氢谱( 1H NMR)是通过Bruker 300MHz核磁仪,将待测试样以CDCl 3为溶剂,四甲基硅烷(TMS)为内标溶解后进行测试;聚合物的分子量和分子量分布指数使用Agilent PL-50凝胶色谱仪(GPC)测定,使用示差折光检测器PL混合凝胶柱D(5μm beads size),柱子的分子量范围为200-4×10 5g/mol,以THF为流动相,流速1.0mL·min -1,以PL-AS RT自动进样器进样,在40℃测定,分子量以聚甲基丙烯酸甲酯标样计算。
实施例1-4
各取4只5mL的安瓿瓶,向其中加入乙烯基醚类单体IBVE、引发剂卤代烃和十羰基锰,每只安瓿瓶分别加入一种卤代烃,其中,[IBVE] 0:[卤代烃] 0:[十羰基锰] 0的摩尔比为200:1:0.2,单体IBVE的体积为0.5mL。经液氮冷冻-抽真空-充氮循环3次,然后在真空状态下封管。将安瓿瓶放入预先定好温度(0℃)的蓝色LED灯下反应。经过预定时间破管,向产物中加少量四氢呋喃溶解并将得到的溶液滴加到大量甲醇中沉淀,沉淀结束倒掉上层清液,抽滤后将所得聚合物用真空烘箱烘干。表一是选用不同卤代烃在上述条件下反应不同时间的聚合结果,表1中,M n,th的计算公式如下:[M] 0/[卤代烃] 0×转化率×M+M EBP)。
表一选用不同卤代烃聚合不同时间的聚合结果
Figure PCTCN2019107807-appb-000007
实施例5-14
做多组平行实验,按照实施例1-4中的方法制备乙烯基醚类聚合物,不同之处在于:其中单体均选择IBVE,引发剂均选择EBP和十羰基锰,在不同的时间和不同的摩尔比下进行聚合,聚合结果如表二所示。表二中,摩尔比指的是[IBVE]/[EBP]/[Mn 2(CO) 10]。
表二不同的时间和不同的摩尔比不同条件下的聚合结果
Figure PCTCN2019107807-appb-000008
表二中,实施例5-11中,反应温度为0℃;实施例12的反应温度为25℃,实施例13的反应温度为-25℃。
图1是[IBVE]:[EBP]:[Mn 2(CO) 10]的摩尔比为200:1:0.2条件下动力学曲线(A)、单体转化率随时间的变化曲线(B)以及所得聚合物的GPC流出曲线(C),图C中,自右向左,曲线所对应的反应时间依次增大。
图2为单体选择IBVE时,所得聚合物的碳谱核磁(2A-2B),氢谱核磁(2C-2D)以及大分子质谱(2E-2F),其中,图2B为2A的部分放大图;图2D为2C的部分放大图;图2F为2E中方框a处的放大图。
实施例14-18
做多组平行实验,按照实施例1-4中的方法制备乙烯基醚类聚合物,不同之处在于:单体均选择IBVE,引发剂均选择EBP和十羰基锰,[IBVE] 0:[EBP] 0:[十羰基锰] 0的摩尔比为200:1:0.2,反应体系中同时存在有机溶剂,在不同的有机溶剂中聚合不同时间,聚合结果如表三所示。
表三不同溶剂中的聚合结果
Figure PCTCN2019107807-appb-000009
实施例19-21
做多组平行实验,按照实施例1-4中的方法制备乙烯基醚类聚合物,不同之处在于:选 择不同的单体,引发剂均选择EBP和十羰基锰,[单体] 0:[EBP] 0:[十羰基锰] 0的摩尔比为200:1:0.2,聚合不同时间后的结果如表四所示。
表四不同单体的聚合结果
Figure PCTCN2019107807-appb-000010
以上所述仅是本发明的优选实施方式,并不用于限制本发明,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变型,这些改进和变型也应视为本发明的保护范围。

Claims (10)

  1. 一种光引发聚合制备乙烯基醚类聚合物的方法,其特征在于,包括以下步骤:
    在保护气氛中,将式(1)所示的乙烯基醚类单体在有机卤代烃与十羰基锰的作用下,在波长为365-550nm的光照条件下于-25℃至25℃下发生光引发聚合反应,反应完全后得到所述乙烯基醚类聚合物:
    Figure PCTCN2019107807-appb-100001
    其中,R为烷基或卤代烷基,所述烷基或卤代烷基中的碳原子数为1-10个。
  2. 根据权利要求1所述的方法,其特征在于:所述烷基或卤代烷基中的碳原子数为2-5个。
  3. 根据权利要求1所述的方法,其特征在于:所述乙烯基醚类单体的结构式为
    Figure PCTCN2019107807-appb-100002
    其中,X为卤素。
  4. 根据权利要求1所述的方法,其特征在于:所述有机卤代烃的结构式为
    Figure PCTCN2019107807-appb-100003
    Figure PCTCN2019107807-appb-100004
    其中,X为卤素。
  5. 根据权利要求1所述的方法,其特征在于:所述乙烯基醚类单体、有机卤代烃与十羰基锰的摩尔比为100-500:1:0.01-0.5。
  6. 根据权利要求5所述的方法,其特征在于:所述乙烯基醚类单体、有机卤代烃与十羰基锰的摩尔比为200-500:1:0.05-0.5。
  7. 根据权利要求6所述的方法,其特征在于:所述乙烯基醚类单体、有机卤代烃与十羰基锰的摩尔比为200:1:0.05-0.5或200-500:1:0.2。
  8. 根据权利要求1所述的方法,其特征在于:聚合时间为5min–5h。
  9. 根据权利要求1所述的方法,其特征在于:反应在有机溶剂中进行。
  10. 根据权利要求9所述的方法,其特征在于:所述有机溶剂为甲苯、正己烷、乙酸乙酯和二氯甲烷中的一种或几种。
PCT/CN2019/107807 2019-05-05 2019-09-25 光引发聚合制备乙烯基醚类聚合物的方法 WO2020224169A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/961,909 US11498984B2 (en) 2019-05-05 2019-09-25 Method for preparing vinyl ether polymer by photo-initiated polymerization
AU2019427990A AU2019427990B2 (en) 2019-05-05 2019-09-25 Method for preparing vinyl ether polymer by photo-initiated polymerization

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910368490.3A CN110078852B (zh) 2019-05-05 2019-05-05 光引发聚合制备乙烯基醚类聚合物的方法
CN201910368490.3 2019-05-05

Publications (1)

Publication Number Publication Date
WO2020224169A1 true WO2020224169A1 (zh) 2020-11-12

Family

ID=67418530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/107807 WO2020224169A1 (zh) 2019-05-05 2019-09-25 光引发聚合制备乙烯基醚类聚合物的方法

Country Status (4)

Country Link
US (1) US11498984B2 (zh)
CN (1) CN110078852B (zh)
AU (1) AU2019427990B2 (zh)
WO (1) WO2020224169A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110078852B (zh) * 2019-05-05 2020-04-10 苏州大学 光引发聚合制备乙烯基醚类聚合物的方法
CN112778443B (zh) * 2021-01-27 2022-05-31 苏州大学 调节聚合物分子量分布的方法
CN114539455B (zh) * 2022-03-17 2023-03-10 中国科学技术大学 采用连续流动法通过阳离子聚合制备聚乙烯基醚及方法
CN114957521A (zh) * 2022-06-10 2022-08-30 苏州大学 一种非均相催化的活性阳离子聚合反应方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0439303A (ja) * 1990-06-05 1992-02-10 Daiso Co Ltd ポリビニルエーテルの製造法
US5147963A (en) * 1989-10-16 1992-09-15 Isp Investments Inc. Process for the production of amorphous methyl vinyl ether homopolymers having a high molecular weight and narrow molecular weight distribution
CN1269369A (zh) * 1999-03-26 2000-10-11 比克化学股份有限公司 生产改性乙烯基醚聚合物的方法
CN102627715A (zh) * 2012-03-15 2012-08-08 老河口荆洪化工有限责任公司 一种聚正丁基乙烯基醚高聚物的聚合方法
CN110078852A (zh) * 2019-05-05 2019-08-02 苏州大学 光引发聚合制备乙烯基醚类聚合物的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104194026A (zh) * 2014-08-22 2014-12-10 苏州丰亚生物科技有限公司 一种基于可见光引发的材料表面接枝聚合功能化改性方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5147963A (en) * 1989-10-16 1992-09-15 Isp Investments Inc. Process for the production of amorphous methyl vinyl ether homopolymers having a high molecular weight and narrow molecular weight distribution
JPH0439303A (ja) * 1990-06-05 1992-02-10 Daiso Co Ltd ポリビニルエーテルの製造法
CN1269369A (zh) * 1999-03-26 2000-10-11 比克化学股份有限公司 生产改性乙烯基醚聚合物的方法
CN102627715A (zh) * 2012-03-15 2012-08-08 老河口荆洪化工有限责任公司 一种聚正丁基乙烯基醚高聚物的聚合方法
CN110078852A (zh) * 2019-05-05 2019-08-02 苏州大学 光引发聚合制备乙烯基醚类聚合物的方法

Also Published As

Publication number Publication date
CN110078852A (zh) 2019-08-02
AU2019427990A1 (en) 2020-11-19
AU2019427990B2 (en) 2022-06-30
US20210371556A1 (en) 2021-12-02
CN110078852B (zh) 2020-04-10
US11498984B2 (en) 2022-11-15

Similar Documents

Publication Publication Date Title
WO2020224169A1 (zh) 光引发聚合制备乙烯基醚类聚合物的方法
Durmaz et al. Preparation of block copolymers via Diels Alder reaction of maleimide‐and anthracene‐end functionalized polymers
JPH05507737A (ja) アクリル系三元共重合体と、その製造方法と、そのエラストマー製品製造への応用
Street et al. Optimization of the synthesis of poly (octadecyl acrylate) by atom transfer radical polymerization and the preparation of all comblike amphiphilic diblock copolymers
CN111961150B (zh) 一种光控制阳离子聚合制备乙烯基醚类聚合物的方法
París et al. Solvent effect on the atom transfer radical polymerization of allyl methacrylate
Okamoto et al. Asymmetric-Selective Polymerization of (RS)-α-Methylbenzyl Methacrylate with the Cyclohexylmagnesium Chloride-(---)-Sparteine System in Toluene at-78° C
Kajiwara et al. EPR and kinetic studies of atom transfer radical polymerization of (meth) acrylates
Huang et al. Synthesis of twin‐tail tadpole‐shaped (cyclic polystyrene)‐block‐[linear poly (tert‐butyl acrylate)] 2 by combination of glaser coupling reaction with living anionic polymerization and atom transfer radical polymerization
Majumdar et al. Spectroscopic characterization and chiroptical properties of the copolymers of (−) 3‐menthyl acrylate and (−) 3‐menthyl methacrylate with styrene
CN111285983B (zh) 高/低活性单体嵌段共聚物及其制备方法
Takenaka et al. Polymerization of monomers containing functional silyl groups. 4. Anionic polymerization of 2-(trimethoxysilyl)-1, 3-butadiene
JP4727801B2 (ja) アルケニルフェノール系星型ブロック共重合体、およびその製造方法
Greesh et al. Preparation of poly (styrene‐b‐2‐hydroxyethyl acrylate) block copolymer using reverse iodine transfer polymerization
CN112409552B (zh) 一种光诱导自由基聚合的方法
O'Malley et al. Anionic polymerization of 1-vinylpyrene
Panayotov et al. Anionic polymerization and copolymerization in heterogeneous systems on surfaces with aromatic structure
Komiyama et al. Polymerization of coordinated monomers. X. Kinetic study of alternating copolymerization of methyl methacrylate and styrene with stannic chloride in dichloroethane
CN115260350A (zh) 一种超分子阴离子结合催化单体进行活性阳离子聚合的方法
Page et al. A di‐tert‐butyl acrylate monomer for controlled radical photopolymerization
CN104072744B (zh) 一种含聚环氧乙烷嵌段的极性化丁二烯/异戊二烯/苯乙烯共聚物及制备方法
CN109134726B (zh) 一种酞菁染料的高分子化方法
Zhang et al. Synthesis of well‐defined naphthalene and photo‐labile group‐labeled polystyrene via ATRP
Zhang et al. Chlorodithiocarbamate‐Mediated RAFT Polymerization: A Novel Synthetic Method for ATRP Macroinitiators
Yin et al. Synthesis and characterization of poly (2‐vinylpridine)‐b‐poly (t‐butyl methacrylate)

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019427990

Country of ref document: AU

Date of ref document: 20190925

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19928232

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19928232

Country of ref document: EP

Kind code of ref document: A1