WO2020224005A1 - 一种阿基米德螺线式质谱仪连续性变压取样装置及方法 - Google Patents

一种阿基米德螺线式质谱仪连续性变压取样装置及方法 Download PDF

Info

Publication number
WO2020224005A1
WO2020224005A1 PCT/CN2019/087704 CN2019087704W WO2020224005A1 WO 2020224005 A1 WO2020224005 A1 WO 2020224005A1 CN 2019087704 W CN2019087704 W CN 2019087704W WO 2020224005 A1 WO2020224005 A1 WO 2020224005A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
archimedes spiral
gas channel
mass spectrometer
bracket
Prior art date
Application number
PCT/CN2019/087704
Other languages
English (en)
French (fr)
Inventor
李津铭
张志军
张世伟
韩峰
岳泰
Original Assignee
东北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东北大学 filed Critical 东北大学
Publication of WO2020224005A1 publication Critical patent/WO2020224005A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/24Suction devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
    • H01J49/0422Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components for gaseous samples

Definitions

  • the invention belongs to the technical field of gas analysis, and in particular relates to a continuous variable pressure gas sampling device and method for an Archimedes spiral mass spectrometer.
  • Mass spectrometer also known as mass spectrometer, is an instrument for analyzing and detecting different components in gas. It is a type of instrument that separates and detects material composition based on the principle that charged particles can be deflected in an electromagnetic field, according to the difference in mass of material atoms, molecules or molecular fragments. Mass spectrometer measurement technology has been widely used in pharmaceuticals, food, medicine, geology, steel production, vacuum system leak detection, environmental simulation, manned aerospace and other industrial fields and scientific and technological research, which is important for the development of modern technology and the construction of national economy Both play an important role.
  • the analysis chamber of the mass spectrometer must work in a specific high vacuum state, and the initial pressure of the analyzed gas is often close to the uncertain value of the ambient atmospheric pressure; especially the mass spectrometer applied to the gas composition monitoring in various vacuum equipment is The pressure of the measured gas may change from normal pressure to high vacuum state. Therefore, the mass spectrometer must be equipped with a gas sampling device so that the gases at different pressures can be decompressed and transported to the analysis chamber in a high vacuum state under the premise of keeping the composition unchanged.
  • the present invention provides a continuous variable pressure sampling device and method for Archimedes spiral mass spectrometer.
  • the present invention can continuously sample under the condition of gas pressure changes, which fills the gap in the gas analysis industry.
  • the blank in this respect is also applicable to continuous sampling under the condition of gas pressure changes in other industries.
  • the technical solutions are as follows:
  • a continuous variable pressure sampling device for an Archimedes spiral mass spectrometer comprising a motor and a base, a gas outlet transition chamber is fixedly installed on the upper surface of the base, the gas outlet transition chamber is rotatably installed with a gas channel metal pipe shaft, and the gas channel metal
  • the tube shaft rotates through the first bracket and the second bracket in turn, the gas channel metal tube shaft is located above the first bracket to clamp the combined gear, and the upper end of the gas channel metal tube shaft penetrates the second bracket and then welds the gas channel disc,
  • the upper surface of the gas channel disc is provided with an Archimedes spiral groove, and the Archimedes spiral groove gradually increases in cross-sectional area from the outside to the inside, and is in communication with the gas outlet passage opened in the middle of the gas channel disc ,
  • the gas channel metal pipe shaft communicates with the gas outlet channel
  • the upper surface of the second bracket is located on both sides of the gas channel disc
  • the outer clamp shell is fixedly installed
  • the lower end of the outer clamp shell is fixedly installed with
  • the outside of the air inlet interface is connected with an air inlet valve.
  • the inside of the air inlet interface communicates with the Archimedes spiral groove.
  • the outer clamp shell on the right side is provided with a sliding hole.
  • the first bracket rotates on the right side to install a primary reduction shaft, the middle of the primary reduction shaft is clamped with a spur gear, and the upper end of the primary reduction shaft is connected to the planetary gear reduction system input
  • the output end of the planetary gear reduction system is fitted with a secondary reduction shaft, the secondary reduction shaft passes through the second bracket and is fitted with an output gear
  • the output end of the motor is fitted with the input end of the reducer
  • the output end of the reducer is fitted with a bevel gear
  • the bevel gear meshes with the bevel tooth part of the transmission combination gear, and the straight tooth part of the transmission combination gear meshes with the transmission spur gear.
  • the spur gear drives the output gear through the planetary gear reducer.
  • the output gear meshes with the transmission rack after passing through the sliding hole of the outer clamp shell ,
  • Driving the translation plate to slide the left wall of the gas outlet transition chamber is connected with one end of a hard pipe, and the other end of the hard pipe is connected to the mass spectrometer system.
  • the hard pipe between the gas outlet transition chamber and the mass spectrometer system A shutoff valve and a vacuum pump are installed in the pipeline in sequence, and a vacuum gauge is installed on the hard pipeline between the vacuum pump and the shutoff valve.
  • An angular contact ball bearing is arranged between the first bracket and the gas channel metal tube shaft, an angular contact ball bearing is arranged between the first bracket and the primary reduction shaft, and the second bracket is connected to the secondary reduction shaft.
  • Angular contact ball bearings are arranged in between.
  • a thrust bearing is arranged between the lower surface of the gas channel disc and the second bracket.
  • the two sides of the upper surface of the translation plate are symmetrically provided with correction track grooves, and the balls of the spring ball correction mechanism are installed in the correction track grooves.
  • a sealing rubber ring is clamped on the outer ring on the upper surface of the gas channel disc, and a sealing rubber sleeve is clamped between the outer wall of the lower end of the gas channel metal pipe shaft and the inside of the gas outlet transition chamber.
  • the transmission system composed of the spur gear part of the transmission combination gear, the spur gear, the planetary gear reduction system, the output gear and the transmission rack can make the gas channel disc rotate one round, so
  • the translation board translates exactly one line interval of the Archimedes spiral slot, so as to ensure that the inside of the air inlet interface on the translation board is always connected to a certain place of the Archimedes spiral slot.
  • a sampling method of a continuous pressure-changing gas sampling device of an Archimedes spiral mass spectrometer includes the following steps:
  • Step 1 Close the intake valve, open the shutoff valve, and start the vacuum pump to vacuum.
  • the gas pressure in the equipment gradually drops to the maximum pressure of the mass spectrometer, start the vacuum pump in the mass spectrometer system to speed up the vacuuming speed, and the vacuum is also cleaned.
  • Gas path for analyzing gas composition
  • Step 2 Start the motor, move the translation plate to the outermost end, make the air inlet port on the translation plate communicate with the smallest section of the Archimedes spiral groove on the gas channel disc, open the air inlet valve, Analysis gas enters the equipment;
  • Step 3 According to the feedback control of the vacuum degree measured by the vacuum gauge, the air inlet port on the translation plate is gradually moved to the center of the gas channel disc to make the Archimedes spiral groove connected to the air inlet port The length of the gas path gradually decreases, and the gas flow rate gradually increases until the vacuum degree and gas flow rate suitable for the operation of the mass spectrometer are found;
  • Step 4 When the pressure of the gas to be analyzed in the intake pipe changes, the motor is fed back according to the vacuum measured by the vacuum gauge to adjust the length of the gas path.
  • the sample gas pressure When the sample gas pressure is high, move the gas inlet port on the translation plate away from the gas path Move in the direction of the center of the disc to increase the length of the Archimedes spiral groove between the inlet port and the outlet path, reduce the pressure, and return to the working pressure of the mass spectrometer; when the sample gas pressure is small, the plate will be translated The inlet port of the gas inlet is moved closer to the center of the gas channel disc to shorten the length of the Archimedes spiral groove between the inlet port and the outlet path, increase the pressure, and restore the working pressure of the mass spectrometer;
  • This working process is a continuous process, and this equipment can continuously detect gas components online.
  • the present invention can enable the analyzed gas to continuously flow into the sampling system and update in time, thereby realizing the function of continuous gas sampling and continuous online detection of the analyzed gas Capability, fast response time and high sensitivity, overcome the shortcomings of intermittent gas sampling.
  • variable cross-section and variable length gas sampling channel structure proposed by the present invention, combined with the movable and rotating adjustable sampling structure, can flexibly adjust the conductance of the gas sampling channel in a large range.
  • the translation of the translation plate and the rotation of the channel disc can be adjusted by feedback to make the gas sampling channel have proper conductance, so as to always ensure a stable gas pressure and flow rate at the outlet of the sampling channel.
  • the mass spectrometer is in good working condition.
  • the invention breaks through the limitation that the traditional online sampling method can only be applied to a single pressure, and can work normally under the condition of a wide range of gas pressure changes.
  • the present invention converts a very long gas pipeline into a gas passage engraved on the gas channel disc with an Archimedes spiral curve, and a full circle is arranged around the Archimedes spiral groove on the same gas disc.
  • the sealing ring is closed, and the spring correction mechanism is used to apply force to the translation plate to press it tightly on the upper surface of the gas channel disc, which can ensure the air tightness of the gas sampling channel and reduce the entry of external air into the sampling channel, thereby improving the measurement accuracy of the sampling device .
  • variable cross-section and variable-length Archimedes spiral groove-shaped gas channel proposed in the present invention can be designed and processed in sections according to actual working conditions, thereby changing the channel flow conductance with the movement position of the inner plate.
  • the relationship makes it suitable for practical applications with different pressure sections and different flow requirements, and can specifically improve the adjustment accuracy of a certain pressure section. Therefore, the gas sampling device proposed by the present invention has a wider application range and higher measurement accuracy.
  • Fig. 1 is a structural principle diagram of a continuous variable pressure sampling device for Archimedes spiral mass spectrometer of the present invention
  • Figure 2 is a view of the upper surface of the gas channel disc
  • Figure 3 shows the shape of the translation plate
  • the left wall of the gas outlet transition chamber is connected with one end of a hard pipeline, and the other end of the hard pipeline is connected to the mass spectrometry system.
  • the hard pipeline between the gas outlet transition chamber and the mass spectrometry system is installed with a shutoff valve and a vacuum pump in sequence.
  • the rigid pipeline between the vacuum pump and the shutoff valve is equipped with a vacuum gauge.
  • an Archimedes spiral mass spectrometer continuous variable voltage sampling device includes a motor 1, a base 20, the motor 1 is the power unit of the device, and the base 20 is the basic installation of the device
  • the structure provides an installation basis for the upper structure.
  • the upper surface of the base 20 is fixedly installed with a gas outlet transition chamber 18 to transition and divert the gas derived from the gas channel metal pipe shaft 3, and the gas outlet transition chamber 18 is rotated to install the gas channel metal pipe
  • the shaft 3 realizes an effective rotation connection while ensuring air tightness.
  • the gas channel metal pipe shaft 3 rotates sequentially through the first bracket 19 and the second bracket 25, and passes through the first bracket 19 and the second bracket 25 to the corresponding upper structure
  • the gas channel metal tube shaft 3 is located above the first bracket 19 to clamp the combined gear 4, and its structure includes a spur gear part and a bevel gear part. Different transmission of power is realized through the combination of the structure.
  • the gas channel metal The upper end of the pipe shaft 3 penetrates the second bracket 25 and then the gas channel disc 14 is welded to realize the connection of the pipeline while ensuring the power connection.
  • the gas channel disc 14 provides the foundation for the opening of the Archimedes spiral groove 26.
  • the upper surface of the gas channel disc 14 is provided with an Archimedes spiral groove 26, and the cross-sectional area of the Archimedes spiral groove 26 gradually increases from the outside to the inside, and is connected to the gas channel disc 14
  • the gas outlet passage 27 opened in the middle is connected, and the gas channel metal pipe shaft 3 communicates with the gas outlet passage 27 to realize the communication of the gas path.
  • the upper surface of the second bracket 25 is located on both sides of the gas channel disc 14 and is fixedly installed with the outer clamping shell 28, which is gas
  • the installation of the channel disc 14 and the translation plate 15 provides a limited work station.
  • the spring ball correction mechanism 12 is fixedly installed at the lower end of the outer clamp shell 28. Through its internal elastic characteristics and the ball rolling structure, the sliding friction is reduced.
  • the spring ball correction mechanism A translation plate 15 is slidably installed between 12 and the gas channel disc 14.
  • the movement of the translation plate 15 and the rotation of the gas cylinder channel disc 14 make the air inlet 29 on the translation plate 15 always match the Archimedes spiral groove 26 , To ensure that the untouched Archimedes spiral groove 26 is in a closed state, to realize the change of the ventilation section area, and then to adjust the air intake.
  • the middle of the translation plate 15 is provided with an air inlet 29 to introduce the external air into the device ,
  • the outside of the intake port 29 is connected to the intake valve 13 to control the main intake valve of the device.
  • the right side wall of the translation plate 15 is fixedly installed with a transmission rack 31, which cooperates with the output gear 6 to drive the translation plate 15 to move.
  • the outer clamping shell 28 is provided with a sliding hole whose length is greater than the sum of the length of the transmission rack 31 and the radius of the Archimedes spiral groove 26.
  • the first bracket 19 is rotated on the right side to install the primary reduction shaft 8.
  • Cooperate with the spur gear 5 to reduce the speed output of the combined gear 4 to the planetary gear reduction system 7.
  • the spur gear 5 is clamped in the middle of the first reduction shaft 8, and the upper end of the first reduction shaft 8 is connected to the input end of the planetary reduction system 7.
  • the output speed is reduced again through the planetary gear reduction system 7.
  • the output end of the planetary gear reduction system 7 is clamped with a secondary reduction shaft 30 to reduce the planetary gear
  • the output speed of the system 7 is output, the secondary reduction shaft 30 penetrates the second bracket 25 and then the output gear 6 is clamped, and the transmission rack 31 drives the translation plate 15 to move.
  • the output end of the motor 1 is clamped to the input end of the reducer 2 , The power is output, and the speed of the motor output is reduced.
  • the output end of the reducer 2 is fitted with a bevel gear 32 to change the direction of the output, which is convenient for subsequent transmission and practicality.
  • the bevel gear 32 meshes with the bevel gear of the transmission combination gear 4 Part, the spur gear part of the transmission combination gear 4 meshes with the transmission spur gear 5.
  • the spur gear 5 drives the output gear 6 through the planetary gear reduction system 7, and the output gear passes through the sliding hole of the outer clamp shell 6 and meshes with the transmission rack 31 to drive
  • the translation plate 15 performs translational sliding.
  • the left wall of the gas outlet transition chamber 18 is connected to one end of a hard pipe 33 which is connected to the subsequent mass spectrometry system 23.
  • the other end of the hard pipe 33 is connected to the mass spectrometer system 23 for gas mass spectrometry analysis.
  • the hard pipeline 33 between the gas outlet transition chamber 18 and the mass spectrometer system 23 is sequentially installed with a shut-off valve 21 and a vacuum pump 24.
  • the shut-off valve 21 controls the overall opening.
  • the vacuum pump 24 adjusts the degree of vacuum.
  • the hard pipeline 33 between 24 and the shutoff valve 21 is equipped with a vacuum gauge 22 to monitor the vacuum inside the device.
  • An angular contact ball bearing 9 is provided between the first bracket 19 and the gas channel metal pipe shaft 3, an angular contact ball bearing 9 is provided between the first bracket 19 and the primary reduction shaft 8, and the second bracket An angular contact ball bearing 9 is arranged between 25 and the secondary reduction shaft 30 to reduce the friction during the rotation of the device and facilitate transmission.
  • a thrust bearing 10 is provided between the lower surface of the gas channel disc 14 and the second bracket 25 to reduce friction during the rotation of the gas channel disc 14 and at the same time bear the thrust generated by the spring ball straightening mechanism 12.
  • the two sides of the upper surface of the translation plate 15 are symmetrically provided with correcting track grooves, and the balls of the spring ball correcting mechanism 12 are installed in the correcting track grooves to achieve effective combination limit.
  • the outer ring of the upper surface of the gas channel disc 14 is clamped with a sealing rubber ring to increase the air tightness of the device assembly.
  • a sealing rubber is clamped between the outer wall of the lower end of the gas channel metal pipe shaft 3 and the inside of the gas outlet transition chamber 18 Set of 16, increase the air tightness of the device.
  • the transmission system composed of the straight tooth portion of the transmission combination gear 4, the spur gear 5, the planetary gear reduction system 7, the output gear 6 and the transmission rack 31 can make the gas channel disc 14
  • the translation plate 15 translates exactly one line interval of the Archimedes spiral slot 26, so as to ensure that the inner side of the air intake interface on the translation plate 15 is always aligned with the Archimedes spiral.
  • the type line trough 26 communicates with a certain place.
  • a sampling method of a continuous pressure-changing gas sampling device of an Archimedes spiral mass spectrometer includes the following steps:
  • Step 1 Close the intake valve 13, start the shutoff valve 21, and open the vacuum pump 24 to vacuum.
  • the vacuum pump 24 in the mass spectrometer system 23 to speed up the vacuum and vacuum
  • the gas path for analyzing gas composition is cleaned;
  • Step 2 Start the motor 1, move the translation plate 15 to the outermost end, so that the air inlet port on the translation plate 15 communicates with the smallest section of the Archimedes spiral groove 26 on the gas channel disc 14. Open the intake valve 13 and the analysis gas enters the equipment;
  • Step 3 According to the feedback control of the vacuum degree measured by the vacuum gauge 22, the air inlet port on the translation plate 15 is gradually moved to the center of the gas channel disc 14, so that the Archimedes connected to the air inlet port The length of the gas path of the spiral groove 26 is gradually reduced, and the gas flow rate is gradually increased until the vacuum degree and the gas flow rate that meet the working of the mass spectrometer 23 are found;
  • Step 4 When the pressure of the gas to be analyzed in the intake pipe changes, the motor 1 is feedback controlled according to the vacuum degree measured by the vacuum gauge 22 to adjust the length of the gas path.
  • the pressure of the sampled gas is high, turn the intake port on the translation plate 15 toward Move away from the center 14 of the gas channel disc to increase the length of the Archimedes spiral groove 26 between the inlet port and the outlet path, reduce the pressure, and return to the working pressure of the mass spectrometer 23; when sampling gas pressure When hours, move the air inlet port on the translation plate 15 closer to the center 14 of the gas channel disc to shorten the length of the Archimedes spiral groove 26 between the air inlet port and the air outlet channel, and increase the pressure , Return to the working pressure of the mass spectrometer 23;
  • This working process is a continuous process, and this equipment can continuously detect gas components online.

Abstract

一种阿基米德螺线式质谱仪连续性变压取样装置,包括电动机(1)、底座(20),底座(20)上表面固定安装气体出口过渡室(18),气体出口过渡室(18)转动安装气体通道金属管轴(3),气体通道金属管轴(3)依次转动贯穿第一支架(19)与第二支架(25),气体通道金属管轴(3)位于第一支架(19)上方处卡装组合齿轮(4),气体通道金属管轴(3)上端贯穿第二支架(25)后焊接气体通道圆盘(14),气体通道圆盘(14)上表面开设有阿基米德螺线式线槽(26),阿基米德螺线式线槽(26)由外向内截面面积逐渐增大;电动机(1)通过一系列减速传动系统驱动气体通道圆盘(14)转动与平移板(15)平移,使平移板(15)上的进气接口(29)始终与阿基米德螺线式线槽(26)的一处相通,改变阿基米德螺线式线槽(26)的气路长度和截面面积,对大范围变压气体进行取样分析。

Description

一种阿基米德螺线式质谱仪连续性变压取样装置及方法 技术领域
本发明属于气体分析技术领域,尤其是涉及一种阿基米德螺线式质谱仪连续性变压气体取样装置及方法。
背景技术
质谱仪又称质谱计,是分析检测气体中不同成分的仪器。它是根据带电粒子在电磁场中能够偏转的原理,按物质原子、分子或分子碎片的质量差异进行分离和检测物质组成的一类仪器。质谱仪测量技术现已大量应用于药品、食品、医学、地质、钢铁生产、真空系统检漏、环境模拟、载人航天等工业领域和科学技术研究中,对于现代科技的发展和国民经济的建设都起着重要的作用。
质谱仪的分析室必须工作在特定的高真空状态下,而被分析气体的初始压强常常是接近环境大气压力的不确定值;特别是应用于各种真空设备内气体成分监测的质谱仪,被测气体的压强更是可能从常压一直变化到高真空状态。因此,质谱仪必须配置有气体取样装置,以便将处于不同压强的气体在保持成分构成不发生变化的前提下减压输送至高真空状态的分析室。现有的气体取样装置(如膨胀法取样)工作方式大多是间歇作业的,不能对气体样品进行在线连续取样;而能够连续取样的气体取样装置(如针阀节流取样)通常只适用于测量单一固定气压的工况,难以对压力大范围变化的工况进行连续取样。例如采用针阀作为一种微调阀,可以调节气流量,但是限于其自身结构,可调节压力范围有限,且可调节精度不够高。目前,随着科学研究和工业生产技术水平的持续进步,对气体分析技术的要求也不断提高,在气体压力大范围变化条件下实现气体成分的高精度在线连续监测,已成为迫切的实际需求。现有的质谱仪气体取样方法与装置,无法满足在气体压力变化的情况下实现高精度连续取样的要求,制约了气体分析质谱仪的发展和应用,迫切需要一种全新的气体取样装置及方法。针对这一现状,本发明提出了一种阿基米德螺线式质谱仪连续性变压气体取样装置及方法。
发明概述
技术问题
问题的解决方案
技术解决方案
针对现有技术存在的问题,本发明提供一种阿基米德螺线式质谱仪连续性变压取样装置及方法,本发明可以在气体压力变化的情况下连续取样,填补了气体分析行业在这一方面的空白,且对于其他行业中在气体压力变化的情况下连续取样的工作同样适用,其技术方案如下:
一种阿基米德螺线式质谱仪连续性变压取样装置,包括电动机、底座,所述底座上表面固定安装气体出口过渡室,气体出口过渡室转动安装气体通道金属管轴,气体通道金属管轴依次转动贯穿第一支架与第二支架,所述气体通道金属管轴位于第一支架上方处卡装组合齿轮,所述气体通道金属管轴上端贯穿第二支架后焊接气体通道圆盘,所述气体通道圆盘上表面开设有阿基米德螺线式线槽,阿基米德螺线式线槽由外向内截面面积逐渐增大,且与气体通道圆盘中部开设的出气通路相通,气体通道金属管轴连通出气通路,所述第二支架上表面位于气体通道圆盘两侧固定安装外夹壳,外夹壳下端固定安装弹簧滚珠校正机构,弹簧滚珠校正机构与气体通道圆盘间滑动安装平移板,平移板中部开设有进气接口,进气接口外侧连接进气阀,进气接口内侧与阿基米德螺线式线槽相通,所述平移板右侧壁固定安装传动齿条,右侧的外夹壳开设有滑孔,所述第一支架右侧转动安装一级减速轴,一级减速轴中部卡装直齿轮,一级减速轴上端传动连接行星轮减速系统输入端,行星轮减速系统输出端卡装二级减速轴,二级减速轴贯穿第二支架后卡装输出齿轮,所述电动机输出端卡装减速器输入端,减速器输出端卡装锥齿轮,锥齿轮啮合传动组合齿轮的锥齿部分,传动组合齿轮的直齿部分啮合传动直齿轮,直齿轮经行星轮减速器驱动输出齿轮,输出齿轮穿过外夹壳的滑孔后与传动齿条啮合,带动所述平移板做平移滑动,所述气体出口过渡室左壁连通有硬质管路一端,硬质管路另一端连接质谱系统,所述气体出口过渡室与质谱系统之间的硬质管路依次安装截流阀门与真空泵,所述真空泵与截流阀门之间的硬质管路安装真空规。
所述第一支架与气体通道金属管轴之间设有角接触球轴承,所述第一支架与一级减速轴之间设有角接触球轴承,所述第二支架与二级减速轴之间设有角接触球轴承。
所述气体通道圆盘下表面与第二支架之间设有推力轴承。
所述平移板上表面两侧对称开设有校正轨道凹槽,所述弹簧滚珠校正机构的滚珠滚动安装校正轨道凹槽内。
所述气体通道圆盘上表面外环卡装有密封橡胶环,所述气体通道金属管轴下端外壁与气体出口过渡室内部之间夹装有密封橡胶套。
所述传动组合齿轮的直齿部分、所述直齿轮、所述行星轮减速系统、所述输出齿轮和所述传动齿条组成的传动系统,能够使所述气体通道圆盘每旋转一周,所述平移板恰好平移所述阿基米德螺线式线槽的一个线间距,从而保证所述平移板上的进气接口内侧始终与阿基米德螺线式线槽的某一处相通。
一种阿基米德螺线式质谱仪连续性变压气体取样装置的取样方法,包括如下步骤:
步骤一:关闭进气阀门,打开截流阀门,启动真空泵抽真空,设备内的气体压力逐渐下降到质谱仪的最大压强时启动质谱系统内真空泵,加快抽真空的速度,抽真空的同时也清洁了分析气体成分的气体通路;
步骤二:启动电动机,将平移板移至最外端,使平移板上的进气接口与气体通道圆盘上的阿基米德螺线式线槽的最小截面处相通,打开进气阀门,分析气体进入设备;
步骤三:根据真空规测量到的真空度反馈控制电动机,将平移板上的进气接口逐渐向气体通道圆盘的中心方向移动,使与进气接口接通的阿基米德螺线式槽的气体通路长度逐渐变小,气体流量逐渐增大,直至找到符合质谱仪工作的真空度和气体流量;
步骤四:当进气管中被分析气体压力变化时,根据真空规测量到的真空度反馈控制电动机,调节气体通路长度,当取样气体压力大时,将平移板上的进气接口向远离气体通道圆盘中心的方向移动,以增长进气接口与出气通路之间的阿基米德螺线式线槽长度,减小压力,恢复至质谱仪工作压力;当取样气体压力 小时,将平移板上的进气接口向靠近气体通道圆盘中心的方向移动,以减短进气接口与出气通路之间的阿基米德螺线式线槽长度,增大压力,恢复至质谱仪工作压力;
此工作过程是连续性过程,此设备可以连续在线检测气体成分。
发明的有益效果
有益效果
本发明的有益效果:
1、本发明通过流导可变的气体采样通道与真空泵的配合工作,可以使被分析气体能够持续流入采样系统,及时更新,从而实现了气体在线连续取样功能,具备了对分析气体连续在线检测能力,而且响应时间快,灵敏度高,克服了气体间歇采样的不足。
2、本发明提出的变截面、变长度的气体采样通道结构,配合可移动旋转调节的取样结构,能够灵活地大范围调节气体采样通道的流导。当被分析气体的压力出现变化时,通过反馈调节平移板平移及通道圆盘旋转,能够使气体采样通道具有合适的流导,从而始终保证在采样通道出口处具有稳定的气体压力和流量,保证质谱仪处于良好的工作状态。本发明突破了传统在线采样方法只能适用于单一压力下的限制,能在气体压力大范围变化情况下正常工作。
3、本发明将很长的气体管路转换为阿基米德螺线线式曲线刻制在气体通道圆盘上的气体通路,在气体同道圆盘上阿基米德螺线形槽周围设置全封闭密封圈,利用弹簧校正机构对平移板施加作用力将其紧压在气体通道圆盘上表面,能够确保气体采样通道的气密性,减少外部气体进入采样通道,从而提高采样装置的测量精度。
4、本发明提出的变截面变长度阿基米德螺线式槽形气体通道,可以根据实际工况需要分段设计加工其截面面积和长度,从而改变通道流导随内板移动位置的变化关系,使其适合于不同压力段和不同流量要求的实际应用场合,并能专门提高某一压力段的调节精度。因此,本发明提出的气体采样装置,适用范围更加广泛,测量精度更高。
对附图的简要说明
附图说明
图1为本发明的一种阿基米德螺线式质谱仪连续性变压取样装置的结构原理图;
图2为气体通道圆盘的上表面图;
图3为平移板形状图;
图中,1、电动机,2、减速器,3、气体通道金属管轴,4、组合齿轮,5、直齿轮,6、输出齿轮,7、行星轮减速系统,8、一级减速轴,9、角接触球轴承,10、推力轴承,11、套筒,12、弹簧滚珠校正机构,13、进气阀,14、气体通道圆盘,15、平移板,16、密封橡胶套,17、沉头螺钉,18、气体出口过渡室,19、第一支架,20、底座,21、截流阀门,22、真空规,23、质谱系统,24、真空泵,25、第二支架,26、阿基米德螺线式线槽,27、出气通路,28、外夹壳,29、进气接口,30、二级减速轴,31、传动齿条,32、锥齿轮,33、硬质管路,34、矫正轨道凹槽。
发明实施例
本发明的实施方式
下面结合附图和具体实施例对本发明做进一步的详细说明。
所述气体出口过渡室左壁连通有硬质管路一端,硬质管路另一端连接质谱系统,所述气体出口过渡室与质谱系统之间的硬质管路依次安装截流阀门与真空泵,所述真空泵与截流阀门之间的硬质管路安装真空规。
如图1-图3所示,一种阿基米德螺线式质谱仪连续性变压取样装置,包括电动机1、底座20,其电动机1为装置的动力装置,底座20为装置的基础安装结构,为其上结构提供安装基础,所述底座20上表面固定安装气体出口过渡室18,对通过气体通道金属管轴3导出的气体进行过渡转向,气体出口过渡室18转动安装气体通道金属管轴3,实现有效的转动连接,同时保证气密性,气体通道金属管轴3依次转动贯穿第一支架19与第二支架25,通过第一支架19与第二支架25对其对应的上部结构进行安装,所述气体通道金属管轴3位于第一支架19上方处卡装组合齿轮4,其结构包括直齿轮部分与锥齿轮部分,通过结构的组合实现动力的不同传递,所述气体通道金属管轴3上端贯穿第二支架25后焊接气体通道圆盘14 ,实现管路的连通,同时保证动力的连接,气体通道圆盘14为阿基米德螺线式线槽26的开设提供基础,所述气体通道圆盘14上表面开设有阿基米德螺线式线槽26,阿基米德螺线式线槽26由外向内截面面积逐渐增大,且与所述气体通道圆盘14中部开设的出气通路27相通,气体通道金属管轴3连通出气通路27,实现气路的连通,所述第二支架25上表面位于气体通道圆盘14两侧固定安装外夹壳28,为气体通道圆盘14及平移板15的安装提供限定工位,外夹壳28下端固定安装弹簧滚珠校正机构12,通过其内部的弹性特点及通过滚珠滚动结构,降低滑动的摩擦力,弹簧滚珠矫正机构12与气体通道圆盘14间滑动安装平移板15,通过平移板15移动及气筒通道圆盘14的转动,使得平移板15上的进气接口29一直吻合阿基米德螺线式线槽26,保证未接触的阿基米德螺线式线槽26处于封闭状态,实现通气截口面积的变化,继而调节进气量,平移板15中部开设有进气接口29,将外部气体导入装置内,进气接口29外侧连接进气阀13,实现对装置进气总阀的控制,所述平移板15右侧壁固定安装传动齿条31,配合输出齿轮6带动平移板15进行移动,右侧的外夹壳28开设有滑孔,其长度大于传动齿条31长度与阿基米德螺线式线槽26半径长度之和,所述第一支架19右侧转动安装一级减速轴8,配合直齿轮5将组合齿轮4输出的转速进行降速传递至行星轮减速系统7,一级减速轴8中部卡装直齿轮5,一级减速轴8上端传动连接行星轮减速系统7输入端,通过行星轮减速系统7将输出的转速进行再次降速,行星轮减速系统7输出端卡装二级减速轴30,将行星轮减速系统7输出的转速进行输出,二级减速轴30贯穿第二支架25后卡装输出齿轮6,配合传动齿条31带动平移板15进行移动,所述电动机1输出端卡装减速器2输入端,将动力输出,同时对电机输出的转速进行降速,减速器2输出端卡装锥齿轮32,对输出的转向进行变向,方便后续传动实用,锥齿轮32啮合传动组合齿轮4的锥齿部分,传动组合齿轮4的直齿部分啮合传动直齿轮5,直齿轮5经行星轮减速系统7驱动输出齿轮6,输出齿轮穿6过外夹壳的滑孔后与传动齿条31啮合,带动所述平移板15做平移滑动,所述气体出口过渡室18左壁连通有硬质管路33一端,连接后续质谱系统23,硬质管路33另一端连接质谱系统23,进行气体的质谱分析,所述气体出口过渡室18与质谱系统23之间的硬质管路33依次安装截流阀门21与真空泵24,截流阀门21对整体进行开 控制,真空泵24是进行真空度的调节,所述真空泵24与截流阀门21之间的硬质管路33安装真空规22,对装置内部的真空度进行监测。
所述第一支架19与气体通道金属管轴3之间设有角接触球轴承9,所述第一支架19与一级减速轴8之间设有角接触球轴承9,所述第二支架25与二级减速轴30之间设有角接触球轴承9,降低装置转动过程中的摩擦力,方便进行传动。
所述气体通道圆盘14下表面与第二支架25之间设有推力轴承10,对气体通道圆盘14的转动进行降低摩擦,同时对弹簧滚珠矫正机构12产生的推力进行承载。
所述平移板15上表面两侧对称开设有校正轨道凹槽,所述弹簧滚珠矫正机构12的滚珠滚动安装校正轨道凹槽内,实现有效的组合限位。
所述气体通道圆盘14上表面外环卡装有密封橡胶环,增加装置组合的气密性,所述气体通道金属管轴3下端外壁与气体出口过渡室18内部之间夹装有密封橡胶套16,增加装置的气密性。
所述传动组合齿轮4的直齿部分、所述直齿轮5、所述行星轮减速系统7、所述输出齿轮6和所述传动齿条31组成的传动系统,能够使所述气体通道圆盘14每旋转一周,所述平移板15恰好平移所述阿基米德螺线式线槽26的一个线间距,从而保证所述平移板15上的进气接口内侧始终与阿基米德螺线式线槽26的某一处相通。
一种阿基米德螺线式质谱仪连续性变压气体取样装置的取样方法,包括如下步骤:
步骤一:关闭进气阀门13,启动截流阀门21,打开真空泵24抽真空,设备内的气体压力逐渐下降到质谱仪的最大压强时启动质谱系统23内真空泵24,加快抽真空的速度,抽真空的同时也清洁了分析气体成分的气体通路;
步骤二:启动电动机1,将平移板15移至最外端,使平移板15上的进气接口与气体通道圆盘14上的阿基米德螺线式线槽26的最小截面处相通,打开进气阀门13,分析气体进入设备;
步骤三:根据真空规22测量到的真空度反馈控制电动机1,将平移板15上的进气接口逐渐向气体通道圆盘14的中心方向移动,使与进气接口接通的阿基米德螺线式槽26的气体通路长度逐渐变小,气体流量逐渐增大,直至找到符合质谱 仪23工作的真空度和气体流量;
步骤四:当进气管中被分析气体压力变化时,根据真空规22测量到的真空度反馈控制电动机1,调节气体通路长度,当取样气体压力大时,将平移板15上的进气接口向远离气体通道圆盘中心14的方向移动,以增长进气接口与出气通路之间的阿基米德螺线式线槽26长度,减小压力,恢复至质谱仪23工作压力;当取样气体压力小时,将平移板15上的进气接口向靠近气体通道圆盘中心14的方向移动,以减短进气接口与出气通路之间的阿基米德螺线式线槽26长度,增大压力,恢复至质谱仪23工作压力;
此工作过程是连续性过程,此设备可以连续在线检测气体成分。
以上实施例仅用以说明本发明的技术方案而非对其限制,尽管参照上述实施例对本发明进行了详细说明,领域的普通技术人员应当理解:依然可以对本发明的具体实施方式进行修改或者等同替换,而未脱离本发明精神和范围的任何修改或者等同替换,其均应涵盖在本权利要求范围当中。

Claims (7)

  1. 一种阿基米德螺线式质谱仪连续性变压取样装置,包括电动机、底座,其特征在于,所述底座上表面固定安装气体出口过渡室,气体出口过渡室转动安装气体通道金属管轴,气体通道金属管轴依次转动贯穿第一支架与第二支架,所述气体通道金属管轴位于第一支架上方处卡装组合齿轮,所述气体通道金属管轴上端贯穿第二支架后焊接气体通道圆盘,所述气体通道圆盘上表面开设有阿基米德螺线式线槽,阿基米德螺线式线槽由外向内截面面积逐渐增大,且与气体通道圆盘中部开设的出气通路相通,气体通道金属管轴连通出气通路,所述第二支架上表面位于气体通道圆盘两侧固定安装外夹壳,外夹壳下端固定安装弹簧滚珠校正机构,弹簧滚珠校正机构与气体通道圆盘间滑动安装平移板,平移板中部开设有进气接口,进气接口外侧连接进气阀,进气接口内侧与阿基米德螺线式线槽相通,所述平移板右侧壁固定安装传动齿条,右侧的外夹壳开设有滑孔,所述第一支架右侧转动安装一级减速轴,一级减速轴中部卡装直齿轮,一级减速轴上端传动连接行星轮减速系统输入端,行星轮减速系统输出端卡装二级减速轴,二级减速轴贯穿第二支架后卡装输出齿轮,所述电动机输出端卡装减速器输入端,减速器输出端卡装锥齿轮,锥齿轮啮合传动组合齿轮的锥齿部分,传动组合齿轮的直齿部分啮合传动直齿轮,直齿轮经行星轮减速器驱动输出齿轮,输出齿轮穿过外夹壳的滑孔后与传动齿条啮合,带动所述平移板做平移滑动,所述气体出口过渡室左壁连通有硬质管路一端,硬质管路另一端连接质谱系统,所述气体出口过渡室与质谱系统之间的硬质管路依次安装截流阀门与真空泵,所述真空泵与截流阀门之间的硬质管路安装真空规。
  2. 根据权利要求1所述的一种阿基米德螺线式质谱仪连续性变压取样装置,其特征在于,所述第一支架与气体通道金属管轴之间设有 角接触球轴承,所述第一支架与一级减速轴之间设有角接触球轴承,所述第二支架与二级减速轴之间设有角接触球轴承。
  3. 根据权利要求1所述的一种阿基米德螺线式质谱仪连续性变压取样装置,其特征在于,所述气体通道圆盘下表面与第二支架之间设有推力轴承。
  4. 根据权利要求1所述的一种阿基米德螺线式质谱仪连续性变压取样装置,其特征在于,所述平移板上表面两侧对称开设有校正轨道凹槽,所述弹簧滚珠校正机构的滚珠滚动安装校正轨道凹槽内。
  5. 根据权利要求1所述的一种阿基米德螺线式质谱仪连续性变压取样装置,其特征在于,所述气体通道圆盘上表面外环卡装有密封橡胶环,所述气体通道金属管轴下端外壁与气体出口过渡室内部之间夹装有密封橡胶套。
  6. 根据权利要求1所述的一种阿基米德螺线式质谱仪连续性变压取样装置,其特征在于,由所述传动组合齿轮的直齿部分、所述直齿轮、所述行星轮减速系统、所述输出齿轮和所述传动齿条组成的传动系统,能够使所述气体通道圆盘每旋转一周,所述平移板恰好平移所述阿基米德螺线式线槽的一个线间距,从而保证所述平移板上的进气接口内侧始终与阿基米德螺线式线槽的某一处相通。
  7. 权利要求1所述的一种阿基米德螺线式质谱仪连续性变压气体取样装置的取样方法,包括如下步骤:
    步骤一:关闭进气阀门,打开截流阀门,启动真空泵抽真空,设备内的气体压力逐渐下降到质谱仪的最大压强时启动质谱系统内真空泵,加快抽真空的速度,抽真空的同时也清洁了分析气体成分的气体通路;
    步骤二:启动电动机,将平移板移至最外端,使平移板上的进气接口与气体通道圆盘上的阿基米德螺线式线槽的最小截面处相通,打开进气阀门,分析气体进入设备;
    步骤三:根据真空规测量到的真空度反馈控制电动机,将平移板上的进气接口逐渐向气体通道圆盘的中心方向移动,使与进气接口接通的阿基米德螺线式槽的气体通路长度逐渐变小,气体流量逐渐增大,直至找到符合质谱仪工作的真空度和气体流量;
    步骤四:当进气管中被分析气体压力变化时,根据真空规测量到的真空度反馈控制电动机,调节气体通路长度,当取样气体压力大时,将平移板上的进气接口向远离气体通道圆盘中心的方向移动,以增长进气接口与出气通路之间的阿基米德螺线式线槽长度,减小压力,恢复至质谱仪工作压力;当取样气体压力小时,将平移板上的进气接口向靠近气体通道圆盘中心的方向移动,以减短进气接口与出气通路之间的阿基米德螺线式线槽长度,增大压力,恢复至质谱仪工作压力;
    此工作过程是连续性过程,此设备可以连续在线检测气体成分。
PCT/CN2019/087704 2019-05-05 2019-05-21 一种阿基米德螺线式质谱仪连续性变压取样装置及方法 WO2020224005A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910367063.3A CN110057630B (zh) 2019-05-05 2019-05-05 一种阿基米德螺线式质谱仪连续性变压取样装置及方法
CN201910367063.3 2019-05-05

Publications (1)

Publication Number Publication Date
WO2020224005A1 true WO2020224005A1 (zh) 2020-11-12

Family

ID=67322187

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/087704 WO2020224005A1 (zh) 2019-05-05 2019-05-21 一种阿基米德螺线式质谱仪连续性变压取样装置及方法

Country Status (2)

Country Link
CN (1) CN110057630B (zh)
WO (1) WO2020224005A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110954357A (zh) * 2019-12-19 2020-04-03 许昌学院 一种土木工程岩土检测用取样装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4010647A (en) * 1975-12-24 1977-03-08 The United States Of America As Represented By The Secretary Of The Interior Sampling method and apparatus
CN200952977Y (zh) * 2006-09-11 2007-09-26 万运帆 自动气体采样器
CN105073264A (zh) * 2013-04-04 2015-11-18 吉尔松有限合伙公司 具有改良的控制和容量调节的吸量系统
CN105136529A (zh) * 2015-09-23 2015-12-09 中国科学院水利部成都山地灾害与环境研究所 一种气体自动连续采集系统
CN105304450A (zh) * 2015-12-02 2016-02-03 南京华欣分析仪器制造有限公司 一种质谱分析仪器的自动进样装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4010647A (en) * 1975-12-24 1977-03-08 The United States Of America As Represented By The Secretary Of The Interior Sampling method and apparatus
CN200952977Y (zh) * 2006-09-11 2007-09-26 万运帆 自动气体采样器
CN105073264A (zh) * 2013-04-04 2015-11-18 吉尔松有限合伙公司 具有改良的控制和容量调节的吸量系统
CN105136529A (zh) * 2015-09-23 2015-12-09 中国科学院水利部成都山地灾害与环境研究所 一种气体自动连续采集系统
CN105304450A (zh) * 2015-12-02 2016-02-03 南京华欣分析仪器制造有限公司 一种质谱分析仪器的自动进样装置

Also Published As

Publication number Publication date
CN110057630B (zh) 2021-05-18
CN110057630A (zh) 2019-07-26

Similar Documents

Publication Publication Date Title
CN201262602Y (zh) 一种质谱仪的气体取样装置
CN102338711B (zh) 一种惰性气体萃取和分离的制样系统及其应用
CN101718666B (zh) 一种用于低温材料出气性能测试的金属系统
WO2020224005A1 (zh) 一种阿基米德螺线式质谱仪连续性变压取样装置及方法
WO2020224004A1 (zh) 一种蛇形线式质谱仪连续性变压取样装置及方法
CN110186998B (zh) 大气污染物实时采样分析的装置及方法
US10830741B1 (en) Combined structure of UHV characterization instrument-interconnected in-situ reaction cell and built-in mass spectrometer electric quadrupole
CN109488831B (zh) 大管径管道管内气体流量的计量与控制调节阀
CN109390204B (zh) 一种大量程可调节移动式真空质谱测量设备
CN212031360U (zh) 一种单通道实时分流快速检测质谱仪及毛细管取样装置
WO2020224006A1 (zh) 一种螺旋线式质谱仪连续性变压取样装置及方法
CN208432441U (zh) 一种自反馈密封腔气体取样装置
WO2019144791A1 (zh) 一种活塞瓶
CN209432698U (zh) 一种高温低压多次反射池控制装置
CN212159257U (zh) 一种气体取样装置
CN205992522U (zh) 稳定同位素质谱双路系统高真空进样装置
CN106841482A (zh) 一种气相色谱仪用真空进样装置的应用方法
CN208313527U (zh) 多工位自密封快速氦质谱检漏装置
CN201397478Y (zh) 自动压力控制器
CN211649148U (zh) 一种质谱仪用切换阀
CN208780525U (zh) 一种具有天然气取样装置的天然气管道
CN217153824U (zh) 一种氮气在线供气安全切换装置
CN218895892U (zh) 一种阀门气密性检测装置
CN111219526A (zh) 一种精密可微控调整的球阀装置
RU2811730C1 (ru) Способ определения величин составляющих шарнирного момента и стендовый регулятор расхода для его обеспечения

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19927719

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19927719

Country of ref document: EP

Kind code of ref document: A1