WO2020222068A1 - 冗長メモリセルを有する記憶装置、半導体装置、および、電子機器 - Google Patents

冗長メモリセルを有する記憶装置、半導体装置、および、電子機器 Download PDF

Info

Publication number
WO2020222068A1
WO2020222068A1 PCT/IB2020/053638 IB2020053638W WO2020222068A1 WO 2020222068 A1 WO2020222068 A1 WO 2020222068A1 IB 2020053638 W IB2020053638 W IB 2020053638W WO 2020222068 A1 WO2020222068 A1 WO 2020222068A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
oxide
insulator
wiring
conductor
Prior art date
Application number
PCT/IB2020/053638
Other languages
English (en)
French (fr)
Inventor
國武寛司
八窪裕人
松嵜隆徳
岡本佑樹
大貫達也
Original Assignee
株式会社半導体エネルギー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社半導体エネルギー研究所 filed Critical 株式会社半導体エネルギー研究所
Priority to US17/600,379 priority Critical patent/US11823733B2/en
Priority to JP2021517130A priority patent/JP7467430B2/ja
Publication of WO2020222068A1 publication Critical patent/WO2020222068A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/408Address circuits
    • G11C11/4085Word line control circuits, e.g. word line drivers, - boosters, - pull-up, - pull-down, - precharge
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/403Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells with charge regeneration common to a multiplicity of memory cells, i.e. external refresh
    • G11C11/404Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells with charge regeneration common to a multiplicity of memory cells, i.e. external refresh with one charge-transfer gate, e.g. MOS transistor, per cell
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/409Read-write [R-W] circuits 
    • G11C11/4093Input/output [I/O] data interface arrangements, e.g. data buffers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/409Read-write [R-W] circuits 
    • G11C11/4096Input/output [I/O] data management or control circuits, e.g. reading or writing circuits, I/O drivers or bit-line switches 
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/08Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
    • G11C29/12Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details
    • G11C29/44Indication or identification of errors, e.g. for repair
    • G11C29/4401Indication or identification of errors, e.g. for repair for self repair
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/70Masking faults in memories by using spares or by reconfiguring
    • G11C29/78Masking faults in memories by using spares or by reconfiguring using programmable devices
    • G11C29/781Masking faults in memories by using spares or by reconfiguring using programmable devices combined in a redundant decoder
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/70Masking faults in memories by using spares or by reconfiguring
    • G11C29/78Masking faults in memories by using spares or by reconfiguring using programmable devices
    • G11C29/785Masking faults in memories by using spares or by reconfiguring using programmable devices with redundancy programming schemes
    • G11C29/789Masking faults in memories by using spares or by reconfiguring using programmable devices with redundancy programming schemes using non-volatile cells or latches
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/70Masking faults in memories by using spares or by reconfiguring
    • G11C29/78Masking faults in memories by using spares or by reconfiguring using programmable devices
    • G11C29/84Masking faults in memories by using spares or by reconfiguring using programmable devices with improved access time or stability
    • G11C29/844Masking faults in memories by using spares or by reconfiguring using programmable devices with improved access time or stability by splitting the decoders in stages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film

Definitions

  • One embodiment of the present invention relates to a storage device.
  • a storage device also referred to as a semiconductor storage device, a semiconductor memory, or a memory
  • a redundant memory cell that can function by utilizing semiconductor characteristics, and has a redundant memory cell.
  • the semiconductor device is a device utilizing semiconductor characteristics, and refers to, for example, a circuit including a semiconductor element (transistor, diode, photodiode, etc.), a device having the same circuit, and the like.
  • a semiconductor device is a general device that can function by utilizing semiconductor characteristics. For example, an integrated circuit, a chip having an integrated circuit, or an electron in which a chip is housed in a package. Electronic devices equipped with components and integrated circuits are examples of semiconductor devices.
  • One form of the present invention is not limited to the above technical fields.
  • the technical field of the invention disclosed in the present specification and the like relates to a product, a method, or a manufacturing method.
  • one embodiment of the present invention relates to a process, machine, manufacture, or composition (composition of matter).
  • DRAM Dynamic Random Access Memory
  • a DRAM memory cell is composed of one transistor and one capacitive element, and the DRAM is a memory that stores data by accumulating electric charges in the capacitive element.
  • a DRAM may have redundant memory cells (also referred to as redundant memory cells) in addition to normally used memory cells (also referred to as normal memory cells). For example, one of the normal memory cells in pre-shipment inspection. If a defect is found in the part, the memory cell is switched to a redundant memory cell and shipped. Therefore, the redundant memory cell is used as a technique for improving the yield of DRAM together with a circuit (also referred to as a switching circuit or a redundant circuit) for switching a defective memory cell to a redundant memory cell.
  • a circuit also referred to as a switching circuit or a redundant circuit
  • a transistor having a metal oxide is attracting attention in a region (also referred to as a channel forming region) in which a transistor channel is formed.
  • a region also referred to as a channel forming region
  • In-Ga-Zn oxide (called IGZO, exo, etc.) is known as a metal oxide applicable to a transistor.
  • the OS transistor Since the drain current (also referred to as off current) of the OS transistor when the transistor is in the off state is very small (see, for example, Non-Patent Documents 1 and 2), the OS transistor can be used as a DRAM memory cell. , The electric charge accumulated in the capacitive element can be retained for a long time.
  • Patent Document 1 has a configuration in which a peripheral circuit of a DRAM is configured by using a transistor formed on a semiconductor substrate, and a plurality of layers having a DRAM memory cell configured by using an OS transistor are laminated above the peripheral circuit of the DRAM. Is disclosed. By stacking a plurality of layers having DRAM memory cells, the chip area of the DRAM can be reduced.
  • a DRAM in which an OS transistor is used as a memory cell is referred to as an oxide semiconductor DRAM or DOSRAM (registered trademark, Dynamic Oxide Semiconductor Random Access Memory, Doslam).
  • a storage device having a redundant memory cell requires, in addition to the normal memory cell, a redundant memory cell and a circuit for switching a defective normal memory cell to the redundant memory cell.
  • the number of memory cells possessed by the storage device increases (the amount of data that can be stored in the storage device increases), the number of redundant memory cells also increases, and the circuit scale of the switching circuit becomes large and complicated.
  • one embodiment of the present invention does not necessarily have to solve all of the above problems, but may solve at least one problem. Moreover, the description of the above-mentioned problem does not prevent the existence of other problem. Issues other than these are self-evident from the description of the description, claims, drawings, etc., and it is possible to extract issues other than these from the description of the specification, claims, drawings, etc. It is possible.
  • One embodiment of the present invention is a storage device having a word line driver circuit, a switching circuit, and a memory cell array.
  • the word line driver circuit has a function of outputting signals to k (k is an integer of 1 or more) signal lines, the memory cell array has k + 1 word lines, and k + 1 word lines are each. , Electrically connected to multiple memory cells.
  • the switching circuit has 2 ⁇ k switch transistors, and the gates of the 2 ⁇ k switch transistors are electrically connected to one of the source or drain of the transistor and one terminal of the capacitor, respectively. ..
  • One of the 2 ⁇ k switch transistors has one of the source or drain electrically connected to one of the k signal lines and the other of the source or drain electrically connected to one of the k + 1 word lines. And the other one of the 2xk switch transistors is one of the source or drain electrically connected to one of the k signal lines and the other of the source or drain the other of the k + 1 word lines. It is electrically connected to one.
  • the transistor has a metal oxide in the channel forming region.
  • the switch transistor and the transistor have a metal oxide in the channel forming region.
  • one embodiment of the present invention is a storage device having a word line driver circuit, a first to m (m is an integer of 1 or more) switching circuit, and a first to m memory cell block.
  • the word line driver circuit has the first to mth circuits, and the jth (j is an integer of 1 or more and m or less) circuit is connected to the jth switching circuit, and the first to kth (k is 1 or more). It has a function to output a signal via a signal line (integer).
  • Each of the jth memory cell blocks has k + 1 word lines, and each of the k + 1 word lines is electrically connected to a plurality of memory cells.
  • Each of the j-th switching circuits has 2 ⁇ k switch transistors, and in each of the j-th switching circuits, the gates of the 2 ⁇ k switch transistors are one of the source and drain of the transistors, and It is electrically connected to one terminal of the capacitor.
  • one of the 2 ⁇ k switch transistors has one of the source or drain electrically connected to one of the k signal lines, and the other of the source or drain is k + 1 word.
  • Electrically connected to one of the wires, the other one of the 2xk switch transistors has one of the source or drain electrically connected to one of the k signal lines and the other of the source or drain. It is electrically connected to the other one of the k + 1 word lines.
  • the transistor has a metal oxide in the channel forming region.
  • the switch transistor and the transistor have a metal oxide in the channel forming region.
  • one embodiment of the present invention includes a semiconductor substrate having a word line driver circuit, a first to m (m is an integer of 1 or more) switching circuit, and an element layer having first to m memory cell blocks.
  • the word line driver circuit has the first to mth circuits, and the jth (j is an integer of 1 or more and m or less) circuit is connected to the jth switching circuit, and the first to kth (k is 1 or more). It has a function to output a signal via a signal line (integer).
  • Each of the jth memory cell blocks has k + 1 word lines, and each of the k + 1 word lines is electrically connected to a plurality of memory cells.
  • Each of the j-th switching circuits has 2 ⁇ k switch transistors, and in each of the j-th switching circuits, the gates of the 2 ⁇ k switch transistors are one of the source and drain of the transistors, respectively, and It is electrically connected to one terminal of the capacitor.
  • one of the 2 ⁇ k switch transistors has one of the source or drain electrically connected to one of the k signal lines, and the other of the source or drain is k + 1 word.
  • Electrically connected to one of the wires, the other one of the 2xk switch transistors has one of the source or drain electrically connected to one of the k signal lines and the other of the source or drain. It is electrically connected to the other one of the k + 1 word lines.
  • the element layers are laminated on the semiconductor substrate.
  • the transistor formed in the element layer and the switch transistor each have a metal oxide in the channel forming region.
  • the semiconductor substrate is a single crystal silicon substrate, and the transistor formed in the element layer and the switch transistor each have a metal oxide in the channel forming region.
  • a storage device which has redundant memory cells and can easily switch between normal memory cells and redundant memory cells.
  • a storage device having redundant memory cells being small in size, consuming less power, and having high reliability.
  • FIG. 1 is a schematic perspective view showing a configuration example of a storage device.
  • FIG. 2 is a block diagram showing a configuration example of the storage device.
  • 3A and 3B are diagrams illustrating a configuration example of the memory cell array and an electrical connection between the memory cell array and the switching circuit.
  • FIG. 4A is a diagram illustrating a configuration example of the memory cell array and an electrical connection between the memory cell array and the switching circuit.
  • FIG. 4B is a circuit diagram showing a configuration example of a memory cell.
  • FIG. 5 is a circuit diagram showing a configuration example of a switching circuit.
  • FIG. 6A is a block diagram showing a configuration example of a word line driver circuit.
  • FIG. 6B is a circuit diagram showing a configuration example of the circuit LVB.
  • FIG. 1 is a schematic perspective view showing a configuration example of a storage device.
  • FIG. 2 is a block diagram showing a configuration example of the storage device.
  • 3A and 3B are diagrams illustrating
  • FIG. 7 is a diagram illustrating a configuration example of a memory cell array and a bit line driver circuit.
  • FIG. 8 is a diagram illustrating a circuit configuration example.
  • FIG. 9 is a timing chart illustrating an operation example of the storage device.
  • FIG. 10 is a timing chart illustrating an operation example of the storage device.
  • FIG. 11 is a timing chart illustrating an operation example of the storage device.
  • FIG. 12 is a cross-sectional view showing a configuration example of the storage device.
  • 13A, 13B, and 13C are cross-sectional views showing a structural example of the transistor.
  • FIG. 14A is a top view showing a structural example of the transistor.
  • 14B and 14C are cross-sectional views showing a structural example of the transistor.
  • FIG. 14A is a top view showing a structural example of the transistor.
  • 15A is a top view showing a structural example of the transistor.
  • 15B and 15C are cross-sectional views showing a structural example of the transistor.
  • FIG. 16A is a top view showing a structural example of the transistor.
  • 16B and 16C are cross-sectional views showing a structural example of the transistor.
  • FIG. 18A is a top view showing a structural example of the transistor.
  • 18B and 18C are cross-sectional views showing a structural example of the transistor.
  • FIG. 19A is a top view showing a structural example of the transistor.
  • 19B and 19C are cross-sectional views showing a structural example of the transistor.
  • FIG. 20A and 20B are cross-sectional views showing a structural example of the transistor.
  • FIG. 21 is a cross-sectional view showing a configuration example of the storage device.
  • 22A and 22B are cross-sectional views showing a structural example of the transistor.
  • FIG. 23A is a diagram illustrating classification of the crystal structure of IGZO.
  • FIG. 23B is a diagram illustrating an XRD spectrum of the CAAC-IGZO film.
  • FIG. 23C is a diagram illustrating an ultrafine electron beam diffraction pattern of the CAAC-IGZO film.
  • 24A and 24B are schematic views illustrating an example of an electronic component.
  • FIG. 25 is a diagram showing an example of an electronic device.
  • membrane and the term “layer” can be interchanged with each other.
  • conductive layer to the term “conductive layer”.
  • insulating film to the term “insulating layer”.
  • gate electrode on the gate insulating layer does not exclude those containing other components between the gate insulating layer and the gate electrode.
  • the code when the same code is used for a plurality of elements, and when it is particularly necessary to distinguish them, the code may be "_1", “_2", “[n]", “[m,”. It may be described with an identification code such as "n]".
  • the second wiring GL is described as wiring GL [2].
  • “electrically connected” includes a case where they are connected via "something having some kind of electrical action".
  • the "thing having some kind of electrical action” is not particularly limited as long as it enables the exchange of electric signals between the connection targets.
  • “things having some kind of electrical action” include electrodes, wirings, switching elements such as transistors, resistance elements, inductors, capacitive elements, and other elements having various functions. Further, even when it is expressed as “electrically connected”, there is a case where there is no physical connection part in the actual circuit and only the wiring is extended.
  • Electrode and “wiring” do not functionally limit these components.
  • an “electrode” may be used as part of a “wiring” and vice versa.
  • the “terminal” in the electric circuit means a portion where current or potential input (or output) and signal reception (or transmission) are performed. Therefore, a part of the wiring or the electrode may function as a terminal.
  • the “capacity” has a configuration in which two electrodes face each other via an insulator (dielectric).
  • the “capacitor” also referred to as a capacitor
  • the “capacitive element” has a structure in which two electrodes face each other via an insulator, a structure in which two wires face each other via an insulator, or a structure in which two wires face each other through an insulator. This includes the case where the two wires are arranged via an insulator.
  • the "voltage" often indicates a potential difference between a certain potential and a reference potential (for example, a ground potential). Therefore, the voltage and the potential difference can be rephrased.
  • a transistor is an element having at least three terminals including a gate, a drain, and a source. Then, a channel forming region is provided between the drain (drain terminal, drain region, or drain electrode) and the source (source terminal, source region, or source electrode), and the source and the source are via the channel forming region. A current can flow between the drain and the drain.
  • the channel formation region means a region in which a current mainly flows.
  • the functions of the source and the drain may be interchanged when transistors having different polarities are adopted or when the direction of the current changes in the circuit operation. Therefore, in the present specification and the like, the terms source and drain can be used interchangeably.
  • the off current means a drain current when the transistor is in an off state (also referred to as a non-conducting state or a cutoff state).
  • the off state is a state in which the gate voltage Vgs with respect to the source is lower than the threshold voltage Vth in the n-channel type transistor, and the gate voltage Vgs with respect to the source is in the p-channel type transistor. A state higher than the threshold voltage Vth. That is, the off-current of the n-channel transistor may be the drain current when the voltage Vgs of the gate with respect to the source is lower than the threshold voltage Vth.
  • drain may be read as source. That is, the off current may refer to the source current when the transistor is in the off state. In addition, it may be called a leak current in the same meaning as an off current. Further, in the present specification and the like, the off current may refer to the current flowing between the source and the drain when the transistor is in the off state.
  • the on-current may refer to the current flowing between the source and the drain when the transistor is in the on state (also referred to as the conduction state).
  • a metal oxide is a metal oxide in a broad sense. Metal oxides are classified into oxide insulators, oxide conductors (including transparent oxide conductors), oxide semiconductors, and the like.
  • the metal oxide when a metal oxide is used in the channel forming region of a transistor, the metal oxide may be referred to as an oxide semiconductor. That is, when a metal oxide has at least one of an amplification action, a rectifying action, and a switching action, the metal oxide can be referred to as a metal oxide semiconductor (metal oxide semiconductor). That is, a transistor having a metal oxide in the channel forming region can be called an "oxide semiconductor transistor" or an "OS transistor". Similarly, a "transistor using an oxide semiconductor” is also a transistor having a metal oxide in a channel forming region.
  • a metal oxide having nitrogen may also be referred to as a metal oxide. Further, a metal oxide having nitrogen may be referred to as a metal oxynitride. Details of the metal oxide will be described later.
  • the storage device according to one embodiment of the present invention is a storage device that can function by utilizing semiconductor characteristics, and is also called a semiconductor storage device, a semiconductor memory, or simply a memory. Further, the storage device according to one embodiment of the present invention has a structure in which a layer having an OS transistor is laminated above a layer having a transistor formed on a semiconductor substrate. The OS transistor has a property that the off-current is very small.
  • FIG. 1 is a schematic perspective view showing a configuration example of a storage device 10 according to an embodiment of the present invention.
  • the storage device 10 shown in FIG. 1 has a layer 100 and a layer 110, and has a structure in which the layers 110 are laminated and provided above the layer 100.
  • the layer 100 and the layer 110 are each provided with circuits that can function by utilizing the semiconductor characteristics. Specifically, the layer 100 has a peripheral circuit 101, and the layer 110 has a memory cell array 111 and a switching circuit. 112 is provided.
  • the main signal flow is indicated by arrows or lines, and the power line and the like may be omitted.
  • the peripheral circuit 101 includes a row decoder 121, a word line driver circuit 122, a column decoder 131, a bit line driver circuit 132, an output circuit 141, and a control logic circuit 151.
  • the peripheral circuit 101 has a function as a drive circuit and a control circuit of the memory cell array 111 and the switching circuit 112.
  • the peripheral circuit 101 is configured by using transistors formed on the semiconductor substrate SUB.
  • the semiconductor substrate SUB is not particularly limited as long as it can form a channel region of the transistor.
  • a single crystal silicon substrate, a single crystal germanium substrate, a compound semiconductor substrate (SiC substrate, GaN substrate, etc.), an SOI (Silicon on Insulator) substrate, or the like can be used.
  • the SOI substrate is formed by injecting oxygen ions into a mirror-polished wafer and then heating it at a high temperature to form an oxide layer at a certain depth from the surface and to eliminate defects generated in the surface layer.
  • SIMOX Separatation by Implanted Oxygen
  • a transistor formed using a single crystal substrate has a single crystal semiconductor in a channel forming region.
  • a transistor formed on a single crystal silicon substrate is called a Si transistor.
  • the peripheral circuit 101 configured by using the Si transistor can operate at high speed.
  • the memory cell array 111 has a plurality of memory cells 114, and the memory cell 114 is configured by using an OS transistor.
  • the switching circuit 112 is also configured by using an OS transistor. Since the OS transistor is a thin film transistor, the memory cell array 111 and the switching circuit 112 can be provided by stacking them on the semiconductor substrate SUB. Therefore, by configuring the memory cell 114 and the switching circuit 112 using the OS transistor, the chip area of the storage device 10 can be reduced (the storage device 10 can be downsized). Further, since the OS transistor can be manufactured by using the same manufacturing apparatus as the Si transistor, it can be manufactured at low cost.
  • the OS transistor since the band gap of the oxide semiconductor is 2.5 eV or more, preferably 3.0 eV or more, the OS transistor has a small leakage current due to thermal excitation and a very small off current.
  • the off-current refers to the current that flows between the source and the drain when the transistor is in the off state.
  • the metal oxide used in the channel forming region of the OS transistor is preferably an oxide semiconductor containing at least one of indium (In) and zinc (Zn).
  • an oxide semiconductor In—M—Zn oxide (element M is, for example, Al, Ga, Y or Sn) is typical.
  • the oxide semiconductor can be made i-type (intrinsic) or substantially i-type.
  • Such an oxide semiconductor can be called a highly purified oxide semiconductor.
  • the memory cells 114 are arranged in a matrix (also referred to as a matrix), and each memory cell 114 is electrically connected to the wiring WLM and the wiring BL.
  • the memory cell 114 is selected according to the potential applied to the wiring WLM, and data is written to the selected memory cell 114 via the wiring BL.
  • the memory cell 114 is selected according to the potential applied to the wiring WLM, and data is read from the selected memory cell 114 via the wiring BL. That is, the wiring WLM has a function as a word line of the memory cell 114, and the wiring BL has a function as a bit line of the memory cell 114.
  • the memory cell 114 is electrically connected to the switching circuit 112 via the wiring WLM, and is electrically connected to the bit line driver circuit 132 via the wiring BL. Further, the switching circuit 112 is electrically connected to the word line driver circuit 122 via the wiring WL and the wiring CTL.
  • the wiring CTL is a wiring that transmits a control signal of the switching circuit 112.
  • the electrical connection between the memory cell 114 and the switching circuit 112, the switching circuit 112 and the word line driver circuit 122, and the memory cell 114 and the bit line driver circuit 132 will be described later with reference to FIGS. 3 and 4.
  • the number of wiring WLs is smaller than the number of wiring WLMs, and the memory cells 114 include normally used memory cells and redundant memory cells. Further, the peripheral circuit 101 will be described with reference to FIG.
  • FIG. 2 is a block diagram showing a configuration example of the storage device 10.
  • the number of memory cells 114 included in the memory cell array 111 is omitted, and only one is typically shown.
  • the storage device 10 includes a peripheral circuit 101, a memory cell array 111, and a switching circuit 112.
  • the peripheral circuit 101 includes a row decoder 121, a word line driver circuit 122, a column decoder 131, a bit line driver circuit 132, an output circuit 141, and a control logic circuit 151.
  • the memory cell array 111 has a plurality of memory cells 114 (only one is shown in FIG. 2), the memory cell 114 is electrically connected to the switching circuit 112 via a wiring WLM, and the switching circuit 112 is a wiring WL. And are electrically connected to the word line driver circuit 122 via the wiring CTL, and the memory cell 114 is electrically connected to the bit line driver circuit 132 via the wiring BL.
  • the memory cell 114 has a function of storing data by accumulating and holding an electric charge.
  • the memory cell 114 may have a function of storing binary data (high level or low level), or may have a function of storing data of four or more values. Alternatively, it may have a function of storing analog data.
  • the OS transistor is suitable as a transistor used in the memory cell 114 because the off-current is very small.
  • the OS transistor can have, for example, an off-current per channel width of 1 ⁇ m of 100 zA / ⁇ m or less, or 10 zA / ⁇ m or less, or 1 zA / ⁇ m or less, or 10 yA / ⁇ m or less.
  • the storage device 10 can operate even when the temperature of the installed environment is high. Further, even in a high temperature environment due to heat generated by the peripheral circuit 101, the data stored in the memory cell 114 is unlikely to be lost. By using an OS transistor in the memory cell 114, the reliability of the storage device 10 can be improved.
  • the memory cell 114 using the OS transistor rewrites and reads data by charging or discharging electric charges, it is possible to rewrite and read data substantially unlimited times.
  • the memory cell 114 using the OS transistor is excellent in rewrite resistance because it does not undergo a structural change at the atomic level unlike a magnetic memory or a resistance change type memory.
  • unlike flash memory instability due to an increase in electron capture centers due to repeated rewriting operations is not recognized.
  • a transistor other than the OS transistor may be used as long as the off-current is small.
  • a transistor having a semiconductor having a large bandgap in the channel formation region may be used.
  • the semiconductor having a large bandgap may refer to a semiconductor having a bandgap of 2.2 eV or more, and examples thereof include silicon carbide, gallium nitride, and diamond.
  • the bit line driver circuit 132 includes a precharge circuit 133, a sense amplifier 134, and an input / output circuit 135.
  • the precharge circuit 133 has a function of precharging the wiring BL.
  • the sense amplifier 134 has a function of amplifying the data signal read from the wiring BL, the input / output circuit 135 has a function of writing the data signal to the wiring BL, and the output circuit 141 outputs the data signal read from the wiring BL. Has a function to output to.
  • a configuration example of the bit line driver circuit 132 will be described in the second embodiment.
  • the wiring BL and the wiring WLM are wirings connected to the memory cell 114 included in the memory cell array 111, and will be described in detail later.
  • the amplified data signal is output to the outside of the storage device 10 as a digital data signal RDATA via the output circuit 141.
  • the storage device 10 is supplied with a low power potential VSS, a high power potential VDD for the peripheral circuit 101, and a high power potential VIH for the memory cell array 111 as power sources from the outside.
  • the high power supply potential VDD is a higher potential than the low power supply potential VSS
  • the high power supply potential VIH can be a potential higher than the high power supply potential VDD or the same potential as the high power supply potential VDD.
  • the low power supply potential VSS is used as a reference potential in the storage device 10.
  • a control signal (CE, WE, RE), an address signal ADDR, and a data signal WDATA are input to the storage device 10 from the outside.
  • the address signal ADDR is input to the row decoder 121 and the column decoder 131, and the WDATA is input to the bit line driver circuit 132.
  • control signal CE, WE, RE
  • address signal ADDR, data signal WDATA, and data signal RDATA are represented by high level or low level (High or Low, H or L, 1 or 0, etc.) Is a digital signal represented by).
  • the high level of the digital signal is represented using the potential VDD and the low level is represented using the potential VSS.
  • potential VIH is used for the high level of the writing word line WLM, and the potential VSS is used for the low level.
  • the control logic circuit 151 processes input signals (CE, WE, RE) from the outside to generate control signals for the low decoder 121 and the column decoder 131.
  • CE is a chip enable signal
  • WE is a write enable signal
  • RE is a read enable signal.
  • the signal processed by the control logic circuit 151 is not limited to this, and other control signals may be input as needed.
  • each of the above-mentioned circuits, each signal, and each potential can be appropriately discarded as needed. Alternatively, other circuits, other signals, or other potentials may be added.
  • 3A and 3B are diagrams illustrating a configuration example of the memory cell array 111 and an electrical connection between the memory cell array 111 and the switching circuit 112.
  • the plurality of memory cells 114 included in the memory cell array 111 can be considered by being divided into m (m is an integer of 1 or more) memory cell blocks 113. That is, it can be said that the memory cell array 111 has m memory cell blocks 113, and each of the memory cell blocks 113 has a memory cell 114.
  • the memory cell block 113 [h] which is one of the memory cell blocks 113, is electrically connected to the switching circuit 112 [h] via the wiring WLM. ..
  • the storage device 10 has a switching circuit 112 [1] to a switching circuit 112 [m].
  • the storage device 10 has n (n is an integer of 1 or more) wiring BLs, and each of the memory cell block 113 [1] to the memory cell block 113 [m] has wiring BL [1] to wiring. It is electrically connected to BL [n].
  • the memory cell block 113 [h] has k + 1 (k is an integer of 1 or more) in one column and n in one row, for a total (k + 1) ⁇ n memory cells 114.
  • the memory cells 114 are arranged in a matrix, and are shown in FIG. 3B [1,1], [i, j], [k, n], [k + 1, n] (i is an integer of 1 or more and k + 1 or less, j is 1).
  • the above n or less integer) and the like indicate the address of the memory cell 114.
  • Each memory cell 114 is electrically connected to the wiring WLM and the wiring BL.
  • the memory cells 114 [i, j] are electrically connected to the wiring WLM [q + i] and the wiring BL [j].
  • q (k + 1) ⁇ (h-1).
  • the storage device 10 has m ⁇ (k + 1) wiring WLMs, and in the memory cell block 113 [h], the memory cells 114 [i, j] are switched circuits via the wiring WLM [q + i]. It is electrically connected to 112 [h].
  • the storage device 10 has m ⁇ k wiring WLs and m wiring CTLs.
  • the switching circuit 112 [h] is electrically connected to the word line driver circuit 122 via the wiring WL [p + 1] to the wiring WL [p + k] and the wiring CTL [h].
  • p k ⁇ (h-1).
  • each of the memory cell block 113 [1] to the memory cell block 113 [m] has 5 ⁇ n memory cells 114.
  • the storage device 10 has n wiring BLs and 5 ⁇ m wirings WLM, and each of the memory cells 114 is electrically connected to the bit line driver circuit 132 via the wiring BL and via the wiring WLM. It is electrically connected to any one of the switching circuit 112 [1] to the switching circuit 112 [m].
  • the storage device 10 has 4 ⁇ m wiring WLs and m wiring CTLs, and each of the switching circuits 112 is electrically connected to the word line driver circuit 122 via the wiring WLs and the wiring CTLs.
  • the switching circuit 112 [1] to the switching circuit 112 [m] have a function of conducting the four wiring WLs and the four wiring WLMs, and a function of deselecting one wiring WLM.
  • FIG. 4B is a circuit diagram showing a configuration example of the memory cell 114.
  • the memory cell 114 has a transistor M11 and a capacitance element CA.
  • the transistor M11 has a front gate (simply referred to as a gate) and a back gate.
  • One of the source or drain of the transistor M11 is electrically connected to the first terminal of the capacitive element CA, and the other of the source or drain of the transistor M11 is connected to the wiring BL.
  • the gate of the transistor M11 is connected to the wiring WLM, and the back gate of the transistor M11 is connected to the wiring BKL.
  • the second terminal of the capacitive element CA is connected to the wiring CAL.
  • the wiring BL functions as a bit line
  • the wiring WLM functions as a word line.
  • the wiring CAL functions as wiring for applying a predetermined potential to the second terminal of the capacitive element CA.
  • the wiring BKL functions as wiring for applying a predetermined potential to the back gate of the transistor M11.
  • the threshold voltage of the transistor M11 can be increased or decreased by applying an arbitrary potential to the wiring BKL.
  • the transistor M11 has a function as a switch that makes the first terminal of the capacitive element CA and the wiring BL conductive or non-conductive. Data writing or reading is performed by applying a high-level potential to the wiring WLM to bring the first terminal of the capacitive element CA and the wiring BL into a conductive state. That is, the memory cell 114 is a storage device that holds data by accumulating charges in the capacitance element CA, and the data held in the memory cell 114 can be written or read via the wiring BL and the transistor M11. Will be.
  • transistor M11 a transistor (OS transistor) having a metal oxide in the channel forming region can be used.
  • OS transistor organic transistor
  • indium and element M (element M is aluminum, gallium, yttrium, copper, vanadium, berylium, boron, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium) in the channel formation region of transistor M11.
  • Hafnium, tantalum, tungsten, magnesium, etc. one or more
  • metal oxides having any one of zinc can be used.
  • it is preferably a metal oxide composed of indium, gallium, and zinc.
  • the capacitive element CA has a structure in which an insulator is sandwiched between conductors serving as electrodes.
  • the conductor constituting the electrode in addition to metal, a semiconductor to which conductivity is imparted can be used.
  • the OS transistor Since the OS transistor has a very small off current, the data written in the memory cell 114 can be held for a long time by using the OS transistor for the transistor M11. Therefore, the refresh frequency of the memory cell 114 can be reduced, and the storage device 10 can be a storage device with low power consumption.
  • multi-valued data or analog data may be held in the memory cell 114.
  • OS transistor for the transistor M11 it is possible to operate the storage device 10 even if the capacity of the capacitance element CA included in the memory cell 114 is reduced.
  • the above-mentioned DOSRAM can be configured.
  • the transistor M11 may be configured to have no back gate.
  • a configuration example of the switching circuit 112 [1] is shown in FIG. 5 on behalf of the switching circuit 112 [1] to the switching circuit 112 [m].
  • the switching circuit 112 [1] includes transistors 11 to 18, transistors 21 to 28, and capacitors C11 to C18.
  • the transistor 11 to the transistor 18 and the transistor 21 to the transistor 28 are n-channel type transistors.
  • the transistors 21 to 28 are preferably transistors having a small off-current, and the transistors 11 to 18 are switch transistors that control the conduction state between the wiring WL and the wiring WLM.
  • Wiring WL [1] to Wiring WL [4], Wiring WLM [1] to Wiring WLM [5], Wiring CTL [1], and Wiring PL are connected to the switching circuit 112 [1], and further, wiring.
  • the CTL [1] is divided into wiring CTL [1, 0] to wiring CTL [1, 4], and wiring CTL [1, 1b] to wiring CTL [1, 4b].
  • the signal transmitted via the wiring CTL [1, 1b] is an inverted signal of the signal transmitted via the wiring CTL [1, 1]
  • the signal transmitted via the wiring CTL [1, 2b] is a signal transmitted via the wiring CTL [1, 2b].
  • the inverted signal of the signal transmitted via the wiring CTL [1, 2] and the signal transmitted via the wiring CTL [1, 3b] is the inverted signal of the signal transmitted via the wiring CTL [1, 3].
  • the signal, which is a signal transmitted through the wiring CTL [1, 4b] is an inverted signal of the signal transmitted via the wiring CTL [1, 4].
  • the signals transmitted via the wiring CTL [1, 0] are the wiring CTL [1, 1] to the wiring CTL [1, 4], and the wiring CTL [1, 1b] to the wiring CTL [1, 4b]. Controls the timing of capturing the signal transmitted via.
  • the wiring WL [1] is electrically connected to one of the source or drain of the transistor 11 and one of the source or drain of the transistor 12.
  • the wiring WL [2] is electrically connected to one of the source or drain of the transistor 13 and one of the source or drain of the transistor 14, and the wiring WL [3] is the source or drain of the transistor 15.
  • One and one of the source or drain of the transistor 16 are electrically connected, and the wiring WL [4] is electrically connected to one of the source or drain of the transistor 17 and one of the source or drain of the transistor 18. Will be done.
  • the wiring WLM [1] is electrically connected to the other of the source or drain of the transistor 11, and the wiring WLM [2] is electrically connected to the other of the source or drain of the transistor 12 and the other of the source or drain of the transistor 13.
  • the wiring WLM [3] is electrically connected to the other of the source or drain of the transistor 14 and the other of the source or drain of the transistor 15, and the wiring WLM [4] is the source or drain of the transistor 16.
  • the other of the drains and the other of the source or drain of the transistor 17 are electrically connected, and the wiring WLM [5] is electrically connected to the other of the source or drain of the transistor 18.
  • the wiring CTL [1, 0] is electrically connected to the gate of the transistors 21 to 28, and the wiring CTL [1, 1] is electrically connected to one of the source or drain of the transistor 21. 1, 1b] are electrically connected to one of the source or drain of the transistor 22, and the wiring CTL [1, 2] is electrically connected to one of the source or drain of the transistor 23, and the wiring CTL [1, 2] is electrically connected.
  • the other of the source or drain of the transistor 21 is electrically connected to one terminal of the gate of the transistor 11 and the capacitor C11, and the other of the source or drain of the transistor 22 is connected to one terminal of the gate of the transistor 12 and the capacitor C12. Electrically connected, the other of the source or drain of transistor 23 is electrically connected to one terminal of the gate and capacitor C13 of transistor 13, and the other of the source or drain of transistor 24 is the gate and capacitor of transistor 14.
  • the other of the source or drain of transistor 25 is electrically connected to the gate of transistor 15 and one terminal of capacitor C15
  • the other of the source or drain of transistor 26 Electrically connected to one terminal of the gate of the transistor 16 and one terminal of the capacitor C16
  • the other of the source or drain of the transistor 27 is electrically connected to one terminal of the gate of the transistor 17 and one terminal of the capacitor C17
  • the source of the transistor 28 Alternatively, the other of the drains is electrically connected to the gate of the transistor 18 and one terminal of the capacitor C18.
  • the wiring PL is electrically connected to the other terminal of the capacitors C11 to C18.
  • the wiring PL functions as wiring for applying a predetermined potential to the other terminals of the capacitors C11 to C18.
  • the wiring WL [1] and the wiring WLM [2], the wiring WL [2] and the wiring WLM [ 3], the wiring WL [3] and the wiring WLM [4], the wiring WL [4] and the wiring WLM [5] are in a conductive state, respectively.
  • Wiring WLM [1] is in the non-selected state.
  • the wiring WL [1] and wiring WLM [1], wiring WL [2] and wiring WLM [3], wiring WL [3] and wiring WLM [4], wiring WL [4] and wiring WLM [5] are in a conductive state, respectively. Will be. Wiring WLM [2] is in the non-selected state.
  • the signal transmitted via the wiring CTL [1, 1] and the wiring CTL [1, 2] is at a high level, and is transmitted via the wiring CTL [1, 3] and the wiring CTL [1, 4].
  • the signal to be received is low level
  • wiring WL [1] and wiring WLM [1] wiring WL [2] and wiring WLM [2]
  • the wiring WLM [5] is in a conductive state.
  • Wiring WLM [3] is in the non-selected state.
  • the switching circuit 112 [1] has a function of setting the non-selected wiring WLM to a low level. Further, when the off-current of the transistors 21 to 28 is sufficiently small, the capacitors C11 to C18 may be omitted.
  • the signal transmitted via the wiring CTL [1, 1] to the wiring CTL [1, 4] is set to a high level before shipment. If the inspection finds a defect in the memory cell 114 that is electrically connected to the wiring WLM [2], the signal transmitted via the wiring CTL [1, 1] is set to a high level, and the wiring CTL [1, 2] By setting the signal transmitted via the wiring CTL [1, 4] to a low level, the memory cell block 113 [1] can be made a good product.
  • the memory cell 114 electrically connected to the wiring WLM [1] to the wiring WLM [4] is a normal memory cell, and the memory cell 114 electrically connected to the wiring WLM [5] is redundant. It can be said that it is a memory cell.
  • the yield of the storage device 10 can be improved. Further, the inspection for finding a defective memory cell is not limited to the pre-shipment inspection, and may be performed after the start of use of the storage device 10.
  • FIG. 6A is a block diagram showing a configuration example of the word line driver circuit 122.
  • the word line driver circuit 122 has a function of outputting a signal to m ⁇ k wiring WLs.
  • the signal WI and the signal WIB for driving the wiring WL are input from the low decoder 121.
  • the signal WI and the signal WIB are digital signals represented by high level or low level, and the signal WIB is an inverted signal in which the logic of the signal WI is inverted.
  • the word line driver circuit 122 has a function of outputting a signal to m wiring CTLs. Since the function of the word line driver circuit 122 to output the signal to the wiring CTL can be configured in the same manner as the function of the word line driver circuit 122 to output the signal to the wiring WL, the description thereof will be omitted in the present embodiment.
  • the signal WI and the signal WIB are also m ⁇ k, respectively.
  • they are represented as WL (1) to WL (m ⁇ k), WI (1) to WI (m ⁇ k), and WIB (1) to WIB (m ⁇ k), respectively.
  • the potential corresponding to the high level of the signal WI and the signal WIB is the high power supply potential VDD, and the low level of the signal WI and the signal WIB.
  • the potential corresponding to is the low power potential VSS.
  • the high power supply potential VIH is used as the potential corresponding to the high level of the wiring WL
  • the low power supply potential VSS is used as the potential corresponding to the low level of the wiring WL.
  • the word line driver circuit 122 has a function of adjusting the high level of the input signal (also referred to as level adjustment) and a function of adding the ability to drive the wiring WL to the input signal (also referred to as a buffer). And have.
  • the word line driver circuit 122 has m ⁇ k circuits LVB, and is represented as LVB (1) to LVB (m ⁇ k) in FIG. 6A.
  • the circuit LVB has a function of adjusting the high level of the input signal and a function of adding the ability to drive the wiring WL to the input signal.
  • FIG. 6B is a circuit diagram showing a configuration example of the circuit LVB.
  • the circuit LVB includes n-channel type transistors 31 to 34, and p-channel type transistors 41 to 46. Further, the circuit LVB has an input terminal WI_IN, an input terminal WIB_IN, a wiring VIH_IN, a wiring VSS_IN, and an output terminal WL_OUT.
  • the signal WI is input to the input terminal WI_IN
  • the signal WIB is input to the input terminal WIB_IN
  • the high power potential VIH is input to the wiring VIH_IN
  • the low power potential VSS is input to the wiring VSS_IN. ..
  • the circuit LVB outputs a signal for driving the wiring WL from the output terminal WL_OUT.
  • one of the source or drain of the transistor 31 is electrically connected to the wiring VSS_IN, and the other of the source or drain of the transistor 31 is electrically connected to one of the source or drain of the transistor 42 and the gate of the transistor 43.
  • the gate of the transistor 31 is electrically connected to the input terminal WI_IN and the gate of the transistor 42.
  • the other of the source or drain of the transistor 42 is electrically connected to one of the source or drain of the transistor 41, and the other of the source or drain of the transistor 41 is electrically connected to the wiring VIH_IN.
  • One of the source or drain of transistor 32 is electrically connected to the wiring VSS_IN, the other of the source or drain of transistor 32 is electrically connected to one of the source or drain of transistor 44, and the gate of transistor 41.
  • the gate of the transistor 32 is electrically connected to the input terminal WIB_IN and the gate of the transistor 44.
  • the other of the source or drain of the transistor 44 is electrically connected to one of the source or drain of the transistor 43, and the other of the source or drain of the transistor 43 is electrically connected to the wiring VIH_IN.
  • the connection portion between the other of the source or drain of the transistor 44 and one of the source or drain of the transistor 43 is referred to as a node N11, and other elements and the like electrically connected to the node N11 will be described later. ..
  • the transistor 31, the transistor 32, and the transistors 41 to 44 have a level adjusting function of converting the potential corresponding to the high level of the input signal WI and the signal WIB from the high power supply potential VDD to the high power supply potential VIH. ..
  • one of the source or drain of the transistor 33 is electrically connected to the wiring VSS_IN, and the other of the source or drain of the transistor 33 is one of the source or drain of the transistor 45, the gate of the transistor 34, and the other. It is electrically connected to the gate of the transistor 46, and the gate of the transistor 33 is electrically connected to the gate of the node N11 and the transistor 45. The other of the source or drain of the transistor 45 is electrically connected to the wiring VIH_IN.
  • One of the source or drain of the transistor 34 is electrically connected to the wiring VSS_IN, the other of the source or drain of the transistor 34 is electrically connected to one of the source or drain of the transistor 46, and the output terminal WL_OUT.
  • the other of the sources or drains of 46 is electrically connected to the wiring VIH_IN.
  • the transistor 33, the transistor 34, the transistor 45, and the transistor 46 have a function of a buffer that outputs the signal of the node N11 from the output terminal WL_OUT.
  • the circuit LVB is wired by changing the high level of the signal WI and signal WIB, which is represented by high or low level using high power potential VDD and low power potential VSS, to high power potential VIH. It has a function to output to WL.
  • the number of wiring WLMs having a function as a word line of the memory cell 114 is larger than the number of wiring WLs to which the word line driver circuit 122 outputs a signal.
  • a memory cell 114 is connected to each of the wiring WLMs, and the memory cell 114 includes a redundant memory cell.
  • the switching circuit 112 has a function of controlling the conduction state between the wiring WLM and the wiring WL, and when a defective memory cell is found in the memory cell 114, the wiring WLM to which the defective memory cell is connected is not different from the wiring WL. By making it a conductive state, it is possible to prevent the use of defective memory cells.
  • selection information is written to the gate of the switch transistor that controls the conduction state between the wiring WL and the wiring WLM using a transistor having a small off current, the selection is performed after an inspection for finding a defective memory cell is performed. Information can be retained for a long time. That is, the conduction state between the wiring WLM and the wiring WL can be maintained.
  • the switching circuit 112 can be provided in a laminated manner above the peripheral circuit 101.
  • the switching circuit 112 can be provided near the memory cell array 111, and the signal delay can be reduced.
  • the chip area of the storage device 10 can be reduced.
  • the memory cell array 211 shown in FIG. 7 is a memory cell array of the folded bit line method (folded bit line method), unlike the memory cell array 111 described in the above embodiment.
  • the memory cell array 211 can also be applied to the memory cell array 111, for example, by connecting the memory cell 214 of the memory cell array 211 to the same bit line for each memory cell block 113. Further, the memory cell array 211 can also be applied to an open bit line system (open bit line system) memory cell array.
  • the memory cell array 211 shown in FIG. 7 has m memory cells in a column and n in a row, for a total of m ⁇ n (m and n are integers of 1 or more), and the memory cells 214 are arranged in a matrix. Has been done.
  • the address of the memory cell 214 is also shown.
  • [i, j] indicates the memory cell 214 in the i-row and j-th column (i is an integer of 1 or more and m or less, j is an integer of 1 or more and n or less).
  • the memory cell array 211 shown in FIG. 7 has m wiring WDLs having a function as word lines, and the wiring WDL (1) is electrically connected to the memory cell 214 in the first row. Similarly, the wiring WDL (i) is electrically connected to the memory cell 214 in the i-th row.
  • the memory cell array 211 shown in FIG. 7 has two wiring BILs (wiring BILa and wiring BILb) in one row.
  • the wiring BILa in the first row is shown as the wiring BILa (1)
  • the wiring BILb in the jth row is shown as the wiring BILb (j).
  • the memory cells 214 arranged in the odd-numbered rows are electrically connected to one of the wiring BILa and the wiring BILb, and the memory cells 214 arranged in the even-numbered rows are electrically connected to the other of the wiring BILa and the wiring BILb. ..
  • the wiring BILa and the wiring BILb are electrically connected to the precharge circuit 133, the sense amplifier 134, and the input / output circuit 135 provided for each row. Further, the input / output circuit 135 is electrically connected to the wiring SALa and the wiring SALb for each row.
  • the precharge circuit 133 in the first row is shown as the precharge circuit 133 (1)
  • the precharge circuit 133 in the jth row is shown as the precharge circuit 133 (j).
  • the sense amplifier 134 and the input / output circuit 135 are also described in the same manner.
  • FIG. 8 shows a circuit configuration example of the memory cell 214 in the j-th column, the precharge circuit 133, the sense amplifier 134, and the input / output circuit 135.
  • the precharge circuit 133 (j) has n-channel type transistors Tr21 to transistors Tr23.
  • the transistor Tr21 to the transistor Tr23 may be of a p-channel type.
  • One of the source or drain of the transistor Tr21 is connected to the wiring BILa (j), and the other of the source or drain is connected to the wiring PRE.
  • One of the source or drain of the transistor Tr22 is connected to the wiring BILb (j), and the other of the source or drain is connected to the wiring PRE.
  • One of the source or drain of the transistor Tr23 is connected to the wiring BILa (j), and the other of the source or drain is connected to the wiring BILb (j).
  • the gate of the transistor Tr21, the gate of the transistor Tr22, and the gate of the transistor Tr23 are connected to the wiring PL.
  • the precharge circuit 133 (j) has a function of initializing the potentials of the wiring BILa (j) and the wiring BILb (j).
  • the sense amplifier 134 (j) has a p-channel type transistor Tr31 and a transistor Tr32, and an n-channel type transistor Tr33 and a transistor Tr34.
  • One of the source or drain of the transistor Tr31 is connected to the wiring SP, and the other of the source or drain is connected to the gate of the transistor Tr32, the gate of the transistor Tr34, and the wiring BILa (j).
  • One of the source or drain of the transistor Tr33 is connected to the gate of the transistor Tr32, the gate of the transistor Tr34, and the wiring BILa (j), and the other of the source or drain is connected to the wiring SN.
  • One of the source or drain of the transistor Tr32 is connected to the wiring SP, and the other of the source or drain is connected to the gate of the transistor Tr31, the gate of the transistor Tr33, and the wiring BILb (j).
  • One of the source or drain of the transistor Tr34 is connected to the gate of the transistor Tr31, the gate of the transistor Tr33, and the wiring BILb (j), and the other of the source or drain is connected to the wiring SN.
  • the sense amplifier 134 (j) has a function of amplifying the potentials of the wiring BILa (j) and BILb (j).
  • the sense amplifier 134 (j) functions as a latch type sense amplifier.
  • the input / output circuit 135 (j) has an n-channel type transistor Tr41 and a transistor Tr42.
  • the transistor Tr41 and the transistor Tr42 may be of a p-channel type.
  • One of the source or drain of the transistor Tr41 is connected to the wiring BILa (j), and the other of the source or drain is connected to the wiring SALa (j).
  • One of the source or drain of the transistor Tr42 is connected to the wiring BILb (j), and the other of the source or drain is connected to the wiring SALb (j).
  • the gate of the transistor Tr41 and the gate of the transistor Tr42 are connected to the wiring CSEL.
  • the input / output circuit 135 (j) has a conduction state of the wiring BILa (j) and the wiring SALa (j) and a conduction state of the wiring BILb (j) and the wiring SALb (j) based on the potential supplied to the wiring CSEL. Has a function to control. That is, the input / output circuit 135 (j) can select whether or not to output the potential to the wiring SALa (j) and the wiring SALb (j).
  • the wiring SP, wiring SN, wiring CSEL, wiring PRE, and wiring PL have a function of transmitting a signal or a potential for controlling the operation of the precharge circuit 133, the sense amplifier 134, and the input / output circuit 135.
  • the wiring SP, wiring SN, wiring CSEL, wiring PRE, and wiring PL are connected to the control logic circuit 151 shown in FIG.
  • the control logic circuit 151 has a function of supplying a control signal to the wiring SP, the wiring SN, the wiring CSEL, the wiring PRE, and the wiring PL.
  • the precharge circuit 133 (j) is operated to initialize the potentials of the wiring BILa (j) and the wiring BILb (j). Specifically, the potential of the wiring PL is set to a high level (VH_PL), and the transistors Tr21 to Tr23 are turned on. As a result, the potential Vpre of the wiring PRE is supplied to the wiring BILa (j) and the wiring BILb (j).
  • the potential Vpre can be, for example, (VH_SP + VL_SN) / 2.
  • VH_SP is a high level potential supplied to the wiring SP
  • VL_SN is a low level potential supplied to the wiring SN.
  • the potential of the wiring CSEL is low level (VL_CSEL), and the transistor Tr41 and the transistor Tr42 are in the off state in the input / output circuit 135 (j).
  • the potential of the wiring WDL (i) is low level (VL_WDL), and the transistor M12 included in the memory cells 214 [i, j] is in the off state.
  • the potential of the wiring WDL [i + 1] is low level (VL_WDL), and the transistor M12 included in the memory cell 214 [i + 1, j] is in the off state.
  • the potentials of the wiring SP and the wiring SN are the potential Vpre, and the sense amplifier 134 (j) is in the stopped state.
  • VL_WDL has a lower potential than VL_SN. Further, it is preferable that VL_WDL has a potential lower than the potential obtained by subtracting Vth of the transistor M12 from VL_SN. In other words, when VL_SN is set to the reference potential (0V), VL_WDL may be set to the negative potential (also referred to as negative potential or negative bias).
  • the transistor M12 By supplying a negative bias to the wiring WDL (i), the transistor M12 can be turned off more reliably. In particular, it is possible to provide a storage device having a long data retention time even in a high temperature environment.
  • the transistor M12 can also be turned off by supplying a negative bias to the wiring BGL (i).
  • the same effect can be realized with a smaller bias than when the negative bias is supplied to only one of them.
  • the electric field stress applied to the transistor M12 can be reduced, the reliability of the transistor M12 can be improved.
  • the power consumption of the transistor M12 can be reduced. That is, the reliability of the storage device 10 can be improved and the power consumption can be reduced.
  • the potential of the wiring PL is set to the low level (VL_PL), and the transistors Tr21 to Tr23 are turned off.
  • the wiring WDL (i) is selected. Specifically, by setting the potential of the wiring WDL (i) to a high level (VH_WDL), the transistor M12 included in the memory cell 214 [i, j] is turned on. As a result, in the memory cell 214 [i, j], the wiring BILa (j) and the capacitance element CB are brought into a conductive state via the transistor M12, and the wiring BILa (j) is made according to the amount of electric charge held in the capacitance element CB. Potential fluctuates.
  • VH_WDL preferably has a higher potential than VH_SP. Specifically, VH_WDL preferably has a potential higher than the potential obtained by adding Vth of the transistor M12 to VH_SP.
  • FIG. 9 illustrates a case where the data “1” is stored in the memory cell 214 [i, j] and the amount of electric charge stored in the capacitive element CB is large. Specifically, when the amount of electric charge stored in the capacitive element CB is large, the electric charge is released from the capacitive element CB to the wiring BILa (j), so that the potential of the wiring BILa (j) is increased by ⁇ V1 from the potential Vpre. Rise. On the other hand, when the data "0" is stored in the memory cell 214 [i, j] and the amount of electric charge stored in the capacitive element CB is small, the electric charge flows from the wiring BILa (j) to the capacitive element CB. As a result, the potential of the wiring BILa (j) drops by ⁇ V2 (not shown).
  • the potential of the wiring CSEL is low level (VL_CSEL), and the transistor Tr41 and the transistor Tr42 are in the off state in the input / output circuit 135 (j). Further, the potentials of the wiring SP and the wiring SN are the potential Vpre, and the sense amplifier 134 (j) maintains the stopped state.
  • the sense amplifier 134 (j) is put into the operating state.
  • the sense amplifier 134 (j) has a function of amplifying the potential difference ( ⁇ V1 in FIG. 9) between the wiring BILa (j) and the wiring BILb (j).
  • the sense amplifier 134 (j) is put into the operating state, the potential of the wiring BILa (j) approaches the potential of the wiring SP (VH_SP) from Vpre + ⁇ V1. Further, the potential of the wiring BILb (j) approaches the potential of the wiring SN (VL_SN) from Vpre.
  • the sense amplifier 134 (j) is put into the operating state, so that the potential of the wiring BILa (j) is Vpre- ⁇ V2.
  • the potential of the wiring BILb (j) approaches the potential of the wiring SP (VH_SP) from the potential Vpre.
  • the potential of the wiring PL is low level (VL_PL), and the transistors Tr21 to Tr23 are in the off state in the precharge circuit 133 (j).
  • the potential of the wiring CSEL is low level (VL_CSEL), and the transistor Tr41 and the transistor Tr42 are in the off state in the input / output circuit 135 (j).
  • the potential of the wiring WDL (i) is at a high level (VH_WDL), and the transistor M12 included in the memory cells 214 [i, j] is in the ON state. Therefore, in the memory cells 214 [i, j], the amount of electric charge corresponding to the potential (VH_SP) of the wiring BILa (j) is accumulated in the capacitive element CB.
  • the input / output circuit 135 (j) is turned on by controlling the potential of the wiring CSEL. Specifically, by setting the potential of the wiring CSEL to a high level (VH_CSEL), the transistor Tr41 and the transistor Tr42 are turned on. As a result, the potential of the wiring BILa (j) is supplied to the wiring SALa (j), and the potential of the wiring BILb (j) is supplied to the wiring SALb (j).
  • the potential of the wiring PL is low level (VL_PL), and the transistors Tr21 to Tr23 are in the off state in the precharge circuit 133 (j).
  • the potential of the wiring WDL (i) is at a high level (VH_WDL), and the transistor M12 included in the memory cells 214 [i, j] is in the ON state.
  • the potential of the wiring SP is high level (VH_SP)
  • the potential of the wiring SN is low level (VL_SN)
  • the sense amplifier 134 (j) is in the operating state. Therefore, in the memory cell 214 [i, j], the electric charge corresponding to the potential (VH_SP) of the wiring BILa (j) is accumulated in the capacitance element CB.
  • the input / output circuit 135 (j) is turned off by controlling the potential of the wiring CSEL. Specifically, by setting the potential of the wiring CSEL to a low level (VL_CSEL), the transistor Tr41 and the transistor Tr42 are turned off.
  • VL_WDL is supplied to the wiring WDL (i) to make the wiring WDL (i) unselected.
  • the potential of the wiring WDL (i) is set to a low level (VL_WDL).
  • the transistor included in the memory cell 214 [i, j] is turned off.
  • the amount of electric charge corresponding to the potential (VH_SP) of the wiring BILa (j) is held in the capacitive element CB of the memory cell 214 [i, j]. Therefore, the data is held in the memory cell 214 [i, j] even after the data is read.
  • the transistor M12 can be turned off more reliably. In particular, it is possible to provide a storage device having a long data retention time even in a high temperature environment.
  • the sense amplifier 134 (j) has a function of temporarily holding the data read from the memory cells 214 [i, j].
  • data can be read from the memory cells 214 [i, j].
  • the read data is supplied to the output circuit 141 (see FIG. 1) via the wiring SALa (j) and / or the wiring SALb (j). Note that data can be read from the memory cells 214 [i + 1, j] in the same manner as in the memory cells 214 [i, j].
  • the transistors Tr21 to Tr23 included in the precharge circuit 133 (j) are turned on to initialize the potentials of the wiring BILa (j) and the wiring BILb (j).
  • the potential of the wiring PL is set to a high level (VH_PL), and the transistors Tr21 to Tr23 are turned on.
  • VH_PL a high level
  • the potential Vpre of the wiring PRE is supplied to the wiring BILa (j) and the wiring BILb (j).
  • the potential Vpre can be, for example, (VH_SP + VL_SN) / 2.
  • the potential of the wiring PL is set to the low level (VL_PL), and the transistors Tr21 to Tr23 are turned off. Further, the wiring WDL (i) connected to the memory cell 214 [i, j] for writing data is selected. Specifically, the potential of the wiring WDL (i) is set to a high level (VH_WDL), and the transistor M12 included in the memory cell 214 [i, j] is turned on. As a result, in the memory cell 214 [i, j], the wiring BILa (j) and the capacitance element CB are brought into a conductive state via the transistor M12.
  • the negative bias may be kept supplied to the wiring BGL (i), but as the potential of the wiring WDL (i) becomes VH_WDL, the wiring BGL (i) The potential may be increased.
  • the potential of the wiring BGL (i) is set to the L potential (for example, 0V) in the period T22.
  • the operating speed of the transistor M12 can be increased. Therefore, the time required for the writing operation can be shortened. Therefore, the operating speed of the storage device 10 can be increased.
  • the same writing speed can be realized with a smaller potential increase than when the potential of only one is increased. Therefore, since the electric field stress applied to the transistor M12 can be reduced, the reliability of the transistor M12 can be improved. Further, the power consumption of the transistor M12 can be reduced. That is, the reliability of the storage device 10 can be improved and the power consumption can be reduced.
  • Period T23 In the period T23, the potential of the wiring SP is set to a high level (VH_SP), the potential of the wiring SN is set to a low level (VL_SN), and the sense amplifier 134 (j) is put into an operating state.
  • VH_SP high level
  • VL_SN low level
  • the input / output circuit 135 (j) is turned on by controlling the potential of the wiring CSEL.
  • the wiring BILa (j) and the wiring SALa (j) are in a conductive state
  • the wiring BILb (j) and the wiring SALb (j) are in a conductive state.
  • the data signal WDATA is supplied to the input / output circuit 135 (j) via the wiring SALa (j) and the wiring SALb (j).
  • the wiring BILa (j) and the wiring BILb (j) are written via the input / output circuit 135 (j).
  • a potential is given. For example, when the data “0” is stored in the memory cell 214 [i, j], the low level (VL_SN) is supplied to the wiring SALa (j) and the high level (VH_SP) is supplied to the wiring SALb (j).
  • VL_WDL is supplied to the wiring WDL (i), and the wiring WDL (i) is set to the non-selected state.
  • the electric charge written in the memory cell 214 [i, j] is retained.
  • the potential of the wiring BGL (i) is increased in accordance with the increase in the potential of the wiring WDL (i)
  • the potential of the wiring BGL (i) is decreased in accordance with the potential of the wiring WDL (i) becoming VL_WDL.
  • -3V is supplied to the wiring BGL (i).
  • the transistor Tr41 and the transistor Tr42 are turned off.
  • the sense amplifier 134 (j) After the potential of the wiring SALa (j) is supplied to the wiring BILa (j), the sense amplifier 134 (j) operates even if the transistor Tr41 and the transistor Tr42 are turned off in the input / output circuit 135 (j). In the state, the potentials of the wiring BILa (j) and the wiring BILb (j) are held by the sense amplifier 134 (j). Therefore, the timing for changing the transistor Tr41 and the transistor Tr42 from the on state to the off state may be before or after the selection of the wiring WDL (i).
  • data can be written to the memory cell 214 [i, j]. Note that data can be written to the memory cells 214 [i + 1, j] in the same manner as in the memory cells 214 [i, j].
  • the transistor M12 can be turned off more reliably. In particular, it is possible to provide a storage device having a long data retention time even in a high temperature environment.
  • ⁇ Refresh mode> In order to maintain the data written in the memory cells 214 [i, j], a refresh operation (rewrite operation) is performed at regular intervals.
  • An operation example of the sense amplifier 134 (j) during the refresh operation will be described with reference to the timing chart shown in FIG.
  • the refresh operation can also be performed on the same principle as described above.
  • Period T31 In the period T31, the transistors Tr21 to Tr23 included in the precharge circuit 133 (j) are turned on to initialize the potentials of the wiring BILa (j) and the wiring BILb (j). Specifically, the potential of the wiring PL is set to a high level (VH_PL), and the transistors Tr21 to Tr23 are turned on. As a result, the potential Vpre of the wiring PRE is supplied to the wiring BILa (j) and the wiring BILb (j).
  • the potential of the wiring PL is set to the low level (VL_PL), and the transistors Tr21 to Tr23 are turned off. Further, the wiring WDL (i) connected to the memory cell 214 [i, j] for writing data is selected. Specifically, the potential of the wiring WDL (i) is set to a high level (VH_WDL), and the transistor M12 included in the memory cell 214 [i, j] is turned on. As a result, in the memory cell 214 [i, j], the wiring BILa (j) and the capacitance element CB are brought into a conductive state via the transistor M12.
  • the negative bias may be left supplied to the wiring BGL (i), but as the potential of the wiring WDL (i) becomes VH_WDL, the wiring BGL (i) The potential may be increased.
  • the potential of the wiring BGL (i) is set to the L potential (for example, 0V) in the period T32.
  • the operating speed of the transistor M12 can be increased. Therefore, the time required for refreshing can be shortened. Therefore, the operating speed of the storage device 10 can be increased.
  • the same writing speed can be realized with a smaller potential increase than when the potential of only one is increased. Therefore, since the electric field stress applied to the transistor M12 can be reduced, the reliability of the transistor M12 can be improved. Further, the power consumption of the transistor M12 can be reduced.
  • the potential of the wiring SP is set to a high level (VH_SP)
  • the potential of the wiring SN is set to a low level (VL_SN)
  • the sense amplifier 134 (j) is put into an operating state.
  • the potential of the wiring BILa (j) approaches the potential of the wiring SP (VH_SP) from Vpre + ⁇ V1.
  • the potential of the wiring BILb (j) approaches the potential of the wiring SN (VL_SN) from Vpre.
  • the time required for the period T33 is referred to as "writing time”.
  • VL_WDL is supplied to the wiring WDL (i), and the wiring WDL (i) is set to the non-selected state. Specifically, by setting the potential of the wiring WDL (i) to a low level (VL_WDL), the transistor included in the memory cell 214 [i, j] is turned off. As a result, the amount of electric charge corresponding to the potential (VH_SP) of the wiring BILa (j) is held in the capacitance element CB of the memory cell 214 [i, j].
  • the transistor M12 can be turned off more reliably. In particular, it is possible to provide a storage device having a long data retention time even in a high temperature environment.
  • the potential of the wiring BGL (i) is lowered as the potential of the wiring WDL (i) becomes VL_WDL. For example, -3V is supplied to the wiring BGL (i).
  • the input / output circuit 135 (j) may remain in the off state. Therefore, the refresh mode can be performed in a shorter period of time than the read mode and the write mode.
  • the refresh mode of the memory cells 214 [i + 1, j] can be performed in the same manner as the memory cells 214 [i, j].
  • the storage device shown in FIG. 12 includes a transistor 300, a transistor 500, and a capacitive element 600.
  • 13A is a cross-sectional view of the transistor 500 in the channel length direction
  • FIG. 13B is a cross-sectional view of the transistor 500 in the channel width direction
  • FIG. 13C is a cross-sectional view of the transistor 300 in the channel width direction.
  • the transistor 500 is a transistor (OS transistor) having a metal oxide in the channel forming region.
  • the transistor 500 has the characteristics that a high voltage can be applied between the source and the drain, the off-current does not easily increase even in a high-temperature environment, and the ratio of the on-current to the off-current is large even in a high-temperature environment.
  • the storage device can be made into a highly reliable storage device.
  • the transistor 500 is provided above the transistor 300, and the capacitive element 600 is provided above the transistor 300 and the transistor 500.
  • the transistor 300 is provided on the substrate 311 and includes a conductor 316, an insulator 315, a semiconductor region 313 composed of a part of the substrate 311 and a low resistance region 314a and a low resistance region 314b that function as a source region or a drain region.
  • a conductor 316 an insulator 315
  • a semiconductor region 313 composed of a part of the substrate 311 and a low resistance region 314a and a low resistance region 314b that function as a source region or a drain region.
  • the transistor 300 is covered with the conductor 316 on the upper surface of the semiconductor region 313 and the side surface in the channel width direction via the insulator 315.
  • the transistor 300 By making the transistor 300 a Fin type in this way, the effective channel width can be increased and the on-characteristics of the transistor 300 can be improved. Further, since the contribution of the electric field of the gate electrode can be increased, the off characteristic of the transistor 300 can be improved.
  • the transistor 300 may be either a p-channel type or an n-channel type.
  • a semiconductor such as a silicon-based semiconductor is included in a region in which a channel of the semiconductor region 313 is formed, a region in the vicinity thereof, a low resistance region 314a serving as a source region or a drain region, a low resistance region 314b, and the like. It preferably contains crystalline silicon. Alternatively, it may be formed of a material having Ge (germanium), SiGe (silicon germanium), GaAs (gallium arsenide), GaAlAs (gallium aluminum arsenide), or the like. A configuration using silicon in which the effective mass is controlled by applying stress to the crystal lattice and changing the lattice spacing may be used. Alternatively, the transistor 300 may be a HEMT (High Electron Mobility Transistor) by using GaAs, GaAlAs, or the like.
  • HEMT High Electron Mobility Transistor
  • the low resistance region 314a and the low resistance region 314b impart n-type conductivity-imparting elements such as arsenic and phosphorus, or p-type conductivity such as boron, in addition to the semiconductor material applied to the semiconductor region 313. Contains elements that
  • the conductor 316 that functions as a gate electrode is a semiconductor material such as silicon, a metal material, or an alloy that contains an element that imparts n-type conductivity such as arsenic or phosphorus, or an element that imparts p-type conductivity such as boron.
  • a material or a conductive material such as a metal oxide material can be used.
  • the Vth of the transistor can be adjusted by changing the material of the conductor. Specifically, it is preferable to use a material such as titanium nitride or tantalum nitride for the conductor. Further, in order to achieve both conductivity and embedding property, it is preferable to use a metal material such as tungsten or aluminum laminated on the conductor, and it is particularly preferable to use tungsten in terms of heat resistance.
  • the transistor 300 shown in FIG. 12 is an example, and the transistor 300 is not limited to the structure thereof, and an appropriate transistor may be used according to the circuit configuration and the driving method.
  • An insulator 320, an insulator 322, an insulator 324, and an insulator 326 are laminated in this order so as to cover the transistor 300.
  • the insulator 320, the insulator 322, the insulator 324, and the insulator 326 for example, silicon oxide, silicon oxide, silicon nitride, silicon nitride, aluminum oxide, aluminum oxide, aluminum nitride, aluminum nitride, etc. are used. Just do it.
  • the insulator 322 may have a function as a flattening film for flattening a step generated by a transistor 300 or the like provided below the insulator 322.
  • the upper surface of the insulator 322 may be flattened by a flattening treatment using a chemical mechanical polishing (CMP) method or the like in order to improve the flatness.
  • CMP chemical mechanical polishing
  • the insulator 324 it is preferable to use a film having a barrier property so that hydrogen and impurities do not diffuse in the region where the transistor 500 is provided from the substrate 311 or the transistor 300.
  • a film having a barrier property against hydrogen for example, silicon nitride formed by the CVD method can be used.
  • hydrogen may diffuse into a semiconductor element having an oxide semiconductor such as a transistor 500, so that the characteristics of the semiconductor element may deteriorate. Therefore, it is preferable to use a film that suppresses the diffusion of hydrogen between the transistor 500 and the transistor 300.
  • the membrane that suppresses the diffusion of hydrogen is a membrane that desorbs a small amount of hydrogen.
  • the amount of hydrogen desorbed can be analyzed using, for example, a heated desorption gas analysis (TDS (Thermal Desolation Spectroscopy) analysis) method or the like.
  • TDS heated desorption gas analysis
  • the amount of hydrogen desorbed from the insulator 324 is the amount desorbed in terms of hydrogen atoms when the surface temperature of the film is in the range of 50 ° C. to 500 ° C., which is converted per area of the insulator 324. It may be 10 ⁇ 10 15 atoms / cm 2 or less, preferably 5 ⁇ 10 15 atoms / cm 2 or less.
  • the insulator 326 preferably has a lower dielectric constant than the insulator 324.
  • the relative permittivity of the insulator 326 is preferably less than 4, more preferably less than 3.
  • the relative permittivity of the insulator 326 is preferably 0.7 times or less, more preferably 0.6 times or less, the relative permittivity of the insulator 324.
  • a capacitance element 600, a conductor 328 connected to the transistor 500, a conductor 330, and the like are embedded.
  • the conductor 328 and the conductor 330 have a function as a plug or a wiring.
  • a conductor having a function as a plug or a wiring may collectively give a plurality of structures the same reference numerals.
  • the wiring and the plug connected to the wiring may be integrated. That is, a part of the conductor may function as a wiring, and a part of the conductor may function as a plug.
  • each plug and wiring As the material of each plug and wiring (conductor 328, conductor 330, etc.), a conductive material such as a metal material, an alloy material, a metal nitride material, or a metal oxide material is single-layered or laminated. Can be used. It is preferable to use a refractory material such as tungsten or molybdenum that has both heat resistance and conductivity, and it is preferable to use tungsten. Alternatively, it is preferably formed of a low resistance conductive material such as aluminum or copper. Wiring resistance can be reduced by using a low resistance conductive material.
  • a conductive material such as a metal material, an alloy material, a metal nitride material, or a metal oxide material is single-layered or laminated. Can be used. It is preferable to use a refractory material such as tungsten or molybdenum that has both heat resistance and conductivity, and it is preferable to use tungsten. Alternatively, it is preferably formed of a
  • a wiring layer may be provided on the insulator 326 and the conductor 330.
  • the insulator 350, the insulator 352, and the insulator 354 are laminated in this order.
  • a conductor 356 is formed on the insulator 350, the insulator 352, and the insulator 354.
  • the conductor 356 has a function as a plug or wiring for connecting to the transistor 300.
  • the conductor 356 can be provided by using the same material as the conductor 328 and the conductor 330.
  • the insulator 350 it is preferable to use an insulator having a barrier property against hydrogen, similarly to the insulator 324.
  • the conductor 356 preferably contains a conductor having a barrier property against hydrogen.
  • a conductor having a barrier property against hydrogen is formed in the opening of the insulator 350 having a barrier property against hydrogen.
  • the conductor having a barrier property against hydrogen for example, tantalum nitride or the like may be used. Further, by laminating tantalum nitride and tungsten having high conductivity, it is possible to suppress the diffusion of hydrogen from the transistor 300 while maintaining the conductivity as wiring. In this case, it is preferable that the tantalum nitride layer having a barrier property against hydrogen has a structure in contact with the insulator 350 having a barrier property against hydrogen.
  • a wiring layer may be provided on the insulator 354 and the conductor 356.
  • the insulator 360, the insulator 362, and the insulator 364 are laminated in this order.
  • a conductor 366 is formed on the insulator 360, the insulator 362, and the insulator 364.
  • the conductor 366 has a function as a plug or wiring.
  • the conductor 366 can be provided by using the same material as the conductor 328 and the conductor 330.
  • the insulator 360 it is preferable to use an insulator having a barrier property against hydrogen, similarly to the insulator 324.
  • the conductor 366 preferably contains a conductor having a barrier property against hydrogen.
  • a conductor having a barrier property against hydrogen is formed in the opening of the insulator 360 having a barrier property against hydrogen.
  • a wiring layer may be provided on the insulator 364 and the conductor 366.
  • the insulator 370, the insulator 372, and the insulator 374 are laminated in this order.
  • a conductor 376 is formed on the insulator 370, the insulator 372, and the insulator 374.
  • the conductor 376 has a function as a plug or wiring.
  • the conductor 376 can be provided by using the same material as the conductor 328 and the conductor 330.
  • the insulator 370 it is preferable to use an insulator having a barrier property against hydrogen, similarly to the insulator 324.
  • the conductor 376 preferably contains a conductor having a barrier property against hydrogen.
  • a conductor having a barrier property against hydrogen is formed in the opening of the insulator 370 having a barrier property against hydrogen.
  • a wiring layer may be provided on the insulator 374 and the conductor 376.
  • the insulator 380, the insulator 382, and the insulator 384 are laminated in this order.
  • a conductor 386 is formed on the insulator 380, the insulator 382, and the insulator 384.
  • the conductor 386 has a function as a plug or wiring.
  • the conductor 386 can be provided by using the same material as the conductor 328 and the conductor 330.
  • the insulator 380 it is preferable to use an insulator having a barrier property against hydrogen, similarly to the insulator 324.
  • the conductor 386 preferably contains a conductor having a barrier property against hydrogen.
  • a conductor having a barrier property against hydrogen is formed in the opening of the insulator 380 having a barrier property against hydrogen.
  • the storage device has been described. It is not limited to this.
  • the number of wiring layers similar to the wiring layer containing the conductor 356 may be three or less, or the number of wiring layers similar to the wiring layer including the conductor 356 may be five or more.
  • the insulator 510, the insulator 512, the insulator 514, and the insulator 516 are laminated in this order.
  • the insulator 510, the insulator 512, the insulator 514, and the insulator 516 it is preferable to use a substance having a barrier property against oxygen and hydrogen.
  • a film having a barrier property so that hydrogen and impurities do not diffuse from the area where the substrate 311 or the transistor 300 is provided to the area where the transistor 500 is provided is used. Is preferable. Therefore, the same material as the insulator 324 can be used.
  • Silicon nitride formed by the CVD method can be used as an example of a film having a barrier property against hydrogen.
  • hydrogen may diffuse into a semiconductor element having an oxide semiconductor such as a transistor 500, so that the characteristics of the semiconductor element may deteriorate. Therefore, it is preferable to use a film that suppresses the diffusion of hydrogen between the transistor 500 and the transistor 300.
  • the membrane that suppresses the diffusion of hydrogen is a membrane that desorbs a small amount of hydrogen.
  • the film having a barrier property against hydrogen for example, it is preferable to use metal oxides such as aluminum oxide, hafnium oxide, and tantalum oxide for the insulator 510 and the insulator 514.
  • metal oxides such as aluminum oxide, hafnium oxide, and tantalum oxide for the insulator 510 and the insulator 514.
  • aluminum oxide has a high blocking effect that does not allow the membrane to permeate both oxygen and impurities such as hydrogen and water that cause fluctuations in the electrical characteristics of the transistor. Therefore, aluminum oxide can prevent impurities such as hydrogen and water from being mixed into the transistor 500 during and after the manufacturing process of the transistor. In addition, the release of oxygen from the oxides constituting the transistor 500 can be suppressed. Therefore, it is suitable for use as a protective film for the transistor 500.
  • the same material as that of the insulator 320 can be used for the insulator 512 and the insulator 516.
  • a material having a relatively low dielectric constant as an interlayer film it is possible to reduce the parasitic capacitance generated between the wirings.
  • a silicon oxide film, a silicon nitride film, or the like can be used as the insulator 512 and the insulator 516.
  • a conductor 518, a conductor (conductor 503) constituting the transistor 500, and the like are embedded in the insulator 510, the insulator 512, the insulator 514, and the insulator 516.
  • the conductor 518 has a function as a plug or wiring for connecting to the capacitance element 600 or the transistor 300.
  • the conductor 518 can be provided by using the same material as the conductor 328 and the conductor 330.
  • the conductor 510 in the region in contact with the insulator 510 and the insulator 514 is preferably a conductor having a barrier property against oxygen, hydrogen, and water.
  • the transistor 300 and the transistor 500 can be separated by a layer having a barrier property against oxygen, hydrogen, and water, and the diffusion of hydrogen from the transistor 300 to the transistor 500 can be suppressed.
  • a transistor 500 is provided above the insulator 512.
  • the transistor 500 includes a conductor 503 arranged so as to be embedded in the insulator 514 and the insulator 516, and an insulator 520 arranged on the insulator 516 and the insulator 503. And on the insulator 522 placed on the insulator 520, the insulator 524 placed on the insulator 522, the oxide 530a placed on the insulator 524, and the oxide 530a.
  • the arranged oxide 530b, the conductor 542a and the conductor 542b arranged apart from each other on the oxide 530b, and the conductor 542a and the conductor 542b arranged on the conductor 542a and the conductor 542b.
  • An insulator 580 having an opening formed by superimposing between them, a conductor 560 arranged in the opening, an oxide 530b, a conductor 542a, a conductor 542b, an insulator 580, and a conductor 560. It has an insulator 550 arranged between the insulators 550, an oxide 530b, a conductor 542a, a conductor 542b, and an insulator 580, and an oxide 530c arranged between the insulator 550.
  • the insulator 544 is arranged between the oxide 530a, the oxide 530b, the conductor 542a, and the conductor 542b and the insulator 580.
  • the conductor 560 includes a conductor 560a provided inside the insulator 550 and a conductor 560b provided so as to be embedded inside the conductor 560a. It is preferable to have.
  • the insulator 574 is arranged on the insulator 580, the conductor 560, and the insulator 550.
  • the oxide 530a, the oxide 530b, and the oxide 530c may be collectively referred to as the oxide 530.
  • the conductor 542a and the conductor 542b may be collectively referred to as the conductor 542.
  • the transistor 500 shows a configuration in which three layers of oxide 530a, oxide 530b, and oxide 530c are laminated in a region where a channel is formed and in the vicinity thereof, but the present invention is limited to this. It's not a thing. For example, a single layer of oxide 530b, a two-layer structure of oxide 530b and oxide 530a, a two-layer structure of oxide 530b and oxide 530c, or a laminated structure of four or more layers may be provided. Further, in the transistor 500, the conductor 560 is shown as a two-layer laminated structure, but the present invention is not limited to this. For example, the conductor 560 may have a single-layer structure or a laminated structure of three or more layers. Further, the transistor 500 shown in FIGS. 12, 13A, and 13B is an example, and the transistor 500 is not limited to the structure thereof, and an appropriate transistor may be used according to the circuit configuration and the driving method.
  • the conductor 560 functions as a gate electrode of the transistor, and the conductor 542a and the conductor 542b function as a source electrode or a drain electrode, respectively.
  • the conductor 560 is formed so as to be embedded in the opening of the insulator 580 and the region sandwiched between the conductor 542a and the conductor 542b.
  • the arrangement of the conductor 560, the conductor 542a and the conductor 542b is self-aligned with respect to the opening of the insulator 580. That is, in the transistor 500, the gate electrode can be arranged in a self-aligned manner between the source electrode and the drain electrode. Therefore, since the conductor 560 can be formed without providing the alignment margin, the occupied area of the transistor 500 can be reduced. As a result, the storage device can be miniaturized and highly integrated.
  • the conductor 560 is formed in a region between the conductor 542a and the conductor 542b in a self-aligned manner, the conductor 560 does not have a region that overlaps with the conductor 542a or the conductor 542b. Thereby, the parasitic capacitance formed between the conductor 560 and the conductors 542a and 542b can be reduced. Therefore, the switching speed of the transistor 500 can be improved and a high frequency characteristic can be provided.
  • the conductor 560 may function as a first gate (also referred to as a top gate) electrode. Further, the conductor 503 may function as a second gate (also referred to as a bottom gate) electrode. In that case, the Vth of the transistor 500 can be controlled by changing the potential applied to the conductor 503 independently of the potential applied to the conductor 560 without interlocking with it. In particular, by applying a negative potential to the conductor 503, it is possible to make the Vth of the transistor 500 larger than 0V and reduce the off-current. Therefore, when a negative potential is applied to the conductor 503, the drain current when the potential applied to the conductor 560 is 0 V can be made smaller than when it is not applied.
  • the conductor 503 is arranged so as to overlap the oxide 530 and the conductor 560. As a result, when a potential is applied to the conductor 560 and the conductor 503, the electric field generated from the conductor 560 and the electric field generated from the conductor 503 are connected to cover the channel forming region formed in the oxide 530. Can be done.
  • the structure of the transistor that electrically surrounds the channel formation region by the electric fields of the first gate electrode and the second gate electrode is called a slurried channel (S-channel) structure.
  • the side surface and the periphery of the oxide 530 in contact with the conductor 542a and the conductor 542b functioning as the source electrode and the drain electrode are said to be type I as in the channel formation region. It has characteristics. Further, since the side surface and the periphery of the oxide 530 in contact with the conductor 542a and the conductor 542b are in contact with the insulator 544, it can be type I as in the channel forming region. In addition, in this specification and the like, type I can be treated as the same as high-purity authenticity described later. Further, the S-channel structure disclosed in the present specification and the like is different from the Fin type structure and the planar type structure. By adopting the S-channel structure, it is possible to increase the resistance to the short-channel effect, in other words, to make a transistor in which the short-channel effect is unlikely to occur.
  • the conductor 503 has the same structure as the conductor 518, and the conductor 503a is formed in contact with the inner walls of the openings of the insulator 514 and the insulator 516, and the conductor 503b is further formed inside.
  • the insulator 520, the insulator 522, the insulator 524, and the insulator 550 have a function as a gate insulating film.
  • the insulator 524 in contact with the oxide 530 it is preferable to use an insulator containing more oxygen than oxygen satisfying the stoichiometric composition. That is, it is preferable that the insulator 524 is formed with an excess oxygen region. By providing such an insulator containing excess oxygen in contact with the oxide 530, oxygen deficiency in the oxide 530 can be reduced and the reliability of the transistor 500 can be improved.
  • an oxide material in which a part of oxygen is desorbed by heating is 1.0 ⁇ 10 18 atoms / cm 3 or more, preferably 1.0 ⁇ 10 19 in TDS analysis. It is an oxide film having atoms / cm 3 or more, more preferably 2.0 ⁇ 10 19 atoms / cm 3 or more, or 3.0 ⁇ 10 20 atoms / cm 3 or more.
  • the surface temperature of the film during the TDS analysis is preferably in the range of 100 ° C. or higher and 700 ° C. or lower, or 100 ° C. or higher and 400 ° C. or lower.
  • the insulator 524 has an excess oxygen region, it is preferable that the insulator 522 has a function of suppressing the diffusion of oxygen (for example, oxygen atom, oxygen molecule, etc.) (the oxygen is difficult to permeate).
  • oxygen for example, oxygen atom, oxygen molecule, etc.
  • the insulator 522 has a function of suppressing the diffusion of oxygen and impurities, the oxygen contained in the oxide 530 does not diffuse to the insulator 520 side, which is preferable. Further, it is possible to suppress the conductor 503 from reacting with the oxygen contained in the insulator 524 and the oxide 530.
  • Insulator 522 is a so-called high such as aluminum oxide, hafnium oxide, tantalum oxide, zirconate oxide, lead zirconate titanate (PZT), strontium titanate (SrTiO 3 ) or (Ba, Sr) TiO 3 (BST). It is preferable to use an insulator containing the ⁇ k material in a single layer or in a laminate. As the miniaturization and high integration of transistors progress, problems such as leakage current may occur due to the thinning of the gate insulating film. By using a high-k material for the insulator that functions as a gate insulating film, it is possible to reduce the gate potential during transistor operation while maintaining the physical film thickness.
  • an insulator containing an oxide of one or both of aluminum and hafnium which are insulating materials having a function of suppressing diffusion of impurities and oxygen (the above-mentioned oxygen is difficult to permeate).
  • an insulator containing one or both oxides of aluminum and hafnium it is preferable to use aluminum oxide, hafnium oxide, an oxide containing aluminum and hafnium (hafnium aluminate), and the like.
  • the insulator 522 is formed by using such a material, the insulator 522 suppresses the release of oxygen from the oxide 530 and the mixing of impurities such as hydrogen from the peripheral portion of the transistor 500 into the oxide 530. Acts as a layer.
  • aluminum oxide, bismuth oxide, germanium oxide, niobium oxide, silicon oxide, titanium oxide, tungsten oxide, yttrium oxide, and zirconium oxide may be added to these insulators.
  • these insulators may be nitrided. Silicon oxide, silicon oxide or silicon nitride may be laminated on the above insulator.
  • the insulator 520 is preferably thermally stable.
  • silicon oxide and silicon oxide nitride are suitable because they are thermally stable.
  • by combining the insulator of the high-k material with silicon oxide or silicon oxide nitride it is possible to obtain an insulator 520 having a laminated structure that is thermally stable and has a high relative permittivity.
  • the insulator 520, the insulator 522, and the insulator 524 may have a laminated structure of two or more layers.
  • the laminated structure is not limited to the same material, and may be a laminated structure made of different materials.
  • oxide 530 a metal oxide that functions as an oxide semiconductor for the oxide 530 containing the channel forming region.
  • oxide 530 In-M-Zn oxide (element M is aluminum, gallium, yttrium, copper, vanadium, beryllium, boron, titanium, iron, nickel, germanium, zirconium, molybdenum, lantern, cerium, neodymium).
  • Hafnium, tantalum, tungsten, magnesium, etc. (one or more) and the like may be used.
  • a metal oxide having a low carrier density for the transistor 500.
  • the impurity concentration in the metal oxide may be lowered and the defect level density may be lowered.
  • a low impurity concentration and a low defect level density is referred to as high-purity intrinsic or substantially high-purity intrinsic.
  • impurities in the metal oxide include hydrogen, nitrogen, alkali metal, alkaline earth metal, iron, nickel, silicon and the like.
  • hydrogen contained in a metal oxide reacts with oxygen bonded to a metal atom to become water, which may form an oxygen deficiency in the metal oxide. If the channel forming region in the metal oxide contains oxygen deficiency, the transistor may have a normally-on characteristic.
  • a defect containing hydrogen in an oxygen deficiency may function as a donor and generate electrons as carriers.
  • a part of hydrogen may be combined with oxygen that is bonded to a metal atom to generate an electron as a carrier. Therefore, a transistor using a metal oxide containing a large amount of hydrogen tends to have a normally-on characteristic.
  • Defects containing hydrogen in oxygen deficiencies can function as donors for metal oxides. However, it is difficult to quantitatively evaluate the defect. Therefore, in the case of metal oxides, the carrier density may be evaluated instead of the donor concentration. Therefore, in the present specification and the like, as the parameter of the metal oxide, the carrier density assuming a state in which an electric field is not applied may be used instead of the donor concentration. That is, the "carrier density" described in the present specification and the like may be paraphrased as the "donor concentration".
  • the hydrogen concentration obtained by secondary ion mass spectrometry is less than 1 ⁇ 10 20 atoms / cm 3 , preferably 1 ⁇ 10 19 atoms / cm. It is less than 3 , more preferably less than 5 ⁇ 10 18 atoms / cm 3 , and even more preferably less than 1 ⁇ 10 18 atoms / cm 3 .
  • the carrier density of the metal oxide in the channel formation region is preferably 1 ⁇ 10 18 cm -3 or less, and preferably less than 1 ⁇ 10 17 cm -3. Is more preferably less than 1 ⁇ 10 16 cm -3 , even more preferably less than 1 ⁇ 10 13 cm -3 , even more preferably less than 1 ⁇ 10 12 cm -3 .
  • the lower limit of the carrier density of the metal oxide in the channel formation region is not particularly limited, but may be, for example, 1 ⁇ 10 -9 cm -3 .
  • the oxygen in the oxide 530 diffuses to the conductor 542 when the conductor 542 (conductor 542a and the conductor 542b) and the oxide 530 come into contact with each other.
  • the conductor 542 may oxidize. It is highly probable that the conductivity of the conductor 542 will decrease due to the oxidation of the conductor 542.
  • the diffusion of oxygen in the oxide 530 into the conductor 542 can be rephrased as the conductor 542 absorbing the oxygen in the oxide 530.
  • oxygen in the oxide 530 diffuses into the conductor 542 (conductor 542a and the conductor 542b), so that the oxygen in the oxide 530 diffuses between the conductor 542a and the oxide 530b, and the conductor 542b and the oxide 530b.
  • Different layers may be formed between them. Since the different layer contains more oxygen than the conductor 542, it is presumed that the different layer has an insulating property.
  • the three-layer structure of the conductor 542, the different layer, and the oxide 530b can be regarded as a three-layer structure composed of a metal, an insulator, and a semiconductor, and has a MIS (Metal-Insulator-Semiconductor) structure. It may be called, or it may be called a diode junction structure mainly composed of a MIS structure.
  • the different layer is not limited to being formed between the conductor 542 and the oxide 530b.
  • the different layer is formed between the conductor 542 and the oxide 530c, or when the different layer is conductive. It may be formed between the body 542 and the oxide 530b, and between the conductor 542 and the oxide 530c.
  • a metal oxide having a band gap of 2 eV or more, preferably 2.5 eV or more, which functions as a channel forming region in the oxide 530 it is preferable to use a metal oxide having a band gap of 2 eV or more, preferably 2.5 eV or more, which functions as a channel forming region in the oxide 530. As described above, by using a metal oxide having a large bandgap, the off-current of the transistor can be reduced.
  • the semiconductor material that can be used for the oxide 530 is not limited to the above-mentioned metal oxide.
  • a semiconductor material having a bandgap (a semiconductor material that is not a zero-gap semiconductor) may be used.
  • a semiconductor of a single element such as silicon, a compound semiconductor such as gallium arsenide, a layered substance (also referred to as an atomic layer substance, a two-dimensional material, or the like) that functions as a semiconductor as a semiconductor material.
  • a layered substance also referred to as an atomic layer substance, a two-dimensional material, or the like
  • the layered substance is a general term for a group of materials having a layered crystal structure.
  • a layered crystal structure is a structure in which layers formed by covalent bonds or ionic bonds are laminated via bonds weaker than covalent bonds or ionic bonds, such as van der Waals forces.
  • the layered material has high electrical conductivity in the unit layer, that is, functions as a semiconductor having high two-dimensional electrical conductivity, and by using a material having high two-dimensional electrical conductivity for the channel formation region, the on-current can be increased. Larger transistors can be provided.
  • Layered materials include graphene, silicene, chalcogenides and the like.
  • a chalcogenide is a compound containing a chalcogen.
  • chalcogen is a general term for elements belonging to Group 16, and includes oxygen, sulfur, selenium, tellurium, polonium, and livermorium.
  • Examples of chalcogenides include transition metal chalcogenides and group 13 chalcogenides.
  • oxide 530 for example, it is preferable to use a transition metal chalcogenide that functions as a semiconductor.
  • Specific transition metal chalcogenides applicable as oxide 530 include molybdenum sulfide (typically MoS 2 ), molybdenum selenate (typically MoSe 2 ), and molybdenum tellurium (typically MoTe 2 ).
  • Tungsten sulfide typically WS 2
  • Tungsten disulfide typically WSe 2
  • Tungsten tellurium typically WTe 2
  • Hafnium sulfide typically HfS 2
  • Hafnium serene typically typically
  • Typical examples include HfSe 2 ), zirconium sulfide (typically ZrS 2 ), and zirconium selenium (typically ZrSe 2 ).
  • the oxide 530 can suppress the diffusion of impurities from the structure formed below the oxide 530a to the oxide 530b. Further, by having the oxide 530c on the oxide 530b, it is possible to suppress the diffusion of impurities into the oxide 530b from the structure formed above the oxide 530c.
  • the oxide 530 preferably has a laminated structure of a plurality of oxide layers having different atomic number ratios of each metal atom. Specifically, in the metal oxide used for the oxide 530a, the atomic number ratio of the element M in the constituent elements is larger than the atomic number ratio of the element M in the constituent elements in the metal oxide used in the oxide 530b. Is preferable. Further, in the metal oxide used for the oxide 530a, the atomic number ratio of the element M to In is preferably larger than the atomic number ratio of the element M to In in the metal oxide used for the oxide 530b.
  • the atomic number ratio of In to the element M is preferably larger than the atomic number ratio of In to the element M in the metal oxide used for the oxide 530a.
  • the oxide 530c a metal oxide that can be used for the oxide 530a or the oxide 530b can be used.
  • the energy at the lower end of the conduction band of the oxide 530a and the oxide 530c is higher than the energy at the lower end of the conduction band of the oxide 530b.
  • the electron affinity of the oxide 530a and the oxide 530c is smaller than the electron affinity of the oxide 530b.
  • the energy level at the lower end of the conduction band changes gently.
  • the energy level at the lower end of the conduction band at the junction of the oxide 530a, the oxide 530b, and the oxide 530c is continuously changed or continuously bonded.
  • the oxide 530a and the oxide 530b, and the oxide 530b and the oxide 530c have a common element (main component) other than oxygen, so that a mixed layer having a low defect level density is formed.
  • a common element (main component) other than oxygen so that a mixed layer having a low defect level density is formed.
  • the oxide 530b is an In-Ga-Zn oxide, In-Ga-Zn oxide, Ga-Zn oxide, gallium oxide or the like may be used as the oxide 530a and the oxide 530c.
  • the main path of the carrier is the oxide 530b.
  • the defect level density at the interface between the oxide 530a and the oxide 530b and the interface between the oxide 530b and the oxide 530c can be lowered. Therefore, the influence of interfacial scattering on carrier conduction is reduced, and the transistor 500 can obtain a high on-current.
  • a conductor 542 (conductor 542a and conductor 542b) that functions as a source electrode and a drain electrode is provided on the oxide 530b.
  • the conductors 542 include aluminum, chromium, copper, silver, gold, platinum, tantalum, nickel, titanium, molybdenum, tungsten, hafnium, vanadium, niobium, manganese, magnesium, zirconium, berylium, indium, ruthenium, iridium, and strontium. It is preferable to use a metal element selected from lanterns, an alloy containing the above-mentioned metal element as a component, an alloy in which the above-mentioned metal element is combined, or the like.
  • tantalum nitride, titanium nitride, tungsten, nitrides containing titanium and aluminum, nitrides containing tantalum and aluminum, ruthenium oxide, ruthenium nitride, oxides containing strontium and ruthenium, oxides containing lanthanum and nickel, etc. are used. Is preferable.
  • tantalum nitride, titanium nitride, nitrides containing titanium and aluminum, nitrides containing tantalum and aluminum, ruthenium oxide, ruthenium nitride, oxides containing strontium and ruthenium, and oxides containing lanthanum and nickel are difficult to oxidize. It is preferable because it is a conductive material or a material that maintains conductivity even if it absorbs oxygen.
  • a region 543 may be formed as a low resistance region at the interface of the oxide 530 with the conductor 542 and its vicinity thereof.
  • the region 543a functions as one of the source region or the drain region
  • the region 543b functions as the other of the source region or the drain region.
  • a channel forming region is formed in a region sandwiched between the region 543a and the region 543b.
  • the oxygen concentration in the region 543 may be reduced.
  • a metal compound layer containing the metal contained in the conductor 542 and the component of the oxide 530 may be formed in the region 543. In such a case, the carrier density of the region 543 increases, and the region 543 becomes a low resistance region.
  • the insulator 544 is provided so as to cover the conductor 542 and suppresses the oxidation of the conductor 542. At this time, the insulator 544 may be provided so as to cover the side surface of the oxide 530 and come into contact with the insulator 524.
  • a metal oxide containing one or more selected from hafnium, aluminum, gallium, yttrium, zirconium, tungsten, titanium, tantalum, nickel, germanium, magnesium and the like can be used. it can.
  • the insulator 544 it is preferable to use aluminum or an oxide containing one or both oxides of hafnium, such as aluminum oxide, hafnium oxide, and an oxide containing aluminum and hafnium (hafnium aluminate).
  • hafnium aluminate has higher heat resistance than the hafnium oxide film. Therefore, it is preferable because it is difficult to crystallize in the heat treatment in the subsequent step.
  • the insulator 544 is not an indispensable configuration when the conductor 542 is a material having oxidation resistance or the conductivity does not significantly decrease even if oxygen is absorbed. It may be appropriately designed according to the desired transistor characteristics.
  • the insulator 550 functions as a gate insulating film.
  • the insulator 550 is preferably arranged in contact with the inside (upper surface and side surface) of the oxide 530c.
  • the insulator 550 is preferably formed by using an insulator that releases oxygen by heating.
  • the amount of oxygen desorbed in terms of oxygen atoms is 1.0 ⁇ 10 18 atoms / cm 3 or more, preferably 1.0 ⁇ 10 19 atoms / cm 3 or more, and more preferably 2.
  • It is an oxide film having a ratio of 0.0 ⁇ 10 19 atoms / cm 3 or more, or 3.0 ⁇ 10 20 atoms / cm 3 or more.
  • the surface temperature of the film during the TDS analysis is preferably in the range of 100 ° C. or higher and 700 ° C. or lower.
  • silicon oxide with excess oxygen silicon oxide, silicon nitride, silicon nitride, silicon oxide with fluorine added, silicon oxide with carbon added, silicon oxide with carbon and nitrogen added, and vacancies.
  • Silicon oxide can be used.
  • silicon oxide and silicon oxide nitride are preferable because they are stable against heat.
  • oxygen can be effectively applied from the insulator 550 to the channel forming region of the oxide 530b through the oxide 530c. Can be supplied. Further, similarly to the insulator 524, it is preferable that the concentration of impurities such as water or hydrogen in the insulator 550 is reduced.
  • the film thickness of the insulator 550 is preferably 1 nm or more and 20 nm or less.
  • a metal oxide may be provided between the insulator 550 and the conductor 560.
  • the metal oxide preferably suppresses oxygen diffusion from the insulator 550 to the conductor 560.
  • the diffusion of excess oxygen from the insulator 550 to the conductor 560 is suppressed. That is, it is possible to suppress a decrease in the amount of excess oxygen supplied to the oxide 530.
  • oxidation of the conductor 560 due to excess oxygen can be suppressed.
  • a material that can be used for the insulator 544 may be used.
  • the conductor 560 functioning as the first gate electrode is shown as a two-layer structure in FIGS. 13A and 13B, it may have a single-layer structure or a laminated structure of three or more layers.
  • Conductor 560a is a hydrogen atom, a hydrogen molecule, a water molecule, a nitrogen atom, a nitrogen molecule, nitric oxide molecule (N 2 O, NO, etc. NO 2), conductive having a function of suppressing the diffusion of impurities such as copper atoms It is preferable to use a material. Alternatively, it is preferable to use a conductive material having a function of suppressing the diffusion of oxygen (for example, at least one oxygen atom, oxygen molecule, etc.). Since the conductor 560a has a function of suppressing the diffusion of oxygen, it is possible to prevent the conductor 560b from being oxidized by the oxygen contained in the insulator 550 to reduce the conductivity. As the conductive material having a function of suppressing the diffusion of oxygen, for example, tantalum, tantalum nitride, ruthenium, ruthenium oxide and the like are preferably used.
  • the conductor 560b it is preferable to use a conductive material containing tungsten, copper, or aluminum as a main component. Further, since the conductor 560b also functions as wiring, it is preferable to use a conductor having high conductivity. For example, a conductive material containing tungsten, copper, or aluminum as a main component can be used. Further, the conductor 560b may have a laminated structure, for example, a laminated structure of titanium or titanium nitride and the conductive material.
  • the insulator 580 is provided on the conductor 542 via the insulator 544.
  • the insulator 580 preferably has an excess oxygen region.
  • silicon oxide, silicon oxide nitride, silicon nitride oxide, silicon nitride, silicon oxide added with fluorine, silicon oxide added with carbon, silicon oxide added with carbon and nitrogen, silicon oxide having pores. , Or a resin or the like is preferable.
  • silicon oxide and silicon oxide nitride are preferable because they are thermally stable.
  • silicon oxide and silicon oxide having pores are preferable because an excess oxygen region can be easily formed in a later step.
  • the oxygen in the insulator 580 can be efficiently supplied to the oxide 530b through the oxide 530c. It is preferable that the concentration of impurities such as water and hydrogen in the insulator 580 is reduced.
  • the opening of the insulator 580 is formed so as to overlap the region between the conductor 542a and the conductor 542b.
  • the conductor 560 is formed so as to be embedded in the opening of the insulator 580 and the region sandwiched between the conductor 542a and the conductor 542b.
  • the conductor 560 may have a shape having a high aspect ratio.
  • the conductor 560 is provided so as to be embedded in the opening of the insulator 580, even if the conductor 560 has a shape having a high aspect ratio, the conductor 560 is formed without collapsing during the process. Can be done.
  • the insulator 574 is preferably provided in contact with the upper surface of the insulator 580, the upper surface of the conductor 560, and the upper surface of the insulator 550.
  • an excess oxygen region can be provided in the insulator 550 and the insulator 580.
  • oxygen can be supplied into the oxide 530 from the excess oxygen region.
  • the insulator 574 use one or more metal oxides selected from hafnium, aluminum, gallium, yttrium, zirconium, tungsten, titanium, tantalum, nickel, germanium, magnesium and the like. Can be done.
  • the aluminum oxide film formed by the sputtering method can have a function as a barrier film for impurities such as hydrogen as well as an oxygen supply source.
  • the insulator 581 that functions as an interlayer film on the insulator 574.
  • the insulator 581 preferably has a reduced concentration of impurities such as water or hydrogen in the film.
  • the conductor 540a and the conductor 540b are arranged in the openings formed in the insulator 581, the insulator 574, the insulator 580, and the insulator 544.
  • the conductor 540a and the conductor 540b are provided so as to face each other with the conductor 560 interposed therebetween.
  • the conductor 540a and the conductor 540b have the same configuration as the conductor 546 and the conductor 548 described later.
  • An insulator 582 is provided on the insulator 581.
  • the insulator 582 it is preferable to use a substance having a barrier property against oxygen and hydrogen. Therefore, the same material as the insulator 514 can be used for the insulator 582.
  • a metal oxide such as aluminum oxide, hafnium oxide, and tantalum oxide for the insulator 582.
  • aluminum oxide has a high blocking effect that does not allow the membrane to permeate both oxygen and impurities such as hydrogen and water that cause fluctuations in the electrical characteristics of the transistor. Therefore, aluminum oxide can prevent impurities such as hydrogen and water from being mixed into the transistor 500 during and after the manufacturing process of the transistor. In addition, the release of oxygen from the oxides constituting the transistor 500 can be suppressed. Therefore, it is suitable for use as a protective film for the transistor 500.
  • an insulator 586 is provided on the insulator 582.
  • the same material as the insulator 320 can be used.
  • a material having a relatively low dielectric constant as an interlayer film it is possible to reduce the parasitic capacitance generated between the wirings.
  • a silicon oxide film, a silicon nitride film, or the like can be used as the insulator 586.
  • the insulator 520, the insulator 522, the insulator 524, the insulator 544, the insulator 580, the insulator 574, the insulator 581, the insulator 582, and the insulator 586 include the conductor 546 and the conductor 548. Is embedded.
  • the conductor 546 and the conductor 548 have a function as a plug or wiring for connecting to the capacitive element 600, the transistor 500, or the transistor 300.
  • the conductor 546 and the conductor 548 can be provided by using the same materials as the conductor 328 and the conductor 330.
  • the capacitive element 600 has a conductor 610, a conductor 620, and an insulator 630.
  • the conductor 612 may be provided on the conductor 546 and the conductor 548.
  • the conductor 612 has a function as a plug or wiring for connecting to the transistor 500.
  • the conductor 610 has a function as an electrode of the capacitive element 600.
  • the conductor 612 and the conductor 610 can be formed at the same time.
  • the conductor 612 and the conductor 610 include a metal film containing an element selected from molybdenum, titanium, tantalum, tungsten, aluminum, copper, chromium, neodymium, and scandium, or a metal nitride film containing the above-mentioned elements as components.
  • a metal nitride film, titanium nitride film, molybdenum nitride film, tungsten nitride film and the like can be used.
  • indium tin oxide, indium oxide containing tungsten oxide, indium zinc oxide containing tungsten oxide, indium oxide containing titanium oxide, indium tin oxide containing titanium oxide, indium zinc oxide, and silicon oxide are added. It is also possible to apply a conductive material such as indium tin oxide.
  • the conductor 612 and the conductor 610 are shown as a single-layer structure, but the structure is not limited to this, and a laminated structure of two or more layers may be used.
  • a conductor having a barrier property and a conductor having a high adhesion to a conductor having a high conductivity may be formed between a conductor having a barrier property and a conductor having a high conductivity.
  • the conductor 620 is provided so as to overlap the conductor 610 via the insulator 630.
  • a conductive material such as a metal material, an alloy material, or a metal oxide material can be used. It is preferable to use a refractory material such as tungsten or molybdenum that has both heat resistance and conductivity, and it is particularly preferable to use tungsten.
  • tungsten When it is formed at the same time as another structure such as a conductor, Cu (copper), Al (aluminum), or the like, which are low resistance metal materials, may be used.
  • An insulator 650 is provided on the conductor 620 and the insulator 630.
  • the insulator 650 can be provided by using the same material as the insulator 320. Further, the insulator 650 may function as a flattening film that covers the uneven shape below the insulator 650.
  • a transistor having an oxide semiconductor By using this structure, in a storage device using a transistor having an oxide semiconductor, fluctuations in electrical characteristics can be suppressed and reliability can be improved. Alternatively, a transistor having an oxide semiconductor having a large on-current can be provided. Alternatively, a transistor having an oxide semiconductor having a small off-current can be provided. Alternatively, it is possible to provide a storage device with reduced power consumption. Alternatively, in a storage device using a transistor having an oxide semiconductor, miniaturization or high integration can be achieved.
  • the transistor 500 of the storage device shown in the present embodiment is not limited to the above structure.
  • structural examples that can be used for the transistor 500 will be described.
  • FIG. 14A is a top view of the transistor 510A.
  • FIG. 14B is a cross-sectional view of the portion shown by the alternate long and short dash line L1-L2 in FIG. 14A.
  • 14C is a cross-sectional view of the portion shown by the alternate long and short dash line W1-W2 in FIG. 14A.
  • some elements are omitted for the sake of clarity.
  • 14A, 14B and 14C show the transistor 510A and the insulator 511, insulator 512, insulator 514, insulator 516, insulator 580, insulator 582, and insulator 584 that function as interlayer films. There is. Further, a conductor 546 (conductor 546a and a conductor 546b) that is electrically connected to the transistor 510A and functions as a contact plug, and a conductor 503 that functions as wiring are shown.
  • the transistor 510A includes a conductor 560 (conductor 560a and a conductor 560b) that functions as a first gate electrode, a conductor 505 (conductor 505a, and a conductor 505b) that functions as a second gate electrode, and the conductor 505b.
  • An insulator 550 that functions as a first gate insulating film, an insulator 521 that functions as a second gate insulating film, an insulator 522, and an insulator 524, and an oxide 530 (oxidation) having a region in which a channel is formed.
  • It has a material 530a, an oxide 530b, and an oxide 530c), a conductor 542a that functions as one of the source or drain, a conductor 542b that functions as the other of the source or drain, and an insulator 574.
  • the oxide 530c, the insulator 550, and the conductor 560 are arranged in the opening provided in the insulator 580 via the insulator 574. Further, the oxide 530c, the insulator 550, and the conductor 560 are arranged between the conductor 542a and the conductor 542b.
  • the insulator 511 and the insulator 512 function as an interlayer film.
  • silicon oxide, silicon nitride nitride, silicon oxide, aluminum oxide, hafnium oxide, tantalum oxide, zirconate oxide, lead zirconate titanate (PZT), strontium titanate (SrTiO 3 ) or (Ba, Sr) Insulators such as TiO 3 (BST) can be used in single layers or in layers.
  • aluminum oxide, bismuth oxide, germanium oxide, niobium oxide, silicon oxide, titanium oxide, tungsten oxide, yttrium oxide, and zirconium oxide may be added to these insulators.
  • these insulators may be nitrided. Silicon oxide, silicon oxide or silicon nitride may be laminated on the above insulator.
  • the insulator 511 preferably functions as a barrier film that suppresses impurities such as water and hydrogen from being mixed into the transistor 510A from the substrate side. Therefore, it is preferable to use an insulating material having a function of suppressing the diffusion of impurities such as hydrogen atoms, hydrogen molecules, water molecules, and copper atoms (the above impurities are difficult to permeate) as the insulator 511. Alternatively, it is preferable to use an insulating material having a function of suppressing the diffusion of oxygen (for example, at least one such as an oxygen atom and an oxygen molecule) (the oxygen is difficult to permeate). Further, for example, aluminum oxide, silicon nitride, or the like may be used as the insulator 511. With this configuration, it is possible to prevent impurities such as hydrogen and water from diffusing from the substrate side to the transistor 510A side of the insulator 511.
  • the insulator 512 preferably has a lower dielectric constant than the insulator 511.
  • a material having a low dielectric constant as an interlayer film, it is possible to reduce the parasitic capacitance generated between the wirings.
  • the conductor 503 is formed so as to be embedded in the insulator 512.
  • the height of the upper surface of the conductor 503 and the height of the upper surface of the insulator 512 can be made about the same.
  • the conductor 503 is shown to have a single layer structure, the present invention is not limited to this.
  • the conductor 503 may have a multilayer structure of two or more layers.
  • the conductor 560 may function as a first gate (also referred to as a top gate) electrode. Further, the conductor 505 may function as a second gate (also referred to as a bottom gate) electrode.
  • the threshold voltage of the transistor 510A can be controlled by changing the potential applied to the conductor 505 independently without interlocking with the potential applied to the conductor 560. In particular, by applying a negative potential to the conductor 505, the threshold voltage of the transistor 510A can be made larger than 0V, and the off-current can be reduced. Therefore, when a negative potential is applied to the conductor 505, the drain current when the potential applied to the conductor 560 is 0 V can be made smaller than when it is not applied.
  • the electric field generated from the conductor 560 and the electric field generated from the conductor 505 are generated. And can cover the channel forming region formed in the oxide 530.
  • the channel forming region can be electrically surrounded by the electric field of the conductor 560 having the function of the first gate electrode and the electric field of the conductor 505 having the function of the second gate electrode. That is, it has a surroundd channel (S-channel) structure, similar to the transistor 500 described above.
  • the insulator 514 and the insulator 516 function as an interlayer film in the same manner as the insulator 511 or the insulator 512.
  • the insulator 514 preferably functions as a barrier film that suppresses impurities such as water and hydrogen from being mixed into the transistor 510A from the substrate side. With this configuration, it is possible to prevent impurities such as hydrogen and water from diffusing from the substrate side to the transistor 510A side of the insulator 514.
  • the insulator 516 preferably has a lower dielectric constant than the insulator 514. By using a material having a low dielectric constant as an interlayer film, it is possible to reduce the parasitic capacitance generated between the wirings.
  • the conductor 505 that functions as the second gate
  • the conductor 505a is formed in contact with the inner wall of the opening of the insulator 514 and the insulator 516, and the conductor 505b is further formed inside.
  • the height of the upper surface of the conductor 505a and the conductor 505b and the height of the upper surface of the insulator 516 can be made about the same.
  • the transistor 510A shows a configuration in which the conductor 505a and the conductor 505b are laminated
  • the present invention is not limited to this.
  • the conductor 505 may be provided as a single layer or a laminated structure having three or more layers.
  • the conductor 505a it is preferable to use a conductive material having a function of suppressing the diffusion of impurities such as hydrogen atoms, hydrogen molecules, water molecules, and copper atoms (the above impurities are difficult to permeate).
  • a conductive material having a function of suppressing the diffusion of oxygen for example, at least one such as an oxygen atom and an oxygen molecule (the oxygen is difficult to permeate).
  • the function of suppressing the diffusion of impurities or oxygen is a function of suppressing the diffusion of any one or all of the above impurities or the above oxygen.
  • the conductor 505a since the conductor 505a has a function of suppressing the diffusion of oxygen, it is possible to prevent the conductor 505b from being oxidized and the conductivity from being lowered.
  • the conductor 505 also functions as a wiring
  • a highly conductive conductive material containing tungsten, copper, or aluminum as a main component for the conductor 505b.
  • the conductor 503 does not necessarily have to be provided.
  • the conductor 505b is shown as a single layer, it may have a laminated structure, for example, titanium or titanium nitride may be laminated with the conductive material.
  • the insulator 521, the insulator 522, and the insulator 524 have a function as a second gate insulating film.
  • the insulator 522 preferably has a barrier property. Since the insulator 522 has a barrier property, it functions as a layer for suppressing the mixing of impurities such as hydrogen from the peripheral portion of the transistor 510A into the transistor 510A.
  • the insulator 522 may be, for example, aluminum oxide, hafnium oxide, an oxide containing aluminum and hafnium (hafnium aluminate), tantalum oxide, zirconium oxide, lead zirconate titanate (PZT), strontium titanate (SrTIO 3 ) or ( It is preferable to use an insulator containing a so-called high-k material such as Ba, Sr) TiO 3 (BST) in a single layer or in a laminated state. As the miniaturization and high integration of transistors progress, problems such as leakage current may occur due to the thinning of the gate insulating film. By using a high-k material for the insulator that functions as a gate insulating film, it is possible to reduce the gate potential during transistor operation while maintaining the physical film thickness.
  • the insulator 521 is preferably thermally stable.
  • silicon oxide and silicon oxide nitride are suitable because they are thermally stable.
  • an insulator 521 having a laminated structure that is thermally stable and has a high relative permittivity can be obtained.
  • FIG. 14 shows a three-layer laminated structure as the second gate insulating film, it may be a laminated structure of two or less layers or four or more layers. In that case, the laminated structure is not limited to the same material, and may be a laminated structure made of different materials.
  • the oxide 530 having a region functioning as a channel forming region has an oxide 530a, an oxide 530b on the oxide 530a, and an oxide 530c on the oxide 530b.
  • the oxide 530a under the oxide 530b it is possible to suppress the diffusion of impurities into the oxide 530b from the structure formed below the oxide 530a.
  • the oxide 530c on the oxide 530b it is possible to suppress the diffusion of impurities into the oxide 530b from the structure formed above the oxide 530c.
  • the oxide 530 an oxide semiconductor which is a kind of the above-mentioned metal oxide can be used.
  • the oxide 530c is preferably provided in the opening provided in the insulator 580 via the insulator 574.
  • the insulator 574 has a barrier property, it is possible to prevent impurities from the insulator 580 from diffusing into the oxide 530.
  • One of the conductors 542 functions as a source electrode and the other functions as a drain electrode.
  • a metal such as aluminum, titanium, chromium, nickel, copper, yttrium, zirconium, molybdenum, silver, tantalum, or tungsten, or an alloy containing the same as a main component can be used. ..
  • a metal nitride film such as tantalum nitride is preferable because it has a barrier property against hydrogen or oxygen and has high oxidation resistance.
  • a laminated structure of two or more layers may be used.
  • a tantalum nitride film and a tungsten film may be laminated.
  • the titanium film and the aluminum film may be laminated.
  • a two-layer structure in which an aluminum film is laminated on a tungsten film a two-layer structure in which a copper film is laminated on a copper-magnesium-aluminum alloy film, a two-layer structure in which a copper film is laminated on a titanium film, and a tungsten film. It may have a two-layer structure in which copper films are laminated.
  • a three-layer structure in which a molybdenum nitride film and an aluminum film or a copper film are laminated on the molybdenum film or the molybdenum nitride film, and a molybdenum film or a molybdenum nitride film is formed on the molybdenum film.
  • a transparent conductive material containing indium oxide, tin oxide or zinc oxide may be used.
  • a barrier layer may be provided on the conductor 542.
  • the barrier layer it is preferable to use a substance having a barrier property against oxygen or hydrogen. With this configuration, it is possible to suppress the oxidation of the conductor 542 when the insulator 574 is formed.
  • a metal oxide can be used for the barrier layer.
  • an insulating film having a barrier property against oxygen and hydrogen such as aluminum oxide, hafnium oxide, and gallium oxide.
  • silicon nitride formed by the CVD method may be used.
  • the range of material selection of the conductor 542 can be expanded.
  • a material having low oxidation resistance but high conductivity such as tungsten or aluminum, can be used.
  • a conductor that is easy to form a film or process can be used.
  • the insulator 550 functions as a first gate insulating film.
  • the insulator 550 is preferably provided in the opening provided in the insulator 580 via the oxide 530c and the insulator 574.
  • the insulator 550 may have a laminated structure as in the case of the second gate insulating film.
  • an insulator that functions as a gate insulating film in a laminated structure of a high-k material and a thermally stable material, it is possible to reduce the gate potential during transistor operation while maintaining the physical film thickness. It becomes.
  • a laminated structure that is thermally stable and has a high relative permittivity can be obtained.
  • the conductor 560 functioning as the first gate electrode has a conductor 560a and a conductor 560b on the conductor 560a.
  • the conductor 560a it is preferable to use a conductive material having a function of suppressing the diffusion of impurities such as hydrogen atoms, hydrogen molecules, water molecules, and copper atoms, similarly to the conductor 505a.
  • a conductive material having a function of suppressing the diffusion of oxygen for example, at least one oxygen atom, oxygen molecule, etc.
  • the conductor 560a has a function of suppressing the diffusion of oxygen, the material selectivity of the conductor 560b can be improved. That is, by having the conductor 560a, it is possible to suppress the oxidation of the conductor 560b and prevent the conductivity from being lowered.
  • the conductive material having a function of suppressing the diffusion of oxygen for example, tantalum, tantalum nitride, ruthenium, ruthenium oxide and the like are preferably used.
  • an oxide semiconductor that can be used as the oxide 530 can be used as the conductor 560a. In that case, by forming the conductor 560b into a film by a sputtering method, the electric resistance value of the conductor 560a can be reduced to form a conductor. This can be called an OC (Oxide Conductor) electrode.
  • the conductor 560b it is preferable to use a conductive material containing tungsten, copper, or aluminum as a main component. Further, since the conductor 560b also functions as wiring, it is preferable to use a conductor having high conductivity. For example, a conductive material containing tungsten, copper, or aluminum as a main component can be used. Further, the conductor 560b may have a laminated structure, for example, titanium or titanium nitride may be laminated with the above-mentioned conductive material.
  • Insulator 574 is placed between the insulator 580 and the transistor 510A.
  • the insulator 574 it is preferable to use an insulating material having a function of suppressing the diffusion of impurities such as water and hydrogen and oxygen.
  • impurities such as water and hydrogen and oxygen.
  • metal oxides such as magnesium oxide, gallium oxide, germanium oxide, yttrium oxide, zirconium oxide, lanthanum oxide, neodymium oxide or tantalum oxide, silicon nitride or silicon nitride can be used.
  • the insulator 574 By having the insulator 574, it is possible to prevent impurities such as water and hydrogen contained in the insulator 580 from diffusing into the oxide 530b via the oxide 530c and the insulator 550. Further, it is possible to suppress the oxidation of the conductor 560 due to the excess oxygen contained in the insulator 580.
  • the insulator 580, the insulator 582, and the insulator 584 function as an interlayer film.
  • the insulator 582 preferably functions as a barrier insulating film that prevents impurities such as water and hydrogen from being mixed into the transistor 510A from the outside.
  • the insulator 580 and the insulator 584 like the insulator 516, preferably have a lower dielectric constant than the insulator 582.
  • a material having a low dielectric constant as an interlayer film, it is possible to reduce the parasitic capacitance generated between the wirings.
  • the transistor 510A may be electrically connected to another structure via a plug or wiring such as an insulator 580, an insulator 582, and a conductor 546 embedded in the insulator 584.
  • a conductive material such as a metal material, an alloy material, a metal nitride material, or a metal oxide material can be used as a single layer or laminated. ..
  • a refractory material such as tungsten or molybdenum that has both heat resistance and conductivity.
  • it is preferably formed of a low resistance conductive material such as aluminum or copper. Wiring resistance can be reduced by using a low resistance conductive material.
  • tantalum nitride which is a conductor having a barrier property against hydrogen and oxygen, and tungsten having high conductivity as the conductor 546, the conductivity as a wiring is maintained. , It is possible to suppress the diffusion of impurities from the outside.
  • FIG. 15A is a top view of the transistor 510B.
  • FIG. 15B is a cross-sectional view of the portion shown by the alternate long and short dash line L1-L2 in FIG. 15A.
  • FIG. 15C is a cross-sectional view of the portion shown by the alternate long and short dash line W1-W2 in FIG. 15A.
  • some elements are omitted for the sake of clarity.
  • Transistor 510B is a modification of transistor 510A. Therefore, in order to prevent the description from being repeated, the points different from the transistor 510A will be mainly described.
  • the transistor 510B has a region in which the conductor 542 (conductor 542a and conductor 542b) and the oxide 530c, the insulator 550, and the conductor 560 overlap. With this structure, it is possible to provide a transistor having a high on-current. Further, it is possible to provide a transistor having high controllability.
  • the conductor 560 functioning as the first gate electrode has a conductor 560a and a conductor 560b on the conductor 560a.
  • the conductor 560a it is preferable to use a conductive material having a function of suppressing the diffusion of impurities such as hydrogen atoms, hydrogen molecules, water molecules, and copper atoms, similarly to the conductor 505a.
  • a conductive material having a function of suppressing the diffusion of oxygen for example, at least one oxygen atom, oxygen molecule, etc.
  • the conductor 560a has a function of suppressing the diffusion of oxygen, the material selectivity of the conductor 560b can be improved. That is, by having the conductor 560a, it is possible to suppress the oxidation of the conductor 560b and prevent the conductivity from being lowered.
  • the insulator 574 it is preferable to provide the insulator 574 so as to cover the upper surface and the side surface of the conductor 560, the side surface of the insulator 550, and the side surface of the oxide 530c.
  • the insulator 574 it is preferable to use an insulating material having a function of suppressing the diffusion of impurities such as water and hydrogen and oxygen.
  • impurities such as water and hydrogen and oxygen.
  • metal oxides such as magnesium oxide, gallium oxide, germanium oxide, yttrium oxide, zirconium oxide, lanthanum oxide, neodymium oxide or tantalum oxide, silicon nitride or silicon nitride can be used.
  • oxidation of the conductor 560 can be suppressed. Further, by having the insulator 574, it is possible to suppress the diffusion of impurities such as water and hydrogen contained in the insulator 580 to the transistor 510B.
  • an insulator 576 having a barrier property may be arranged between the conductor 546 and the insulator 580.
  • the insulator 576 having a barrier property it is possible to widen the range of material selection of the conductor used for the plug and the wiring. For example, by using a metal material having a property of absorbing oxygen and having high conductivity in the conductor 546, it is possible to provide a storage device having low power consumption. Specifically, a material having low oxidation resistance but high conductivity such as tungsten and aluminum can be used. Further, for example, a conductor that is easy to form a film or process can be used.
  • FIG. 16A is a top view of the transistor 510C.
  • FIG. 16B is a cross-sectional view of the portion shown by the alternate long and short dash line L1-L2 in FIG. 16A.
  • 16C is a cross-sectional view of the portion shown by the alternate long and short dash line W1-W2 in FIG. 16A.
  • some elements are omitted for the sake of clarity.
  • Transistor 510C is a modification of transistor 510A. Therefore, in order to prevent the description from being repeated, the points different from the transistor 510A will be mainly described.
  • the conductor 547a is arranged between the conductor 542a and the oxide 530b
  • the conductor 547b is arranged between the conductor 542b and the oxide 530b.
  • the conductor 542a extends beyond the upper surface of the conductor 547a (conductor 547b) and the side surface on the conductor 560 side, and has a region in contact with the upper surface of the oxide 530b.
  • the conductor 547 a conductor that can be used for the conductor 542 may be used.
  • the film thickness of the conductor 547 is preferably at least thicker than that of the conductor 542.
  • the transistor 510C shown in FIG. 16 can bring the conductor 542 closer to the conductor 560 than the transistor 510A.
  • the conductor 560 can be overlapped with the end of the conductor 542a and the end of the conductor 542b.
  • the substantial channel length of the transistor 510C can be shortened, and the on-current and frequency characteristics can be improved.
  • the conductor 547a (conductor 547b) is provided so as to overlap with the conductor 542a (conductor 542b).
  • the conductor 547a (conductor 547b) functions as a stopper and the oxide 530b is overetched. Can be prevented.
  • the transistor 510C shown in FIG. 16 may have a configuration in which the insulator 545 is arranged in contact with the insulator 544.
  • the insulator 544 preferably functions as a barrier insulating film that suppresses impurities such as water and hydrogen and excess oxygen from being mixed into the transistor 510C from the insulator 580 side.
  • an insulator that can be used for the insulator 544 can be used.
  • a nitride insulator such as aluminum nitride, titanium nitride, titanium nitride, silicon nitride, or silicon nitride may be used.
  • the transistor 510C shown in FIG. 16 may be provided with the conductor 505 in a single layer structure.
  • an insulating film to be an insulator 516 is formed on the patterned conductor 505, and the upper portion of the insulating film is removed by a CMP method or the like until the upper surface of the conductor 505 is exposed.
  • the average surface roughness (Ra) of the upper surface of the conductor 505 may be 1 nm or less, preferably 0.5 nm or less, and more preferably 0.3 nm or less.
  • FIG. 17A is a top view of the transistor 510D.
  • FIG. 17B is a cross-sectional view of the portion shown by the alternate long and short dash line L1-L2 in FIG. 17A.
  • FIG. 17C is a cross-sectional view of the portion shown by the alternate long and short dash line W1-W2 in FIG. 17A.
  • some elements are omitted for the sake of clarity.
  • the transistor 510D is a modification of the above transistor. Therefore, in order to prevent the description from being repeated, the points different from the above-mentioned transistor will be mainly described.
  • the conductor 505 which has a function as a second gate, is also used as wiring without providing the conductor 503. Further, it has an insulator 550 on the oxide 530c and a metal oxide 552 on the insulator 550. Further, the conductor 560 is provided on the metal oxide 552, and the insulator 570 is provided on the conductor 560. Further, the insulator 571 is provided on the insulator 570.
  • the metal oxide 552 preferably has a function of suppressing oxygen diffusion.
  • the metal oxide 552 that suppresses the diffusion of oxygen between the insulator 550 and the conductor 560 the diffusion of oxygen into the conductor 560 is suppressed. That is, it is possible to suppress a decrease in the amount of oxygen supplied to the oxide 530.
  • the oxidation of the conductor 560 by oxygen can be suppressed.
  • the metal oxide 552 may have a function as a part of the first gate.
  • an oxide semiconductor that can be used as the oxide 530 can be used as the metal oxide 552.
  • the conductor 560 by forming the conductor 560 into a film by a sputtering method, the electric resistance value of the metal oxide 552 can be lowered to form a conductive layer. This can be called an OC (Oxide Conductor) electrode.
  • the metal oxide 552 may have a function as a part of the gate insulating film. Therefore, when silicon oxide, silicon oxide nitride, or the like is used for the insulator 550, it is preferable to use a metal oxide which is a high-k material having a high relative permittivity as the metal oxide 552.
  • a metal oxide which is a high-k material having a high relative permittivity as the metal oxide 552.
  • the laminated structure it is possible to obtain a laminated structure that is stable against heat and has a high relative permittivity. Therefore, it is possible to reduce the gate potential applied during transistor operation while maintaining the physical film thickness.
  • the equivalent oxide film thickness (EOT) of the insulating layer that functions as the gate insulating film can be thinned.
  • the metal oxide 552 is shown as a single layer, but a laminated structure of two or more layers may be used.
  • a metal oxide that functions as a part of the gate electrode and a metal oxide that functions as a part of the gate insulating film may be laminated and provided.
  • the on-current of the transistor 510D can be improved without weakening the influence of the electric field from the conductor 560.
  • the physical thickness of the insulator 550 and the metal oxide 552 keeps the distance between the conductor 560 and the oxide 530, so that the conductor 560 and the conductor 560 are separated from each other. The leakage current with the oxide 530 can be suppressed. Therefore, by providing the laminated structure of the insulator 550 and the metal oxide 552, the physical distance between the conductor 560 and the oxide 530 and the electric field strength applied from the conductor 560 to the oxide 530 can be determined. It can be easily adjusted as appropriate.
  • the oxide semiconductor that can be used for the oxide 530 it can be used as the metal oxide 552.
  • a metal oxide containing one or more selected from hafnium, aluminum, gallium, yttrium, zirconium, tungsten, titanium, tantalum, nickel, germanium, magnesium and the like can be used.
  • hafnium oxide an oxide containing aluminum and hafnium (hafnium aluminate), which is an insulating layer containing one or both oxides of aluminum or hafnium.
  • hafnium aluminate has higher heat resistance than the hafnium oxide film. Therefore, it is preferable because it is difficult to crystallize in the heat treatment in the subsequent step.
  • the metal oxide 552 is not an essential configuration. It may be appropriately designed according to the desired transistor characteristics.
  • the insulator 570 it is preferable to use an insulating material having a function of suppressing the permeation of impurities such as water and hydrogen and oxygen.
  • an insulating material having a function of suppressing the permeation of impurities such as water and hydrogen and oxygen For example, it is preferable to use aluminum oxide or hafnium oxide. As a result, it is possible to suppress the oxidation of the conductor 560 by oxygen from above the insulator 570. Further, it is possible to prevent impurities such as water or hydrogen from above the insulator 570 from being mixed into the oxide 530 via the conductor 560 and the insulator 550.
  • the insulator 571 functions as a hard mask. By providing the insulator 571, when the conductor 560 is processed, the side surface of the conductor 560 is approximately vertical, specifically, the angle formed by the side surface of the conductor 560 and the surface of the substrate is 75 degrees or more and 100 degrees or less. It can be preferably 80 degrees or more and 95 degrees or less.
  • the insulator may also function as a barrier layer. In that case, the insulator 570 does not have to be provided.
  • the insulator 571 As a hard mask and selectively removing a part of the insulator 570, the conductor 560, the metal oxide 552, the insulator 550, and the oxide 530c, these sides are made to substantially match. Moreover, a part of the surface of the oxide 530b can be exposed.
  • the transistor 510D has a region 531a and a region 531b on a part of the surface of the exposed oxide 530b.
  • One of the regions 531a or 531b functions as a source region and the other functions as a drain region.
  • regions 531a and 531b introduces impurity elements such as phosphorus or boron into the exposed oxide 530b surface using, for example, ion implantation, ion doping, plasma implantation ion implantation, or plasma treatment. It can be realized by.
  • the “impurity element” refers to an element other than the main component element.
  • a metal film is formed after exposing a part of the surface of the oxide 530b, and then heat treatment is performed to diffuse the elements contained in the metal film into the oxide 530b to form a region 531a and a region 531b. You can also do it.
  • the region 531a and the region 531b may be referred to as an "impurity region” or a "low resistance region”.
  • the region 531a and the region 531b can be formed in a self-aligned manner. Therefore, the region 531a and / or the region 531b and the conductor 560 do not overlap, and the parasitic capacitance can be reduced. Further, no offset region is formed between the channel formation region and the source / drain region (region 531a or region 531b). By forming the region 531a and the region 531b in a self-aligned manner, it is possible to increase the on-current, reduce the threshold voltage, improve the operating frequency, and the like.
  • An offset region may be provided between the channel formation region and the source / drain region in order to further reduce the off-current.
  • the offset region is a region having a high electrical resistivity and is a region in which the above-mentioned impurity elements are not introduced.
  • the formation of the offset region can be realized by introducing the above-mentioned impurity element after the formation of the insulator 575.
  • the insulator 575 also functions as a mask in the same manner as the insulator 571 and the like. Therefore, the impurity element is not introduced into the region of the oxide 530b that overlaps with the insulator 575, and the electrical resistivity of the region can be kept high.
  • the transistor 510D has an insulator 570, a conductor 560, a metal oxide 552, an insulator 550, and an insulator 575 on the side surface of the oxide 530c.
  • the insulator 575 is preferably an insulator having a low relative permittivity.
  • silicon oxide and silicon oxide nitride are preferable because they are thermally stable.
  • the insulator 575 preferably has a function of diffusing oxygen.
  • the transistor 510D has an insulator 574 on the insulator 575 and the oxide 530.
  • the insulator 574 is preferably formed by a sputtering method. By using the sputtering method, an insulator having few impurities such as water or hydrogen can be formed. For example, aluminum oxide may be used as the insulator 574.
  • the oxide film using the sputtering method may extract hydrogen from the structure to be filmed. Therefore, the insulator 574 absorbs hydrogen and water from the oxide 530 and the insulator 575, so that the hydrogen concentration of the oxide 530 and the insulator 575 can be reduced.
  • FIG. 18A is a top view of the transistor 510E.
  • FIG. 18B is a cross-sectional view of the portion shown by the alternate long and short dash line L1-L2 in FIG. 18A.
  • FIG. 18C is a cross-sectional view of the portion shown by the alternate long and short dash line W1-W2 in FIG. 18A.
  • some elements are omitted for the sake of clarity.
  • the transistor 510E is a modification of the above transistor. Therefore, in order to prevent the description from being repeated, the points different from the above-mentioned transistor will be mainly described.
  • a region 531a and a region 531b are provided on a part of the surface of the exposed oxide 530b without providing the conductor 542.
  • One of the regions 531a or 531b functions as a source region and the other functions as a drain region.
  • an insulator 573 is provided between the oxide 530b and the insulator 574.
  • the region 531 (region 531a and region 531b) shown in FIG. 18 is a region in which the following elements are added to the oxide 530b.
  • Region 531 can be formed, for example, by using a dummy gate.
  • the dummy gate on the oxide 530b, use the dummy gate as a mask, and add an element that lowers the resistance of the oxide 530b. That is, the element is added to the region where the oxide 530 does not overlap with the dummy gate, and the region 531 is formed.
  • the method for adding the element include an ion implantation method in which ionized raw material gas is mass-separated and added, an ion doping method in which ionized raw material gas is added without mass separation, and a plasma imaging ion implantation method. Can be used.
  • Typical examples of the element that lowers the resistance of the oxide 530 include boron and phosphorus. Further, hydrogen, carbon, nitrogen, fluorine, sulfur, chlorine, titanium, rare gas and the like may be used. Typical examples of rare gases include helium, neon, argon, krypton, xenon and the like. The concentration of the element may be measured by using secondary ion mass spectrometry (SIMS) or the like.
  • SIMS secondary ion mass spectrometry
  • boron and phosphorus are preferable because equipment on a production line such as low-temperature polysilicon can be used. Existing equipment can be diverted and capital investment can be suppressed.
  • an insulating film to be an insulator 573 and an insulating film to be an insulator 574 may be formed on the oxide 530b and the dummy gate.
  • the insulating film to be an insulator 580 is subjected to CMP (Chemical Mechanical Polishing) treatment to obtain an insulator 580.
  • CMP Chemical Mechanical Polishing
  • a part of the insulating film is removed to expose the dummy gate.
  • an oxide film to be an oxide 530c, an insulating film to be an insulator 550, and a conductive film to be a conductor 560 are sequentially formed in the opening, and then CMP treatment or the like is performed until the insulator 580 is exposed.
  • the transistor shown in FIG. 18 can be formed by removing a part of the oxide film that becomes the oxide 530c, the insulating film that becomes the insulator 550, and the conductive film that becomes the conductor 560.
  • the insulator 573 and the insulator 574 are not essential configurations. It may be appropriately designed according to the desired transistor characteristics.
  • FIG. 19A is a top view of the transistor 510F.
  • FIG. 19B is a cross-sectional view of the portion shown by the alternate long and short dash line L1-L2 in FIG. 19A.
  • FIG. 19C is a cross-sectional view of the portion shown by the alternate long and short dash line W1-W2 in FIG. 19A.
  • some elements are omitted for the purpose of clarifying the figure.
  • the transistor 510F is a modified example of the transistor 510A. Therefore, in order to prevent the description from being repeated, the points different from the above-mentioned transistor will be mainly described.
  • a part of the insulator 574 is provided in the opening provided in the insulator 580 and is provided so as to cover the side surface of the conductor 560.
  • an opening is formed by removing a part of the insulator 580 and the insulator 574.
  • an insulator 576 having a barrier property may be arranged between the conductor 546 and the insulator 580.
  • the oxide 530 When an oxide semiconductor is used as the oxide 530, it is preferable to have a laminated structure of a plurality of oxide layers having different atomic number ratios of each metal atom. Specifically, in the metal oxide used for the oxide 530a, the atomic number ratio of the element M in the constituent elements is larger than the atomic number ratio of the element M in the constituent elements in the metal oxide used in the oxide 530b. Is preferable. Further, in the metal oxide used for the oxide 530a, the atomic number ratio of the element M to In is preferably larger than the atomic number ratio of the element M to In in the metal oxide used for the oxide 530b.
  • the atomic number ratio of In to the element M is preferably larger than the atomic number ratio of In to the element M in the metal oxide used for the oxide 530a.
  • the oxide 530c a metal oxide that can be used for the oxide 530a or the oxide 530b can be used.
  • the oxides 530a, 530b, and 530c are preferably crystalline, and it is particularly preferable to use CAAC-OS.
  • Crystalline oxides such as CAAC-OS have a dense structure with high crystallinity with few impurities and defects (oxygen deficiency, etc.). Therefore, it is possible to suppress the extraction of oxygen from the oxide 530b by the source electrode or the drain electrode. As a result, oxygen can be reduced from being extracted from the oxide 530b even if heat treatment is performed, so that the transistor 510F is stable against a high temperature (so-called thermal budget) in the manufacturing process.
  • oxide 530a and oxide 530c may be omitted.
  • Oxide 530 may be a single layer of oxide 530b.
  • the oxide 530 is a laminate of the oxide 530a, the oxide 530b, and the oxide 530c
  • the energy of the lower end of the conduction band of the oxide 530a and the oxide 530c is higher than the energy of the lower end of the conduction band of the oxide 530b.
  • the electron affinity of the oxide 530a and the oxide 530c is smaller than the electron affinity of the oxide 530b.
  • the atomic number ratio of the element M in the constituent elements is larger than the atomic number ratio of the element M in the constituent elements in the metal oxide used in the oxide 530b. Is preferable.
  • the atomic number ratio of the element M to In is preferably larger than the atomic number ratio of the element M to In in the metal oxide used for the oxide 530b.
  • the atomic number ratio of In to the element M is preferably larger than the atomic number ratio of In to the element M in the metal oxide used for the oxide 530c.
  • the energy level at the lower end of the conduction band changes gently.
  • the energy level at the lower end of the conduction band at the junction of the oxide 530a, the oxide 530b, and the oxide 530c is continuously changed or continuously bonded.
  • the oxide 530a and the oxide 530b, and the oxide 530b and the oxide 530c have a common element (main component) other than oxygen, so that a mixed layer having a low defect level density is formed.
  • a common element (main component) other than oxygen so that a mixed layer having a low defect level density is formed.
  • the oxide 530b is an In-Ga-Zn oxide, In-Ga-Zn oxide, Ga-Zn oxide, gallium oxide or the like may be used as the oxide 530a and the oxide 530c.
  • the oxide 530c may have a laminated structure.
  • a laminated structure with gallium oxide can be used.
  • a laminated structure of an In-Ga-Zn oxide and an oxide containing no In may be used as the oxide 530c.
  • the oxide 530c has a laminated structure
  • the main path of the carrier is the oxide 530b.
  • the defect level density at the interface between the oxide 530a and the oxide 530b and the interface between the oxide 530b and the oxide 530c can be lowered. Therefore, the influence of interfacial scattering on carrier conduction is reduced, and the transistor 510F can obtain high on-current and high frequency characteristics.
  • the oxide 530c has a laminated structure, in addition to the effect of lowering the defect level density at the interface between the oxide 530b and the oxide 530c, the constituent elements of the oxide 530c are on the insulator 550 side. It is expected to suppress the spread to.
  • the oxide 530c has a laminated structure and the oxide containing no In is positioned above the laminated structure, In that can be diffused to the insulator 550 side can be suppressed. Since the insulator 550 functions as a gate insulator, if In is diffused, the characteristics of the transistor become poor. Therefore, by forming the oxide 530c in a laminated structure, it is possible to provide a highly reliable storage device.
  • the oxide 530 it is preferable to use a metal oxide that functions as an oxide semiconductor.
  • the metal oxide serving as the channel forming region of the oxide 530 it is preferable to use an oxide having a band gap of 2 eV or more, preferably 2.5 eV or more.
  • the off-current of the transistor can be reduced.
  • a storage device having low power consumption can be provided.
  • Transistor structure example 7 A structural example of the transistor 510G will be described with reference to FIGS. 20A and 20B.
  • Transistor 510G is a modification of transistor 500. Therefore, in order to prevent the description from being repeated, the points different from the above-mentioned transistor will be mainly described.
  • the configuration shown in FIGS. 20A and 20B can also be applied to other transistors such as the transistor 300 included in the storage device of one embodiment of the present invention.
  • FIG. 20A is a cross-sectional view of the transistor 510G in the channel length direction
  • FIG. 20B is a cross-sectional view of the transistor 510G in the channel width direction.
  • the transistor 510G shown in FIGS. 20A and 20B is different from the transistor 500 shown in FIGS. 13A and 13B in that it has an insulator 402 and an insulator 404. Further, it is different from the transistor 500 shown in FIGS. 13A and 13B in that the insulator 551 is provided in contact with the side surface of the conductor 540a and the insulator 551 is provided in contact with the side surface of the conductor 540b. Further, it is different from the transistor 500 shown in FIGS. 13A and 13B in that it does not have the insulator 520.
  • an insulator 402 is provided on the insulator 512. Further, the insulator 404 is provided on the insulator 574 and on the insulator 402.
  • the insulator 514, the insulator 516, the insulator 522, the insulator 524, the insulator 544, the insulator 580, and the insulator 574 are patterned, and the insulator 404 is these. It has a structure that covers. That is, the insulator 404 includes an upper surface of the insulator 574, a side surface of the insulator 574, a side surface of the insulator 580, a side surface of the insulator 544, a side surface of the insulator 524, a side surface of the insulator 522, a side surface of the insulator 516, and an insulator. It is in contact with the side surface of the body 514 and the upper surface of the insulator 402, respectively. As a result, the oxide 530 and the like are separated from the outside by the insulator 404 and the insulator 402.
  • the insulator 402 and the insulator 404 have a high function of suppressing the diffusion of hydrogen (for example, at least one hydrogen atom, hydrogen molecule, etc.) or water molecule.
  • hydrogen for example, at least one hydrogen atom, hydrogen molecule, etc.
  • the insulator 402 and the insulator 404 it is preferable to use silicon nitride or silicon nitride oxide, which is a material having a high hydrogen barrier property.
  • silicon nitride or silicon nitride oxide which is a material having a high hydrogen barrier property.
  • the insulator 551 is provided in contact with the insulator 581, the insulator 404, the insulator 574, the insulator 580, and the insulator 544.
  • the insulator 551 preferably has a function of suppressing the diffusion of hydrogen or water molecules.
  • an insulator such as silicon nitride, aluminum oxide, or silicon nitride, which is a material having a high hydrogen barrier property.
  • silicon nitride is a material having a high hydrogen barrier property, it is suitable to be used as an insulator 551.
  • the insulator 551 By using a material having a high hydrogen barrier property as the insulator 551, it is possible to prevent impurities such as water and hydrogen from diffusing from the insulator 580 and the like to the oxide 530 through the conductor 540a and the conductor 540b. Further, it is possible to suppress the oxygen contained in the insulator 580 from being absorbed by the conductor 540a and the conductor 540b. As described above, the reliability of the storage device of one embodiment of the present invention can be enhanced.
  • FIG. 21 is a cross-sectional view showing a configuration example of a storage device when the transistor 500 and the transistor 300 have the configurations shown in FIGS. 20A and 20B.
  • An insulator 551 is provided on the side surface of the conductor 546.
  • FIGS. 22A and 22B are modified examples of the transistors shown in FIGS. 20A and 20B.
  • FIG. 22A is a cross-sectional view of the transistor in the channel length direction
  • FIG. 22B is a cross-sectional view of the transistor in the channel width direction.
  • the transistors shown in FIGS. 22A and 22B are different from the transistors shown in FIGS. 20A and 20B in that the oxide 530c has a two-layer structure of an oxide 530c1 and an oxide 530c2.
  • the oxide 530c1 is in contact with the upper surface of the insulator 524, the side surface of the oxide 530a, the upper surface and the side surface of the oxide 530b, the side surface of the conductors 542a and 542b, the side surface of the insulator 544, and the side surface of the insulator 580.
  • the oxide 530c2 is in contact with the insulator 550.
  • the oxide 530c1 for example, In—Zn oxide can be used.
  • the oxide 530c2 the same material as the material that can be used for the oxide 530c when the oxide 530c has a one-layer structure can be used.
  • Metal oxides can be used.
  • the oxide 530c By forming the oxide 530c into a two-layer structure of the oxide 530c1 and the oxide 530c2, the on-current of the transistor can be increased as compared with the case where the oxide 530c has a one-layer structure. Therefore, the transistor can be, for example, a power MOS transistor.
  • the oxide 530c of the transistors shown in FIGS. 13A and 13B can also have a two-layer structure of oxide 530c1 and oxide 530c2.
  • the transistors shown in FIGS. 22A and 22B can be applied to, for example, the transistor 500, the transistor 300, or both.
  • the metal oxide preferably contains at least indium or zinc. In particular, it preferably contains indium and zinc. In addition to them, it is preferable that aluminum, gallium, yttrium, tin and the like are contained. Further, one or more kinds selected from boron, titanium, iron, nickel, germanium, zirconium, molybdenum, lantern, cerium, neodymium, hafnium, tantalum, tungsten, magnesium, cobalt and the like may be contained.
  • FIG. 23A is a diagram illustrating the classification of crystal structures of oxide semiconductors, typically IGZO (metal oxides containing In, Ga, and Zn).
  • IGZO metal oxides containing In, Ga, and Zn
  • oxide semiconductors are roughly classified into “Amorphous (amorphous)", “Crystalline”, and “Crystal”.
  • Amorphous includes “completable amorphous”.
  • Crystalline includes CAAC (c-axis-aligned crystalline), nc (nanocrystalline), and CAC (cloud-aligned composite).
  • single crystal, poly crystal, and single crystal amorphous are excluded from the classification of "Crystalline”.
  • “Crystal” includes single crystal and poly crystal.
  • the structure in the thick frame shown in FIG. 23A is an intermediate state between "Amorphous” and “Crystal", and belongs to a new boundary region (New crystal line phase). .. That is, the structure can be rephrased as a structure completely different from the energetically unstable "Amorphous” and "Crystal".
  • the crystal structure of the film or substrate can be evaluated using an X-ray diffraction (XRD: X-Ray Evaluation) spectrum.
  • XRD X-ray diffraction
  • FIG. 23B the XRD spectrum obtained by GIXD (Glazing-Incidence XRD) measurement of a CAAC-IGZO film classified as "Crystalline" is shown in FIG. 23B.
  • the GIXD method is also referred to as a thin film method or a Seemann-Bohlin method.
  • the XRD spectrum obtained by the GIXD measurement shown in FIG. 23B will be simply referred to as an XRD spectrum.
  • the thickness of the CAAC-IGZO film shown in FIG. 23B is 500 nm.
  • a peak showing clear crystallinity is detected in the XRD spectrum of the CAAC-IGZO film.
  • the crystal structure of the film or substrate can be evaluated by a diffraction pattern (also referred to as a microelectron diffraction pattern) observed by a micro electron diffraction method (NBED: Nano Beam Electron Diffraction).
  • the diffraction pattern of the CAAC-IGZO film is shown in FIG. 23C.
  • FIG. 23C is a diffraction pattern observed by the NBED in which the electron beam is incident parallel to the substrate.
  • electron beam diffraction is performed with the probe diameter set to 1 nm.
  • oxide semiconductors may be classified differently from FIG. 23A.
  • oxide semiconductors are divided into single crystal oxide semiconductors and other non-single crystal oxide semiconductors.
  • the non-single crystal oxide semiconductor include the above-mentioned CAAC-OS and nc-OS.
  • the non-single crystal oxide semiconductor includes a polycrystalline oxide semiconductor, a pseudo-amorphous oxide semiconductor (a-like OS: amorphous-like oxide semiconductor), an amorphous oxide semiconductor, and the like.
  • CAAC-OS CAAC-OS
  • nc-OS nc-OS
  • a-like OS the details of the above-mentioned CAAC-OS, nc-OS, and a-like OS will be described.
  • CAAC-OS is an oxide semiconductor having a plurality of crystal regions, the plurality of crystal regions having the c-axis oriented in a specific direction.
  • the specific direction is the thickness direction of the CAAC-OS film, the normal direction of the surface to be formed of the CAAC-OS film, or the normal direction of the surface of the CAAC-OS film.
  • the crystal region is a region having periodicity in the atomic arrangement. When the atomic arrangement is regarded as a lattice arrangement, the crystal region is also a region in which the lattice arrangement is aligned. Further, the CAAC-OS has a region in which a plurality of crystal regions are connected in the ab plane direction, and the region may have distortion.
  • the strain refers to a region in which a plurality of crystal regions are connected in which the orientation of the lattice arrangement changes between a region in which the lattice arrangement is aligned and a region in which another grid arrangement is aligned.
  • CAAC-OS is an oxide semiconductor that is c-axis oriented and not clearly oriented in the ab plane direction.
  • Each of the plurality of crystal regions is composed of one or a plurality of minute crystals (crystals having a maximum diameter of less than 10 nm).
  • the maximum diameter of the crystal region is less than 10 nm.
  • the size of the crystal region may be about several tens of nm.
  • CAAC-OS has indium (In) and oxygen. It tends to have a layered crystal structure (also referred to as a layered structure) in which a layer (hereinafter, In layer) and a layer having elements M, zinc (Zn), and oxygen (hereinafter, (M, Zn) layer) are laminated. There is. Indium and element M can be replaced with each other. Therefore, the (M, Zn) layer may contain indium. In addition, the In layer may contain the element M. In addition, Zn may be contained in the In layer.
  • the layered structure is observed as a lattice image in, for example, a high-resolution TEM image.
  • the position of the peak indicating the c-axis orientation may vary depending on the type and composition of the metal elements constituting CAAC-OS.
  • a plurality of bright spots are observed in the electron diffraction pattern of the CAAC-OS film. It should be noted that a certain spot and another spot are observed at point-symmetrical positions with the spot of the incident electron beam passing through the sample (also referred to as a direct spot) as the center of symmetry.
  • the lattice arrangement in the crystal region is based on a hexagonal lattice, but the unit lattice is not limited to a regular hexagon and may be a non-regular hexagon. Further, in the above strain, it may have a lattice arrangement such as a pentagon or a heptagon.
  • a clear grain boundary cannot be confirmed even in the vicinity of strain. That is, it can be seen that the formation of grain boundaries is suppressed by the distortion of the lattice arrangement. This is because CAAC-OS can tolerate distortion because the arrangement of oxygen atoms is not dense in the ab plane direction and the bond distance between atoms changes due to the substitution of metal atoms. It is thought that this is the reason.
  • CAAC-OS for which no clear crystal grain boundary is confirmed, is one of the crystalline oxides having a crystal structure suitable for the semiconductor layer of the transistor.
  • a configuration having Zn is preferable.
  • In-Zn oxide and In-Ga-Zn oxide are more suitable than In oxide because they can suppress the generation of grain boundaries.
  • CAAC-OS is an oxide semiconductor having high crystallinity and no clear grain boundary is confirmed. Therefore, it can be said that CAAC-OS is unlikely to cause a decrease in electron mobility due to grain boundaries. Further, since the crystallinity of the oxide semiconductor may be lowered due to the mixing of impurities or the generation of defects, CAAC-OS can be said to be an oxide semiconductor having few impurities and defects (oxygen deficiency, etc.). Therefore, the oxide semiconductor having CAAC-OS has stable physical properties. Therefore, the oxide semiconductor having CAAC-OS is resistant to heat and has high reliability. CAAC-OS is also stable against high temperatures in the manufacturing process (so-called thermal budget). Therefore, if CAAC-OS is used for the OS transistor, the degree of freedom in the manufacturing process can be expanded.
  • nc-OS has periodicity in the atomic arrangement in a minute region (for example, a region of 1 nm or more and 10 nm or less, particularly a region of 1 nm or more and 3 nm or less).
  • nc-OS has tiny crystals. Since the size of the minute crystal is, for example, 1 nm or more and 10 nm or less, particularly 1 nm or more and 3 nm or less, the minute crystal is also referred to as a nanocrystal.
  • nc-OS does not show regularity in crystal orientation between different nanocrystals. Therefore, no orientation is observed in the entire film.
  • the nc-OS may be indistinguishable from the a-like OS and the amorphous oxide semiconductor depending on the analysis method.
  • a peak indicating crystallinity is not detected in the Out-of-plane XRD measurement using a ⁇ / 2 ⁇ scan.
  • electron beam diffraction also referred to as limited field electron diffraction
  • a diffraction pattern such as a halo pattern is generated.
  • electron diffraction also referred to as nanobeam electron diffraction
  • an electron beam having a probe diameter for example, 1 nm or more and 30 nm or less
  • An electron diffraction pattern in which a plurality of spots are observed in a ring-shaped region centered on the spot may be acquired.
  • the a-like OS is an oxide semiconductor having a structure between nc-OS and an amorphous oxide semiconductor.
  • the a-like OS has a void or low density region. That is, the a-like OS has lower crystallinity than the nc-OS and CAAC-OS.
  • a-like OS has a higher hydrogen concentration in the membrane than nc-OS and CAAC-OS.
  • CAC-OS relates to the material composition.
  • CAC-OS is, for example, a composition of a material in which the elements constituting the metal oxide are unevenly distributed in a size of 0.5 nm or more and 10 nm or less, preferably 1 nm or more and 3 nm or less, or a size close thereto.
  • the metal oxide one or more metal elements are unevenly distributed, and the region having the metal element has a size of 0, 5 nm or more and 10 nm or less, preferably 1 nm or more and 3 nm or less, or a size close thereto.
  • the mixed state is also called a mosaic shape or a patch shape.
  • CAC-OS has a structure in which a material is separated into a first region and a second region to form a mosaic shape, and the first region is distributed in a film (hereinafter, also referred to as a cloud shape). ). That is, CAC-OS is a composite metal oxide having a structure in which the first region and the second region are mixed.
  • the atomic number ratios of In, Ga, and Zn with respect to the metal elements constituting CAC-OS in the In-Ga-Zn oxide are expressed as [In], [Ga], and [Zn], respectively.
  • the first region is a region in which [In] is larger than [In] in the composition of the CAC-OS film.
  • the second region is a region in which [Ga] is larger than [Ga] in the composition of the CAC-OS film.
  • the first region is a region in which [In] is larger than [In] in the second region and [Ga] is smaller than [Ga] in the second region.
  • the second region is a region in which [Ga] is larger than [Ga] in the first region and [In] is smaller than [In] in the first region.
  • the first region is a region in which indium oxide, indium zinc oxide, or the like is the main component.
  • the second region is a region in which gallium oxide, gallium zinc oxide, or the like is the main component. That is, the first region can be rephrased as a region containing In as a main component. Further, the second region can be rephrased as a region containing Ga as a main component.
  • a region containing In as a main component (No. 1) by EDX mapping acquired by using energy dispersive X-ray spectroscopy (EDX: Energy Dispersive X-ray spectroscopy). It can be confirmed that the region (1 region) and the region containing Ga as a main component (second region) have a structure in which they are unevenly distributed and mixed.
  • EDX Energy Dispersive X-ray spectroscopy
  • CAC-OS When CAC-OS is used for a transistor, the conductivity caused by the first region and the insulating property caused by the second region act in a complementary manner to switch the switching function (On / Off function). Can be added to CAC-OS. That is, the CAC-OS has a conductive function in a part of the material and an insulating function in a part of the material, and has a function as a semiconductor in the whole material. By separating the conductive function and the insulating function, both functions can be maximized. Therefore, by using CAC-OS as a transistor, high on-current ( Ion ), high field effect mobility ( ⁇ ), and good switching operation can be realized.
  • Ion on-current
  • high field effect mobility
  • Oxide semiconductors have various structures, and each has different characteristics.
  • the oxide semiconductor according to one aspect of the present invention has two or more of amorphous oxide semiconductor, polycrystalline oxide semiconductor, a-like OS, CAC-OS, nc-OS, and CAAC-OS. You may.
  • the oxide semiconductor as a transistor, a transistor having high field effect mobility can be realized. Moreover, a highly reliable transistor can be realized.
  • the carrier concentration of the oxide semiconductor is 1 ⁇ 10 17 cm -3 or less, preferably 1 ⁇ 10 15 cm -3 or less, more preferably 1 ⁇ 10 13 cm -3 or less, and more preferably 1 ⁇ 10 11 cm ⁇ . It is 3 or less, more preferably less than 1 ⁇ 10 10 cm -3 , and more than 1 ⁇ 10 -9 cm -3 .
  • the impurity concentration in the oxide semiconductor film may be lowered to lower the defect level density.
  • a low impurity concentration and a low defect level density is referred to as high-purity intrinsic or substantially high-purity intrinsic.
  • An oxide semiconductor having a low carrier concentration may be referred to as a high-purity intrinsic or substantially high-purity intrinsic oxide semiconductor.
  • the trap level density may also be low.
  • the charge captured at the trap level of the oxide semiconductor takes a long time to disappear, and may behave as if it were a fixed charge. Therefore, a transistor in which a channel forming region is formed in an oxide semiconductor having a high trap level density may have unstable electrical characteristics.
  • Impurities include hydrogen, nitrogen, alkali metals, alkaline earth metals, iron, nickel, silicon and the like.
  • the concentration of silicon and carbon in the oxide semiconductor and the concentration of silicon and carbon near the interface with the oxide semiconductor are set to 2. ⁇ 10 18 atoms / cm 3 or less, preferably 2 ⁇ 10 17 atoms / cm 3 or less.
  • the oxide semiconductor contains an alkali metal or an alkaline earth metal
  • defect levels may be formed and carriers may be generated. Therefore, a transistor using an oxide semiconductor containing an alkali metal or an alkaline earth metal tends to have a normally-on characteristic. Therefore, the concentration of the alkali metal or alkaline earth metal in the oxide semiconductor obtained by SIMS is set to 1 ⁇ 10 18 atoms / cm 3 or less, preferably 2 ⁇ 10 16 atoms / cm 3 or less.
  • the nitrogen concentration in the oxide semiconductor obtained by SIMS is less than 5 ⁇ 10 19 atoms / cm 3 , preferably 5 ⁇ 10 18 atoms / cm 3 or less, more preferably 1 ⁇ 10 18 atoms / cm 3 or less. , More preferably 5 ⁇ 10 17 atoms / cm 3 or less.
  • hydrogen contained in an oxide semiconductor reacts with oxygen bonded to a metal atom to become water, which may form an oxygen deficiency.
  • oxygen deficiency When hydrogen enters the oxygen deficiency, electrons that are carriers may be generated.
  • a part of hydrogen may be combined with oxygen that is bonded to a metal atom to generate an electron as a carrier. Therefore, a transistor using an oxide semiconductor containing hydrogen tends to have a normally-on characteristic. Therefore, it is preferable that hydrogen in the oxide semiconductor is reduced as much as possible.
  • the hydrogen concentration obtained by SIMS is less than 1 ⁇ 10 20 atoms / cm 3 , preferably less than 1 ⁇ 10 19 atoms / cm 3 , and more preferably 5 ⁇ 10 18 atoms / cm. Less than 3 , more preferably less than 1 ⁇ 10 18 atoms / cm 3 .
  • FIG. 24A shows a perspective view of the electronic component 700 and the substrate on which the electronic component 700 is mounted (mounting substrate 704).
  • the electronic component 700 shown in FIG. 24A has a storage device 10 in which a layer 110 is laminated on a layer 100 in a mold 711. Since FIG. 24A shows the inside of the electronic component 700, a part of the electronic component 700 is omitted.
  • the electronic component 700 has a land 712 on the outside of the mold 711.
  • the land 712 is electrically connected to the electrode pad 713, and the electrode pad 713 is electrically connected to the storage device 10 by a wire 714.
  • the electronic component 700 is mounted on, for example, the printed circuit board 702. A plurality of such electronic components are combined and each is electrically connected on the printed circuit board 702 to complete the mounting board 704.
  • FIG. 24B shows a perspective view of the electronic component 730.
  • the electronic component 730 is an example of SiP (System in package) or MCM (Multi Chip Module).
  • the electronic component 730 is provided with an interposer 731 on a package substrate 732 (printed circuit board), and a semiconductor device 735 and a plurality of storage devices 10 are provided on the interposer 731.
  • the electronic component 730 shows an example in which the storage device 10 is used as a wideband memory (HBM: High Bandwidth Memory). Further, as the semiconductor device 735, an integrated circuit (semiconductor device) such as a CPU, GPU, or FPGA can be used.
  • HBM High Bandwidth Memory
  • the package substrate 732 a ceramic substrate, a plastic substrate, a glass epoxy substrate, or the like can be used.
  • the interposer 731 a silicon interposer, a resin interposer, or the like can be used.
  • the interposer 731 has a plurality of wirings and has a function of electrically connecting a plurality of integrated circuits having different terminal pitches.
  • the plurality of wirings are provided in a single layer or multiple layers.
  • the interposer 731 has a function of electrically connecting the integrated circuit provided on the interposer 731 to the electrode provided on the package substrate 732.
  • the interposer may be referred to as a "rewiring board” or an "intermediate board”.
  • a through electrode may be provided on the interposer 731, and the integrated circuit and the package substrate 732 may be electrically connected using the through electrode.
  • TSV Three Silicon Via
  • interposer 731 It is preferable to use a silicon interposer as the interposer 731. Since it is not necessary to provide an active element in the silicon interposer, it can be manufactured at a lower cost than an integrated circuit. On the other hand, since the wiring of the silicon interposer can be formed by a semiconductor process, it is easy to form fine wiring, which is difficult with a resin interposer.
  • the interposer on which the HBM is mounted is required to form fine and high-density wiring. Therefore, it is preferable to use a silicon interposer as the interposer on which the HBM is mounted.
  • the reliability is unlikely to be lowered due to the difference in the expansion coefficient between the integrated circuit and the interposer. Further, since the surface of the silicon interposer is high, poor connection between the integrated circuit provided on the silicon interposer and the silicon interposer is unlikely to occur. In particular, in a 2.5D package (2.5-dimensional mounting) in which a plurality of integrated circuits are arranged side by side on an interposer, it is preferable to use a silicon interposer.
  • a heat sink heat dissipation plate
  • the heights of the integrated circuits provided on the interposer 731 are the same.
  • the heights of the storage device 10 and the semiconductor device 735 are the same.
  • an electrode 733 may be provided on the bottom of the package substrate 732.
  • FIG. 24B shows an example in which the electrode 733 is formed of solder balls.
  • BGA Ball Grid Array
  • the electrode 733 may be formed of a conductive pin.
  • PGA Peripheral Component Interconnect
  • the electronic component 730 can be mounted on another substrate by using various mounting methods, not limited to BGA and PGA.
  • BGA Band-GPU
  • PGA Stimble Pin Grid Array
  • LGA Land Grid Array
  • QFP Quad Flat Package
  • QFJ Quad Flat J-leaded package
  • QFN QuadFNeged
  • the robot 7100 includes an illuminance sensor, a microphone, a camera, a speaker, a display, various sensors (infrared sensor, ultrasonic sensor, acceleration sensor, piezo sensor, optical sensor, gyro sensor, etc.), a moving mechanism, and the like.
  • the electronic component 730 has a processor and the like, and has a function of controlling these peripheral devices.
  • the electronic component 700 has a function of storing the data acquired by the sensor.
  • the microphone has a function of detecting an acoustic signal such as a user's voice and an environmental sound.
  • the speaker has a function of emitting audio signals such as voice and warning sound.
  • the robot 7100 can analyze the audio signal input via the microphone and emit the necessary audio signal from the speaker. In the robot 7100, it is possible to communicate with the user by using a microphone and a speaker.
  • the camera has a function of photographing the surroundings of the robot 7100. Further, the robot 7100 has a function of moving by using a moving mechanism. The robot 7100 can capture an image of the surroundings using a camera, analyze the image, and detect the presence or absence of an obstacle when moving.
  • the flying object 7120 has a propeller, a camera, a battery, and the like, and has a function of autonomously flying.
  • the electronic component 730 has a function of controlling these peripheral devices.
  • the image data taken by the camera is stored in the electronic component 700.
  • the electronic component 730 can analyze the image data and detect the presence or absence of an obstacle when moving.
  • the remaining battery level can be estimated from the change in the storage capacity of the battery by the electronic component 730.
  • the cleaning robot 7140 has a display arranged on the upper surface, a plurality of cameras arranged on the side surface, brushes, operation buttons, various sensors, and the like. Although not shown, the cleaning robot 7140 is provided with tires, suction ports, and the like. The cleaning robot 7140 is self-propelled, can detect dust, and can suck dust from a suction port provided on the lower surface.
  • the electronic component 730 can analyze an image taken by a camera and determine the presence or absence of an obstacle such as a wall, furniture, or a step. Further, when an object that is likely to be entangled with the brush such as wiring is detected by image analysis, the rotation of the brush can be stopped.
  • the automobile 7160 has an engine, tires, brakes, a steering device, a camera and the like.
  • the electronic component 730 controls to optimize the running state of the automobile 7160 based on data such as navigation information, speed, engine state, gear selection state, and brake usage frequency.
  • the image data taken by the camera is stored in the electronic component 700.
  • the electronic component 700 and / or the electronic component 730 can be incorporated into a TV device 7200 (television receiver), a smartphone 7210, a PC (personal computer) 7220, 7230, a game machine 7240, a game machine 7260, and the like.
  • the electronic component 730 built into the TV device 7200 can function as an image engine.
  • the electronic component 730 performs image processing such as noise removal and resolution up-conversion.
  • the smartphone 7210 is an example of a mobile information terminal.
  • the smartphone 7210 includes a microphone, a camera, a speaker, various sensors, and a display unit. These peripherals are controlled by electronic components 730.
  • PC7220 and PC7230 are examples of notebook PCs and stationary PCs, respectively.
  • a keyboard 7232 and a monitoring device 7233 can be connected to the PC 7230 wirelessly or by wire.
  • the game machine 7240 is an example of a portable game machine.
  • the game machine 7260 is an example of a stationary game machine.
  • a controller 7262 is connected to the game machine 7260 wirelessly or by wire. Electronic components 700 and / or electronic components 730 can also be incorporated into the controller 7262.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Databases & Information Systems (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Thin Film Transistor (AREA)
  • Semiconductor Memories (AREA)

Abstract

記憶装置は、m個のメモリセルブロックと、m×(k+1)本のワード線と、n本のビット線と、 ワード線ドライバ回路とを有する(m、k、nは1以上の整数)。メモリセルブロックは、(k+ 1)行×n列のメモリセルを有し、メモリセルはそれぞれワード線およびビット線と電気的に接続 される。ワード線ドライバ回路は、m×(k+1)本のワード線の中から、スイッチトランジスタ を用いて選択されたm×k本のワード線に信号を出力する機能を有し、スイッチトランジスタのゲ ートには、オフ電流が小さなトランジスタを用いて選択情報が書き込まれる。メモリセルブロック が有するk行×n列のメモリセルは、通常メモリセルであり、メモリセルブロックは、それぞれ1 行×n列の冗長メモリセルを有する。

Description

冗長メモリセルを有する記憶装置、半導体装置、および、電子機器
本発明の一形態は、記憶装置に関する。特に、本発明の一形態は、半導体特性を利用することで機能しうる記憶装置(半導体記憶装置、半導体メモリ、メモリ、ともいう)であり、冗長メモリセルを有する。
また、本発明の一形態は、半導体装置に関する。本明細書等において、半導体装置とは、半導体特性を利用した装置のことであり、例えば、半導体素子(トランジスタ、ダイオード、フォトダイオード等)を含む回路、同回路を有する装置等を指す。また、本明細書等において、半導体装置とは、半導体特性を利用することで機能しうる装置全般のことであり、例えば、集積回路、集積回路を備えたチップや、パッケージにチップを収納した電子部品、集積回路を備えた電子機器は、半導体装置の一例である。
なお、本発明の一形態は、上記の技術分野に限定されない。本明細書等で開示する発明の技術分野は、物、方法、または、製造方法に関するものである。または、本発明の一形態は、プロセス、マシン、マニュファクチャ、または、組成物(コンポジション・オブ・マター)に関するものである。
DRAM(Dynamic Random Access Memory)は、各種電子機器に用いられる記憶装置として広く知られている。DRAMのメモリセルは、1つのトランジスタと1つの容量素子で構成され、DRAMは容量素子に電荷を蓄積することでデータを記憶するメモリである。
DRAMには、通常使用するメモリセル(通常メモリセル、ともいう)に加えて、冗長なメモリセル(冗長メモリセル、ともいう)を有する場合があり、例えば、出荷前検査で通常メモリセルの一部に不良が見つかると、当該メモリセルを冗長メモリセルに切り替えて出荷される。そのため、冗長メモリセルは、不良メモリセルを冗長メモリセルに切り替えるための回路(切り替え回路、冗長回路、ともいう)とあわせて、DRAMの歩留まりを向上させるための技術として用いられる。
一方、トランジスタのチャネルが形成される領域(チャネル形成領域、ともいう)に、金属酸化物を有するトランジスタ(酸化物半導体トランジスタ、OSトランジスタ、ともいう)が注目されている。例えば、トランジスタに適用可能な金属酸化物として、In−Ga−Zn酸化物(IGZO、イグゾー、などと呼ばれる)が知られている。
OSトランジスタは、トランジスタがオフ状態にあるときのドレイン電流(オフ電流、ともいう)が非常に小さい(例えば、非特許文献1、2、参照)ため、OSトランジスタをDRAMのメモリセルに用いることで、容量素子に蓄積した電荷を長時間保持することができる。
また、OSトランジスタは薄膜トランジスタであるため、積層して設けることができる。例えば、特許文献1は、半導体基板に形成されたトランジスタを用いてDRAMの周辺回路を構成し、その上方に、OSトランジスタを用いて構成されたDRAMのメモリセルを有する層を、複数積層した構成について開示している。DRAMのメモリセルを有する層を複数積層することで、DRAMのチップ面積を削減することができる。
なお、本明細書等では、OSトランジスタがメモリセルに用いられたDRAMを、酸化物半導体DRAM、または、DOSRAM(登録商標、Dynamic Oxide Semiconductor Random Access Memoryy、ドスラム)と呼ぶ。
米国特許出願公開第2012/0063208号明細書
冗長メモリセルを有する記憶装置は、通常メモリセルに加えて、冗長メモリセルと、不良となった通常メモリセルを冗長メモリセルに切り替えるための回路が必要である。しかし、記憶装置が有するメモリセルの数が増える(記憶装置が記憶できるデータ量が多くなる)と、冗長メモリセルの数も増え、切り替え回路の回路規模が大きく、複雑なものとなる。
本発明の一形態は、冗長メモリセルを有し、通常メモリセルと冗長メモリセルとの切り替えが容易な、記憶装置を提供することを課題の一つとする。または、本発明の一形態は、冗長メモリセルを有し、小型で消費電力が少なく、信頼性が高い記憶装置を提供することを課題の一つとする。
なお、本発明の一形態は、必ずしも上記の課題の全てを解決する必要はなく、少なくとも一つの課題を解決できるものであればよい。また、上記の課題の記載は、他の課題の存在を妨げるものではない。これら以外の課題は、明細書、特許請求の範囲、図面などの記載から自ずと明らかになるものであり、明細書、特許請求の範囲、図面などの記載から、これら以外の課題を抽出することが可能である。
本発明の一形態は、ワード線ドライバ回路と、切り替え回路と、メモリセルアレイとを有する記憶装置である。ワード線ドライバ回路は、k(kは1以上の整数)本の信号線に信号を出力する機能を有し、メモリセルアレイは、k+1本のワード線を有し、k+1本のワード線は、それぞれ、複数のメモリセルと電気的に接続される。切り替え回路は、2×k個のスイッチトランジスタを有し、2×k個のスイッチトランジスタのゲートは、それぞれ、トランジスタのソースまたはドレインの一方、および、キャパシタの一方の端子と電気的に接続される。2×k個のスイッチトランジスタの一つは、ソースまたはドレインの一方がk本の信号線の一つと電気的に接続され、ソースまたはドレインの他方がk+1本のワード線の一つと電気的に接続され、2×k個のスイッチトランジスタの他の一つは、ソースまたはドレインの一方がk本の信号線の一つと電気的に接続され、ソースまたはドレインの他方がk+1本のワード線の他の一つと電気的に接続される。
また、上記形態において、トランジスタは、チャネル形成領域に金属酸化物を有する。
また、上記形態において、スイッチトランジスタ、および、トランジスタは、チャネル形成領域に金属酸化物を有する。
また、本発明の一形態は、ワード線ドライバ回路と、第1乃至第m(mは1以上の整数)切り替え回路と、第1乃至第mメモリセルブロックとを有する記憶装置である。ワード線ドライバ回路は、第1乃至第m回路を有し、第j(jは1以上m以下の整数)回路は、それぞれ、第j切り替え回路に、第1乃至第k(kは1以上の整数)信号線を介して、信号を出力する機能を有する。第jメモリセルブロックは、それぞれ、k+1本のワード線を有し、k+1本のワード線は、それぞれ、複数のメモリセルと電気的に接続される。第j切り替え回路は、それぞれ、2×k個のスイッチトランジスタを有し、第j切り替え回路のそれぞれにおいて、2×k個のスイッチトランジスタのゲートは、それぞれ、トランジスタのソースまたはドレインの一方、および、キャパシタの一方の端子と電気的に接続される。第j切り替え回路のそれぞれにおいて、2×k個のスイッチトランジスタの一つは、ソースまたはドレインの一方がk本の信号線の一つと電気的に接続され、ソースまたはドレインの他方がk+1本のワード線の一つと電気的に接続され、2×k個のスイッチトランジスタの他の一つは、ソースまたはドレインの一方がk本の信号線の一つと電気的に接続され、ソースまたはドレインの他方がk+1本のワード線の他の一つと電気的に接続される。
また、上記形態において、トランジスタは、チャネル形成領域に金属酸化物を有する。
また、上記形態において、スイッチトランジスタ、および、トランジスタは、チャネル形成領域に金属酸化物を有する。
また、本発明の一形態は、ワード線ドライバ回路を有する半導体基板と、第1乃至第m(mは1以上の整数)切り替え回路、および、第1乃至第mメモリセルブロックを有する素子層と、を有する記憶装置である。ワード線ドライバ回路は、第1乃至第m回路を有し、第j(jは1以上m以下の整数)回路は、それぞれ、第j切り替え回路に、第1乃至第k(kは1以上の整数)信号線を介して、信号を出力する機能を有する。第jメモリセルブロックは、それぞれ、k+1本のワード線を有し、k+1本のワード線は、それぞれ、複数のメモリセルと電気的に接続される。第j切り替え回路は、それぞれ、2×k個のスイッチトランジスタを有し、第j切り替え回路のそれぞれにおいて、2×k個のスイッチトランジスタのゲートは、それぞれ、トランジスタのソースまたはドレインの一方、および、キャパシタの一方の端子と電気的に接続される。第j切り替え回路のそれぞれにおいて、2×k個のスイッチトランジスタの一つは、ソースまたはドレインの一方がk本の信号線の一つと電気的に接続され、ソースまたはドレインの他方がk+1本のワード線の一つと電気的に接続され、2×k個のスイッチトランジスタの他の一つは、ソースまたはドレインの一方がk本の信号線の一つと電気的に接続され、ソースまたはドレインの他方がk+1本のワード線の他の一つと電気的に接続される。素子層は、半導体基板の上方に積層して設けられる。
また、上記形態において、素子層に形成されたトランジスタ、および、スイッチトランジスタは、それぞれ、チャネル形成領域に金属酸化物を有する。
また、上記形態において、半導体基板は、単結晶シリコン基板であり、素子層に形成されたトランジスタ、および、スイッチトランジスタは、それぞれ、チャネル形成領域に金属酸化物を有する。
本発明の一形態により、冗長メモリセルを有し、通常メモリセルと冗長メモリセルとの切り替えが容易な、記憶装置を提供することができる。または、本発明の一形態により、冗長メモリセルを有し、小型で消費電力が少なく、信頼性が高い記憶装置を提供することができる。
なお、これらの効果の記載は、他の効果の存在を妨げるものではない。また、本発明の一形態は、必ずしも、これらの効果の全てを有する必要はない。これら以外の効果は、明細書、特許請求の範囲、図面などの記載から、自ずと明らかとなるものであり、明細書、特許請求の範囲、図面などの記載から、これら以外の効果を抽出することが可能である。
図1は、記憶装置の構成例を示す斜視概略図である。
図2は、記憶装置の構成例を示すブロック図である。
図3A、図3Bは、メモリセルアレイの構成例、および、メモリセルアレイと切り替え回路の電気的な接続、を説明する図である。
図4Aは、メモリセルアレイの構成例、および、メモリセルアレイと切り替え回路の電気的な接続、を説明する図である。図4Bは、メモリセルの構成例を示す回路図である。
図5は、切り替え回路の構成例を示す回路図である。
図6Aは、ワード線ドライバ回路の構成例を示すブロック図である。図6Bは、回路LVBの構成例を示す回路図である。
図7は、メモリセルアレイとビット線ドライバ回路の構成例を説明する図である。
図8は、回路構成例を説明する図である。
図9は、記憶装置の動作例を説明するタイミングチャートである。
図10は、記憶装置の動作例を説明するタイミングチャートである。
図11は、記憶装置の動作例を説明するタイミングチャートである。
図12は、記憶装置の構成例を示す断面図である。
図13A、図13B、図13Cは、トランジスタの構造例を示す断面図である。
図14Aは、トランジスタの構造例を示す上面図である。図14B、図14Cは、トランジスタの構造例を示す断面図である。
図15Aは、トランジスタの構造例を示す上面図である。図15B、図15Cは、トランジスタの構造例を示す断面図である。
図16Aは、トランジスタの構造例を示す上面図である。図16B、図16Cは、トランジスタの構造例を示す断面図である。
図17Aは、トランジスタの構造例を示す上面図である。図17B、図17Cは、トランジスタの構造例を示す断面図である。
図18Aは、トランジスタの構造例を示す上面図である。図18B、図18Cは、トランジスタの構造例を示す断面図である。
図19Aは、トランジスタの構造例を示す上面図である。図19B、図19Cは、トランジスタの構造例を示す断面図である。
図20A、図20Bは、トランジスタの構造例を示す断面図である。
図21は、記憶装置の構成例を示す断面図である。
図22A、図22Bは、トランジスタの構造例を示す断面図である。
図23Aは、IGZOの結晶構造の分類を説明する図である。図23Bは、CAAC−IGZO膜のXRDスペクトルを説明する図である。図23Cは、CAAC−IGZO膜の極微電子線回折パターンを説明する図である。
図24A、図24Bは、電子部品の一例を説明する模式図である。
図25は、電子機器の例を示す図である。
以下、実施の形態について図面を参照しながら説明する。但し、実施の形態は多くの異なる形態で実施することが可能であり、趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは、当業者であれば容易に理解される。従って、本発明は、以下の実施の形態の記載内容に限定して解釈されるものではない。
また、以下に示される複数の実施の形態は、適宜組み合わせることが可能である。また、1つの実施の形態の中に複数の構成例が示される場合は、互いに構成例を適宜組み合わせることが可能である。
なお、本明細書に添付した図面では、構成要素を機能ごとに分類し、互いに独立したブロックとしてブロック図を示しているが、実際の構成要素は機能ごとに完全に切り分けることが難しく、一つの構成要素が複数の機能に係わることもあり得る。
また、図面等において、大きさ、層の厚さ、領域等は、明瞭化のため誇張されている場合がある。よって、必ずしもそのスケールに限定されない。図面は、理想的な例を模式的に示したものであり、図面に示す形状または値などに限定されない。
また、図面等において、同一の要素または同様な機能を有する要素、同一の材質の要素、あるいは同時に形成される要素等には同一の符号を付す場合があり、その繰り返しの説明は省略する場合がある。
また、本明細書等において、「膜」という用語と、「層」という用語とは、互いに入れ替えることが可能である。例えば、「導電層」という用語を、「導電膜」という用語に変更することが可能な場合がある。または、例えば、「絶縁膜」という用語を、「絶縁層」という用語に変更することが可能な場合がある。
また、本明細書等において、「上」や「下」などの配置を示す用語は、構成要素の位置関係が、「直上」または「直下」であることを限定するものではない。例えば、「ゲート絶縁層上のゲート電極」の表現であれば、ゲート絶縁層とゲート電極との間に他の構成要素を含むものを除外しない。
また、本明細書等において、「第1」、「第2」、「第3」などの序数詞は、構成要素の混同を避けるために付したものであり、数的に限定するものではない。
また、本明細書等において、複数の要素に同じ符号を用いる場合、特にそれらを区別する必要があるときは、符号に、「_1」、「_2」、「[n]」、「[m,n]」等、識別用の符号を付して記載する場合がある。例えば、2番目の配線GLを、配線GL[2]と記載する。
また、本明細書等において、「電気的に接続」とは、「何らかの電気的作用を有するもの」を介して接続されている場合が含まれる。ここで、「何らかの電気的作用を有するもの」は、接続対象間での電気信号の授受を可能とするものであれば、特に制限を受けない。例えば、「何らかの電気的作用を有するもの」には、電極や配線をはじめ、トランジスタなどのスイッチング素子、抵抗素子、インダクタ、容量素子、その他の各種機能を有する素子などが含まれる。また、「電気的に接続」と表現される場合であっても、実際の回路において、物理的な接続部分がなく、配線が延在しているだけの場合もある。
また、本明細書等において、「電極」や「配線」の用語は、これらの構成要素を機能的に限定するものではない。例えば、「電極」は「配線」の一部として用いられることがあり、その逆も同様である。
また、本明細書等において、電気回路における「端子」とは、電流または電位の入力(または、出力)や、信号の受信(または、送信)が行なわれる部位を言う。よって、配線または電極の一部が端子として機能する場合がある。
また、一般に、「容量」は、2つの電極が絶縁体(誘電体)を介して向かい合う構成を有する。本明細書等において、「容量素子(キャパシタ、ともいう)」とは、前述の「容量」である場合が含まれる。すなわち、本明細書等において、「容量素子」とは、2つの電極が絶縁体を介して向かい合う構成を有したもの、2本の配線が絶縁体を介して向かい合う構成を有したもの、または、2本の配線が絶縁体を介して配置されたもの、である場合が含まれる。
また、本明細書等において、「電圧」とは、ある電位と基準の電位(例えば、グラウンド電位)との電位差のことを示す場合が多い。よって、電圧と電位差とは言い換えることができる。
また、本明細書等において、トランジスタとは、ゲートと、ドレインと、ソースとを含む、少なくとも三つの端子を有する素子である。そして、ドレイン(ドレイン端子、ドレイン領域、または、ドレイン電極)とソース(ソース端子、ソース領域、または、ソース電極)の間にチャネル形成領域を有しており、チャネル形成領域を介して、ソースとドレインとの間に電流を流すことができるものである。なお、本明細書等において、チャネル形成領域とは、電流が主として流れる領域をいう。
また、ソースやドレインの機能は、異なる極性のトランジスタを採用する場合や、回路動作において電流の方向が変化する場合などには入れ替わることがある。このため、本明細書等において、ソースやドレインの用語は、入れ替えて用いることができるものとする。
また、本明細書等において、特に断りがない場合、オフ電流とは、トランジスタがオフ状態(非導通状態、遮断状態、ともいう)にあるときのドレイン電流をいう。オフ状態とは、特に断りがない場合、nチャネル型のトランジスタでは、ソースに対するゲートの電圧Vgsがしきい値電圧Vthよりも低い状態、pチャネル型のトランジスタでは、ソースに対するゲートの電圧Vgsがしきい値電圧Vthよりも高い状態をいう。つまり、nチャネル型のトランジスタのオフ電流とは、ソースに対するゲートの電圧Vgsがしきい値電圧Vthよりも低いときのドレイン電流、という場合がある。
上記オフ電流の説明において、ドレインをソースと読み替えてもよい。つまり、オフ電流は、トランジスタがオフ状態にあるときのソース電流をいう場合がある。また、オフ電流と同じ意味で、リーク電流という場合がある。また、本明細書等において、オフ電流とは、トランジスタがオフ状態にあるときに、ソースとドレインとの間に流れる電流を指す場合がある。
また、本明細書等において、オン電流とは、トランジスタがオン状態(導通状態、ともいう)にあるときに、ソースとドレインとの間に流れる電流を指す場合がある。
また、本明細書等において、金属酸化物(metal oxide)とは、広い意味での金属の酸化物である。金属酸化物は、酸化物絶縁体、酸化物導電体(透明酸化物導電体、を含む)、酸化物半導体などに分類される。
例えば、トランジスタのチャネル形成領域に金属酸化物を用いた場合、当該金属酸化物を酸化物半導体と呼称する場合がある。つまり、金属酸化物が増幅作用、整流作用、およびスイッチング作用の少なくとも1つを有する場合、当該金属酸化物を、金属酸化物半導体(metal oxide semiconductor)と呼ぶことができる。すなわち、チャネル形成領域に金属酸化物を有するトランジスタを、「酸化物半導体トランジスタ」、「OSトランジスタ」と呼ぶことができる。同様に、「酸化物半導体を用いたトランジスタ」も、チャネル形成領域に金属酸化物を有するトランジスタである。
また、本明細書等において、窒素を有する金属酸化物も金属酸化物(metal oxide)と呼称する場合がある。また、窒素を有する金属酸化物を、金属酸窒化物(metal oxynitride)と呼称してもよい。金属酸化物の詳細については後述する。
(実施の形態1)
本実施の形態では、本発明の一形態に係わる記憶装置の構成例について説明する。本発明の一形態に係わる記憶装置は、半導体特性を利用することで機能しうる記憶装置であり、半導体記憶装置、半導体メモリ、または単に、メモリとも呼ばれている。また、本発明の一形態に係わる記憶装置は、半導体基板に形成されたトランジスタを有する層の上方に、OSトランジスタを有する層が積層して設けられた構造を有する。OSトランジスタは、オフ電流が非常に小さいという性質を有する。
<記憶装置の斜視概略図>
図1は、本発明の一形態に係わる記憶装置10の構成例を示す斜視概略図である。図1に示す記憶装置10は、層100および層110を有し、層100の上方に層110が積層して設けられた構造を有する。
層100および層110には、それぞれ半導体特性を利用することで機能しうる回路が設けられており、具体的には、層100には周辺回路101が、層110にはメモリセルアレイ111および切り替え回路112が設けられている。なお、本明細書等で説明する図面においては、主な信号の流れを矢印または線で示しており、電源線等は省略する場合がある。
周辺回路101は、ロウデコーダ121、ワード線ドライバ回路122、カラムデコーダ131、ビット線ドライバ回路132、出力回路141、および、コントロールロジック回路151を有する。周辺回路101は、メモリセルアレイ111および切り替え回路112の、駆動回路および制御回路としての機能を有する。
周辺回路101は、半導体基板SUBに形成されたトランジスタを用いて構成される。半導体基板SUBは、トランジスタのチャネル領域を形成することが可能であれば、特に限定されない。例えば、単結晶シリコン基板、単結晶ゲルマニウム基板、化合物半導体基板(SiC基板、GaN基板など)、SOI(Silicon on Insulator)基板などを用いることができる。
また、SOI基板としては、鏡面研磨ウェハーに酸素イオンを注入した後、高温加熱することにより、表面から一定の深さに酸化層を形成させるとともに、表面層に生じた欠陥を消滅させて形成されたSIMOX(Separation by Implanted Oxygen)基板や、水素イオン注入により形成された微小ボイドの熱処理による成長を利用して半導体基板を劈開するスマートカット法、ELTRAN法(登録商標:Epitaxial Layer Transfer)などを用いて形成されたSOI基板を用いてもよい。単結晶基板を用いて形成されたトランジスタは、チャネル形成領域に単結晶半導体を有する。
本実施の形態では、半導体基板SUBに、単結晶シリコン基板を用いた場合について説明する。なお、単結晶シリコン基板に形成されたトランジスタを、Siトランジスタと呼ぶ。Siトランジスタを用いて構成された周辺回路101は、高速な動作が可能である。
メモリセルアレイ111は、複数のメモリセル114を有し、メモリセル114はOSトランジスタを用いて構成される。また、切り替え回路112も、OSトランジスタを用いて構成される。OSトランジスタは薄膜トランジスタであるため、メモリセルアレイ111および切り替え回路112は、半導体基板SUB上に積層して設けることができる。そのため、メモリセル114および切り替え回路112を、OSトランジスタを用いて構成することで、記憶装置10のチップ面積を削減(記憶装置10を小型化)することができる。また、OSトランジスタは、Siトランジスタと同様の製造装置を用いて作製することができるため、低コストでの作製が可能である。
ここで、酸化物半導体のバンドギャップは2.5eV以上、好ましくは3.0eV以上であるため、OSトランジスタは熱励起によるリーク電流が小さく、オフ電流が非常に小さい。なお、オフ電流とは、トランジスタがオフ状態にあるときに、ソースとドレインとの間に流れる電流をいう。
OSトランジスタのチャネル形成領域に用いられる金属酸化物は、インジウム(In)および亜鉛(Zn)の少なくとも一方を含む酸化物半導体であることが好ましい。このような酸化物半導体としては、In−M−Zn酸化物(元素Mは、例えばAl、Ga、YまたはSn)が代表的である。電子供与体(ドナー)となる水分、水素などの不純物を低減し、かつ酸素欠損も低減することで、酸化物半導体をi型(真性)、または実質的にi型にすることができる。このような酸化物半導体は、高純度化された酸化物半導体と呼ぶことができる。なお、OSトランジスタの詳細については、実施の形態3および実施の形態4で説明する。
図1に示すように、メモリセルアレイ111において、メモリセル114は行列状(マトリクス状、ともいう)に配置され、各メモリセル114は、配線WLMおよび配線BLと電気的に接続される。メモリセル114は、配線WLMに印加される電位によって選択され、配線BLを介して、選択されたメモリセル114にデータが書き込まれる。または、メモリセル114は、配線WLMに印加される電位によって選択され、配線BLを介して、選択されたメモリセル114からデータが読み出される。すなわち、配線WLMはメモリセル114のワード線としての機能を有し、配線BLはメモリセル114のビット線としての機能を有する。
メモリセル114は、配線WLMを介して切り替え回路112と電気的に接続され、配線BLを介してビット線ドライバ回路132と電気的に接続される。また、切り替え回路112は、配線WLおよび配線CTLを介してワード線ドライバ回路122と電気的に接続される。配線CTLは、切り替え回路112の制御信号を伝える配線である。
なお、メモリセル114と切り替え回路112、切り替え回路112とワード線ドライバ回路122、メモリセル114とビット線ドライバ回路132との電気的な接続については、後ほど図3および図4を用いて説明するが、配線WLの本数は配線WLMの本数よりも少なく、メモリセル114には、通常使用するメモリセルと冗長なメモリセルが含まれる。また、周辺回路101については、図2を用いて説明する。
<記憶装置のブロック図>
図2は、記憶装置10の構成例を示すブロック図である。図2に示すブロック図では、メモリセルアレイ111が有するメモリセル114の数を省略し、代表的に1つのみ図示している。
図2に示すように、記憶装置10は、周辺回路101、メモリセルアレイ111、および、切り替え回路112を有する。周辺回路101は、ロウデコーダ121、ワード線ドライバ回路122、カラムデコーダ131、ビット線ドライバ回路132、出力回路141、および、コントロールロジック回路151を有する。
メモリセルアレイ111は、複数のメモリセル114を有し(図2では1つのみ図示)、メモリセル114は、配線WLMを介して切り替え回路112と電気的に接続され、切り替え回路112は、配線WLおよび配線CTLを介してワード線ドライバ回路122と電気的に接続され、メモリセル114は、配線BLを介してビット線ドライバ回路132と電気的に接続される。
メモリセル114は、電荷を蓄積し保持することで、データを記憶する機能を有する。メモリセル114は、2値(ハイレベルまたはローレベル)のデータを記憶する機能を有していてもよいし、4値以上のデータを記憶する機能を有していてもよい。または、アナログデータを記憶する機能を有していてもよい。
OSトランジスタは、オフ電流が非常に小さいため、メモリセル114に用いるトランジスタとして好適である。OSトランジスタは、例えば、チャネル幅1μmあたりのオフ電流を100zA/μm以下、または10zA/μm以下、または1zA/μm以下、または10yA/μm以下とすることができる。OSトランジスタをメモリセル114に用いることにより、メモリセル114に書き込んだデータを長時間保持することができる。そのため、メモリセル114のリフレッシュ頻度を少なくすることができ、記憶装置10を消費電力の少ないメモリとすることができる。
OSトランジスタは、高温環境下でもオフ電流が増加しにくい特徴を有するため、記憶装置10は、設置されている環境の温度が高い場合でも動作することができる。また、周辺回路101の発熱による高温環境下においても、メモリセル114に記憶したデータの消失が生じにくい。メモリセル114にOSトランジスタを用いることで、記憶装置10の信頼性を高めることができる。
また、OSトランジスタを用いたメモリセル114は、電荷を充電または放電することによって、データの書き換えおよび読み出しを行うため、実質的に無制限回のデータの書き換えおよび読み出しが可能である。OSトランジスタを用いたメモリセル114は、磁気メモリあるいは抵抗変化型メモリなどのように、原子レベルでの構造変化を伴わないため、書き換え耐性に優れている。また、フラッシュメモリのように、繰り返しの書き換え動作による電子捕獲中心の増加による不安定性が認められない。
もしくは、メモリセル114に用いるトランジスタとして、オフ電流が小さければOSトランジスタ以外のトランジスタを用いてもよい。例えば、チャネル形成領域にバンドギャップが大きい半導体を有するトランジスタを用いてもよい。バンドギャップが大きい半導体とは、バンドギャップが2.2eV以上の半導体を指す場合があり、例えば、炭化ケイ素、窒化ガリウム、ダイヤモンドなどが挙げられる。
ビット線ドライバ回路132は、プリチャージ回路133、センスアンプ134、および、入出力回路135を有する。プリチャージ回路133は、配線BLをプリチャージする機能を有する。センスアンプ134は、配線BLから読み出されたデータ信号を増幅する機能を有し、入出力回路135は、配線BLにデータ信号を書き込む機能、および、配線BLから読み出したデータ信号を出力回路141へ出力する機能を有する。なお、ビット線ドライバ回路132の構成例については、実施の形態2で説明する。
配線BLおよび配線WLMは、メモリセルアレイ111が有するメモリセル114に接続されている配線であり、詳しくは後述する。増幅されたデータ信号は、出力回路141を介して、デジタルのデータ信号RDATAとして記憶装置10の外部に出力される。
記憶装置10には、外部から電源として、低電源電位VSS、周辺回路101用の高電源電位VDD、メモリセルアレイ111用の高電源電位VIHが供給される。ここで、高電源電位VDDは、低電源電位VSSよりも高い電位であり、また、高電源電位VIHは、高電源電位VDDより高い電位、もしくは高電源電位VDDと同電位とすることができる。なお、低電源電位VSSは、記憶装置10において、基準の電位として用いられる。
記憶装置10には、制御信号(CE、WE、RE)、アドレス信号ADDR、データ信号WDATAが外部から入力される。アドレス信号ADDRは、ロウデコーダ121およびカラムデコーダ131に入力され、WDATAはビット線ドライバ回路132に入力される。
なお、制御信号(CE、WE、RE)、アドレス信号ADDR、データ信号WDATA、および、データ信号RDATAは、ハイレベルまたはローレベル(HighまたはLow、HまたはL、1または0等で表される場合がある)で表されるデジタル信号である。本実施の形態では、デジタル信号のハイレベルは電位VDDを用いて表され、ローレベルは電位VSSを用いて表される。また、書き込みワード線WLMのハイレベルには電位VIHが用いられ、ローレベルには電位VSSが用いられる。
コントロールロジック回路151は、外部からの入力信号(CE、WE、RE)を処理して、ロウデコーダ121、カラムデコーダ131の制御信号を生成する。CEはチップイネーブル信号であり、WEは書き込みイネーブル信号であり、REは読み出しイネーブル信号である。コントロールロジック回路151が処理する信号は、これに限定されるものではなく、必要に応じて他の制御信号を入力してもよい。
なお、記憶装置10において、上述の各回路、各信号、および各電位は、必要に応じて適宜取捨することができる。あるいは、他の回路、他の信号、または他の電位を追加してもよい。
<メモリセルアレイの構成例1>
図3Aおよび図3Bは、メモリセルアレイ111の構成例、および、メモリセルアレイ111と切り替え回路112の電気的な接続、を説明する図である。
図3Aを用いて、メモリセルアレイ111と、メモリセルブロック113および切り替え回路112との関係を説明する。図3Aに示すように、メモリセルアレイ111が有する複数のメモリセル114は、m(mは1以上の整数)個のメモリセルブロック113に分けて考えることができる。すなわち、メモリセルアレイ111は、m個のメモリセルブロック113を有し、メモリセルブロック113のそれぞれはメモリセル114を有する、ともいえる。
ここで、hを1以上m以下の整数とすると、メモリセルブロック113の1つであるメモリセルブロック113[h]は、配線WLMを介して切り替え回路112[h]と電気的に接続される。記憶装置10は、切り替え回路112[1]乃至切り替え回路112[m]を有する。
また、記憶装置10は、n(nは1以上の整数)本の配線BLを有し、メモリセルブロック113[1]乃至メモリセルブロック113[m]のそれぞれは、配線BL[1]乃至配線BL[n]と電気的に接続される。
図3Bを用いて、メモリセルブロック113[h]の構成例、および、メモリセルブロック113[h]と切り替え回路112[h]との関係を説明する。図3Bに示すように、メモリセルブロック113[h]は、一列にk+1(kは1以上の整数)個、一行にn個、計(k+1)×n個のメモリセル114を有する。
メモリセル114は行列状に配置され、図3Bに示す[1,1]、[i,j]、[k,n]、[k+1,n](iは1以上k+1以下の整数、jは1以上n以下の整数)等は、メモリセル114のアドレスを示している。
各メモリセル114は、配線WLMおよび配線BLと電気的に接続される。メモリセルブロック113[h]において、メモリセル114[i、j]は、配線WLM[q+i]および配線BL[j]と電気的に接続される。ここで、q=(k+1)×(h−1)である。
すなわち、記憶装置10は、m×(k+1)本の配線WLMを有し、メモリセルブロック113[h]において、メモリセル114[i、j]は、配線WLM[q+i]を介して、切り替え回路112[h]と電気的に接続される。
また、記憶装置10は、m×k本の配線WLおよびm本の配線CTLを有する。切り替え回路112[h]は、配線WL[p+1]乃至配線WL[p+k]および配線CTL[h]を介して、ワード線ドライバ回路122と電気的に接続される。ここで、p=k×(h−1)である。
<メモリセルアレイの構成例2>
ここで、説明をわかりやすくするため、k=4の場合における、メモリセルアレイ111の構成例、および、メモリセルアレイ111と切り替え回路112の電気的な接続を、図4Aを用いて説明する。
図4Aに示すように、メモリセルブロック113[1]乃至メモリセルブロック113[m]のそれぞれは、5×n個のメモリセル114を有する。記憶装置10は、n本の配線BLと5×m本の配線WLMを有し、メモリセル114のそれぞれは、配線BLを介してビット線ドライバ回路132と電気的に接続され、配線WLMを介して切り替え回路112[1]乃至切り替え回路112[m]のいずれかと電気的に接続される。
また、記憶装置10は、4×m本の配線WLおよびm本の配線CTLを有し、切り替え回路112のそれぞれは、配線WLおよび配線CTLを介してワード線ドライバ回路122と電気的に接続される。
すなわち、切り替え回路112[1]乃至切り替え回路112[m]のそれぞれに接続される配線WLMの数は5本であり、配線WLの数は4本である。そして、切り替え回路112[1]乃至切り替え回路112[m]は、4本の配線WLと4本の配線WLMを導通させる機能、および、1本の配線WLMを非選択とする機能を有する。
<メモリセルの構成例>
図4Bは、メモリセル114の構成例を示す回路図である。メモリセル114は、トランジスタM11と、容量素子CAとを有する。なお、トランジスタM11は、フロントゲート(単に、ゲート、ともいう)およびバックゲートを有する。
トランジスタM11のソースまたはドレインの一方は、容量素子CAの第1端子と電気的に接続され、トランジスタM11のソースまたはドレインの他方は、配線BLと接続されている。トランジスタM11のゲートは、配線WLMと接続され、トランジスタM11のバックゲートは、配線BKLと接続されている。容量素子CAの第2端子は、配線CALと接続されている。
配線BLは、ビット線として機能し、配線WLMは、ワード線として機能する。配線CALは、容量素子CAの第2端子に所定の電位を印加するための配線として機能する。また、配線BKLは、トランジスタM11のバックゲートに所定の電位を印加するための配線として機能する。配線BKLに任意の電位を印加することによって、トランジスタM11のしきい値電圧を増減することができる。
トランジスタM11は、容量素子CAの第1端子と配線BLとを、導通または非導通とするスイッチとしての機能を有する。データの書き込みまたは読み出しは、配線WLMにハイレベルの電位を印加し、容量素子CAの第1端子と配線BLとを、導通状態とすることによって行われる。つまり、メモリセル114は、容量素子CAに電荷を蓄積することでデータを保持する記憶装置であり、メモリセル114に保持されるデータは、配線BLおよびトランジスタM11を介して、書き込みまたは読み出しが行われる。
なお、トランジスタM11には、チャネル形成領域に金属酸化物を有するトランジスタ(OSトランジスタ)を用いることができる。例えば、トランジスタM11のチャネル形成領域に、インジウム、元素M(元素Mは、アルミニウム、ガリウム、イットリウム、銅、バナジウム、ベリリウム、ホウ素、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウムなどから選ばれた一種、または複数種)、亜鉛のいずれか一つを有する金属酸化物を用いることができる。特に、インジウム、ガリウム、亜鉛からなる金属酸化物であることが好ましい。
また、容量素子CAは、電極となる導電体の間に絶縁体を挟んだ構成である。電極を構成する導電体としては、金属の他、導電性を付与した半導体などを用いることができる。
OSトランジスタはオフ電流が非常に小さいため、トランジスタM11にOSトランジスタを用いることで、メモリセル114に書き込んだデータを長時間保持することができる。そのため、メモリセル114のリフレッシュ頻度を少なくすることができ、記憶装置10を消費電力の少ない記憶装置とすることができる。
または、トランジスタM11にOSトランジスタを用いることで、メモリセル114に多値データまたはアナログデータを保持してもよい。または、トランジスタM11にOSトランジスタを用いることで、メモリセル114が有する容量素子CAの容量を小さくしても、記憶装置10を動作させることが可能である。トランジスタM11にOSトランジスタを用いることで、上述のDOSRAMを構成することができる。
なお、トランジスタM11を、バックゲートを有さない構成としてもよい。
<切り替え回路の構成例>
切り替え回路112[1]乃至切り替え回路112[m]を代表して、切り替え回路112[1]の構成例を図5に示す。
切り替え回路112[1]は、トランジスタ11乃至トランジスタ18、トランジスタ21乃至トランジスタ28、および、キャパシタC11乃至キャパシタC18を有する。トランジスタ11乃至トランジスタ18、および、トランジスタ21乃至トランジスタ28は、nチャネル型のトランジスタである。なお、トランジスタ21乃至トランジスタ28は、オフ電流が小さいトランジスタであることが好ましく、また、トランジスタ11乃至トランジスタ18は、配線WLと配線WLMとの導通状態を制御するスイッチトランジスタである。
切り替え回路112[1]には、配線WL[1]乃至配線WL[4]、配線WLM[1]乃至配線WLM[5]、配線CTL[1]、および、配線PLが接続され、さらに、配線CTL[1]は、配線CTL[1、0]乃至配線CTL[1、4]、および、配線CTL[1、1b]乃至配線CTL[1、4b]に分けられる。
なお、配線CTL[1、1b]を介して伝えられる信号は、配線CTL[1、1]を介して伝えられる信号の反転信号であり、配線CTL[1、2b]を介して伝えられる信号は、配線CTL[1、2]を介して伝えられる信号の反転信号であり、配線CTL[1、3b]を介して伝えられる信号は、配線CTL[1、3]を介して伝えられる信号の反転信号であり、配線CTL[1、4b]を介して伝えられる信号は、配線CTL[1、4]を介して伝えられる信号の反転信号である。
また、配線CTL[1、0]を介して伝えられる信号は、配線CTL[1、1]乃至配線CTL[1、4]、および、配線CTL[1、1b]乃至配線CTL[1、4b]を介して伝えられる信号を、取り込むタイミングを制御する。
切り替え回路112[1]において、配線WL[1]は、トランジスタ11のソースまたはドレインの一方、および、トランジスタ12のソースまたはドレインの一方と電気的に接続される。同様に、配線WL[2]は、トランジスタ13のソースまたはドレインの一方、および、トランジスタ14のソースまたはドレインの一方と電気的に接続され、配線WL[3]は、トランジスタ15のソースまたはドレインの一方、および、トランジスタ16のソースまたはドレインの一方と電気的に接続され、配線WL[4]は、トランジスタ17のソースまたはドレインの一方、および、トランジスタ18のソースまたはドレインの一方と電気的に接続される。
配線WLM[1]は、トランジスタ11のソースまたはドレインの他方と電気的に接続され、配線WLM[2]は、トランジスタ12のソースまたはドレインの他方、および、トランジスタ13のソースまたはドレインの他方と電気的に接続され、配線WLM[3]は、トランジスタ14のソースまたはドレインの他方、および、トランジスタ15のソースまたはドレインの他方と電気的に接続され、配線WLM[4]は、トランジスタ16のソースまたはドレインの他方、および、トランジスタ17のソースまたはドレインの他方と電気的に接続され、配線WLM[5]は、トランジスタ18のソースまたはドレインの他方と電気的に接続される。
配線CTL[1、0]は、トランジスタ21乃至トランジスタ28のゲートと電気的に接続され、配線CTL[1、1]は、トランジスタ21のソースまたはドレインの一方と電気的に接続され、配線CTL[1、1b]は、トランジスタ22のソースまたはドレインの一方と電気的に接続され、配線CTL[1、2]は、トランジスタ23のソースまたはドレインの一方と電気的に接続され、配線CTL[1、2b]は、トランジスタ24のソースまたはドレインの一方と電気的に接続され、配線CTL[1、3]は、トランジスタ25のソースまたはドレインの一方と電気的に接続され、配線CTL[1、3b]は、トランジスタ26のソースまたはドレインの一方と電気的に接続され、配線CTL[1、4]は、トランジスタ27のソースまたはドレインの一方と電気的に接続され、配線CTL[1、4b]は、トランジスタ28のソースまたはドレインの一方と電気的に接続される。
トランジスタ21のソースまたはドレインの他方は、トランジスタ11のゲートおよびキャパシタC11の一方の端子と電気的に接続され、トランジスタ22のソースまたはドレインの他方は、トランジスタ12のゲートおよびキャパシタC12の一方の端子と電気的に接続され、トランジスタ23のソースまたはドレインの他方は、トランジスタ13のゲートおよびキャパシタC13の一方の端子と電気的に接続され、トランジスタ24のソースまたはドレインの他方は、トランジスタ14のゲートおよびキャパシタC14の一方の端子と電気的に接続され、トランジスタ25のソースまたはドレインの他方は、トランジスタ15のゲートおよびキャパシタC15の一方の端子と電気的に接続され、トランジスタ26のソースまたはドレインの他方は、トランジスタ16のゲートおよびキャパシタC16の一方の端子と電気的に接続され、トランジスタ27のソースまたはドレインの他方は、トランジスタ17のゲートおよびキャパシタC17の一方の端子と電気的に接続され、トランジスタ28のソースまたはドレインの他方は、トランジスタ18のゲートおよびキャパシタC18の一方の端子と電気的に接続される。
配線PLは、キャパシタC11乃至キャパシタC18の他方の端子と電気的に接続される。なお、配線PLは、キャパシタC11乃至キャパシタC18の他方の端子に、所定の電位を印加するための配線として機能する。
<切り替え回路の動作例>
例えば、配線CTL[1、1]乃至配線CTL[1、4]を介して伝えられる信号がハイレベルの時、配線WL[1]と配線WLM[1]、配線WL[2]と配線WLM[2]、配線WL[3]と配線WLM[3]、配線WL[4]と配線WLM[4]が、それぞれ導通状態となる。配線WLM[5]は非選択の状態である。
例えば、配線CTL[1、1]乃至配線CTL[1、4]を介して伝えられる信号がローレベルの時、配線WL[1]と配線WLM[2]、配線WL[2]と配線WLM[3]、配線WL[3]と配線WLM[4]、配線WL[4]と配線WLM[5]が、それぞれ導通状態となる。配線WLM[1]は非選択の状態である。
例えば、配線CTL[1、1]を介して伝えられる信号がハイレベルであり、配線CTL[1、2]乃至配線CTL[1、4]を介して伝えられる信号がローレベルの時、配線WL[1]と配線WLM[1]、配線WL[2]と配線WLM[3]、配線WL[3]と配線WLM[4]、配線WL[4]と配線WLM[5]が、それぞれ導通状態となる。配線WLM[2]は非選択の状態である。
また、例えば、配線CTL[1、1]および配線CTL[1、2]を介して伝えられる信号がハイレベルであり、配線CTL[1、3]および配線CTL[1、4]を介して伝えられる信号がローレベルの時、配線WL[1]と配線WLM[1]、配線WL[2]と配線WLM[2]、配線WL[3]と配線WLM[4]、配線WL[4]と配線WLM[5]が、それぞれ導通状態となる。配線WLM[3]は非選択の状態である。
なお、図5では省略したが、切り替え回路112[1]は、非選択とした配線WLMをローレベルとする機能を有することが好ましい。また、トランジスタ21乃至トランジスタ28のオフ電流が十分小さい場合、キャパシタC11乃至キャパシタC18は省略してもよい。
メモリセルブロック113[1]および切り替え回路112[1]において、例えば、初期状態で、配線CTL[1、1]乃至配線CTL[1、4]を介して伝えられる信号をハイレベルとし、出荷前検査で、配線WLM[2]と電気的に接続されるメモリセル114に不良が見つかった場合、配線CTL[1、1]を介して伝えられる信号をハイレベルに、配線CTL[1、2]乃至配線CTL[1、4]を介して伝えられる信号をローレベルとすることで、メモリセルブロック113[1]を良品とすることができる。
この場合、配線WLM[1]乃至配線WLM[4]と電気的に接続されるメモリセル114は、通常メモリセルであり、配線WLM[5]と電気的に接続されるメモリセル114は、冗長メモリセルである、ということができる。
メモリセルブロック113[1]乃至メモリセルブロック113[m]について、同様の対応を行うことにより、記憶装置10の歩留まりを向上させることができる。また、不良メモリセルを見つける検査は、出荷前検査に限らず、記憶装置10の使用開始後に行ってもよい。
<ワード線ドライバ回路の構成例>
図6Aは、ワード線ドライバ回路122の構成例を示すブロック図である。
ワード線ドライバ回路122は、m×k本の配線WLに信号を出力する機能を有する。ワード線ドライバ回路122は、ロウデコーダ121より、配線WLを駆動するための、信号WIおよび信号WIBが入力される。ここで、信号WIおよび信号WIBは、ハイレベルまたはローレベルで表されるデジタル信号であり、信号WIBは、信号WIの論理を反転した反転信号である。
また、ワード線ドライバ回路122は、m本の配線CTLに信号を出力する機能を有する。ワード線ドライバ回路122が配線CTLに信号を出力する機能は、ワード線ドライバ回路122が配線WLに信号を出力する機能と同様に構成できるため、本実施の形態では説明を省略する。
配線WLはm×k本あるため、信号WIおよび信号WIBも、それぞれm×k本である。図6Aでは、それぞれ、WL(1)乃至WL(m×k)、WI(1)乃至WI(m×k)、WIB(1)乃至WIB(m×k)、と表す。
ロウデコーダ121には、低電源電位VSSと高電源電位VDDが供給されているため、信号WIおよび信号WIBのハイレベルに対応する電位は高電源電位VDDであり、信号WIおよび信号WIBのローレベルに対応する電位は低電源電位VSSである。
一方、メモリセルアレイ111においては、配線WLのハイレベルに対応する電位として高電源電位VIHが使用され、配線WLのローレベルに対応する電位として低電源電位VSSが使用される。
そのため、ワード線ドライバ回路122は、入力された信号のハイレベルを調整する(レベル調整、ともいう)機能と、入力された信号に配線WLを駆動する能力を付加する(バッファ、ともいう)機能とを有する。ワード線ドライバ回路122は、回路LVBをm×k個有し、図6Aでは、LVB(1)乃至LVB(m×k)と表す。回路LVBは、入力された信号のハイレベルを調整する機能と、入力された信号に配線WLを駆動する能力を付加する機能とを有する。
図6Bは、回路LVBの構成例を示す回路図である。
回路LVBは、nチャネル型のトランジスタ31乃至トランジスタ34、および、pチャネル型のトランジスタ41乃至トランジスタ46を有する。また、回路LVBは、入力端子WI_IN、入力端子WIB_IN、配線VIH_IN、配線VSS_IN、および、出力端子WL_OUTを有する。
回路LVBにおいて、入力端子WI_INには信号WIが入力され、入力端子WIB_INには信号WIBが入力され、配線VIH_INには高電源電位VIHが入力され、配線VSS_INには低電源電位VSSが入力される。そして、回路LVBは、出力端子WL_OUTから配線WLを駆動する信号を出力する。
回路LVBにおいて、トランジスタ31のソースまたはドレインの一方は、配線VSS_INと電気的に接続され、トランジスタ31のソースまたはドレインの他方は、トランジスタ42のソースまたはドレインの一方、およびトランジスタ43のゲートと電気的に接続され、トランジスタ31のゲートは、入力端子WI_IN、およびトランジスタ42のゲートと電気的に接続される。トランジスタ42のソースまたはドレインの他方は、トランジスタ41のソースまたはドレインの一方と電気的に接続され、トランジスタ41のソースまたはドレインの他方は、配線VIH_INと電気的に接続される。
トランジスタ32のソースまたはドレインの一方は、配線VSS_INと電気的に接続され、トランジスタ32のソースまたはドレインの他方は、トランジスタ44のソースまたはドレインの一方、およびトランジスタ41のゲートと電気的に接続され、トランジスタ32のゲートは、入力端子WIB_IN、およびトランジスタ44のゲートと電気的に接続される。トランジスタ44のソースまたはドレインの他方は、トランジスタ43のソースまたはドレインの一方と電気的に接続され、トランジスタ43のソースまたはドレインの他方は、配線VIH_INと電気的に接続される。ここで、トランジスタ44のソースまたはドレインの他方と、トランジスタ43のソースまたはドレインの一方との接続部を、ノードN11と呼称し、ノードN11と電気的に接続される他の素子等については後述する。
トランジスタ31、トランジスタ32、および、トランジスタ41乃至トランジスタ44は、入力された信号WIおよび信号WIBのハイレベルに対応する電位を、高電源電位VDDから高電源電位VIHに変換するレベル調整の機能を有する。
また、回路LVBにおいて、トランジスタ33のソースまたはドレインの一方は、配線VSS_INと電気的に接続され、トランジスタ33のソースまたはドレインの他方は、トランジスタ45のソースまたはドレインの一方、トランジスタ34のゲート、およびトランジスタ46のゲートと電気的に接続され、トランジスタ33のゲートは、ノードN11、およびトランジスタ45のゲートと電気的に接続される。トランジスタ45のソースまたはドレインの他方は、配線VIH_INと電気的に接続される。
トランジスタ34のソースまたはドレインの一方は、配線VSS_INと電気的に接続され、トランジスタ34のソースまたはドレインの他方は、トランジスタ46のソースまたはドレインの一方、および出力端子WL_OUTと電気的に接続され、トランジスタ46のソースまたはドレインの他方は、配線VIH_INと電気的に接続される。
トランジスタ33、トランジスタ34、トランジスタ45、および、トランジスタ46は、ノードN11の信号を、出力端子WL_OUTから出力するバッファの機能を有する。
上述のように、回路LVBは、高電源電位VDDおよび低電源電位VSSを用いてハイレベルまたはローレベルが表される、信号WIおよび信号WIBのハイレベルを、高電源電位VIHに変えて、配線WLに出力する機能を有する。
<記憶装置>
本発明の一形態に係わる記憶装置において、メモリセル114のワード線としての機能を有する配線WLMの本数は、ワード線ドライバ回路122が信号を出力する配線WLの本数よりも多い。配線WLMのそれぞれにメモリセル114が接続され、メモリセル114には冗長なメモリセルが含まれる。切り替え回路112は、配線WLMと配線WLとの導通状態を制御する機能を有し、メモリセル114に不良メモリセルが見つかった場合、不良メモリセルが接続された配線WLMを、配線WLとは非導通状態とすることで、不良メモリセルを使用しないようにすることができる。
また、配線WLと配線WLMとの導通状態を制御するスイッチトランジスタのゲートには、オフ電流が小さなトランジスタを用いて選択情報が書き込まれるため、不良メモリセルを見つける検査が行われた後、当該選択情報を長時間保持することができる。すなわち、配線WLMと配線WLとの導通状態を保持することができる。
また、OSトランジスタを用いて切り替え回路112を構成することで、切り替え回路112を、周辺回路101の上方に積層して設けることができる。メモリセルアレイ111の近くに切り替え回路112を設けることができ、信号遅延を少なくすることができる。また、記憶装置10のチップ面積を削減することができる。
なお、本実施の形態は、本明細書に記載する他の実施の形態と適宜組み合わせて実施することができる。
(実施の形態2)
本実施の形態では、上記実施の形態で説明したビット線ドライバ回路132が有する、プリチャージ回路133、センスアンプ134、および、入出力回路135の、構成例と動作例について説明する。なお、図7に示すメモリセルアレイ211は、上記実施の形態で説明したメモリセルアレイ111とは異なり、折り返しビット線方式(フォールデッドビット線方式)のメモリセルアレイである。メモリセルアレイ211は、例えば、メモリセルアレイ211が有するメモリセル214を、メモリセルブロック113ごとに同じビット線と接続することで、メモリセルアレイ111にも適用することができる。また、メモリセルアレイ211は、開放型ビット線方式(オープンビット線方式)のメモリセルアレイにも適用することができる。
図7に示すメモリセルアレイ211は、一列にm個、一行にn個、計m×n個(m、nは1以上の整数)のメモリセル214を有し、メモリセル214は行列状に配置されている。図7では、メモリセル214のアドレスも併せて示している。例えば、[i,j]はi行j列目(iは1以上m以下の整数、jは1以上n以下の整数)のメモリセル214を示している。
また、図7に示すメモリセルアレイ211は、ワード線としての機能を有する、m本の配線WDLを有し、配線WDL(1)は1行目のメモリセル214と電気的に接続される。同様に、配線WDL(i)はi行目のメモリセル214と電気的に接続される。
また、図7に示すメモリセルアレイ211は、1列に2本の配線BIL(配線BILaおよび配線BILb)を有する。図7などでは、1列目の配線BILaを配線BILa(1)と示し、j列目の配線BILbを配線BILb(j)と示している。
奇数行に配置されたメモリセル214は、配線BILaまたは配線BILbの一方と電気的に接続され、偶数行に配置されたメモリセル214は、配線BILaまたは配線BILbの他方と電気的に接続される。
また、配線BILaおよび配線BILbは、列毎に設けられた、プリチャージ回路133、センスアンプ134、および、入出力回路135と電気的に接続される。また、入出力回路135は、列毎に配線SALaおよび配線SALbと電気的に接続される。図7などでは、1列目のプリチャージ回路133をプリチャージ回路133(1)と示し、j列目のプリチャージ回路133をプリチャージ回路133(j)と示している。センスアンプ134および入出力回路135も同様に表記している。
<回路構成例>
図8に、j列目のメモリセル214、プリチャージ回路133、センスアンプ134、および、入出力回路135の回路構成例を示す。
<プリチャージ回路133>
プリチャージ回路133(j)は、nチャネル型のトランジスタTr21乃至トランジスタTr23を有する。なお、トランジスタTr21乃至トランジスタTr23は、pチャネル型であってもよい。トランジスタTr21のソース又はドレインの一方は配線BILa(j)と接続され、ソース又はドレインの他方は配線PREと接続されている。トランジスタTr22のソース又はドレインの一方は配線BILb(j)と接続され、ソース又はドレインの他方は配線PREと接続されている。トランジスタTr23のソース又はドレインの一方は配線BILa(j)と接続され、ソース又はドレインの他方は配線BILb(j)と接続されている。トランジスタTr21のゲート、トランジスタTr22のゲート、及びトランジスタTr23のゲートは、配線PLと接続されている。プリチャージ回路133(j)は、配線BILa(j)及び配線BILb(j)の電位を初期化する機能を有する。
<センスアンプ134>
センスアンプ134(j)は、pチャネル型のトランジスタTr31及びトランジスタTr32と、nチャネル型のトランジスタTr33及びトランジスタTr34を有する。トランジスタTr31のソース又はドレインの一方は配線SPと接続され、ソース又はドレインの他方はトランジスタTr32のゲート、トランジスタTr34のゲート、及び配線BILa(j)と接続されている。トランジスタTr33のソース又はドレインの一方はトランジスタTr32のゲート、トランジスタTr34のゲート、及び配線BILa(j)と接続され、ソース又はドレインの他方は配線SNと接続されている。トランジスタTr32のソース又はドレインの一方は配線SPと接続され、ソース又はドレインの他方はトランジスタTr31のゲート、トランジスタTr33のゲート、及び配線BILb(j)と接続されている。トランジスタTr34のソース又はドレインの一方はトランジスタTr31のゲート、トランジスタTr33のゲート、及び配線BILb(j)と接続され、ソース又はドレインの他方は配線SNと接続されている。センスアンプ134(j)は、配線BILa(j)、BILb(j)の電位を増幅する機能を有する。なお、センスアンプ134(j)は、ラッチ型のセンスアンプとして機能する。
<入出力回路135>
入出力回路135(j)は、nチャネル型のトランジスタTr41及びトランジスタTr42を有する。なお、トランジスタTr41及びトランジスタTr42は、pチャネル型であってもよい。トランジスタTr41のソース又はドレインの一方は配線BILa(j)と接続され、ソース又はドレインの他方は配線SALa(j)と接続されている。トランジスタTr42のソース又はドレインの一方は配線BILb(j)と接続され、ソース又はドレインの他方は配線SALb(j)と接続されている。トランジスタTr41のゲート及びトランジスタTr42のゲートは、配線CSELと接続されている。
入出力回路135(j)は、配線CSELに供給される電位に基づいて、配線BILa(j)と配線SALa(j)の導通状態、及び配線BILb(j)と配線SALb(j)の導通状態を制御する機能を有する。すなわち、入出力回路135(j)によって、配線SALa(j)、配線SALb(j)に電位を出力するか否かを選択することができる。
配線SP、配線SN、配線CSEL、配線PRE、配線PLは、プリチャージ回路133、センスアンプ134、および、入出力回路135の動作を制御するための信号、または電位を伝える機能を有する。配線SP、配線SN、配線CSEL、配線PRE、配線PLは、図1に示すコントロールロジック回路151と接続されている。コントロールロジック回路151は、配線SP、配線SN、配線CSEL、配線PRE、配線PLに制御信号を供給する機能を有する。
<動作例>
図8に示すメモリセル214[i,j]、プリチャージ回路133(j)、センスアンプ134(j)、および、入出力回路135(j)を用いて、記憶装置10の動作モードについて説明する。また、配線BGL(i)に−3Vが供給されているものとする。
<読み出しモード>
まず、メモリセル214[i,j]からデータを読み出す際のセンスアンプ134(j)の動作例について、図9に示したタイミングチャートを用いて説明する。
[期間T11]
期間T11において、プリチャージ回路133(j)を動作させ、配線BILa(j)及び配線BILb(j)の電位を初期化する。具体的には、配線PLの電位をハイレベル(VH_PL)とし、トランジスタTr21乃至トランジスタTr23をオン状態にする。これにより、配線BILa(j)及び配線BILb(j)に、配線PREの電位Vpreが供給される。なお、電位Vpreは、例えば(VH_SP+VL_SN)/2とすることができる。VH_SPは、配線SPに供給されるハイレベル電位であり、VL_SNは、配線SNに供給されるローレベル電位である。
なお、期間T11において、配線CSELの電位はローレベル(VL_CSEL)であり、入出力回路135(j)においてトランジスタTr41、トランジスタTr42はオフ状態である。また、配線WDL(i)の電位はローレベル(VL_WDL)であり、メモリセル214[i,j]が有するトランジスタM12はオフ状態である。同様に、図9には図示していないが、配線WDL[i+1]の電位はローレベル(VL_WDL)であり、メモリセル214[i+1,j]が有するトランジスタM12はオフ状態である。また、配線SP及び配線SNの電位は電位Vpreであり、センスアンプ134(j)は停止状態となっている。
なお、VL_WDLは、VL_SNよりも低い電位であることが好ましい。また、VL_WDLは、VL_SNからトランジスタM12のVthを減じた電位よりも低い電位であることが好ましい。言い換えると、VL_SNを基準電位(0V)とした場合、VL_WDLを負電位(マイナス電位、または負バイアス、ともいう)にすればよい。
配線WDL(i)に負バイアスを供給することにより、トランジスタM12をより確実にオフ状態とすることができる。特に、高温環境下においてもデータの保持時間が長い記憶装置を提供することができる。
また、配線BGL(i)に負バイアスを供給することによってもトランジスタM12をオフ状態とすることができる。特に、配線WDL(i)および配線BGL(i)の双方に負バイアスを供給することによって、一方のみに負バイアスを供給する場合よりも小さいバイアスで同等の効果が実現できる。また、トランジスタM12に加わる電界ストレスを低減することができるため、トランジスタM12の信頼性を高めることができる。さらに、トランジスタM12の消費電力を低減することができる。すなわち、記憶装置10の信頼性を高め、消費電力を低減することができる。
[期間T12]
期間T12において、配線PLの電位をローレベル(VL_PL)とし、トランジスタTr21乃至トランジスタTr23をオフ状態にする。また、配線WDL(i)を選択する。具体的には、配線WDL(i)の電位をハイレベル(VH_WDL)とすることにより、メモリセル214[i,j]が有するトランジスタM12をオン状態にする。これにより、メモリセル214[i,j]において配線BILa(j)と容量素子CBがトランジスタM12を介して導通状態となり、容量素子CBに保持されている電荷の量に応じて配線BILa(j)の電位が変動する。
ここで、VH_WDLは、VH_SPよりも高い電位であることが好ましい。具体的には、VH_WDLは、VH_SPにトランジスタM12のVthを加えた電位よりも高い電位であることが好ましい。
図9では、メモリセル214[i,j]にデータ“1”が格納され、容量素子CBに蓄積されている電荷の量が多い場合を例示している。具体的に、容量素子CBに蓄積されている電荷の量が多い場合、容量素子CBから配線BILa(j)へ電荷が放出されることにより、電位VpreからΔV1だけ配線BILa(j)の電位が上昇する。一方、メモリセル214[i,j]にデータ“0”が格納され、容量素子CBに蓄積されている電荷の量が少ない場合は、配線BILa(j)から容量素子CBへ電荷が流入することにより、配線BILa(j)の電位はΔV2だけ下降する(図示せず)。
なお、期間T12において、配線CSELの電位はローレベル(VL_CSEL)であり、入出力回路135(j)においてトランジスタTr41、トランジスタTr42はオフ状態である。また、配線SP及び配線SNの電位は電位Vpreであり、センスアンプ134(j)は停止状態を維持する。
[期間T13]
期間T13において、配線SPの電位をハイレベル(VH_SP)まで変化させ、配線SNの電位をローレベル(VL_SN)まで変化させる。すると、センスアンプ134(j)が動作状態になる。センスアンプ134(j)は、配線BILa(j)と配線BILb(j)の電位差(図9においてはΔV1)を増幅させる機能を有する。センスアンプ134(j)が動作状態になることにより、配線BILa(j)の電位は、Vpre+ΔV1から配線SPの電位(VH_SP)に近づく。また、配線BILb(j)の電位は、Vpreから配線SNの電位(VL_SN)に近づく。
なお、期間T13の初期において、配線BILa(j)の電位がVpre−ΔV2である場合は、センスアンプ134(j)が動作状態になることにより、配線BILa(j)の電位は、Vpre−ΔV2から配線SNの電位(VL_SN)に近づく。また、配線BILb(j)の電位は、電位Vpreから配線SPの電位(VH_SP)に近づく。
また、期間T13において配線PLの電位はローレベル(VL_PL)であり、プリチャージ回路133(j)においてトランジスタTr21乃至トランジスタTr23はオフ状態である。また、配線CSELの電位はローレベル(VL_CSEL)であり、入出力回路135(j)においてトランジスタTr41、トランジスタTr42はオフ状態である。また、配線WDL(i)の電位はハイレベル(VH_WDL)であり、メモリセル214[i,j]が有するトランジスタM12はオン状態である。よって、メモリセル214[i,j]では、配線BILa(j)の電位(VH_SP)に応じた電荷量が、容量素子CBに蓄積される。
[期間T14]
期間T14において、配線CSELの電位を制御することにより、入出力回路135(j)をオン状態にする。具体的には、配線CSELの電位をハイレベル(VH_CSEL)とすることにより、トランジスタTr41とトランジスタTr42をオン状態にする。これにより、配線BILa(j)の電位が配線SALa(j)に供給され、配線BILb(j)の電位が配線SALb(j)に供給される。
なお、期間T14において、配線PLの電位はローレベル(VL_PL)であり、プリチャージ回路133(j)においてトランジスタTr21乃至トランジスタTr23はオフ状態である。また、配線WDL(i)の電位はハイレベル(VH_WDL)であり、メモリセル214[i,j]が有するトランジスタM12はオン状態である。また、配線SPの電位はハイレベル(VH_SP)であり、配線SNの電位はローレベル(VL_SN)であり、センスアンプ134(j)は動作状態である。よって、メモリセル214[i,j]では、配線BILa(j)の電位(VH_SP)に応じた電荷が、容量素子CBに蓄積されている。
[期間T15]
期間T15において、配線CSELの電位を制御することにより、入出力回路135(j)をオフ状態にする。具体的には、配線CSELの電位をローレベル(VL_CSEL)とすることにより、トランジスタTr41、トランジスタTr42をオフ状態にする。
また、期間T15において、配線WDL(i)にVL_WDLを供給して配線WDL(i)を非選択の状態とする。具体的には、配線WDL(i)の電位をローレベル(VL_WDL)とする。すると、メモリセル214[i,j]が有するトランジスタがオフ状態になる。これにより、配線BILa(j)の電位(VH_SP)に応じた電荷量が、メモリセル214[i,j]が有する容量素子CBに保持される。よって、データの読み出しが行われた後も、データがメモリセル214[i,j]に保持される。
配線WDL(i)に供給するVL_WDLを負電位とすることで、トランジスタM12をより確実にオフ状態とすることができる。特に、高温環境下においてもデータの保持時間が長い記憶装置を提供することができる。
なお、期間T15において入出力回路135(j)をオフ状態にしても、センスアンプ134(j)が動作状態であれば、配線BILa(j)と配線BILb(j)の電位はセンスアンプ134(j)により保持される。そのため、センスアンプ134(j)はメモリセル214[i,j]から読み出したデータを一時的に保持する機能を有する。
上記の動作により、メモリセル214[i,j]からデータを読み出すことができる。読み出されたデータは、配線SALa(j)および/または配線SALb(j)を介して出力回路141(図1参照)に供給される。なお、メモリセル214[i+1,j]からのデータの読み出しも、メモリセル214[i,j]と同様に行うことができる。
<書き込みモード>
次に、メモリセル214[i,j]にデータを書き込む際のセンスアンプ134(j)の動作例について、図10に示したタイミングチャートを用いて説明する。メモリセル214[i+1,j]へのデータの書き込みは、上記と同様の原理で行うことができる。
[期間T21]
期間T21において、プリチャージ回路133(j)が有するトランジスタTr21乃至トランジスタTr23をオン状態にして、配線BILa(j)及び配線BILb(j)の電位を初期化する。具体的には、配線PLの電位をハイレベル(VH_PL)とし、トランジスタTr21乃至トランジスタTr23をオン状態にする。これにより、配線BILa(j)及び配線BILb(j)に、配線PREの電位Vpreが供給される。なお、電位Vpreは、例えば(VH_SP+VL_SN)/2とすることができる。
[期間T22]
期間T22において、その後、配線PLの電位をローレベル(VL_PL)とし、トランジスタTr21乃至トランジスタTr23をオフ状態にする。また、データの書き込みを行うメモリセル214[i,j]と接続された配線WDL(i)を選択する。具体的には、配線WDL(i)の電位をハイレベル(VH_WDL)とし、メモリセル214[i,j]が有するトランジスタM12をオン状態にする。これにより、メモリセル214[i,j]において配線BILa(j)と容量素子CBがトランジスタM12を介して導通状態になる。
なお、書き込みモードで動作している間、配線BGL(i)に負バイアスを供給したままとしてもよいが、配線WDL(i)の電位がVH_WDLになるのに合わせて、配線BGL(i)の電位を上昇させてもよい。図10では期間T22において、配線BGL(i)の電位をL電位(例えば、0V)にしている。
配線WDL(i)の電位上昇に合わせて配線BGL(i)の電位を上昇させることで、トランジスタM12の動作速度を高めることができる。よって、書き込み動作に必要な時間を短縮することができる。よって、記憶装置10の動作速度を高めることができる。
また、配線WDL(i)および配線BGL(i)の双方の電位を上昇させることで、一方のみの電位を上昇させる場合よりも少ない電位上昇で同等の書き込み速度が実現できる。よって、トランジスタM12に加わる電界ストレスを低減することができるため、トランジスタM12の信頼性を高めることができる。さらに、トランジスタM12の消費電力を低減することができる。すなわち、記憶装置10の信頼性を高め、消費電力を低減することができる。
この時、既にメモリセル214[i,j]にデータ“1”が格納されている場合、容量素子CBから配線BILa(j)へ電荷が放出されることにより、電位VpreからΔV1だけ配線BILa(j)の電位が上昇する。
[期間T23]
期間T23において、配線SPの電位をハイレベル(VH_SP)とし、配線SNの電位をローレベル(VL_SN)とし、センスアンプ134(j)を動作状態にする。
[期間T24]
期間T24において、配線CSELの電位を制御することにより、入出力回路135(j)をオン状態にする。これにより、配線BILa(j)と配線SALa(j)とが導通状態となり、配線BILb(j)と配線SALb(j)とが導通状態となる。
データ信号WDATAは、配線SALa(j)および配線SALb(j)を介して入出力回路135(j)に供給される。配線SALa(j)および配線SALb(j)に、データ信号WDATAに相当する書き込み電位を供給することにより、入出力回路135(j)を介して配線BILa(j)および配線BILb(j)に書き込み電位が与えられる。例えば、メモリセル214[i,j]にデータ“0”を格納する場合、配線SALa(j)にローレベル(VL_SN)を供給し、配線SALb(j)にハイレベル(VH_SP)を供給する。
すると、センスアンプ134(j)が有するトランジスタTr31乃至トランジスタTr34のオンオフ状態が反転し、配線BILa(j)に配線SNの電位(VL_SN)が供給され、配線BILb(j)に配線SPの電位(VH_SP)が供給される。よって、データ“0”を示す電位(VL_SN)に応じた電荷量が容量素子CBに蓄積される。このような動作により、メモリセル214[i,j]にデータを書き込むことができる。
[期間T25]
期間T25において、配線WDL(i)にVL_WDLを供給し、配線WDL(i)を非選択の状態とする。これにより、メモリセル214[i,j]に書き込まれた電荷が保持される。配線WDL(i)の電位上昇に合わせて配線BGL(i)の電位も上昇させた場合、配線WDL(i)の電位がVL_WDLになるのに合わせて、配線BGL(i)の電位を下げる。例えば、配線BGL(i)に−3Vを供給する。
また、配線CSELの電位をローレベル(VL_CSEL)とすることにより、トランジスタTr41、トランジスタTr42をオフ状態にする。
なお、配線BILa(j)に配線SALa(j)の電位が供給された後は、入出力回路135(j)においてトランジスタTr41、トランジスタTr42をオフ状態にしても、センスアンプ134(j)が動作状態であれば、配線BILa(j)と配線BILb(j)の電位はセンスアンプ134(j)により保持される。よって、トランジスタTr41、トランジスタTr42をオン状態からオフ状態に変更するタイミングは、配線WDL(i)を選択する前であっても後であってもよい。
上記の動作により、メモリセル214[i,j]にデータを書き込むことができる。なお、メモリセル214[i+1,j]へのデータの書き込みも、メモリセル214[i,j]と同様に行うことができる。
配線WDL(i)に供給するVL_WDLを負電位とすることで、トランジスタM12をより確実にオフ状態とすることができる。特に、高温環境下においてもデータの保持時間が長い記憶装置を提供することができる。
<リフレッシュモード>
メモリセル214[i,j]に書き込まれたデータを維持するため、一定期間毎にリフレッシュ動作(再書き込み動作)を行なう。リフレッシュ動作時のセンスアンプ134(j)の動作例について、図11に示したタイミングチャートを用いて説明する。なお、リフレッシュ動作も上記と同様の原理で行うことができる。
[期間T31]
期間T31において、プリチャージ回路133(j)が有するトランジスタTr21乃至トランジスタTr23をオン状態にして、配線BILa(j)及び配線BILb(j)の電位を初期化する。具体的には、配線PLの電位をハイレベル(VH_PL)とし、トランジスタTr21乃至トランジスタTr23をオン状態にする。これにより、配線BILa(j)及び配線BILb(j)に、配線PREの電位Vpreが供給される。
[期間T32]
期間T32において、配線PLの電位をローレベル(VL_PL)とし、トランジスタTr21乃至トランジスタTr23をオフ状態にする。また、データの書き込みを行うメモリセル214[i,j]と接続された配線WDL(i)を選択する。具体的には、配線WDL(i)の電位をハイレベル(VH_WDL)とし、メモリセル214[i,j]が有するトランジスタM12をオン状態にする。これにより、メモリセル214[i,j]において配線BILa(j)と容量素子CBがトランジスタM12を介して導通状態になる。
なお、リフレッシュモードで動作している間、配線BGL(i)に負バイアスを供給したままとしてもよいが、配線WDL(i)の電位がVH_WDLになるのに合わせて、配線BGL(i)の電位を上昇させてもよい。図11では期間T32において、配線BGL(i)の電位をL電位(例えば、0V)にしている。
配線WDL(i)の電位上昇に合わせて配線BGL(i)の電位を上昇させることで、トランジスタM12の動作速度を高めることができる。よって、リフレッシュに必要な時間を短縮することができる。よって、記憶装置10の動作速度を高めることができる。
また、配線WDL(i)および配線BGL(i)の双方の電位を上昇させることで、一方のみの電位を上昇させる場合よりも少ない電位上昇で同等の書き込み速度が実現できる。よって、トランジスタM12に加わる電界ストレスを低減することができるため、トランジスタM12の信頼性を高めることができる。さらに、トランジスタM12の消費電力を低減することができる。
この時、既にメモリセル214[i,j]にデータ“1”が格納されている場合、容量素子CBから配線BILa(j)へ電荷が放出されることにより、電位VpreからΔV1だけ配線BILa(j)の電位が上昇する。
[期間T33]
期間T33において、配線SPの電位をハイレベル(VH_SP)とし、配線SNの電位をローレベル(VL_SN)とし、センスアンプ134(j)を動作状態にする。センスアンプ134(j)が動作状態になることにより、配線BILa(j)の電位は、Vpre+ΔV1から配線SPの電位(VH_SP)に近づく。また、配線BILb(j)の電位は、Vpreから配線SNの電位(VL_SN)に近づく。なお、本明細書などにおいて、期間T33に要する時間を「書き込み時間」という。
[期間T34]
期間T34において、配線WDL(i)にVL_WDLを供給し、配線WDL(i)を非選択の状態とする。具体的には、配線WDL(i)の電位をローレベル(VL_WDL)とすることにより、メモリセル214[i,j]が有するトランジスタをオフ状態にする。これにより、配線BILa(j)の電位(VH_SP)に応じた電荷量がメモリセル214[i,j]が有する容量素子CBに保持される。
また、VL_WDLを負電位とすることで、トランジスタM12をより確実にオフ状態にすることができる。特に、高温環境下においてもデータの保持時間が長い記憶装置を提供することができる。
また、配線WDL(i)の電位がVL_WDLになるのに合わせて、配線BGL(i)の電位を下げる。例えば、配線BGL(i)に−3Vを供給する。
リフレッシュモードでは、データの読み出しまたは書き込みを行なわないため、入出力回路135(j)はオフ状態のままでよい。よって、リフレッシュモードは、読み出しモードおよび書き込みモードよりも短期間で行なうことができる。なお、メモリセル214[i+1,j]のリフレッシュモードも、メモリセル214[i,j]と同様に行うことができる。
なお、本実施の形態は、本明細書に記載する他の実施の形態と適宜組み合わせて実施することができる。
(実施の形態3)
本実施の形態では、上記実施の形態で説明した記憶装置10を構成する、トランジスタの構成例について説明する。本実施の形態では、単結晶シリコン基板に形成されたSiトランジスタを有する層の上方に、OSトランジスタを有する層が積層して設けられた構造を有する、記憶装置の構成例について説明する。
<記憶装置の構成例>
図12に示す記憶装置は、トランジスタ300と、トランジスタ500、および容量素子600を有する。図13Aはトランジスタ500のチャネル長方向の断面図であり、図13Bはトランジスタ500のチャネル幅方向の断面図であり、図13Cはトランジスタ300のチャネル幅方向の断面図である。
トランジスタ500は、チャネル形成領域に金属酸化物を有するトランジスタ(OSトランジスタ)である。トランジスタ500は、ソースとドレインとの間に高い電圧を印加できる、高温環境下でもオフ電流が増加しにくい、高温環境下でもオン電流とオフ電流の比が大きいという特徴を有するため、上記実施の形態では、これを記憶装置10に用いることにより、当該記憶装置を信頼性の高い記憶装置とすることができる。
図12に示すように、本実施の形態で説明する記憶装置において、トランジスタ500はトランジスタ300の上方に設けられ、容量素子600は、トランジスタ300およびトランジスタ500の上方に設けられている。
トランジスタ300は、基板311上に設けられ、導電体316、絶縁体315、基板311の一部からなる半導体領域313、およびソース領域またはドレイン領域として機能する低抵抗領域314a、および低抵抗領域314bを有する。
トランジスタ300は、図13Cに示すように、半導体領域313の上面およびチャネル幅方向の側面が絶縁体315を介して導電体316に覆われている。このように、トランジスタ300をFin型とすることにより、実効上のチャネル幅が増大し、トランジスタ300のオン特性を向上させることができる。また、ゲート電極の電界の寄与を高くすることができるため、トランジスタ300のオフ特性を向上させることができる。
なお、トランジスタ300は、pチャネル型、あるいはnチャネル型のいずれでもよい。
半導体領域313のチャネルが形成される領域、その近傍の領域、ソース領域、またはドレイン領域となる低抵抗領域314a、および低抵抗領域314bなどにおいて、シリコン系半導体などの半導体を含むことが好ましく、単結晶シリコンを含むことが好ましい。または、Ge(ゲルマニウム)、SiGe(シリコンゲルマニウム)、GaAs(ガリウムヒ素)、GaAlAs(ガリウムアルミニウムヒ素)などを有する材料で形成してもよい。結晶格子に応力を与え、格子間隔を変化させることで有効質量を制御したシリコンを用いた構成としてもよい。またはGaAsとGaAlAs等を用いることで、トランジスタ300をHEMT(High Electron Mobility Transistor)としてもよい。
低抵抗領域314a、および低抵抗領域314bは、半導体領域313に適用される半導体材料に加え、ヒ素、リンなどのn型の導電性を付与する元素、またはホウ素などのp型の導電性を付与する元素を含む。
ゲート電極として機能する導電体316は、ヒ素、リンなどのn型の導電性を付与する元素、もしくはホウ素などのp型の導電性を付与する元素を含むシリコンなどの半導体材料、金属材料、合金材料、または金属酸化物材料などの導電性材料を用いることができる。
なお、導電体の材料により、仕事関数が定まるため、導電体の材料を変更することで、トランジスタのVthを調整することができる。具体的には、導電体に窒化チタンや窒化タンタルなどの材料を用いることが好ましい。さらに導電性と埋め込み性を両立するために導電体にタングステンやアルミニウムなどの金属材料を積層して用いることが好ましく、特にタングステンを用いることが耐熱性の点で好ましい。
なお、図12に示すトランジスタ300は一例であり、その構造に限定されず、回路構成や駆動方法に応じて適切なトランジスタを用いればよい。
トランジスタ300を覆って、絶縁体320、絶縁体322、絶縁体324、および絶縁体326が順に積層して設けられている。
絶縁体320、絶縁体322、絶縁体324、および絶縁体326として、例えば、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化アルミニウム、酸化窒化アルミニウム、窒化酸化アルミニウム、窒化アルミニウムなどを用いればよい。
絶縁体322は、その下方に設けられるトランジスタ300などによって生じる段差を平坦化する平坦化膜としての機能を有していてもよい。例えば、絶縁体322の上面は、平坦性を高めるために化学機械研磨(CMP)法等を用いた平坦化処理により平坦化されていてもよい。
また、絶縁体324には、基板311、またはトランジスタ300などから、トランジスタ500が設けられる領域に、水素や不純物が拡散しないようなバリア性を有する膜を用いることが好ましい。
水素に対するバリア性を有する膜の一例として、例えば、CVD法で形成した窒化シリコンを用いることができる。ここで、トランジスタ500等の酸化物半導体を有する半導体素子に、水素が拡散することで、当該半導体素子の特性が低下する場合がある。したがって、トランジスタ500と、トランジスタ300との間に、水素の拡散を抑制する膜を用いることが好ましい。水素の拡散を抑制する膜とは、具体的には、水素の脱離量が少ない膜とする。
水素の脱離量は、例えば、昇温脱離ガス分析(TDS(Thermal Desorption Spectroscopy)分析)法などを用いて分析することができる。例えば、絶縁体324の水素の脱離量は、TDS分析において、膜の表面温度が50℃から500℃の範囲において、水素原子に換算した脱離量が、絶縁体324の面積当たりに換算して、10×1015atoms/cm以下、好ましくは5×1015atoms/cm以下であればよい。
なお、絶縁体326は、絶縁体324よりも誘電率が低いことが好ましい。例えば、絶縁体326の比誘電率は4未満が好ましく、3未満がより好ましい。また例えば、絶縁体326の比誘電率は、絶縁体324の比誘電率の0.7倍以下が好ましく、0.6倍以下がより好ましい。比誘電率が低い材料を層間膜とすることで、配線間に生じる寄生容量を低減することができる。
また、絶縁体320、絶縁体322、絶縁体324、および絶縁体326には容量素子600、またはトランジスタ500と接続する導電体328、および導電体330等が埋め込まれている。なお、導電体328、および導電体330は、プラグまたは配線としての機能を有する。また、プラグまたは配線としての機能を有する導電体は、複数の構造をまとめて同一の符号を付与する場合がある。また、本明細書等において、配線と、配線と接続するプラグとが一体物であってもよい。すなわち、導電体の一部が配線として機能する場合、および導電体の一部がプラグとして機能する場合もある。
各プラグ、および配線(導電体328、および導電体330等)の材料としては、金属材料、合金材料、金属窒化物材料、または金属酸化物材料などの導電性材料を、単層または積層して用いることができる。耐熱性と導電性を両立するタングステンやモリブデンなどの高融点材料を用いることが好ましく、タングステンを用いることが好ましい。または、アルミニウムや銅などの低抵抗導電性材料で形成することが好ましい。低抵抗導電性材料を用いることで配線抵抗を低くすることができる。
絶縁体326、および導電体330上に、配線層を設けてもよい。例えば、図12において、絶縁体350、絶縁体352、および絶縁体354が順に積層して設けられている。また、絶縁体350、絶縁体352、および絶縁体354には、導電体356が形成されている。導電体356は、トランジスタ300と接続するプラグ、または配線としての機能を有する。なお導電体356は、導電体328、および導電体330と同様の材料を用いて設けることができる。
なお、例えば、絶縁体350は、絶縁体324と同様に、水素に対するバリア性を有する絶縁体を用いることが好ましい。また、導電体356は、水素に対するバリア性を有する導電体を含むことが好ましい。特に、水素に対するバリア性を有する絶縁体350が有する開口部に、水素に対するバリア性を有する導電体が形成される。当該構成により、トランジスタ300とトランジスタ500とは、バリア層により分離することができ、トランジスタ300からトランジスタ500への水素の拡散を抑制することができる。
なお、水素に対するバリア性を有する導電体としては、例えば、窒化タンタル等を用いるとよい。また、窒化タンタルと導電性が高いタングステンを積層することで、配線としての導電性を保持したまま、トランジスタ300からの水素の拡散を抑制することができる。この場合、水素に対するバリア性を有する窒化タンタル層が、水素に対するバリア性を有する絶縁体350と接する構造であることが好ましい。
絶縁体354、および導電体356上に、配線層を設けてもよい。例えば、図12において、絶縁体360、絶縁体362、および絶縁体364が順に積層して設けられている。また、絶縁体360、絶縁体362、および絶縁体364には、導電体366が形成されている。導電体366は、プラグまたは配線としての機能を有する。なお導電体366は、導電体328、および導電体330と同様の材料を用いて設けることができる。
なお、例えば、絶縁体360は、絶縁体324と同様に、水素に対するバリア性を有する絶縁体を用いることが好ましい。また、導電体366は、水素に対するバリア性を有する導電体を含むことが好ましい。特に、水素に対するバリア性を有する絶縁体360が有する開口部に、水素に対するバリア性を有する導電体が形成される。当該構成により、トランジスタ300とトランジスタ500とは、バリア層により分離することができ、トランジスタ300からトランジスタ500への水素の拡散を抑制することができる。
絶縁体364、および導電体366上に、配線層を設けてもよい。例えば、図12において、絶縁体370、絶縁体372、および絶縁体374が順に積層して設けられている。また、絶縁体370、絶縁体372、および絶縁体374には、導電体376が形成されている。導電体376は、プラグまたは配線としての機能を有する。なお導電体376は、導電体328、および導電体330と同様の材料を用いて設けることができる。
なお、例えば、絶縁体370は、絶縁体324と同様に、水素に対するバリア性を有する絶縁体を用いることが好ましい。また、導電体376は、水素に対するバリア性を有する導電体を含むことが好ましい。特に、水素に対するバリア性を有する絶縁体370が有する開口部に、水素に対するバリア性を有する導電体が形成される。当該構成により、トランジスタ300とトランジスタ500とは、バリア層により分離することができ、トランジスタ300からトランジスタ500への水素の拡散を抑制することができる。
絶縁体374、および導電体376上に、配線層を設けてもよい。例えば、図12において、絶縁体380、絶縁体382、および絶縁体384が順に積層して設けられている。また、絶縁体380、絶縁体382、および絶縁体384には、導電体386が形成されている。導電体386は、プラグまたは配線としての機能を有する。なお導電体386は、導電体328、および導電体330と同様の材料を用いて設けることができる。
なお、例えば、絶縁体380は、絶縁体324と同様に、水素に対するバリア性を有する絶縁体を用いることが好ましい。また、導電体386は、水素に対するバリア性を有する導電体を含むことが好ましい。特に、水素に対するバリア性を有する絶縁体380が有する開口部に、水素に対するバリア性を有する導電体が形成される。当該構成により、トランジスタ300とトランジスタ500とは、バリア層により分離することができ、トランジスタ300からトランジスタ500への水素の拡散を抑制することができる。
上記において、導電体356を含む配線層、導電体366を含む配線層、導電体376を含む配線層、および導電体386を含む配線層、について説明したが、本実施の形態に係る記憶装置はこれに限られるものではない。導電体356を含む配線層と同様の配線層を3層以下にしてもよいし、導電体356を含む配線層と同様の配線層を5層以上にしてもよい。
絶縁体384上には絶縁体510、絶縁体512、絶縁体514、および絶縁体516が、順に積層して設けられている。絶縁体510、絶縁体512、絶縁体514、および絶縁体516のいずれかは、酸素や水素に対してバリア性のある物質を用いることが好ましい。
例えば、絶縁体510、および絶縁体514には、例えば、基板311、またはトランジスタ300を設ける領域などから、トランジスタ500を設ける領域に、水素や不純物が拡散しないようなバリア性を有する膜を用いることが好ましい。したがって、絶縁体324と同様の材料を用いることができる。
水素に対するバリア性を有する膜の一例として、CVD法で形成した窒化シリコンを用いることができる。ここで、トランジスタ500等の酸化物半導体を有する半導体素子に、水素が拡散することで、当該半導体素子の特性が低下する場合がある。したがって、トランジスタ500と、トランジスタ300との間に、水素の拡散を抑制する膜を用いることが好ましい。水素の拡散を抑制する膜とは、具体的には、水素の脱離量が少ない膜とする。
また、水素に対するバリア性を有する膜として、例えば、絶縁体510、および絶縁体514には、酸化アルミニウム、酸化ハフニウム、酸化タンタルなどの金属酸化物を用いることが好ましい。
特に、酸化アルミニウムは、酸素、およびトランジスタの電気特性の変動要因となる水素、水分などの不純物、の両方に対して膜を透過させない遮断効果が高い。したがって、酸化アルミニウムは、トランジスタの作製工程中および作製後において、水素、水分などの不純物のトランジスタ500への混入を防止することができる。また、トランジスタ500を構成する酸化物からの酸素の放出を抑制することができる。そのため、トランジスタ500に対する保護膜として用いることに適している。
また、例えば、絶縁体512、および絶縁体516には、絶縁体320と同様の材料を用いることができる。また、比較的誘電率が低い材料を層間膜とすることで、配線間に生じる寄生容量を低減することができる。例えば、絶縁体512、および絶縁体516として、酸化シリコン膜や酸化窒化シリコン膜などを用いることができる。
また、絶縁体510、絶縁体512、絶縁体514、および絶縁体516には、導電体518、およびトランジスタ500を構成する導電体(導電体503)等が埋め込まれている。なお、導電体518は、容量素子600、またはトランジスタ300と接続するプラグ、または配線としての機能を有する。導電体518は、導電体328、および導電体330と同様の材料を用いて設けることができる。
特に、絶縁体510、および絶縁体514と接する領域の導電体518は、酸素、水素、および水に対するバリア性を有する導電体であることが好ましい。当該構成により、トランジスタ300とトランジスタ500とは、酸素、水素、および水に対するバリア性を有する層で、分離することができ、トランジスタ300からトランジスタ500への水素の拡散を抑制することができる。
絶縁体512の上方には、トランジスタ500が設けられている。
図13A、図13Bに示すように、トランジスタ500は、絶縁体514および絶縁体516に埋め込まれるように配置された導電体503と、絶縁体516と導電体503の上に配置された絶縁体520と、絶縁体520の上に配置された絶縁体522と、絶縁体522の上に配置された絶縁体524と、絶縁体524の上に配置された酸化物530aと、酸化物530aの上に配置された酸化物530bと、酸化物530b上に、互いに離して配置された導電体542a、および導電体542bと、導電体542aおよび導電体542b上に配置され、導電体542aと導電体542bの間に重畳して開口が形成された絶縁体580と、開口の中に配置された導電体560と、酸化物530b、導電体542a、導電体542b、および絶縁体580と、導電体560と、の間に配置された絶縁体550と、酸化物530b、導電体542a、導電体542b、および絶縁体580と、絶縁体550と、の間に配置された酸化物530cと、を有する。
また、図13A、図13Bに示すように、酸化物530a、酸化物530b、導電体542a、および導電体542bと、絶縁体580の間に絶縁体544が配置されることが好ましい。また、図13A、図13Bに示すように、導電体560は、絶縁体550の内側に設けられた導電体560aと、導電体560aの内側に埋め込まれるように設けられた導電体560bと、を有することが好ましい。また、図13A、図13Bに示すように、絶縁体580、導電体560、および絶縁体550の上に絶縁体574が配置されることが好ましい。
なお、以下において、酸化物530a、酸化物530b、および酸化物530cをまとめて酸化物530という場合がある。また、導電体542aおよび導電体542bをまとめて導電体542という場合がある。
なお、トランジスタ500では、チャネルが形成される領域と、その近傍において、酸化物530a、酸化物530b、および酸化物530cの3層を積層する構成について示しているが、本発明はこれに限られるものではない。例えば、酸化物530bの単層、酸化物530bと酸化物530aの2層構造、酸化物530bと酸化物530cの2層構造、または4層以上の積層構造を設ける構成にしてもよい。また、トランジスタ500では、導電体560を2層の積層構造として示しているが、本発明はこれに限られるものではない。例えば、導電体560が、単層構造であってもよいし、3層以上の積層構造であってもよい。また、図12、図13A、図13Bに示すトランジスタ500は一例であり、その構造に限定されず、回路構成や駆動方法に応じて適切なトランジスタを用いればよい。
ここで、導電体560は、トランジスタのゲート電極として機能し、導電体542aおよび導電体542bは、それぞれソース電極またはドレイン電極として機能する。上記のように、導電体560は、絶縁体580の開口、および導電体542aと導電体542bに挟まれた領域に埋め込まれるように形成される。導電体560、導電体542aおよび導電体542bの配置は、絶縁体580の開口に対して、自己整合的に選択される。つまり、トランジスタ500において、ゲート電極を、ソース電極とドレイン電極の間に、自己整合的に配置させることができる。よって、導電体560を位置合わせのマージンを設けることなく形成することができるので、トランジスタ500の占有面積の縮小を図ることができる。これにより、記憶装置の微細化、高集積化を図ることができる。
さらに、導電体560が、導電体542aと導電体542bの間の領域に自己整合的に形成されるので、導電体560は、導電体542aまたは導電体542bと重畳する領域を有さない。これにより、導電体560と導電体542aおよび導電体542bとの間に形成される寄生容量を低減することができる。よって、トランジスタ500のスイッチング速度を向上させ、高い周波数特性を有せしめることができる。
導電体560は、第1のゲート(トップゲート、ともいう)電極として機能する場合がある。また、導電体503は、第2のゲート(ボトムゲート、ともいう)電極として機能する場合がある。その場合、導電体503に印加する電位を、導電体560に印加する電位と、連動させず、独立して変化させることで、トランジスタ500のVthを制御することができる。特に、導電体503に負の電位を印加することにより、トランジスタ500のVthを0Vより大きくし、オフ電流を低減することが可能となる。したがって、導電体503に負の電位を印加したほうが、印加しない場合よりも、導電体560に印加する電位が0Vのときのドレイン電流を小さくすることができる。
導電体503は、酸化物530、および導電体560と、重なるように配置する。これにより、導電体560、および導電体503に電位を印加した場合、導電体560から生じる電界と、導電体503から生じる電界と、がつながり、酸化物530に形成されるチャネル形成領域を覆うことができる。本明細書等において、第1のゲート電極、および第2のゲート電極の電界によって、チャネル形成領域を電気的に取り囲むトランジスタの構造を、surrounded channel(S−channel)構造とよぶ。
また、本明細書等において、S−channel構造は、ソース電極およびドレイン電極として機能する導電体542aおよび導電体542bに接する酸化物530の側面及び周辺が、チャネル形成領域と同じくI型であるといった特徴を有する。また、導電体542aおよび導電体542bに接する酸化物530の側面及び周辺は、絶縁体544と接しているため、チャネル形成領域と同様にI型となりうる。なお、本明細書等において、I型とは後述する、高純度真性と同様として扱うことができる。また、本明細書等で開示するS−channel構造は、Fin型構造及びプレーナ型構造とは異なる。S−channel構造を採用することで、短チャネル効果に対する耐性を高める、別言すると短チャネル効果が発生し難いトランジスタとすることができる。
また、導電体503は、導電体518と同様の構成であり、絶縁体514および絶縁体516の開口の内壁に接して導電体503aが形成され、さらに内側に導電体503bが形成されている。
絶縁体520、絶縁体522、絶縁体524、および絶縁体550は、ゲート絶縁膜としての機能を有する。
ここで、酸化物530と接する絶縁体524は、化学量論的組成を満たす酸素よりも多くの酸素を含む絶縁体を用いることが好ましい。つまり、絶縁体524には、過剰酸素領域が形成されていることが好ましい。このような過剰酸素を含む絶縁体を酸化物530に接して設けることにより、酸化物530中の酸素欠損を低減し、トランジスタ500の信頼性を向上させることができる。
過剰酸素領域を有する絶縁体として、具体的には、加熱により一部の酸素が脱離する酸化物材料を用いることが好ましい。加熱により酸素を脱離する酸化物とは、TDS分析にて、酸素原子に換算しての酸素の脱離量が1.0×1018atoms/cm以上、好ましくは1.0×1019atoms/cm以上、さらに好ましくは2.0×1019atoms/cm以上、または3.0×1020atoms/cm以上である酸化物膜である。なお、上記TDS分析時における膜の表面温度としては100℃以上700℃以下、または100℃以上400℃以下の範囲が好ましい。
また、絶縁体524が、過剰酸素領域を有する場合、絶縁体522は、酸素(例えば、酸素原子、酸素分子など)の拡散を抑制する機能を有する(上記酸素が透過しにくい)ことが好ましい。
絶縁体522が、酸素や不純物の拡散を抑制する機能を有することで、酸化物530が有する酸素は、絶縁体520側へ拡散することがなく、好ましい。また、導電体503が、絶縁体524や、酸化物530が有する酸素と反応することを抑制することができる。
絶縁体522は、例えば、酸化アルミニウム、酸化ハフニウム、酸化タンタル、酸化ジルコニウム、チタン酸ジルコン酸鉛(PZT)、チタン酸ストロンチウム(SrTiO)または(Ba,Sr)TiO(BST)などのいわゆるhigh−k材料を含む絶縁体を単層または積層で用いることが好ましい。トランジスタの微細化、および高集積化が進むと、ゲート絶縁膜の薄膜化により、リーク電流などの問題が生じる場合がある。ゲート絶縁膜として機能する絶縁体にhigh−k材料を用いることで、物理膜厚を保ちながら、トランジスタ動作時のゲート電位の低減が可能となる。
特に、不純物、および酸素などの拡散を抑制する機能を有する(上記酸素が透過しにくい)絶縁性材料であるアルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体を用いるとよい。アルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体として、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。このような材料を用いて絶縁体522を形成した場合、絶縁体522は、酸化物530からの酸素の放出や、トランジスタ500の周辺部から酸化物530への水素等の不純物の混入を抑制する層として機能する。
または、これらの絶縁体に、例えば、酸化アルミニウム、酸化ビスマス、酸化ゲルマニウム、酸化ニオブ、酸化シリコン、酸化チタン、酸化タングステン、酸化イットリウム、酸化ジルコニウムを添加してもよい。またはこれらの絶縁体を窒化処理してもよい。上記の絶縁体に酸化シリコン、酸化窒化シリコンまたは窒化シリコンを積層して用いてもよい。
また、絶縁体520は、熱的に安定していることが好ましい。例えば、酸化シリコンおよび酸化窒化シリコンは、熱的に安定であるため、好適である。また、high−k材料の絶縁体を酸化シリコン、または酸化窒化シリコンと組み合わせることで、熱的に安定かつ比誘電率の高い積層構造の絶縁体520を得ることができる。
なお、絶縁体520、絶縁体522、および絶縁体524が、2層以上の積層構造を有していてもよい。その場合、同じ材料からなる積層構造に限定されず、異なる材料からなる積層構造でもよい。
トランジスタ500は、チャネル形成領域を含む酸化物530に、酸化物半導体として機能する金属酸化物を用いることが好ましい。例えば、酸化物530として、In−M−Zn酸化物(元素Mは、アルミニウム、ガリウム、イットリウム、銅、バナジウム、ベリリウム、ホウ素、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウムなどから選ばれた一種、または複数種)等の金属酸化物を用いるとよい。また、酸化物530として、In−Ga酸化物、In−Zn酸化物を用いてもよい。
また、トランジスタ500には、キャリア密度の低い金属酸化物を用いることが好ましい。金属酸化物のキャリア密度を低くする場合においては、金属酸化物中の不純物濃度を低くし、欠陥準位密度を低くすればよい。本明細書等において、不純物濃度が低く、欠陥準位密度の低いことを高純度真性または実質的に高純度真性という。なお、金属酸化物中の不純物としては、例えば、水素、窒素、アルカリ金属、アルカリ土類金属、鉄、ニッケル、シリコン等がある。
特に、金属酸化物に含まれる水素は、金属原子と結合する酸素と反応して水になるため、金属酸化物中に酸素欠損を形成する場合がある。金属酸化物中のチャネル形成領域に酸素欠損が含まれていると、トランジスタはノーマリーオン特性となる場合がある。さらに、酸素欠損に水素が入った欠陥はドナーとして機能し、キャリアである電子が生成されることがある。また、水素の一部が金属原子と結合する酸素と結合して、キャリアである電子を生成する場合がある。従って、水素が多く含まれている金属酸化物を用いたトランジスタは、ノーマリーオン特性となりやすい。
酸素欠損に水素が入った欠陥は、金属酸化物のドナーとして機能しうる。しかしながら、当該欠陥を定量的に評価することは困難である。そこで、金属酸化物においては、ドナー濃度ではなく、キャリア密度で評価される場合がある。よって、本明細書等では、金属酸化物のパラメータとして、ドナー濃度ではなく、電界が印加されない状態を想定したキャリア密度を用いる場合がある。つまり、本明細書等に記載の「キャリア密度」は、「ドナー濃度」と言い換えることができる場合がある。
よって、金属酸化物を酸化物530に用いる場合、金属酸化物中の水素はできる限り低減されていることが好ましい。具体的には、金属酸化物において、二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)により得られる水素濃度を、1×1020atoms/cm未満、好ましくは1×1019atoms/cm未満、より好ましくは5×1018atoms/cm未満、さらに好ましくは1×1018atoms/cm未満とする。水素などの不純物が十分に低減された金属酸化物をトランジスタのチャネル形成領域に用いることで、安定した電気特性を付与することができる。
また、酸化物530に金属酸化物を用いる場合、チャネル形成領域の金属酸化物のキャリア密度は、1×1018cm−3以下であることが好ましく、1×1017cm−3未満であることがより好ましく、1×1016cm−3未満であることがさらに好ましく、1×1013cm−3未満であることがさらに好ましく、1×1012cm−3未満であることがさらに好ましい。なお、チャネル形成領域の金属酸化物のキャリア密度の下限値については、特に限定は無いが、例えば、1×10−9cm−3とすることができる。
また、酸化物530に金属酸化物を用いる場合、導電体542(導電体542a、および導電体542b)と酸化物530とが接することで、酸化物530中の酸素が導電体542へ拡散し、導電体542が酸化する場合がある。導電体542が酸化することで、導電体542の導電率が低下する蓋然性が高い。なお、酸化物530中の酸素が導電体542へ拡散することを、導電体542が酸化物530中の酸素を吸収する、と言い換えることができる。
また、酸化物530中の酸素が導電体542(導電体542a、および導電体542b)へ拡散することで、導電体542aと酸化物530bとの間、および、導電体542bと酸化物530bとの間に異層が形成される場合がある。当該異層は、導電体542よりも酸素を多く含むため、当該異層は絶縁性を有すると推定される。このとき、導電体542と、当該異層と、酸化物530bとの3層構造は、金属−絶縁体−半導体からなる3層構造とみなすことができ、MIS(Metal−Insulator−Semiconductor)構造と呼ぶ、またはMIS構造を主としたダイオード接合構造と呼ぶ場合がある。
なお、上記異層は、導電体542と酸化物530bとの間に形成されることに限られず、例えば、異層が、導電体542と酸化物530cとの間に形成される場合や、導電体542と酸化物530bとの間、および導電体542と酸化物530cとの間に形成される場合がある。
また、酸化物530においてチャネル形成領域として機能する金属酸化物は、バンドギャップが2eV以上、好ましくは2.5eV以上のものを用いることが好ましい。このように、バンドギャップの大きい金属酸化物を用いることで、トランジスタのオフ電流を低減することができる。
その他、酸化物530に用いることができる半導体材料は、上述の金属酸化物に限られない。酸化物530として、バンドギャップを有する半導体材料(ゼロギャップ半導体ではない半導体材料)を用いてもよい。例えば、シリコンなどの単体元素の半導体、ヒ化ガリウムなどの化合物半導体、半導体として機能する層状物質(原子層物質、2次元材料などともいう)などを半導体材料に用いることが好ましい。特に、半導体として機能する層状物質を半導体材料に用いると好適である。
ここで、本明細書等において、層状物質とは、層状の結晶構造を有する材料群の総称である。層状の結晶構造は、共有結合やイオン結合によって形成される層が、ファンデルワールス力のような、共有結合やイオン結合よりも弱い結合を介して積層している構造である。層状物質は、単位層内における電気伝導性が高く、つまり、2次元電気伝導性が高い半導体として機能し、かつ、2次元電気伝導性の高い材料をチャネル形成領域に用いることで、オン電流の大きいトランジスタを提供することができる。
層状物質として、グラフェン、シリセン、カルコゲン化物などがある。カルコゲン化物は、カルコゲンを含む化合物である。また、カルコゲンは、第16族に属する元素の総称であり、酸素、硫黄、セレン、テルル、ポロニウム、リバモリウムが含まれる。また、カルコゲン化物として、遷移金属カルコゲナイド、13族カルコゲナイドなどが挙げられる。
酸化物530として、例えば、半導体として機能する遷移金属カルコゲナイドを用いることが好ましい。酸化物530として適用可能な遷移金属カルコゲナイドとして、具体的には、硫化モリブデン(代表的にはMoS)、セレン化モリブデン(代表的にはMoSe)、モリブデンテルル(代表的にはMoTe)、硫化タングステン(代表的にはWS)、セレン化タングステン(代表的にはWSe)、タングステンテルル(代表的にはWTe)、硫化ハフニウム(代表的にはHfS)、セレン化ハフニウム(代表的にはHfSe)、硫化ジルコニウム(代表的にはZrS)、セレン化ジルコニウム(代表的にはZrSe)などが挙げられる。
酸化物530は、酸化物530b下に酸化物530aを有することで、酸化物530aよりも下方に形成された構造物から、酸化物530bへの不純物の拡散を抑制することができる。また、酸化物530b上に酸化物530cを有することで、酸化物530cよりも上方に形成された構造物から、酸化物530bへの不純物の拡散を抑制することができる。
なお、酸化物530は、各金属原子の原子数比が異なる複数の酸化物層の積層構造を有することが好ましい。具体的には、酸化物530aに用いる金属酸化物において、構成元素中の元素Mの原子数比が、酸化物530bに用いる金属酸化物における、構成元素中の元素Mの原子数比より、大きいことが好ましい。また、酸化物530aに用いる金属酸化物において、Inに対する元素Mの原子数比が、酸化物530bに用いる金属酸化物における、Inに対する元素Mの原子数比より大きいことが好ましい。また、酸化物530bに用いる金属酸化物において、元素Mに対するInの原子数比が、酸化物530aに用いる金属酸化物における、元素Mに対するInの原子数比より大きいことが好ましい。また、酸化物530cは、酸化物530aまたは酸化物530bに用いることができる金属酸化物を、用いることができる。
また、酸化物530aおよび酸化物530cの伝導帯下端のエネルギーが、酸化物530bの伝導帯下端のエネルギーより高くなることが好ましい。また、言い換えると、酸化物530aおよび酸化物530cの電子親和力が、酸化物530bの電子親和力より小さいことが好ましい。
ここで、酸化物530a、酸化物530b、および酸化物530cの接合部において、伝導帯下端のエネルギー準位はなだらかに変化する。換言すると、酸化物530a、酸化物530b、および酸化物530cの接合部における伝導帯下端のエネルギー準位は、連続的に変化または連続接合するともいうことができる。このようにするためには、酸化物530aと酸化物530bとの界面、および酸化物530bと酸化物530cとの界面において形成される混合層の欠陥準位密度を低くするとよい。
具体的には、酸化物530aと酸化物530b、酸化物530bと酸化物530cが、酸素以外に共通の元素を有する(主成分とする)ことで、欠陥準位密度が低い混合層を形成することができる。例えば、酸化物530bがIn−Ga−Zn酸化物の場合、酸化物530aおよび酸化物530cとして、In−Ga−Zn酸化物、Ga−Zn酸化物、酸化ガリウムなどを用いるとよい。
このとき、キャリアの主たる経路は酸化物530bとなる。酸化物530a、酸化物530cを上述の構成とすることで、酸化物530aと酸化物530bとの界面、および酸化物530bと酸化物530cとの界面における欠陥準位密度を低くすることができる。そのため、界面散乱によるキャリア伝導への影響が小さくなり、トランジスタ500は高いオン電流を得られる。
酸化物530b上には、ソース電極、およびドレイン電極として機能する導電体542(導電体542a、および導電体542b)が設けられる。導電体542としては、アルミニウム、クロム、銅、銀、金、白金、タンタル、ニッケル、チタン、モリブデン、タングステン、ハフニウム、バナジウム、ニオブ、マンガン、マグネシウム、ジルコニウム、ベリリウム、インジウム、ルテニウム、イリジウム、ストロンチウム、ランタンから選ばれた金属元素、または上述した金属元素を成分とする合金か、上述した金属元素を組み合わせた合金等を用いることが好ましい。例えば、窒化タンタル、窒化チタン、タングステン、チタンとアルミニウムを含む窒化物、タンタルとアルミニウムを含む窒化物、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、ランタンとニッケルを含む酸化物などを用いることが好ましい。また、窒化タンタル、窒化チタン、チタンとアルミニウムを含む窒化物、タンタルとアルミニウムを含む窒化物、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、ランタンとニッケルを含む酸化物は、酸化しにくい導電性材料、または、酸素を吸収しても導電性を維持する材料であるため、好ましい。
また、図13Aに示すように、酸化物530の、導電体542との界面とその近傍には、低抵抗領域として、領域543(領域543a、および領域543b)が形成される場合がある。このとき、領域543aはソース領域またはドレイン領域の一方として機能し、領域543bはソース領域またはドレイン領域の他方として機能する。また、領域543aと領域543bに挟まれる領域にチャネル形成領域が形成される。
酸化物530と接するように上記導電体542を設けることで、領域543の酸素濃度が低減する場合がある。また、領域543に導電体542に含まれる金属と、酸化物530の成分とを含む金属化合物層が形成される場合がある。このような場合、領域543のキャリア密度が増加し、領域543は、低抵抗領域となる。
絶縁体544は、導電体542を覆うように設けられ、導電体542の酸化を抑制する。このとき、絶縁体544は、酸化物530の側面を覆い、絶縁体524と接するように設けられてもよい。
絶縁体544として、ハフニウム、アルミニウム、ガリウム、イットリウム、ジルコニウム、タングステン、チタン、タンタル、ニッケル、ゲルマニウム、または、マグネシウムなどから選ばれた一種、または二種以上が含まれた金属酸化物を用いることができる。
特に、絶縁体544として、アルミニウム、またはハフニウムの一方または双方の酸化物を含む絶縁体である、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。特に、ハフニウムアルミネートは、酸化ハフニウム膜よりも、耐熱性が高い。そのため、後の工程での熱処理において、結晶化しにくいため好ましい。なお、導電体542が耐酸化性を有する材料、または、酸素を吸収しても著しく導電性が低下しない場合、絶縁体544は、必須の構成ではない。求めるトランジスタ特性により、適宜設計すればよい。
絶縁体550は、ゲート絶縁膜として機能する。絶縁体550は、酸化物530cの内側(上面および側面)に接して配置することが好ましい。絶縁体550は、加熱により酸素が放出される絶縁体を用いて形成することが好ましい。例えば、TDS分析にて、酸素原子に換算しての酸素の脱離量が1.0×1018atoms/cm以上、好ましくは1.0×1019atoms/cm以上、さらに好ましくは2.0×1019atoms/cm以上、または3.0×1020atoms/cm以上である酸化物膜である。なお、上記TDS分析時における膜の表面温度としては100℃以上700℃以下の範囲が好ましい。
具体的には、過剰酸素を有する酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコン、空孔を有する酸化シリコンを用いることができる。特に、酸化シリコン、および酸化窒化シリコンは熱に対し安定であるため好ましい。
加熱により酸素が放出される絶縁体を、絶縁体550として、酸化物530cの上面に接して設けることにより、絶縁体550から、酸化物530cを通じて、酸化物530bのチャネル形成領域に効果的に酸素を供給することができる。また、絶縁体524と同様に、絶縁体550中の水または水素などの不純物濃度が低減されていることが好ましい。絶縁体550の膜厚は、1nm以上20nm以下とするのが好ましい。
また、絶縁体550が有する過剰酸素を、効率的に酸化物530へ供給するために、絶縁体550と導電体560との間に金属酸化物を設けてもよい。当該金属酸化物は、絶縁体550から導電体560への酸素拡散を抑制することが好ましい。酸素の拡散を抑制する金属酸化物を設けることで、絶縁体550から導電体560への過剰酸素の拡散が抑制される。つまり、酸化物530へ供給する過剰酸素量の減少を抑制することができる。また、過剰酸素による導電体560の酸化を抑制することができる。当該金属酸化物としては、絶縁体544に用いることができる材料を用いればよい。
第1のゲート電極として機能する導電体560は、図13A、図13Bでは2層構造として示しているが、単層構造でもよいし、3層以上の積層構造であってもよい。
導電体560aは、水素原子、水素分子、水分子、窒素原子、窒素分子、酸化窒素分子(NO、NO、NOなど)、銅原子などの不純物の拡散を抑制する機能を有する導電性材料を用いることが好ましい。または、酸素(例えば、酸素原子、酸素分子などの少なくとも一つ)の拡散を抑制する機能を有する導電性材料を用いることが好ましい。導電体560aが酸素の拡散を抑制する機能を持つことにより、絶縁体550に含まれる酸素により、導電体560bが酸化して導電率が低下することを抑制することができる。酸素の拡散を抑制する機能を有する導電性材料としては、例えば、タンタル、窒化タンタル、ルテニウム、または酸化ルテニウムなどを用いることが好ましい。
また、導電体560bは、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることが好ましい。また、導電体560bは、配線としても機能するため、導電性が高い導電体を用いることが好ましい。例えば、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることができる。また、導電体560bは積層構造としてもよく、例えば、チタン又は窒化チタンと上記導電性材料との積層構造としてもよい。
絶縁体580は、絶縁体544を介して、導電体542上に設けられる。絶縁体580は、過剰酸素領域を有することが好ましい。例えば、絶縁体580として、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコン、空孔を有する酸化シリコン、または樹脂などを有することが好ましい。特に、酸化シリコンおよび酸化窒化シリコンは、熱的に安定であるため好ましい。特に、酸化シリコン、空孔を有する酸化シリコンは、後の工程で、容易に過剰酸素領域を形成することができるため好ましい。
また、加熱により酸素が放出される絶縁体580を、酸化物530cと接して設けることで、絶縁体580中の酸素を、酸化物530cを通じて、酸化物530bへと効率良く供給することができる。なお、絶縁体580中の水または水素などの不純物濃度が低減されていることが好ましい。
絶縁体580の開口は、導電体542aと導電体542bの間の領域に重畳して形成される。これにより、導電体560は、絶縁体580の開口、および導電体542aと導電体542bに挟まれた領域に、埋め込まれるように形成される。
記憶装置を微細化するに当たり、ゲート長を短くすることが求められるが、導電体560の導電性が下がらないようにする必要がある。そのために導電体560の膜厚を大きくすると、導電体560はアスペクト比が高い形状となりうる。本実施の形態では、導電体560を絶縁体580の開口に埋め込むように設けるため、導電体560をアスペクト比の高い形状にしても、工程中に導電体560を倒壊させることなく、形成することができる。
絶縁体574は、絶縁体580の上面、導電体560の上面、および絶縁体550の上面に接して設けられることが好ましい。絶縁体574をスパッタリング法で成膜することで、絶縁体550および絶縁体580へ過剰酸素領域を設けることができる。これにより、当該過剰酸素領域から、酸化物530中に酸素を供給することができる。
例えば、絶縁体574として、ハフニウム、アルミニウム、ガリウム、イットリウム、ジルコニウム、タングステン、チタン、タンタル、ニッケル、ゲルマニウム、またはマグネシウムなどから選ばれた一種、または二種以上が含まれた金属酸化物を用いることができる。
特に、酸化アルミニウムはバリア性が高く、0.5nm以上3.0nm以下の薄膜であっても、水素、および窒素の拡散を抑制することができる。したがって、スパッタリング法で成膜した酸化アルミニウムは、酸素供給源であるとともに、水素などの不純物のバリア膜としての機能も有することができる。
また、絶縁体574の上に、層間膜として機能する絶縁体581を設けることが好ましい。絶縁体581は、絶縁体524などと同様に、膜中の水または水素などの不純物濃度が低減されていることが好ましい。
また、絶縁体581、絶縁体574、絶縁体580、および絶縁体544に形成された開口に、導電体540aおよび導電体540bを配置する。導電体540aおよび導電体540bは、導電体560を挟んで対向して設ける。導電体540aおよび導電体540bは、後述する導電体546および導電体548と同様の構成である。
絶縁体581上には、絶縁体582が設けられている。絶縁体582は、酸素や水素に対してバリア性のある物質を用いることが好ましい。したがって、絶縁体582には、絶縁体514と同様の材料を用いることができる。例えば、絶縁体582には、酸化アルミニウム、酸化ハフニウム、酸化タンタルなどの金属酸化物を用いることが好ましい。
特に、酸化アルミニウムは、酸素、およびトランジスタの電気特性の変動要因となる水素、水分などの不純物、の両方に対して膜を透過させない遮断効果が高い。したがって、酸化アルミニウムは、トランジスタの作製工程中および作製後において、水素、水分などの不純物のトランジスタ500への混入を防止することができる。また、トランジスタ500を構成する酸化物からの酸素の放出を抑制することができる。そのため、トランジスタ500に対する保護膜として用いることに適している。
また、絶縁体582上には、絶縁体586が設けられている。絶縁体586は、絶縁体320と同様の材料を用いることができる。また、比較的誘電率が低い材料を層間膜とすることで、配線間に生じる寄生容量を低減することができる。例えば、絶縁体586として、酸化シリコン膜や酸化窒化シリコン膜などを用いることができる。
また、絶縁体520、絶縁体522、絶縁体524、絶縁体544、絶縁体580、絶縁体574、絶縁体581、絶縁体582、および絶縁体586には、導電体546、および導電体548等が埋め込まれている。
導電体546、および導電体548は、容量素子600、トランジスタ500、またはトランジスタ300と接続するプラグ、または配線としての機能を有する。導電体546、および導電体548は、導電体328、および導電体330と同様の材料を用いて設けることができる。
続いて、トランジスタ500の上方には、容量素子600が設けられている。容量素子600は、導電体610と、導電体620、絶縁体630とを有する。
また、導電体546、および導電体548上に、導電体612を設けてもよい。導電体612は、トランジスタ500と接続するプラグ、または配線としての機能を有する。導電体610は、容量素子600の電極としての機能を有する。なお、導電体612、および導電体610は、同時に形成することができる。
導電体612、および導電体610には、モリブデン、チタン、タンタル、タングステン、アルミニウム、銅、クロム、ネオジム、スカンジウムから選ばれた元素を含む金属膜、または上述した元素を成分とする金属窒化物膜(窒化タンタル膜、窒化チタン膜、窒化モリブデン膜、窒化タングステン膜)等を用いることができる。または、インジウム錫酸化物、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム亜鉛酸化物、酸化ケイ素を添加したインジウム錫酸化物などの導電性材料を適用することもできる。
図12では、導電体612、および導電体610は単層構造として示しているが、当該構成に限定されず、2層以上の積層構造でもよい。例えば、バリア性を有する導電体と導電性が高い導電体との間に、バリア性を有する導電体、および導電性が高い導電体に対して密着性が高い導電体を形成してもよい。
絶縁体630を介して、導電体610と重畳するように、導電体620を設ける。なお、導電体620は、金属材料、合金材料、または金属酸化物材料などの導電性材料を用いることができる。耐熱性と導電性を両立するタングステンやモリブデンなどの高融点材料を用いることが好ましく、特にタングステンを用いることが好ましい。また、導電体などの他の構造と同時に形成する場合は、低抵抗金属材料であるCu(銅)やAl(アルミニウム)等を用いればよい。
導電体620、および絶縁体630上には、絶縁体650が設けられている。絶縁体650は、絶縁体320と同様の材料を用いて設けることができる。また、絶縁体650は、その下方の凹凸形状を被覆する平坦化膜として機能してもよい。
本構造を用いることで、酸化物半導体を有するトランジスタを用いた記憶装置において、電気特性の変動を抑制するとともに、信頼性を向上させることができる。または、オン電流が大きい酸化物半導体を有するトランジスタを提供することができる。または、オフ電流が小さい酸化物半導体を有するトランジスタを提供することができる。または、消費電力が低減された記憶装置を提供することができる。または、酸化物半導体を有するトランジスタを用いた記憶装置において、微細化または高集積化を図ることができる。
<トランジスタの構造例>
なお、本実施の形態に示す記憶装置のトランジスタ500は、上記の構造に限られるものではない。以下、トランジスタ500に用いることができる構造例について説明する。
<トランジスタの構造例1>
図14A、図14Bおよび図14Cを用いてトランジスタ510Aの構造例を説明する。図14Aはトランジスタ510Aの上面図である。図14Bは、図14Aに一点鎖線L1−L2で示す部位の断面図である。図14Cは、図14Aに一点鎖線W1−W2で示す部位の断面図である。なお、図14Aの上面図では、図の明瞭化のために一部の要素を省いて図示している。
図14A、図14Bおよび図14Cでは、トランジスタ510Aと、層間膜として機能する絶縁体511、絶縁体512、絶縁体514、絶縁体516、絶縁体580、絶縁体582、および絶縁体584を示している。また、トランジスタ510Aと電気的に接続し、コンタクトプラグとして機能する導電体546(導電体546a、および導電体546b)と、配線として機能する導電体503と、を示している。
トランジスタ510Aは、第1のゲート電極として機能する導電体560(導電体560a、および導電体560b)と、第2のゲート電極として機能する導電体505(導電体505a、および導電体505b)と、第1のゲート絶縁膜として機能する絶縁体550と、第2のゲート絶縁膜として機能する絶縁体521、絶縁体522、および絶縁体524と、チャネルが形成される領域を有する酸化物530(酸化物530a、酸化物530b、および酸化物530c)と、ソースまたはドレインの一方として機能する導電体542aと、ソースまたはドレインの他方として機能する導電体542bと、絶縁体574とを有する。
また、図14に示すトランジスタ510Aでは、酸化物530c、絶縁体550、および導電体560が、絶縁体580に設けられた開口部内に、絶縁体574を介して配置される。また、酸化物530c、絶縁体550、および導電体560は、導電体542a、および導電体542bとの間に配置される。
絶縁体511、および絶縁体512は、層間膜として機能する。
層間膜としては、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、酸化アルミニウム、酸化ハフニウム、酸化タンタル、酸化ジルコニウム、チタン酸ジルコン酸鉛(PZT)、チタン酸ストロンチウム(SrTiO)または(Ba,Sr)TiO(BST)などの絶縁体を単層または積層で用いることができる。またはこれらの絶縁体に、例えば、酸化アルミニウム、酸化ビスマス、酸化ゲルマニウム、酸化ニオブ、酸化シリコン、酸化チタン、酸化タングステン、酸化イットリウム、酸化ジルコニウムを添加してもよい。またはこれらの絶縁体を窒化処理してもよい。上記の絶縁体に酸化シリコン、酸化窒化シリコンまたは窒化シリコンを積層して用いてもよい。
例えば、絶縁体511は、水または水素などの不純物が、基板側からトランジスタ510Aに混入するのを抑制するバリア膜として機能することが好ましい。したがって、絶縁体511は、水素原子、水素分子、水分子、銅原子などの不純物の拡散を抑制する機能を有する(上記不純物が透過しにくい)絶縁性材料を用いることが好ましい。または、酸素(例えば、酸素原子、酸素分子などの少なくとも一つ)の拡散を抑制する機能を有する(上記酸素が透過しにくい)絶縁性材料を用いることが好ましい。また、例えば、絶縁体511として酸化アルミニウムや窒化シリコンなどを用いてもよい。当該構成により、水素、水などの不純物が絶縁体511よりも基板側からトランジスタ510A側に拡散するのを抑制することができる。
例えば、絶縁体512は、絶縁体511よりも誘電率が低いことが好ましい。誘電率が低い材料を層間膜とすることで、配線間に生じる寄生容量を低減することができる。
導電体503は、絶縁体512に埋め込まれるように形成される。ここで、導電体503の上面の高さと、絶縁体512の上面の高さは同程度にできる。なお導電体503は、単層とする構成について示しているが、本発明はこれに限られるものではない。例えば、導電体503を2層以上の多層膜構造としてもよい。なお、導電体503は、タングステン、銅、またはアルミニウムを主成分とする導電性が高い導電性材料を用いることが好ましい。
トランジスタ510Aにおいて、導電体560は、第1のゲート(トップゲート、ともいう)電極として機能する場合がある。また、導電体505は、第2のゲート(ボトムゲート、ともいう)電極として機能する場合がある。その場合、導電体505に印加する電位を、導電体560に印加する電位と連動させず、独立して変化させることで、トランジスタ510Aのしきい値電圧を制御することができる。特に、導電体505に負の電位を印加することにより、トランジスタ510Aのしきい値電圧を0Vより大きくし、オフ電流を低減することが可能となる。したがって、導電体505に負の電位を印加したほうが、印加しない場合よりも、導電体560に印加する電位が0Vのときのドレイン電流を小さくすることができる。
また、例えば、導電体505と、導電体560とを重畳して設けることで、導電体560、および導電体505に電位を印加した場合、導電体560から生じる電界と、導電体505から生じる電界と、がつながり、酸化物530に形成されるチャネル形成領域を覆うことができる。
つまり、第1のゲート電極としての機能を有する導電体560の電界と、第2のゲート電極としての機能を有する導電体505の電界によって、チャネル形成領域を電気的に取り囲むことができる。すなわち、先に記載のトランジスタ500と同様に、surrounded channel(S−channel)構造である。
絶縁体514、および絶縁体516は、絶縁体511または絶縁体512と同様に、層間膜として機能する。例えば、絶縁体514は、水または水素などの不純物が、基板側からトランジスタ510Aに混入するのを抑制するバリア膜として機能することが好ましい。当該構成により、水素、水などの不純物が絶縁体514よりも基板側からトランジスタ510A側に拡散するのを抑制することができる。また、例えば、絶縁体516は、絶縁体514よりも誘電率が低いことが好ましい。誘電率が低い材料を層間膜とすることで、配線間に生じる寄生容量を低減することができる。
第2のゲートとして機能する導電体505は、絶縁体514および絶縁体516の開口の内壁に接して導電体505aが形成され、さらに内側に導電体505bが形成されている。ここで、導電体505aおよび導電体505bの上面の高さと、絶縁体516の上面の高さは同程度にできる。なお、トランジスタ510Aでは、導電体505aおよび導電体505bを積層する構成について示しているが、本発明はこれに限られるものではない。例えば、導電体505は、単層、または3層以上の積層構造として設ける構成にしてもよい。
ここで、導電体505aは、水素原子、水素分子、水分子、銅原子などの不純物の拡散を抑制する機能を有する(上記不純物が透過しにくい)導電性材料を用いることが好ましい。または、酸素(例えば、酸素原子、酸素分子などの少なくとも一つ)の拡散を抑制する機能を有する(上記酸素が透過しにくい)導電性材料を用いることが好ましい。なお、本明細書において、不純物、または酸素の拡散を抑制する機能とは、上記不純物、または上記酸素のいずれか一つ、または、すべての拡散を抑制する機能とする。
例えば、導電体505aが酸素の拡散を抑制する機能を持つことにより、導電体505bが酸化して導電率が低下することを抑制することができる。
また、導電体505が配線の機能を兼ねる場合、導電体505bは、タングステン、銅、またはアルミニウムを主成分とする、導電性が高い導電性材料を用いることが好ましい。その場合、導電体503は、必ずしも設けなくともよい。なお、導電体505bを単層で図示したが、積層構造としてもよく、例えば、チタン又は窒化チタンと上記導電性材料との積層としてもよい。
絶縁体521、絶縁体522、および絶縁体524は、第2のゲート絶縁膜としての機能を有する。
また、絶縁体522は、バリア性を有することが好ましい。絶縁体522がバリア性を有することで、トランジスタ510Aの周辺部からトランジスタ510Aへの水素等の不純物の混入を抑制する層として機能する。
絶縁体522は、例えば、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)、酸化タンタル、酸化ジルコニウム、チタン酸ジルコン酸鉛(PZT)、チタン酸ストロンチウム(SrTiO)または(Ba,Sr)TiO(BST)などのいわゆるhigh−k材料を含む絶縁体を単層または積層で用いることが好ましい。トランジスタの微細化、および高集積化が進むと、ゲート絶縁膜の薄膜化により、リーク電流などの問題が生じる場合がある。ゲート絶縁膜として機能する絶縁体にhigh−k材料を用いることで、物理膜厚を保ちながら、トランジスタ動作時のゲート電位の低減が可能となる。
また、絶縁体521は、熱的に安定していることが好ましい。例えば、酸化シリコンおよび酸化窒化シリコンは、熱的に安定であるため、好適である。また、high−k材料の絶縁体を酸化シリコン、または酸化窒化シリコンと組み合わせることで、熱的に安定かつ比誘電率の高い積層構造の絶縁体521を得ることができる。
なお、図14には、第2のゲート絶縁膜として、3層の積層構造を示したが、2層以下、または4層以上の積層構造としてもよい。その場合、同じ材料からなる積層構造に限定されず、異なる材料からなる積層構造でもよい。
チャネル形成領域として機能する領域を有する酸化物530は、酸化物530aと、酸化物530a上の酸化物530bと、酸化物530b上の酸化物530cと、を有する。酸化物530b下に酸化物530aを有することで、酸化物530aよりも下方に形成された構造物から、酸化物530bへの不純物の拡散を抑制することができる。また、酸化物530b上に酸化物530cを有することで、酸化物530cよりも上方に形成された構造物から、酸化物530bへの不純物の拡散を抑制することができる。酸化物530として、上述した金属酸化物の一種である酸化物半導体を用いることができる。
なお、酸化物530cは、絶縁体580に設けられた開口部内に、絶縁体574を介して設けられることが好ましい。絶縁体574がバリア性を有する場合、絶縁体580からの不純物が酸化物530へと拡散することを抑制することができる。
導電体542は、一方がソース電極として機能し、他方がドレイン電極として機能する。
導電体542aと、導電体542bとは、アルミニウム、チタン、クロム、ニッケル、銅、イットリウム、ジルコニウム、モリブデン、銀、タンタル、またはタングステンなどの金属、またはこれを主成分とする合金を用いることができる。特に、窒化タンタルなどの金属窒化物膜は、水素または酸素に対するバリア性があり、また、耐酸化性が高いため、好ましい。
また、図14では単層構造を示したが、2層以上の積層構造としてもよい。例えば、窒化タンタル膜とタングステン膜を積層するとよい。また、チタン膜とアルミニウム膜を積層してもよい。また、タングステン膜上にアルミニウム膜を積層する二層構造、銅−マグネシウム−アルミニウム合金膜上に銅膜を積層する二層構造、チタン膜上に銅膜を積層する二層構造、タングステン膜上に銅膜を積層する二層構造としてもよい。
また、チタン膜または窒化チタン膜と、そのチタン膜または窒化チタン膜上に重ねてアルミニウム膜または銅膜を積層し、さらにその上にチタン膜または窒化チタン膜を形成する三層構造、モリブデン膜または窒化モリブデン膜と、そのモリブデン膜または窒化モリブデン膜上に重ねてアルミニウム膜または銅膜を積層し、さらにその上にモリブデン膜または窒化モリブデン膜を形成する三層構造等がある。なお、酸化インジウム、酸化錫または酸化亜鉛を含む透明導電材料を用いてもよい。
また、導電体542上に、バリア層を設けてもよい。バリア層は、酸素、または水素に対してバリア性を有する物質を用いることが好ましい。当該構成により、絶縁体574を成膜する際に、導電体542が酸化することを抑制することができる。
バリア層には、例えば、金属酸化物を用いることができる。特に、酸化アルミニウム、酸化ハフニウム、酸化ガリウムなどの、酸素や水素に対してバリア性のある絶縁膜を用いることが好ましい。また、CVD法で形成した窒化シリコンを用いてもよい。
バリア層を有することで、導電体542の材料選択の幅を広げることができる。例えば、導電体542に、タングステンや、アルミニウムなどの耐酸化性が低い一方で導電性が高い材料を用いることができる。また、例えば、成膜、または加工がしやすい導電体を用いることができる。
絶縁体550は、第1のゲート絶縁膜として機能する。絶縁体550は、絶縁体580に設けられた開口部内に、酸化物530c、および絶縁体574を介して設けられることが好ましい。
トランジスタの微細化、および高集積化が進むと、ゲート絶縁膜の薄膜化により、リーク電流などの問題が生じる場合がある。その場合、絶縁体550は、第2のゲート絶縁膜と同様に、積層構造としてもよい。ゲート絶縁膜として機能する絶縁体を、high−k材料と、熱的に安定している材料との積層構造とすることで、物理膜厚を保ちながら、トランジスタ動作時のゲート電位の低減が可能となる。また、熱的に安定かつ比誘電率の高い積層構造とすることができる。
第1のゲート電極として機能する導電体560は、導電体560a、および導電体560a上の導電体560bを有する。導電体560aは、導電体505aと同様に、水素原子、水素分子、水分子、銅原子などの不純物の拡散を抑制する機能を有する導電性材料を用いることが好ましい。または、酸素(例えば、酸素原子、酸素分子などの少なくとも一つ)の拡散を抑制する機能を有する導電性材料を用いることが好ましい。
導電体560aが酸素の拡散を抑制する機能を持つことにより、導電体560bの材料選択性を向上することができる。つまり、導電体560aを有することで、導電体560bの酸化が抑制され、導電率が低下することを防止することができる。
酸素の拡散を抑制する機能を有する導電性材料としては、例えば、タンタル、窒化タンタル、ルテニウムまたは酸化ルテニウムなどを用いることが好ましい。また、導電体560aとして、酸化物530として用いることができる酸化物半導体を用いることができる。その場合、導電体560bをスパッタリング法で成膜することで、導電体560aの電気抵抗値を低下させて導電体とすることができる。これをOC(Oxide Conductor)電極と呼ぶことができる。
導電体560bは、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることが好ましい。また、導電体560bは、配線としても機能するため、導電性が高い導電体を用いることが好ましい。例えば、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることができる。また、導電体560bは積層構造としてもよく、例えば、チタン又は窒化チタンと上記導電性材料との積層としてもよい。
絶縁体580と、トランジスタ510Aとの間に絶縁体574を配置する。絶縁体574は、水または水素などの不純物、および酸素の拡散を抑制する機能を有する絶縁性材料を用いるとよい。例えば、酸化アルミニウムまたは酸化ハフニウムなどを用いることが好ましい。また、他にも、例えば、酸化マグネシウム、酸化ガリウム、酸化ゲルマニウム、酸化イットリウム、酸化ジルコニウム、酸化ランタン、酸化ネオジムまたは酸化タンタルなどの金属酸化物、窒化酸化シリコンまたは窒化シリコンなどを用いることができる。
絶縁体574を有することで、絶縁体580が有する水、および水素などの不純物が酸化物530c、絶縁体550を介して、酸化物530bに拡散することを抑制することができる。また、絶縁体580が有する過剰酸素により、導電体560が酸化するのを抑制することができる。
絶縁体580、絶縁体582、および絶縁体584は、層間膜として機能する。
絶縁体582は、絶縁体514と同様に、水または水素などの不純物が、外部からトランジスタ510Aに混入するのを抑制するバリア絶縁膜として機能することが好ましい。
また、絶縁体580、および絶縁体584は、絶縁体516と同様に、絶縁体582よりも誘電率が低いことが好ましい。誘電率が低い材料を層間膜とすることで、配線間に生じる寄生容量を低減することができる。
また、トランジスタ510Aは、絶縁体580、絶縁体582、および絶縁体584に埋め込まれた導電体546などのプラグや配線を介して、他の構造と電気的に接続してもよい。
また、導電体546の材料としては、導電体505と同様に、金属材料、合金材料、金属窒化物材料、または金属酸化物材料などの導電性材料を、単層または積層して用いることができる。例えば、耐熱性と導電性を両立するタングステンやモリブデンなどの高融点材料を用いることが好ましい。または、アルミニウムや銅などの低抵抗導電性材料で形成することが好ましい。低抵抗導電性材料を用いることで配線抵抗を低くすることができる。
例えば、導電体546として、水素、および酸素に対してバリア性を有する導電体である窒化タンタル等と、導電性が高いタングステンとの積層構造を用いることで、配線としての導電性を保持したまま、外部からの不純物の拡散を抑制することができる。
上記構造を有することで、オン電流が大きい酸化物半導体を有するトランジスタを用いた記憶装置を提供することができる。または、オフ電流が小さい酸化物半導体を有するトランジスタを用いた記憶装置を提供することができる。または、電気特性の変動を抑制し、安定した電気特性を有すると共に、信頼性を向上させた記憶装置を提供することができる。
<トランジスタの構造例2>
図15A、図15Bおよび図15Cを用いてトランジスタ510Bの構造例を説明する。図15Aはトランジスタ510Bの上面図である。図15Bは、図15Aに一点鎖線L1−L2で示す部位の断面図である。図15Cは、図15Aに一点鎖線W1−W2で示す部位の断面図である。なお、図15Aの上面図では、図の明瞭化のために一部の要素を省いて図示している。
トランジスタ510Bはトランジスタ510Aの変形例である。よって、説明の繰り返しを防ぐため、主にトランジスタ510Aと異なる点について説明する。
トランジスタ510Bは、導電体542(導電体542a、および導電体542b)と、酸化物530c、絶縁体550、および導電体560と、が重畳する領域を有する。当該構造とすることで、オン電流が高いトランジスタを提供することができる。また、制御性が高いトランジスタを提供することができる。
第1のゲート電極として機能する導電体560は、導電体560a、および導電体560a上の導電体560bを有する。導電体560aは、導電体505aと同様に、水素原子、水素分子、水分子、銅原子などの不純物の拡散を抑制する機能を有する導電性材料を用いることが好ましい。または、酸素(例えば、酸素原子、酸素分子などの少なくとも一つ)の拡散を抑制する機能を有する導電性材料を用いることが好ましい。
導電体560aが酸素の拡散を抑制する機能を持つことにより、導電体560bの材料選択性を向上することができる。つまり、導電体560aを有することで、導電体560bの酸化が抑制され、導電率が低下することを防止することができる。
また、導電体560の上面および側面、絶縁体550の側面、および酸化物530cの側面を覆うように、絶縁体574を設けることが好ましい。なお、絶縁体574は、水または水素などの不純物、および酸素の拡散を抑制する機能を有する絶縁性材料を用いるとよい。例えば、酸化アルミニウムまたは酸化ハフニウムなどを用いることが好ましい。また、他にも、例えば、酸化マグネシウム、酸化ガリウム、酸化ゲルマニウム、酸化イットリウム、酸化ジルコニウム、酸化ランタン、酸化ネオジムまたは酸化タンタルなどの金属酸化物、窒化酸化シリコンまたは窒化シリコンなどを用いることができる。
絶縁体574を設けることで、導電体560の酸化を抑制することができる。また、絶縁体574を有することで、絶縁体580が有する水、および水素などの不純物がトランジスタ510Bへ拡散することを抑制することができる。
また、導電体546と、絶縁体580との間に、バリア性を有する絶縁体576(絶縁体576a、および絶縁体576b)を配置してもよい。絶縁体576を設けることで、絶縁体580の酸素が導電体546と反応し、導電体546が酸化することを抑制することができる。
また、バリア性を有する絶縁体576を設けることで、プラグや配線に用いられる導電体の材料選択の幅を広げることができる。例えば、導電体546に、酸素を吸収する性質を持つ一方で、導電性が高い金属材料を用いることで、低消費電力の記憶装置を提供することができる。具体的には、タングステンや、アルミニウムなどの耐酸化性が低い一方で導電性が高い材料を用いることができる。また、例えば、成膜、または加工がしやすい導電体を用いることができる。
<トランジスタの構造例3>
図16A、図16Bおよび図16Cを用いてトランジスタ510Cの構造例を説明する。図16Aはトランジスタ510Cの上面図である。図16Bは、図16Aに一点鎖線L1−L2で示す部位の断面図である。図16Cは、図16Aに一点鎖線W1−W2で示す部位の断面図である。なお、図16Aの上面図では、図の明瞭化のために一部の要素を省いて図示している。
トランジスタ510Cはトランジスタ510Aの変形例である。よって、説明の繰り返しを防ぐため、主にトランジスタ510Aと異なる点について説明する。
図16に示すトランジスタ510Cは、導電体542aと酸化物530bの間に導電体547aが配置され、導電体542bと酸化物530bの間に導電体547bが配置されている。ここで、導電体542a(導電体542b)は、導電体547a(導電体547b)の上面および導電体560側の側面を越えて延在し、酸化物530bの上面に接する領域を有する。ここで、導電体547は、導電体542に用いることができる導電体を用いればよい。さらに、導電体547の膜厚は、少なくとも導電体542より厚いことが好ましい。
図16に示すトランジスタ510Cは、上記のような構成を有することにより、トランジスタ510Aよりも、導電体542を導電体560に近づけることができる。または、導電体542aの端部および導電体542bの端部と、導電体560を重ねることができる。これにより、トランジスタ510Cの実質的なチャネル長を短くし、オン電流および周波数特性の向上を図ることができる。
また、導電体547a(導電体547b)は、導電体542a(導電体542b)と重畳して設けられることが好ましい。このような構成にすることで、導電体546a(導電体546b)を埋め込む開口を形成するエッチングにおいて、導電体547a(導電体547b)がストッパとして機能し、酸化物530bがオーバーエッチングされるのを防ぐことができる。
また、図16に示すトランジスタ510Cは、絶縁体544の上に接して絶縁体545を配置する構成にしてもよい。絶縁体544は、水または水素などの不純物や、過剰な酸素が、絶縁体580側からトランジスタ510Cに混入するのを抑制するバリア絶縁膜として機能することが好ましい。絶縁体545としては、絶縁体544に用いることができる絶縁体を用いることができる。また、絶縁体544としては、例えば、窒化アルミニウム、窒化アルミニウムチタン、窒化チタン、窒化シリコンまたは窒化酸化シリコンなどの、窒化物絶縁体を用いてもよい。
また、図16に示すトランジスタ510Cは、図14に示すトランジスタ510Aと異なり、導電体505を単層構造で設けてもよい。この場合、パターン形成された導電体505の上に絶縁体516となる絶縁膜を成膜し、当該絶縁膜の上部を、導電体505の上面が露出するまでCMP法などを用いて除去すればよい。ここで、導電体505の上面の平坦性を良好にすることが好ましい。例えば、導電体505上面の平均面粗さ(Ra)を1nm以下、好ましくは0.5nm以下、より好ましくは0.3nm以下にすればよい。これにより、導電体505の上に形成される、絶縁層の平坦性を良好にし、酸化物530bおよび酸化物530cの結晶性の向上を図ることができる。
<トランジスタの構造例4>
図17A、図17Bおよび図17Cを用いてトランジスタ510Dの構造例を説明する。図17Aはトランジスタ510Dの上面図である。図17Bは、図17Aに一点鎖線L1−L2で示す部位の断面図である。図17Cは、図17Aに一点鎖線W1−W2で示す部位の断面図である。なお、図17Aの上面図では、図の明瞭化のために一部の要素を省いて図示している。
トランジスタ510Dは上記トランジスタの変形例である。よって、説明の繰り返しを防ぐため、主に上記トランジスタと異なる点について説明する。
図17A乃至図17Cでは、導電体503を設けずに、第2のゲートとしての機能を有する導電体505を配線としても機能させている。また、酸化物530c上に絶縁体550を有し、絶縁体550上に金属酸化物552を有する。また、金属酸化物552上に導電体560を有し、導電体560上に絶縁体570を有する。また、絶縁体570上に絶縁体571を有する。
金属酸化物552は、酸素拡散を抑制する機能を有することが好ましい。絶縁体550と、導電体560との間に、酸素の拡散を抑制する金属酸化物552を設けることで、導電体560への酸素の拡散が抑制される。つまり、酸化物530へ供給する酸素量の減少を抑制することができる。また、酸素による導電体560の酸化を抑制することができる。
なお、金属酸化物552は、第1のゲートの一部としての機能を有してもよい。例えば、酸化物530として用いることができる酸化物半導体を、金属酸化物552として用いることができる。その場合、導電体560をスパッタリング法で成膜することで、金属酸化物552の電気抵抗値を低下させて導電層とすることができる。これをOC(Oxide Conductor)電極と呼ぶことができる。
また、金属酸化物552は、ゲート絶縁膜の一部としての機能を有する場合がある。したがって、絶縁体550に酸化シリコンや酸化窒化シリコンなどを用いる場合、金属酸化物552は、比誘電率が高いhigh−k材料である金属酸化物を用いることが好ましい。当該積層構造とすることで、熱に対して安定、かつ比誘電率の高い積層構造とすることができる。したがって、物理膜厚を保持したまま、トランジスタ動作時に印加するゲート電位の低減が可能となる。また、ゲート絶縁膜として機能する絶縁層の等価酸化膜厚(EOT)の薄膜化が可能となる。
トランジスタ510Dにおいて、金属酸化物552を単層で示したが、2層以上の積層構造としてもよい。例えば、ゲート電極の一部として機能する金属酸化物と、ゲート絶縁膜の一部として機能する金属酸化物とを積層して設けてもよい。
金属酸化物552を有することで、ゲート電極として機能する場合は、導電体560からの電界の影響を弱めることなく、トランジスタ510Dのオン電流の向上を図ることができる。または、ゲート絶縁膜として機能する場合は、絶縁体550と、金属酸化物552との物理的な厚みにより、導電体560と、酸化物530との間の距離を保つことで、導電体560と酸化物530との間のリーク電流を抑制することができる。従って、絶縁体550、および金属酸化物552との積層構造を設けることで、導電体560と酸化物530との間の物理的な距離、および導電体560から酸化物530へかかる電界強度を、容易に適宜調整することができる。
具体的には、酸化物530に用いることができる酸化物半導体を低抵抗化することで、金属酸化物552として用いることができる。または、ハフニウム、アルミニウム、ガリウム、イットリウム、ジルコニウム、タングステン、チタン、タンタル、ニッケル、ゲルマニウム、または、マグネシウムなどから選ばれた一種、または二種以上が含まれた金属酸化物を用いることができる。
特に、アルミニウム、またはハフニウムの一方または双方の酸化物を含む絶縁層である、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。特に、ハフニウムアルミネートは、酸化ハフニウム膜よりも、耐熱性が高い。そのため、後の工程での熱処理において、結晶化しにくいため好ましい。なお、金属酸化物552は、必須の構成ではない。求めるトランジスタ特性により、適宜設計すればよい。
絶縁体570は、水または水素などの不純物、および酸素の透過を抑制する機能を有する絶縁性材料を用いるとよい。例えば、酸化アルミニウムまたは酸化ハフニウムなどを用いることが好ましい。これにより、絶縁体570よりも上方からの酸素で導電体560が酸化するのを抑制することができる。また、絶縁体570よりも上方からの水または水素などの不純物が、導電体560および絶縁体550を介して、酸化物530に混入することを抑制することができる。
絶縁体571はハードマスクとして機能する。絶縁体571を設けることで、導電体560の加工の際、導電体560の側面が概略垂直、具体的には、導電体560の側面と基板表面のなす角を、75度以上100度以下、好ましくは80度以上95度以下とすることができる。
なお、絶縁体571に、水または水素などの不純物、および酸素の透過を抑制する機能を有する絶縁性材料を用いることで、バリア層としての機能を兼ねさせてもよい。その場合、絶縁体570は設けなくともよい。
絶縁体571をハードマスクとして用いて、絶縁体570、導電体560、金属酸化物552、絶縁体550、および酸化物530cの一部を選択的に除去することで、これらの側面を略一致させて、かつ、酸化物530b表面の一部を露出させることができる。
また、トランジスタ510Dは、露出した酸化物530b表面の一部に領域531aおよび領域531bを有する。領域531aまたは領域531bの一方はソース領域として機能し、他方はドレイン領域として機能する。
領域531aおよび領域531bの形成は、例えば、イオン注入法、イオンドーピング法、プラズマイマージョンイオン注入法、またはプラズマ処理などを用いて、露出した酸化物530b表面にリンまたはボロンなどの不純物元素を導入することで実現できる。なお、本実施の形態などにおいて「不純物元素」とは、主成分元素以外の元素のことをいう。
また、酸化物530b表面の一部を露出させた後に金属膜を成膜し、その後加熱処理することにより、該金属膜に含まれる元素を酸化物530bに拡散させて領域531aおよび領域531bを形成することもできる。
酸化物530bの不純物元素が導入された領域は、電気抵抗率が低下する。このため、領域531aおよび領域531bを「不純物領域」または「低抵抗領域」という場合がある。
絶縁体571および/または導電体560をマスクとして用いることで、領域531aおよび領域531bを自己整合(セルフアライメント)的に形成することができる。よって、領域531aおよび/または領域531bと、導電体560が重ならず、寄生容量を低減することができる。また、チャネル形成領域とソースドレイン領域(領域531aまたは領域531b)の間にオフセット領域が形成されない。領域531aおよび領域531bを自己整合(セルフアライメント)的に形成することにより、オン電流の増加、しきい値電圧の低減、動作周波数の向上などを実現できる。
なお、オフ電流を更に低減するため、チャネル形成領域とソースドレイン領域の間にオフセット領域を設けてもよい。オフセット領域とは、電気抵抗率が高い領域であり、前述した不純物元素の導入が行なわれない領域である。オフセット領域の形成は、絶縁体575の形成後に前述した不純物元素の導入を行なうことで実現できる。この場合、絶縁体575も絶縁体571などと同様にマスクとして機能する。よって、酸化物530bの絶縁体575と重なる領域に不純物元素が導入されず、該領域の電気抵抗率を高いままとすることができる。
また、トランジスタ510Dは、絶縁体570、導電体560、金属酸化物552、絶縁体550、および酸化物530cの側面に絶縁体575を有する。絶縁体575は、比誘電率の低い絶縁体であることが好ましい。例えば、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコン、空孔を有する酸化シリコン、または樹脂などであることが好ましい。特に、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、空孔を有する酸化シリコンを絶縁体575に用いると、後の工程で絶縁体575中に過剰酸素領域を容易に形成できるため好ましい。また、酸化シリコンおよび酸化窒化シリコンは、熱的に安定であるため好ましい。また、絶縁体575は、酸素を拡散する機能を有することが好ましい。
また、トランジスタ510Dは、絶縁体575、酸化物530上に絶縁体574を有する。絶縁体574は、スパッタリング法を用いて成膜することが好ましい。スパッタリング法を用いることにより、水または水素などの不純物の少ない絶縁体を成膜することができる。例えば、絶縁体574として、酸化アルミニウムを用いるとよい。
なお、スパッタリング法を用いた酸化膜は、被成膜構造体から水素を引き抜く場合がある。従って、絶縁体574が酸化物530および絶縁体575から水素および水を吸収することで、酸化物530および絶縁体575の水素濃度を低減することができる。
<トランジスタの構造例5>
図18A乃至図18Cを用いてトランジスタ510Eの構造例を説明する。図18Aはトランジスタ510Eの上面図である。図18Bは、図18Aに一点鎖線L1−L2で示す部位の断面図である。図18Cは、図18Aに一点鎖線W1−W2で示す部位の断面図である。なお、図18Aの上面図では、図の明瞭化のために一部の要素を省いて図示している。
トランジスタ510Eは上記トランジスタの変形例である。よって、説明の繰り返しを防ぐため、主に上記トランジスタと異なる点について説明する。
図18A乃至図18Cでは、導電体542を設けずに、露出した酸化物530b表面の一部に領域531aおよび領域531bを有する。領域531aまたは領域531bの一方はソース領域として機能し、他方はドレイン領域として機能する。また、酸化物530bと、絶縁体574の間に、絶縁体573を有する。
図18に示す、領域531(領域531a、および領域531b)は、酸化物530bに下記の元素が添加された領域である。領域531は、例えば、ダミーゲートを用いることで形成することができる。
具体的には、酸化物530b上にダミーゲートを設け、当該ダミーゲートをマスクとして用い、上記酸化物530bを低抵抗化する元素を添加するとよい。つまり、酸化物530が、ダミーゲートと重畳していない領域に、当該元素が添加され、領域531が形成される。なお、当該元素の添加方法としては、イオン化された原料ガスを質量分離して添加するイオン注入法、イオン化された原料ガスを質量分離せずに添加するイオンドーピング法、プラズマイマージョンイオンインプランテーション法などを用いることができる。
なお、酸化物530を低抵抗化する元素としては、代表的には、ホウ素、またはリンが挙げられる。また、水素、炭素、窒素、フッ素、硫黄、塩素、チタン、希ガス等を用いてもよい。希ガスの代表例としては、ヘリウム、ネオン、アルゴン、クリプトン、及びキセノン等がある。当該元素の濃度は、二次イオン質量分析法(SIMS)などを用いて測定すればよい。
特に、ホウ素、及びリンは、低温ポリシリコン等の製造ラインの装置を使用することができるため、好ましい。既存の設備を転用することができ、設備投資を抑制することができる。
続いて、酸化物530b、およびダミーゲート上に、絶縁体573となる絶縁膜、および絶縁体574となる絶縁膜を成膜してもよい。絶縁体573となる絶縁膜、および絶縁体574となる絶縁膜を積層して設けることで、領域531と、酸化物530cおよび絶縁体550とが重畳する領域を設けることができる。
具体的には、絶縁体574となる絶縁膜上に絶縁体580となる絶縁膜を設けた後、絶縁体580となる絶縁膜にCMP(Chemical Mechanical Polishing)処理を行うことで、絶縁体580となる絶縁膜の一部を除去し、ダミーゲートを露出する。続いて、ダミーゲートを除去する際に、ダミーゲートと接する絶縁体573の一部も除去するとよい。従って、絶縁体580に設けられた開口部の側面には、絶縁体574、および絶縁体573が露出し、当該開口部の底面には、酸化物530bに設けられた領域531の一部が露出する。次に、当該開口部に酸化物530cとなる酸化膜、絶縁体550となる絶縁膜、および導電体560となる導電膜を順に成膜した後、絶縁体580が露出するまでCMP処理などにより、酸化物530cとなる酸化膜、絶縁体550となる絶縁膜、および導電体560となる導電膜の一部を除去することで、図18に示すトランジスタを形成することができる。
なお、絶縁体573、および絶縁体574は必須の構成ではない。求めるトランジスタ特性により、適宜設計すればよい。
図18に示すトランジスタは、既存の装置を転用することができ、さらに、導電体542を設けないため、コストの低減を図ることができる。
<トランジスタの構造例6>
図19A乃至図19Cを用いてトランジスタ510Fの構造例を説明する。図19Aはトランジスタ510Fの上面図である。図19Bは、図19Aに一点鎖線L1−L2で示す部位の断面図である。図19Cは、図19Aに一点鎖線W1−W2で示す部位の断面図である。なお、図19Aの上面図では、図の明瞭化のために一部の要素を省いて図示している。
トランジスタ510Fはトランジスタ510Aの変形例である。よって、説明の繰り返しを防ぐため、主に上記トランジスタと異なる点について説明する。
トランジスタ510Aでは、絶縁体574の一部が絶縁体580に設けられた開口部内に設けられ、導電体560の側面を覆うように設けられている。一方で、トランジスタ510Fでは絶縁体580と絶縁体574の一部を除去して開口が形成されている。
また、導電体546と、絶縁体580との間に、バリア性を有する絶縁体576(絶縁体576a、および絶縁体576b)を配置してもよい。絶縁体576を設けることで、絶縁体580の酸素が導電体546と反応し、導電体546が酸化することを抑制することができる。
なお、酸化物530として酸化物半導体を用いる場合は、各金属原子の原子数比が異なる複数の酸化物層の積層構造を有することが好ましい。具体的には、酸化物530aに用いる金属酸化物において、構成元素中の元素Mの原子数比が、酸化物530bに用いる金属酸化物における、構成元素中の元素Mの原子数比より大きいことが好ましい。また、酸化物530aに用いる金属酸化物において、Inに対する元素Mの原子数比が、酸化物530bに用いる金属酸化物における、Inに対する元素Mの原子数比より大きいことが好ましい。また、酸化物530bに用いる金属酸化物において、元素Mに対するInの原子数比が、酸化物530aに用いる金属酸化物における、元素Mに対するInの原子数比より大きいことが好ましい。また、酸化物530cは、酸化物530aまたは酸化物530bに用いることができる金属酸化物を用いることができる。
酸化物530a、酸化物530b、および酸化物530cは、結晶性を有することが好ましく、特に、CAAC−OSを用いることが好ましい。CAAC−OS等の結晶性を有する酸化物は、不純物や欠陥(酸素欠損等)が少なく、結晶性の高い、緻密な構造を有している。よって、ソース電極またはドレイン電極による、酸化物530bからの酸素の引き抜きを抑制することができる。これにより、熱処理を行っても、酸化物530bから酸素が引き抜かれることを低減できるので、トランジスタ510Fは、製造工程における高い温度(所謂サーマルバジェット)に対して安定である。
なお、酸化物530aおよび酸化物530cの一方または双方を省略してもよい。酸化物530を酸化物530bの単層としてもよい。酸化物530を、酸化物530a、酸化物530b、および酸化物530cの積層とする場合は、酸化物530aおよび酸化物530cの伝導帯下端のエネルギーが、酸化物530bの伝導帯下端のエネルギーより高くなることが好ましい。また、言い換えると、酸化物530aおよび酸化物530cの電子親和力が、酸化物530bの電子親和力より小さいことが好ましい。この場合、酸化物530cは、酸化物530aに用いることができる金属酸化物を用いることが好ましい。具体的には、酸化物530cに用いる金属酸化物において、構成元素中の元素Mの原子数比が、酸化物530bに用いる金属酸化物における、構成元素中の元素Mの原子数比より大きいことが好ましい。また、酸化物530cに用いる金属酸化物において、Inに対する元素Mの原子数比が、酸化物530bに用いる金属酸化物における、Inに対する元素Mの原子数比より大きいことが好ましい。また、酸化物530bに用いる金属酸化物において、元素Mに対するInの原子数比が、酸化物530cに用いる金属酸化物における、元素Mに対するInの原子数比より大きいことが好ましい。
ここで、酸化物530a、酸化物530b、および酸化物530cの接合部において、伝導帯下端のエネルギー準位はなだらかに変化する。換言すると、酸化物530a、酸化物530b、および酸化物530cの接合部における伝導帯下端のエネルギー準位は、連続的に変化または連続接合するともいうことができる。このようにするためには、酸化物530aと酸化物530bとの界面、および酸化物530bと酸化物530cとの界面において形成される混合層の欠陥準位密度を低くするとよい。
具体的には、酸化物530aと酸化物530b、酸化物530bと酸化物530cが、酸素以外に共通の元素を有する(主成分とする)ことで、欠陥準位密度が低い混合層を形成することができる。例えば、酸化物530bがIn−Ga−Zn酸化物の場合、酸化物530aおよび酸化物530cとして、In−Ga−Zn酸化物、Ga−Zn酸化物、酸化ガリウム等を用いてもよい。また、酸化物530cを積層構造としてもよい。例えば、In−Ga−Zn酸化物と、当該In−Ga−Zn酸化物上のGa−Zn酸化物との積層構造、またはIn−Ga−Zn酸化物と、当該In−Ga−Zn酸化物上の酸化ガリウムとの積層構造を用いることができる。別言すると、In−Ga−Zn酸化物と、Inを含まない酸化物との積層構造を、酸化物530cとして用いてもよい。
具体的には、酸化物530aとして、In:Ga:Zn=1:3:4[原子数比]、または1:1:0.5[原子数比]の金属酸化物を用いればよい。また、酸化物530bとして、In:Ga:Zn=4:2:3[原子数比]、または3:1:2[原子数比]の金属酸化物を用いればよい。また、酸化物530cとして、In:Ga:Zn=1:3:4[原子数比]、In:Ga:Zn=4:2:3[原子数比]、Ga:Zn=2:1[原子数比]、またはGa:Zn=2:5[原子数比]の金属酸化物を用いればよい。また、酸化物530cを積層構造とする場合の具体例としては、In:Ga:Zn=4:2:3[原子数比]と、Ga:Zn=2:1[原子数比]との積層構造、In:Ga:Zn=4:2:3[原子数比]と、Ga:Zn=2:5[原子数比]との積層構造、In:Ga:Zn=4:2:3[原子数比]と、酸化ガリウムとの積層構造等が挙げられる。
このとき、キャリアの主たる経路は酸化物530bとなる。酸化物530a、酸化物530cを上述の構成とすることで、酸化物530aと酸化物530bとの界面、および酸化物530bと酸化物530cとの界面における欠陥準位密度を低くすることができる。そのため、界面散乱によるキャリア伝導への影響が小さくなり、トランジスタ510Fは高いオン電流、および高い周波数特性を得ることができる。なお、酸化物530cを積層構造とした場合、上述の酸化物530bと、酸化物530cとの界面における欠陥準位密度を低くする効果に加え、酸化物530cが有する構成元素が、絶縁体550側に拡散するのを抑制することが期待される。より具体的には、酸化物530cを積層構造とし、積層構造の上方にInを含まない酸化物を位置させるため、絶縁体550側に拡散しうるInを抑制することができる。絶縁体550は、ゲート絶縁体として機能するため、Inが拡散した場合、トランジスタの特性不良となる。したがって、酸化物530cを積層構造とすることで、信頼性の高い記憶装置を提供することが可能となる。
酸化物530は、酸化物半導体として機能する金属酸化物を用いることが好ましい。例えば、酸化物530のチャネル形成領域となる金属酸化物としては、バンドギャップが2eV以上、好ましくは2.5eV以上のものを用いることが好ましい。このように、バンドギャップの大きい金属酸化物を用いることで、トランジスタのオフ電流を低減することができる。このようなトランジスタを用いることで、低消費電力の記憶装置を提供できる。
<トランジスタの構造例7>
図20A、図20Bを用いてトランジスタ510Gの構造例を説明する。トランジスタ510Gはトランジスタ500の変形例である。よって、説明の繰り返しを防ぐため、主に上記トランジスタと異なる点について説明する。なお、図20A、図20Bに示す構成は、トランジスタ300等、本発明の一形態の記憶装置が有する他のトランジスタにも適用することができる。
図20Aは、トランジスタ510Gのチャネル長方向の断面図であり、図20Bは、トランジスタ510Gのチャネル幅方向の断面図である。図20A、図20Bに示すトランジスタ510Gは、絶縁体402及び絶縁体404を有する点が、図13A、図13Bに示すトランジスタ500と異なる。また、導電体540aの側面に接して絶縁体551が設けられ、導電体540bの側面に接して絶縁体551が設けられる点が、図13A、図13Bに示すトランジスタ500と異なる。さらに、絶縁体520を有さない点が、図13A、図13Bに示すトランジスタ500と異なる。
図20A、図20Bに示すトランジスタ510Gは、絶縁体512上に絶縁体402が設けられる。また、絶縁体574上、及び絶縁体402上に絶縁体404が設けられる。
図20A、図20Bに示すトランジスタ510Gでは、絶縁体514、絶縁体516、絶縁体522、絶縁体524、絶縁体544、絶縁体580、及び絶縁体574がパターニングされており、絶縁体404がこれらを覆う構造になっている。つまり、絶縁体404は、絶縁体574の上面、絶縁体574の側面、絶縁体580の側面、絶縁体544の側面、絶縁体524の側面、絶縁体522の側面、絶縁体516の側面、絶縁体514の側面、絶縁体402の上面とそれぞれ接する。これにより、酸化物530等は、絶縁体404と絶縁体402によって外部から隔離される。
絶縁体402及び絶縁体404は、水素(例えば、水素原子、水素分子などの少なくとも一つ)又は水分子の拡散を抑制する機能が高いことが好ましい。例えば、絶縁体402及び絶縁体404として、水素バリア性が高い材料である、窒化シリコン又は窒化酸化シリコンを用いることが好ましい。これにより、酸化物530に水素等が拡散することを抑制することができるので、トランジスタ510Gの特性が低下することを抑制することができる。よって、本発明の一形態の記憶装置の信頼性を高めることができる。
絶縁体551は、絶縁体581、絶縁体404、絶縁体574、絶縁体580、及び絶縁体544に接して設けられる。絶縁体551は、水素又は水分子の拡散を抑制する機能を有することが好ましい。たとえば、絶縁体551として、水素バリア性が高い材料である、窒化シリコン、酸化アルミニウム、又は窒化酸化シリコン等の絶縁体を用いることが好ましい。特に、窒化シリコンは水素バリア性が高い材料であるので、絶縁体551として用いると好適である。絶縁体551として水素バリア性が高い材料を用いることにより、水又は水素等の不純物が、絶縁体580等から導電体540a及び導電体540bを通じて酸化物530に拡散することを抑制することができる。また、絶縁体580に含まれる酸素が導電体540a及び導電体540bに吸収されることを抑制することができる。以上により、本発明の一形態の記憶装置の信頼性を高めることができる。
図21は、トランジスタ500及びトランジスタ300を、図20A、図20Bに示す構成とした場合における、記憶装置の構成例を示す断面図である。導電体546の側面に、絶縁体551が設けられている。
図22A、図22Bは、図20A、図20Bに示すトランジスタの変形例である。図22Aはトランジスタのチャネル長方向の断面図であり、図22Bはトランジスタのチャネル幅方向の断面図である。図22A、図22Bに示すトランジスタは、酸化物530cが酸化物530c1及び酸化物530c2の2層構造である点が、図20A、図20Bに示すトランジスタと異なる。
酸化物530c1は、絶縁体524の上面、酸化物530aの側面、酸化物530bの上面及び側面、導電体542a及び導電体542bの側面、絶縁体544の側面、及び絶縁体580の側面と接する。酸化物530c2は、絶縁体550と接する。
酸化物530c1として、例えば、In−Zn酸化物を用いることができる。また、酸化物530c2として、酸化物530cが1層構造である場合に酸化物530cに用いることができる材料と同様の材料を用いることができる。例えば、酸化物530c2として、In:Ga:Zn=1:3:4[原子数比]、Ga:Zn=2:1[原子数比]、またはGa:Zn=2:5[原子数比]の金属酸化物を用いることができる。
酸化物530cを酸化物530c1及び酸化物530c2の2層構造とすることにより、酸化物530cを1層構造とする場合より、トランジスタのオン電流を高めることができる。よって、トランジスタを、例えば、パワーMOSトランジスタとすることができる。なお、図13A、図13Bに示すトランジスタが有する酸化物530cも、酸化物530c1と酸化物530c2の2層構造とすることができる。
図22A、図22Bに示すトランジスタは、例えば、トランジスタ500、トランジスタ300、または、その双方に適用することができる。
なお、本実施の形態は、本明細書に記載する他の実施の形態と適宜組み合わせて実施することができる。
(実施の形態4)
本実施の形態では、上記実施の形態で説明したOSトランジスタに用いることができる金属酸化物(以下、酸化物半導体ともいう)について説明する。
金属酸化物は、少なくともインジウムまたは亜鉛を含むことが好ましい。特にインジウムおよび亜鉛を含むことが好ましい。また、それらに加えて、アルミニウム、ガリウム、イットリウム、スズなどが含まれていることが好ましい。また、ホウ素、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、マグネシウム、コバルトなどから選ばれた一種、または複数種が含まれていてもよい。
<結晶構造の分類>
まず、酸化物半導体における、結晶構造の分類について、図23Aを用いて説明を行う。図23Aは、酸化物半導体、代表的にはIGZO(Inと、Gaと、Znと、を含む金属酸化物)の結晶構造の分類を説明する図である。
図23Aに示すように、酸化物半導体は、大きく分けて「Amorphous(無定形)」と、「Crystalline(結晶性)」と、「Crystal(結晶)」と、に分類される。また、「Amorphous」の中には、completely amorphousが含まれる。また、「Crystalline」の中には、CAAC(c−axis−aligned crystalline)、nc(nanocrystalline)、及びCAC(cloud−aligned composite)が含まれる。なお、「Crystalline」の分類には、single crystal、poly crystal、及びcompletely amorphousは除かれる。また、「Crystal」の中には、single crystal、及びpoly crystalが含まれる。
なお、図23Aに示す太枠内の構造は、「Amorphous(無定形)」と、「Crystal(結晶)」との間の中間状態であり、新しい境界領域(New crystalline phase)に属する構造である。すなわち、当該構造は、エネルギー的に不安定な「Amorphous(無定形)」や、「Crystal(結晶)」とは全く異なる構造と言い換えることができる。
なお、膜または基板の結晶構造は、X線回折(XRD:X−Ray Diffraction)スペクトルを用いて評価することができる。ここで、「Crystalline」に分類されるCAAC−IGZO膜のGIXD(Grazing−Incidence XRD)測定で得られるXRDスペクトルを図23Bに示す。なお、GIXD法は、薄膜法またはSeemann−Bohlin法ともいう。以降、図23Bに示すGIXD測定で得られるXRDスペクトルを、単にXRDスペクトルと記す。なお、図23Bに示すCAAC−IGZO膜の組成は、In:Ga:Zn=4:2:3[原子数比]近傍である。また、図23Bに示すCAAC−IGZO膜の厚さは、500nmである。
図23Bに示すように、CAAC−IGZO膜のXRDスペクトルでは、明確な結晶性を示すピークが検出される。具体的には、CAAC−IGZO膜のXRDスペクトルでは、2θ=31°近傍に、c軸配向を示すピークが検出される。なお、図23Bに示すように、2θ=31°近傍のピークは、ピーク強度が検出された角度を軸に左右非対称である。
また、膜または基板の結晶構造は、極微電子線回折法(NBED:Nano Beam Electron Diffraction)によって観察される回折パターン(極微電子線回折パターンともいう)にて評価することができる。CAAC−IGZO膜の回折パターンを、図23Cに示す。図23Cは、電子線を基板に対して平行に入射するNBEDによって観察される回折パターンである。なお、図23Cに示すCAAC−IGZO膜の組成は、In:Ga:Zn=4:2:3[原子数比]近傍である。また、極微電子線回折法では、プローブ径を1nmとして電子線回折が行われる。
図23Cに示すように、CAAC−IGZO膜の回折パターンでは、c軸配向を示す複数のスポットが観察される。
<<酸化物半導体の構造>>
なお、酸化物半導体は、結晶構造に着目した場合、図23Aとは異なる分類となる場合がある。例えば、酸化物半導体は、単結晶酸化物半導体と、それ以外の非単結晶酸化物半導体と、に分けられる。非単結晶酸化物半導体としては、例えば、上述のCAAC−OS、及びnc−OSがある。また、非単結晶酸化物半導体には、多結晶酸化物半導体、擬似非晶質酸化物半導体(a−like OS:amorphous−like oxide semiconductor)、非晶質酸化物半導体、などが含まれる。
ここで、上述のCAAC−OS、nc−OS、及びa−like OSの詳細について、説明を行う。
[CAAC−OS]
CAAC−OSは、複数の結晶領域を有し、当該複数の結晶領域はc軸が特定の方向に配向している酸化物半導体である。なお、特定の方向とは、CAAC−OS膜の厚さ方向、CAAC−OS膜の被形成面の法線方向、またはCAAC−OS膜の表面の法線方向である。また、結晶領域とは、原子配列に周期性を有する領域である。なお、原子配列を格子配列とみなすと、結晶領域とは、格子配列の揃った領域でもある。さらに、CAAC−OSは、a−b面方向において複数の結晶領域が連結する領域を有し、当該領域は歪みを有する場合がある。なお、歪みとは、複数の結晶領域が連結する領域において、格子配列の揃った領域と、別の格子配列の揃った領域と、の間で格子配列の向きが変化している箇所を指す。つまり、CAAC−OSは、c軸配向し、a−b面方向には明らかな配向をしていない酸化物半導体である。
なお、上記複数の結晶領域のそれぞれは、1つまたは複数の微小な結晶(最大径が10nm未満である結晶)で構成される。結晶領域が1つの微小な結晶で構成されている場合、当該結晶領域の最大径は10nm未満となる。また、結晶領域が多数の微小な結晶で構成されている場合、当該結晶領域の大きさは、数十nm程度となる場合がある。
また、In−M−Zn酸化物(元素Mは、アルミニウム、ガリウム、イットリウム、スズ、チタンなどから選ばれた一種、または複数種)において、CAAC−OSは、インジウム(In)、及び酸素を有する層(以下、In層)と、元素M、亜鉛(Zn)、及び酸素を有する層(以下、(M,Zn)層)とが積層した、層状の結晶構造(層状構造ともいう)を有する傾向がある。なお、インジウムと元素Mは、互いに置換可能である。よって、(M,Zn)層にはインジウムが含まれる場合がある。また、In層には元素Mが含まれる場合がある。なお、In層にはZnが含まれる場合もある。当該層状構造は、例えば、高分解能TEM像において、格子像として観察される。
CAAC−OS膜に対し、例えば、XRD装置を用いて構造解析を行うと、θ/2θスキャンを用いたOut−of−plane XRD測定では、c軸配向を示すピークが2θ=31°またはその近傍に検出される。なお、c軸配向を示すピークの位置(2θの値)は、CAAC−OSを構成する金属元素の種類、組成などにより変動する場合がある。
また、例えば、CAAC−OS膜の電子線回折パターンにおいて、複数の輝点(スポット)が観測される。なお、あるスポットと別のスポットとは、試料を透過した入射電子線のスポット(ダイレクトスポットともいう)を対称中心として、点対称の位置に観測される。
上記特定の方向から結晶領域を観察した場合、当該結晶領域内の格子配列は、六方格子を基本とするが、単位格子は正六角形とは限らず、非正六角形である場合がある。また、上記歪みにおいて、五角形、七角形などの格子配列を有する場合がある。なお、CAAC−OSにおいて、歪み近傍においても、明確な結晶粒界(グレインバウンダリー)を確認することはできない。即ち、格子配列の歪みによって、結晶粒界の形成が抑制されていることがわかる。これは、CAAC−OSが、a−b面方向において酸素原子の配列が稠密でないことや、金属原子が置換することで原子間の結合距離が変化することなどによって、歪みを許容することができるためと考えられる。
なお、明確な結晶粒界が確認される結晶構造は、いわゆる多結晶(polycrystal)と呼ばれる。結晶粒界は、再結合中心となり、キャリアが捕獲されトランジスタのオン電流の低下、電界効果移動度の低下などを引き起こす可能性が高い。よって、明確な結晶粒界が確認されないCAAC−OSは、トランジスタの半導体層に好適な結晶構造を有する結晶性の酸化物の一つである。なお、CAAC−OSを構成するには、Znを有する構成が好ましい。例えば、In−Zn酸化物、及びIn−Ga−Zn酸化物は、In酸化物よりも結晶粒界の発生を抑制できるため好適である。
CAAC−OSは、結晶性が高く、明確な結晶粒界が確認されない酸化物半導体である。よって、CAAC−OSは、結晶粒界に起因する電子移動度の低下が起こりにくいといえる。また、酸化物半導体の結晶性は不純物の混入や欠陥の生成などによって低下する場合があるため、CAAC−OSは不純物や欠陥(酸素欠損など)の少ない酸化物半導体ともいえる。従って、CAAC−OSを有する酸化物半導体は、物理的性質が安定する。そのため、CAAC−OSを有する酸化物半導体は熱に強く、信頼性が高い。また、CAAC−OSは、製造工程における高い温度(所謂サーマルバジェット)に対しても安定である。したがって、OSトランジスタにCAAC−OSを用いると、製造工程の自由度を広げることが可能となる。
[nc−OS]
nc−OSは、微小な領域(例えば、1nm以上10nm以下の領域、特に1nm以上3nm以下の領域)において原子配列に周期性を有する。別言すると、nc−OSは、微小な結晶を有する。なお、当該微小な結晶の大きさは、例えば、1nm以上10nm以下、特に1nm以上3nm以下であることから、当該微小な結晶をナノ結晶ともいう。また、nc−OSは、異なるナノ結晶間で結晶方位に規則性が見られない。そのため、膜全体で配向性が見られない。したがって、nc−OSは、分析方法によっては、a−like OSや非晶質酸化物半導体と区別が付かない場合がある。例えば、nc−OS膜に対し、XRD装置を用いて構造解析を行うと、θ/2θスキャンを用いたOut−of−plane XRD測定では、結晶性を示すピークが検出されない。また、nc−OS膜に対し、ナノ結晶よりも大きいプローブ径(例えば50nm以上)の電子線を用いる電子線回折(制限視野電子線回折ともいう)を行うと、ハローパターンのような回折パターンが観測される。一方、nc−OS膜に対し、ナノ結晶の大きさと近いかナノ結晶より小さいプローブ径(例えば1nm以上30nm以下)の電子線を用いる電子線回折(ナノビーム電子線回折ともいう)を行うと、ダイレクトスポットを中心とするリング状の領域内に複数のスポットが観測される電子線回折パターンが取得される場合がある。
[a−like OS]
a−like OSは、nc−OSと非晶質酸化物半導体との間の構造を有する酸化物半導体である。a−like OSは、鬆又は低密度領域を有する。即ち、a−like OSは、nc−OS及びCAAC−OSと比べて、結晶性が低い。また、a−like OSは、nc−OS及びCAAC−OSと比べて、膜中の水素濃度が高い。
<<酸化物半導体の構成>>
次に、上述のCAC−OSの詳細について、説明を行う。なお、CAC−OSは材料構成に関する。
[CAC−OS]
CAC−OSとは、例えば、金属酸化物を構成する元素が、0.5nm以上10nm以下、好ましくは、1nm以上3nm以下、またはその近傍のサイズで偏在した材料の一構成である。なお、以下では、金属酸化物において、一つまたは複数の金属元素が偏在し、該金属元素を有する領域が、0、5nm以上10nm以下、好ましくは、1nm以上3nm以下、またはその近傍のサイズで混合した状態をモザイク状、またはパッチ状ともいう。
さらに、CAC−OSとは、第1の領域と、第2の領域と、に材料が分離することでモザイク状となり、当該第1の領域が、膜中に分布した構成(以下、クラウド状ともいう)である。つまり、CAC−OSは、当該第1の領域と、当該第2の領域とが、混合している構成を有する複合金属酸化物である。
ここで、In−Ga−Zn酸化物におけるCAC−OSを構成する金属元素に対するIn、Ga、およびZnの原子数比のそれぞれを、[In]、[Ga]、および[Zn]と表記する。例えば、In−Ga−Zn酸化物におけるCAC−OSにおいて、第1の領域は、[In]が、CAC−OS膜の組成における[In]よりも大きい領域である。また、第2の領域は、[Ga]が、CAC−OS膜の組成における[Ga]よりも大きい領域である。または、例えば、第1の領域は、[In]が、第2の領域における[In]よりも大きく、且つ、[Ga]が、第2の領域における[Ga]よりも小さい領域である。また、第2の領域は、[Ga]が、第1の領域における[Ga]よりも大きく、且つ、[In]が、第1の領域における[In]よりも小さい領域である。
具体的には、上記第1の領域は、インジウム酸化物、インジウム亜鉛酸化物などが主成分である領域である。また、上記第2の領域は、ガリウム酸化物、ガリウム亜鉛酸化物などが主成分である領域である。つまり、上記第1の領域を、Inを主成分とする領域と言い換えることができる。また、上記第2の領域を、Gaを主成分とする領域と言い換えることができる。
なお、上記第1の領域と、上記第2の領域とは、明確な境界が観察できない場合がある。
例えば、In−Ga−Zn酸化物におけるCAC−OSでは、エネルギー分散型X線分光法(EDX:Energy Dispersive X−ray spectroscopy)を用いて取得したEDXマッピングにより、Inを主成分とする領域(第1の領域)と、Gaを主成分とする領域(第2の領域)とが、偏在し、混合している構造を有することが確認できる。
CAC−OSをトランジスタに用いる場合、第1の領域に起因する導電性と、第2の領域に起因する絶縁性とが、相補的に作用することにより、スイッチングさせる機能(On/Offさせる機能)をCAC−OSに付与することができる。つまり、CAC−OSとは、材料の一部では導電性の機能と、材料の一部では絶縁性の機能とを有し、材料の全体では半導体としての機能を有する。導電性の機能と絶縁性の機能とを分離させることで、双方の機能を最大限に高めることができる。よって、CAC−OSをトランジスタに用いることで、高いオン電流(Ion)、高い電界効果移動度(μ)、および良好なスイッチング動作を実現することができる。
酸化物半導体は、多様な構造をとり、それぞれが異なる特性を有する。本発明の一態様の酸化物半導体は、非晶質酸化物半導体、多結晶酸化物半導体、a−like OS、CAC−OS、nc−OS、CAAC−OSのうち、二種以上を有していてもよい。
<酸化物半導体を有するトランジスタ>
続いて、上記酸化物半導体をトランジスタに用いる場合について説明する。
上記酸化物半導体をトランジスタに用いることで、高い電界効果移動度のトランジスタを実現することができる。また、信頼性の高いトランジスタを実現することができる。
トランジスタには、キャリア濃度の低い酸化物半導体を用いることが好ましい。例えば、酸化物半導体のキャリア濃度は1×1017cm−3以下、好ましくは1×1015cm−3以下、さらに好ましくは1×1013cm−3以下、より好ましくは1×1011cm−3以下、さらに好ましくは1×1010cm−3未満であり、1×10−9cm−3以上である。なお、酸化物半導体膜のキャリア濃度を低くする場合においては、酸化物半導体膜中の不純物濃度を低くし、欠陥準位密度を低くすればよい。本明細書等において、不純物濃度が低く、欠陥準位密度の低いことを高純度真性又は実質的に高純度真性と言う。なお、キャリア濃度の低い酸化物半導体を、高純度真性又は実質的に高純度真性な酸化物半導体と呼ぶ場合がある。
また、高純度真性又は実質的に高純度真性である酸化物半導体膜は、欠陥準位密度が低いため、トラップ準位密度も低くなる場合がある。
また、酸化物半導体のトラップ準位に捕獲された電荷は、消失するまでに要する時間が長く、あたかも固定電荷のように振る舞うことがある。そのため、トラップ準位密度の高い酸化物半導体にチャネル形成領域が形成されるトランジスタは、電気特性が不安定となる場合がある。
従って、トランジスタの電気特性を安定にするためには、酸化物半導体中の不純物濃度を低減することが有効である。また、酸化物半導体中の不純物濃度を低減するためには、近接する膜中の不純物濃度も低減することが好ましい。不純物としては、水素、窒素、アルカリ金属、アルカリ土類金属、鉄、ニッケル、シリコン等がある。
<不純物>
ここで、酸化物半導体中における各不純物の影響について説明する。
酸化物半導体において、第14族元素の一つであるシリコンや炭素が含まれると、酸化物半導体において欠陥準位が形成される。このため、酸化物半導体におけるシリコンや炭素の濃度と、酸化物半導体との界面近傍のシリコンや炭素の濃度(二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)により得られる濃度)を、2×1018atoms/cm以下、好ましくは2×1017atoms/cm以下とする。
また、酸化物半導体にアルカリ金属又はアルカリ土類金属が含まれると、欠陥準位を形成し、キャリアを生成する場合がある。従って、アルカリ金属又はアルカリ土類金属が含まれている酸化物半導体を用いたトランジスタはノーマリーオン特性となりやすい。このため、SIMSにより得られる酸化物半導体中のアルカリ金属又はアルカリ土類金属の濃度を、1×1018atoms/cm以下、好ましくは2×1016atoms/cm以下にする。
また、酸化物半導体において、窒素が含まれると、キャリアである電子が生じ、キャリア濃度が増加し、n型化しやすい。この結果、窒素が含まれている酸化物半導体を半導体に用いたトランジスタはノーマリーオン特性となりやすい。または、酸化物半導体において、窒素が含まれると、トラップ準位が形成される場合がある。この結果、トランジスタの電気特性が不安定となる場合がある。このため、SIMSにより得られる酸化物半導体中の窒素濃度を、5×1019atoms/cm未満、好ましくは5×1018atoms/cm以下、より好ましくは1×1018atoms/cm以下、さらに好ましくは5×1017atoms/cm以下にする。
また、酸化物半導体に含まれる水素は、金属原子と結合する酸素と反応して水になるため、酸素欠損を形成する場合がある。該酸素欠損に水素が入ることで、キャリアである電子が生成される場合がある。また、水素の一部が金属原子と結合する酸素と結合して、キャリアである電子を生成することがある。従って、水素が含まれている酸化物半導体を用いたトランジスタはノーマリーオン特性となりやすい。このため、酸化物半導体中の水素はできる限り低減されていることが好ましい。具体的には、酸化物半導体において、SIMSにより得られる水素濃度を、1×1020atoms/cm未満、好ましくは1×1019atoms/cm未満、より好ましくは5×1018atoms/cm未満、さらに好ましくは1×1018atoms/cm未満にする。
不純物が十分に低減された酸化物半導体をトランジスタのチャネル形成領域に用いることで、安定した電気特性を付与することができる。
なお、本実施の形態は、本明細書に記載する他の実施の形態と適宜組み合わせて実施することができる。
(実施の形態5)
本実施の形態では、上記実施の形態に示す記憶装置10が組み込まれた電子部品および電子機器の一例を示す。
<電子部品>
まず、記憶装置10が組み込まれた電子部品の例を、図24Aおよび図24Bを用いて説明を行う。
図24Aに電子部品700および電子部品700が実装された基板(実装基板704)の斜視図を示す。図24Aに示す電子部品700は、モールド711内に、層100上に層110が積層された記憶装置10を有している。図24Aは、電子部品700の内部を示すため、電子部品700の一部を省略している。電子部品700は、モールド711の外側にランド712を有する。ランド712は電極パッド713と電気的に接続され、電極パッド713は記憶装置10とワイヤ714によって電気的に接続されている。電子部品700は、例えばプリント基板702に実装される。このような電子部品が複数組み合わされて、それぞれがプリント基板702上で電気的に接続されることで実装基板704が完成する。
図24Bに電子部品730の斜視図を示す。電子部品730は、SiP(System in package)またはMCM(Multi Chip Module)の一例である。電子部品730は、パッケージ基板732(プリント基板)上にインターポーザ731が設けられ、インターポーザ731上に半導体装置735、および複数の記憶装置10が設けられている。
電子部品730では、記憶装置10を広帯域メモリ(HBM:High Bandwidth Memory)として用いる例を示している。また、半導体装置735は、CPU、GPU、FPGAなどの集積回路(半導体装置)を用いることができる。
パッケージ基板732は、セラミック基板、プラスチック基板、またはガラスエポキシ基板などを用いることができる。インターポーザ731は、シリコンインターポーザ、樹脂インターポーザなどを用いることができる。
インターポーザ731は、複数の配線を有し、端子ピッチの異なる複数の集積回路を電気的に接続する機能を有する。複数の配線は、単層または多層で設けられる。また、インターポーザ731は、インターポーザ731上に設けられた集積回路をパッケージ基板732に設けられた電極と電気的に接続する機能を有する。これらのことから、インターポーザを「再配線基板」または「中間基板」と呼ぶ場合がある。また、インターポーザ731に貫通電極を設けて、当該貫通電極を用いて集積回路とパッケージ基板732を電気的に接続する場合もある。また、シリコンインターポーザでは、貫通電極として、TSV(Through Silicon Via)を用いることも出来る。
インターポーザ731としてシリコンインターポーザを用いることが好ましい。シリコンインターポーザでは能動素子を設ける必要が無いため、集積回路よりも低コストで作製することができる。一方で、シリコンインターポーザの配線形成は半導体プロセスで行なうことができるため、樹脂インターポーザでは難しい微細配線の形成が容易である。
HBMでは、広いメモリバンド幅を実現するために多くの配線を接続する必要がある。このため、HBMを実装するインターポーザには、微細かつ高密度の配線形成が求められる。よって、HBMを実装するインターポーザには、シリコンインターポーザを用いることが好ましい。
また、シリコンインターポーザを用いたSiPやMCMなどでは、集積回路とインターポーザ間の膨張係数の違いによる信頼性の低下が生じにくい。また、シリコンインターポーザは表面の平坦性が高いため、シリコンインターポーザ上に設ける集積回路とシリコンインターポーザ間の接続不良が生じにくい。特に、インターポーザ上に複数の集積回路を横に並べて配置する2.5Dパッケージ(2.5次元実装)では、シリコンインターポーザを用いることが好ましい。
また、電子部品730と重ねてヒートシンク(放熱板)を設けてもよい。ヒートシンクを設ける場合は、インターポーザ731上に設ける集積回路の高さを揃えることが好ましい。例えば、本実施の形態に示す電子部品730では、記憶装置10と半導体装置735の高さを揃えることが好ましい。
電子部品730を他の基板に実装するため、パッケージ基板732の底部に電極733を設けてもよい。図24Bでは、電極733を半田ボールで形成する例を示している。パッケージ基板732の底部に半田ボールをマトリクス状に設けることで、BGA(Ball Grid Array)実装を実現できる。また、電極733を導電性のピンで形成してもよい。パッケージ基板732の底部に導電性のピンをマトリクス状に設けることで、PGA(Pin Grid Array)実装を実現できる。
電子部品730は、BGAおよびPGAに限らず様々な実装方法を用いて他の基板に実装することができる。例えば、SPGA(Staggered Pin Grid Array)、LGA(Land Grid Array)、QFP(Quad Flat Package)、QFJ(Quad Flat J−leaded package)、またはQFN(Quad Flat Non−leaded package)などの実装方法を用いることができる。
<電子機器>
次に、上記電子部品を備えた電子機器の例について図25を用いて説明を行う。
ロボット7100は、照度センサ、マイクロフォン、カメラ、スピーカ、ディスプレイ、各種センサ(赤外線センサ、超音波センサ、加速度センサ、ピエゾセンサ、光センサ、ジャイロセンサなど)、および移動機構などを備える。電子部品730はプロセッサなどを有し、これら周辺機器を制御する機能を有する。例えば、電子部品700はセンサで取得されたデータを記憶する機能を有する。
マイクロフォンは、使用者の音声および環境音などの音響信号を検知する機能を有する。また、スピーカは、音声および警告音などのオーディオ信号を発する機能を有する。ロボット7100は、マイクロフォンを介して入力されたオーディオ信号を解析し、必要なオーディオ信号をスピーカから発することができる。ロボット7100においては、マイクロフォン、およびスピーカを用いて、使用者とコミュニケーションをとることが可能である。
カメラは、ロボット7100の周囲を撮像する機能を有する。また、ロボット7100は、移動機構を用いて移動する機能を有する。ロボット7100は、カメラを用いて周囲の画像を撮像し、画像を解析して移動する際の障害物の有無などを察知することができる。
飛行体7120は、プロペラ、カメラ、およびバッテリなどを有し、自律して飛行する機能を有する。電子部品730はこれら周辺機器を制御する機能を有する。
例えば、カメラで撮影した画像データは、電子部品700に記憶される。電子部品730は、画像データを解析し、移動する際の障害物の有無などを察知することができる。また、電子部品730によってバッテリの蓄電容量の変化から、バッテリ残量を推定することができる。
掃除ロボット7140は、上面に配置されたディスプレイ、側面に配置された複数のカメラ、ブラシ、操作ボタン、各種センサなどを有する。図示されていないが、掃除ロボット7140には、タイヤ、吸い込み口等が備えられている。掃除ロボット7140は自走し、ゴミを検知し、下面に設けられた吸い込み口からゴミを吸引することができる。
例えば、電子部品730は、カメラが撮影した画像を解析し、壁、家具または段差などの障害物の有無を判断することができる。また、画像解析により、配線などブラシに絡まりそうな物体を検知した場合は、ブラシの回転を止めることができる。
自動車7160は、エンジン、タイヤ、ブレーキ、操舵装置、カメラなどを有する。例えば、電子部品730は、ナビゲーション情報、速度、エンジンの状態、ギアの選択状態、ブレーキの使用頻度などのデータに基づいて、自動車7160の走行状態を最適化するための制御を行う。例えば、カメラで撮影した画像データは電子部品700に記憶される。
電子部品700および/または電子部品730は、TV装置7200(テレビジョン受像装置)、スマートフォン7210、PC(パーソナルコンピュータ)7220、7230、ゲーム機7240、ゲーム機7260等に組み込むことができる。
例えば、TV装置7200に内蔵された電子部品730は画像エンジンとして機能させることができる。例えば、電子部品730は、ノイズ除去、解像度アップコンバージョンなどの画像処理を行う。
スマートフォン7210は、携帯情報端末の一例である。スマートフォン7210は、マイクロフォン、カメラ、スピーカ、各種センサ、および表示部を有する。電子部品730によってこれら周辺機器が制御される。
PC7220、PC7230はそれぞれノート型PC、据え置き型PCの例である。PC7230には、キーボード7232、およびモニタ装置7233が無線または有線により接続可能である。ゲーム機7240は携帯型ゲーム機の例である。ゲーム機7260は据え置き型ゲーム機の例である。ゲーム機7260には、無線または有線でコントローラ7262が接続されている。コントローラ7262に、電子部品700および/または電子部品730を組み込むこともできる。
なお、本実施の形態は、本明細書に記載する他の実施の形態と適宜組み合わせて実施することができる。
C11:キャパシタ、C12:キャパシタ、C13:キャパシタ、C14:キャパシタ、C15:キャパシタ、C16:キャパシタ、C17:キャパシタ、C18:キャパシタ、M11:トランジスタ、M12:トランジスタ、N11:ノード、Tr21:トランジスタ、Tr22:トランジスタ、Tr23:トランジスタ、Tr31:トランジスタ、Tr32:トランジスタ、Tr33:トランジスタ、Tr34:トランジスタ、Tr41:トランジスタ、Tr42:トランジスタ、10:記憶装置、11:トランジスタ、12:トランジスタ、13:トランジスタ、14:トランジスタ、15:トランジスタ、16:トランジスタ、17:トランジスタ、18:トランジスタ、21:トランジスタ、22:トランジスタ、23:トランジスタ、24:トランジスタ、25:トランジスタ、26:トランジスタ、27:トランジスタ、28:トランジスタ、31:トランジスタ、32:トランジスタ、33:トランジスタ、34:トランジスタ、41:トランジスタ、42:トランジスタ、43:トランジスタ、44:トランジスタ、45:トランジスタ、46:トランジスタ、100:層、101:周辺回路、110:層、111:メモリセルアレイ、112:回路、113:メモリセルブロック、114:メモリセル、121:ロウデコーダ、122:ワード線ドライバ回路、131:カラムデコーダ、132:ビット線ドライバ回路、133:プリチャージ回路、134:センスアンプ、135:入出力回路、141:出力回路、151:コントロールロジック回路、211:メモリセルアレイ、214:メモリセル、300:トランジスタ、311:基板、313:半導体領域、314a:低抵抗領域、314b:低抵抗領域、315:絶縁体、316:導電体、320:絶縁体、322:絶縁体、324:絶縁体、326:絶縁体、328:導電体、330:導電体、350:絶縁体、352:絶縁体、354:絶縁体、356:導電体、360:絶縁体、362:絶縁体、364:絶縁体、366:導電体、370:絶縁体、372:絶縁体、374:絶縁体、376:導電体、380:絶縁体、382:絶縁体、384:絶縁体、386:導電体、402:絶縁体、404:絶縁体、500:トランジスタ、503:導電体、503a:導電体、503b:導電体、505:導電体、505a:導電体、505b:導電体、510:絶縁体、510A:トランジスタ、510B:トランジスタ、510C:トランジスタ、510D:トランジスタ、510E:トランジスタ、510F:トランジスタ、510G:トランジスタ、511:絶縁体、512:絶縁体、514:絶縁体、516:絶縁体、518:導電体、520:絶縁体、521:絶縁体、522:絶縁体、524:絶縁体、530:酸化物、530a:酸化物、530b:酸化物、530c:酸化物、530c1:酸化物、530c2:酸化物、531:領域、531a:領域、531b:領域、540a:導電体、540b:導電体、542:導電体、542a:導電体、542b:導電体、543:領域、543a:領域、543b:領域、544:絶縁体、545:絶縁体、546:導電体、546a:導電体、546b:導電体、547:導電体、547a:導電体、547b:導電体、548:導電体、550:絶縁体、551:絶縁体、552:金属酸化物、560:導電体、560a:導電体、560b:導電体、570:絶縁体、571:絶縁体、573:絶縁体、574:絶縁体、575:絶縁体、576:絶縁体、576a:絶縁体、576b:絶縁体、580:絶縁体、581:絶縁体、582:絶縁体、584:絶縁体、586:絶縁体、600:容量素子、610:導電体、612:導電体、620:導電体、630:絶縁体、650:絶縁体、700:電子部品、702:プリント基板、704:実装基板、711:モールド、712:ランド、713:電極パッド、714:ワイヤ、730:電子部品、731:インターポーザ、732:パッケージ基板、733:電極、735:半導体装置、7100:ロボット、7120:飛行体、7140:掃除ロボット、7160:自動車、7200:TV装置、7210:スマートフォン、7220:PC、7230:PC、7232:キーボード、7233:モニタ装置、7240:ゲーム機、7260:ゲーム機、7262:コントローラ

Claims (9)

  1.  ワード線ドライバ回路と、
     切り替え回路と、
     メモリセルアレイと、を有し、
     前記ワード線ドライバ回路は、k(kは1以上の整数)本の信号線に信号を出力する機能を有し、
     前記メモリセルアレイは、k+1本のワード線を有し、
     前記k+1本のワード線は、それぞれ、複数のメモリセルと電気的に接続され、
     前記切り替え回路は、2×k個のスイッチトランジスタを有し、
     前記2×k個のスイッチトランジスタのゲートは、それぞれ、トランジスタのソースまたはドレインの一方、および、キャパシタの一方の端子と、電気的に接続され、
     前記2×k個のスイッチトランジスタの一つは、ソースまたはドレインの一方が前記k本の信号線の一つと電気的に接続され、ソースまたはドレインの他方が前記k+1本のワード線の一つと電気的に接続され、
     前記2×k個のスイッチトランジスタの他の一つは、ソースまたはドレインの一方が前記k本の信号線の一つと電気的に接続され、ソースまたはドレインの他方が前記k+1本のワード線の他の一つと電気的に接続される、記憶装置。
  2.  請求項1において、
     前記トランジスタは、チャネル形成領域に金属酸化物を有する、記憶装置。
  3.  請求項1において、
     前記スイッチトランジスタ、および、前記トランジスタは、チャネル形成領域に金属酸化物を有する、記憶装置。
  4.  ワード線ドライバ回路と、
     第1乃至第m(mは1以上の整数)切り替え回路と、
     第1乃至第mメモリセルブロックと、を有し、
     前記ワード線ドライバ回路は、第1乃至第m回路を有し、
     前記第j(jは1以上m以下の整数)回路は、それぞれ、前記第j切り替え回路に、第1乃至第k(kは1以上の整数)信号線を介して、信号を出力する機能を有し、
     前記第jメモリセルブロックは、それぞれ、k+1本のワード線を有し、
     前記k+1本のワード線は、それぞれ、複数のメモリセルと電気的に接続され、
     前記第j切り替え回路は、それぞれ、2×k個のスイッチトランジスタを有し、
     前記第j切り替え回路のそれぞれにおいて、前記2×k個のスイッチトランジスタのゲートは、それぞれ、トランジスタのソースまたはドレインの一方、および、キャパシタの一方の端子と、電気的に接続され、
     前記第j切り替え回路のそれぞれにおいて、前記2×k個のスイッチトランジスタの一つは、ソースまたはドレインの一方が前記k本の信号線の一つと電気的に接続され、ソースまたはドレインの他方が前記k+1本のワード線の一つと電気的に接続され、前記2×k個のスイッチトランジスタの他の一つは、ソースまたはドレインの一方が前記k本の信号線の一つと電気的に接続され、ソースまたはドレインの他方が前記k+1本のワード線の他の一つと電気的に接続される、記憶装置。
  5.  請求項4において、
     前記トランジスタは、チャネル形成領域に金属酸化物を有する、記憶装置。
  6.  請求項4において、
     前記スイッチトランジスタ、および、前記トランジスタは、チャネル形成領域に金属酸化物を有する、記憶装置。
  7.  ワード線ドライバ回路を有する半導体基板と、
     第1乃至第m(mは1以上の整数)切り替え回路、および、第1乃至第mメモリセルブロックを有する素子層と、を有し、
     前記ワード線ドライバ回路は、第1乃至第m回路を有し、
     前記第j(jは1以上m以下の整数)回路は、それぞれ、前記第j切り替え回路に、第1乃至第k(kは1以上の整数)信号線を介して、信号を出力する機能を有し、
     前記第jメモリセルブロックは、それぞれ、k+1本のワード線を有し、
     前記k+1本のワード線は、それぞれ、複数のメモリセルと電気的に接続され、
     前記第j切り替え回路は、それぞれ、2×k個のスイッチトランジスタを有し、
     前記第j切り替え回路のそれぞれにおいて、前記2×k個のスイッチトランジスタのゲートは、それぞれ、トランジスタのソースまたはドレインの一方、および、キャパシタの一方の端子と、電気的に接続され、
     前記第j切り替え回路のそれぞれにおいて、前記2×k個のスイッチトランジスタの一つは、ソースまたはドレインの一方が前記k本の信号線の一つと電気的に接続され、ソースまたはドレインの他方が前記k+1本のワード線の一つと電気的に接続され、前記2×k個のスイッチトランジスタの他の一つは、ソースまたはドレインの一方が前記k本の信号線の一つと電気的に接続され、ソースまたはドレインの他方が前記k+1本のワード線の他の一つと電気的に接続され、
     前記素子層は、前記半導体基板の上方に積層して設けられる、記憶装置。
  8.  請求項7において、
     前記素子層に形成されたトランジスタ、および、スイッチトランジスタは、それぞれ、チャネル形成領域に金属酸化物を有する、記憶装置。
  9.  請求項7において、
     前記半導体基板は、単結晶シリコン基板であり、
     前記素子層に形成されたトランジスタ、および、スイッチトランジスタは、それぞれ、チャネル形成領域に金属酸化物を有する、記憶装置。
PCT/IB2020/053638 2019-04-30 2020-04-17 冗長メモリセルを有する記憶装置、半導体装置、および、電子機器 WO2020222068A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/600,379 US11823733B2 (en) 2019-04-30 2020-04-17 Memory device, semiconductor device, and electronic device each including redundant memory cell
JP2021517130A JP7467430B2 (ja) 2019-04-30 2020-04-17 記憶装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019087072 2019-04-30
JP2019-087072 2019-04-30

Publications (1)

Publication Number Publication Date
WO2020222068A1 true WO2020222068A1 (ja) 2020-11-05

Family

ID=73029494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2020/053638 WO2020222068A1 (ja) 2019-04-30 2020-04-17 冗長メモリセルを有する記憶装置、半導体装置、および、電子機器

Country Status (3)

Country Link
US (1) US11823733B2 (ja)
JP (1) JP7467430B2 (ja)
WO (1) WO2020222068A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10283795A (ja) * 1997-04-07 1998-10-23 Motorola Inc メモリシステム
JP2005174533A (ja) * 2003-11-19 2005-06-30 Semiconductor Energy Lab Co Ltd 半導体装置、電子機器、icカード及び半導体装置の駆動方法
JP2007200521A (ja) * 2005-12-28 2007-08-09 Semiconductor Energy Lab Co Ltd 不揮発性メモリおよびその書き込み方法、並びに半導体装置
JP2012257216A (ja) * 2011-05-19 2012-12-27 Semiconductor Energy Lab Co Ltd プログラマブルロジックデバイス
JP2012256822A (ja) * 2010-09-14 2012-12-27 Semiconductor Energy Lab Co Ltd 記憶装置及び半導体装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7239564B2 (en) 2003-11-19 2007-07-03 Semiconductor Energy Laboratory, Co., Ltd. Semiconductor device for rectifying memory defects
US20060274585A1 (en) 2005-06-03 2006-12-07 Jung Chang H Memory device with row shifting for defective row repair
US7719872B2 (en) 2005-12-28 2010-05-18 Semiconductor Energy Laboratory Co., Ltd. Write-once nonvolatile memory with redundancy capability
KR101787734B1 (ko) 2010-01-20 2017-10-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 기억 장치
JP2012256821A (ja) 2010-09-13 2012-12-27 Semiconductor Energy Lab Co Ltd 記憶装置
JP6161300B2 (ja) 2012-01-23 2017-07-12 東京パーツ工業株式会社 人体検知装置およびこの人体検知装置を備えたキー閉じ込め解除装置
US9443990B2 (en) * 2013-08-26 2016-09-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device for adjusting threshold thereof
US9385054B2 (en) 2013-11-08 2016-07-05 Semiconductor Energy Laboratory Co., Ltd. Data processing device and manufacturing method thereof
WO2017068478A1 (en) * 2015-10-22 2017-04-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device or memory device including the semiconductor device
JP7122096B2 (ja) 2017-10-23 2022-08-19 サッポロビール株式会社 空容器検査装置の検査方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10283795A (ja) * 1997-04-07 1998-10-23 Motorola Inc メモリシステム
JP2005174533A (ja) * 2003-11-19 2005-06-30 Semiconductor Energy Lab Co Ltd 半導体装置、電子機器、icカード及び半導体装置の駆動方法
JP2007200521A (ja) * 2005-12-28 2007-08-09 Semiconductor Energy Lab Co Ltd 不揮発性メモリおよびその書き込み方法、並びに半導体装置
JP2012256822A (ja) * 2010-09-14 2012-12-27 Semiconductor Energy Lab Co Ltd 記憶装置及び半導体装置
JP2012257216A (ja) * 2011-05-19 2012-12-27 Semiconductor Energy Lab Co Ltd プログラマブルロジックデバイス

Also Published As

Publication number Publication date
US20220208248A1 (en) 2022-06-30
JPWO2020222068A1 (ja) 2020-11-05
JP7467430B2 (ja) 2024-04-15
US11823733B2 (en) 2023-11-21

Similar Documents

Publication Publication Date Title
WO2020201865A1 (ja) 半導体装置
JP7160894B2 (ja) 記憶装置
JP7462575B2 (ja) 半導体装置
JP2017034249A (ja) 半導体装置、回路基板及び電子機器
WO2020234689A1 (ja) 半導体装置
KR102617170B1 (ko) 기억 장치
WO2020170067A1 (ja) 半導体装置および当該半導体装置を有する電気機器
WO2021053453A1 (ja) 半導体装置
TWI779136B (zh) 半導體裝置
JPWO2019145814A1 (ja) 記憶装置、半導体装置、および電子機器
WO2020222068A1 (ja) 冗長メモリセルを有する記憶装置、半導体装置、および、電子機器
WO2021009586A1 (ja) 積和演算回路と記憶装置を有する半導体装置、電子部品、および電子機器
JP7344904B2 (ja) 半導体装置
JPWO2019111112A1 (ja) 半導体装置
KR20210130734A (ko) 오류 검출 기능을 가지는 기억 장치, 반도체 장치, 및 전자 기기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20799566

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021517130

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20799566

Country of ref document: EP

Kind code of ref document: A1