WO2020221303A1 - 半静态码本生成的方法和通信装置 - Google Patents

半静态码本生成的方法和通信装置 Download PDF

Info

Publication number
WO2020221303A1
WO2020221303A1 PCT/CN2020/087821 CN2020087821W WO2020221303A1 WO 2020221303 A1 WO2020221303 A1 WO 2020221303A1 CN 2020087821 W CN2020087821 W CN 2020087821W WO 2020221303 A1 WO2020221303 A1 WO 2020221303A1
Authority
WO
WIPO (PCT)
Prior art keywords
time slot
pdcch
pdsch
slot offset
offset value
Prior art date
Application number
PCT/CN2020/087821
Other languages
English (en)
French (fr)
Inventor
戴晶
薛丽霞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020221303A1 publication Critical patent/WO2020221303A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0036Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1864ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated

Definitions

  • This application relates to the field of communications, and more specifically, to a method and communication device for generating a semi-static codebook.
  • 5G new radio (NR) downlink transmission supports semi-persistent scheduling (SPS) physical downlink shared channel (PDSCH) and dynamically scheduled PDSCH.
  • SPS semi-persistent scheduling
  • PDSCH physical downlink shared channel
  • HARQ hybrid automatic repeat request
  • the terminal device feedbacks HARQ's acknowledgement (ACK)/negative acknowledgement (NACK) information. Only when NACK is fed back, the network The device only needs to retransmit, which improves the efficiency of data transmission.
  • the present application provides a method and communication device for generating a semi-static codebook, which can reduce invalid NACK bits in a semi-static HARQ codebook, thereby increasing the code rate of the semi-static HARQ codebook and reducing the cost of feeding back the semi-static HARQ codebook.
  • the PUCCH resource overhead improves the reliability of the semi-static HARQ codebook.
  • a method for generating a semi-static codebook is provided.
  • the execution subject of the method can be either a terminal device or a chip applied to the terminal device.
  • the method includes: a terminal
  • the device receives indication information from the network device, and the indication information is used to dynamically change the detection timing of the physical downlink control channel PDCCH.
  • the terminal device determines, according to the PDCCH detection timing and the first time slot offset value set, the hybrid automatic repeat request confirmation HARQ_ACK corresponding candidate physical downlink shared channel PDSCH receiving timing sent on the PUCCH resource of the first physical uplink control channel.
  • the PDCCH is used to schedule the transmission of the PDSCH, and the time slot offset value included in the first time slot offset value set is used to indicate the time slot offset value between the PDCCH and the PDSCH.
  • the terminal device determines the semi-static HARQ codebook of the HARQ_ACK sent on the first PUCCH according to the receiving opportunity of the candidate PDSCH.
  • the candidate PDSCH receiving timing is determined according to the dynamically changing PDCCH detection timing and the first time slot offset value set.
  • the candidate PDSCH reception timing includes only the PDSCH reception timing that may be scheduled for the PDCCH detection timing, which avoids the candidate PDSCH reception timing including the PDSCH invalid timing.
  • the semi-static HARQ codebook is determined according to the candidate PDSCH receiving opportunity, which can reduce the invalid NACK bits in the semi-static HARQ codebook, thereby increasing the code rate of the semi-static HARQ codebook, and reducing the PUCCH resource feedback of the semi-static HARQ codebook. Overhead, improve the reliability of the semi-static HARQ codebook and improve communication efficiency.
  • the indication information includes: at least one of activating or deactivating the search space set corresponding to the PDCCH, the detection period of the PDCCH, or the PDCCH detection skip information, wherein the The search space set corresponding to the PDCCH includes the detection period of the PDCCH; the method further includes: the terminal device determines the detection timing of the PDCCH according to the indication information.
  • determining the PDCCH detection timing according to the indication information can improve the accuracy of the determined PDCCH detection timing and improve the efficiency of determining the PDCCH detection timing.
  • the method further includes: determining a time slot corresponding to the first PUCCH resource according to the second time slot offset value set and the time slot where the first PUCCH resource is located
  • the time unit set of the second time slot offset value set, the time slot offset value included in the second time slot offset value set is used to indicate the time slot offset value between the time slot in which the first PUCCH resource is located and the time unit in the time unit set;
  • the PDCCH detection timing and the first time slot offset value set, and determining the candidate PDSCH receiving timing corresponding to the HARQ_ACK sent on the first PUCCH resource includes: according to the PDCCH detection timing and the first time slot offset value set , Determine the candidate PDSCH receiving opportunity in the time unit set.
  • the PDCCH carries downlink control information DCI, and the DCI is used to schedule a unicast PDSCH.
  • the DCI corresponds to the scrambling of the cell radio temporary network identifier C-RNTI, or the modulation and coding scheme cell radio network temporary identifier MCS-C-RNTI, or the corresponding configuration scheduling wireless network Temporary identification of CS-RNTI scrambling.
  • the number of time slot offset values included in the second time slot offset value set is less than or equal to 4.
  • At least one of the one or more candidate PDSCH time domain resources corresponding to the candidate PDSCH reception timing is a downlink symbol.
  • the indication information is also used to indicate that the HARQ_ACK uses a semi-static HARQ codebook.
  • a method for generating a semi-static codebook is provided.
  • the execution body of the method can be either a network device or a chip applied to the network device.
  • the method includes: The device sends instruction information to the terminal device, and the instruction information is used to dynamically change the detection timing of the physical downlink control channel PDCCH.
  • the network device determines the hybrid automatic repeat request received on the first physical uplink control channel PUCCH resource to confirm the HARQ_ACK corresponding candidate physical downlink shared channel PDSCH reception timing,
  • the PDCCH is used to schedule the transmission of the PDSCH, and the time slot offset value included in the first time slot offset value set is used to indicate the time slot offset value between the PDCCH and the PDSCH.
  • the network device determines the semi-static HARQ codebook of the HARQ_ACK received on the first PUCCH resource according to the receiving opportunity of the candidate PDSCH.
  • the candidate PDSCH receiving timing is determined according to the dynamically changing PDCCH detection timing and the first time slot offset value set.
  • the candidate PDSCH reception timing includes only the PDSCH reception timing that may be scheduled for the PDCCH detection timing, which avoids the candidate PDSCH reception timing including the PDSCH invalid timing.
  • the semi-static HARQ codebook is determined according to the candidate PDSCH receiving opportunity, which can reduce the invalid NACK bits in the semi-static HARQ codebook, thereby increasing the code rate of the semi-static HARQ codebook, and reducing the PUCCH resource feedback of the semi-static HARQ codebook. Overhead, improve the reliability of the semi-static HARQ codebook.
  • the indication information includes: at least one of activating or deactivating the search space set corresponding to the PDCCH, the detection period of the PDCCH, or the PDCCH detection skip information, wherein the The search space set corresponding to the PDCCH includes the detection period of the PDCCH.
  • the method further includes: determining a time slot corresponding to the first PUCCH resource according to the second time slot offset value set and the time slot where the first PUCCH resource is located
  • the time unit set of the second time slot offset value set includes the time slot offset value used to indicate the time slot offset value of the time slot in which the first PUCCH resource is located and the time unit in the time unit set.
  • determining the candidate PDSCH reception timing corresponding to the HARQ_ACK received on the first PUCCH resource includes: according to the PDCCH detection timing and the first time slot offset value Set, determine the candidate PDSCH receiving opportunity in the time unit set.
  • the PDCCH carries downlink control information DCI, and the DCI is used to schedule a unicast PDSCH.
  • the DCI corresponds to the scrambling of the cell radio temporary network identifier C-RNTI, or the modulation and coding scheme cell radio network temporary identifier MCS-C-RNTI, or the corresponding configuration scheduling wireless network Temporary identification of CS-RNTI scrambling.
  • the number of time slot offset values included in the second time slot offset value set is less than or equal to 4.
  • At least one candidate PDSCH time domain resource among the one or more candidate PDSCH time domain resources corresponding to the candidate PDSCH reception timing is a downlink symbol.
  • the indication information is also used to indicate that the HARQ_ACK uses a semi-static HARQ codebook.
  • a communication device which includes a unit for executing the steps in the above first aspect or any possible implementation of the first aspect.
  • a communication device in a fourth aspect, includes a unit for executing the above second aspect or any possible implementation of the second aspect.
  • the communication device is a communication chip
  • the communication chip may include an input circuit or interface for sending information or data, and an output circuit or interface for receiving information or data.
  • the communication device is a communication device (for example, a terminal device or an access network device), and the communication device may include a transmitter for sending information or data, and a receiver for receiving information or data.
  • a communication device which includes at least one processor and a memory, and the at least one processor is configured to execute the above first aspect or the method in any possible implementation manner of the first aspect.
  • a communication device in a sixth aspect, includes at least one processor and a memory, and the at least one processor is configured to execute the above second aspect or the method in any possible implementation of the second aspect.
  • a communication device which includes at least one processor and an interface circuit, and the at least one processor is configured to execute the above first aspect or the method in any possible implementation of the first aspect.
  • a communication device which includes at least one processor and an interface circuit, and the at least one processor is configured to execute the foregoing second aspect or any possible implementation of the second aspect.
  • a processor including: an input circuit, an output circuit, and a processing circuit.
  • the processing circuit is used to receive a signal through the input circuit and transmit a signal through the output circuit, so that the processor executes the first aspect and the second aspect, or the implementation of any one of the first aspect and the second aspect The method in the way.
  • the foregoing processor may be a chip
  • the input circuit may be an input pin
  • the output circuit may be an output pin
  • the processing circuit may be a transistor, a gate circuit, a flip-flop, and various logic circuits.
  • the input signal received by the input circuit may be received and input by, for example, but not limited to, a receiver
  • the signal output by the output circuit may be, for example, but not limited to, output to and transmitted by the transmitter
  • the circuit can be the same circuit, which is used as an input circuit and an output circuit at different times.
  • the embodiments of the present application do not limit the specific implementation manners of the processor and various circuits.
  • a terminal device in a tenth aspect, includes the communication device provided in the third aspect, or the terminal includes the communication device provided in the fifth aspect, or the terminal includes the communication provided in the seventh aspect. Device.
  • a network device in an eleventh aspect, includes the communication device provided in the foregoing fourth aspect, or the network device includes the communication device provided in the foregoing sixth aspect, or the network device includes the foregoing eighth aspect The provided communication device.
  • a computer program product includes a computer program.
  • the computer program product includes a computer program.
  • the computer program is executed by a processor, it is used to execute the method in the first aspect or any possible implementation of the first aspect , Or execute the method in the second aspect or any possible implementation of the second aspect.
  • a computer-readable storage medium stores a computer program, and when the computer program is executed, it is used to execute the first aspect or any possible implementation manner of the first aspect Or implement the second aspect or any possible implementation of the second aspect.
  • the candidate PDSCH reception timing is determined according to the dynamically changing PDCCH detection timing and the first time slot offset value set.
  • the candidate PDSCH reception timing includes only the PDSCH reception timing that may be scheduled for the PDCCH detection timing, which avoids the candidate PDSCH reception timing including the PDSCH invalid timing.
  • the semi-static HARQ codebook is determined according to the candidate PDSCH receiving opportunity, which can reduce the invalid NACK bits in the semi-static HARQ codebook, thereby increasing the code rate of the semi-static HARQ codebook, and reducing the PUCCH resource feedback of the semi-static HARQ codebook. Overhead, improve the reliability of the semi-static HARQ codebook. Especially when the PDCCH period is relatively large, the reliability of the semi-static HARQ codebook can be greatly improved, and the communication efficiency can be improved.
  • FIG. 1 is a schematic diagram of the architecture of a mobile communication system applicable to an embodiment of the present application.
  • Fig. 2 is a schematic diagram of an example of determining the semi-static codebook feedback HARQ-ACK according to the K1 set.
  • Fig. 3 is another example of determining the semi-static codebook feedback HARQ-ACK according to the K1 set.
  • Fig. 4 is a schematic diagram of another example of determining the semi-static codebook feedback HARQ-ACK according to the K1 set.
  • Fig. 5 is a schematic interaction diagram of a method for generating a semi-static codebook provided by an embodiment of the present application.
  • FIG. 6 is a schematic interaction diagram of another example of a method for generating a semi-static codebook provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of determining the candidate PDSCH reception timing according to the second slot offset value set, the first slot offset value set, and the PDCCH detection timing provided by an embodiment of the present application.
  • Fig. 8 is a schematic diagram of a communication device provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of another example of a communication device provided by an embodiment of the present application.
  • Fig. 10 is a schematic diagram of a communication device provided by an embodiment of the present application.
  • Fig. 11 is a schematic diagram of another example of a communication device provided by an embodiment of the present application.
  • FIG. 12 is a schematic diagram of a terminal device provided by an embodiment of the present application.
  • Fig. 13 is a schematic diagram of a network device provided by an embodiment of the present application.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GSM Global System of Mobile Communication
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • 5G 5th Generation
  • 5NR New Radio
  • FIG. 1 is a schematic diagram of the architecture of a mobile communication system applicable to an embodiment of the present application.
  • the mobile communication system 100 may include a core network device 110, a wireless access network device 120, and at least one terminal device (the terminal device 130 and the terminal device 140 shown in FIG. 1).
  • the terminal device is connected to the wireless access network device in a wireless manner
  • the wireless access network device is connected to the core network device in a wireless or wired manner.
  • the core network device and the wireless access network device can be separate and different physical devices, or they can integrate the functions of the core network device and the logical function of the wireless access network device on the same physical device, or it can be a physical device It integrates the functions of part of the core network equipment and part of the wireless access network equipment.
  • the terminal device can be a fixed location or movable.
  • Fig. 1 is only a schematic diagram.
  • the communication system may also include other network equipment, such as wireless relay equipment and wireless backhaul equipment, which are not shown in Fig. 1.
  • the embodiments of the present application do not limit the number of core network equipment, radio access network equipment, and terminal equipment included in the mobile communication system.
  • the terminal equipment in the mobile communication system 100 may also be referred to as a terminal, a user equipment (UE), a mobile station (MS), a mobile terminal (MT), etc.
  • Terminal devices can be mobile phones, tablets, computers with wireless transceiver functions, virtual reality (VR) terminal devices, augmented reality (Augmented Reality, AR) terminal devices, industrial control (industrial control) ), wireless terminals in self-driving (self-driving), wireless terminals in remote medical surgery, wireless terminals in smart grid, and wireless terminals in transportation safety (transportation safety) Terminal, wireless terminal in smart city, wireless terminal in smart home, etc.
  • the aforementioned terminal devices and chips applicable to the aforementioned terminal devices are collectively referred to as terminal devices. It should be understood that the embodiments of the present application do not limit the specific technology and specific device form adopted by the terminal device.
  • the wireless access network device 120 is an access device that a terminal device accesses to the mobile communication system in a wireless manner.
  • the wireless access network device 120 may be: a base station, an evolved base station (evolved node B, base station), a home base station, an access point (AP) in a WIFI system, a wireless relay node, a wireless backhaul node,
  • the transmission point (TP) or the transmission and reception point (TRP), etc. can also be the gNB in the NR system, or it can be a component or part of the equipment that forms the base station, such as a centralized unit (centralized unit). unit, CU), distributed unit (DU), or baseband unit (BBU), etc.
  • wireless access network equipment is referred to as network equipment.
  • network equipment in this application refers to wireless access network equipment.
  • the network device may refer to the network device itself, or may be a chip applied to the network device to complete the wireless communication processing function.
  • the terminal device or the network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and memory (also referred to as main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through processes, for example, Linux operating system, Unix operating system, Android operating system, iOS operating system, or windows operating system.
  • the application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiments of the application do not specifically limit the specific structure of the execution subject of the methods provided in the embodiments of the application, as long as the program that records the codes of the methods provided in the embodiments of the application can be provided according to the embodiments of the application.
  • the execution subject of the method provided in the embodiment of the present application may be a terminal device or a network device, or a functional module in the terminal device or network device that can call and execute the program.
  • various aspects or features of the present application can be implemented as methods, devices, or products using standard programming and/or engineering techniques.
  • article of manufacture as used in this application encompasses a computer program accessible from any computer-readable device, carrier, or medium.
  • computer-readable media may include, but are not limited to: magnetic storage devices (for example, hard disks, floppy disks, or tapes, etc.), optical disks (for example, compact discs (CD), digital versatile discs (DVD)) Etc.), smart cards and flash memory devices (for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.).
  • various storage media described herein may represent one or more devices and/or other machine-readable media for storing information.
  • machine-readable medium may include, but is not limited to, wireless channels and various other media capable of storing, containing, and/or carrying instructions and/or data.
  • the time domain resources used by base stations and terminal devices for wireless communication can be divided into multiple time units.
  • the multiple time units may be continuous, or there may be a preset interval between some adjacent time units, which is not particularly limited in the embodiment of the present application.
  • the length of a time unit is not limited.
  • one time unit may be one or more subframes; or, it may also be one or more time slots; or, it may also be one or more symbols.
  • one subframe is 1 ms
  • one slot includes 14 symbols in the case of a normal cyclic prefix, and includes 12 symbols in the case of an extended cyclic prefix.
  • the symbol is also referred to as a time-domain symbol, which can be an orthogonal frequency division multiplexing (OFDM) symbol, or a single carrier frequency division multiple access (single carrier frequency division multiple access) symbol.
  • OFDM orthogonal frequency division multiplexing
  • SC-FDMA single carrier frequency division multiple access
  • SC-FDMA orthogonal frequency division multiplexing with transform precoding
  • the terminal equipment in the embodiments of this application may refer to user equipment, access terminals, user units, user stations, mobile stations, mobile stations, remote stations, remote terminals, mobile equipment, user terminals, terminals, wireless communication equipment, user agents, or User device.
  • the terminal device can also be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital processing (Personal Digital Assistant, PDA), with wireless communication Functional handheld devices, computing devices, or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in the future 5G network, or future evolution of the public land mobile network (Public Land Mobile Network, PLMN) Terminal equipment, etc., this embodiment of the present application does not limit this.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the network device in the embodiment of the application may be a device used to communicate with a terminal device.
  • the network device may be a Global System of Mobile Communication (GSM) system or Code Division Multiple Access (CDMA)
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • BTS Base Transceiver Station
  • BTS base station
  • NodeB, NB base station
  • WCDMA Wideband Code Division Multiple Access
  • Evolutional Base Station Evolution
  • NodeB eNB, or eNodeB
  • it can also be a wireless controller in Cloud Radio Access Network (CRAN) scenarios, or the network device can be a relay station, access point, vehicle-mounted device, wearable device, and future
  • CRAN Cloud Radio Access Network
  • the network equipment in the 5G network or the network equipment in the future evolved PLMN network, etc., are not limited in the embodiment of the present application.
  • 5G new radio (NR) downlink transmission supports semi-persistent scheduling (SPS) physical downlink shared channel (PDSCH) and dynamically scheduled PDSCH.
  • SPS semi-persistent scheduling
  • PDSCH physical downlink shared channel
  • HARQ hybrid automatic repeat request
  • the terminal device feedbacks HARQ's acknowledgement (ACK)/negative acknowledgement (NACK) information. Only when NACK is fed back, the network The device only needs to retransmit, which improves the efficiency of data transmission.
  • Dynamic PDSCH can be understood as a PDSCH scheduled by a PDCCH.
  • the time-frequency position of each PDSCH may be different.
  • the specific time-frequency position is indicated by the PDCCH corresponding to each PDSCH; the ACK/NACK corresponding to each PDSCH
  • the feedback timing may also be different, and the specific feedback timing is also indicated by the PDCCH corresponding to each PDSCH.
  • This PDSCH may also be called a dynamic PDSCH, or a PDSCH with scheduling information.
  • SPS PDSCH can be understood as a mode used in one configuration cycle.
  • a network device can send an activated PDCCH to deactivate the transmission of multiple SPS PDSCHs.
  • This activated PDCCH can be used to indicate the time domain position and first SPS PDSCH of the first SPS PDSCH.
  • the network equipment will also send configuration information through high-level signaling to configure the SPS PDSCH period. Combining this information, the terminal device can Determine the location to receive the SPS PDSCH and the location of the ACK or NACK feedback information corresponding to the SPS PDSCH.
  • the network device can indicate which HARQ-ACK codebook mode is used to generate the HARQ-ACK codebook by sending configuration information.
  • the HARQ-ACK codebook can be understood as an arrangement of ACK/NACK corresponding to the PDSCH that needs to be fed back on a certain uplink time unit, and contains two meanings: First: which PDSCH codes are contained in the HARQ-ACK codebook ACK/NACK. Second: the sequence of the ACK/NACK of these PDSCHs in the codebook.
  • the multiple PDSCH feedback information ACK/NACK that needs to be sent in the same uplink time unit are arranged into a series of continuous bits in a certain order to form a HARQ-ACK codebook.
  • the two HARQ-ACK codebook modes include a dynamic codebook (Dynamic codebook) mode and a semi-static codebook (Semi-static codebook) mode.
  • the HARQ-ACK codebook is generated in different ways in different codebook modes.
  • semi-static HARQ-ACK codebook it is also called Type 1 HARQ Codebook.
  • the semi-static codebook determination process is divided into the following steps:
  • the terminal device determines that the time slot for sending ACK/NACK feedback information is the i-th time slot.
  • the specific time slot i is determined according to the PDCCH corresponding to the PDSCH.
  • the PDCCH will indicate a row in the pre-configured or pre-defined time domain resource table.
  • the time domain resource table includes multiple rows, and each row may include a PDSCH time domain resource allocation index, the values of K0, S, and L corresponding to the PDSCH time domain resource allocation index, and the PDSCH mapping type.
  • S indicates the start symbol number of the time domain resource in a time slot.
  • L indicates the number of continuous symbols of the time domain resource in the slot.
  • L (length) represents the number of symbols occupied by the data channel, and can also be referred to as the number of continuous symbols of the data channel, or can also be referred to as the time domain length of the data channel. L is the number of consecutive symbols starting from S.
  • K0 is the number of time slots between PDCCH and PDSCH.
  • S and L can be jointly coded as a start and length indicator value (SLIV) parameter, and SLIV can be used to indicate the start symbol and the number of symbols occupied by the PDSCH.
  • SLIV start and length indicator value
  • the terminal device can determine the time slot where the PDSCH scheduled by the PDSCH is located and the time domain resource location in the time slot.
  • the PDSCH mapping type is mainly to determine the time-domain symbol position of the demodulation reference signal (DMRS) of the PDSCH, and can also be used to determine all reasonable starting positions and durations of the PDSCH.
  • PDSCH mapping includes two types: type A (type A) or type B (type B). Type A indicates that the position of the first DMRS is at the 3rd or 4th symbol of the slot, and type B indicates that the position of the first DMRS is at the first symbol of the beginning of the data.
  • the PDCCH can carry the PDSCH time domain resource allocation index. Assuming that the index is 0, the terminal device receives the PDCCH according to the index 0, It can be determined that the time slot in which the PDSCH is located is time slot 2, and the PDSCH is transmitted from the symbol with the symbol number 2 to the symbol with the symbol number 5 in the time slot 2.
  • Table 1 is only exemplary and should not impose any restrictions on the time domain resource table.
  • the PDCCH will also indicate a K1 value, and K1 is used to indicate the time slot offset value from the PDSCH to the corresponding ACK/NACK feedback.
  • the terminal equipment can determine that the time slot corresponding to the PDSCH ACK/NACK feedback is n+K1 according to the K1 value and the time slot where the PDSCH is located is time slot n, that is, the physical uplink control channel (physical uplink control channel) is used on the time slot n+K1.
  • uplink control channel, PUCCH to feed back ACK/NACK.
  • the terminal device obtains the possible value K1 set (K1set) of K1 according to the configuration information sent by the network device. Based on the above information, the terminal device determines all the time slots where all PDSCHs to send feedback information in the i-th time slot are located, That is, a set of candidate PDSCH reception occasions (occasion set for candidate PDSCH receptions) composed of all candidate PDSCH reception occasions (PDSCH candidate occasions) that are to send feedback information in the i-th time slot is determined. Then, according to the set, the HARQ-ACK bits that are fed back are obtained in the order of the occasion.
  • K1 set K1set
  • the HARQ-ACK bits that are fed back are filled with a negative acknowledgement NACK.
  • the ACK/NACK corresponding to all the candidate PDSCH reception opportunities are concatenated according to the PDSCH candidate occasion from front to back in the time domain, and all time slots from front to back in the time domain, to generate a HARQ-ACK in series. Codebook.
  • a semi-static HARQ-ACK codebook is generated.
  • the network device configures the terminal device with the K1 set as ⁇ 1,2,3,4 ⁇ through the configuration information RRC.
  • the network equipment schedules PDSCH1 through PDCCH1, as shown in FIG. 2, which shows an example of determining the semi-static codebook feedback HARQ-ACK according to the K1 set.
  • the downlink control information (DCI) carried in PDCCH1 indicates that K1 is 3.
  • the terminal device determines that the resource from PDSCH1 to the ACK/NACK corresponding to the feedback PDSCH1 is PUCCH1. Assuming that the time slot where PDSCH1 is located is time slot n, the time slot where PUCCH1 is located is time slot n+3.
  • the terminal device Before feeding back HARQ-ACK on PUCCH1, the terminal device needs to first obtain a set of candidate PDSCH reception occasions (occasion set for candidate PDSCH receptions) according to the K1 set ⁇ 1,2,3,4 ⁇ .
  • the K1 set push back from the n+3th time slot, that is, the n+3th time slot feedback will be the n+2th time slot, the n+1th time slot, the nth time slot, ACK/NACK corresponding to all PDSCHs received in these 4 time slots in the n-1th time slot.
  • the set of candidate PDSCH receiving occasions determined by the terminal device includes time slot n+2, time slot n+1, time slot n, and time slot n-1.
  • the HARQ-ACK bits that are fed back are obtained in the order of PDSCH occasion (occasion). For occasions where there is no actual PDSCH scheduling in this set, the HARQ-ACK bits that are fed back are filled with NACK. Assuming that only one PDSCH can be scheduled on each time slot, and only 1 bit ACK/NACK is fed back for each PDSCH, then PUCCH1 in time slot n+3 needs to feed back 4 bits ACK/NACK.
  • Fig. 3 is another example of determining the semi-static HARQ codebook feedback HARQ-ACK according to the K1 set.
  • the network device configures the terminal device with the K1 set as ⁇ 1,2,3,4 ⁇ through the configuration information.
  • the network equipment has scheduled the three PDSCHs shown in Figure 3 through three different PDCCHs.
  • the three PDSCHs are PDSCH1, PDSCH2, and PDSCH3, and the three different PDCCHs all indicate that PUCCH1 is used to feed back PDSCH1, PDSCH2, and PDSCH3.
  • HARQ_ACK PDSCH1 is located on time slot n
  • PDSCH2 is located on time slot n+1
  • PDSCH3 is located on time slot n+3.
  • the terminal device Before feeding back HARQ-ACK on PUCCH1, the terminal device needs to first determine the set of candidate PDSCH reception occasions (occasion set for candidate PDSCH receptions) according to the K1 set ⁇ 1,2,3,4 ⁇ .
  • the set of candidate PDSCH receiving occasions determined by the terminal device includes time slot n+3, time slot n+2, time slot n+1, and time slot n.
  • time slot n+4 it is necessary to feed back the ACK/NACK of the PDSCH on the time slot n, the time slot n+1, the time slot n+2, and the time slot n+3. Assuming that each time slot can only schedule one PDSCH, and only one bit of ACK/NACK is fed back for each PDSCH. Since there is no scheduled PDSCH on time slot n+2, the feedback information corresponding to time slot n+2 is NACK. PUCCH1 in time slot n+4 needs to feed back a 4-bit ACK/NACK.
  • n-bit NACK is filled in the corresponding HARQ-ACK feedback.
  • the examples shown in FIG. 2 and FIG. 3 are all based on the FDD system, that is, the uplink transmission and the downlink transmission belong to different carriers. If in a TDD system, in addition to determining the set of candidate PDSCH reception times, the K1 set must also be considered. There is no conflict between the PDSCH candidate time domain resource and the symbol of the slot in the uplink and downlink attributes, that is, it is necessary to ensure that at least one in the slot The PDSCH candidate time domain resources cannot contain uplink symbols. If all PDSCH candidate time domain resources in the time slot contain uplink symbols, the time slot will be excluded from the set of candidate PDSCH reception opportunities.
  • the network device instructs the terminal device to reduce the PDCCH detection period, and the terminal device will increase the PDCCH detection time accordingly to provide more opportunities for the network device to send the PDCCH indicating data scheduling, thereby Reduce scheduling and data transmission time delay and increase data transmission rate.
  • FIG. 4 is another example of determining the semi-static HARQ codebook feedback HARQ-ACK according to the K1 set.
  • the PDCCH detection period is 8 time slots
  • the K1 set is ⁇ 1,2,3,4,5,6,7,8 ⁇ , assuming that PDCCH1 is used to schedule PDSCH1, and the DCI indication in PDCCH1
  • the K0 is 1, and K1 is 6.
  • the candidate PDSCH receiving opportunity set is determined to include the candidate PDSCH receiving occasions on the 8 time slots from time slot n-1 to time slot n+6. Since the PDCCH detection cycle is 8 timeslots, among the 8 timeslots included in the candidate PDSCH reception timing set, only timeslot n+1 may appear PDSCH1, and the other 7 timeslots are unlikely to appear PDSCH. Others The 7 time slots can be referred to as PDSCH invalid occasions (invalid PDSCH occasion). In this case, according to the above-mentioned semi-static HARQ codebook generation process, there will be a large amount of NACK padding corresponding to the time when the PDSCH is invalid.
  • the present application provides a method for generating a semi-static codebook, which combines the detection timing of the dynamically changed PDCCH of the scheduled PDSCH to determine the candidate PDSCH receiving timing, and the candidate PDSCH receiving timing corresponds to the dynamically changing PDCCH detection timing.
  • FIG. 5 is a schematic interaction diagram of a method 200 for generating a semi-static codebook according to an embodiment of the present application.
  • the method 200 can be applied to the method shown in FIG. In the scenario shown, it can of course also be applied to other communication scenarios, and the embodiment of the present application does not limit it here.
  • the method 200 is described by taking a terminal device and a network device as an executor of the method 200 as an example.
  • the execution subject of the method 200 may also be a chip applied to a terminal device and a chip applied to a network device.
  • the method 200 includes S210 to S230.
  • the network device sends instruction information to the terminal device, where the instruction information is used to dynamically change the PDCCH detection timing.
  • the terminal device receives the instruction information.
  • the terminal device determines, according to the PDCCH detection timing and the first time slot offset value set, a candidate PDSCH reception timing corresponding to the HARQ_ACK sent on the first PUCCH resource, the PDCCH is used to schedule the PDSCH transmission, and the first The slot offset value included in the slot offset value set is used to indicate the slot offset value between the PDCCH and the PDSCH.
  • the terminal device determines the semi-static HARQ codebook of the HARQ_ACK sent on the first PUCCH according to the receiving opportunity of the candidate PDSCH.
  • the period of the PDCCH detection timing may be relatively large.
  • the detection timing of the PDCCH can be understood as the time domain resource where the PDCCH is located.
  • the network equipment may send the PDCCH on the pre-configured or predefined PDCCH time domain resources, and the terminal equipment may detect the PDCCH on the pre-configured or predefined PDCCH time domain resources.
  • multiple search space sets (search space sets, SS sets) of the PDCCH can be pre-configured or predefined, and different search space sets correspond to different PDCCH detection periods and detection occasions.
  • the union of the PDCCH detection occasions corresponding to the multiple search space sets is the PDCCH detection occasion of the terminal device.
  • a PDCCH period set may be pre-configured or predefined, and the period set includes multiple PDCCH periods.
  • the PDCCH cycle set is ⁇ 1,2,4,8,10,20 ⁇
  • the unit is time slot
  • the first PDCCH is sent in time slot n, corresponding to different PDCCH cycles, there will be different PDCCH detection opportunities .
  • the PDCCH detection timing is time slot n, time slot n+2, time slot n+4, time slot n+6, etc., that is, every two time slots is a PDCCH detection time.
  • the PDCCH detection timing is time slot n, time slot n+8, time slot n+16, time slot n+24, etc., that is, every 8 time slots is a PDCCH detection opportunity.
  • the network device may instruct the terminal device to dynamically change the detection timing of the PDCCH through the indication information. Dynamically changing the detection timing of the PDCCH can be understood as a change in the period or detection timing of the PDCCH.
  • the indication information may indicate a smaller PDCCH period in the PDCCH period set, and the network device will send the PDCCH to the terminal device according to the smaller PDCCH period.
  • the indication information may indicate a larger PDCCH period in the PDCCH period set, and the network device will send the PDCCH to the terminal device according to the larger PDCCH period.
  • Each PDCCH is used to schedule PDSCH transmission.
  • the network device will send the indication information to the terminal device for instructing to dynamically change the detection timing or period of the PDCCH.
  • the terminal device will determine the candidate PDSCH receiving opportunity corresponding to the HARQ_ACK sent on the first PUCCH resource according to the PDCCH detection timing and the first time slot offset value set indicated by the indication information, combined with the K1 set.
  • the slot offset value included in the first slot offset value set is used to indicate the slot offset value between the PDCCH and the PDSCH.
  • the first time slot offset value set can be understood as the aforementioned K0 set.
  • the K0 set can be pre-configured or predefined, and includes one or more K0. K0 is used to determine the time domain offset value between the time slot where the PDCCH is located and the PDSCH scheduled by the PDCCH.
  • the K1 set can be pre-configured or predefined.
  • the slot offset value included in the K1 set is used to indicate the slot offset value of the PDSCH corresponding to the HARQ_ACK and the slot in which the PUCCH resource for transmitting the HARQ_ACK is located.
  • the K1 set may be the following second slot offset value set. For example, assuming that the K0 set is ⁇ 1,2,3 ⁇ and the time slot where the PDCCH is located is time slot n, the possible time slot position of the PDSCH scheduled by the PDCCH is time slot n+1, time slot n+2, or time slot n Gap n+3. Finally, the time slot in which the PDSCH scheduled by the PDCCH appears is determined by a certain K0 indicated in the PDCCH.
  • the PDCCH may also indicate the time domain resource position of the PDSCH in a certain time slot.
  • the PDCCH may indicate a certain row shown in Table 1, and then the time slot in which the PDSCH scheduled by the PDCCH is located and the time domain resource position in the time slot can be determined.
  • the PDCCH may also indicate a certain K1 value, and the K1 value indicates the offset value of the time slot where the PDCCH is located and the time slot where the first PUCCH resource is located.
  • the terminal device can determine the time slot where the first PUCCH resource is located according to the K1 value.
  • the terminal device can first determine all possible candidate PDSCH reception opportunities corresponding to the HARQ_ACK sent on the first PUCCH resource according to the K1 set and the time slot in which the first PUCCH resource is located, and then according to the PDCCH detection time and the first time slot offset Value set, among all the determined possible candidate PDSCH receiving occasions, the candidate PDSCH receiving occasion corresponding to the HARQ_ACK sent on the first PUCCH resource is determined. Since the candidate PDSCH reception timing is determined based on the PDCCH detection timing and the first time slot offset value set, the candidate PDSCH reception timing includes only the PDSCH reception timing where PDCCH scheduling may occur, and does not include the PDSCH reception timing where PDCCH scheduling is impossible.
  • the PDSCH reception timing where PDCCH scheduling is impossible may also be referred to as the PDSCH invalid timing, that is, the candidate PDSCH reception timing does not include the PDSCH invalid timing.
  • Each candidate PDSCH receiving occasion corresponds to a PDCCH detection occasion.
  • the PDSCH reception timing corresponds to the dynamically changing PDCCH detection timing.
  • the PDCCH detection timing is different, and the determined PDSCH reception timing is also different.
  • the terminal device will determine the semi-static HARQ codebook of the HARQ_ACK sent on the first PUCCH according to the determined candidate PDSCH receiving opportunity. Since the candidate PDSCH reception timing does not include the PDSCH invalid timing, the NACK corresponding to the PDSCH invalid timing can be referred to as an invalid NACK bit.
  • the semi-static HARQ codebook finally determined by the terminal device does not include invalid NACK bits.
  • the candidate PDSCH reception timing is determined according to the dynamically changing PDCCH detection timing and the first time slot offset value set.
  • the candidate PDSCH reception timing includes only the PDSCH reception timing that may be scheduled for the PDCCH detection timing, which avoids the candidate PDSCH reception timing including the PDSCH invalid timing.
  • the semi-static HARQ codebook is determined according to the candidate PDSCH receiving opportunity, which can reduce the invalid NACK bits in the semi-static HARQ codebook, thereby increasing the code rate of the semi-static HARQ codebook, and reducing the PUCCH resource feedback of the semi-static HARQ codebook. Overhead, improve the reliability of the semi-static HARQ codebook. Especially when the PDCCH period is relatively large, the reliability of the semi-static HARQ codebook can be greatly improved, and the communication efficiency can be improved.
  • the network device may also determine the candidate PDSCH reception timing corresponding to the HARQ_ACK received on the first PUCCH resource according to the PDCCH detection timing and the first time slot offset value set. Then, according to the receiving opportunity of the candidate PDSCH, the semi-static HARQ codebook received on the first PUCCH is determined.
  • the candidate PDSCH reception timing corresponding to the HARQ_ACK received on the first PUCCH resource according to the PDCCH detection timing and the first time slot offset value set. Then, according to the receiving opportunity of the candidate PDSCH, the semi-static HARQ codebook received on the first PUCCH is determined.
  • S220 and S230 For brevity, details are not repeated here.
  • the above-mentioned indication information may include at least one of activation or deactivation of the search space set corresponding to the PDCCH, the detection period of the PDCCH, or the PDCCH detection skip information, where:
  • the search space set corresponding to the PDCCH includes the detection period of the PDCCH.
  • the search space set corresponding to the PDCCH may include the period of the PDCCH.
  • one or more search space sets can be preconfigured or defined for the PDCCH, or multiple PDCCH detection periods can be preconfigured or defined for the PDCCH, or multiple PDCCH detection skips can be preconfigured or defined for the PDCCH ( PDCCH monitor skipping information (signal).
  • Each search space set may include one or more PDCCH detection periods.
  • the network device may indicate in the indication information to activate or deactivate the search space set corresponding to the PDCCH.
  • the search space set corresponding to the activated PDCCH can be understood as using the PDCCH period included in the search space set corresponding to the activated PDCCH to determine the detection timing of the PDCCH.
  • the search space set corresponding to the deactivated PDCCH can be understood as a network device that does not use the PDCCH included in the search space set corresponding to the deactivated PDCCH to periodically transmit the PDCCH.
  • the terminal device can determine the detection timing of the PDCCH according to the activated or deactivated search space set included in the indication information, and combined with the control resource set associated with the search space set. If a search space set includes one or more PDCCH detection periods, and this search space set is activated, further, the network device may also instruct which PDCCH period included in the activated search space set to use. Optional.
  • the number of consecutively detected time slots in a period corresponding to each PDCCH detection period and/or PDCCH detection symbols in the time slot can also be configured.
  • the terminal device may determine the PDCCH detection timing according to the number of PDCCH consecutively detected time slots in the cycle corresponding to each PDCCH detection cycle and/or the PDCCH detection symbols in the time slot.
  • the indication information may also include a certain PDCCH detection cycle among multiple PDCCH detection cycles pre-configured or predefined for the PDCCH, and the terminal device can determine the detection of the PDCCH according to the PDCCH detection cycle indicated by the indication information opportunity.
  • the indication information may also include PDCCH detection skip information.
  • the PDCCH detection skip information can understand the time interval between two adjacent PDCCH detections. For example, suppose that the PDCCH detection skip information indicates that the time slot of PDCCH detection skip is 5, it means that there are 5 slots between two adjacent PDCCH detections, that is, the period of the PDCCH is 5.
  • the terminal device may determine the PDCCH detection timing according to the content included in the above-mentioned instruction information.
  • the terminal device determines the PDCCH detection timing according to the content included in the indication information, which can improve the accuracy of the determined PDCCH detection timing and improve the efficiency of determining the PDCCH detection timing.
  • the indication information may also include other information for determining the PDCCH detection timing.
  • the indication information may directly indicate the PDCCH detection timing and so on.
  • the network device may also determine the detection timing of the PDCCH according to the information used to determine the detection timing of the PDCCH included in the above-mentioned indication information, or other information used to determine the detection timing of the PDCCH.
  • FIG. 6 is a schematic interaction diagram of a method for generating a semi-static codebook in some embodiments of the present application.
  • the method 200 S211 may also be included.
  • the terminal device determines a time unit set corresponding to the time slot where the first PUCCH resource is located according to the second time slot offset value set and the time slot where the first PUCCH resource is located, and the second time slot offset value set
  • the included time slot offset value is used to indicate the time slot offset value between the time slot where the first PUCCH resource is located and the time unit in the time unit set.
  • the foregoing S220 may include:
  • the terminal device determines the candidate PDSCH reception timing in the time unit set according to the detection timing of the PDCCH and the first time slot offset value set.
  • the terminal device may first determine the time unit set corresponding to the time slot where the first PUCCH resource is located according to the second time slot offset value set and the time slot where the first PUCCH resource is located.
  • the second time slot offset value set can be understood as the aforementioned K1 set.
  • the K1 set can be pre-configured or predefined.
  • the slot offset value included in the K1 set is used to indicate the slot offset value of the PDSCH corresponding to the HARQ_ACK and the slot in which the PUCCH resource for transmitting the HARQ_ACK is located.
  • the K1 set may be used to indicate the time slot offset value between the time slot where the first PUCCH resource is located and the time unit in the time unit set.
  • the time unit here can be understood as a time slot, that is, the length of a time unit can be equal to a time slot. Or a time unit may also be understood as a mini-slot or mini-slot, etc., that is, a time slot may also include multiple time units.
  • a time unit may correspond to a possible candidate PDSCH receiving opportunity, and the possible candidate PDSCH receiving opportunity may be a candidate PDSCH receiving opportunity with PDCCH scheduling, or a PDSCH invalid opportunity without PDCCH scheduling.
  • the set of time units corresponding to the time slot where the first PUCCH resource is located includes time slot n-4 , Time slot n-3, time slot n-2 and time slot n-1, one time slot is a time unit.
  • time slot n-4, time slot n-3, time slot n-2, and time slot n-1 there may be PDSCH scheduled by PDCCH, or there may be no PDSCH scheduled by PDCCH. That is, time slot n-4, time slot n-3, time slot n-2, and time slot n-1 may include invalid PDSCH.
  • the foregoing S220: determining, according to the PDCCH detection timing and the first time slot offset value set, the candidate PDSCH receiving timing corresponding to the HARQ_ACK sent on the first PUCCH resource may include:
  • S221 Determine the candidate PDSCH reception timing in the time unit set according to the detection timing of the PDCCH and the first time slot offset value set.
  • the time unit of the PDSCH that cannot be scheduled by the PDCCH can be excluded from the time unit set. For example, for a certain time unit in the time unit set, according to the first time slot offset value set, it is calculated forward from the time slot where the time unit is located, if it is calculated forward from the time slot where the time unit is located It is obtained that there are PDCCH detection opportunities in one or more time slots, then there may be PDSCH scheduled by PDCCH in this time unit, that is, this time unit can be regarded as a candidate PDSCH reception opportunity.
  • the time unit can be regarded as a PDSCH invalid occasion, and the time unit needs to be excluded. After the invalid PDSCH invalid occasions are eliminated in the time unit set, the remaining time units are candidate PDSCH reception opportunities.
  • each PDSCH receiving occasion may correspond to one or more candidate PDSCH time domain resources.
  • each PDSCH receiving opportunity may correspond to at least 4 resource allocation indexes, and each resource allocation index corresponds to a different PDSCH time domain resource (ie, SLIV).
  • each PDSCH receiving opportunity corresponds to at least 4 PDSCH time domain resources, and it is necessary to ensure that at least one PDSCH time domain resource in the PDSCH time domain resources includes all downlink symbols.
  • FIG. 7 is a schematic diagram of determining the candidate PDSCH reception timing according to the second time slot offset value set, the first time slot offset value set, and the PDCCH detection timing.
  • the K1 set (the second slot offset value set) is ⁇ 1,2,3,4,5,6,7,8 ⁇
  • the K0 set (the first The slot offset value set) is ⁇ 1,2 ⁇
  • the slot where the first PUCCH resource is located is slot n+8.
  • the determined time unit set corresponding to the time slot where the first PUCCH resource is located includes: time slot n to time slot n+7. 8 time slots, each time slot can be regarded as a time unit.
  • the first PDCCH detection occasion is located in time slot n+1 among the 8 time slots
  • the second PDCCH detection occasion is located in time slot n+5.
  • the time slots in which the determined PDCCH detection timing may exist are time slot n+5 and time slot n+6. If there is only a PDCCH detection opportunity in any one of the time slot n+5 and the time slot n+6, the time slot n+7 is a candidate PDSCH reception opportunity.
  • time slot n+7 is not a candidate PDSCH receiving opportunity, and time slot n+7 can be regarded as a PDSCH invalid time.
  • the second PDCCH detection opportunity is located in time slot n+5, which proves that time slot n+7 is a candidate PDSCH reception opportunity.
  • the finally determined candidate PDSCH reception opportunities include: time slot n+2, time slot n+3, time slot n+6, and time slot n+7 as the candidate PDSCH reception opportunities.
  • the semi-static HARQ codebook of HARQ_ACK sent on the first PUCCH only needs 4 bits, and these 4-bit codebooks all correspond to the candidate PDSCH receiving opportunities scheduled by PDCCH. If one or more of the four candidate PDSCH receiving opportunities does not actually receive the PDSCH, then one or more NACK bits are filled in the corresponding position of the semi-static HARQ codebook.
  • the decoding of a code block group (CBG) is right or wrong, and one or more HARQ-ACK bits are generated.
  • At least one PDSCH time domain resource of the one or more candidate PDSCH time domain resources corresponding to each candidate PDSCH receiving opportunity is a downlink symbol.
  • the candidate PDSCH receiving occasion is the candidate PDSCH receiving occasion corresponding to the semi-static HARQ codebook finally sent on the first PUCCH.
  • each candidate PDSCH receiving opportunity only needs to feed back 1 bit ACK/NACK. If more than one PDSCH can be scheduled in a time slot, and/or a candidate PDSCH receiving opportunity needs to feed back more than 1 bit of n-bit ACK/NACK, then the candidate PDSCH receiving opportunity is located in the same time slot or in different time slots. , Fill n-bit NACK in the corresponding HARQ-ACK feedback.
  • the semi-static codebook generation method provided in this application first determines the time unit set corresponding to the time slot where the first PUCCH resource is located according to the second time slot offset value set and the time slot where the first PUCCH resource is located.
  • Each time unit included in the time unit set can be regarded as a possible candidate PDSCH reception opportunity, and then according to the detection time of the PDCCH and the first time slot offset value set, the impossible PDCCH scheduling is excluded from the time unit set
  • the time unit (or can be called invalid time unit).
  • the time unit that is unlikely to be scheduled by the PDCCH and the time domain resources included in the time unit do not meet the time unit of downlink transmission are excluded from the time unit set.
  • the time units that do not meet the conditions are excluded, and the remaining time units are candidate PDSCH reception opportunities. Therefore, the phenomenon that the candidate PDSCH reception timing includes the PDSCH invalid timing is avoided.
  • the semi-static HARQ codebook is determined according to the candidate PDSCH reception timing, which can reduce the invalid NACK bits in the semi-static HARQ codebook, thereby improving the semi-static HARQ codebook
  • the code rate reduces the overhead of PUCCH resources for feeding back the semi-static HARQ codebook, and improves the reliability of the semi-static HARQ codebook.
  • the network device may also determine the time unit set corresponding to the time slot where the first PUCCH resource is located according to the second time slot offset value set and the time slot where the first PUCCH resource is located. Then, according to the detection timing of the PDCCH and the first time slot offset value set, the candidate PDSCH reception timing is determined in the time unit set.
  • the specific description please refer to the above description of S211 and S221. For brevity, details are not repeated here.
  • the PDCCH corresponding to the aforementioned PDCCH detection occasion carries DCI, and the DCI is used to schedule unicast PDSCHs.
  • the unicast PDSCH can be understood as a PDSCH sent to a certain terminal device or a single terminal device. After receiving the unicast PDSCH, the terminal device needs to perform NACK/ACK feedback on the PDSCH.
  • the DCI used to schedule the unicast PDSCH can correspond to the cell radio network temporary identifier (C-RNTI) scrambling, that is, the cyclic redundancy of the DCI used to schedule the unicast PDSCH
  • C-RNTI cell radio network temporary identifier
  • the cyclic redundancy check (CRC) is scrambled using C-RNTI.
  • the DCI used to schedule unicast PDSCH corresponds to the modulation coding scheme cell radio network temporary identifier (MCS-C-RNTI) scrambling, that is, the DCI used to schedule unicast PDSCH
  • MCS-C-RNTI modulation coding scheme cell radio network temporary identifier
  • the CRC of the DCI can also be scrambled using MCS-C-RNTI.
  • the DCI used to schedule unicast type PDSCH corresponds to the configured scheduling radio network temporary identifier (CS-RNTI), that is, the CRC of the DCI used to schedule unicast type PDSCH can also be used CS-RNTI performs scrambling.
  • CS-RNTI configured scheduling radio network temporary identifier
  • the terminal device detects that the DCI carried by the PDCCH is scrambled by using the aforementioned RNTIs, the terminal device can determine that the PDCCH schedules a unicast PDSCH.
  • the candidate PDSCH reception timing may be determined according to the PDCCH detection timing and the first time slot offset value set, and the semi-static HARQ codebook may be generated according to the candidate PDSCH reception timing.
  • the semi-static HARQ codebook corresponds to the non-unicast type PDSCH, can improve the reliability of the semi-static HARQ codebook, and reduces the overhead of PUCCH resources for feeding back the semi-static HARQ codebook.
  • RNTI scrambling may also be used to schedule the DCI of the unicast PDSCH.
  • the embodiment of the present application does not limit the RNTI used to scramble the DCI used to schedule the unicast PDSCH.
  • the number of time slot offset values included in the second time slot offset value set is less than or equal to 4.
  • the second time slot offset value set may be pre-configured or predefined, and the number of time slot offset values in the pre-configured or predefined second time slot offset value set may be less than a threshold, for example, The threshold can be 4, or 2, or 3, etc. Optionally, the threshold is less than 8.
  • the second slot offset value set may be ⁇ 1 ⁇ , or ⁇ 2 ⁇ , or ⁇ 3 ⁇ , or ⁇ 4 ⁇ , or ⁇ 5 ⁇ , or ⁇ 6 ⁇ , or ⁇ 7 ⁇ , or ⁇ 8 ⁇ .
  • the second time slot offset value set may be ⁇ 1,2 ⁇ , or ⁇ 3, 4 ⁇ , or ⁇ 5, 6 ⁇ , or ⁇ 7, 8 ⁇ .
  • the second slot offset value set may be ⁇ 1,2,3 ⁇ , or ⁇ 3,4,5 ⁇ , or ⁇ 6,7,8 ⁇ .
  • the second time slot offset value set may be ⁇ 4, 8 ⁇ , or ⁇ 3, 7 ⁇ , or ⁇ 2, 6 ⁇ , or ⁇ 7, 8 ⁇ .
  • the second time slot offset value set may be ⁇ 1, 3, 5, 7 ⁇ or ⁇ 2, 4, 6, 8 ⁇ .
  • the network device may use certain fields in the DCI carried by the PDCCH to indicate to the terminal device which time slot offset value corresponding to the PDCCH is a pre-configured or predefined second time slot offset value set.
  • the offset value For example, assuming that the second slot offset value set is ⁇ 4,8 ⁇ , the 3-bit indication field of "PDSCH to HARQ feedback timing" in DCI can be used to indicate the slot offset when the most significant bit in the field is 0 When the value is 4 and the most significant bit is 1, the indicated K1 is 8. The remaining two bits of the indication field have no indication meaning.
  • the second time slot offset value set includes the other two time slot offset values, a similar method can also be used to indicate to the terminal equipment device which time slot offset value corresponds to the PDCCH.
  • the 3-bit indication field of "PDSCH to HARQ feedback timing" in DCI can be used when the most significant two bits in the field are 00 ,
  • the indicated time slot offset value is 2, when the most significant two bits are 01, the indicated time slot offset value is 4, and when the most significant two bits are 10, the indicated time slot offset value is 6.
  • the most significant two bits are 11, the indicated time slot offset value is 8.
  • the remaining one bit of the indication field has no indication meaning.
  • the second time slot offset value set includes the other 4 time slot offset values, a similar method can also be used to indicate to the terminal device which time slot offset value is specifically used.
  • the method for generating a semi-static codebook limits the number of time slot offset values included in the second time slot offset value set, and on the basis of reducing invalid NACK bits in the semi-static HARQ codebook, Reduce the number of bits in the semi-static HARQ codebook. Further improve the reliability of the semi-static HARQ codebook.
  • the foregoing number of elements included in the second time slot offset value set and the value of each element are only exemplary.
  • the number of timeslot offset values and the value of timeslot offset values included in the second set of timeslot offset values in this application should not be restricted.
  • the number of time slot offset values included in the second time slot offset value set may also be five.
  • the network device in addition to using certain fields in the aforementioned DCI to indicate to the terminal device which time slot offset value corresponding to the PDCCH is a pre-configured or pre-defined second time slot offset value set, the network device In addition to the shift value, other methods may be used to notify the terminal device of which time slot offset value the time slot offset value corresponding to the PDCCH is included in the pre-configured or predefined second time slot offset value set. For example, the network device can notify the terminal device of the time slot offset value corresponding to the PDCCH through configuration information.
  • pre-configuration may include network equipment configuration through high-level signaling and physical layer signaling configuration.
  • the high-level signaling in this application may include, for example, radio resource control (radio resource control, RRC), medium access control (medium access control, MAC) control element (CE), and radio link control (radio link control). control, RLC) signaling, etc.
  • the physical layer signaling may include, for example, DCI.
  • the indication information is also used to indicate that the HARQ_ACK adopts a semi-static HARQ codebook.
  • the terminal device After receiving the indication information, the terminal device can determine that a semi-static HARQ codebook needs to be generated.
  • the foregoing indication information may also be notified to the terminal device through high-level signaling or physical layer signaling.
  • first, the second, etc. are only used to indicate that multiple objects are different.
  • first time slot offset value set and the second time slot offset value set are only to indicate different time slot offset value sets. It should not have any impact on the time slot offset value set itself and the number of time slot offset values included, and the above-mentioned first, second, etc. should not cause any limitation to the embodiments of the present application.
  • pre-defined can be implemented by pre-saving corresponding codes, tables, or other methods that can be used to indicate related information in devices (for example, including terminal devices and network devices). There is no limitation on its specific implementation.
  • FIG. 8 shows a schematic block diagram of a communication device 300 according to an embodiment of the present application.
  • the device 300 may correspond to the terminal device described in the above method 200, or may be a chip or component applied to the terminal device, and in the device 300 Each module or unit is respectively used to execute each action or processing procedure performed by the terminal method device in the above method 200.
  • the communication device 300 may include: a communication unit 310 and a processing unit 320.
  • the communication unit 310 is configured to receive indication information from a network device, where the indication information is used to dynamically change the detection timing of the physical downlink control channel PDCCH;
  • the processing unit 320 is configured to determine the candidate physical downlink shared channel PDSCH corresponding to the HARQ_ACK for the hybrid automatic repeat request confirmation sent on the first physical uplink control channel PUCCH resource according to the PDCCH detection timing and the first time slot offset value set When receiving, the PDCCH is used to schedule transmission of the PDSCH, and the time slot offset value included in the first time slot offset value set is used to indicate the time slot offset value between the PDCCH and the PDSCH;
  • the processing unit 320 is further configured to determine the semi-static HARQ codebook of the HARQ_ACK sent on the first PUCCH according to the receiving opportunity of the candidate PDSCH.
  • the candidate PDSCH reception timing determined by the communication device is determined according to the dynamically changing PDCCH detection timing and the first time slot offset value set.
  • the candidate PDSCH reception timing includes only the PDSCH reception timing that may be scheduled for the PDCCH detection timing, which avoids the candidate PDSCH reception timing including the PDSCH invalid timing.
  • the semi-static HARQ codebook is determined according to the candidate PDSCH receiving opportunity, which can reduce the invalid NACK bits in the semi-static HARQ codebook, thereby increasing the code rate of the semi-static HARQ codebook, and reducing the PUCCH resource feedback of the semi-static HARQ codebook. Overhead, improve the reliability of the semi-static HARQ codebook and improve communication efficiency.
  • the indication information includes:
  • the processing unit 320 also Used to: determine the detection timing of the PDCCH according to the indication information.
  • the processing unit 320 is specifically configured to: determine a connection with the first PUCCH resource according to the second slot offset value set and the slot in which the first PUCCH resource is located.
  • the time unit set corresponding to the time slot, the time slot offset value included in the second time slot offset value set is used to indicate the time slot where the first PUCCH resource is located and the time slot of the time unit in the time unit set Offset value; according to the detection timing of the PDCCH and the first time slot offset value set, determine the candidate PDSCH receiving timing in the time unit set.
  • the PDCCH carries downlink control information DCI, and the DCI is used to schedule a unicast PDSCH.
  • the DCI corresponds to the scrambling of the cell radio temporary network identifier C-RNTI, or the modulation and coding scheme cell radio network temporary identifier MCS-C-RNTI, or the corresponding configuration scheduling The wireless network temporary identification CS-RNTI scrambles.
  • the number of time slot offset values included in the second time slot offset value set is less than or equal to 3.
  • At least one of the one or more candidate PDSCH time domain resources corresponding to the candidate PDSCH reception timing is a downlink symbol.
  • the indication information is also used to indicate that the HARQ_ACK adopts a semi-static HARQ codebook.
  • the communication unit 310 may include a receiving unit (module) and a sending unit (module), which are used to execute each embodiment of the aforementioned method 200 and the terminal device in the embodiment shown in FIG. 5 and FIG. 6 receives information and sends information.
  • the communication device 300 may further include a storage unit 330 for storing instructions executed by the processing unit 320 and the communication unit 310.
  • the communication unit 310, the processing unit 320, and the storage unit 330 are in communication connection.
  • the storage unit 330 stores instructions.
  • the processing unit 320 is used to execute the instructions stored in the storage unit 330.
  • the communication unit 310 is used to perform specific signal transceiving under the driving of the processing unit 320. .
  • the communication unit 310 may be a transceiver, an input/output interface, or an interface circuit.
  • the storage unit 330 may be a memory.
  • the processing unit 320 may be implemented by a processor. As shown in FIG. 9, the communication device 400 may include a processor 410, a memory 420, and a transceiver 430.
  • the communication device 300 shown in FIG. 8 or the communication device 400 shown in FIG. 9 can implement the various embodiments of the foregoing method 200 and the steps performed by the terminal device in the embodiments shown in FIG. 5 and FIG. 6.
  • the description in the corresponding method please refer to the description in the corresponding method. To avoid repetition, I won’t repeat them here.
  • the communication device 300 shown in FIG. 8 or the communication device 400 shown in FIG. 9 may be a terminal device.
  • FIG. 10 shows a schematic block diagram of a communication device 500 according to an embodiment of the present application.
  • the device 500 may correspond to the network device described in the above method 200, or may be a chip or component applied to the network device, and the device 500 Each module or unit is used to execute each action or processing procedure performed by the network device in the above method 200.
  • the communication device 500 may include:
  • the communication unit 510 is the same as sending instruction information to the terminal device, and the instruction information is used to dynamically change the detection timing of the physical downlink control channel PDCCH.
  • the processing unit 520 is configured to determine the candidate physical downlink shared channel PDSCH corresponding to the HARQ_ACK for the hybrid automatic repeat request acknowledgement received on the PUCCH resource of the first physical uplink control channel according to the PDCCH detection timing and the first time slot offset value set Receiving timing, the PDCCH is used to schedule the transmission of the PDSCH, and the slot offset value included in the first slot offset value set is used to indicate the slot offset value between the PDCCH and the PDSCH.
  • the processing unit 520 is further configured to determine the semi-static HARQ codebook of the HARQ_ACK received on the first PUCCH resource according to the receiving opportunity of the candidate PDSCH.
  • the candidate PDSCH reception timing determined by the communication device is determined according to the dynamically changing PDCCH detection timing and the first time slot offset value set.
  • the candidate PDSCH reception timing includes only the PDSCH reception timing that may be scheduled for the PDCCH detection timing, which avoids the candidate PDSCH reception timing including the PDSCH invalid timing.
  • the semi-static HARQ codebook is determined according to the candidate PDSCH receiving opportunity, which can reduce invalid NACK bits in the semi-static HARQ codebook, thereby increasing the code rate of the semi-static HARQ codebook and improving the reliability of the semi-static HARQ codebook.
  • the indication information includes:
  • the search space set corresponding to the PDCCH includes the detection period of the PDCCH.
  • the processing unit 520 is specifically configured to:
  • the second time slot offset value set and the time slot in which the first PUCCH resource is located determine the time unit set corresponding to the time slot in which the first PUCCH resource is located, and the time slots included in the second time slot offset value set
  • the offset value is used to indicate the time slot offset value between the time slot where the first PUCCH resource is located and the time unit in the time unit set; according to the detection timing of the PDCCH and the first time slot offset value set, in time
  • the candidate PDSCH reception timing is determined in the unit set.
  • the PDCCH carries downlink control information DCI, and the DCI is used to schedule a unicast PDSCH.
  • the DCI corresponds to the scrambling of the cell radio temporary network identifier C-RNTI, or the modulation and coding scheme cell radio network temporary identifier MCS-C-RNTI, or the corresponding configuration scheduling The wireless network temporary identification CS-RNTI scrambles.
  • the number of timeslot offset values included in the second set of timeslot offset values is less than or equal to 4.
  • At least one of the one or more candidate PDSCH time domain resources corresponding to the candidate PDSCH reception timing is a downlink symbol.
  • the indication information is also used to indicate that the HARQ_ACK adopts a semi-static HARQ codebook.
  • the communication unit 510 may include a receiving unit (module) and a sending unit (module), which are used to execute the various embodiments of the aforementioned method 200 and the network devices in the embodiments shown in FIG. 5 and FIG. 6 to receive information and send information.
  • the communication device 500 may further include a storage unit 530 for storing instructions executed by the processing unit 520 and the communication unit 510.
  • the communication unit 510, the processing unit 520, and the storage unit 530 are in communication connection.
  • the storage unit 530 stores instructions.
  • the processing unit 520 is used to execute the instructions stored in the storage unit 530.
  • the communication unit 510 is used to perform specific signal transceiving under the driving of the processing unit 520. .
  • the communication unit 510 may be a transceiver, an input/output interface, or an interface circuit.
  • the storage unit 530 may be a memory.
  • the processing unit 520 may be implemented by a processor. As shown in FIG. 11, the communication device 600 may include a processor 510, a memory 520, and a transceiver 530.
  • the communication device 500 shown in FIG. 10 or the communication device 600 shown in FIG. 11 can implement the various embodiments of the foregoing method 200 and the steps performed by the network device in the embodiments shown in FIG. 5 and FIG. 6.
  • the description in the corresponding method please refer to the description in the corresponding method. To avoid repetition, I won’t repeat them here.
  • the communication device 500 shown in FIG. 10 or the communication device 600 shown in FIG. 11 may be a network device.
  • each unit in the above device can all be implemented in the form of software called by processing elements; they can also be implemented in the form of hardware; part of the units can be implemented in the form of software called by the processing elements, and some of the units can be implemented in the form of hardware.
  • each unit can be a separately established processing element, or it can be integrated in a certain chip of the device for implementation.
  • it can also be stored in the memory in the form of a program, which is called and executed by a certain processing element of the device.
  • the processing element may also be called a processor, and may be an integrated circuit with signal processing capability.
  • each step of the above method or each of the above units may be implemented by an integrated logic circuit of hardware in a processor element or implemented in a form of being called by software through a processing element.
  • the unit in any of the above devices may be one or more integrated circuits configured to implement the above methods, for example: one or more application specific integrated circuits (ASIC), or, one or Multiple digital signal processors (digital signal processors, DSP), or, one or more field programmable gate arrays (FPGA), or a combination of at least two of these integrated circuits.
  • ASIC application specific integrated circuits
  • DSP digital signal processors
  • FPGA field programmable gate arrays
  • the unit in the device can be implemented in the form of a processing element scheduler
  • the processing element can be a general-purpose processor, such as a central processing unit (CPU) or other processors that can call programs.
  • CPU central processing unit
  • these units can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • FIG. 12 shows a schematic structural diagram of a terminal device provided by an embodiment of the present application. It may be the terminal device in the above embodiment, and is used to implement the operation of the terminal device in the above embodiment.
  • the terminal equipment includes: an antenna 710, a radio frequency device 720, and a baseband device 730.
  • the antenna 710 is connected to the radio frequency device 720.
  • the radio frequency device 720 receives information sent by the network device through the antenna 710, and sends the information sent by the network device to the baseband device 730 for processing.
  • the baseband device 730 processes the information of the terminal device and sends it to the radio frequency device 720
  • the radio frequency device 720 processes the information of the terminal device and sends it to the network device via the antenna 710.
  • the baseband device 730 may include a modem subsystem, which is used to process the various communication protocol layers of data; it may also include a central processing subsystem, which is used to process the terminal operating system and application layer; in addition, it may also include other Subsystems, such as multimedia subsystems, peripheral subsystems, etc., where the multimedia subsystem is used to control the terminal device camera, screen display, etc., and the peripheral subsystem is used to realize the connection with other devices.
  • the modem subsystem can be an independent chip.
  • the above apparatus for the terminal may be located in the modem subsystem.
  • the modem subsystem may include one or more processing elements 731, for example, including a main control CPU and other integrated circuits.
  • the modem subsystem may also include a storage element 732 and an interface circuit 733.
  • the storage element 732 is used to store data and programs, but the program used to execute the method executed by the terminal device in the above method may not be stored in the storage element 732, but is stored in a memory outside the modem subsystem.
  • the interface circuit 733 is used to communicate with other subsystems.
  • the above apparatus for terminal equipment may be located in a modem subsystem, which may be implemented by a chip.
  • the chip includes at least one processing element and an interface circuit, wherein the processing element is used to perform any of the above terminal equipment executions.
  • the interface circuit is used to communicate with other devices.
  • the unit for the terminal device to implement each step in the above method can be implemented in the form of a processing element scheduler.
  • the device for the terminal device includes a processing element and a storage element, and the processing element calls the program stored by the storage element to Perform the method executed by the terminal in the above method embodiment.
  • the storage element may be a storage element whose processing element is on the same chip, that is, an on-chip storage element.
  • the program for executing the method executed by the terminal device in the above method may be a storage element on a different chip from the processing element, that is, an off-chip storage element.
  • the processing element calls or loads the program from the off-chip storage element on the on-chip storage element to call and execute the method executed by the terminal in the above method embodiment.
  • the unit of the terminal device that implements each step in the above method may be configured as one or more processing elements, and these processing elements are arranged on the modem subsystem, where the processing elements may be integrated circuits, For example: one or more ASICs, or, one or more DSPs, or, one or more FPGAs, or a combination of these types of integrated circuits. These integrated circuits can be integrated together to form a chip.
  • the units of the terminal device that implement each step in the above method can be integrated together and implemented in the form of a system-on-a-chip (SOC), and the SOC chip is used to implement the above method.
  • SOC system-on-a-chip
  • FIG. 13 is a schematic structural diagram of a network device provided by an embodiment of the present application. Used to implement the operation of the network device in the above embodiment.
  • the network equipment includes an antenna 801, a radio frequency device 802, and a baseband device 803.
  • the antenna 801 is connected to the radio frequency device 802.
  • the radio frequency device 802 receives the information sent by the terminal through the antenna 801, and sends the information sent by the terminal device to the baseband device 803 for processing.
  • the baseband device 803 processes the information of the terminal and sends it to the radio frequency device 802, and the radio frequency device 802 processes the information of the terminal device and sends it to the terminal via the antenna 801.
  • the baseband device 803 may include one or more processing elements 8031, for example, a main control CPU and other integrated circuits.
  • the baseband device 803 may also include a storage element 8032 and an interface 8033.
  • the storage element 8032 is used to store programs and data; the interface 8033 is used to exchange information with the radio frequency device 802.
  • the interface is, for example, a common public radio interface. , CPRI).
  • the above apparatus for network equipment may be located in the baseband apparatus 803.
  • the above apparatus for network equipment may be a chip on the baseband apparatus 803.
  • the chip includes at least one processing element and an interface circuit, wherein the processing element is used to execute the above network For each step of any method executed by the device, the interface circuit is used to communicate with other devices.
  • the unit for the network device to implement each step in the above method can be implemented in the form of a processing element scheduler.
  • the device for the network device includes a processing element and a storage element, and the processing element calls the program stored by the storage element to Perform the method performed by the network device in the above method embodiment.
  • the storage element may be a storage element with the processing element on the same chip, that is, an on-chip storage element, or a storage element on a different chip from the processing element, that is, an off-chip storage element.
  • the unit of the network device that implements each step in the above method may be configured as one or more processing elements, and these processing elements are provided on the baseband device.
  • the processing elements here may be integrated circuits, such as one Or multiple ASICs, or, one or more DSPs, or, one or more FPGAs, or a combination of these types of integrated circuits. These integrated circuits can be integrated together to form a chip.
  • the units for the network equipment to implement each step in the above method can be integrated together and implemented in the form of a system-on-chip.
  • the baseband device includes the SOC chip for implementing the above method.
  • the terminal equipment and network equipment in the foregoing device embodiments may completely correspond to the terminal equipment or network equipment in the method embodiments, and the corresponding modules or units execute the corresponding steps.
  • the receiving unit may be an interface circuit used by the chip to receive signals from other chips or devices.
  • the above sending unit is an interface circuit of the device for sending signals to other devices.
  • the sending unit is the chip for sending signals to other chips or devices.
  • the interface circuit is the chip for sending signals to other chips or devices.
  • An embodiment of the present application also provides a communication system, which includes: the foregoing terminal device and the foregoing network device.
  • the embodiment of the present application also provides a computer-readable medium for storing computer program code, and the computer program includes instructions for executing the semi-static codebook generation method of the embodiment of the present application in the above method 200.
  • the readable medium may be read-only memory (ROM) or random access memory (RAM), which is not limited in the embodiment of the present application.
  • the present application also provides a computer program product, the computer program product including instructions, when the instructions are executed, so that the terminal device and the network device perform operations of the terminal device and the network device corresponding to the above method.
  • the embodiment of the present application also provides a system chip.
  • the system chip includes a processing unit and a communication unit.
  • the processing unit may be, for example, a processor, and the communication unit may be, for example, an input/output interface, a pin, or a circuit.
  • the processing unit can execute computer instructions so that the chip in the communication device executes any of the methods for generating a semi-static codebook provided in the foregoing embodiments of the present application.
  • the computer instructions are stored in a storage unit.
  • the storage unit is a storage unit in the chip, such as a register, a cache, etc.
  • the storage unit can also be a storage unit in the terminal located outside the chip, such as ROM or other storage units that can store static information and instructions. Types of static storage devices, RAM, etc.
  • the processor mentioned in any one of the above may be a CPU, a microprocessor, an ASIC, or one or more integrated circuits used to control the execution of the program of the above feedback information transmission method.
  • the processing unit and the storage unit can be decoupled, respectively set on different physical devices, and connected in a wired or wireless manner to realize the respective functions of the processing unit and the storage unit, so as to support the system chip to implement the above-mentioned embodiments Various functions in.
  • the processing unit and the memory may also be coupled to the same device.
  • the memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be ROM, programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically erasable programmable read-only memory (electrically EPROM) , EEPROM) or flash memory.
  • Volatile memory can be RAM, which acts as an external cache.
  • RAM static RAM
  • dynamic RAM dynamic RAM
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate Synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous link dynamic random access memory direct memory bus random access Access memory
  • direct rambus RAM direct rambus RAM
  • system and “network” in this article are often used interchangeably in this article.
  • and/or in this article is only an association relationship describing associated objects, which means that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, exist alone B these three situations.
  • the character "/" in this text generally indicates that the associated objects before and after are in an "or” relationship.
  • uplink and downlink appearing in this application are used to describe the direction of data/information transmission in a specific scenario.
  • the "uplink” direction generally refers to the direction or distribution of data/information from the terminal to the network side.
  • the “downlink” direction generally refers to the direction in which data/information is transmitted from the network side to the terminal, or the direction from the centralized unit to the distributed unit.
  • uplink and downlink “It is only used to describe the direction of data/information transmission.
  • the specific start and end equipment of the data/information transmission is not limited.
  • the methods in the embodiments of the present application may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented by software, it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer programs or instructions.
  • the computer may be a general-purpose computer, a dedicated computer, a computer network, or other programmable devices.
  • the computer program or instruction can be stored in a computer-readable storage medium or transmitted through the computer-readable storage medium.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server integrated with one or more available media.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the unit is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or may be Integrate into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种半静态码本生成的方法和通信装置,该方法包括:终端设备接收来自于网络设备的指示信息,指示信息用于动态改变PDCCH的检测时机。终端设备根据PDCCH的检测时机和第一时隙偏移值集合,确定在第一PUCCH资源上发送的HARQ_ACK对应的候选PDSCH接收时机,PDCCH用于调度PDSCH的传输。终端设备根据候选PDSCH接收时机,确定在第一PUCCH上发送的HARQ_ACK的半静态HARQ码本。本申请提供的方法,可以降低半静态HARQ码本中无效的NACK比特,降低了反馈半静态HARQ码本的PUCCH资源的开销,提高半静态HARQ码本的可靠性。

Description

半静态码本生成的方法和通信装置
本申请要求于2019年4月30日提交中国专利局、申请号为201910363775.8、申请名称为“半静态码本生成的方法和通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,更为具体的,涉及一种半静态码本生成的方法和通信装置。
背景技术
目前5G新空口(new radio,NR)的下行传输支持半持续性调度(semi-persistent scheduling,SPS)的物理下行共享信道(physical downlink shared channel,PDSCH)和动态调度的PDSCH。对于动态调度的PDSCH,一个PDSCH的传输由一个物理下行控制信道(physical downlink control channel,PDCCH)调度。对于下行的数据传输,混合自动重传(hybrid automatic repeat request,HARQ)是一种高效的传输机制。一方面,通过重传可以极大提高下行数据传输的可靠性,另一方面,终端设备反馈HARQ的肯定应答(acknowledgement,ACK)/否定应答(negative acknowledgement,NACK)信息,只有反馈NACK时,网络设备才需要进行重传,提高了数据传输效率。在NR设计中,支持两种HARQ-ACK码本配置,即动态HARQ码本(dynamic HARQ codebook)和半静态HARQ码本(semi-static HARQ codebook)。目前在半静态HARQ码本生成中,存在较大的冗余,使得半静态HARQ码本占用的资源较多,造成资源的浪费,并且降低了半静态HARQ码本中反馈的HARQ-ACK的可靠性。
发明内容
本申请提供一种半静态码本生成的方法和通信装置,可以降低半静态HARQ码本中无效的NACK比特,从而提高了半静态HARQ码本的码率,降低了反馈半静态HARQ码本的PUCCH资源的开销,提高半静态HARQ码本的可靠性。
第一方面,提供了一种半静态码本生成的方法,该方法的执行主体既可以是终端设备也可以是应用于终端设备的芯片,以执行主体为终端设备为例,该方法包括:终端设备接收来自于网络设备的指示信息,该指示信息用于动态改变物理下行控制信道PDCCH的检测时机。终端设备根据该PDCCH的检测时机和第一时隙偏移值集合,确定在第一物理上行控制信道PUCCH资源上发送的混合自动重传请求确认HARQ_ACK对应的候选物理下行共享信道PDSCH接收时机,该PDCCH用于调度该PDSCH的传输,该第一时隙偏移值集合包括的时隙偏移值用于指示PDCCH与PDSCH之间的时隙偏移值。终端设备根据该候选PDSCH接收时机,确定在该第一PUCCH上发送的该HARQ_ACK的半静态HARQ码本。
第一方面提供的半静态码本生成的方法,由于候选PDSCH接收时机是根据动态变化的PDCCH检测时机和第一时隙偏移值集合确定的。候选PDSCH接收时机只包括可能出现PDCCH检测时机调度的PDSCH接收时机,避免了候选PDSCH接收时机包括PDSCH无效时机。根据该候选PDSCH接收时机确定半静态HARQ码本,可以降低半静态HARQ码本中无效的NACK比特,从而提高了半静态HARQ码本的码率,降低了反馈半静态HARQ码本的PUCCH资源的开销,提高半静态HARQ码本的可靠性,提高通信效率。
在第一方面的一种可能的实现方式中,该指示信息包括:激活或者去激活该PDCCH对应的搜索空间集合、该PDCCH的检测周期或者该PDCCH检测跳过信息中的至少一个,其中,该PDCCH对应的搜索空间集合包括该PDCCH的检测周期;该方法还包括:终端设备根据该指示信息,确定该PDCCH的检测时机。在该实现方式中,根据该指示信息确定PDCCH的检测时机,可以提高确定出的PDCCH的检测时机的准确率,提高确定PDCCH的检测时机的效率。
在第一方面的一种可能的实现方式中,该方法还包括:根据第二时隙偏移值集合和该第一PUCCH资源所在的时隙,确定与该第一PUCCH资源所在的时隙对应的时间单元集合,该第二时隙偏移值集合包括的时隙偏移值用于指示该第一PUCCH资源所在的时隙与该时间单元集合中的时间单元的时隙偏移值;根据该PDCCH的检测时机和第一时隙偏移值集合,确定在第一PUCCH资源上发送的HARQ_ACK对应的候选PDSCH接收时机,包括:根据该PDCCH的检测时机和该第一时隙偏移值集合,在该时间单元集合中确定该候选PDSCH接收时机。
在第一方面的一种可能的实现方式中,该PDCCH承载下行控制信息DCI,该DCI用于调度单播类型的PDSCH。
在第一方面的一种可能的实现方式中,该DCI对应小区无线临时网络标识C-RNTI加扰,或者,对应调制编码方案小区无线网络临时标识MCS-C-RNTI,或者对应配置调度无线网络临时标识CS-RNTI加扰。
在第一方面的一种可能的实现方式中,该第二时隙偏移值集合包括的时隙偏移值的个数小于或者等于4。
在第一方面的一种可能的实现方式中,该候选PDSCH接收时机对应的一个或者多个候选PDSCH时域资源中的至少一个候选PDSCH时域资源均为下行符号。
在第一方面的一种可能的实现方式中,该指示信息还用于指示该HARQ_ACK采用半静态HARQ码本。
第二方面,提供了一种半静态码本生成的方法,该方法的执行主体既可以是网络设备也可以是应用于网络设备的芯片,以执行主体为网络设备为例,该方法包括:网络设备向终端设备发送指示信息,该指示信息用于动态改变物理下行控制信道PDCCH的检测时机。网络设备根据该PDCCH的检测时机和第一时隙偏移值集合,确定在第一物理上行控制信道PUCCH资源上接收的混合自动重传请求确认HARQ_ACK对应的候选物理下行共享信道PDSCH接收时机,该PDCCH用于调度该PDSCH的传输,该第一时隙偏移值集合包括的时隙偏移值用于指示PDCCH与PDSCH之间的时隙偏移值。网络设备根据该候选PDSCH接收时机,确定该第一PUCCH资源上接收的该HARQ_ACK的半静态HARQ码本。
第二方面提供的半静态码本生成的方法,由于候选PDSCH接收时机是根据动态变化的PDCCH检测时机和第一时隙偏移值集合确定的。候选PDSCH接收时机只包括可能出现PDCCH检测时机调度的PDSCH接收时机,避免了候选PDSCH接收时机包括PDSCH无效时机。根据该候选PDSCH接收时机确定半静态HARQ码本,可以降低半静态HARQ码本中无效的NACK比特,从而提高了半静态HARQ码本的码率,降低了反馈半静态HARQ码本的PUCCH资源的开销,提高半静态HARQ码本的可靠性。
在第二方面的一种可能的实现方式中,该指示信息包括:激活或者去激活该PDCCH对应的搜索空间集合、该PDCCH的检测周期或者该PDCCH检测跳过信息中的至少一个,其中,该PDCCH对应的搜索空间集合包括该PDCCH的检测周期。
在第二方面的一种可能的实现方式中,该方法还包括:根据第二时隙偏移值集合和该第一PUCCH资源所在的时隙,确定与该第一PUCCH资源所在的时隙对应的时间单元集合,该第二时隙偏移值集合包括的时隙偏移值用于指示该第一PUCCH资源所在的时隙与该时间单元集合中的时间单元的时隙偏移值。根据该PDCCH的检测时机和第一时隙偏移值集合,确定在第一PUCCH资源上接收的HARQ_ACK对应的候选PDSCH接收时机,包括:根据该PDCCH的检测时机和该第一时隙偏移值集合,在时间单元集合中确定该候选PDSCH接收时机。
在第二方面的一种可能的实现方式中,该PDCCH承载下行控制信息DCI,该DCI用于调度单播类型的PDSCH。
在第二方面的一种可能的实现方式中,该DCI对应小区无线临时网络标识C-RNTI加扰,或者,对应调制编码方案小区无线网络临时标识MCS-C-RNTI,或者对应配置调度无线网络临时标识CS-RNTI加扰。
在第二方面的一种可能的实现方式中,该第二时隙偏移值集合包括的时隙偏移值的个数小于或者等于4。
在第二方面的一种可能的实现方式中,其特征在于,该候选PDSCH接收时机对应的一个或者多个候选PDSCH时域资源中的至少一个候选PDSCH时域资源均为下行符号。
在第一方面的一种可能的实现方式中,该指示信息还用于指示该HARQ_ACK采用半静态HARQ码本。
第三方面,提供了一种通信装置,该装置包括用于执行以上第一方面或第一方面的任意可能的实现方式中各个步骤的单元。
第四方面,提供了一种通信装置,该装置包括用于执行以上第二方面或第二方面的任意可能的实现方式中各个步骤的单元。
在一种设计中,该通信装置为通信芯片,通信芯片可以包括用于发送信息或数据的输入电路或者接口,以及用于接收信息或数据的输出电路或者接口。
在另一种设计中,该通信装置为通信设备(例如,终端设备或接入网设备),通信设备可以包括用于发送信息或数据的发射机,以及用于接收信息或数据的接收机。
第五方面,提供了一种通信装置,该装置包括至少一个处理器和存储器,该至少一个处理器用于执行以上第一方面或第一方面的任意可能的实现方式中的方法。
第六方面,提供了一种通信装置,该装置包括至少一个处理器和存储器,该至少一个处理器用于执行以上第二方面或第二方面的任意可能的实现方式中的方法。
第七方面,提供了一种通信装置,该装置包括至少一个处理器和接口电路,该至少一个处理器用于执行以上第一方面或第一方面的任意可能的实现方式中的方法。
第八方面,提供了一种通信装置,该装置包括至少一个处理器和接口电路,该至少一个处理器用于执行以上第二方面或第二方面的任意可能的实现方式中的方法。
第九方面,提供一种处理器,包括:输入电路、输出电路和处理电路。该处理电路用于通过该输入电路接收信号,并通过该输出电路发射信号,使得该处理器执行第一方面和第二方面,或第一方面和第二方面中的任一方面中的各实现方式中的方法。
在具体实现过程中,上述处理器可以为芯片,输入电路可以为输入管脚,输出电路可以为输出管脚,处理电路可以为晶体管、门电路、触发器和各种逻辑电路等。输入电路所接收的输入的信号可以是由例如但不限于接收器接收并输入的,输出电路所输出的信号可以是例如但不限于输出给发射器并由发射器发射的,且输入电路和输出电路可以是同一电路,该电路在不同的时刻分别用作输入电路和输出电路。本申请实施例对处理器及各种电路的具体实现方式不做限定。
第十方面,提供了一种终端设备,该终端设备包括上述第三方面提供的通信装置,或者,该终端包括上述第五方面提供的通信装置,或者,该终端包括上述第七方面提供的通信装置。
第十一方面,提供了一种网络设备,该网络设备包括上述第四方面提供的通信装置,或者,该网络设备包括上述第六方面提供的通信装置,或者,该网络设备包括上述第八方面提供的通信装置。
第十二方面,提供了一种计算机程序产品,该计算机程序产品包括计算机程序,该计算机程序在被处理器执行时,用于执行第一方面或第一方面的任意可能的实现方式中的方法,或者执行第二方面或第二方面的任意可能的实现方式中的方法。
第十三方面,提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序,当该计算机程序被执行时,用于执行第一方面或第一方面的任意可能的实现方式中的方法,或者执行第二方面或第二方面的任意可能的实现方式中的方法。
根据本申请提供的方法,由于候选PDSCH接收时机是根据动态变化的PDCCH检测时机和第一时隙偏移值集合确定的。候选PDSCH接收时机只包括可能出现PDCCH检测时机调度的PDSCH接收时机,避免了候选PDSCH接收时机包括PDSCH无效时机。根据该候选PDSCH接收时机确定半静态HARQ码本,可以降低半静态HARQ码本中无效的NACK比特,从而提高了半静态HARQ码本的码率,降低了反馈半静态HARQ码本的PUCCH资源的开销,提高半静态HARQ码本的可靠性。尤其对于PDCCH周期比较大的情况下,可以很大程度上提高半静态HARQ码本的可靠性,提高通信效率。
附图说明
图1是适用于本申请实施例的移动通信系统的架构示意图。
图2是一例根据K1集合确定半静态码本反馈HARQ-ACK的示意图。
图3是另一例根据K1集合确定半静态码本反馈HARQ-ACK的示意图。
图4是又一例根据K1集合确定半静态码本反馈HARQ-ACK的示意图。
图5是本申请实施例提供的半静态码本生成的方法的示意性交互图。
图6是本申请实施例提供的另一例半静态码本生成的方法示意性交互图。
图7是本申请实施例提供根据第二时隙偏移值集合、第一时隙偏移值集合以及PDCCH检测时机确定候选PDSCH接收时机的示意图。
图8是本申请实施例提供的通信装置的示意图。
图9是本申请实施例提供的又一例通信装置的示意图。
图10是本申请实施例提供的通信装置的示意图。
图11是本申请实施例提供的又一例通信装置的示意图。
图12是本申请实施例提供的终端设备的示意图。
图13是本申请实施例提供的网络设备的示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统、未来的第五代(5th Generation,5G)系统或新无线(New Radio,NR)等。
图1是适用于本申请实施例的移动通信系统的架构示意图。如图1所示,该移动通信系统100可以包括核心网设备110、无线接入网设备120和至少一个终端设备(如图1中所示的终端设备130和终端设备140)。终端设备通过无线的方式与无线接入网设备相连,无线接入网设备通过无线或有线方式与核心网设备连接。核心网设备与无线接入网设备可以是独立的不同的物理设备,也可以是将核心网设备的功能与无线接入网设备的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备的功能和部分的无线接入网设备的功能。终端设备可以是固定位置的,也可以是可移动的。图1只是示意图,该通信系统中还可以包括其它网络设备,如还可以包括无线中继设备和无线回传设备,在图1中未画出。本申请的实施例对该移动通信系统中包括的核心网设备、无线接入网设备和终端设备的数量不做限定。
该移动通信系统100中的终端设备也可以称为终端Terminal、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等。终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请中将前述终端设备及可应用于前述终端设备的芯片统称为终端设备。应理解,本申请实施例对终端设备所采用的具体技术和具体 设备形态不做限定。
在移动通信系统100中,无线接入网设备120是终端设备通过无线方式接入到该移动通信系统中的接入设备。该无线接入网设备120可以是:基站、演进型基站(evolved node B,基站)、家庭基站、WIFI系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为NR系统中的gNB,或者,还可以是构成基站的组件或一部分设备,如集中式单元(centralized unit,CU)、分布式单元(distributed unit,DU)或基带单元(baseband unit,BBU)等。应理解,本申请的实施例中,对无线接入网设备所采用的具体技术和具体设备形态不做限定。在本申请中,无线接入网设备简称网络设备,如果无特殊说明,在本申请中,网络设备均指无线接入网设备。在本申请中,网络设备可以是指网络设备本身,也可以是应用于网络设备中完成无线通信处理功能的芯片。
在本申请实施例中,终端设备或网络设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
为便于理解本申请实施例,下面先对本申请涉及到的几个概念进行简单介绍。
时间单元和时域符号:
基站和终端设备用于无线通信的时域资源可以划分为多个时间单元。并且,在本申请实施例中,多个时间单元可以是连续的,也可以是某些相邻的时间单元之间设有预设的间隔,本申请实施例并未特别限定。
在本申请实施例中,对一个时间单元的长度不做限定。例如,1个时间单元可以是一个或多个子帧;或者,也可以是一个或多个时隙;或者,也可以是一个或多个符号。其中,一个子帧是1ms,一个时隙在正常循环前缀情况下包括14个符号,在扩展循环前缀的情况下,包括12个符号。
在本申请的实施例中,符号也称为时域符号,可以是正交频分复用(orthogonal  frequency division multiplexing,OFDM)符号,也可以是单载波频分多址(single carrier frequency division multiple access,SC-FDMA)符号,其中SC-FDMA又称为带有转换预编码的正交频分复用(orthogonal frequency division multiplexing with transform precoding,OFDM with TP)。
本申请实施例中的终端设备可以指用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(Public Land Mobile Network,PLMN)中的终端设备等,本申请实施例对此并不限定。
本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备可以是全球移动通讯(Global System of Mobile communication,GSM)系统或码分多址(Code Division Multiple Access,CDMA)中的基站(Base Transceiver Station,BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional NodeB,eNB或eNodeB),还可以是云无线接入网络(Cloud Radio Access Network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等,本申请实施例并不限定。
目前5G新空口(new radio,NR)的下行传输支持半持续性调度(semi-persistent scheduling,SPS)的物理下行共享信道(physical downlink shared channel,PDSCH)和动态调度的PDSCH。对于下行的数据传输,混合自动重传(hybrid automatic repeat request,HARQ)是一种高效的传输机制。一方面,通过重传可以极大提高下行数据传输的可靠性,另一方面,终端设备反馈HARQ的肯定应答(acknowledgement,ACK)/否定应答(negative acknowledgement,NACK)信息,只有反馈NACK时,网络设备才需要进行重传,提高了数据传输效率。
动态的PDSCH可以理解为一个PDSCH由一个PDCCH来调度,每一个PDSCH的时频位置可能是不相同的,具体的时频位置通过每一个PDSCH对应的PDCCH来指示;每一个PDSCH对应的ACK/NACK反馈时机也可能是不同的,具体的反馈时机也是通过每一个PDSCH对应的PDCCH来指示。这种PDSCH也可以称为动态的PDSCH,或者有调度信息的PDSCH。
SPS PDSCH可以理解为一次配置周期使用的模式,例如,网络设备可以通过发送一个激活PDCCH去激活多个SPS PDSCH的传输,这个激活PDCCH可以用于指示第一个SPS PDSCH的时域位置、第一个SPS PDSCH所在的时隙、与SPS PDSCH对应的ACK或者NACK的反馈信息的时频位置等,另外网络设备还会通过高层信令发送配置信息配置SPS PDSCH的周期,结合这些信息,终端设备可以确定接收SPS PDSCH的位置以及SPS PDSCH对应的ACK或者NACK的反馈信息的位置。
在NR设计中,支持两种HARQ-ACK码本模式。具体的,网络设备可以通过发送配置 信息,指示此时采用哪种HARQ-ACK码本模式来生成HARQ-ACK码本。其中,HARQ-ACK码本可以理解为在某个上行时间单元上需要反馈的、与PDSCH对应的ACK/NACK的一种排列,包含2层含义:第一:HARQ-ACK码本包含哪些PDSCH的ACK/NACK。第二:这些PDSCH的ACK/NACK在码本中的排列顺序。也就是说,将需要在同一个上行时间单元内发送的多有的PDSCH的反馈信息ACK/NACK按照一定的顺序排列为一串连续的比特,就形成了HARQ-ACK码本。两种HARQ-ACK码本模式包括动态码本(Dynamic codebook)模式和半静态码本(Semi-static codebook)模式。不同的码本模式中HARQ-ACK码本的生成方式不同。
对于半静态HARQ-ACK码本,又称Type 1 HARQ Codebook。半静态码本确定的过程分为以下步骤:
首先,终端设备确定发送ACK/NACK反馈信息的时隙为第i个时隙。具体时隙i的确定是根据PDSCH对应的PDCCH确定的。PDCCH中会指示预配置的或者与预定义的时域资源表格中的一行。时域资源表格包括多行,每一行可以包括一个PDSCH时域资源分配索引、与该PDSCH时域资源分配索引对应的K0、S、L的值、PDSCH映射类型。S指示一个时隙内时域资源的起始(start)符号编号。L指示该时隙内时域资源的持续的符号个数。L(length)是表示数据信道所占的符号个数,也可以称为数据信道的持续的符号个数,或者也可以称为数据信道的时域长度。L是从S开始的连续的符号的个数。K0的含义为PDCCH到PDSCH的所在的时隙之间间隔的时隙个数。S和L可以联合编码为一个开始和长度指示值(start and length indicator value,SLIV)参数,SLIV可以用于指示PDSCH所占的开始符号和符号个数。终端设备根据PDCCH指示的PDSCH时域资源分配索引,便可以确定该PDSCH调度的PDSCH所在的时隙以及在该时隙内的时域资源位置等信息。例如,假设终端设备在第N个时隙接收到PDCCH,K0的值为1,则该PDCCH调度的PDSCH的所在的时隙为第N+1个时隙。对于PDSCH映射类型,PDSCH映射类型主要是确定PDSCH的解调参考信号(demodulation reference signal,DMRS)的时域符号位置,还可以用来确定PDSCH所有合理的开始位置、持续时间等。PDSCH映射包括两种类型:类型A(type A)或者类型B(type B)。type A表示第一个DMRS的位置在slot的第3或者第4个符号,type B表示第一个DMRS的位置在数据开始的第一个符号。
下面结合表1的例子说明时域资源表格。
表1
Figure PCTCN2020087821-appb-000001
如表1所示的时域表格,假设终端设备在第1个时隙接收到PDCCH,PDCCH可以携带PDSCH时域资源分配索引,假设该索引为0,终端设备接到PDCCH后,根据索引0,可以确定PDSCH的所在的时隙为时隙2,并且,PDSCH是在时隙2中的符号编号为2的符号至符 号编号为5的符号上传输。
应理解,表1只是示例性的,不应该对时域资源表格产生任何的限制。
假设PDSCH所在的时隙为时隙n,该PDCCH中还会指示一个K1值,K1用于指示PDSCH到对应ACK/NACK反馈的时隙偏移值。终端设备可以根据K1值和PDSCH所在的时隙为时隙n,确定与PDSCH对应ACK/NACK反馈所在的时隙为n+K1,即在时隙为n+K1上使用物理上行控制信道(physical uplink control channel,PUCCH)来反馈ACK/NACK。
假设时隙为n+K1为时隙i。之后,终端设备根据网络设备发送的配置信息获取K1的可能取值K1集合(K1set),基于上述信息,终端设备确定所有要在第i个时隙发送反馈信息的所有的PDSCH所在的时隙,即确定所有要在第i个时隙发送反馈信息的所有的候选PDSCH接收时机(PDSCH candidate occasion)组成的候选PDSCH接收时机集合(occasion set for candidate PDSCH receptions)。然后再根据该集合,按时机(occasion)顺序得到反馈的HARQ-ACK比特。对于候选PDSCH接收时机集合中没有实际PDSCH调度的occasion,反馈的HARQ-ACK比特中填充否定应答NACK。最后,将该所有候选PDSCH接收时机对应的ACK/NACK按照PDSCH candidate occasion在时域上从前到后的顺序,以及该所有时隙在时域上从前到后的顺序串联,串联生成一个HARQ-ACK码本。最终生成半静态HARQ-ACK码本。
下面结合具体的例子说明半静态HARQ-ACK码本的生成过程。
假设网络设备通过配置信息RRC为终端设备配置K1集合为{1,2,3,4}。网络设备通过PDCCH1调度了PDSCH1,如图2所示,图2所示的为根据K1集合确定半静态码本反馈HARQ-ACK的一个例子。PDCCH1中携带的下行控制信息(downlink control information,DCI)指示K1为3。终端设备根据DCI指示K1为3,确定PDSCH1到反馈PDSCH1对应的ACK/NACK的资源为PUCCH1,假设PDSCH1所在的时隙为时隙n,则PUCCH1所在的时隙为时隙n+3。在PUCCH1上反馈HARQ-ACK之前,终端设备需要首先根据K1集合{1,2,3,4}得到候选PDSCH接收时机集合(occasion set for candidate PDSCH receptions)。根据K1集合,从第n+3个时隙往回推,即第n+3个时隙反馈的将是第n+2个时隙、第n+1个时隙、第n个时隙、第n-1个时隙这4个时隙中收到的所有PDSCH对应的ACK/NACK。终端设备确定的候选PDSCH接收时机集合包括时隙n+2、时隙n+1、时隙n以及时隙n-1。即在时隙n+3中需要反馈时隙n-1、时隙n、时隙n+1以及时隙n+2上的PDSCH的ACK/NACK。然后再根据该集合,按PDSCH时机(occasion)顺序得到反馈的HARQ-ACK比特。对于该集合中没有实际的PDSCH调度的occasion,反馈的HARQ-ACK比特中填充否定应答NACK。假设每个时隙上只能调度一个PDSCH,且对于每个PDSCH只反馈1比特的ACK/NACK,则时隙n+3中的PUCCH1需要反馈4比特的ACK/NACK。
图3为根据K1集合确定半静态HARQ码本反馈HARQ-ACK的另一个例子。网络设备通过配置信息为终端设备配置K1集合为{1,2,3,4}。网络设备先后通过三个不同的PDCCH调度了如图3所示的三个PDSCH,三个PDSCH分别为PDSCH1、PDSCH2、PDSCH3,且三个不同的PDCCH都指示PUCCH1用于反馈PDSCH1、PDSCH2、PDSCH3的HARQ_ACK。PDSCH1位于时隙n上,PDSCH2位于时隙n+1上,PDSCH3位于时隙n+3上。假设PDSCH1对应K1为4,则PDSCH1的ACK/NACK的资源为PUCCH11所在的时隙为时隙n+4。在PUCCH1上反馈HARQ-ACK之前,终端设备需要首先根据K1集合{1,2,3,4}确定候选 PDSCH接收时机集合(occasion set for candidate PDSCH receptions)。终端设备确定的候选PDSCH接收时机集合包括时隙n+3、时隙n+2、时隙n+1以及时隙n。即在时隙n+4中需要反馈时隙n、时隙n+1、时隙n+2以及时隙n+3上的PDSCH的ACK/NACK。假设每个时隙都只能调度一个PDSCH,并且对于每个PDSCH只反馈1比特的ACK/NACK,由于时隙n+2上没有调度的PDSCH,因此,时隙n+2对应的反馈信息为NACK。时隙n+4中的PUCCH1需要反馈4比特的ACK/NACK。
应理解,图2和图3中的例子中都假设每个时隙都只调度一个PDSCH,并且对于每个PDSCH都只需要反馈1比特ACK/NACK。如果一个时隙可调度多于一个PDSCH,和/或,一个PDSCH需要反馈多于1比特的n比特ACK/NACK,则对于候选PDSCH接收时机集合中的每个无PDSCH调度的位于相同时隙或不同时隙的occasion,在相应HARQ-ACK反馈中填充n比特NACK。
还应理解,图2和图3所示的例子中都基于FDD系统,即上行传输和下行传输分别属于不同载波。如果在TDD系统中,候选PDSCH接收时机集合的除了确定考虑K1集合,还要考虑PDSCH候选时域资源与该时隙的符号在上下行属性上无冲突,即需要保证该时隙内的至少一个PDSCH候选时域资源中,不能含有上行符号。如果该时隙内的所有PDSCH候选时域资源中都含有上行符号,该时隙会被排除在候选PDSCH接收时机集合之外。
目前,对于如何降低终端设备的功耗成为亟需解决的问题。减少PDCCH检测是其中一个重要手段。其中,动态改变PDCCH检测周期是减少PDCCH检测的一种技术。该技术可达到的效果是:在数据传输需求较小,或者没有数据传输需求时,网络设备指示终端设备采用较大的PDCCH检测周期,则相应的PDCCH检测时机(occasion)次数较少,达到节省功耗的效果。当出现数据传输需求或者数据传输需求较大时,网络设备指示终端设备减小PDCCH检测周期,则终端设备会相应增加PDCCH检测时机,以提供更多机会给网络设备发送指示数据调度的PDCCH,从而减小调度和数据传输时延,提高数据传输速率。
对于PDCCH检测周期较大的情形,由于PDSCH是由PDCCH调度的,可能出现较多的不可能有PDCCH调度的PDSCH occasion。如图4所示,图4是根据K1集合确定半静态HARQ码本反馈HARQ-ACK的又一个例子。图4所示的例子中,PDCCH检测周期为8个时隙,K1集合为{1,2,3,4,5,6,7,8},假设PDCCH1用于调度PDSCH1,PDCCH1中的DCI指示的K0为1,K1为6。根据K1集合{1,2,3,4}确定候选PDSCH接收时机集合包括时隙n-1至时隙n+6这8个时隙上的候选PDSCH接收时机。由于PDCCH检测周期为8个时隙,在候选PDSCH接收时机集合包括的8个时隙中,只有时隙n+1上可能出现PDSCH1,其他的7个时隙上是不可能出现PDSCH,其他的7个时隙可以称为PDSCH无效时机(invalid PDSCH occasion)。这种情况下,根据上述的半静态HARQ码本的生成过程,会有大量的NACK填充是对应PDSCH无效时机的。如图4所示的,假设一个PDSCH时机对应1比特的ACK/NACK,则PDCCH1上的半静态HARQ码本中8比特HARQ-ACK反馈中有7比特都是无效NACK比特,这7比特无效NACK均没有对应的PDSCH传输。这样会导致反馈HARQ-ACK的PUCCH资源开销较大,并且填充的NACK降低了实际需要反馈的HARQ-ACK的码率,
有鉴于此,本申请提供了一种半静态码本生成的方法,结合调度PDSCH的动态改变的PDCCH的检测时机,确定候选PDSCH接收时机,候选PDSCH接收时机与动态变化的PDCCH检测时机对应。根据候选PDSCH接收时机,确定半静态HARQ码本。可以降低半 静态HARQ码本中无效的NACK比特,从而提高了半静态HARQ码本的码率,降低了反馈半静态HARQ码本的PUCCH资源的开销,提高半静态HARQ码本的可靠性,提高通信效率。
下面结合图5详细说明本申请提供的半静态码本生成的方法,图5是本申请一个实施例的半静态码本生成的方法200的示意性交互图,该方法200可以应用在图1所示的场景中,当然也可以应用在其他通信场景中,本申请实施例在此不作限制。
应理解,在本申请实施例中,以终端设备和网络设备作为执行方法200的执行主体为例,对方法200进行说明。作为示例而非限定,执行方法200的执行主体也可以是应用于终端设备的芯片和应用于网络设备的芯片。
如图5所示,该方法200包括S210至S230。
S210,网络设备向终端设备发送指示信息,该指示信息用于动态改变PDCCH的检测时机。相应的,终端设备接收该指示信息。
S220,终端设备根据该PDCCH的检测时机和第一时隙偏移值集合,确定在第一PUCCH资源上发送的HARQ_ACK对应的候选PDSCH接收时机,该PDCCH用于调度该PDSCH的传输,该第一时隙偏移值集合包括的时隙偏移值用于指示PDCCH与PDSCH之间的时隙偏移值。
S230,终端设备根据该候选PDSCH接收时机,确定在该第一PUCCH上发送的HARQ_ACK的半静态HARQ码本。
具体而言,对于PDCCH调度PDSCH传输的情况下,PDCCH的检测时机的周期会存在比较大的情况。PDCCH的检测时机可以理解为PDCCH所在的时域资源。网络设备可以在预配置或者预定义的PDCCH时域资源上发送PDCCH,终端设备在预配置或者预定义的PDCCH时域资源检测PDCCH。可选的,可以预配置或者预定义PDCCH的多个搜索空间集合(search space set,SS set)),不同的搜索空间集合对应不同的PDCCH检测周期和检测时机。多个搜索空间集合对应的PDCCH检测时机的并集即为终端设备的PDCCH检测时机。例如,对于一个搜索空间集合,可以预配置或者预定义PDCCH的周期集合,该周期集合包括多个PDCCH的周期。假设PDCCH的周期集合为{1,2,4,8,10,20},单位为时隙,第一个PDCCH在时隙n发送,则对应于不同的PDCCH周期,会有不同的PDCCH检测时机。例如,对于PDCCH周期为2,则PDCCH检测时机为时隙n、时隙n+2、时隙n+4、时隙n+6等等,即每隔两个时隙为一个PDCCH检测时机。对于PDCCH周期为8,则PDCCH检测时机为时隙n、时隙n+8、时隙n+16、时隙n+24等等,即每隔8个时隙为一个PDCCH检测时机。在相同时间长度内,PDCCH的周期不同,则PDCCH的检测时机也是不同的,终端设备可能检测到的PDCCH个数也是不同的,从而PDCCH调度的PDSCH的接收时机也是不同的。在S210中,网络设备可以通过指示信息向终端设备指示动态改变PDCCH的检测时机。动态改变PDCCH的检测时机可以理解为PDCCH的周期或者检测时机是变化的。例如,在某些场景中,该指示信息可以指示PDCCH的周期集合中较小的PDCCH周期,网络设备会根据该较小的PDCCH周期向终端设备发送PDCCH。在另一些场景中,该指示信息可以指示PDCCH的周期集合中较大的PDCCH周期,网络设备会根据该较大的PDCCH周期向终端设备发送PDCCH。每一个PDCCH用于调度PDSCH的传输。在需要改变PDCCH的发送周期时,网络设备会向终端设备发送该指示信息,用于指示动态改变该PDCCH的检测时机或者周期。
在S220中。终端设备会根据该指示信息指示的PDCCH的检测时机和第一时隙偏移值集合,并结合K1集合,确定在第一PUCCH资源上发送的HARQ_ACK对应的候选PDSCH接收时机。该第一时隙偏移值集合包括的时隙偏移值用于指示PDCCH与PDSCH之间的时隙偏移值。第一时隙偏移值集合可以理解为上述的K0集合。K0集合可以是预配置或者预定义的,包括一个或者多个K0。K0用于确定PDCCH所在的时隙与该PDCCH调度的PDSCH之间的时域偏移值。K1集合可以是预配置的或者预定义的。K1集合包括的时隙偏移值用于指示发送HARQ_ACK的PUCCH资源所在的时隙与该HARQ_ACK对应的PDSCH的时隙偏移值。K1集合可以为下述第二时隙偏移值集合。例如,假设K0集合为{1,2,3},PDCCH所在的时隙为时隙n,则该PDCCH调度的PDSCH可能出现的时隙位置为时隙n+1、时隙n+2或者时隙n+3。最终该PDCCH调度的PDSCH出现的时隙由该PDCCH中指示的某一个K0确定。并且,该PDCCH还可以指示PDSCH在某一个时隙中的时域资源位置。例如,PDCCH可以指示上述表1中所示的某一行,进而可以确定该PDCCH调度的PDSCH所在的时隙以及在该时隙中的时域资源位置。该PDCCH中还可以指示某一个K1值,该K1值指示PDCCH所在的时隙与第一PUCCH资源所在的时隙偏移值。终端设备可以根据K1值,确定第一PUCCH资源所在的时隙。终端设备可以先根据K1集合和第一PUCCH资源所在的时隙,确定在第一PUCCH资源上发送的HARQ_ACK对应的所有可能的候选PDSCH接收时机,然后根据PDCCH的检测时机和第一时隙偏移值集合,在确定出的所有可能的候选PDSCH接收时机中确定出在第一PUCCH资源上发送的HARQ_ACK对应的候选PDSCH接收时机。由于候选PDSCH接收时机是根据PDCCH的检测时机和第一时隙偏移值集合确定的,候选PDSCH接收时机只包括可能出现PDCCH调度的PDSCH接收时机,不包括不可能有PDCCH调度的PDSCH接收时机,不可能有PDCCH调度的PDSCH接收时机也可以称为PDSCH无效时机,即候选PDSCH接收时机不包括PDSCH无效时机。每个候选PDSCH接收时机对应一个PDCCH检测时机。PDSCH接收时机与动态变化的PDCCH检测时机对应。PDCCH检测时机不同,确定出的PDSCH接收时机也是不同的。
在S230中,终端设备会根据确定出的候选PDSCH接收时机,确定在该第一PUCCH上发送的HARQ_ACK的半静态HARQ码本。由于候选PDSCH接收时机不包括PDSCH无效时机,与PDSCH无效时机对应的NACK可以称为无效的NACK比特。终端设备最终确定的半静态HARQ码本中不包括无效的NACK比特。
本申请提供的半静态码本生成的方法,由于候选PDSCH接收时机是根据动态变化的PDCCH检测时机和第一时隙偏移值集合确定的。候选PDSCH接收时机只包括可能出现PDCCH检测时机调度的PDSCH接收时机,避免了候选PDSCH接收时机包括PDSCH无效时机。根据该候选PDSCH接收时机确定半静态HARQ码本,可以降低半静态HARQ码本中无效的NACK比特,从而提高了半静态HARQ码本的码率,降低了反馈半静态HARQ码本的PUCCH资源的开销,提高半静态HARQ码本的可靠性。尤其对于PDCCH周期比较大的情况下,可以很大程度上提高半静态HARQ码本的可靠性,提高通信效率。
可选的,在本申请实施例中,网络设备也可以根据PDCCH的检测时机和第一时隙偏移值集合,确定在第一PUCCH资源上接收的HARQ_ACK对应的候选PDSCH接收时机。然后根据该候选PDSCH接收时机,确定在该第一PUCCH上接收的半静态HARQ码本。 其具体的过程可以参考上述对于S220和S230的描述,为了简洁,这里不再赘述。
可选的,作为一种可能的实现方式,上述的指示信息可以包括:激活或者去激活该PDCCH对应的搜索空间集合、该PDCCH的检测周期或者该PDCCH检测跳过信息中的至少一个,其中,该PDCCH对应的搜索空间集合包括该PDCCH的检测周期。其中,PDCCH对应的搜索空间集合可以包括PDCCH的周期。
具体而言,可以为该PDCCH预配置或者定义一个或者多个搜索空间集合,或者为该PDCCH预配置或者定义多个PDCCH检测周期,或者,为该PDCCH预配置或者定义多种PDCCH检测跳过(PDCCH monitor skipping)信息(信号)。每一个搜索空间集合中可以包括一个或者多个PDCCH的检测周期。网络设备可以在该指示信息中指示激活或者去激活该PDCCH对应的搜索空间集合。激活的PDCCH对应的搜索空间集合可以理解为利用该激活的PDCCH对应的搜索空间集合包括的PDCCH周期去确定该PDCCH的检测时机。去激活的PDCCH对应的搜索空间集合可以理解为网络设备不会利用该去激活的PDCCH对应的搜索空间集合包括的PDCCH周期发送该PDCCH。终端设备根据该指示信息包括的激活或者去激活的搜索空间集合,结合与该搜索空间集合关联的控制资源集,便可以确定该PDCCH的检测时机。如果一个搜索空间集合中包括一个或者多个PDCCH的检测周期,并且这个搜索空间集合是被激活的,进一步的,网络设备还可以指示利用该激活的搜索空间集合中包括的哪一个PDCCH周期。可选的。对于一个搜索空间集合,还可以配置与每一个PDCCH检测周期对应的周期内连续检测的时隙个数和/或时隙内PDCCH的检测符号。终端设备可以根据与每一个PDCCH检测周期对应的周期内PDCCH连续检测的时隙个数和/或时隙内PDCCH的检测符号,确定PDCCH的检测时机。
可选的,该指示信息还可以包括为该PDCCH预配置或者预定义的多个PDCCH检测周期中的某一个PDCCH检测周期,终端设备根据该指示信息指示的PDCCH检测周期,可以确定该PDCCH的检测时机。或者,该指示信息还可以包括PDCCH检测跳过信息,PDCCH检测跳过信息可以理解相邻两次PDCCH检测之间的时间间隔,例如,假设PDCCH检测跳过信息为PDCCH检测跳过的时隙为5个,则表明相邻两次检测PDCCH之间间隔5个时隙,即PDCCH的周期的为5。终端设备可以根据上述的指示信息包括的内容,确定PDCCH的检测时机。
终端设备根据该指示信息包括的内容确定PDCCH的检测时机,可以提高确定出的PDCCH的检测时机的准确率,提高确定PDCCH的检测时机的效率。
应理解,该指示信息除了包括上述的用于确定PDCCH的检测时机的信息之外,还可以包括其他用于确定PDCCH的检测时机的信息。例如,该指示信息可以直接指示PDCCH的检测时机等。本申请实施例中对于网络设备如何向终端设备指示动态改变PDCCH的检测时机的方式不作限制。
还应理解,网络设备也可以根据上述的指示信息包括的用于确定PDCCH的检测时机的信息,或者其他用于确定PDCCH的检测时机的信息确定该PDCCH的检测时机。
如图6所示,图6是本申请一些实施例中的半静态码本生成的方法的示意性交互图,在一些实施例中,在图6所示的方法步骤的基础上,该方法200还可以包括S211。
S211,终端设备根据第二时隙偏移值集合和该第一PUCCH资源所在的时隙,确定与该第一PUCCH资源所在的时隙对应的时间单元集合,该第二时隙偏移值集合包括的时隙 偏移值用于指示该第一PUCCH资源所在的时隙与该时间单元集合中的时间单元的时隙偏移值。
上述的S220可以包括:
S221,终端设备根据该PDCCH的检测时机和该第一时隙偏移值集合,在该时间单元集合中确定该候选PDSCH接收时机。
图6中所示的S210以及S230的描述可以参考上述对S210以及S230的描述,为了简洁,这里不再赘述。
在S211中,终端设备可以先根据第二时隙偏移值集合和该第一PUCCH资源所在的时隙,确定与该第一PUCCH资源所在的时隙对应的时间单元集合。第二时隙偏移值集合可以理解为上述的K1集合。K1集合可以是预配置的或者预定义的。K1集合包括的时隙偏移值用于指示发送HARQ_ACK的PUCCH资源所在的时隙与该HARQ_ACK对应的PDSCH的时隙偏移值。对于第一PUCCH资源而言,K1集合可以用于指示第一PUCCH资源所在的时隙与该时间单元集合中的时间单元的时隙偏移值。这里的时间单元可以理解为一个时隙,即一个时间单元的长度可以等于一个时隙。或者时间单元也可以理解为一个微时隙或者迷你时隙等,即一个时隙内也可以包括多个时间单元。一个时间单元可以对应一个可能的候选PDSCH接收时机,可能的候选PDSCH接收时机可以是有PDCCH调度的候选PDSCH接收时机,也可以是没有PDCCH调度的PDSCH无效时机。例如,假设K1集合为{1,2,3,4},第一PUCCH资源所在的时隙为时隙n,则与第一PUCCH资源所在的时隙对应的时间单元集合包括时隙n-4、时隙n-3、时隙n-2以及时隙n-1,一个时隙为与一个时间单元。对于时隙n-4、时隙n-3、时隙n-2以及时隙n-1中的任何一个时隙上,可能会有PDCCH调度的PDSCH,也可能没有PDCCH调度的PDSCH。即时隙n-4、时隙n-3、时隙n-2以及时隙n-1中可能包括无效的PDSCH。在确定了该时间单元集合后,也就确定了所有可能的候选PDSCH接收时机。
上述的S220:根据PDCCH的检测时机和第一时隙偏移值集合,确定在第一PUCCH资源上发送的HARQ_ACK对应的候选PDSCH接收时机,可以包括:
S221,根据该PDCCH的检测时机和该第一时隙偏移值集合,在该时间单元集合中确定该候选PDSCH接收时机。
具体而言,在确定了该时间单元集合后,可以根据该PDCCH的检测时机和该第一时隙偏移值集合,在该时间单元集合中剔除不可能有PDCCH调度的PDSCH的时间单元。例如,对于该时间单元集合中的某一个时间单元,根据该第一时隙偏移值集合,从该时间单元所在的时隙向前推算,如果该从该时间单元所在的时隙向前推算得到一个或者多个时隙中存在PDCCH检测时机,则该时间单元内可能会有PDCCH调度的PDSCH,即该时间单元可以视为一个候选PDSCH接收时机。如果对于该时间单元集合中的某一个时间单元,从该时间单元所在的时隙向前推算得到一个或者多个时隙中均不存在PDCCH检测时机,则该时间单元内不可能会有PDCCH调度的PDSCH,则该时间单元可以视为一个PDSCH无效时机,需要将该时间单元排除。在该时间单元集合内将无效的PDSCH无效时机剔除后,剩余的时间单元即为候选PDSCH接收时机。
可选的。除了利用PDCCH的检测时机和第一时隙偏移值集合,在上述的时间单元集合中确定该候选PDSCH接收时机之外,进一步的,如果PDSCH的传输利用的是TDD通 信系统,还需要保证每个候选PDSCH接收时机对应的一个或者多个候选PDSCH时域资源中的至少一个PDSCH时域资源均为下行符号。即还需要保证每个候选PDSCH接收时机对应的PDSCH时域资源中至少有一个PDSCH时域资源可以传输PDSCH。每个PDSCH接收时机可以对应一个或者多个候选PDSCH时域资源。例如,表1所示的例子中,每个PDSCH接收时机可以对应至少4种资源分配索引,每种资源分配索引对应不同的PDSCH时域资源(即SLIV)。也就是说,每个PDSCH接收时机至少对应4中PDSCH时域资源,需要保证PDSCH时域资源中的至少一个PDSCH时域资源包括的符号均为下行符号。
下面将结合图7所示的例子进行说明。图7所示为根据第二时隙偏移值集合、第一时隙偏移值集合以及PDCCH检测时机确定候选PDSCH接收时机的示意图。
图7中,假设PDCCH检测周期为4个时隙,K1集合(第二时隙偏移值集合)为{1,2,3,4,5,6,7,8},K0集合(第一时隙偏移值集合)为{1,2},第一PUCCH资源所在时隙为时隙n+8。则根据第二时隙偏移值集合和该第一PUCCH资源所在的时隙,确定出的与第一PUCCH资源所在的时隙对应的时间单元集合包括:时隙n至时隙n+7这8个时隙,每个时隙可以视为一个时间单元。其中,假设这8个时隙中第一个PDCCH检测时机位于时隙n+1,则第二个PDCCH检测时机位于时隙n+5。首先,在时隙n至时隙n+7这8个时间单元中,对于每个时间单元,根据K0集合,确定出不可能有PDCCH调度的PDSCH所在的时间单元。例如,对于时隙n+7,结合K0集合,确定出的PDCCH检测时机可能存在的时隙为时隙n+5和时隙n+6。如果时隙n+5和时隙n+6中的任何一个时隙上只要存在PDCCH检测时机,则时隙n+7为一个候选PDSCH接收时机。如果时隙n+5和时隙n+6这两个时隙上均不存在PDCCH检测时机,则时隙n+7不是一个候选PDSCH接收时机,时隙n+7可以视为PDSCH无效时机。而第二个PDCCH检测时机位于时隙n+5,证明时隙n+7为一个候选PDSCH接收时机。利用类似的方法,依次确定时隙n至时隙n+6这些时间单元是否为候选PDSCH接收时机。最终确定出的候选PDSCH接收时机包括:时隙n+2、时隙n+3、时隙n+6、时隙n+7这四个时隙为候选PDSCH接收时机。假设每个时隙上只能调度一个PDSCH,且对于每个PDSCH只反馈1比特的ACK/NACK。则根据确定的候选PDSCH接收时机,在该第一PUCCH上发送的HARQ_ACK的半静态HARQ码本只需要4比特,并且这4比特的码本均对应的是可能有PDCCH调度的候选PDSCH接收时机。如果这四个候选PDSCH接收时机其中有某一个或者多个候选PDSCH接收时机实际上并没有接收到PDSCH,则在半静态HARQ码本相应的位置填充一个或者多个NACK比特。对于这四个候选PDSCH接收时机中最终实际上接收到PDSCH的候选PDSCH接收时机,根据调度的PDSCH对应的一个或两个传输块(transmission block,TB),或者根据调度的PDSCH对应的一个或多个码块组(code block group,CBG)的译码对错,生成对应的一个或多个HARQ-ACK比特。
可选的,如果PDSCH的传输利用的是TDD通信系统,则还需进一步的确定时隙n+2、时隙n+3、时隙n+6、时隙n+7这四个候选PDSCH接收时机中,每个候选PDSCH接收时机对应的一个或者多个候选PDSCH时域资源中的至少一个PDSCH时域资源均为下行符号。如果这四个候选PDSCH接收时机有一个或者多个候选PDSCH接收时机不满足上述的条件,则还需要在这四个候选PDSCH接收时机排除不满足上述条件的候选PDSCH接收时机,剩下的满足条件的候选PDSCH接收时机才是最终在第一PUCCH上发送的半静 态HARQ码本对应的候选PDSCH接收时机。
应理解,图7所示的例子中假设每个时隙都只调度一个PDSCH,每个候选PDSCH接收时机都只需要反馈1比特ACK/NACK。如果一个时隙可调度多于一个PDSCH,和/或,一个候选PDSCH接收时机需要反馈多于1比特的n比特ACK/NACK,则对于候选PDSCH接收时机中位于相同时隙或不同时隙的occasion,在相应HARQ-ACK反馈中填充n比特NACK。
本申请提供的半静态码本的生成方法,先根据第二时隙偏移值集合和第一PUCCH资源所在的时隙,确定与该第一PUCCH资源所在的时隙对应的时间单元集合,该时间单元集合包括的每一个时间单元可以视为一个可能的候选PDSCH接收时机,然后根据该PDCCH的检测时机和该第一时隙偏移值集合,在该时间单元集合中排除不可能有PDCCH调度的时间单元(或者可以称为无效时间单元)。或者,在该时间单元集合中排除不可能有PDCCH调度的时间单元以及时间单元包括的时域资源不满足下行传输的时间单元。将不满足条件的时间单元排除,剩余的时间单元即为候选PDSCH接收时机。从而避免了候选PDSCH接收时机包括PDSCH无效时机的现象的出现,根据该候选PDSCH接收时机确定半静态HARQ码本,可以降低半静态HARQ码本中无效的NACK比特,从而提高了半静态HARQ码本的码率,降低了反馈半静态HARQ码本的PUCCH资源的开销,提高半静态HARQ码本的可靠性。
应理解,网络设备也可以根据第二时隙偏移值集合和该第一PUCCH资源所在的时隙,确定与该第一PUCCH资源所在的时隙对应的时间单元集合。然后根据该PDCCH的检测时机和该第一时隙偏移值集合,在该时间单元集合中确定该候选PDSCH接收时机。其具体的描述可以参考上述对于S211和S221的描述,为了简洁,这里不再赘述。
可选的,在本申请一些可能的实现方式中,上述的PDCCH检测时机对应的PDCCH承载DCI,并且,该DCI用于调度单播类型的PDSCH。单播类型的PDSCH可以理解为发送给某一个或者单个终端设备的PDSCH,终端设备在接收到单播类型的PDSCH后,需要对该PDSCH进行NACK/ACK反馈。
可选的,用于调度单播类型的PDSCH的DCI可以对应小区无线临时网络标识(cell radio network temporary identifier,C-RNTI)加扰,即用于调度单播类型的PDSCH的DCI的循环冗余校验码(cyclic redundancy check,CRC)是利用C-RNTI进行加扰的。或者,用于调度单播类型的PDSCH的DCI对应调制编码方案小区无线网络临时标识(modulation coding scheme cell radio network temporary identifier,MCS-C-RNTI)加扰,即用于调度单播类型的PDSCH的DCI的CRC也可以利用MCS-C-RNTI进行加扰。或者,用于调度单播类型的PDSCH的DCI对应配置调度无线网络临时标识加扰(Configured Scheduling radio network temporary identifier,CS-RNTI),即用于调度单播类型的PDSCH的DCI的CRC也可以利用CS-RNTI进行加扰。当终端设备检测到PDCCH携带的DCI是利用上述的几种RNTI进行加扰的时,则终端设备可以确定该PDCCH调度的是单播类型的PDSCH。进一步的,可以根据该PDCCH的检测时机和第一时隙偏移值集合,确定候选PDSCH接收时机,并根据候选PDSCH接收时机生成半静态HARQ码本。避免了半静态HARQ码本对应非单播类型的PDSCH,可以提高半静态HARQ码本的可靠性,降低了反馈半静态HARQ码本的PUCCH资源的开销。
应理解,除了利用上述的几种RNTI加扰用于调度单播类型的PDSCH的DCI之外, 还可以利用其他类型的RNTI的加扰用于调度单播类型的PDSCH的DCI。本申请实施例对于加扰用于调度单播类型的PDSCH的DCI的RNTI不作限制。
可选的,在本申请一些可能的实现方式中,该第二时隙偏移值集合包括的时隙偏移值的个数小于或者等于4。
例如,第二时隙偏移值集合可以是预配置或者预定义的,预配置的或者预定义的第二时隙偏移值集合包括时隙偏移值的个数可以小于一个阈值,例如,该阈值可以为4,或者2,或者为3等。可选的,该阈值小于8。
例如,第二时隙偏移值集合可以为{1},或者为{2},或者为{3},或者为{4},或者为{5},或者为{6},或者为{7},或者为{8}。
又例如,第二时隙偏移值集合可以为{1,2},或者为{3,4},或者为{5,6},或者为{7,8}。
又例如,第二时隙偏移值集合可以为{1,2,3},或者为{3,4,5},或者为{6,7,8}。
又例如,第二时隙偏移值集合可以为{4,8},或者为{3,7},或者为{2,6},或者为{7,8}。
又例如,第二时隙偏移值集合可以为{1,3,5,7},或者为{2,4,6,8}。
可选的,网络设备可以利用PDCCH携带的DCI中某些字段向终端设备指示与PDCCH对应的时隙偏移值是预配置或者预定义的第二时隙偏移值集合包括的哪一个时隙偏移值。例如,假设第二时隙偏移值集合为{4,8},可以利用DCI中的“PDSCH到HARQ反馈时序”这3比特指示字段中的最高有效比特为0时,指示的时隙偏移值为4,最高有效比特为1时,指示的K1为8。该指示字段其余两个比特无指示意义。对于第二时隙偏移值集合包括其他两个时隙偏移值的情况,也可以用类似的方法向终端设备设备指示与PDCCH对应的是哪一个时隙偏移值。
又例如,假设第二时隙偏移值集合为{2,4,6,8},可以利用DCI中的“PDSCH到HARQ反馈时序”这3比特指示字段中的最高两位有效比特为00时,则指示的时隙偏移值为2,最高两位有效比特为01时,则指示的时隙偏移值为4,最高两位有效比特为10时,则指示的时隙偏移值为6,最高两位有效比特为11时,则指示的时隙偏移值为8。该指示字段其余一个比特无指示意义。对于第二时隙偏移值集合包括其他4个时隙偏移值的情况,也可以用类似的方法向终端设备设备指示具体使用的哪一个时隙偏移值。
本申请提供的半静态码本的生成方法,通过限制第二时隙偏移值集合包括的时隙偏移值的个数,在降低半静态HARQ码本中无效的NACK比特的基础上,可以降低半静态HARQ码本的比特数。进一步的提高半静态HARQ码本的可靠性。
应理解,上述对于第二时隙偏移值集合包括的元素的个数以及每个元素的取值只是示例性。不应该对本申请中第二时隙偏移值集合包括的时隙偏移值的个数和时隙偏移值的取值产生限制。例如,第二时隙偏移值集合包括的时隙偏移值的个数还可以为5个等。
还应理解,网络设备除了利用上述的DCI中某些字段向终端设备指示与PDCCH对应的时隙偏移值是预配置或者预定义的第二时隙偏移值集合包括的哪一个时隙偏移值之外,还可以通过其他方式通知终端设备与PDCCH对应的时隙偏移值是预配置或者预定义的第二时隙偏移值集合包括的哪一个时隙偏移值。例如,网络设备可以通过配置信息通知终端设备与PDCCH对应的时隙偏移值等。
在本申请实施例中,预配置可以包括网络设备通过高层信令配置和物理层信令配置。本申请中的高层信令例如可以包括无线资源控制信令(radio resource control,RRC)、媒 体接入控制(medium access control,MAC)控制元素(control element,CE)、无线链路控制(radio link control,RLC)信令等,物理层信令例如可以包括DCI等。
可选的,在本申请的一些可能的实现方式中,该指示信息还用于指示该HARQ_ACK采用半静态HARQ码本。终端设备接收到该指示信息后,便可以确定需要生成半静态HARQ码本。
应理解,上述的指示信息也可以通过高层信令或者物理层信令通知给终端设备。
应理解,在本申请的各个实施例中,第一、第二等只是为了表示多个对象是不同的。例如第一时隙偏移值集合和第二时隙偏移值集合只是为了表示出不同的时隙偏移值集合。而不应该对时隙偏移值集合的本身和包括的时隙偏移值的数量等产生任何影响,上述的第一、第二等不应该对本申请的实施例造成任何限制。
还应理解,本申请实施例中的方式、情况、类别以及实施例的划分仅是为了描述的方便,不应构成特别的限定,各种方式、类别、情况以及实施例中的特征在不矛盾的情况下可以相结合。
还应理解,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
还应理解,上述只是为了帮助本领域技术人员更好地理解本申请实施例,而非要限制本申请实施例的范围。本领域技术人员根据所给出的上述示例,显然可以进行各种等价的修改或变化.例如,上述方法200中某些步骤可以是不必须的,或者可以新加入某些步骤等。或者上述任意两种或者任意多种实施例的组合。这样的修改、变化或者组合后的方案也落入本申请实施例的范围内。
还应理解,上文对本申请实施例的描述着重于强调各个实施例之间的不同之处,未提到的相同或相似之处可以互相参考,为了简洁,这里不再赘述。
还应理解,本申请实施例中,“预定义”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。
以上结合图1至图7对本申请实施例的半静态码本生成的方法做了详细说明。以下,结合图8至图13对本申请实施例通信装置进行详细说明。
图8示出了本申请实施例的通信装置300的示意性框图,该装置300可以对应上述方法200中描述的终端设备,也可以是应用于终端设备的芯片或组件,并且,该装置300中各模块或单元分别用于执行上述方法200中终端方法设备所执行的各动作或处理过程,如图8所示,该通信装置300可以包括:通信单元310和处理单元320。
通信单元310,用于接收来自于网络设备的指示信息,该指示信息用于动态改变物理下行控制信道PDCCH的检测时机;
处理单元320,用于根据该PDCCH的检测时机和第一时隙偏移值集合,确定在第一物理上行控制信道PUCCH资源上发送的混合自动重传请求确认HARQ_ACK对应的候选物理下行共享信道PDSCH接收时机,该PDCCH用于调度该PDSCH的传输,该第一时隙偏移值集合包括的时隙偏移值用于指示PDCCH与PDSCH之间的时隙偏移值;
该处理单元320还用于:根据该候选PDSCH接收时机,确定在该第一PUCCH上发送的该HARQ_ACK的半静态HARQ码本。
本申请提供的通信装置,该通信装置确定的候选PDSCH接收时机是根据动态变化的PDCCH检测时机和第一时隙偏移值集合确定的。候选PDSCH接收时机只包括可能出现PDCCH检测时机调度的PDSCH接收时机,避免了候选PDSCH接收时机包括PDSCH无效时机。根据该候选PDSCH接收时机确定半静态HARQ码本,可以降低半静态HARQ码本中无效的NACK比特,从而提高了半静态HARQ码本的码率,降低了反馈半静态HARQ码本的PUCCH资源的开销,提高半静态HARQ码本的可靠性,提高通信效率。
可选的,在本申请的一些可能的实现方式中,该指示信息包括:
激活或者去激活该PDCCH对应的搜索空间集合、该PDCCH的检测周期或者该PDCCH检测跳过信息中的至少一个,其中,该PDCCH对应的搜索空间集合包括该PDCCH的检测周期;该处理单元320还用于:根据该指示信息,确定该PDCCH的检测时机。
可选的,在本申请的一些可能的实现方式中,该处理单元320具体用于:根据第二时隙偏移值集合和该第一PUCCH资源所在的时隙,确定与该第一PUCCH资源所在的时隙对应的时间单元集合,该第二时隙偏移值集合包括的时隙偏移值用于指示该第一PUCCH资源所在的时隙与该时间单元集合中的时间单元的时隙偏移值;根据该PDCCH的检测时机和该第一时隙偏移值集合,在该时间单元集合中确定该候选PDSCH接收时机。
可选的,在本申请的一些可能的实现方式中,该PDCCH承载下行控制信息DCI,该DCI用于调度单播类型的PDSCH。
可选的,在本申请的一些可能的实现方式中,该DCI对应小区无线临时网络标识C-RNTI加扰,或者,对应调制编码方案小区无线网络临时标识MCS-C-RNTI,或者对应配置调度无线网络临时标识CS-RNTI加扰。
可选的,在本申请的一些可能的实现方式中,该第二时隙偏移值集合包括的时隙偏移值的个数小于或者等于3。
可选的,在本申请的一些可能的实现方式中,该候选PDSCH接收时机对应的一个或者多个候选PDSCH时域资源中的至少一个候选PDSCH时域资源均为下行符号。
可选的,在本申请的一些可能的实现方式中,该指示信息还用于指示该HARQ_ACK采用半静态HARQ码本。
应理解,装置300中各单元执行上述相应步骤的具体过程请参照前文中结合图5和图6所示的实施例以及方法200中的相关实施例的终端设备相关的描述,为了简洁,这里不加赘述。
可选的,通信单元310可以包括接收单元(模块)和发送单元(模块),用于执行前述方法200的各个实施例以及图5和图6所示的实施例中终端设备接收信息和发送信息的步骤。可选的,通信装置300还可以包括存储单元330,用于存储处理单元320和通信单元310执行的指令。通信单元310、处理单元320和存储单元330通信连接,存储单元330存储指令,处理单元320用于执行存储单元330存储的指令,通信单元310用于在处理单元320的驱动下执行具体的信号收发。
应理解,通信单元310可以是收发器、输入/输出接口或接口电路。存储单元330可以是存储器。处理单元320可由处理器实现。如图9所示,通信装置400可以包括处理器 410、存储器420和收发器430。
图8所示的通信装置300或图9所示的通信装置400能够实现前述方法200的各个实施例以及图5和图6所示的实施例中终端设备执行的步骤。类似的描述可以参考前述对应的方法中的描述。为避免重复,这里不再赘述。
图8所示的通信装置300或图9所示的通信装置400可以为终端设备。
图10示出了本申请实施例的通信装置500的示意性框图,该装置500可以对应上述方法200中描述的网络设备,也可以是应用于网络设备的芯片或组件,并且,该装置500中各模块或单元分别用于执行上述方法200中网络设备所执行的各动作或处理过程,如图10所示,该通信装置500可以包括:
通信单元510,同于向终端设备发送指示信息,该指示信息用于动态改变物理下行控制信道PDCCH的检测时机。
处理单元520,用于根据该PDCCH的检测时机和第一时隙偏移值集合,确定在第一物理上行控制信道PUCCH资源上接收的混合自动重传请求确认HARQ_ACK对应的候选物理下行共享信道PDSCH接收时机,该PDCCH用于调度该PDSCH的传输,该第一时隙偏移值集合包括的时隙偏移值用于指示PDCCH与PDSCH之间的时隙偏移值.
该处理单元520还用于:根据该候选PDSCH接收时机,确定该第一PUCCH资源上接收的该HARQ_ACK的半静态HARQ码本。
本申请提供的通信装置,该通信装置确定的候选PDSCH接收时机是根据动态变化的PDCCH检测时机和第一时隙偏移值集合确定的。候选PDSCH接收时机只包括可能出现PDCCH检测时机调度的PDSCH接收时机,避免了候选PDSCH接收时机包括PDSCH无效时机。根据该候选PDSCH接收时机确定半静态HARQ码本,可以降低半静态HARQ码本中无效的NACK比特,从而提高了半静态HARQ码本的码率,提高半静态HARQ码本的可靠性。
可选的,在本申请的一些可能的实现方式中,该指示信息包括:
激活或者去激活该PDCCH对应的搜索空间集合、该PDCCH的检测周期或者该PDCCH检测跳过信息中的至少一个,其中,该PDCCH对应的搜索空间集合包括该PDCCH的检测周期。
可选的,在本申请的一些可能的实现方式中,该处理单元520具体用于:
根据第二时隙偏移值集合和该第一PUCCH资源所在的时隙,确定与该第一PUCCH资源所在的时隙对应的时间单元集合,该第二时隙偏移值集合包括的时隙偏移值用于指示该第一PUCCH资源所在的时隙与该时间单元集合中的时间单元的时隙偏移值;根据该PDCCH的检测时机和该第一时隙偏移值集合,在时间单元集合中确定该候选PDSCH接收时机。
可选的,在本申请的一些可能的实现方式中,该PDCCH承载下行控制信息DCI,该DCI用于调度单播类型的PDSCH。
可选的,在本申请的一些可能的实现方式中,该DCI对应小区无线临时网络标识C-RNTI加扰,或者,对应调制编码方案小区无线网络临时标识MCS-C-RNTI,或者对应配置调度无线网络临时标识CS-RNTI加扰。
可选的,在本申请的一些可能的实现方式中,该第二时隙偏移值集合包括的时隙偏移 值的个数小于或者等于4。
可选的,在本申请的一些可能的实现方式中,该候选PDSCH接收时机对应的一个或者多个候选PDSCH时域资源中的至少一个候选PDSCH时域资源均为下行符号。
可选的,在本申请的一些可能的实现方式中,该指示信息还用于指示该HARQ_ACK采用半静态HARQ码本。
应理解,装置500中各单元执行上述相应步骤的具体过程请参照前文中结合图5和图5所示的实施例以及方法200中的相关实施例的网络设备相关的描述,为了简洁,这里不加赘述。
可选的,通信单元510可以包括接收单元(模块)和发送单元(模块),用于执行前述方法200的各个实施例以及图5和图6所示的实施例中网络设备接收信息和发送信息的步骤。可选的,通信装置500还可以包括存储单元530,用于存储处理单元520和通信单元510执行的指令。通信单元510、处理单元520和存储单元530通信连接,存储单元530存储指令,处理单元520用于执行存储单元530存储的指令,通信单元510用于在处理单元520的驱动下执行具体的信号收发。
应理解,通信单元510可以是收发器、输入/输出接口或接口电路。存储单元530可以是存储器。处理单元520可由处理器实现。如图11所示,通信装置600可以包括处理器510、存储器520和收发器530。
图10所示的通信装置500或图11所示的通信装置600能够实现前述方法200的各个实施例以及图5和图6所示的实施例中网络设备执行的步骤。类似的描述可以参考前述对应的方法中的描述。为避免重复,这里不再赘述。
图10所示的通信装置500或图11所示的通信装置600可以为网络设备。
还应理解,以上装置中单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且装置中的单元可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分单元以软件通过处理元件调用的形式实现,部分单元以硬件的形式实现。例如,各个单元可以为单独设立的处理元件,也可以集成在装置的某一个芯片中实现,此外,也可以以程序的形式存储于存储器中,由装置的某一个处理元件调用并执行该单元的功能。这里该处理元件又可以称为处理器,可以是一种具有信号处理能力的集成电路。在实现过程中,上述方法的各步骤或以上各个单元可以通过处理器元件中的硬件的集成逻辑电路实现或者以软件通过处理元件调用的形式实现。
在一个例子中,以上任一装置中的单元可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个专用集成电路(application specific integrated circuit,ASIC),或,一个或多个数字信号处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA),或这些集成电路形式中至少两种的组合。再如,当装置中的单元可以通过处理元件调度程序的形式实现时,该处理元件可以是通用处理器,例如中央处理器(central processing unit,CPU)或其它可以调用程序的处理器。再如,这些单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
图12示出了本申请实施例提供的一种终端设备的结构示意图。其可以为以上实施例 中的终端设备,用于实现以上实施例中终端设备的操作。如图12所示,该终端设备包括:天线710、射频装置720、基带装置730。天线710与射频装置720连接。在下行方向上,射频装置720通过天线710接收网络设备发送的信息,将网络设备发送的信息发送给基带装置730进行处理。在上行方向上,基带装置730对终端设备的信息进行处理,并发送给射频装置720,射频装置720对终端设备的信息进行处理后经过天线710发送给网络设备。
基带装置730可以包括调制解调子系统,用于实现对数据各通信协议层的处理;还可以包括中央处理子系统,用于实现对终端操作系统以及应用层的处理;此外,还可以包括其它子系统,例如多媒体子系统,周边子系统等,其中多媒体子系统用于实现对终端设备相机,屏幕显示等的控制,周边子系统用于实现与其它设备的连接。调制解调子系统可以为一个独立的芯片。可选的,以上用于终端的装置可以位于该调制解调子系统。
调制解调子系统可以包括一个或多个处理元件731,例如,包括一个主控CPU和其它集成电路。此外,该调制解调子系统还可以包括存储元件732和接口电路733。存储元件732用于存储数据和程序,但用于执行以上方法中终端设备所执行的方法的程序可能不存储于该存储元件732中,而是存储于调制解调子系统之外的存储器中。接口电路733用于与其它子系统通信。以上用于终端设备的装置可以位于调制解调子系统,该调制解调子系统可以通过芯片实现,该芯片包括至少一个处理元件和接口电路,其中处理元件用于执行以上终端设备执行的任一种方法的各个步骤,接口电路用于与其它装置通信。在一种实现中,终端设备实现以上方法中各个步骤的单元可以通过处理元件调度程序的形式实现,例如用于终端设备的装置包括处理元件和存储元件,处理元件调用存储元件存储的程序,以执行以上方法实施例中终端执行的方法。存储元件可以为处理元件处于同一芯片上的存储元件,即片内存储元件。
在另一种实现中,用于执行以上方法中终端设备所执行的方法的程序可以在与处理元件处于不同芯片上的存储元件,即片外存储元件。此时,处理元件从片外存储元件调用或加载程序于片内存储元件上,以调用并执行以上方法实施例中终端执行的方法。
在又一种实现中,终端设备实现以上方法中各个步骤的单元可以是被配置成一个或多个处理元件,这些处理元件设置于调制解调子系统上,这里的处理元件可以为集成电路,例如:一个或多个ASIC,或,一个或多个DSP,或,一个或者多个FPGA,或者这些类集成电路的组合。这些集成电路可以集成在一起,构成芯片。
终端设备实现以上方法中各个步骤的单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现,该SOC芯片,用于实现以上方法。
图13是本申请实施例提供的一种网络设备的结构示意图。用于实现以上实施例中网络设备的操作。如图13所示,该网络设备包括:天线801、射频装置802、基带装置803。天线801与射频装置802连接。在上行方向上,射频装置802通过天线801接收终端发送的信息,将终端设备发送的信息发送给基带装置803进行处理。在下行方向上,基带装置803对终端的信息进行处理,并发送给射频装置802,射频装置802对终端设备的信息进行处理后经过天线801发送给终端。
基带装置803可以包括一个或多个处理元件8031,例如,包括一个主控CPU和其它集成电路。此外,该基带装置803还可以包括存储元件8032和接口8033,存储元件8032用于存储程序和数据;接口8033用于与射频装置802交互信息,该接口例如为通用公共 无线接口(common public radio interface,CPRI)。以上用于网络设备的装置可以位于基带装置803,例如,以上用于网络设备的装置可以为基带装置803上的芯片,该芯片包括至少一个处理元件和接口电路,其中处理元件用于执行以上网络设备执行的任一种方法的各个步骤,接口电路用于与其它装置通信。在一种实现中,网络设备实现以上方法中各个步骤的单元可以通过处理元件调度程序的形式实现,例如用于网络设备的装置包括处理元件和存储元件,处理元件调用存储元件存储的程序,以执行以上方法实施例中网络设备执行的方法。存储元件可以为处理元件处于同一芯片上的存储元件,即片内存储元件,也可以为与处理元件处于不同芯片上的存储元件,即片外存储元件。
在另一种实现中,网络设备实现以上方法中各个步骤的单元可以是被配置成一个或多个处理元件,这些处理元件设置于基带装置上,这里的处理元件可以为集成电路,例如:一个或多个ASIC,或,一个或多个DSP,或,一个或者多个FPGA,或者这些类集成电路的组合。这些集成电路可以集成在一起,构成芯片。
网络设备实现以上方法中各个步骤的单元可以集成在一起,以片上系统的形式实现,例如,基带装置包括该SOC芯片,用于实现以上方法。
上述各个装置实施例中的终端设备与网络设备可以与方法实施例中的终端设备或者网络设备完全对应,由相应的模块或者单元执行相应的步骤,例如,当该装置以芯片的方式实现时,该接收单元可以是该芯片用于从其他芯片或者装置接收信号的接口电路。以上用于发送的单元是一种该装置的接口电路,用于向其他装置发送信号,例如,当该装置以芯片的方式实现时,该发送单元是该芯片用于向其他芯片或者装置发送信号的接口电路。
本申请实施例还提供了一种通信系统,该通信系统包括:上述终端设备和上述网络设备。
本申请实施例还提供了一种计算机可读介质,用于存储计算机程序代码,该计算机程序包括用于执行上述方法200中本申请实施例的半静态码本生成的方法的指令。该可读介质可以是只读存储器(read-only memory,ROM)或随机存取存储器(random access memory,RAM),本申请实施例对此不做限制。
本申请还提供了一种计算机程序产品,该计算机程序产品包括指令,当该指令被执行时,以使得该终端设备和该网络设备执行对应于上述方法的终端设备和网络设备的操作。
本申请实施例还提供了一种系统芯片,该系统芯片包括:处理单元和通信单元,该处理单元,例如可以是处理器,该通信单元例如可以是输入/输出接口、管脚或电路等。该处理单元可执行计算机指令,以使该通信装置内的芯片执行上述本申请实施例提供的任一种半静态码本生成的方法。
可选地,该计算机指令被存储在存储单元中。
可选地,该存储单元为该芯片内的存储单元,如寄存器、缓存等,该存储单元还可以是该终端内的位于该芯片外部的存储单元,如ROM或可存储静态信息和指令的其他类型的静态存储设备,RAM等。其中,上述任一处提到的处理器,可以是一个CPU,微处理器,ASIC,或一个或多个用于控制上述的反馈信息的传输方法的程序执行的集成电路。该处理单元和该存储单元可以解耦,分别设置在不同的物理设备上,通过有线或者无线的方式连接来实现该处理单元和该存储单元的各自的功能,以支持该系统芯片实现上述实施例中的各种功能。或者,该处理单元和该存储器也可以耦合在同一个设备上。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是ROM、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是RAM,其用作外部高速缓存。RAM有多种不同的类型,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请中出现的术语“上行”和“下行”,用于在特定场景描述数据/信息传输的方向,比如,“上行”方向一般是指数据/信息从终端向网络侧传输的方向,或者分布式单元向集中式单元传输的方向,“下行”方向一般是指数据/信息从网络侧向终端传输的方向,或者集中式单元向分布式单元传输的方向,可以理解,“上行”和“下行”仅用于描述数据/信息的传输方向,该数据/信息传输的具体起止的设备都不作限定。
在本申请中可能出现的对各种消息/信息/设备/网元/系统/装置/动作/操作/流程/概念等各类客体进行了赋名,可以理解的是,这些具体的名称并不构成对相关客体的限定,所赋名称可随着场景,语境或者使用习惯等因素而变更,对本申请中技术术语的技术含义的理解,应主要从其在技术方案中所体现/执行的功能和技术效果来确定。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
本申请的实施例中的方法可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行该计算机程序或指令时,全部或部分地执行本申请实施例该的流程或功能。该计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机程序或指令可以存储在计算机可读存储介质中,或者通过该计算机可读存储介质进行传输。该计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器等数据存储设备。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,该单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显 示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (35)

  1. 一种半静态码本生成的方法,其特征在于,包括:
    接收来自于网络设备的指示信息,所述指示信息用于动态改变物理下行控制信道PDCCH的检测时机;
    根据所述PDCCH的检测时机和第一时隙偏移值集合,确定在第一物理上行控制信道PUCCH资源上发送的混合自动重传请求确认HARQ_ACK对应的候选物理下行共享信道PDSCH接收时机,所述PDCCH用于调度所述PDSCH的传输,所述第一时隙偏移值集合包括的时隙偏移值用于指示PDCCH与PDSCH之间的时隙偏移值;
    根据所述候选PDSCH接收时机,确定在所述第一PUCCH上发送的所述HARQ_ACK的半静态HARQ码本。
  2. 根据权利要求1所述的方法,其特征在于,所述指示信息包括:
    激活或者去激活所述PDCCH对应的搜索空间集合、所述PDCCH的检测周期或者所述PDCCH检测跳过信息中的至少一个,其中,所述PDCCH对应的搜索空间集合包括所述PDCCH的检测周期;
    所述方法还包括:
    根据所述指示信息,确定所述PDCCH的检测时机。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    根据第二时隙偏移值集合和所述第一PUCCH资源所在的时隙,确定与所述第一PUCCH资源所在的时隙对应的时间单元集合,所述第二时隙偏移值集合包括的时隙偏移值用于指示所述第一PUCCH资源所在的时隙与所述时间单元集合中的时间单元的时隙偏移值;
    所述根据所述PDCCH的检测时机和第一时隙偏移值集合,确定在第一PUCCH资源上发送的HARQ_ACK对应的候选PDSCH接收时机,包括:
    根据所述PDCCH的检测时机和所述第一时隙偏移值集合,在所述时间单元集合中确定所述候选PDSCH接收时机。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述PDCCH承载下行控制信息DCI,所述DCI用于调度单播类型的PDSCH。
  5. 根据权利要求4所述的方法,其特征在于,所述DCI对应小区无线临时网络标识C-RNTI加扰,或者,对应调制编码方案小区无线网络临时标识MCS-C-RNTI,或者对应配置调度无线网络临时标识CS-RNTI加扰。
  6. 根据权利要求2所述的方法,其特征在于,所述第二时隙偏移值集合包括的时隙偏移值的个数小于或者等于4。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述候选PDSCH接收时机对应的一个或者多个候选PDSCH时域资源中的至少一个候选PDSCH时域资源均为下行符号。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述指示信息还用于指示所述HARQ_ACK采用半静态HARQ码本。
  9. 一种半静态码本生成的方法,其特征在于,包括:
    向终端设备发送指示信息,所述指示信息用于动态改变物理下行控制信道PDCCH的检测时机;
    根据所述PDCCH的检测时机和第一时隙偏移值集合,确定在第一物理上行控制信道PUCCH资源上接收的混合自动重传请求确认HARQ_ACK对应的候选物理下行共享信道PDSCH接收时机,所述PDCCH用于调度所述PDSCH的传输,所述第一时隙偏移值集合包括的时隙偏移值用于指示PDCCH与PDSCH之间的时隙偏移值;
    根据所述候选PDSCH接收时机,确定所述第一PUCCH资源上接收的所述HARQ_ACK的半静态HARQ码本。
  10. 根据权利要求9所述的方法,其特征在于,所述指示信息包括:
    激活或者去激活所述PDCCH对应的搜索空间集合、所述PDCCH的检测周期或者所述PDCCH检测跳过信息中的至少一个,其中,所述PDCCH对应的搜索空间集合包括所述PDCCH的检测周期。
  11. 根据权利要求9或10所述的方法,其特征在于,所述方法还包括:
    根据第二时隙偏移值集合和所述第一PUCCH资源所在的时隙,确定与所述第一PUCCH资源所在的时隙对应的时间单元集合,所述第二时隙偏移值集合包括的时隙偏移值用于指示所述第一PUCCH资源所在的时隙与所述时间单元集合中的时间单元的时隙偏移值;
    所述根据所述PDCCH的检测时机和第一时隙偏移值集合,确定在第一PUCCH资源上接收的HARQ_ACK对应的候选PDSCH接收时机,包括:
    根据所述PDCCH的检测时机和所述第一时隙偏移值集合,在时间单元集合中确定所述候选PDSCH接收时机。
  12. 根据权利要求9至11中任一项所述的方法,其特征在于,所述PDCCH承载下行控制信息DCI,所述DCI用于调度单播类型的PDSCH。
  13. 根据权利要求12所述的方法,其特征在于,所述DCI对应小区无线临时网络标识C-RNTI加扰,或者,对应调制编码方案小区无线网络临时标识MCS-C-RNTI,或者对应配置调度无线网络临时标识CS-RNTI加扰。
  14. 根据权利要求10所述的方法,其特征在于,所述第二时隙偏移值集合包括的时隙偏移值的个数小于或者等于4。
  15. 根据权利要求9至14中任一项所述的方法,其特征在于,所述候选PDSCH接收时机对应的一个或者多个候选PDSCH时域资源中的至少一个候选PDSCH时域资源均为下行符号。
  16. 根据权利要求9至15中任一项所述的方法,其特征在于,所述指示信息还用于指示所述HARQ_ACK采用半静态HARQ码本。
  17. 一种通信装置,其特征在于,包括:
    通信单元,用于接收来自于网络设备的指示信息,所述指示信息用于动态改变物理下行控制信道PDCCH的检测时机;
    处理单元,用于根据所述PDCCH的检测时机和第一时隙偏移值集合,确定在第一物理上行控制信道PUCCH资源上发送的混合自动重传请求确认HARQ_ACK对应的候选物 理下行共享信道PDSCH接收时机,所述PDCCH用于调度所述PDSCH的传输,所述第一时隙偏移值集合包括的时隙偏移值用于指示PDCCH与PDSCH之间的时隙偏移值;
    所述处理单元还用于:根据所述候选PDSCH接收时机,确定在所述第一PUCCH上发送的所述HARQ_ACK的半静态HARQ码本。
  18. 根据权利要求17所述的装置,其特征在于,所述指示信息包括:
    激活或者去激活所述PDCCH对应的搜索空间集合、所述PDCCH的检测周期或者所述PDCCH检测跳过信息中的至少一个,其中,所述PDCCH对应的搜索空间集合包括所述PDCCH的检测周期;
    所述处理单元还用于:根据所述指示信息,确定所述PDCCH的检测时机。
  19. 根据权利要求17或18所述的装置,其特征在于,所述处理单元具体用于:
    根据第二时隙偏移值集合和所述第一PUCCH资源所在的时隙,确定与所述第一PUCCH资源所在的时隙对应的时间单元集合,所述第二时隙偏移值集合包括的时隙偏移值用于指示所述第一PUCCH资源所在的时隙与所述时间单元集合中的时间单元的时隙偏移值;
    根据所述PDCCH的检测时机和所述第一时隙偏移值集合,在所述时间单元集合中确定所述候选PDSCH接收时机。
  20. 根据权利要求17至19中任一项所述的装置,其特征在于,所述PDCCH承载下行控制信息DCI,所述DCI用于调度单播类型的PDSCH。
  21. 根据权利要求20所述的装置,其特征在于,所述DCI对应小区无线临时网络标识C-RNTI加扰,或者,对应调制编码方案小区无线网络临时标识MCS-C-RNTI,或者对应配置调度无线网络临时标识CS-RNTI加扰。
  22. 根据权利要求19所述的装置,其特征在于,所述第二时隙偏移值集合包括的时隙偏移值的个数小于或者等于4。
  23. 根据权利要求17至22中任一项所述的装置,其特征在于,所述候选PDSCH接收时机对应的一个或者多个候选PDSCH时域资源中的至少一个候选PDSCH时域资源均为下行符号。
  24. 根据权利要求要求17至23中任一项所述的装置,其特征在于,所述指示信息还用于指示所述HARQ_ACK采用半静态HARQ码本。
  25. 一种通信装置,其特征在于,包括:
    通信单元,同于向终端设备发送指示信息,所述指示信息用于动态改变物理下行控制信道PDCCH的检测时机;
    处理单元,用于根据所述PDCCH的检测时机和第一时隙偏移值集合,确定在第一物理上行控制信道PUCCH资源上接收的混合自动重传请求确认HARQ_ACK对应的候选物理下行共享信道PDSCH接收时机,所述PDCCH用于调度所述PDSCH的传输,所述第一时隙偏移值集合包括的时隙偏移值用于指示PDCCH与PDSCH之间的时隙偏移值;
    所述处理单元还用于:根据所述候选PDSCH接收时机,确定所述第一PUCCH资源上接收的所述HARQ_ACK的半静态HARQ码本。
  26. 根据权利要求25所述的装置,其特征在于,所述指示信息包括:
    激活或者去激活所述PDCCH对应的搜索空间集合、所述PDCCH的检测周期或者所 述PDCCH检测跳过信息中的至少一个,其中,所述PDCCH对应的搜索空间集合包括所述PDCCH的检测周期。
  27. 根据权利要求25或26所述的装置,其特征在于,所述处理单元具体用于:
    根据第二时隙偏移值集合和所述第一PUCCH资源所在的时隙,确定与所述第一PUCCH资源所在的时隙对应的时间单元集合,所述第二时隙偏移值集合包括的时隙偏移值用于指示所述第一PUCCH资源所在的时隙与所述时间单元集合中的时间单元的时隙偏移值;
    根据所述PDCCH的检测时机和所述第一时隙偏移值集合,在时间单元集合中确定所述候选PDSCH接收时机。
  28. 根据权利要求25至27中任一项所述的装置,其特征在于,所述PDCCH承载下行控制信息DCI,所述DCI用于调度单播类型的PDSCH。
  29. 根据权利要求28所述的装置,其特征在于,所述DCI对应小区无线临时网络标识C-RNTI加扰,或者,对应调制编码方案小区无线网络临时标识MCS-C-RNTI,或者对应配置调度无线网络临时标识CS-RNTI加扰。
  30. 根据权利要求27所述的装置,其特征在于,所述第二时隙偏移值集合包括的时隙偏移值的个数小于或者等于4。
  31. 根据权利要求25至30中任一项所述的装置,其特征在于,所述候选PDSCH接收时机对应的一个或者多个候选PDSCH时域资源中的至少一个候选PDSCH时域资源均为下行符号。
  32. 根据权利要求要求25至31中任一项所述的装置,其特征在于,所述指示信息还用于指示所述HARQ_ACK采用半静态HARQ码本。
  33. 一种通信装置,其特征在于,包括至少一个处理器和接口电路,所述至少一个处理器用于执行如权利要求1至8或9至16中任一项所述的方法。
  34. 一种存储介质,其特征在于,所述存储介质中存储有程序,当所述程序被处理器运行时,如权利要求1至16中任一项所述的方法被执行。
  35. 一种芯片系统,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片系统的通信设备执行如权利要求1至16中任意一项所述的方法。
PCT/CN2020/087821 2019-04-30 2020-04-29 半静态码本生成的方法和通信装置 WO2020221303A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910363775.8A CN111865506B (zh) 2019-04-30 2019-04-30 半静态码本生成的方法和通信装置
CN201910363775.8 2019-04-30

Publications (1)

Publication Number Publication Date
WO2020221303A1 true WO2020221303A1 (zh) 2020-11-05

Family

ID=72965078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/087821 WO2020221303A1 (zh) 2019-04-30 2020-04-29 半静态码本生成的方法和通信装置

Country Status (2)

Country Link
CN (1) CN111865506B (zh)
WO (1) WO2020221303A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022222144A1 (zh) * 2021-04-23 2022-10-27 北京小米移动软件有限公司 混合自动重传请求harq的传输方法、装置及通信设备
WO2023010437A1 (en) * 2021-08-05 2023-02-09 Zte Corporation Dynamic resource scheduling in wireless communications

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4278494A1 (en) * 2021-01-17 2023-11-22 Nokia Technologies Oy Semi-static harq-ack codebook construction for frequency-multiplexed downlink data transmission
CN116584065A (zh) * 2021-03-03 2023-08-11 Oppo广东移动通信有限公司 反馈码本的确定方法及装置、设备和存储介质
CN115085870A (zh) * 2021-03-10 2022-09-20 维沃移动通信有限公司 半静态harq-ack码本的生成方法及终端
CN115118403A (zh) * 2021-03-19 2022-09-27 北京紫光展锐通信技术有限公司 一种信息传输方法及通信装置
CN115134759A (zh) * 2021-03-26 2022-09-30 中国移动通信有限公司研究院 半静态harq码本的构造方法、装置、设备及可读存储介质
CN115173906B (zh) * 2021-04-02 2023-09-26 维沃移动通信有限公司 混合自动重传请求应答harq-ack码本构造方法、传输方法及设备
WO2022205482A1 (zh) * 2021-04-02 2022-10-06 Oppo广东移动通信有限公司 无线通信方法和终端设备
CN115173907B (zh) * 2021-04-06 2023-09-26 维沃移动通信有限公司 码本确定、接收方法、装置、终端及网络侧设备
EP4305788A4 (en) * 2021-04-15 2024-03-27 Zte Corp METHOD AND DEVICE FOR CONSTRUCTING A TYPE 1 HARQ-ACK CODEBOOK
CN117322083A (zh) * 2021-05-10 2023-12-29 苹果公司 用于半持久调度(sps)混合自动重传请求(harq)跳过的上行链路控制信息(uci)复用
CN115333670B (zh) * 2021-05-11 2024-03-26 维沃移动通信有限公司 动态harq-ack码本处理方法、装置、设备及可读存储介质
EP4338435A1 (en) * 2021-05-11 2024-03-20 Lenovo (Beijing) Limited Method and apparatus for type-1 harq-ack codebook determination
WO2022261942A1 (en) * 2021-06-18 2022-12-22 Nec Corporation Method, device and computer storage medium of communication
WO2023019439A1 (en) * 2021-08-17 2023-02-23 Nec Corporation Methods, devices, and computer readable medium for communication
WO2023044857A1 (zh) * 2021-09-26 2023-03-30 北京小米移动软件有限公司 Harq码本处理方法及装置、通信设备及存储介质
WO2023044923A1 (zh) * 2021-09-27 2023-03-30 北京小米移动软件有限公司 一种harq-ack码本配置和解码方法、装置、设备及存储介质
WO2023050081A1 (zh) * 2021-09-28 2023-04-06 Oppo广东移动通信有限公司 无线通信方法、终端设备和网络设备
WO2023092564A1 (zh) * 2021-11-29 2023-06-01 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备
WO2023115349A1 (en) * 2021-12-21 2023-06-29 Nec Corporation Methods, devices, and computer readable medium for communication
WO2023130461A1 (en) * 2022-01-10 2023-07-13 Lenovo (Beijing) Limited Method and apparatus for semi-static harq-ack codebook determination for multicast
WO2023151048A1 (zh) * 2022-02-11 2023-08-17 富士通株式会社 信息反馈方法以及装置
CN117176306A (zh) * 2022-05-23 2023-12-05 中国移动通信有限公司研究院 候选pdsch接收时机确定方法、装置及相关设备
CN117769029A (zh) * 2022-06-23 2024-03-26 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015062078A1 (zh) * 2013-11-01 2015-05-07 华为技术有限公司 上行控制信息的传输方法、基站和用户设备
US20170366311A1 (en) * 2016-06-15 2017-12-21 Convida Wireless, Llc Upload Control Signaling For New Radio
CN109565366A (zh) * 2016-08-09 2019-04-02 日本电气株式会社 通信系统
CN109639398A (zh) * 2017-10-09 2019-04-16 华为技术有限公司 Harq-ack反馈码本的发送方法、装置及设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015062078A1 (zh) * 2013-11-01 2015-05-07 华为技术有限公司 上行控制信息的传输方法、基站和用户设备
US20170366311A1 (en) * 2016-06-15 2017-12-21 Convida Wireless, Llc Upload Control Signaling For New Radio
CN109565366A (zh) * 2016-08-09 2019-04-02 日本电气株式会社 通信系统
CN109639398A (zh) * 2017-10-09 2019-04-16 华为技术有限公司 Harq-ack反馈码本的发送方法、装置及设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NOKIA; NOKIA SHANGHAI BELL: "Remaining aspects of NR CA", 3GPP DRAFT; R1-1800745, 16 January 2018 (2018-01-16), Vancouver, Canada, pages 1 - 6, XP051384483 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022222144A1 (zh) * 2021-04-23 2022-10-27 北京小米移动软件有限公司 混合自动重传请求harq的传输方法、装置及通信设备
WO2023010437A1 (en) * 2021-08-05 2023-02-09 Zte Corporation Dynamic resource scheduling in wireless communications

Also Published As

Publication number Publication date
CN111865506B (zh) 2023-12-12
CN111865506A (zh) 2020-10-30

Similar Documents

Publication Publication Date Title
WO2020221303A1 (zh) 半静态码本生成的方法和通信装置
CN110830151B (zh) 反馈信息的传输方法和装置
WO2020200162A1 (zh) 确定反馈信息的方法和通信装置
EP3627753B1 (en) Method for transmitting uplink control information, terminal device, and network device
US11533150B2 (en) Feedback information transmission method and communication device
WO2020143750A1 (zh) 侧行参考信号的传输方法和通信装置
WO2020200078A1 (zh) 传输上行信息的方法和通信装置
JP6908135B2 (ja) フィードバック情報の送受信方法、装置及び通信システム
WO2019233339A1 (zh) 传输信息的方法和通信设备
WO2020029879A1 (zh) Harq-ack发送方法、接收方法、终端及基站
US20220061076A1 (en) Method for transmitting hybrid automatic repeat request harq feedback information and communications apparatus
US20230198683A1 (en) Information transmission method and apparatus
WO2021023011A1 (zh) Harq-ack反馈方法、终端及网络侧设备
US20220174720A1 (en) Sidelink Feedback Information Transmission Method and Communications Apparatus
US11632763B2 (en) Retuning method and apparatus
CN113796136A (zh) 用户装置及通信方法
WO2021164482A1 (zh) 信息接收方法、信息发送方法及设备
US11497024B2 (en) Transmission method and device
WO2020220253A1 (zh) 一种信息传输方法和通信设备
EP4152852A1 (en) Method for determining feedback information transmission location and device
WO2020143813A1 (zh) 传输信息的方法和装置
WO2021035611A1 (zh) 资源请求的方法和通信装置
WO2022141299A1 (zh) 参考信号资源的传输方法、设备及存储介质
WO2017166217A1 (zh) 数据传输方法及装置
WO2021159320A1 (zh) 通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20798625

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20798625

Country of ref document: EP

Kind code of ref document: A1