WO2015062078A1 - 上行控制信息的传输方法、基站和用户设备 - Google Patents

上行控制信息的传输方法、基站和用户设备 Download PDF

Info

Publication number
WO2015062078A1
WO2015062078A1 PCT/CN2013/086431 CN2013086431W WO2015062078A1 WO 2015062078 A1 WO2015062078 A1 WO 2015062078A1 CN 2013086431 W CN2013086431 W CN 2013086431W WO 2015062078 A1 WO2015062078 A1 WO 2015062078A1
Authority
WO
WIPO (PCT)
Prior art keywords
control channel
serving cell
downlink control
pucch
uplink
Prior art date
Application number
PCT/CN2013/086431
Other languages
English (en)
French (fr)
Inventor
成艳
马瑞泽·大卫
薛丽霞
柯柏安
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2013/086431 priority Critical patent/WO2015062078A1/zh
Priority to JP2016527197A priority patent/JP2016539561A/ja
Priority to EP13896690.8A priority patent/EP3054614B1/en
Priority to CN201380003141.2A priority patent/CN105264807B/zh
Publication of WO2015062078A1 publication Critical patent/WO2015062078A1/zh
Priority to US15/142,442 priority patent/US10129856B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1415Two-way operation using the same type of signal, i.e. duplex using control lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0473Wireless resource allocation based on the type of the allocated resource the resource being transmission power

Definitions

  • the embodiments of the present invention relate to data communication technologies, and in particular, to a method for transmitting uplink control information, a base station, and a user equipment. Background technique
  • the Generation Partnership Project LTE Long Term Evolution (3GPP LTE) system includes Frequency Division Duplexing (French Division Duplexing) and Time Division Duplexing (TDD). ) Two ways of working.
  • the terminal in order to support the hybrid automatic retransmission, the terminal needs to feed back the hybrid automatic repeat request to the base station through the Physical Uplink Control Channel (PUCCH) and the Physical Uplink Shared Channel (PUSCH).
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • the terminal sends an acknowledgement response (Acknowledgment, ACK for short) to the base station, it indicates that the terminal correctly received the message, and the terminal sends a negative acknowledgement (Negative Acknowledgement) to the base station.
  • NACK negative acknowledgement
  • Carrier Aggregation (CA) technology was introduced to meet the requirements of the International Telecommunication Union for the peak data rate requirements of the fourth generation communication technology.
  • the carrier to be aggregated is called a component carrier (CC), which is also called a serving cell.
  • Carrier aggregation techniques provide higher bandwidth by aggregating two or more component carriers together.
  • a user equipment (UE) can access only one of the component carriers for data transmission and reception.
  • the UE can simultaneously access multiple component carriers for data according to its capabilities and service requirements. Send and receive.
  • the existing carrier aggregation system is a carrier aggregation of the same base station (Evolved NodeB, referred to as eNB), or a macro cell with an ideal backhaul link (Backhaul) and carrier aggregation under the micro cell.
  • eNB evolved NodeB
  • Backhaul backhaul link
  • the carrier aggregation is evolved to support aggregation in different duplex modes. That is, the duplex mode of the aggregated component carriers may be different. For example, the duplex mode of some component carriers is FDD, and the duplex mode of other component carriers is TDD.
  • the primary carrier may be an FDD carrier or a TDD carrier.
  • the primary carrier is a TDD carrier and the other component carriers are FDD carriers, the HARQ-ACK corresponding to the FDD carrier also needs to be fed back on the TDD carrier.
  • the HARQ-ACK timing is n+4, that is, the HARQ-ACK corresponding to the PDSCH transmitted in the downlink subframe n will be fed back in the uplink subframe n + 4.
  • the HARQ-ACK corresponding to the FDD carrier is fed back on the TDD carrier, since only one partial subframe of the radio frame on the TDD carrier is used for uplink transmission, if the HARQ-ACK timing of the existing FDD is used, some FDD carriers are used. There is no corresponding uplink subframe feedback HARQ-ACK in the downlink subframe. If these downlink subframes are not scheduled, resource waste will occur. Therefore, when carrier aggregation is performed in different duplex modes, how to transmit HARQ-ACK needs to be solved.
  • the embodiments of the present invention provide a method for transmitting uplink control information, a base station, and a user equipment, which solves the problem of how to transmit HARQ-ACK when performing carrier aggregation in duplex mode.
  • a first aspect of the present invention provides a method for transmitting uplink control information, including:
  • the user equipment UE receives the downlink control channel sent by the base station in the downlink subframe N, and the downlink control channel is carried on the first serving cell of the UE;
  • the UE sends the hybrid automatic retransmission acknowledgement corresponding to the downlink control channel to the base station by using the physical uplink control channel PUCCH in the uplink subframe N+4, when the uplink subframe N+4 belongs to the first uplink subframe set.
  • the PUCCH is carried on the second serving cell of the UE, and when the uplink subframe N+4 belongs to the second uplink subframe set, the PUCCH is carried on the first serving cell, where The duplex mode of the first serving cell and the second serving cell are different, the number of uplink subframes included in the first uplink subframe set and the number of uplink subframes included in the second uplink subframe set The sum is equal to the number of one radio frame, and the uplink subframe included in the first uplink subframe set and the uplink subframe included in the second uplink subframe set correspond to different subframes in the radio frame.
  • the uplink subframe included in the second uplink subframe set corresponds to the first frame in one radio frame.
  • An uplink subframe of the serving cell where the uplink subframe included in the first uplink subframe set corresponds to other uplink subframes in the radio frame except the uplink subframe included in the second uplink subframe set;
  • the duplex mode of the first serving cell is FDD
  • the duplex mode of the second serving cell is TDD
  • the uplink subframe included in the first uplink subframe set corresponds to the first serving cell in one radio frame.
  • the uplink subframe that is included in the second uplink subframe set corresponds to other uplink subframes in the radio frame except the uplink subframe included in the first uplink subframe set.
  • the downlink control channel is a physical downlink control channel PDCCH or an enhanced physics.
  • a downlink control channel EPDCCH
  • the downlink control channel is used to indicate a physical downlink shared channel (PDSCH) transmission on the first serving cell, or is used to indicate a downlink semi-persistent scheduling SPS release;
  • the hybrid automatic retransmission acknowledgement corresponding to the downlink control channel is specifically a hybrid automatic retransmission acknowledgement of the PDSCH corresponding to the downlink control channel, when the downlink control channel is used.
  • the hybrid automatic retransmission acknowledgement corresponding to the downlink control channel is specifically a hybrid automatic retransmission acknowledgement corresponding to the downlink control channel that is released by the SPS.
  • the UE passes the uplink subframe N+4 Before the physical uplink control channel PUCCH sends the hybrid automatic retransmission acknowledgement corresponding to the downlink control channel to the base station, the method further includes:
  • the UE acquires a PUCCH resource and/or a PUCCH transmission power of the PUCCH.
  • the acquiring, by the UE, the PUCCH resource of the PUCCH includes:
  • the UE determines the PUCCH resource according to a transmit power control TPC command field in a downlink control information DCI format of the downlink control channel.
  • the UE acquires the PUCCH transmit power of the PUCCH, and includes:
  • the UE determines the PUCCH transmission power according to a transmit power control TPC command field in a downlink control information DCI format of the downlink control channel.
  • a second aspect of the present invention provides a method for transmitting uplink control information, including:
  • the base station sends a downlink control channel to the user equipment UE in the downlink subframe N, where the downlink control channel is carried on the first serving cell of the UE;
  • the base station receives the UE through the physical uplink control channel in the uplink subframe N+4.
  • the hybrid automatic retransmission acknowledgment corresponding to the downlink control channel sent by the PUCCH when the uplink subframe N+4 belongs to the first uplink subframe set, the PUCCH is carried on the second serving cell of the UE, when When the uplink subframe N+4 belongs to the second uplink subframe set, the PUCCH is carried on the first serving cell, where the duplex mode of the first serving cell and the second serving cell are different.
  • the sum of the number of uplink subframes included in the first uplink subframe set and the number of uplink subframes included in the second uplink subframe set is equal to the number of one radio frame, and the first uplink subframe set
  • the uplink subframe included in the uplink subframe and the uplink subframe included in the second uplink subframe group correspond to different subframes in the radio frame.
  • the duplex mode of the first serving cell is time division duplex TDD
  • the duplex mode of the second serving cell is frequency division duplex FDD
  • the uplink subframe that is included in the second uplink subframe set corresponds to the uplink subframe of the first serving cell in one radio frame
  • the uplink subframe included in the first uplink subframe set corresponds to the radio frame.
  • the uplink subframe included in the first uplink subframe set corresponds to the radio frame An uplink subframe of a serving cell, where the uplink subframe included in the second uplink subframe set corresponds to other uplink subframes in the radio frame except the uplink subframe included in the first uplink subframe set.
  • the downlink control channel is a physical downlink control channel PDCCH or an enhanced physical Downlink control channel EPDCCH, the downlink control channel For indicating a physical downlink shared channel PDSCH transmission carried on the first serving cell, or for indicating a downlink semi-persistent scheduling SPS release;
  • the hybrid automatic retransmission acknowledgement corresponding to the downlink control channel is specifically a hybrid automatic retransmission acknowledgement of the PDSCH corresponding to the downlink control channel, when the downlink control channel is used.
  • the hybrid automatic retransmission acknowledgement corresponding to the downlink control channel is specifically configured to instruct the SPS to release the hybrid automatic retransmission acknowledgement corresponding to the downlink control channel.
  • a third aspect of the present invention provides a method for transmitting uplink control information, including:
  • the user equipment UE receives the downlink control channel in the downlink subframe N, the downlink control channel is carried on the first serving cell of the UE, and the duplex mode of the first serving cell is time division duplex TDD;
  • the UE Transmitting, by the UE, the hybrid automatic retransmission acknowledgment corresponding to the downlink control channel by using the physical uplink control channel (PUCCH) in the uplink subframe N+4, where the PUCCH is carried on the second serving cell of the UE, where the The duplex mode of the two serving cells is frequency division duplex FDD.
  • PUCCH physical uplink control channel
  • the downlink control channel is a physical downlink control channel PDCCH or an enhanced physical downlink control channel (EPDCCH), and the downlink control channel is used to indicate that the bearer is in the first Physical downlink shared channel PDSCH transmission on the serving cell, or used to indicate downlink semi-persistent scheduling SPS release;
  • PDCCH physical downlink control channel
  • EPDCCH enhanced physical downlink control channel
  • the hybrid automatic retransmission acknowledgement corresponding to the downlink control channel is specifically a hybrid automatic retransmission acknowledgement of the PDSCH corresponding to the downlink control channel, when the downlink control channel is used.
  • the hybrid automatic retransmission acknowledgement corresponding to the downlink control channel is specifically a hybrid automatic retransmission acknowledgement corresponding to the downlink control channel that is released by the SPS.
  • the UE passes the physical uplink control channel in the uplink subframe N+4.
  • the method further includes:
  • the UE acquires a PUCCH resource of the PUCCH.
  • the acquiring, by the UE, the PUCCH resource of the PUCCH includes: Determining, by the UE, the PUCCH resource according to a downlink allocation indication DAI or a transmit power control TPC command in a downlink control information DCI format of the downlink control channel.
  • the first serving cell is the UE
  • the second serving cell is a secondary serving cell of the UE.
  • the second serving cell is an FDD secondary serving cell with the smallest cell index of the UE, or the second serving cell is a higher layer signaling indication.
  • a fourth aspect of the present invention provides a method for transmitting uplink control information, including:
  • the base station sends a downlink control channel to the user equipment UE in the downlink subframe N, where the downlink control channel is carried on the first serving cell of the UE, and the duplex mode of the first serving cell is a time division duplex TDD, Downlink control information of the downlink control channel, the downlink allocation indication DAI or the transmit power control TPC command in the DCI format is used to indicate a physical uplink control channel PUCCH resource;
  • the downlink control channel is a physical downlink control channel PDCCH or an enhanced physical downlink control channel (EPDCCH), and the downlink control channel is used to indicate that the bearer is in the first Physical downlink shared channel on the serving cell
  • PDSCH transmission or used to indicate downlink semi-persistent scheduling SPS release;
  • the hybrid automatic retransmission acknowledgement corresponding to the downlink control channel is specifically a hybrid automatic retransmission acknowledgement of the PDSCH corresponding to the downlink control channel, when the downlink control channel is used.
  • the hybrid automatic retransmission acknowledgement corresponding to the downlink control channel is specifically a hybrid automatic retransmission acknowledgement corresponding to the downlink control channel that is released by the SPS.
  • the first serving cell is a primary serving cell of the UE
  • the second serving cell is a secondary serving cell of the UE.
  • the second serving cell is an FDD secondary serving cell with a smallest cell index of the UE, or the second serving cell is a A secondary serving cell indicated by the higher layer signaling for transmitting the PUCCH.
  • a fifth aspect of the present invention provides a method for transmitting uplink control information, including: a user equipment UE receives a downlink control channel in a downlink subframe N, where the downlink control channel is carried on a first serving cell of the UE, and the downlink Control channel is the physical downlink control channel
  • PDCCH or enhanced physical downlink control channel EPDCCH are PDCCH or enhanced physical downlink control channel EPDCCH
  • the UE determines, according to the transmit power control TPC command field in the downlink control information DCI format of the downlink control channel.
  • Physical uplink control channel PUCCH resource and when the hybrid automatic retransmission acknowledgement corresponding to the downlink control channel is carried on the first serving cell, the UE sends according to the downlink control information in the DCI format of the downlink control channel
  • the power control TPC command field determines a transmit power of the PUCCH, where a duplex mode of the first serving cell and the second serving cell is different;
  • the PUCCH transmits a hybrid automatic retransmission acknowledgement corresponding to the downlink control channel.
  • the downlink control channel is used to indicate a physical downlink shared channel (PDSCH) transmission on the first serving cell, or is used to indicate a downlink semi-persistent scheduling SPS. freed;
  • PDSCH physical downlink shared channel
  • the hybrid automatic retransmission acknowledgement corresponding to the downlink control channel is specifically a hybrid automatic retransmission acknowledgement of the PDSCH corresponding to the downlink control channel, when the downlink control channel is used.
  • the hybrid automatic retransmission acknowledgement corresponding to the downlink control channel is specifically a hybrid automatic retransmission acknowledgement corresponding to the downlink control channel that is released by the SPS.
  • the first serving cell is a primary serving cell of the UE
  • the duplex mode of the first serving cell is time division duplex TDD
  • the duplex mode of the second serving cell is frequency division duplex FDD
  • the second serving cell is the FDD with the smallest cell index of the UE.
  • the first serving cell is a primary serving cell of the UE, and the duplex mode of the first serving cell is a time division duplex TDD, and the second service is The duplex mode of the cell is frequency division duplex FDD, and the second serving cell is a secondary serving cell for transmitting PUCCH indicated by higher layer signaling.
  • a sixth aspect of the present invention provides a method for transmitting uplink control information, including: a base station transmitting a downlink control channel to a user equipment UE in a downlink subframe N, where the downlink channel is carried on a first serving cell of the UE,
  • the downlink control channel is a physical downlink control channel PDCCH or an enhanced physical downlink control channel EPDCCH;
  • the base station uses the transmit power control TPC command field indication in the downlink control information DCI format of the downlink control channel.
  • Physical uplink control channel PUCCH resource when the hybrid automatic retransmission acknowledgement corresponding to the downlink control channel is carried on the first serving cell, the base station transmits the transmit power in the downlink control information DCI format of the downlink control channel
  • the control TPC command field indicates the transmit power of the PUCCH, where the duplex mode of the first serving cell and the second serving cell are different;
  • the downlink control channel is used to indicate a physical downlink shared channel (PDSCH) transmission on the first serving cell, or is used to indicate a downlink semi-persistent scheduling SPS. freed;
  • PDSCH physical downlink shared channel
  • the hybrid automatic retransmission acknowledgement corresponding to the downlink control channel is specifically a hybrid automatic retransmission acknowledgement of the PDSCH corresponding to the downlink control channel, when the downlink is
  • the hybrid automatic retransmission acknowledgement corresponding to the downlink control channel is specifically a hybrid automatic retransmission acknowledgement corresponding to the downlink control channel indicating the downlink semi-persistent scheduling SPS release.
  • the first serving cell is a primary serving cell of the UE
  • the duplex mode of the first serving cell is time division duplex TDD
  • the duplex mode of the second serving cell is frequency division duplex FDD
  • the second serving cell is small of the UE.
  • the FDD secondary serving cell with the smallest area index.
  • the first serving cell is a primary serving cell of the UE
  • the duplex mode of the first serving cell is time division duplex TDD
  • the duplex mode of the second serving cell is frequency division duplex FDD
  • the second serving cell is used for transmitting PUCCH for higher layer signaling indication. Secondary service community.
  • a seventh aspect of the present invention provides a user equipment UE, including:
  • a receiving module configured to receive, in a downlink subframe N, a downlink control channel that is sent by the base station, where the downlink control channel is carried on a first serving cell of the UE;
  • a sending module configured to send a hybrid automatic retransmission acknowledgement corresponding to the downlink control channel to the base station by using a physical uplink control channel PUCCH in the uplink subframe N+4, where the uplink subframe N+4 belongs to the first uplink sub-
  • the PUCCH is carried on the second serving cell of the UE, and when the uplink subframe N+4 belongs to the second uplink subframe set, the PUCCH is carried on the first serving cell,
  • the duplex mode of the first serving cell and the second serving cell are different, the number of uplink subframes included in the first uplink subframe set and the uplink subframe included in the second uplink subframe set
  • the sum of the numbers is equal to the number of one radio frame, and the uplink subframe included in the first uplink subframe set and the uplink subframe included in the second uplink subframe set correspond to different subframes in the radio frame.
  • the duplex mode of the first serving cell is time division duplex TDD
  • the duplex mode of the second serving cell is frequency division duplex FDD
  • the uplink subframe that is included in the second uplink subframe set corresponds to the uplink subframe of the first serving cell in one radio frame
  • the uplink subframe included in the first uplink subframe set corresponds to the radio frame.
  • the second uplink subframe set includes another uplink subframe.
  • the uplink subframe included in the first uplink subframe set corresponds to the uplink subframe of the first serving cell in one radio frame
  • the uplink subframe included in the second uplink subframe set corresponds to the divider in the radio frame.
  • the other uplink subframes except the uplink subframe included in the first uplink subframe set are described.
  • the downlink control channel is a physical downlink control a channel PDCCH or an enhanced physical downlink control channel (EPDCCH), the downlink control channel is used to indicate a physical downlink shared channel (PDSCH) transmission on the first serving cell, or is used to indicate a downlink semi-persistent scheduling SPS release;
  • PDCCH physical downlink control a channel
  • EPDCCH enhanced physical downlink control channel
  • the hybrid automatic retransmission acknowledgement corresponding to the downlink control channel is specifically a hybrid automatic retransmission acknowledgement of the PDSCH corresponding to the downlink control channel, when the downlink control channel is used.
  • the hybrid automatic retransmission acknowledgement corresponding to the downlink control channel is specifically a hybrid automatic retransmission acknowledgement corresponding to the downlink control channel indicating the SPS release.
  • the user equipment further includes: an acquiring module, Obtaining a PUCCH resource and/or a PUCCH transmission power of the PUCCH.
  • the acquiring module is specifically configured to:
  • the transmit power control in the DCI format According to the downlink control information of the downlink control channel, the transmit power control in the DCI format
  • the TPC command field determines the PUCCH resource.
  • the acquiring module is specifically configured to:
  • the PUCCH transmit power.
  • An eighth aspect of the present invention provides a base station, including:
  • a sending module configured to send a downlink control channel to the user equipment UE in the downlink subframe N, where the downlink control channel is carried on the first serving cell of the UE;
  • a receiving module configured to receive, in an uplink subframe N+4, a hybrid automatic retransmission acknowledgement corresponding to the downlink control channel sent by the UE by using a physical uplink control channel (PUCCH), where the uplink subframe N+4 belongs to the first uplink
  • PUCCH physical uplink control channel
  • the duplex mode of the first serving cell and the second serving cell are different, the number of uplink subframes included in the first uplink subframe set and the uplink subframe included in the second uplink subframe set
  • the sum of the number of frames is equal to the number of one radio frame
  • the The uplink subframe included in an uplink subframe set and the uplink subframe included in the second uplink subframe set correspond to different subframes in the radio frame.
  • the duplex mode of the first serving cell is time division duplex TDD
  • the duplex mode of the second serving cell is frequency division duplex FDD
  • the uplink subframe that is included in the second uplink subframe set corresponds to the uplink subframe of the first serving cell in one radio frame
  • the uplink subframe included in the first uplink subframe set corresponds to the radio frame.
  • the uplink subframe included in the first uplink subframe set corresponds to the radio frame An uplink subframe of a serving cell, where the uplink subframe included in the second uplink subframe set corresponds to other uplink subframes in the radio frame except the uplink subframe included in the first uplink subframe set.
  • the downlink control channel is a physical downlink control channel PDCCH or an enhanced physical a downlink control channel (EPDCCH), the downlink control channel is used to indicate a physical downlink shared channel (PDSCH) transmission on the first serving cell, or is used to indicate a downlink semi-persistent scheduling SPS release;
  • PDCCH physical downlink control channel
  • EPDCCH enhanced physical a downlink control channel
  • the hybrid automatic retransmission acknowledgement corresponding to the downlink control channel is specifically a hybrid automatic retransmission acknowledgement of the PDSCH corresponding to the downlink control channel, when the downlink control channel is used.
  • the hybrid automatic retransmission acknowledgement corresponding to the downlink control channel is specifically a hybrid automatic retransmission acknowledgement corresponding to the downlink control channel indicating the SPS release.
  • a ninth aspect of the present invention provides a user equipment, including:
  • a receiving module configured to receive a downlink control channel in a downlink subframe N, where the downlink control channel is carried on a first serving cell of the UE, and a duplex mode of the first serving cell is a time division duplex TDD;
  • a sending module configured to send a hybrid automatic retransmission acknowledgment corresponding to the downlink control channel by using a physical uplink control channel (PUCCH) in the uplink subframe N+4, where the PUCCH is carried on a second serving cell of the UE, where The duplex mode of the second serving cell is frequency division duplex FDD.
  • PUCCH physical uplink control channel
  • the downlink control channel is a physical downlink control channel PDCCH or an enhanced physical downlink control channel (EPDCCH), and the downlink control channel is used to indicate that the bearer is in the first Physical downlink shared channel PDSCH transmission on the serving cell, or used to indicate downlink semi-persistent scheduling SPS release;
  • PDCCH physical downlink control channel
  • EPDCCH enhanced physical downlink control channel
  • the hybrid automatic retransmission acknowledgement corresponding to the downlink control channel is specifically a hybrid automatic retransmission acknowledgement of the PDSCH corresponding to the downlink control channel, when the downlink control channel is used.
  • the hybrid automatic retransmission acknowledgement corresponding to the downlink control channel is specifically a hybrid automatic retransmission acknowledgement corresponding to the downlink control channel indicating the SPS release.
  • the user equipment further includes:
  • An obtaining module configured to acquire a PUCCH resource of the PUCCH.
  • the acquiring module is specifically used to:
  • the first serving cell is the UE
  • the second serving cell is a secondary serving cell of the UE.
  • the second serving cell is an FDD secondary serving cell with the smallest cell index of the UE, or the second serving cell is a higher layer signaling indication.
  • a tenth aspect of the present invention provides a base station, including:
  • a sending module configured to send a downlink control channel to the user equipment UE in the downlink subframe N, where the downlink control channel is carried on the first serving cell of the UE, and the duplex mode of the first serving cell is time division duplex
  • the downlink allocation indication DAI or the transmit power control TPC command in the downlink control information DCI format of the downlink control channel is used to indicate a physical uplink control channel PUCCH resource;
  • a receiving module configured to receive, according to the PUCCH resource, the UE in an uplink subframe N+4 a hybrid automatic retransmission acknowledgment corresponding to the downlink control channel sent by the PUCCH, where the PUCCH is carried on a second serving cell of the UE, and the duplex mode of the second serving cell is a frequency division duplex FDD .
  • the downlink control channel is a physical downlink control channel PDCCH or an enhanced physical downlink control channel (EPDCCH), and the downlink control channel is used to indicate that the bearer is in the first Physical downlink shared channel PDSCH transmission on the serving cell, or used to indicate downlink semi-persistent scheduling SPS release;
  • PDCCH physical downlink control channel
  • EPDCCH enhanced physical downlink control channel
  • the hybrid automatic retransmission acknowledgement corresponding to the downlink control channel is specifically a hybrid automatic retransmission acknowledgement of the PDSCH corresponding to the downlink control channel, when the downlink control channel is used.
  • the hybrid automatic retransmission acknowledgement corresponding to the downlink control channel is specifically a hybrid automatic retransmission acknowledgement corresponding to the downlink control channel that is released by the SPS.
  • the first serving cell is a primary serving cell of the UE
  • the second serving cell is a secondary serving cell of the UE.
  • the second serving cell is an FDD secondary serving cell with a smallest cell index of the UE, or the second serving cell is a A secondary serving cell indicated by the higher layer signaling for transmitting the PUCCH.
  • An eleventh aspect of the present invention provides a user equipment UE, including:
  • a receiving module configured to receive a downlink control channel in a downlink subframe N, where the downlink control channel is carried on a first serving cell of the UE, where the downlink control channel is a physical downlink control channel PDCCH or an enhanced physical downlink control channel EPDCCH.
  • a determining module configured to: when the hybrid automatic retransmission acknowledgment corresponding to the downlink control channel is carried on the second serving cell of the UE, the UE according to the downlink control information, the downlink control information, the transmit power in the DCI format Controlling the TPC command field to determine a physical uplink control channel PUCCH resource; and when the hybrid automatic retransmission acknowledgement corresponding to the downlink control channel is carried on the first serving cell, the UE according to the downlink control channel downlink control information
  • the transmit power control TPC command field in the DCI format determines the transmit power of the PUCCH, wherein the duplex mode of the first serving cell and the second serving cell are different.
  • a sending module configured to pass, according to the PUCCH resource or the transmit power of the PUCCH
  • the PUCCH sends a hybrid automatic retransmission acknowledgement corresponding to the downlink control channel.
  • the downlink control channel is used to indicate a physical downlink shared channel (PDSCH) transmission on the first serving cell, or is used to indicate downlink semi-persistent scheduling.
  • PDSCH physical downlink shared channel
  • the hybrid automatic retransmission acknowledgement corresponding to the downlink control channel is specifically a hybrid automatic retransmission acknowledgement of the PDSCH corresponding to the downlink control channel, when the downlink control channel is used.
  • the hybrid automatic retransmission acknowledgement corresponding to the downlink control channel is specifically a hybrid automatic retransmission acknowledgement corresponding to the downlink control channel indicating the SPS release.
  • the duplex mode of the first serving cell is a time division duplex TDD
  • the duplex mode of the second serving cell is a frequency division duplex FDD
  • the second serving cell is the UE
  • the cell index is the smallest FDD secondary serving cell.
  • the first serving cell is a master of the UE
  • the serving cell the duplex mode of the first serving cell is time division duplex TDD
  • the duplex mode of the second serving cell is frequency division duplex FDD
  • the second serving cell is used for higher layer signaling indication.
  • a twelfth aspect of the present invention provides a base station, including:
  • a sending module configured to send a downlink control channel to the user equipment UE in the downlink subframe N, where the downlink channel is carried on a first serving cell of the UE, where the downlink control channel is a physical downlink control channel PDCCH or an enhanced physical Downlink control channel EPDCCH;
  • the indication module is configured to: when the hybrid automatic retransmission acknowledgment corresponding to the downlink control channel is carried on the second serving cell of the UE, use the transmit power control TPC command in the downlink control information DCI format of the downlink control channel
  • the domain indicates a physical uplink control channel PUCCH resource
  • the transmit power control TPC command field in the downlink control information DCI format of the downlink control channel indicates the transmission of the PUCCH Power, where the first serving cell Different from the duplex mode of the second serving cell;
  • a sending module configured to receive, according to the PUCCH resource, a hybrid automatic retransmission acknowledgement corresponding to the downlink control channel sent by the UE.
  • the downlink control channel is used to indicate that the physical downlink shared channel (PDSCH) is transmitted on the first serving cell, or is used to indicate that the downlink is persistent. Dispatching SPS release;
  • the hybrid automatic retransmission acknowledgement corresponding to the downlink control channel is specifically a hybrid automatic retransmission acknowledgement of the PDSCH corresponding to the downlink control channel, when the downlink is
  • the hybrid automatic retransmission acknowledgement corresponding to the downlink control channel is specifically a hybrid automatic retransmission acknowledgement corresponding to the downlink control channel indicating the downlink semi-persistent scheduling SPS release.
  • the first serving cell is a master of the UE a serving cell
  • the duplex mode of the first serving cell is a time division duplex TDD
  • the duplex mode of the second serving cell is a frequency division duplex FDD
  • the second serving cell is a cell index of the UE The smallest FDD secondary serving cell.
  • the first serving cell is a master of the UE
  • the serving cell the duplex mode of the first serving cell is time division duplex TDD
  • the duplex mode of the second serving cell is frequency division duplex FDD
  • the second serving cell is used for higher layer signaling indication.
  • the UE receives the downlink control channel sent by the base station in the downlink subframe N, and sends the uplink control channel to the base station through the physical uplink control channel PUCCH in the uplink subframe N+4.
  • the hybrid automatic retransmission acknowledgement corresponding to the downlink control channel when the uplink subframe N+4 belongs to the first uplink subframe set, the PUCCH is carried on the second serving cell of the UE, and the uplink subframe N+4 belongs to the second uplink subframe.
  • the PUCCH is carried on the first serving cell.
  • FIG. 1 is a flowchart of Embodiment 1 of a method for transmitting uplink control information according to the present invention
  • FIG. 2 is a schematic diagram of a PUCCH transmission mechanism according to the present invention
  • FIG. 3 is a flowchart of Embodiment 2 of a method for transmitting uplink control information according to the present invention
  • FIG. 4 is a flowchart of Embodiment 3 of a method for transmitting uplink control information according to the present invention
  • FIG. 6 is a flowchart of Embodiment 5 of a method for transmitting uplink control information according to the present invention
  • FIG. 7 is a flowchart of Embodiment 6 of a method for transmitting uplink control information according to the present invention; Schematic diagram of the structure;
  • Embodiment 9 is a schematic structural diagram of Embodiment 1 of a base station according to the present invention.
  • Embodiment 2 of a user equipment according to the present invention.
  • Embodiment 11 is a schematic structural diagram of Embodiment 2 of a base station according to the present invention.
  • Embodiment 3 of a user equipment according to the present invention is a schematic structural diagram of Embodiment 3 of a user equipment according to the present invention.
  • Embodiment 3 of a base station according to the present invention is a schematic structural diagram of Embodiment 3 of a base station according to the present invention.
  • Embodiment 15 is a flowchart of Embodiment 8 of a method for transmitting uplink control information according to the present invention.
  • Embodiment 9 is a flowchart of Embodiment 9 of a method for transmitting uplink control information according to the present invention.
  • Embodiment 17 is a flowchart of Embodiment 10 of a method for transmitting uplink control information according to the present invention.
  • FIG. 18 is a flowchart of Embodiment 11 of a method for transmitting uplink control information according to the present invention
  • FIG. 19 is a flowchart of Embodiment 12 of a method for transmitting uplink control information according to the present invention
  • FIG. 21 is a flowchart of Embodiment 14 of the method for transmitting uplink control information according to the present invention
  • FIG. 22 is a schematic structural diagram of Embodiment 4 of the user equipment according to the present invention
  • 23 is a schematic structural diagram of Embodiment 4 of a base station according to the present invention
  • Embodiment 5 of a user equipment according to the present invention is a schematic structural diagram of Embodiment 5 of a user equipment according to the present invention.
  • Embodiment 5 of a base station according to the present invention is a schematic structural diagram of Embodiment 5 of a base station according to the present invention.
  • FIG. 26 is a schematic structural diagram of Embodiment 6 of a user equipment according to the present invention.
  • FIG. 27 is a schematic structural diagram of Embodiment 6 of a base station according to the present invention.
  • Embodiment 29 is a schematic structural diagram of Embodiment 7 of a base station according to the present invention.
  • FIG. 30 is a schematic structural diagram of Embodiment 8 of a user equipment according to the present invention.
  • Figure 31 is a schematic structural diagram of Embodiment 8 of a base station according to the present invention.
  • FIG. 32 is a schematic structural diagram of Embodiment 9 of a user equipment according to the present invention.
  • Embodiment 9 of a base station according to the present invention is a schematic structural diagram of Embodiment 9 of a base station according to the present invention.
  • FIG. 34 is a schematic structural diagram of Embodiment 10 of a user equipment according to the present invention.
  • FIG. 35 is a schematic structural diagram of Embodiment 10 of a base station according to the present invention.
  • the technical solutions in the embodiments of the present invention are clearly and completely described in the following with reference to the accompanying drawings in the embodiments of the present invention.
  • the embodiments are a part of the embodiments of the invention, and not all of the embodiments. All other embodiments obtained by a person of ordinary skill in the art based on the embodiments of the present invention without creative efforts are within the scope of the present invention.
  • FIG. 1 is a flowchart of Embodiment 1 of a method for transmitting uplink control information according to the present invention. As shown in FIG. 1, the method in this embodiment may include:
  • Step 101 The UE receives a downlink control channel in the downlink subframe N, where the downlink control channel is carried on the first serving cell of the UE.
  • the step may be that the UE receives the downlink control channel sent by the base station in the downlink subframe N, and the downlink control channel is carried on the first serving cell of the UE.
  • the serving cell corresponding to the user equipment may refer to the serving cell configured by the network side device (for example, the base station) to the UE, or the serving cell serving the UE, or the UE accessing. Service area.
  • the serving cell corresponding to the UE includes a first serving cell and a second serving cell, where the first serving cell and the second serving cell may be configured by the base station.
  • the first serving cell and the second serving cell included in the serving cell of the UE may also include a first serving cell and a second serving cell in the serving cell accessed by the UE.
  • the serving cell corresponding to the UE may also be referred to as a component carrier (also referred to as a component carrier) of the UE.
  • the first serving cell may also be referred to as a first component carrier
  • the second serving cell may also be referred to as a second component carrier.
  • the subframe number (n) refers to the number of the subframe in the plurality of radio frames, and can be obtained as follows:
  • the subframes in the plurality of radio frames are monotonically increasing from 0 in chronological order. numbering starts, that is, if the number of a radio frame is the last sub-frame, the next radio frame number of the first subframe +1.
  • each of the plurality of radio frames has a subframe number in its corresponding radio frame, that is, a subframe number of the subframe in the radio frame.
  • the UE receives the downlink control channel that is carried on the first serving cell in the downlink subframe N, where the first serving cell is a serving cell corresponding to the UE, and the downlink control channel is a physical downlink control channel (Physical Downlink) a Control Channel (referred to as PDCCH) or an Enhanced Physical Downlink Control Channel (EPDCCH), where the downlink control channel may be used to indicate a physical downlink shared channel PDSCH transmitted on the first serving cell, or the downlink The control channel may be used to indicate a PDSCH transmission carried on the first serving cell; or the downlink control channel may be used to indicate a Semi-Persistent Scheduling (SPS) release.
  • SPS Semi-Persistent Scheduling
  • the downlink control information (Downlink Control Information, DCI) format of the downlink control channel may be DCI format 1, DCI format 1A, DCI format 1B, DCI format 1D, DCI format 2A, DCI format 2B, DCI format 2C, DCI format 2D.
  • DCI Downlink Control Information
  • One or more of the present inventions are not limited thereto.
  • Step 102 The UE sends a hybrid automatic retransmission acknowledgement corresponding to the downlink control channel through the physical uplink control channel PUCCH in the uplink subframe N+4.
  • the step may be that the UE sends the hybrid automatic retransmission acknowledgement HARQ-ACK corresponding to the downlink control channel to the base station in the uplink subframe N+4 through the physical uplink control channel PUCCH, that is, the downlink control channel corresponding to the downlink control channel received in step 1 is sent to the base station.
  • the hybrid automatically retransmits the confirmation.
  • the physical uplink control channel Physical Uplink Control Channel, PUCCH
  • PUCCH Physical Uplink Control Channel
  • the PUCCH is carried on the first serving cell, where the duplex mode of the first serving cell and the second serving cell are different, and the uplink subframes included in the first uplink subframe set are And an uplink subframe included in the second uplink subframe set
  • the sum of the number is equal to the number of one radio frame, and the uplink subframe included in the first uplink subframe set and the uplink subframe included in the second uplink subframe set correspond to different subframes in the radio frame.
  • the PUCCH is carried on the second serving cell of the user equipment, and the downlink control information of the downlink control channel is in the DCI format.
  • the transmit power control TPC command field indicates the PUCCH resource of the PUCCH, that is, the downlink control information in the DCI format of the downlink control channel in step 1.
  • the transmit power control TPC command field indicates the PUCCH resource of the PUCCH, and the user equipment can follow the steps.
  • the downlink control information of the downlink control channel in the downlink control information in the DCI format determines the PUCCH resource of the PUCCH, and then uses the PUCCH resource to feed back the downlink control channel in step 1 through the PUCCH in the uplink subframe n+4.
  • the hybrid automatic retransmission acknowledgement HARQ-ACK of the corresponding physical downlink shared channel PDSCH When the uplink subframe n+4 belongs to the second uplink subframe set, the PUCCH is carried on the first serving cell of the user equipment, that is, it may be carried on the first serving cell in step 1. In this case, step 1
  • the downlink control information of the downlink control channel in the DCI format may be used to determine the transmit power of the PUCCH.
  • the user equipment may use the downlink control information in the DCI format of the downlink control channel in step 1.
  • the transmit power control TPC command field determines the transmit power of the PUCCH, and then uses the transmit power of the PUCCH to transmit the hybrid automatic retransmission of the physical downlink shared channel PDSCH corresponding to the downlink control channel in the PUCCH feedback step 1 in the uplink subframe n+4. Confirm HARQ-ACK.
  • the method may further include the following steps:
  • the UE acquires a PUCCH resource and/or a PUCCH transmit power of the PUCCH.
  • the UE may only acquire the PUCCH resource or the PUCCH transmit power, and the UE may also obtain both.
  • the PUCCH is carried on the second serving cell of the UE, and the base station passes the downlink control information in the DCI format of the downlink control channel.
  • the Transmit Power Control (TPC) command field indicates the PUCCH resource of the PUCCH, that is, the transmit power control TPC command field in the DCI format of the downlink control channel in step 101 indicates the PUCCH resource of the PUCCH, and the UE at this time
  • the PUCCH resource of the PUCCH may be determined according to the transmit power control TPC command field in the downlink control information DCI format of the downlink control channel in step 101, and then the PUCCH resource is used in the uplink subframe N+4 to pass the PUCCH feedback step 101.
  • Hybrid automatic repeat request corresponding to the downlink control channel ( HARQ Hybrid Automatic Repeat request Acknowledgment , Jane HARQ-ACK).
  • the PUCCH is carried on the first serving cell of the UE, that is, the PUCCH is carried in the first serving cell in step 101, and the step 101 is performed.
  • the TPC command field in the DCI format of the downlink control channel may be used to determine the transmit power of the PUCCH, and the UE may determine the transmit power of the PUCCH according to the TPC command field in the DCI format of the downlink control channel in step 101, and then utilize the PUCCH.
  • the transmit power is transmitted in the uplink subframe N+4 through the hybrid automatic repeat acknowledgement message corresponding to the downlink control channel in the PUCCH feedback step 101.
  • the hybrid automatic retransmission corresponding to the downlink control channel is confirmed.
  • the hybrid automatic retransmission acknowledgement corresponding to the downlink control channel is specifically the HARQ corresponding to the downlink control channel indicating the SPS release.
  • the duplex mode of the first serving cell and the second serving cell are different.
  • the duplex mode of the first serving cell is TDD
  • the duplex mode of the second serving cell is FDD
  • the uplink subframe included in the second uplink subframe set corresponds to the uplink subframe of the first serving cell in the radio frame
  • the uplink subframe included in the first uplink subframe set corresponds to the uplink subframe included in the second uplink subframe set in the radio frame.
  • the uplink subframe included in the first uplink subframe set corresponds to the uplink subframe of the first serving cell in one radio frame
  • the uplink subframe included in the second uplink subframe set corresponds to other uplink subframes in the radio frame except the uplink subframe included in the first uplink subframe set.
  • the second serving cell may be the FDD secondary serving cell with the smallest cell index of the UE, and the second serving cell may also be the secondary serving cell of the UE.
  • the secondary serving cell indicated by the high layer signaling may be a secondary serving cell for transmitting a PUCCH indicated by higher layer signaling in the secondary serving cell of the UE.
  • the number of subframes of a radio frame is 10, so the sum of the number of uplink subframes included in the first uplink subframe set and the number of uplink subframes included in the second uplink subframe set may be 10, when the first The duplex mode of the serving cell is TDD, and when the duplex mode of the second serving cell is frequency division duplex FDD, the uplink subframe included in the second uplink subframe set corresponds to the uplink subframe of the first serving cell in one radio frame.
  • the uplink subframe included in the first uplink subframe set corresponds to the remaining uplink subframes in one radio frame. That is, an uplink subframe other than the uplink subframe included in the second uplink subframe set in one radio frame.
  • FIG. 2 is a schematic diagram of the PUCCH transmission mechanism in the present invention, where the UE is in When the first serving cell is an uplink subframe, the PUCCH is transmitted on the first serving cell, and when the first serving cell is a downlink subframe, the PUCCH is transmitted on the second serving cell, and the second uplink subframe set is one.
  • An uplink subframe corresponding to the first serving cell in the radio frame (a subframe marked by a vertical line in a radio subframe corresponding to the first serving cell in FIG.
  • the FDD carrier and the TDD carrier may perform HARQ-ACK feedback according to the existing timing of the FDD carrier, that is, if the UE receives control in the downlink subframe N.
  • the HARQ-ACK of the FDD carrier and/or the TDD carrier is fed back in the uplink subframe N+4, and if the uplink subframe N+4 corresponds to the uplink subframe of the TDD, the TDD carrier feedback HARQ-ACK is used.
  • the uplink subframe N+4 corresponds to the downlink subframe of the TDD, and the FDD carrier feedback HARQ-ACK is adopted.
  • all the downlink subframes on the FDD carrier have corresponding uplink subframes that feed back HARQ-ACK, improve resource utilization, and do not change the HARQ-ACK timing of the FDD carrier; on the other hand, according to the FDD for the TDD carrier
  • the existing timing of the carrier performs HARQ-ACK feedback, avoiding HARQ-ACK bundling, and reducing the RTT delay of the TDD carrier.
  • the PUCCH when the uplink subframe n+4 belongs to the first uplink subframe set, the PUCCH is carried on the second serving cell of the user equipment, and the downlink control information DCI format of the downlink control channel is used.
  • the transmit power control TPC command field indicates the PUCCH resource of the PUCCH; when the uplink subframe n+4 belongs to the second uplink subframe set, the PUCCH is carried on the first serving cell of the user equipment, and the downlink control Downlink control information of the channel
  • the transmit power control TPC command field in the DCI format is used to determine the transmit power of the PUCCH.
  • the embodiment of the present invention enables the TPC command to be carried on the downlink carrier corresponding to the carrier transmitting the PUCCH.
  • the independent power control in the mode is implemented to make the power control simpler.
  • the TPC command field is used to indicate the resources of the PUCCH, so that the UE can feed the HARQ based on the PUCCH resource.
  • ACK and by dynamic Shows that the utilization of PUCCH resources is improved.
  • the UE receives the downlink control channel sent by the base station in the downlink subframe N, and sends the hybrid automatic retransmission acknowledgement corresponding to the downlink control channel to the base station in the uplink subframe N+4 through the physical uplink control channel PUCCH.
  • the PUCCH is carried on the second serving cell of the UE, and when the uplink subframe N+4 belongs to the second uplink subframe set, the PUCCH is carried in the first serving cell. on.
  • the above method is used to solve the problem of how to transmit the HARQ-ACK in the carrier aggregation of different duplex modes.
  • the PUCCH is carried on the second serving cell of the UE.
  • the PUCCH is carried on the first serving cell, so that each downlink subframe (including the FDD downlink subframe and the TDD downlink subframe) has a corresponding feedback HARQ-
  • the uplink subframe of the ACK improves resource utilization; and does not change the HARQ-ACK timing of the FDD carrier.
  • FIG. 3 is a flowchart of Embodiment 2 of a method for transmitting uplink control information according to the present invention. As shown in FIG. 3, the method provided in this embodiment includes the following steps:
  • Step 201 The base station sends a downlink control channel to the UE in the downlink subframe N, where the downlink control channel is carried on the first serving cell of the UE.
  • the base station sends a downlink control channel to the UE on the first serving cell in the downlink subframe N, where the downlink control channel is a physical downlink control channel PDCCH or an enhanced physical downlink control channel EPDCCH, and the downlink control channel is used to indicate the bearer.
  • the PDSCH transmission on the first serving cell is used to indicate the downlink semi-persistent scheduling SPS release.
  • Step 202 The base station receives the hybrid automatic retransmission acknowledgement corresponding to the downlink control channel sent by the UE through the physical uplink control channel PUCCH in the uplink subframe N+4.
  • the hybrid automatic retransmission acknowledgement corresponding to the downlink control channel is specifically the hybrid automatic retransmission acknowledgement HARQ-ACK of the PDSCH corresponding to the downlink control channel.
  • the hybrid automatic retransmission acknowledgement corresponding to the downlink control channel is specifically a hybrid automatic retransmission acknowledgement message HARQ-ACK corresponding to the downlink control channel indicating the SPS release.
  • the PUCCH is carried on the second serving cell of the UE, and when the uplink subframe N+4 belongs to the second uplink subframe set, the PUCCH is carried on the PUCCH.
  • the first serving cell where the duplex mode of the first serving cell and the second serving cell is not
  • the sum of the number of uplink subframes included in the first uplink subframe set and the number of uplink subframes included in the second uplink subframe set is equal to the number of one radio frame, and the uplink subframe included in the first uplink subframe set.
  • the uplink subframe included in the second uplink subframe set corresponds to a different subframe in the radio frame.
  • the PUCCH is carried on the second serving cell of the UE, and the downlink control information in the DCI format of the downlink control channel is controlled by the transmit power control TPC.
  • the command field indicates the PUCCH resource of the PUCCH.
  • the base station may indicate the PUCCH resource of the PUCCH by using the transmit power control TPC command field in the downlink control information DCI format of the downlink control channel in step 201, and then use the PUCCH resource to uplink.
  • the subframe N+4 receives the hybrid automatic repeat acknowledgement message corresponding to the downlink control channel on the PUCCH.
  • the PUCCH is carried on the first serving cell of the UE, and the downlink control information in the downlink control channel in step 201 is the transmit power control TPC in the DCI format.
  • the command field may be used by the UE to determine the transmit power of the PUCCH, and the base station may indicate the transmit power of the PUCCH according to the transmit power control TPC command field in the downlink control information DCI format of the downlink control channel.
  • the duplex mode of the first serving cell and the second serving cell are different.
  • the second uplink subframe set is The uplink subframe included in the uplink subframe corresponding to the first serving cell in the radio frame, and the uplink subframe included in the first uplink subframe set corresponds to the uplink subframe included in the second uplink subframe set in the radio frame. Uplink subframe.
  • the uplink subframe included in the first uplink subframe set corresponds to the uplink subframe of the first serving cell in one radio frame
  • the uplink subframe included in the second uplink subframe set corresponds to other uplink subframes in the radio frame except the uplink subframe included in the first uplink subframe set.
  • the second serving cell may be the FDD secondary serving cell with the smallest cell index of the UE, and the second serving cell may also be the higher layer signaling in the secondary serving cell of the UE.
  • the indicated secondary serving cell may be a secondary serving cell for transmitting a PUCCH indicated by higher layer signaling in the secondary serving cell of the UE, that is, a secondary serving cell indicated by the base station in the serving cell of the UE for transmitting the PUCCH.
  • the sum of the number of uplink subframes included in the first uplink subframe set and the number of uplink subframes included in the second uplink subframe set may be 10, when the first serving cell is dual Work The mode is TDD, and when the duplex mode of the second serving cell is frequency division duplex FDD, the uplink subframe included in the second uplink subframe set corresponds to the uplink subframe of the first serving cell in one radio frame, and the first uplink sub-frame The uplink subframe included in the frame set corresponds to the remaining uplink subframes in one radio frame, that is, the uplink subframes in the radio frame except the uplink subframe included in the second uplink subframe set.
  • FIG. 2 is a schematic diagram of the PUCCH transmission mechanism in the present invention, where the UE is in When the first serving cell is an uplink subframe, the PUCCH is transmitted on the first serving cell, and when the first serving cell is a downlink subframe, the PUCCH is transmitted on the second serving cell, and the second uplink subframe set is one.
  • An uplink subframe corresponding to the first serving cell in the radio frame (a subframe marked by a vertical line in a radio subframe corresponding to the first serving cell in FIG.
  • the base station sends a downlink control channel in the downlink subframe N, and receives the hybrid automatic retransmission acknowledgement corresponding to the downlink control channel in the uplink subframe N+4, when the uplink subframe N+4 belongs to different uplinks.
  • the PUCCH is carried on different serving cells.
  • the PUCCH is carried on the second serving cell of the UE, and when the uplink subframe N+4 belongs to the first
  • the PUCCH is carried on the first serving cell, thereby solving the problem of how the HARQ-ACK is transmitted in the FDD and TDD carrier aggregation scenarios.
  • the PUCCH is carried on the second serving cell of the UE, and when the uplink subframe N+4 belongs to the second uplink subframe set, the PUCCH is carried in the first On the serving cell, each subframe can be fed back to the HARQ-ACK, so that all downlink subframes on the FDD carrier have corresponding uplink subframes that feed back HARQ-ACK, improve resource utilization, and do not change the HARQ-ACK of the FDD carrier. timing.
  • the other advantageous effects of the embodiment of the present invention are the same as those of Embodiment 1, and are not described herein again.
  • Embodiment 3 is a flowchart of Embodiment 3 of a method for transmitting uplink control information according to the present invention.
  • the difference between this embodiment and the embodiment shown in FIG. 2 is that the PUCCH can be transmitted only on the secondary serving cell of the UE.
  • the duplex mode of the secondary serving cell is FDD.
  • the solution of this embodiment is specifically described below.
  • the method in this embodiment may include:
  • Step 301 The UE receives a downlink control channel in the downlink subframe N, where the downlink control channel is carried on the first serving cell of the UE, and the duplex mode of the first serving cell is a time division duplex TDD.
  • the downlink control channel may be a physical downlink control channel PDCCH or an enhanced physical downlink control channel EPDCCH, where the downlink control channel may be used to indicate a physical downlink shared channel PDSCH transmission carried on the first serving cell, or may be Used to indicate downlink semi-persistent scheduling SPS release.
  • the step may further include: the UE receiving, in the downlink subframe N, the PDSCH carried on the second serving cell of the UE, where the duplex mode of the second serving cell is a frequency division duplex FDD.
  • Step 302 The UE determines, according to the downlink control information DCI format of the downlink control channel, a physical uplink control channel PUCCH resource.
  • the UE determines the resource of the physical uplink control channel PUCCH according to the downlink control information DCI format of the downlink control channel, and may have the following two implementation manners:
  • Manner 1 The UE determines the physical uplink control channel PUCCH resource according to the downlink allocation indication DAI in the DCI format of the downlink control channel.
  • the UE determines the physical uplink control channel PUCCH resource according to the downlink allocation indication DAI in the downlink control information DCI format of the downlink control channel, that is, the downlink allocation indication DAI in the downlink control information DCI format of the downlink control channel from the upper layer.
  • One of the four PUCCH resources configured by the signaling is determined to be one PUCCH resource, and the physical resource block PRB corresponding to the four PUCCH resources configured by the high-level signaling is located on the second serving cell of the UE.
  • the HARQ-ACK timing of the TDD may be the HARQ-ACK of the FDD.
  • the DAI field in the DCI format can thus be reused to indicate PUCCH resources.
  • the domain in the existing DCI format can be better utilized to improve resource utilization.
  • the downlink control channel is carried on the first serving cell, and the corresponding PUCCH is carried on the second serving cell. Therefore, the UE cannot calculate the PUCCH resource implicitly according to the resource of the downlink control channel.
  • the indication of the PUCCH resource is performed by using the DAI in the DCI format, so that the UE can feed back the HARQ-ACK, and can be restored by using other users.
  • the PUCCH resource utilization rate is improved.
  • the TPC originally used to indicate the PUCCH resource can be released, so that the TPC can be obtained under any circumstances, and the power control efficiency of the PUCCH is improved.
  • Manner 2 The UE determines a physical uplink control channel PUCCH resource according to a transmit power control TPC command in a downlink control information DCI format of the downlink control channel.
  • the UE indicates the PUCCH resource carried on the second serving cell (secondary serving cell) by using the TPC command in the DCI format corresponding to the first serving cell (the primary serving cell);
  • the TPC command in the corresponding DCI format of the serving cell is used to indicate a transmit power control command of the PUCCH resource.
  • the step may further include: the UE is configured according to the DCI format of the downlink control channel corresponding to the PDSCH carried on the second serving cell.
  • the TPC command field determines the transmit power of the PUCCH.
  • Step 303 The UE sends a hybrid automatic retransmission acknowledgment corresponding to the downlink control channel by using the PUCCH in the uplink subframe N+4, where the PUCCH is carried on the second serving cell of the UE, and the duplex mode of the second serving cell is frequency division double FDD.
  • the UE feeds back, according to the PUCCH resource, the hybrid automatic retransmission acknowledgment corresponding to the downlink control channel in the uplink subframe N+4, where the downlink control channel can be used to indicate the physical downlink sharing carried on the first serving cell.
  • the channel PDSCH transmission may be used to indicate the downlink semi-persistent scheduling SPS release.
  • the hybrid automatic retransmission acknowledgement corresponding to the downlink control channel is specifically a hybrid of the PDSCH corresponding to the downlink control channel.
  • the automatic retransmission acknowledgement when the downlink control channel is used to indicate the downlink semi-persistent scheduling SPS release, the hybrid automatic retransmission acknowledgement corresponding to the downlink control channel is specifically the hybrid automatic corresponding to the downlink control channel that indicates the downlink semi-persistent scheduling SPS release. Retransmission confirmation.
  • the step may further include: the UE sends the bearer to the second service by using the PUCCH in the uplink subframe N+4.
  • the first serving cell is the primary serving cell of the UE
  • the second serving cell is the secondary serving cell of the UE.
  • the second serving cell is the FDD secondary serving cell with the smallest cell index of the UE, or the second serving cell is the secondary serving cell for transmitting the PUCCH indicated by the higher layer signaling, that is, the second serving cell is the user equipment.
  • Which secondary serving cell in the secondary serving cell can be indicated by a higher layer.
  • the PUCCH is sent on the secondary serving cell (ie, the second serving cell) in the duplex mode, so that the UE is all Both the FDD serving cell and the TDD serving cell can perform HARQ-ACK feedback according to the existing HARQ-ACK timing of the FDD serving cell.
  • all the downlink subframes on the FDD carrier have corresponding uplink subframes that feed back HARQ-ACK, improve resource utilization, and do not change the HARQ-ACK timing of the FDD carrier; on the other hand, reduce the TDD serving cell.
  • the HARQ-ACK bundling on the network reduces the RTT delay of the TDD serving cell.
  • the secondary serving cell may be activated or deactivated after being configured to the UE, but the primary serving cell may not be deactivated after being configured to the UE. If a secondary serving cell is deactivated, the uplink of the secondary serving cell does not transmit a signal.
  • the second serving cell that carries the PUCCH is the secondary serving cell, and if the secondary serving cell that transmits the PUCCH is deactivated, the PUCCH cannot be transmitted on the secondary serving cell, and the primary of the UE is affected.
  • the scheduling of the PDSCH of the serving cell in order to solve this problem, can be as follows:
  • Method 1 The second serving cell (secondary serving cell) for transmitting the PUCCH cannot be deactivated.
  • the secondary serving cell cannot be deactivated.
  • Method 2 If the user equipment receives the deactivation signaling in the downlink subframe N, the UE stops transmitting the PUCCH on the second serving cell after the subframe N+K, and the value of the K is greater than or equal to 8;
  • the second serving cell may be that the UE receives the deactivation signaling in the downlink subframe N, and the UE transmits the PUCCH on the third serving cell after the subframe N+K, where the third serving cell is the secondary serving cell of the UE.
  • the duplex mode of the third serving cell is FDD, and the third serving cell is an activated serving cell, and the value of the K is greater than or equal to 8;
  • the UE determines, according to the deactivation signaling received in the subframe N, which secondary serving cells in the secondary serving cell corresponding to the UE are currently in an active state, and are activated from these.
  • the secondary serving cell that carries the PUCCH is determined in the serving cell of the state, so that the problem that the primary serving cell PDSCH cannot be scheduled before the new bearer PUCCH secondary serving cell is determined is ensured, and the transmission of the primary serving cell is guaranteed.
  • Method 3 If the user equipment only receives the PDSCH carried on the primary serving cell, the UE sends the PUCCH on the primary serving cell; if the user equipment receives the PDSCH on the secondary serving cell, The UE sends a PUCCH on the secondary serving cell;
  • the secondary serving cell is an FDD serving cell, and the secondary serving cell is a FDD secondary serving cell with the smallest cell index, or the secondary serving cell is a secondary serving cell for transmitting PUCCH indicated by higher layer signaling.
  • the base station can only schedule on the primary serving cell.
  • the UE feeds back the HARQ-ACK of the primary serving cell through the PUCCH on the primary serving cell, thereby avoiding the impact of the secondary serving cell carrier deactivation.
  • step 303 can include the steps of the third method in a step.
  • the UE receives the downlink control channel sent by the base station in the downlink subframe N, and the downlink channel is carried on the first serving cell of the UE, and sends the downlink control to the base station by using the PUCCH on the second serving cell in the uplink subframe N+4.
  • the hybrid automatic retransmission acknowledgement message corresponding to the channel, the duplex mode of the first serving cell is time division duplex TDD, and the duplex mode of the second serving cell is frequency division duplex FDD.
  • FIG. 5 is a flowchart of Embodiment 4 of a method for transmitting uplink control information according to the present invention.
  • Embodiment 3 provides a method for transmitting uplink control information from a UE side. This embodiment describes the transmission method from a base station side. As shown in FIG. 5, the method provided in this embodiment includes the following steps:
  • Step 401 The base station sends a downlink control channel in the downlink subframe N, where the downlink control channel is carried on the first serving cell of the UE, and the duplex mode of the first serving cell is a time division duplex TDD.
  • the downlink control channel may be a physical downlink control channel (PDCCH) or an enhanced physical downlink control channel (EPDCCH), and the downlink control channel may be used to indicate a physical downlink shared channel (PDSCH) transmission on the first serving cell, or may be used to indicate a downlink half. Continuous scheduling of SPS release.
  • PDCCH physical downlink control channel
  • EPDCCH enhanced physical downlink control channel
  • the downlink allocation indication DAI or the transmit power control TPC command in the downlink control information DCI format of the downlink control channel may be used to indicate the physical uplink control channel PUCCH resource, or may be the downlink control information of the base station through the downlink control channel.
  • the predefined domain in the DCI format indicates a physical uplink control channel PUCCH resource; the predefined domain may indicate DAI for downlink allocation Or transmit power control TPC commands, correspondingly, the steps can be as follows:
  • the base station sends a downlink control channel to the UE in the downlink subframe N, where the physical downlink shared channel PDSCH corresponding to the downlink control channel is carried on the first serving cell, or the downlink control channel is carried on the first serving cell and the downlink is
  • the control channel is a downlink control channel indicating that the downlink semi-persistent scheduling SPS is released, the first serving cell is a serving cell of the UE, and the duplex mode of the first serving cell is a time division duplex TDD, and the downlink control channel is downlink controlled.
  • the downlink allocation indication DAI in the information DCI format indicates the physical uplink control channel PUCCH resource;
  • the HARQ-ACK timing of the TDD may be the HARQ-ACK of the FDD.
  • the DAI field in the DCI format can thus be reused to indicate PUCCH resources.
  • the domain in the existing DCI format can be better utilized to improve resource utilization.
  • the downlink control channel is carried on the first serving cell, and the corresponding PUCCH is carried on the second serving cell. Therefore, the UE cannot calculate the PUCCH resource implicitly according to the resource of the downlink control channel.
  • the indication of the PUCCH resource is performed by using the DAI in the DCI format, so that the UE can feed back the HARQ-ACK, and can be restored by using other users.
  • the PUCCH resource utilization rate is improved.
  • the TPC originally used to indicate the PUCCH resource can be released, so that the TPC can be obtained under any circumstances, and the power control efficiency of the PUCCH is improved.
  • the base station sends a downlink control channel to the UE in the downlink subframe N, where the physical downlink shared channel PDSCH corresponding to the downlink control channel is carried on the first serving cell, or the downlink control channel is carried on the first serving cell and the downlink is
  • the control channel is a downlink control channel indicating that the downlink semi-persistent scheduling SPS is released, the first serving cell is a serving cell of the UE, and the duplex mode of the first serving cell is a time division duplex TDD, and the downlink control channel is downlink controlled.
  • the transmit power control TPC command in the information DCI format indicates the physical uplink control channel PUCCH resource.
  • the base station indicates the PUCCH resource carried on the second serving cell (secondary serving cell) by using the TPC command in the DCI format corresponding to the first serving cell (the primary serving cell);
  • the TPC command in the corresponding DCI format of the serving cell may be used to indicate a transmit power control command of the PUCCH resource.
  • the step 401 may further include: the base station transmitting, to the user equipment, the PDSCH on the second serving cell of the UE in the downlink subframe N, where the duplex mode of the second serving cell is frequency division duplex FDD.
  • the method further includes: the base station indicating, by using a TPC command field in a DCI format of a downlink control channel corresponding to the PDSCH of the second serving cell, a transmit power of the PUCCH.
  • Step 402 The base station receives, in the uplink subframe N+4, the hybrid automatic retransmission acknowledgment corresponding to the downlink control channel sent by the UE through the PUCCH according to the PUCCH resource, where the PUCCH is carried on the second serving cell of the UE, and the second The duplex mode of the serving cell is frequency division duplex FDD.
  • the hybrid automatic retransmission acknowledgement corresponding to the downlink control channel is specifically a hybrid automatic retransmission acknowledgement of the PDSCH corresponding to the downlink control channel, and the downlink control channel is used to indicate the downlink semi-continuous
  • the hybrid automatic retransmission acknowledgement corresponding to the downlink control channel is specifically the hybrid automatic retransmission acknowledgement corresponding to the downlink control channel that indicates the downlink semi-persistent scheduling SPS release.
  • the step 402 is further The method further includes: the base station receiving, in the uplink subframe N+4, the HARQ-ACK of the PDSCH that is sent by the UE on the second serving cell by using the PUCCH according to the PUCCH resource.
  • the first serving cell is the primary service of the UE.
  • the second serving cell is a secondary serving cell of the UE.
  • the second serving cell is an FDD secondary serving cell with the smallest cell index of the UE, or the second serving cell is a secondary serving cell indicated by the base station for transmitting the PUCCH.
  • the base station may indicate, by using RRC signaling, that the user transmits the PUCCH. Second serving cell.
  • the PUCCH is sent on the secondary serving cell (ie, the second serving cell) in the duplex mode, so that the UE is all Both the FDD serving cell and the TDD serving cell can perform HARQ-ACK feedback according to the existing HARQ-ACK timing of the FDD serving cell.
  • all the downlink subframes on the FDD carrier have corresponding uplink subframes that feed back HARQ-ACK, improve resource utilization, and do not change the HARQ-ACK timing of the FDD carrier; on the other hand, reduce the TDD serving cell.
  • the HARQ-ACK bundling on the network reduces the RTT delay of the TDD serving cell.
  • the base station sends a downlink control channel to the user equipment UE in the downlink subframe N, where the downlink control channel is carried on the first serving cell of the UE, and the duplex mode of the first serving cell is time division duplex
  • the downlink allocation indication DAI or the transmit power control TPC command in the DCI format of the downlink control information of the downlink control channel is used to indicate the physical uplink control channel PUCCH.
  • the base station receives, in the uplink subframe N+4, the hybrid automatic retransmission acknowledgment corresponding to the downlink control channel that is sent by the UE through the PUCCH according to the PUCCH resource, where the PUCCH is carried by the UE.
  • the duplex mode of the second serving cell is frequency division duplex FDD.
  • FIG. 6 is a flowchart of Embodiment 5 of a method for transmitting uplink control information according to the present invention.
  • a PUCCH may be transmitted on a primary serving cell and a secondary serving cell of a UE.
  • the primary serving cell is an uplink subframe
  • the UE is in the primary.
  • the PUCCH is transmitted on the serving cell.
  • the primary serving cell is a downlink subframe
  • the user equipment transmits the PUCCH on the secondary serving cell.
  • the method provided in this embodiment includes the following steps:
  • Step 501 The UE receives a downlink control channel in the downlink subframe N, where the downlink control channel is carried on the first serving cell of the UE.
  • the UE receives the downlink control channel that is carried on the first serving cell, where the downlink control channel is a physical downlink control channel PDCCH or an enhanced physical downlink control channel (EPDCCH), and the downlink control channel can be used to indicate that the bearer is in the first service.
  • Physical downlink shared channel PDSCH transmission on the cell or may be used to indicate downlink semi-persistent scheduling SPS release.
  • the downlink control information DCI format of the downlink control channel may be one or more of DCI format 1, DCI format 1A, DCI format 1B, DCI format 1D, DCI format 2A, DCI format 2B, DCI format 2C, and DCI format 2D.
  • the first serving cell is a serving cell corresponding to the UE.
  • the step may further include that the UE receives the PDSCH carried on the second serving cell of the UE in the downlink subframe N.
  • Step 502 The UE determines a physical uplink control channel PUCCH resource according to a DCI format of the downlink control channel.
  • the UE determines the physical uplink control channel PUCCH resource according to the DCI format of the downlink control channel carried in the first serving cell in step 1.
  • the UE determines the physical uplink control according to the transmit power control TPC command field in the downlink control information DCI format of the downlink control channel.
  • Channel PUCCH resource Step 503: The UE determines, according to a DCI format of the downlink control channel, a transmit power of a physical uplink control channel PUCCH.
  • the UE determines the transmit power of the physical uplink control channel PUCCH according to the DCI format of the downlink control channel carried in the first serving cell in step 1.
  • the UE determines the transmit power of the PUCCH according to the transmit power control TPC command field in the downlink control information DCI format of the downlink control channel.
  • the first serving cell and the second serving cell are both serving cells of the UE, and the duplex mode of the first serving cell and the second serving cell are different. Steps 502 and 503 are different for the same uplink subframe.
  • the duplex mode of the second serving cell is frequency division duplex FDD
  • the second service is used.
  • the cell is the FDD secondary serving cell with the smallest cell index of the UE.
  • the duplex mode of the second serving cell is frequency division duplex FDD
  • the second serving cell is more The secondary serving cell for transmitting the PUCCH indicated by the high layer signaling, that is, which secondary serving cell of the secondary serving cell of the user equipment is indicated by a higher layer.
  • Step 504 The UE sends a hybrid automatic retransmission acknowledgement corresponding to the downlink control channel to the base station by using the PUCCH according to the PUCCH resource or the transmit power of the PUCCH.
  • the hybrid automatic retransmission acknowledgement corresponding to the downlink control channel is specifically a hybrid automatic retransmission acknowledgement of the PDSCH corresponding to the downlink control channel, and the downlink control channel is used to indicate the downlink semi-continuous
  • the hybrid automatic retransmission acknowledgement message corresponding to the downlink control channel is specifically a hybrid automatic retransmission acknowledgement corresponding to the downlink control channel indicating the downlink semi-persistent scheduling SPS release.
  • the user equipment UE receives the downlink control channel in the downlink subframe N, the downlink control channel is carried on the first serving cell of the UE, and the downlink control channel is the physical downlink control channel PDCCH or enhanced.
  • the physical downlink control channel EPDCCH when the hybrid automatic retransmission acknowledgement corresponding to the downlink control channel is carried on the second serving cell of the UE, the UE is configured according to the downlink control information in the downlink control information DCI format a transmit power control TPC command field determines a physical uplink control channel PUCCH resource; and when the downlink control channel pair
  • the UE determines a transmit power of the PUCCH according to a transmit power control TPC command field in a downlink control information DCI format of the downlink control channel, where The duplex mode of the first serving cell and the second serving cell are different; the UE sends the hybrid automatic weight corresponding to the downlink control channel by using the PUCCH according to
  • the above method solves the problem of how to transmit HARQ-ACK in different duplex mode carrier aggregation, and solves the problem of how to transmit HARQ-ACK in the scenario of FDD and TDD carrier aggregation, so that all downlink subframes on the FDD carrier have corresponding Feedback of the uplink subframe of the HARQ-ACK improves resource utilization without changing the HARQ-ACK timing of the FDD carrier.
  • Embodiment 7 is a flowchart of Embodiment 6 of a method for transmitting uplink control information according to the present invention.
  • the description of the method for transmitting the uplink control information is performed on the UE side.
  • the description is performed on the base station side.
  • the method provided in this embodiment includes the following steps:
  • Step 601 The base station sends a downlink control channel to the user equipment UE in the downlink subframe N, where the downlink channel is carried on the first serving cell of the UE.
  • the base station sends a downlink control channel to the UE on the first serving cell, where the downlink control channel is a physical downlink control channel PDCCH or an enhanced physical downlink control channel EPDCCH, where the downlink control channel is used to indicate the indication physical carried on the first serving cell.
  • the downlink shared channel PDSCH transmission is used to indicate the downlink semi-persistent scheduling SPS release, and the first serving cell is a serving cell corresponding to the user equipment.
  • the downlink control information DCI format of the downlink control channel may be one or more of DCI format 1, DCI format 1A, DCI format 1B, DCI format 1D, DCI format 2A, DCI format 2B, DCI format 2C, and DCI format 2D.
  • Step 602 The base station indicates a physical uplink control channel PUCCH resource by using a DCI format of the downlink control channel.
  • the base station indicates the physical uplink control channel PUCCH resource by using the DCI format of the downlink control channel in step 601;
  • the base station When the hybrid automatic retransmission acknowledgment corresponding to the downlink control channel is carried on the second serving cell of the UE, the base station indicates the physical uplink control channel PUCCH resource by using the transmit power control TPC command field in the downlink control information DCI format of the downlink control channel. .
  • Step 603 The base station indicates, by using a DCI format of the downlink control channel, a transmit power of the physical uplink control channel PUCCH.
  • the base station indicates the transmit power of the physical uplink control channel PUCCH by using the DCI format of the downlink control channel in step 601;
  • the base station When the hybrid automatic retransmission acknowledgement corresponding to the downlink control channel is carried on the first serving cell, the base station indicates the transmit power of the PUCCH by using the transmit power control TPC command field in the DCI format of the downlink control channel.
  • the first serving cell and the second serving cell are both serving cells corresponding to the UE, and the duplex mode of the first serving cell and the second serving cell are different.
  • the duplex mode of the first serving cell is time division duplex TDD
  • the duplex mode of the second serving cell is frequency division duplex FDD
  • the second serving cell is the cell of the UE.
  • the FDD secondary serving cell with the smallest index.
  • the duplex mode of the second serving cell is frequency division duplex FDD
  • the second serving cell is each of the UE.
  • a secondary serving cell for transmitting a PUCCH indicated by higher layer signaling in the secondary serving cell, or the second serving cell is a secondary serving cell indicated by the base station for transmitting the PUCCH.
  • Step 604 The base station receives the hybrid automatic retransmission acknowledgement corresponding to the downlink control channel sent by the UE according to the PUCCH resource.
  • the hybrid automatic retransmission acknowledgement corresponding to the downlink control channel is specifically a hybrid automatic retransmission acknowledgement of the PDSCH corresponding to the downlink control channel, and the downlink control channel is used to indicate the downlink semi-continuous
  • the hybrid automatic retransmission acknowledgement message corresponding to the downlink control channel is specifically a hybrid automatic retransmission acknowledgement corresponding to the downlink control channel indicating the downlink semi-persistent scheduling SPS release.
  • the method provided in this embodiment solves the problem of how to transmit the HARQ-ACK in the case of carrier aggregation in different duplex modes, and solves the problem of how the HARQ-ACK is transmitted in the FDD and TDD carrier aggregation scenarios, so that all downlink subframes on the FDD carrier are obtained. There are corresponding uplink subframes for feeding back HARQ-ACK, which improves resource utilization without changing the HARQ-ACK timing of the FDD carrier.
  • FIG. 8 is a schematic structural diagram of Embodiment 1 of a user equipment according to the present invention.
  • the user equipment provided in this embodiment includes: a receiving module 71 and a sending module 72.
  • the receiving module 71 is configured to receive, in the downlink subframe N, a downlink control channel that is sent by the base station, where the downlink control channel is carried on the first serving cell of the UE;
  • the sending module 72 is configured to send, by using the physical uplink control channel PUCCH, the hybrid automatic retransmission acknowledgement corresponding to the downlink control channel to the base station in the uplink subframe N+4, when the uplink subframe N+4 belongs to the first
  • the PUCCH is carried on the second serving cell of the UE, and when the uplink subframe N+4 belongs to the second uplink subframe set, the PUCCH is carried on the first serving cell, where the first serving cell and the first serving cell The duplex mode of the two serving cells is different.
  • the sum of the number of uplink subframes included in the first uplink subframe set and the number of uplink subframes included in the second uplink subframe set is equal to the number of one radio frame, and the first uplink subframe
  • the uplink subframe included in the frame set and the uplink subframe included in the second uplink subframe set correspond to different subframes in the radio frame.
  • the downlink control channel when the downlink control channel is the physical downlink control channel PDCCH or the enhanced physical downlink control channel EPDCCH, the downlink control channel is used to indicate the physical downlink shared channel PDSCH transmission carried on the first serving cell, or is used to indicate the downlink.
  • the hybrid automatic retransmission acknowledgement corresponding to the downlink control channel is specifically a hybrid automatic retransmission acknowledgement of the PDSCH corresponding to the downlink control channel, and the downlink control channel is used to indicate the SPS
  • the hybrid automatic retransmission acknowledgement corresponding to the downlink control channel is specifically a hybrid automatic retransmission acknowledgement corresponding to the downlink control channel indicating the SPS release.
  • the first serving cell and the second serving cell jointly serve the UE, but the duplex mode of the first serving cell and the second serving cell are different.
  • the duplex mode of the first serving cell is time division duplex TDD
  • the duplex mode of the second serving cell is frequency division duplex FDD
  • the uplink subframe included in the second uplink subframe set corresponds to the first service in one radio frame.
  • the uplink subframe of the cell, the uplink subframe included in the first uplink subframe set corresponds to other uplink subframes in the radio frame except the uplink subframe included in the second uplink subframe set.
  • the uplink subframe included in the first uplink subframe set corresponds to the uplink subframe of the first serving cell in one radio frame
  • the uplink subframe included in the second uplink subframe set corresponds to other uplink subframes in the radio frame except the uplink subframe included in the first uplink subframe set.
  • the user equipment provided in this embodiment may further include: an acquiring module, configured to acquire a PUCCH resource and/or a PUCCH transmit power of the PUCCH.
  • the acquiring module is specifically configured to: determine, according to the downlink control information of the downlink control channel, the transmit power control TPC command field in the DCI format to determine the PUCCH resource.
  • the acquiring module is specifically configured to: determine, according to the downlink control information of the downlink control channel, the transmit power control TPC command field in the DCI format to determine the PUCCH transmit power.
  • FIG. 9 is a schematic structural diagram of Embodiment 1 of a base station according to the present invention.
  • the base station provided in this embodiment includes: a sending module 81, and a receiving module 82.
  • the sending module 81 is configured to send, in the downlink subframe N, a downlink control channel to the user equipment UE, where the downlink control channel is carried on the first serving cell of the UE;
  • the receiving module 82 is configured to receive, by using the physical uplink control channel, the UE in the uplink subframe N+4.
  • the hybrid automatic retransmission acknowledgment corresponding to the downlink control channel sent by the PUCCH when the uplink subframe N+4 belongs to the first uplink subframe set, the PUCCH is carried on the second serving cell of the UE, when the uplink subframe N+4 belongs to the
  • the PUCCH is carried on the first serving cell, where the duplex mode of the first serving cell and the second serving cell are different, and the number of uplink subframes included in the first uplink subframe set and the second uplink
  • the sum of the number of uplink subframes included in the subframe set is equal to the number of one radio frame, and the uplink subframe included in the first uplink subframe set and the uplink subframe included in the second uplink subframe set correspond to different subframes in the radio frame. frame.
  • the downlink control channel is a physical downlink control channel PDCCH or an enhanced physical downlink control channel (EPDCCH), and the downlink control channel is used to indicate a physical downlink shared channel (PDSCH) transmission on the first serving cell, or is used to indicate a downlink half. Continuous scheduling of SPS release.
  • the hybrid automatic retransmission acknowledgement corresponding to the downlink control channel is specifically a hybrid automatic retransmission acknowledgement of the PDSCH corresponding to the downlink control channel, and when the downlink control channel is used to indicate the SPS release, the downlink control channel is used.
  • the corresponding hybrid automatic retransmission acknowledgement is specifically a hybrid automatic retransmission acknowledgement corresponding to the downlink control channel indicating the SPS release.
  • the duplex mode of the first serving cell and the second serving cell are different.
  • the duplex mode of the first serving cell is time division duplex TDD
  • the duplex mode of the second serving cell is frequency division duplex FDD
  • the uplink subframe included in the second uplink subframe set corresponds to the uplink subframe of the first serving cell in one radio frame
  • the uplink subframe in the first uplink subframe set includes the second uplink subframe set in the corresponding radio frame.
  • the uplink subframe included in the first uplink subframe set corresponds to the uplink subframe of the first serving cell in one radio frame
  • the uplink subframe included in the second uplink subframe set corresponds to other uplink subframes in the radio frame except the uplink subframe included in the first uplink subframe set.
  • FIG. 10 is a schematic structural diagram of Embodiment 2 of a user equipment according to the present invention.
  • the user equipment provided in this embodiment includes: a receiving module 91 and a sending module 92.
  • the receiving module 91 is configured to receive a downlink control channel in the downlink subframe N, where the downlink control channel is carried on the first serving cell of the UE, and the duplex mode of the first serving cell is a time division duplex TDD;
  • the hybrid automatic retransmission acknowledgment corresponding to the downlink control channel is sent by using the physical uplink control channel PUCCH in the uplink subframe N+4, where the PUCCH is carried on the second serving cell of the UE, and the duplex mode of the second serving cell is frequency division.
  • Duplex FDD Duplex FDD.
  • the downlink control channel is a physical downlink control channel PDCCH or an enhanced physical downlink control channel (EPDCCH), and the downlink control channel is used to indicate a physical downlink shared channel (PDSCH) transmission on the first serving cell, or is used to indicate a downlink half. Continuous scheduling of SPS release.
  • the hybrid automatic retransmission acknowledgement corresponding to the downlink control channel is specifically a hybrid automatic retransmission acknowledgement of the PDSCH corresponding to the downlink control channel, and when the downlink control channel is used to indicate the SPS release, the downlink control channel is used.
  • the corresponding hybrid automatic retransmission acknowledgement is specifically a hybrid automatic retransmission acknowledgement corresponding to the downlink control channel indicating the SPS release.
  • the user equipment in this embodiment may further include: an obtaining module, configured to acquire a PUCCH resource of the PUCCH.
  • the obtaining module is specifically configured to: determine, according to the downlink control information of the downlink control channel, the downlink allocation indication DAI or the transmit power control TPC command in the DCI format to determine the PUCCH resource.
  • the first serving cell may be a primary serving cell of the UE, and the second serving cell is a secondary serving cell of the UE.
  • the second serving cell may be the FDD secondary serving cell with the smallest cell index of the UE, or the second serving cell is the secondary serving cell for transmitting the PUCCH indicated by the higher layer signaling.
  • the user equipment provided in this embodiment may be used to implement the technical solution in the third embodiment of the method, and the specific implementation manners and technical effects are similar, and details are not described herein again.
  • FIG. 11 is a schematic structural diagram of Embodiment 2 of a base station according to the present invention.
  • the base station provided in this embodiment includes: a sending module 11 and a receiving module 12.
  • the sending module 11 is configured to send a downlink control channel to the user equipment UE in the downlink subframe N, where the downlink control channel is carried on the first serving cell of the UE, and the duplex mode of the first serving cell is time division duplex TDD, downlink
  • the downlink control information in the DCI format of the control channel indicates that the DAI or the transmit power control TPC command is used to indicate the physical uplink control channel PUCCH resource.
  • the receiving module 12 is configured to receive the UE according to the PUCCH resource in the uplink subframe N+4.
  • the hybrid automatic retransmission acknowledgement corresponding to the downlink control channel sent by the PUCCH, where the PUCCH is carried on the second serving cell of the UE, and the duplex mode of the second serving cell is the frequency division duplex FDD.
  • the downlink control channel is a physical downlink control channel PDCCH or an enhanced physical downlink control channel (EPDCCH), and the downlink control channel is used to indicate a physical downlink shared channel (PDSCH) transmission on the first serving cell, or is used to indicate a downlink half. Continuous scheduling of SPS release.
  • the hybrid automatic retransmission acknowledgement corresponding to the downlink control channel is specifically a hybrid automatic retransmission acknowledgement of the PDSCH corresponding to the downlink control channel, and when the downlink control channel is used to indicate the SPS release, the downlink control channel is used.
  • the corresponding hybrid automatic retransmission acknowledgement is specifically a hybrid automatic retransmission acknowledgement corresponding to the downlink control channel indicating the SPS release.
  • the first serving cell may be a primary serving cell of the UE, and the second serving cell is
  • the secondary serving cell of the UE is the FDD secondary serving cell with the smallest cell index of the UE, or the second serving cell is the secondary serving cell used by the base station to transmit the PUCCH indicated by the higher layer signaling.
  • the base station provided in this embodiment may be used to implement the technical solution in the fourth embodiment of the method, and the specific implementation manners and technical effects are similar, and details are not described herein again.
  • FIG. 12 is a schematic structural diagram of Embodiment 3 of a user equipment according to the present invention.
  • the user equipment in this embodiment includes: a receiving module 21, a determining module 22, and a sending module 23.
  • the receiving module 21 is configured to receive a downlink control channel in the downlink subframe N, where the downlink control channel is carried on the first serving cell of the UE, and the downlink control channel is a physical downlink control channel PDCCH or an enhanced physical downlink control channel EPDCCH.
  • the determining module 22 is configured to: when the hybrid automatic retransmission acknowledgment corresponding to the downlink control channel is carried on the second serving cell of the UE, the UE determines the physical uplink according to the transmit power control TPC command field in the downlink control information DCI format of the downlink control channel Controlling the PUCCH resource; when the hybrid automatic retransmission acknowledgement corresponding to the downlink control channel is carried on the first serving cell, the UE determines the transmit power of the PUCCH according to the transmit power control TPC command field in the downlink control information DCI format of the downlink control channel, The duplex mode of the first serving cell and the second serving cell are different.
  • the sending module 23 is configured to send, by using the PUCCH, the hybrid automatic retransmission acknowledgement corresponding to the downlink control channel according to the PUCCH resource or the transmit power of the PUCCH.
  • the downlink control channel is used to indicate the physical downlink shared channel PDSCH transmission carried on the first serving cell, or is used to indicate the downlink semi-persistent scheduling SPS release.
  • Downstream control When the downlink channel is used to indicate the SPS release, the downlink control channel corresponds to the downlink automatic control channel.
  • the hybrid automatic retransmission acknowledgement is specifically a hybrid automatic retransmission acknowledgement corresponding to the downlink control channel indicating the SPS release.
  • the first serving cell may be the primary serving cell of the UE, the duplex mode of the first serving cell is time division duplex TDD, and the duplex mode of the second serving cell is frequency division duplex FDD, and the second service is The cell is the FDD secondary serving cell with the smallest cell index of the UE.
  • the duplex mode of the first serving cell is time division duplex TDD
  • the duplex mode of the second serving cell is frequency division duplex FDD
  • the second serving cell is more A secondary serving cell indicated by the higher layer signaling for transmitting the PUCCH.
  • the user equipment provided in this embodiment can be used to implement the technical solution in the fifth embodiment of the method.
  • the specific implementation manner and technical effects are similar, and details are not described herein again.
  • FIG. 13 is a schematic structural diagram of Embodiment 3 of a base station according to the present invention.
  • the base station includes: a sending module 31, an indicating module 32, and a receiving module 33.
  • the sending module 31 is configured to send a downlink control channel to the user equipment UE in the downlink subframe N, where the downlink channel is carried on the first serving cell of the UE, and the downlink control channel is a physical downlink control channel PDCCH or an enhanced physical downlink control channel. EPDCCH.
  • the indication module 32 is configured to: when the hybrid automatic retransmission acknowledgment corresponding to the downlink control channel is carried on the second serving cell of the UE, use the transmit power control TPC command field in the downlink control information DCI format of the downlink control channel to indicate physical uplink control. a channel PUCCH resource; when the hybrid automatic retransmission acknowledgement corresponding to the downlink control channel is carried on the first serving cell, the transmit power control TPC command field in the downlink control information DCI format of the downlink control channel indicates the transmit power of the PUCCH, where The duplex mode of the first serving cell and the second serving cell are different.
  • the receiving module 33 is configured to receive, according to the PUCCH resource, a hybrid automatic retransmission acknowledgement corresponding to the downlink control channel sent by the UE.
  • the downlink control channel is used to indicate that the physical downlink shared channel PDSCH is transmitted on the first serving cell, or is used to indicate the release of the downlink semi-persistent scheduling SPS.
  • the hybrid automatic retransmission acknowledgement corresponding to the downlink control channel is specifically the PDSCH hybrid automatic retransmission acknowledgement corresponding to the downlink control channel, and the downlink control channel is used to indicate the downlink semi-persistent scheduling.
  • Downstream control when SPS is released The hybrid automatic retransmission acknowledgement corresponding to the channel is specifically a hybrid automatic retransmission acknowledgement corresponding to the downlink control channel indicating the downlink semi-persistent scheduling SPS release.
  • the first serving cell may be the primary serving cell of the UE, and the duplex mode of the first serving cell is time division duplex TDD, and the duplex mode of the second serving cell is frequency division duplex FDD, and the second The serving cell is an FDD secondary serving cell with the smallest cell index of the UE.
  • the duplex mode of the second serving cell is frequency division duplex FDD, and the second serving cell is more A secondary serving cell indicated by the higher layer signaling for transmitting the PUCCH.
  • the base station provided in this embodiment may be used to implement the technical solution in the sixth embodiment of the method, and the specific implementation manners and technical effects are similar, and details are not described herein again.
  • FIG. 14 is a flowchart of Embodiment 7 of a method for transmitting uplink control information according to the present invention. As shown in FIG. 14, the method provided in this embodiment includes the following steps:
  • Step 1401 The UE receives a downlink control channel that is carried on the first serving cell of the UE, where the downlink control channel is used to indicate PDSCH transmission on the second serving cell of the UE, where the duplex mode of the first serving cell is time division In the duplex aggregation mode of the second serving cell, the carrier aggregation in the frequency division duplexing mode is different. If the cross-carrier scheduling is configured for the user equipment, the PDSCH corresponding to the FDD serving cell is corresponding. The downlink control channel is carried on the TDD serving cell.
  • the HARQ-ACK corresponding to the multiple downlink subframes of the second serving cell corresponds to the first serving cell.
  • the downlink control channel received in the step 1401 corresponds to only one downlink.
  • the downlink control channel in this step may be a PDCCH or an EPDCCH.
  • Step 1402 The UE determines a physical uplink control channel PUCCH resource.
  • the UE determines the PUCCH resource, and may have the following implementation manners:
  • Manner 1 The UE determines the PUCCH resource according to the TPC command field in the DCI format of the downlink control channel carried on the first serving cell.
  • the step 1402 may further include: determining, by the UE, a transmit power of the PUCCH, where the UE determines the transmit power of the PUCCH according to the TPC command field in the DCI format of the downlink control channel with the DAI greater than 1 on the first serving cell;
  • This mode is applicable to the case when the HARQ-ACK timing of the second serving cell is performed according to the HARQ-ACK timing of the first serving cell.
  • the PUCCH resource is indicated by the TPC in the DCI format, and the PUCCH resource can be dynamically displayed, and the PUCCH resource can be statistically multiplexed with other users, thereby improving PUCCH resource utilization.
  • Manner 2 The UE determines the PUCCH resource according to higher layer signaling.
  • the UE determines the PUCCH resource according to the higher layer signaling, that is, the PUCCH resource is indicated by a higher layer, and the higher layer signaling may be a radio resource control (Radio Resource Control, RRC for short) signaling.
  • the PUCCH resource is semi-statically reserved.
  • the step 1402 may further include the UE determining the transmit power of the PUCCH, where the UE may determine the transmit power of the PUCCH according to the TPC command field in the DCI format of the downlink control channel carried on the first serving cell.
  • the PUCCH resource is reserved in a semi-static manner, and is applicable to any scenario, and the TPC of the PUCCH resource can be obtained forever, thereby improving the efficiency of power control.
  • Manner 3 The UE determines a PUCCH resource according to a predefined domain in a DCI format of a downlink control channel carried on the first serving cell;
  • the predefined domain may be a newly added domain in the DCI format, and the domain corresponds to 2-bit information.
  • the step 1402 may further include the UE determining the transmit power of the PUCCH, where the UE may be in accordance with the DCI format of the downlink control channel carried on the first serving cell.
  • the TPC command field in the medium determines the transmit power of the PUCCH;
  • the PUCCH resource is indicated by the TPC in the DCI format, and the PUCCH resource can be dynamically displayed, and the PUCCH resource can be statistically multiplexed with other users, thereby improving the PUCCH resource utilization rate. Suitable for any scene.
  • Manner 4 The UE determines a PUCCH resource according to a HARQ-ACK resource offset field in a DCI format of a downlink control channel carried on the first serving cell.
  • the fourth method is applicable when the downlink control channel is an EPDCCH.
  • the step 1402 may further include the UE determining the transmit power of the PUCCH, where the UE may determine the transmit power of the PUCCH according to the TPC command field in the DCI format of the downlink control channel carried on the first serving cell.
  • the PUCCH resource is indicated by the TPC in the DCI format, and the PUCCH resource can be dynamically displayed, and the PUCCH resource can be statistically multiplexed with other users, thereby improving PUCCH resource utilization.
  • Step 1403 The UE sends a HARQ-ACK of the PDSCH according to the PUCCH resource by using the PUCCH carried on the second serving cell of the UE.
  • the UE sends the HARQ-ACK of the PDSCH through the PUCCH carried on the second serving cell of the UE according to the PUCCH resource, that is, according to the PUCCH resource, according to the PUCCH transmission in the second serving cell of the UE, in the step 1401. HARQ-ACK of PDSCH.
  • the step may further be that the UE sends the HARQ-ACK of the PDSCH through the PUCCH carried on the second serving cell of the UE according to the PUCCH resource and the PUCCH transmission power.
  • the embodiment of the invention solves the problem of how to transmit HARQ-ACK under different duplex mode carrier aggregation, and solves the problem of how PUCCH resources are indicated in the case of cross-carrier scheduling. For example, in different duplex mode carrier aggregation, if cross-carrier scheduling is configured, and the serving cell carrying the downlink control channel corresponding to the PDSCH is different from the serving cell carrying the HARQ-ACK corresponding to the PDSCH, the UE cannot follow the downlink control. The resources of the channel implicitly calculate the resources of the PUCCH, therefore, how to indicate that the PUCCH resources need to be resolved.
  • Embodiment 8 is a flowchart of Embodiment 8 of a method for transmitting uplink control information according to the present invention.
  • This embodiment is a method for a base station side corresponding to the seventh embodiment. As shown in FIG. 15, the method provided in this embodiment includes the following steps:
  • Step 1501 The base station sends a downlink control channel to the UE on the first serving cell of the UE, where The downlink control channel is used to indicate the PDSCH transmission on the second serving cell of the UE.
  • the duplex mode of the first serving cell is time division duplex TDD
  • the duplex mode of the second serving cell is frequency division duplex FDD.
  • the base station sends a downlink control channel to the UE on the first serving cell of the UE in multiple downlink subframes, where the first downlink control channel is sent in the DCI format.
  • the HARQ-ACK is performed periodically, that is, according to the HARQ-ACK timing of the FDD serving cell, the step 1501 sends a downlink control channel to the UE on the first serving cell of the UE, and only receives the downlink control received in one downlink subframe. channel.
  • Step 1502 The base station indicates a physical uplink control channel PUCCH resource.
  • the base station indicates the PUCCH resource, and may have the following implementation manners: Mode 1: The base station indicates the PUCCH resource by using the TPC command field in the DCI format of the downlink control channel carried on the first serving cell.
  • the step 1502 may further include: indicating, by the base station, a transmit power of the PUCCH, where the specific base station indicates the transmit power of the PUCCH by using a TPC command field in a DCI format of a downlink control channel with a DAI greater than 1 on the first serving cell.
  • This mode is applicable to the case where the HARQ-ACK timing of the second serving cell is performed according to the HARQ-ACK timing of the first serving cell.
  • the PUCCH resource is indicated by the TPC in the DCI format, and the PUCCH resource can be dynamically displayed, and the PUCCH resource can be statistically multiplexed with other users, thereby improving PUCCH resource utilization.
  • the base station indicates the PUCCH resource by using high layer signaling.
  • the base station indicates the PUCCH resource by using the high layer signaling, and the high layer signaling may be the radio resource control RRC signaling.
  • the PUCCH resource is semi-statically reserved.
  • the step 1502 may further include: indicating, by the base station, the transmit power of the PUCCH, where the base station indicates the transmit power of the PUCCH by using a TPC command field in a DCI format of the downlink control channel carried on the first serving cell;
  • the PUCCH resource is reserved in a semi-static manner, and is applicable to any scenario, and the TPC of the PUCCH resource can be obtained forever, thereby improving the efficiency of power control.
  • Manner 3 The base station indicates the PUCCH resource by using a predefined domain in the DCI format of the downlink control channel carried on the first serving cell.
  • the predefined domain may be a newly added domain in the DCI format, and the domain corresponds to 2-bit information.
  • the step 1502 may further include: indicating, by the base station, a transmit power of the PUCCH, where the base station indicates the transmit power of the PUCCH by using a TPC command field in a DCI format of a downlink control channel carried on the first serving cell.
  • the PUCCH resource is indicated by the TPC in the DCI format, and the PUCCH resource can be dynamically displayed, and the PUCCH resource can be statistically multiplexed with other users, thereby improving the PUCCH resource utilization rate. Suitable for any scene.
  • the base station indicates a PUCCH resource by using a HARQ-ACK resource offset field in a DCI format of a downlink control channel carried on the first serving cell;
  • the fourth method is applicable to when the downlink control channel is an EPDCCH, and in the fourth method, the step is
  • the 1502 may further include the base station indicating the transmit power of the PUCCH, where the base station may indicate the transmit power of the PUCCH through the TPC command field in the DCI format of the downlink control channel carried on the first serving cell.
  • the PUCCH resource is indicated by the TPC in the DCI format, and the PUCCH resource can be dynamically displayed, and the PUCCH resource can be statistically multiplexed with other users, thereby improving PUCCH resource utilization.
  • Step 1503 The base station receives, according to the PUCCH resource, a HARQ-ACK of the PDSCH sent by the UE through the PUCCH carried on the second serving cell of the UE.
  • the base station receives, according to the PUCCH resource, a HARQ-ACK of the PDSCH transmitted by the UE through the PUCCH carried on the second serving cell of the UE, that is, the receiving UE is carried by the UE.
  • the HARQ-ACK of the PDSCH in step 1501 of the PUCCH transmission on the second serving cell.
  • the embodiment of the invention solves the problem of how to transmit the HARQ-ACK under different duplex mode carrier aggregation, and solves the problem of how the PUCCH resource is indicated in the case of cross-carrier scheduling.
  • the UE in different duplex mode carrier aggregation, if cross-carrier scheduling is configured, and the serving cell carrying the downlink control channel corresponding to the PDSCH is different from the serving cell carrying the HARQ-ACK corresponding to the PDSCH, the UE cannot follow the downlink control.
  • the resources of the channel implicitly calculate the resources of the PUCCH. Therefore, it is necessary to solve the problem of how to indicate the PUCCH resource.
  • FIG. 16 is a flowchart of Embodiment 9 of a method for transmitting uplink control information according to the present invention, which is applicable to a scenario in which a FDD carrier cross-carriers a TDD carrier, and a HARQ-ACK of the TDD carrier is carried on a TDD carrier.
  • the method provided in this embodiment includes the following steps:
  • Step 1602 The UE receives a downlink control channel that is carried on the first serving cell of the UE, where the downlink control channel is used to indicate PDSCH transmission on the second serving cell of the UE, where the duplex mode of the first serving cell is frequency Dividing duplex FDD, the duplex mode of the second serving cell is time division duplex TDD;
  • the HARQ-ACK timing of the second serving cell is performed according to its own HARQ-ACK timing or according to the HARQ-ACK timing of the serving cell carrying the PUCCH, whether it is its own HARQ-ACK timing or a serving cell carrying the PUCCH.
  • HARQ-ACK timing both
  • the TDD timing so the HARQ-ACK corresponding to the multiple downlink subframes of the second serving cell is fed back in an uplink subframe, and the downlink control channel received in the step 1601 may be included in multiple downlink subframes.
  • step 1401 Other descriptions are as shown in step 1401, and are not described here.
  • Step 1602 The UE determines a physical uplink control channel PUCCH resource.
  • mode one of the four modes is a preferred mode.
  • Step 1603 The UE sends the HARQ-ACK of the PDSCH according to the PUCCH resource by using the PUCCH carried on the second serving cell of the UE.
  • step 1403 is the same as step 1403 in the seventh embodiment, and details are not described herein again.
  • the embodiment of the invention solves how to transmit HARQ-ACK under carrier aggregation in different duplex modes.
  • the problem solves the problem of how the PUCCH resource is indicated in the case of cross-carrier scheduling. For example, in different duplex mode carrier aggregation, if cross-carrier scheduling is configured, and the serving cell carrying the downlink control channel corresponding to the PDSCH is different from the serving cell carrying the HARQ-ACK corresponding to the PDSCH, the UE cannot follow the downlink control.
  • the resources of the channel implicitly calculate the resources of the PUCCH, so how to indicate that the PUCCH resources need to be solved.
  • FIG. 17 is a flowchart of Embodiment 10 of a method for transmitting uplink control information according to the present invention.
  • This embodiment is a method for a base station side corresponding to Embodiment 9. As shown in FIG. 17, the method provided in this embodiment includes the following steps:
  • Step 1701 The base station sends a downlink control channel to the UE on the first serving cell of the UE, where the downlink control channel is used to indicate PDSCH transmission on the second serving cell of the UE, where the duplex mode of the first serving cell is frequency
  • the duplex duplex FDD, the duplex mode of the second serving cell is time division duplex TDD.
  • the HARQ-ACK timing of the second serving cell is performed according to its own HARQ-ACK timing or according to the HARQ-ACK timing of the serving cell carrying the PUCCH, whether it is its own HARQ-ACK timing or the serving cell HARQ carrying the PUCCH.
  • -ACK timing both
  • the base station sends the UE to the UE on the first serving cell of the UE in multiple downlink subframes.
  • Step 1702 The base station indicates a physical uplink control channel PUCCH resource.
  • mode one of the four modes is a preferred mode.
  • Step 1703 The base station receives, according to the PUCCH resource, a HARQ-ACK of the PDSCH sent by the UE through the PUCCH carried on the second serving cell of the UE.
  • This step is the same as step 1503 in the eighth embodiment, and will not be described again here.
  • the embodiment of the invention solves the problem of how to transmit the HARQ-ACK under different duplex mode carrier aggregation, and solves the problem of how the PUCCH resource is indicated in the case of cross-carrier scheduling. For example, in different duplex mode carrier aggregation, if cross-carrier scheduling is configured, and the serving cell carrying the downlink control channel corresponding to the PDSCH and the serving cell carrying the HARQ-ACK corresponding to the PDSCH The UE cannot calculate the PUCCH resource implicitly according to the resources of the downlink control channel, so how to indicate that the PUCCH resource needs to be resolved.
  • FIG. 18 is a flowchart of Embodiment 11 of the method for transmitting uplink control information according to the present invention. As shown in FIG. 18, the uplink control information is transmitted in a scenario of different duplex mode aggregation and/or aggregation between base stations.
  • the transmission method may specifically include the following steps:
  • Step 1801 The user equipment receives physical uplink control channel configuration information.
  • the user equipment receives the PUCCH configuration information of the physical uplink control channel, and the user equipment may transmit the uplink control information according to the PUCCH configuration information.
  • the PUCCH configuration information may include indication information indicating a serving cell that carries a physical uplink control channel, where the indication information may be a cell index of a serving cell that carries the PUCCH.
  • the indication information indicating the serving cell carrying the physical uplink control channel indicates the serving cell of the N transmission PUCCHs.
  • the N may be greater than 1, and the indication information indicates that the UE transmits the PUCCH on the multiple serving cells. If the information indicating the serving cell of the N transport PUCCHs is not included in the PUCCH configuration information, the UE is only on the primary carrier. Transmit PUCCH. N may also be equal to 1. At this time, the serving cell that transmits the PUCCH is the primary serving cell of the user equipment.
  • the PUCCH configuration information may further include indication information indicating a serving cell in the serving cell set corresponding to each serving cell in the serving cell of the N transmitting PUCCH, where the indication information may be a serving cell in the serving cell set.
  • the cell index, the indication information may indicate uplink control information, such as HARQ-ACK, of which serving cells the serving cell transmitting the PUCCH needs to bear.
  • the set of serving cells may include a plurality of serving cells. When the set of serving cells includes only one serving cell, the serving cell in the set of serving cells is the same as the serving cell in which the PUCCH is transmitted.
  • the PUCCH configuration information may further include a PUCCH format corresponding to each serving cell in the serving cell that indicates the N transport PUCCHs, and the format may be one of PUCCH format la, PUCCH format lb, channel selection, and PUCCH format 3. .
  • Step 1802 The user equipment determines, according to the physical uplink control channel configuration information, the serving cell that carries the physical uplink control channel.
  • the user equipment may determine, according to the indication information of the serving cell that carries the physical uplink control channel in the physical uplink control channel configuration information, the serving cell that carries the physical uplink control channel.
  • the step may further include determining, by the UE, the serving cell in the serving cell set corresponding to the serving cell of each PUCCH according to the PUCCH configuration information, that is, determining which serving cell uplink control information, such as HARQ-ACK, is carried by each PUCCH.
  • Step 1803 The user equipment sends uplink control information on the serving cell that carries the physical uplink control channel through the physical uplink control channel.
  • the user equipment sends corresponding uplink control information on the serving cell of each PUCCH through the corresponding PUCCH, for example, the uplink control information is HARQ-ACK.
  • This embodiment provides a method for transmitting uplink control information, which solves the problem of how uplink control information is transmitted in different duplex mode aggregation and/or aggregation between base stations.
  • the method base station can flexibly configure the serving cell that transmits the PUCCH according to the actual scenario, and can reuse the HARQ-ACK timing of each serving cell without introducing standard complexity, thereby being applicable to carrier aggregation between the base stations.
  • FIG. 19 is a flowchart of Embodiment 12 of the method for transmitting uplink control information according to the present invention.
  • the embodiment is described in the base station side corresponding to the embodiment.
  • the transmission method may specifically include the following steps:
  • Step 1901 The base station sends physical uplink control channel configuration information to the user equipment.
  • the base station sends physical uplink control channel configuration information to the user equipment, so that the user equipment can send uplink control information according to the physical uplink control channel configuration information.
  • Step 1902 The base station receives the uplink control information sent by the user equipment by using the uplink control channel on the serving cell that carries the uplink control channel.
  • the user equipment sends corresponding uplink control information on the serving cell of each PUCCH through the corresponding PUCCH, for example, the uplink control information is HARQ-ACK.
  • This embodiment provides a method for transmitting uplink control information, which solves the problem of how uplink control information is transmitted in different duplex mode aggregation and/or aggregation between base stations.
  • the method base station can flexibly configure the serving cell that transmits the PUCCH according to the actual scenario, and can reuse the HARQ-ACK timing of each serving cell without introducing standard complexity, thereby being applicable to carrier aggregation between the base stations.
  • FIG. 20 is a flowchart of Embodiment 13 of a method for transmitting uplink control information according to the present invention. As shown in FIG. 20, the uplink control information is transmitted in a scenario of aggregation in different duplex modes and/or aggregation between base stations.
  • the method for transmitting the uplink control information may specifically include the following steps:
  • Step 2001 The user equipment receives physical uplink control channel configuration information.
  • the user equipment receives the PUCCH configuration information of the physical uplink control channel, and the user equipment may transmit the uplink control information according to the PUCCH configuration information.
  • the PUCCH configuration information may include indication information indicating a serving cell that carries the first physical uplink control channel, where the indication information may be a cell index of a serving cell that carries the first physical uplink control channel, where the first physical uplink control channel is carried.
  • the serving cell may be a secondary serving cell of the user equipment. And transmitting, by the indication, the indication information of the serving cell of the first physical uplink control channel, the first physical uplink control channel, and the second physical uplink control channel of the user equipment, to transmit uplink control information of the user equipment, for example,
  • the second physical uplink control channel of the user equipment is a physical uplink control channel transmitted on a primary serving cell of the user equipment, if
  • the PUCCH configuration information is configured with the first physical uplink control channel, and the user equipment transmits the uplink control information by using the first physical uplink control channel and the second physical uplink control channel, and the PUCCH is only on the primary serving cell of the user equipment. Compared with the transmission, the HARQ-ACK timing of each serving cell may not be modified. If the first physical uplink control channel configuration information is not included in the PUCCH configuration information, the user equipment will only transmit uplink control information on the primary serving cell. The user equipment transmits the uplink control information by using the first physical uplink control channel and the second physical uplink control channel, and may be transmitted according to the following manner: the primary serving cell corresponds to the uplink subframe, and then the user equipment transmits on the second physical uplink control channel. Uplink control information; otherwise, the user equipment transmits uplink control information on the first physical uplink control channel.
  • the PUCCH configuration information may further include indication information indicating a format of the first physical uplink control channel, where the format of the first physical uplink control channel may be one of a PUCCH format la, a PUCCH format lb, a channel selection, and a PUCCH format 3.
  • Step 2002 The user equipment determines, according to the physical uplink control channel configuration information, a serving cell that carries the first physical uplink control channel.
  • the user equipment determines the serving cell that carries the first physical uplink control channel according to the physical uplink control channel configuration information received in step 2001.
  • the user equipment may determine, according to the indication information of the serving cell that carries the first physical uplink control channel in the physical uplink control channel configuration information, the serving cell that carries the first physical uplink control channel, and further may be configured according to the physical uplink control channel.
  • Carrying the first uplink The cell index of the serving cell of the control channel determines the serving cell that carries the first physical uplink control channel, and the serving cell that carries the first physical uplink control channel is the secondary serving cell of the user equipment.
  • Step 2003 The user equipment sends uplink control information on the serving cell that carries the first physical uplink control channel by using the first physical uplink control channel.
  • the user equipment may transmit the uplink control information on the second physical uplink control channel.
  • the uplink control information (UPI) in this step may be a hybrid automatic repeat request (HARQ-ACK), a channel state information (CSI), and a scheduling request (Scheduling Request, referred to as a short message). SR) and so on.
  • HARQ-ACK hybrid automatic repeat request
  • CSI channel state information
  • SR scheduling request
  • the types of the first uplink control information and the second uplink control information may be the same or different.
  • This embodiment provides a method for transmitting uplink control information, which solves the problem of how uplink control information is transmitted in different duplex mode aggregation and/or aggregation between base stations.
  • FIG. 21 is a flowchart of Embodiment 14 of the method for transmitting uplink control information according to the present invention.
  • the uplink control information is transmitted in a scenario of different duplex mode aggregation and/or aggregation between base stations.
  • the transmission method may specifically include the following steps:
  • Step 2101 The base station sends physical uplink control channel configuration information to the user equipment, where the physical uplink control channel configuration information includes indication information indicating a serving cell that carries the first physical uplink control channel, where the serving cell is a serving cell corresponding to the user equipment.
  • the base station sends physical uplink control channel configuration information to the user equipment, so that the user equipment can send uplink control information according to the physical uplink control channel configuration information.
  • the indication information of the serving cell that carries the first physical uplink control channel may be a cell index of the serving cell that carries the first physical uplink control channel, where the serving cell that carries the first physical uplink control channel is a secondary of the user equipment. Service area.
  • Step 2102 The base station receives, by using the first physical uplink control channel, the uplink control information sent by the user equipment on the serving cell that carries the first physical uplink control channel.
  • the step may be: when the primary serving cell corresponds to an uplink subframe, the base station is in the second physical uplink control.
  • the uplink control information is received on the channel; otherwise, the base station receives the uplink control information on the first physical uplink control channel.
  • the uplink control information UCI in this step may be a hybrid automatic repeat request HARQ-ACK, channel state information CSI, scheduling request SR, and the like.
  • the types of the first uplink control information and the second uplink control information may be the same or different.
  • This embodiment provides a method for transmitting uplink control information, which solves the problem of how uplink control information is transmitted in different duplex mode aggregation and/or aggregation between base stations.
  • FIG. 22 is a schematic structural diagram of Embodiment 4 of the user equipment according to the present invention.
  • the user equipment provided in this embodiment includes: a receiving module 221, a determining module 222, and a sending module 223.
  • the receiving module 221 is configured to receive a downlink control channel that is carried on the first serving cell of the UE, where the downlink control channel is used to indicate PDSCH transmission on the second serving cell of the UE, and duplex of the first serving cell
  • the mode is time division duplex TDD
  • the duplex mode of the second serving cell is frequency division duplex FDD.
  • the determining module 222 is configured to determine a physical uplink control channel PUCCH resource.
  • the sending module 223 is configured to send the HARQ-ACK of the PDSCH according to the PUCCH resource by using the PUCCH carried on the second serving cell of the UE.
  • the determining module 222 is specifically configured to: determine a PUCCH resource according to a TPC command field in a DCI format of a downlink control channel that is carried on the first serving cell.
  • the determining module 222 is specifically configured to: determine a PUCCH resource according to higher layer signaling.
  • the determining module 22 is specifically configured to: determine a PUCCH resource according to a predefined domain in a DCI format of a downlink control channel carried on the first serving cell.
  • the determining module 222 is specifically configured to: determine a PUCCH resource according to a HARQ-ACK resource offset field in a DCI format of a downlink control channel that is carried on the first serving cell.
  • the downlink control channel is used to indicate that the physical downlink shared channel (PDSCH) transmission is performed on the first serving cell, or is used to indicate downlink semi-persistent scheduling SPS release; when the downlink control channel is used to indicate physical
  • the downlink automatic channel retransmission acknowledgement corresponding to the downlink control channel is specifically a hybrid automatic retransmission acknowledgement of the PDSCH corresponding to the downlink control channel, and the downlink control channel is used to indicate a downlink semi-persistent scheduling SPS.
  • the hybrid automatic retransmission acknowledgement corresponding to the downlink control channel is specifically a hybrid automatic retransmission acknowledgement corresponding to the downlink control channel that indicates downlink downlink persistent scheduling SPS release.
  • the first serving cell may be the primary serving cell of the UE, the duplex mode of the first serving cell is time division duplex TDD, and the duplex mode of the second serving cell is frequency division duplex FDD, and the second serving cell A secondary serving cell for transmitting a PUCCH indicated by higher layer signaling, or a second serving cell is a secondary serving cell with a smallest cell index of the UE.
  • the user equipment provided in this embodiment may be used to implement the technical solution provided in the seventh embodiment of the method.
  • the specific implementation manners and technical effects are similar, and details are not described herein again.
  • the base station provided by the implementation includes: a sending module 231, an indicating module 232, and a receiving module 233.
  • the sending module 231 is configured to send, to the UE, a downlink control channel, where the downlink control channel is used to indicate PDSCH transmission on the second serving cell of the UE, where the first serving cell is dual
  • the working mode is time division duplex TDD
  • the duplex mode of the second serving cell is frequency division duplex FDD.
  • the indication module 232 is configured to indicate a physical uplink control channel PUCCH resource.
  • the receiving module 233 is configured to receive, according to the PUCCH resource, a HARQ-ACK of the PDSCH sent by the UE by using a PUCCH carried on a second serving cell of the UE.
  • the indication module 232 is specifically configured to: indicate a PUCCH resource by using a TPC command field in a DCI format of a downlink control channel carried on the first serving cell.
  • the indicating module 232 is specifically configured to: indicate PUCCH resources by using high layer signaling.
  • the indication module 232 is specifically configured to: indicate a PUCCH resource by using a predefined domain in a DCI format of a downlink control channel carried on the first serving cell.
  • the indication module 232 is specifically configured to: indicate a PUCCH resource by using a HARQ-ACK resource offset field in a DCI format of a downlink control channel carried on the first serving cell.
  • the downlink control channel is used to indicate that the physical downlink shared channel (PDSCH) transmission is performed on the first serving cell, or is used to indicate downlink semi-persistent scheduling SPS release; when the downlink control channel is used to indicate physical
  • the downlink automatic channel retransmission acknowledgement corresponding to the downlink control channel is specifically a hybrid automatic retransmission acknowledgement of the PDSCH corresponding to the downlink control channel, and the downlink control channel is used to indicate a downlink semi-persistent scheduling SPS.
  • the hybrid automatic retransmission acknowledgement corresponding to the downlink control channel is specifically a hybrid automatic retransmission acknowledgement corresponding to the downlink control channel that indicates downlink downlink persistent scheduling SPS release.
  • the first serving cell may be a primary serving cell of the UE, and the first serving cell
  • the duplex mode is time division duplex TDD
  • the duplex mode of the second serving cell is frequency division duplex FDD
  • the second serving cell is a secondary serving cell for transmitting PUCCH indicated by higher layer signaling
  • the second serving cell is The secondary serving cell with the smallest cell index of the UE.
  • the base station provided in this embodiment may be used to implement the technical solution, the specific implementation manner, and the technical effect type provided in Embodiment 8 of the method, and details are not described herein again.
  • FIG. 24 is a schematic structural diagram of Embodiment 5 of the user equipment according to the present invention.
  • the user equipment provided in this embodiment includes: a receiving module 2411, a determining module 242, and a sending module 243.
  • the receiving module 241 is configured to receive a downlink control channel that is carried on a first serving cell of the UE, where the downlink control channel is used to indicate a PDSCH transmission on a second serving cell that is carried by the UE, and the dual The working mode is time division duplex FDD, and the duplex mode of the second serving cell is frequency division duplex TDD.
  • the determining module 242 is configured to determine a physical uplink control channel PUCCH resource.
  • the sending module 243 is configured to send, according to the PUCCH resource, a HARQ-ACK of the PDSCH by using a PUCCH carried on the second serving cell of the UE.
  • the determining module 242 is specifically configured to: determine a PUCCH resource according to a TPC command field in a DCI format of a downlink control channel carried on the first serving cell.
  • the determining module 242 is specifically configured to: determine a PUCCH resource according to higher layer signaling.
  • the determining module 242 is specifically configured to: determine a PUCCH resource according to a predefined domain in a DCI format of a downlink control channel carried on the first serving cell.
  • the determining module 242 is specifically configured to: determine a PUCCH resource according to a HARQ-ACK resource offset field in a DCI format of a downlink control channel that is carried on the first serving cell.
  • the user equipment provided in this embodiment may be used to implement the technical solution provided by the method embodiment IX.
  • the specific implementation manners and technical effects are similar, and details are not described herein again.
  • the base station provided in this implementation includes: a sending module 251, an indicating module 252, and a receiving module 253.
  • the sending module 251 is configured to send a downlink control channel to the UE on the first serving cell of the UE, where the downlink control channel is used to indicate PDSCH transmission on the second serving cell of the UE, where the first serving cell is dual
  • the working mode is time division duplex FDD
  • the duplex mode of the second serving cell is frequency division duplex TDD.
  • the indication module 252 is configured to indicate a physical uplink control channel PUCCH resource.
  • the receiving module 253 is configured to receive, according to the PUCCH resource, a HARQ-ACK of the PDSCH sent by the UE by using a PUCCH carried on a second serving cell of the UE.
  • the indication module 232 is specifically configured to: indicate a PUCCH resource by using a TPC command field in a DCI format of a downlink control channel carried on the first serving cell.
  • the indication module 252 is specifically configured to: indicate the PUCCH resource by using high layer signaling.
  • the indication module 252 is specifically configured to: indicate a PUCCH resource by using a predefined domain in a DCI format of a downlink control channel carried on the first serving cell.
  • the indication module 252 is specifically configured to: indicate a PUCCH resource by using a HARQ-ACK resource offset field in a DCI format of a downlink control channel carried on the first serving cell.
  • the downlink control channel is used to indicate that the physical downlink shared channel (PDSCH) transmission is performed on the first serving cell, or is used to indicate downlink semi-persistent scheduling SPS release; when the downlink control channel is used to indicate physical
  • the downlink automatic channel retransmission acknowledgement corresponding to the downlink control channel is specifically a hybrid automatic retransmission acknowledgement of the PDSCH corresponding to the downlink control channel, and the downlink control channel is used to indicate a downlink semi-persistent scheduling SPS.
  • the hybrid automatic retransmission acknowledgement corresponding to the downlink control channel is specifically a hybrid automatic retransmission acknowledgement corresponding to the downlink control channel that indicates downlink downlink persistent scheduling SPS release.
  • the first serving cell may be the primary serving cell of the UE, the duplex mode of the first serving cell is time division duplex TDD, and the duplex mode of the second serving cell is frequency division duplex FDD, and the second serving cell A secondary serving cell for transmitting a PUCCH indicated by higher layer signaling, or a second serving cell is a secondary serving cell with a smallest cell index of the UE.
  • the base station provided in this embodiment may be used to implement the technical solution, the specific implementation manner, and the technical effect type provided in the method embodiment 10, and details are not described herein again.
  • FIG. 26 is a schematic structural diagram of Embodiment 6 of the user equipment according to the present invention.
  • the user equipment provided in this embodiment includes: a receiving module 261, a determining module 262, and a sending module 263.
  • the receiving module 261 is configured to receive physical uplink control channel configuration information.
  • a determining module 262 configured to determine, according to physical uplink control channel configuration information, a serving cell that carries a physical uplink control channel;
  • the sending module 263 is configured to send uplink control information by using a physical uplink control channel on the serving cell that carries the physical uplink control channel.
  • the PUCCH configuration information may include indicating that the service carrying the physical uplink control channel is small.
  • the indication information of the area, where the indication information may be a cell index of a serving cell that carries the PUCCH.
  • the PUCCH configuration information may further include indication information indicating a serving cell in a serving cell set corresponding to each serving cell in the serving cell of the N transmitting PUCCH, where the indication information may be a service in the serving cell set.
  • the cell index of the cell the indication information may indicate uplink control information of which serving cells to be carried by each serving cell of the PUCCH.
  • the PUCCH configuration information may further include a PUCCH format corresponding to each serving cell in the serving cell that indicates the N transport PUCCHs.
  • the user equipment receives the physical uplink control channel PUCCH configuration information, and then transmits the uplink control information according to the PUCCH configuration information.
  • the user equipment provided in this embodiment may be used to implement the technical solution, the specific implementation manner, and the technical effect type provided in Embodiment 11 of the method, and details are not described herein again.
  • FIG. 27 is a schematic structural diagram of Embodiment 6 of a base station according to the present invention.
  • the base station provided in this implementation includes: a sending module 271 and an indicating module 272.
  • the sending module 271 is configured to send physical uplink control channel configuration information to the user equipment
  • the receiving module 272 is configured to receive uplink control information sent by the user equipment on the uplink control channel on the serving cell that carries the uplink control channel.
  • the PUCCH configuration information may include indication information indicating a serving cell carrying a physical uplink control channel, where the indication information may be a cell index of a serving cell that carries the PUCCH.
  • the PUCCH configuration information may further include indication information indicating a serving cell in a serving cell set corresponding to each serving cell in the serving cell of the N transmitting PUCCH, where the indication information may be a service in the serving cell set.
  • the cell index of the cell the indication information may indicate uplink control information of which serving cells to be carried by each serving cell of the PUCCH.
  • the PUCCH configuration information may further include a PUCCH format corresponding to each serving cell in the serving cell that indicates the N transport PUCCHs.
  • the base station sends the uplink control channel configuration information to the user equipment, so that the user equipment can send the uplink control information according to the physical uplink control channel configuration information.
  • the base station provided in this embodiment may be used to implement the technical solution provided in Embodiment 12 of the method.
  • the specific implementation and technical effects are similar, and details are not described herein again.
  • FIG. 28 is a schematic structural diagram of Embodiment 7 of the user equipment according to the present invention.
  • the user equipment provided in this embodiment includes: a receiving module 281, a determining module 282, and a sending module 283.
  • the receiving module 281 is configured to receive physical uplink control channel configuration information
  • the determining module 282 is configured to determine, according to the physical uplink control channel configuration information, a serving cell that carries the first physical uplink control channel;
  • the sending module 283 is configured to send uplink control information by using the first physical uplink control channel on the serving cell that carries the first physical uplink control channel.
  • the user equipment receives the physical uplink control channel PUCCH configuration information, and transmits uplink control information according to the PUCCH configuration information.
  • the PUCCH configuration information may include indication information indicating a serving cell that carries the first physical uplink control channel, and the indication information may be a cell index of the serving cell that carries the first PUCCH.
  • the PUCCH configuration information may further include indication information of a format of the PUCCH, where the format of the first physical uplink control channel may be any one of a PUCCH format la, a PUCCH format lb, a channel selection, and a PUCCH format 3.
  • the user equipment provided in this embodiment may be used to implement the technical solution provided in Embodiment 13 of the method, and the specific implementation manner and the technical effect are similar.
  • FIG. 29 is a schematic structural diagram of Embodiment 7 of a base station according to the present invention.
  • the base station provided in this implementation includes: a sending module 291 and a receiving module 292.
  • the sending module 291 is configured to send physical uplink control channel configuration information to the user equipment, where the physical uplink control channel configuration information includes indication information indicating a serving cell that carries the first physical uplink control channel, where the serving cell is corresponding to the user equipment.
  • Service area includes indication information indicating a serving cell that carries the first physical uplink control channel, where the serving cell is corresponding to the user equipment.
  • the receiving module 292 is configured to receive uplink control information sent by the user equipment on the first physical uplink control channel on the serving cell that carries the first physical uplink control channel.
  • the indication information indicating the serving cell that carries the first physical uplink control channel is the cell index of the serving cell that carries the first physical uplink control channel, and the serving cell that carries the first physical uplink control channel is the secondary serving cell of the user equipment.
  • the PUCCH configuration information may include indication information indicating a serving cell that carries the first physical uplink control channel, and the indication information may be a cell index of the serving cell that carries the first PUCCH.
  • the PUCCH configuration information may further include indication information of a format of the PUCCH, where the format of the first physical uplink control channel may be any one of a PUCCH format la, a PUCCH format lb, a channel selection, and a PUCCH format 3.
  • the base station provided in this embodiment may be used to implement the technical solution provided in Embodiment 14 of the method,
  • the physical implementation is similar to the technical effects and will not be described here.
  • FIG. 30 is a schematic structural diagram of Embodiment 8 of a user equipment according to the present invention.
  • the user equipment UE3100 provided in this embodiment may include a memory 311 and a processor 312, where the memory 311 stores a set of program codes, a processor. 312 is used to call the program code in the memory 311 and perform the following operations:
  • the hybrid automatic retransmission acknowledgement corresponding to the downlink control channel is sent to the base station by using the physical uplink control channel PUCCH in the uplink subframe N+4, when the uplink subframe N+4 belongs to the first uplink subframe set,
  • the PUCCH is carried on the second serving cell of the UE, and when the uplink subframe N+4 belongs to the second uplink subframe set, the PUCCH is carried on the first serving cell, where the The duplex mode of the serving cell and the second serving cell is different, and the sum of the number of uplink subframes included in the first uplink subframe set and the number of uplink subframes included in the second uplink subframe set is equal to
  • the number of one radio frame, the uplink subframe included in the first uplink subframe set and the uplink subframe included in the second uplink subframe set correspond to different subframes in the radio frame.
  • the uplink subframe included in the second uplink subframe set corresponds to one An uplink subframe of the first serving cell in the radio frame, where the uplink subframe included in the first uplink subframe set corresponds to an uplink subframe included in the second uplink subframe set in the radio frame.
  • the uplink subframe includes: when the duplex mode of the first serving cell is FDD, and the duplex mode of the second serving cell is TDD, the uplink subframe included in the first uplink subframe set corresponds to one radio frame In the uplink subframe of the first serving cell, the uplink subframe included in the second uplink subframe set corresponds to other uplinks in the radio frame except the uplink subframe included in the first uplink subframe set Subframe.
  • the downlink control channel is a physical downlink control channel PDCCH or an enhanced physical downlink control channel EPDCCH, where the downlink control channel is used to indicate a physical downlink shared channel PDSCH transmission carried on the first serving cell, or Instructing the downlink semi-persistent scheduling SPS release; when the downlink control channel is used to indicate the transmission of the PDSCH, the hybrid automatic retransmission acknowledgement corresponding to the downlink control channel is specifically a hybrid automatic weight of the downlink control channel corresponding to the PDSCH And confirming, when the downlink control channel is used to indicate that the SPS is released, the downlink control The hybrid automatic retransmission acknowledgement corresponding to the channel is specifically a hybrid automatic retransmission acknowledgement corresponding to the downlink control channel indicating the SPS release.
  • the processor 312 is further configured to acquire a PUCCH resource and/or a PUCCH transmit power of the PUCCH.
  • the processor 312 is specifically configured to determine the PUCCH resource according to the transmit power control TPC command field in the downlink control information DCI format of the downlink control channel.
  • the processor 312 is specifically configured to determine the PUCCH transmit power according to a transmit power control TPC command field in a downlink control information DCI format of the downlink control channel.
  • the user equipment provided in this embodiment may be used to implement the technical solution, the specific implementation manner, and the technical effect type of the method embodiment 1, and details are not described herein again.
  • FIG. 31 is a schematic structural diagram of Embodiment 8 of a base station according to the present invention.
  • the base station 3200 provided in this embodiment may include a memory 321 and a processor 322, where the memory 321 stores a set of program codes, and the processor 322 uses The program code in the memory 321 is called and the following operations are performed:
  • a hybrid automatic retransmission acknowledgment corresponding to the downlink control channel sent by the UE through the physical uplink control channel PUCCH when the uplink subframe N+4 belongs to the first uplink subframe set, The PUCCH is carried on the second serving cell of the UE, and when the uplink subframe N+4 belongs to the second uplink subframe set, the PUCCH is carried on the first serving cell, where The duplex mode of the first serving cell and the second serving cell are different, and the sum of the number of uplink subframes included in the first uplink subframe set and the number of uplink subframes included in the second uplink subframe set And being equal to the number of one radio frame, where the uplink subframe included in the first uplink subframe set and the uplink subframe included in the second uplink subframe set correspond to different subframes in the radio frame.
  • the uplink subframe corresponding to the second uplink subframe set corresponds to An uplink subframe of the first serving cell in a radio frame, where the uplink subframe included in the first uplink subframe set corresponds to an uplink subframe included in the second uplink subframe set in the radio frame
  • the duplex mode of the first serving cell is FDD
  • the duplex mode of the second serving cell is TDD
  • the uplink subframe included in the first uplink subframe set corresponds to one No An uplink subframe of the first serving cell in the line frame
  • the uplink subframe included in the second uplink subframe set corresponds to an uplink subframe included in the first uplink subframe set in the radio frame
  • Other uplink subframes are examples of the duplex mode of the first serving cell.
  • the downlink control channel is a physical downlink control channel PDCCH or an enhanced physical downlink control channel EPDCCH, where the downlink control channel is used to indicate a physical downlink shared channel PDSCH transmission carried on the first serving cell, or Instructing the downlink semi-persistent scheduling SPS release; when the downlink control channel is used to indicate the PDSCH transmission, the hybrid automatic retransmission acknowledgement corresponding to the downlink control channel is specifically a hybrid automatic weight of the PDSCH corresponding to the downlink control channel.
  • the acknowledgment is that, when the downlink control channel is used to indicate that the SPS is released, the hybrid automatic retransmission acknowledgment corresponding to the downlink control channel is specifically configured to instruct the SPS to release the hybrid automatic retransmission acknowledgment corresponding to the downlink control channel.
  • the present embodiment provides a base station, which can be used to implement the technical solution provided by the method embodiment 2.
  • the specific implementation manner and the technical effects are similar, and details are not described herein again.
  • the user equipment UE3300 provided in this embodiment may include a memory 331 and a processor 332, where the memory 331 stores a set of program codes, a processor. 332 is used to call the program code in the memory 331 and perform the following operations:
  • the downlink subframe N receives the downlink control channel, and the downlink control channel is carried on the first serving cell of the UE, and the duplex mode of the first serving cell is a time division duplex TDD;
  • the hybrid automatic retransmission acknowledgment corresponding to the downlink control channel is sent by using the physical uplink control channel PUCCH in the uplink subframe N+4, where the PUCCH is carried on the second serving cell of the UE, and the second serving cell
  • the duplex mode is frequency division duplex FDD.
  • the downlink control channel is a physical downlink control channel PDCCH or an enhanced physical downlink control channel EPDCCH, where the downlink control channel is used to indicate a physical downlink shared channel PDSCH transmission carried on the first serving cell, or is used for Instructing the downlink semi-persistent scheduling SPS release; when the downlink control channel is used to indicate the PDSCH transmission, the hybrid automatic retransmission acknowledgement corresponding to the downlink control channel is specifically a hybrid automatic retransmission of the PDSCH corresponding to the downlink control channel.
  • the hybrid automatic retransmission acknowledgement corresponding to the downlink control channel is specifically a hybrid automatic retransmission acknowledgement corresponding to the downlink control channel that is released by the SPS.
  • the processor 332 is further configured to acquire the PUCCH resource of the PUCCH before the uplink automatic frame retransmission acknowledgement corresponding to the downlink control channel is sent by using the physical uplink control channel (PUCCH).
  • the acquiring, by the processor 332, the PUCCH resource of the PUCCH is specifically: determining, according to the downlink allocation indication DAI or the transmit power control TPC command in the downlink control information DCI format of the downlink control channel, the PUCCH resource.
  • the first serving cell is a primary serving cell of the UE
  • the second serving cell is a secondary serving cell of the UE.
  • the second serving cell may be a secondary serving cell with the smallest cell index of the UE, or the second serving cell is a secondary serving cell for transmitting PUCCH indicated by higher layer signaling.
  • the user equipment provided in this embodiment may be used to implement the technical solution, the specific implementation manner, and the technical effect type provided in the third embodiment of the method, and details are not described herein again.
  • the base station 3400 provided in this embodiment may include a memory 341 and a processor 342, where the memory 341 stores a set of program codes, and the processor 342 uses The program code in the memory 341 is called and the following operations are performed:
  • the downlink allocation indication DAI or the transmit power control TPC command in the DCI format of the control channel is used to indicate the physical uplink control channel PUCCH resource;
  • the duplex mode of the second serving cell is frequency division duplex FDD.
  • the downlink control channel is a physical downlink control channel (PDCCH) or an enhanced physical downlink control channel (EPDCCH), and the downlink control channel is used to indicate a physical downlink shared channel (PDSCH) transmission on the first serving cell, or is used to indicate downlink.
  • PDCCH physical downlink control channel
  • EPDCCH enhanced physical downlink control channel
  • the hybrid automatic retransmission acknowledgement corresponding to the downlink control channel is specifically a hybrid automatic retransmission acknowledgement of the PDSCH corresponding to the downlink control channel
  • the hybrid automatic retransmission acknowledgement corresponding to the downlink control channel is specifically a hybrid automatic retransmission acknowledgement corresponding to the downlink control channel that is released by the SPS.
  • the first serving cell is a primary serving cell of the UE
  • the second serving cell is a secondary serving cell of the UE.
  • the second serving cell may be a cell-initialized minimum secondary serving cell of the UE, or the second serving cell is a secondary serving cell used by the base station to transmit a PUCCH indicated by higher layer signaling.
  • the base station provided in this embodiment may be used to implement the technical solution in the fourth embodiment of the method, and the specific implementation manners and technical effects are similar, and details are not described herein again.
  • FIG. 34 is a schematic structural diagram of a tenth embodiment of a user equipment according to the present invention.
  • the user equipment UE3500 provided in this embodiment may include a memory 351 and a processor 352, where the memory 351 stores a set of program codes, a processor. 352 is used to call the program code in the memory 351 and perform the following operations:
  • a downlink control channel in the downlink subframe N where the downlink control channel is carried on a first serving cell of the UE, where the downlink control channel is a physical downlink control channel PDCCH or an enhanced physical downlink control channel EPDCCH;
  • the processor 812 determines, according to the transmit power control TPC command field in the downlink control information DCI format of the downlink control channel.
  • the processor 812 determines, according to the transmit power control TPC command field in the downlink control information DCI format of the downlink control channel, The transmit power of the PUCCH, where the duplex mode of the first serving cell and the second serving cell are different;
  • the downlink control channel is used to indicate a physical downlink shared channel (PDSCH) transmission on the first serving cell, or is used to indicate downlink semi-persistent scheduling SPS release; and when the downlink control channel is used to indicate the PDSCH
  • the hybrid automatic retransmission acknowledgement corresponding to the downlink control channel is specifically a hybrid automatic retransmission acknowledgement of the PDSCH corresponding to the downlink control channel, and when the downlink control channel is used to indicate the SPS release, the downlink is
  • the hybrid automatic retransmission acknowledgement corresponding to the control channel is specifically a hybrid automatic retransmission acknowledgement corresponding to the downlink control channel indicating the SPS release.
  • the first serving cell is a primary serving cell of the UE, and the first service is The duplex mode of the cell is time division duplex TDD, the duplex mode of the second serving cell is frequency division duplex FDD, and the second serving cell is the cell index minimum secondary serving cell of the UE.
  • the first serving cell is a primary serving cell of the UE, the duplex mode of the first serving cell is a time division duplex TDD, and the duplex mode of the second serving cell is a frequency division duplex FDD.
  • the second serving cell is a secondary serving cell for transmitting a PUCCH indicated by higher layer signaling.
  • the user equipment provided in this embodiment may be used to implement the technical solution in the fifth embodiment of the method, and the specific implementation manners and technical effects are similar, and details are not described herein again.
  • the base station 3600 provided in this embodiment may include a memory 361 and a processor 362, where the memory 361 stores a set of program codes, and the processor 362 uses The program code in the memory 361 is called and the following operations are performed:
  • a downlink control channel to the user equipment UE in the downlink subframe N, where the downlink channel is carried on the first serving cell of the UE, and the downlink control channel is a physical downlink control channel PDCCH or an enhanced physical downlink control channel EPDCCH;
  • the transmit power control TPC command field in the downlink control information DCI format of the downlink control channel indicates physical uplink control Channel PUCCH resource;
  • the transmit power control TPC command field in the downlink control information DCI format of the downlink control channel indicates the transmission of the PUCCH Power, where the duplex mode of the first serving cell and the second serving cell are different;
  • the downlink control channel is used to indicate a physical downlink shared channel PDSCH transmission on the first serving cell, or is used to indicate downlink semi-persistent scheduling SPS release; and the downlink control channel is used to indicate physical downlink sharing.
  • the hybrid automatic retransmission acknowledgement corresponding to the downlink control channel is specifically a hybrid automatic retransmission acknowledgement of the PDSCH corresponding to the downlink control channel, and the downlink control channel is used to indicate downlink downlink persistent scheduling SPS release.
  • the hybrid automatic retransmission acknowledgement corresponding to the downlink control channel is specifically a hybrid automatic retransmission acknowledgement corresponding to the downlink control channel that is indicated by the downlink semi-persistent scheduling SPS release.
  • the first serving cell may be the primary serving cell of the UE, the duplex mode of the first serving cell is time division duplex TDD, and the duplex mode of the second serving cell is frequency division.
  • the FDD is duplexed
  • the second serving cell is a secondary serving cell with the smallest cell index of the UE.
  • the first serving cell is a primary serving cell of the UE, the duplex mode of the first serving cell is a time division duplex TDD, and the duplex mode of the second serving cell is a frequency division duplex FDD.
  • the second serving cell is a secondary serving cell for transmitting a PUCCH indicated by higher layer signaling.
  • the base station provided in this embodiment may be used to implement the technical solution in the sixth embodiment of the method, and the specific implementation manners and technical effects are similar, and details are not described herein again.
  • the aforementioned program can be stored in a computer readable storage medium.
  • the program when executed, performs the steps including the above-described method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种上行控制信息的传输方法、基站和用户设备,所述方法包括:UE在下行子帧N接收基站发送的下行控制信道;所述UE在上行子帧N+4通过PUCCH向所述基站发送所述下行控制信道对应的混合自动重传确认,当所述上行子帧N+4属于第一上行子帧集合时,所述PUCCH承载于所述UE的第二服务小区上,当所述上行子帧N+4属于第二上行子帧集合时,所述PUCCH承载于所述第一服务小区上,其中,所述第一服务小区和所述第二服务小区的双工方式不同。通过上述方法,解决了不同双工方式载波聚合时如何传输HARQ-ACK的问题,使得所有下行子帧都有对应的反馈HARQ-ACK的上行子帧,提高资源利用率;同时不改变FDD载波的HARQ-ACK定时。

Description

上行控制信息的传输方法、 基站和用户设备
技术领域
本发明实施例涉及数据通讯技术, 尤其涉及一种上行控制信息的传输 方法、 基站和用户设备。 背景技术
第三代合作伙伴计划长期演进 ( Generation Partnership Project LTE Long Term Evolution, 简称 3 GPP LTE) 系统包括频分双工 (Frequency Division Duplexing, 简禾尔 FDD ) 禾口时分双工 ( Time Division Duplexing, 简称 TDD ) 两种工作方式。 3GPP LTE系统中, 为了支持混合自动重传, 终端需通过物理上行控制信道 (Physical Uplink Control Channel , 简称 PUCCH ) 和物理上行共享信道 ( Physical Uplink Shared Channel , 简称 PUSCH ) 向基站反馈混合自动重传请求确认 (Hybrid Automatic Repeat request- Acknowledgment , 简称 HARQ-ACK) , 当终端向基站反馈确认应 答 (Acknowledgment, 简称 ACK) 时, 则表示终端正确接收了消息, 当 终端向基站反馈否认应答 (Negative Acknowledgement, 简称 NACK) 时, 则表示终端接收错误, 需要基站进行重传。
3GPP LTE RellO/11版本中, 为了满足国际电信联盟对于第四代通信 技术的峰值数据速率要求引入了载波聚合(Carrier Aggregation, 简称 CA ) 技术。 进行聚合的载波称为分量载波 (Component Carrier, 简称为 CC ) , 也称为一个服务小区。 载波聚合技术通过将两个或更多的分量载波聚合在 一起以提供更高的带宽。 在 LTE Rel-8/9中, 用户设备 (UE) 只能接入其 中一个成员载波进行数据收发, 而在 LTE-A中, UE根据其能力和业务需 求可以同时接入多个分量载波进行数据收发。现有载波聚合系统都是同一 个基站 (Evolved NodeB , 简称 eNB ) 下的载波进行聚合, 或者有理想回 程链路 (Backhaul ) 的宏小区和微小区下的载波聚合。 现有 CA系统中, 混合自动重传确认信息仅在主载波上发送, 且聚合的分量载波的双工方式 相同, 都为 FDD或都为 TDD。 在后续 LTE系统中,载波聚合会演进支持不同双工方式的聚合, 即聚 合的分量载波的双工方式可以不同, 例如一些分量载波的双工方式为 FDD, 另一些分量载波的双工方式为 TDD。现有 CA系统中, HARQ-ACK 仅在主载波上发送, 对于不同双工方式的聚合, 主载波可以是 FDD载波 也可以是 TDD载波。 此演进方向下, 若主载波为 TDD载波, 其他分量载 波为 FDD载波,那么 FDD载波对应的 HARQ-ACK也需要在 TDD载波上 反馈。 现有系统中, 对于 FDD载波, 其 HARQ-ACK定时为 n+4, 即在下 行子帧 n传输的 PDSCH对应的 HARQ-ACK将在上行子帧 n + 4反馈。 但 若 FDD载波对应的 HARQ-ACK在 TDD载波上反馈,由于 TDD载波上一 个无线帧仅有部分子帧用于上行传输, 因而若使用现有 FDD 的 HARQ-ACK 定时, 则某些 FDD 载波的下行子帧无对应的上行子帧反馈 HARQ-ACK, 若不调度这些下行子帧, 会产生资源浪费。 因此, 不同双工 方式载波聚合时, 如何传输 HARQ-ACK需要解决。
发明内容 本发明实施例提供一种上行控制信息的传输方法、 基站和用户设备, 解决了双工方式载波聚合时, 如何传输 HARQ-ACK的问题。
本发明第一方面提供一种上行控制信息的传输方法, 包括:
用户设备 UE在下行子帧 N接收基站发送的下行控制信道, 所述下行 控制信道承载于所述 UE的第一服务小区上;
所述 UE在上行子帧 N+4通过物理上行控制信道 PUCCH向所述基站 发送所述下行控制信道对应的混合自动重传确认, 当所述上行子帧 N+4 属于第一上行子帧集合时, 所述 PUCCH承载于所述 UE的第二服务小区 上, 当所述上行子帧 N+4属于第二上行子帧集合时, 所述 PUCCH承载于 所述第一服务小区上, 其中, 所述第一服务小区和所述第二服务小区的双 工方式不同, 所述第一上行子帧集合包括的上行子帧个数与所述第二上行 子帧集合包括的上行子帧个数之和等于一个无线帧的个数, 所述第一上行 子帧集合包括的上行子帧和所述第二上行子帧集合包括的上行子帧对应 无线帧中不同的子帧。
在本发明第一方面的第一种可能的实现方式中, 当所述第一服务小区 的双工方式为时分双工 TDD, 所述第二服务小区的双工方式为频分双工 FDD时,所述第二上行子帧集合包括的上行子帧对应一个无线帧中所述第 一服务小区的上行子帧, 所述第一上行子帧集合包括的上行子帧对应所述 无线帧中除所述第二上行子帧集合包括的上行子帧外的其他上行子帧; 当所述第一服务小区的双工方式为 FDD,且所述第二服务小区的双工 方式为 TDD时, 所述第一上行子帧集合包括的上行子帧对应一个无线帧 中所述第一服务小区的上行子帧, 所述第二上行子帧集合包括的上行子帧 对应所述无线帧中的除所述第一上行子帧集合包括的上行子帧外的其他 上行子帧。
结合本发明第一方面以及第一方面的第一种可能的实现方式, 在本发 明第一方面的第二种可能的实现方式中, 所述下行控制信道为物理下行控 制信道 PDCCH或增强的物理下行控制信道 EPDCCH, 所述下行控制信道 用于指示承载在所述第一服务小区上的物理下行共享信道 PDSCH传输, 或者用于指示下行半持续调度 SPS释放;
当所述下行控制信道用于指示所述 PDSCH的传输时, 所述下行控制 信道对应的混合自动重传确认具体为所述下行控制信道对应 PDSCH的混 合自动重传确认, 当所述下行控制信道用于指示所述 SPS释放时, 所述下 行控制信道对应的混合自动重传确认具体为指示所述 SPS释放的所述下 行控制信道对应的混合自动重传确认。
结合本发明第一方面以及第一方面的第一种和第二种可能的实现方 式, 在本发明第一方面的第三种可能的实现方式中, 所述 UE在上行子帧 N+4通过物理上行控制信道 PUCCH向所述基站发送所述下行控制信道对 应的混合自动重传确认之前, 还包括:
所述 UE获取所述 PUCCH的 PUCCH资源和 /或 PUCCH发射功率。 在本发明第一方面的第四种可能的实现方式中, 当所述上行子帧 N+4 属于第一上行子帧集合时, 所述 UE获取所述 PUCCH的 PUCCH资源, 包括:
所述 UE根据所述下行控制信道的下行控制信息 DCI格式中的发射功 率控制 TPC命令域确定所述 PUCCH资源。
在本发明第一方面的第五种可能的实现方式中, 当所述上行子帧 N+4 属于第二上行子帧集合时, 所述 UE获取所述 PUCCH的 PUCCH发射功 率, 包括:
所述 UE根据所述下行控制信道的下行控制信息 DCI格式中的发射功 率控制 TPC命令域确定所述 PUCCH发射功率。
本发明第二方面提供一种上行控制信息的传输方法, 包括:
基站在下行子帧 N向用户设备 UE发送下行控制信道, 所述下行控制 信道承载于所述 UE的第一服务小区上;
所述基站在上行子帧 N+4接收所述 UE通过物理上行控制信道
PUCCH发送的所述下行控制信道对应的混合自动重传确认, 当所述上行 子帧 N+4属于第一上行子帧集合时, 所述 PUCCH承载于所述 UE的第二 服务小区上,当所述上行子帧 N+4属于第二上行子帧集合时,所述 PUCCH 承载于所述第一服务小区上, 其中, 所述第一服务小区和所述第二服务小 区的双工方式不同, 所述第一上行子帧集合包括的上行子帧个数与所述第 二上行子帧集合包括的上行子帧个数之和等于一个无线帧的个数, 所述第 一上行子帧集合包括的上行子帧和所述第二上行子帧集合包括的上行子 帧对应无线帧中不同的子帧。
在本发明第二方面的第一种可能的实现方式中, 当所述第一服务小区 的双工方式为时分双工 TDD, 所述第二服务小区的双工方式为频分双工 FDD时,则所述第二上行子帧集合包括的上行子帧对应一个无线帧中所述 第一服务小区的上行子帧, 所述第一上行子帧集合包括的上行子帧对应所 述无线帧中的除所述第二上行子帧集合包括的上行子帧外的其他上行子 帧;
当所述第一服务小区的双工方式为 FDD,且所述第二服务小区的双工 方式为 TDD时, 所述第一上行子帧集合包括的上行子帧对应一个无线帧 中所述第一服务小区的上行子帧, 所述第二上行子帧集合包括的上行子帧 对应所述无线帧中的除所述第一上行子帧集合包括的上行子帧外的其他 上行子帧。
结合本发明第二方面以及第二方面的第一种可能的实现方式, 在本发 明第二方面的第二种可能的实现方式中, 所述下行控制信道为物理下行控 制信道 PDCCH或增强的物理下行控制信道 EPDCCH, 所述下行控制信道 用于指示承载在所述第一服务小区上的物理下行共享信道 PDSCH传输, 或者用于指示下行半持续调度 SPS释放;
当所述下行控制信道用于指示所述 PDSCH传输时, 所述下行控制信 道对应的混合自动重传确认具体为所述下行控制信道对应的 PDSCH的混 合自动重传确认, 当所述下行控制信道用于指示所述 SPS释放时, 所述下 行控制信道对应的混合自动重传确认具体为指示所述 SPS释放所述下行 控制信道对应的混合自动重传确认。
本发明第三方面提供一种上行控制信息的传输方法, 包括:
用户设备 UE在下行子帧 N接收下行控制信道, 所述下行控制信道承 载于所述 UE的第一服务小区上, 所述第一服务小区的双工方式为时分双 工 TDD;
所述 UE在上行子帧 N+4通过物理上行控制信道 PUCCH发送所述下 行控制信道对应的混合自动重传确认,其中,所述 PUCCH承载于所述 UE 的第二服务小区上, 所述第二服务小区的双工方式为频分双工 FDD。
在本发明第三方面的第一种可能的实现方式中, 所述下行控制信道为 物理下行控制信道 PDCCH或增强的物理下行控制信道 EPDCCH, 所述下 行控制信道用于指示承载在所述第一服务小区上的物理下行共享信道 PDSCH传输, 或者用于指示下行半持续调度 SPS释放;
当所述下行控制信道用于指示所述 PDSCH传输时, 所述下行控制信 道对应的混合自动重传确认具体为所述下行控制信道对应的 PDSCH的混 合自动重传确认, 当所述下行控制信道用于指示所述 SPS释放时, 所述下 行控制信道对应的混合自动重传确认具体为指示所述 SPS释放的所述下 行控制信道对应的混合自动重传确认。
结合本发明第三方面以及第三方面的第一种可能的实现方式, 在本发 明第三方面的第二种可能的实现方式中,所述 UE在上行子帧 N+4通过物 理上行控制信道 PUCCH发送所述下行控制信道对应的混合自动重传确认 之前, 还包括:
所述 UE获取所述 PUCCH的 PUCCH资源。
在本发明第三方面的第三种可能的实现方式中, 所述 UE获取所述 PUCCH的 PUCCH资源, 包括: 所述 UE根据所述下行控制信道的下行控制信息 DCI格式中的下行分 配指示 DAI或发射功率控制 TPC命令确定所述 PUCCH资源。
结合本发明第三方面以及第三方面的第一种至第三种可能的实现方 式, 在本发明第三方面的第四种可能的实现方式中, 所述第一服务小区为 所述 UE的主服务小区, 所述第二服务小区为所述 UE的辅服务小区。
在本发明第三方面的第五种可能的实现方式中, 所述第二服务小区为 所述 UE的小区索引最小的 FDD辅服务小区, 或者,所述第二服务小区为 更高层信令指示的用于传输 PUCCH的辅服务小区。
本发明第四方面提供一种上行控制信息的传输方法, 包括:
基站在下行子帧 N向用户设备 UE发送下行控制信道, 所述下行控制 信道承载于所述 UE的第一服务小区上, 所述第一服务小区的双工方式为 时分双工 TDD, 所述下行控制信道的下行控制信息 DCI格式中的下行分 配指示 DAI或发射功率控制 TPC命令用于指示物理上行控制信道 PUCCH 资源;
所述基站在上行子帧 N+4根据所述 PUCCH资源接收所述 UE通过
PUCCH发送的所述下行控制信道对应的混合自动重传确认, 其中, 所述 PUCCH承载于所述 UE的第二服务小区上, 所述第二服务小区的双工方 式为频分双工 FDD。
在本发明第四方面的第一种可能的实现方式中, 所述下行控制信道为 物理下行控制信道 PDCCH或增强的物理下行控制信道 EPDCCH, 所述下 行控制信道用于指示承载在所述第一服务小区上的物理下行共享信道
PDSCH传输, 或者用于指示下行半持续调度 SPS释放;
当所述下行控制信道用于指示所述 PDSCH传输时, 所述下行控制信 道对应的混合自动重传确认具体为所述下行控制信道对应的 PDSCH的混 合自动重传确认, 当所述下行控制信道用于指示所述 SPS释放时, 所述下 行控制信道对应的混合自动重传确认具体为指示所述 SPS释放的所述下 行控制信道对应的混合自动重传确认。
结合本发明第四方面以及第四方面的第一种可能的实现方式, 在本发 明第四方面的第二种可能的实现方式中, 所述第一服务小区为所述 UE的 主服务小区, 所述第二服务小区为所述 UE的辅服务小区。 在本发明第四方面的第三种可能的实现方式中, 所述第二服务小区为 所述 UE的小区索引最小的 FDD辅服务小区, 或者,所述第二服务小区为 所述基站通过更高层信令指示的用于传输 PUCCH的辅服务小区。
本发明第五方面提供一种上行控制信息的传输方法, 包括: 用户设备 UE在下行子帧 N接收下行控制信道, 所述下行控制信道承 载于所述 UE的第一服务小区上, 所述下行控制信道为物理下行控制信道
PDCCH或增强的物理下行控制信道 EPDCCH;
当所述下行控制信道对应的混合自动重传确认承载于所述 UE的第二 服务小区上时, 所述 UE根据所述下行控制信道的下行控制信息 DCI格式 中的发射功率控制 TPC命令域确定物理上行控制信道 PUCCH资源; 且当所述下行控制信道对应的混合自动重传确认承载于所述第一服 务小区上时, 所述 UE根据所述下行控制信道的下行控制信息 DCI格式中 的发送功率控制 TPC命令域确定所述 PUCCH的发射功率, 其中, 所述第 一服务小区和所述第二服务小区的双工方式不同;
所述 UE根据所述 PUCCH资源或所述 PUCCH的发射功率通过所述
PUCCH发送所述下行控制信道对应的混合自动重传确认。
在本发明第五方面的第一种可能的实现方式中, 所述下行控制信道用 于指示承载在所述第一服务小区上的物理下行共享信道 PDSCH传输, 或 者用于指示下行半持续调度 SPS释放;
当所述下行控制信道用于指示所述 PDSCH传输时, 所述下行控制信 道对应的混合自动重传确认具体为所述下行控制信道对应的 PDSCH的混 合自动重传确认, 当所述下行控制信道用于指示所述 SPS释放时, 所述下 行控制信道对应的混合自动重传确认具体为指示所述 SPS释放的所述下 行控制信道对应的混合自动重传确认。
结合本发明第五方面以及第五方面的第一种可能的实现方式, 在本发 明第五方面的第二种可能的实现方式中, 所述第一服务小区为所述 UE的 主服务小区, 所述第一服务小区的双工方式为时分双工 TDD, 所述第二服 务小区的双工方式为频分双工 FDD, 且所述第二服务小区为所述 UE的小 区索引最小的 FDD辅服务小区。
结合本发明第五方面以及第五方面的第一种可能的实现方式, 在本发 明第五方面的第三种可能的实现方式中, 所述第一服务小区为所述 UE的 主服务小区, 所述第一服务小区的双工方式为时分双工 TDD, 所述第二服 务小区的双工方式为频分双工 FDD,所述第二服务小区为更高层信令指示 的用于传输 PUCCH的辅服务小区。
本发明第六方面提供一种上行控制信息的传输方法, 包括: 基站在下行子帧 N向用户设备 UE发送下行控制信道, 所述下行信道 承载于所述 UE的第一服务小区上, 所述下行控制信道为物理下行控制信 道 PDCCH或增强的物理下行控制信道 EPDCCH;
当所述下行控制信道对应的混合自动重传确认承载于所述 UE的第二 服务小区上时,所述基站通过所述下行控制信道的下行控制信息 DCI格式 中的发射功率控制 TPC命令域指示物理上行控制信道 PUCCH资源; 当所述下行控制信道对应的混合自动重传确认承载于所述第一服务 小区上时,所述基站通过所述下行控制信道的下行控制信息 DCI格式中的 发送功率控制 TPC命令域指示所述 PUCCH的发射功率, 其中, 所述第一 服务小区和所述第二服务小区的双工方式不同;
所述基站根据所述 PUCCH资源接收所述 UE发送的所述下行控制信 道对应的混合自动重传确认。
在本发明第六方面的第一种可能的实现方式中, 所述下行控制信道用 于承载在所述第一服务小区上的指示物理下行共享信道 PDSCH传输, 或 者用于指示下行半持续调度 SPS释放;
当所述下行控制信道用于指示物理下行共享信道 PDSCH传输时, 所 述下行控制信道对应的混合自动重传确认具体为所述下行控制信道对应 的 PDSCH的混合自动重传确认, 当所述下行控制信道用于指示下行半持 续调度 SPS释放时,所述下行控制信道对应的混合自动重传确认具体为指 示下行半持续调度 SPS释放的所述下行控制信道对应的混合自动重传确 认。
结合本发明第六方面以及第六方面的第一种可能的实现方式, 在本发 明第六方面的第二种可能的实现方式中, 所述第一服务小区为所述 UE的 主服务小区, 所述第一服务小区的双工方式为时分双工 TDD, 所述第二服 务小区的双工方式为频分双工 FDD, 且所述第二服务小区为所述 UE的小 区索引最小的 FDD辅服务小区。
结合本发明第六方面以及第六方面的第一种可能的实现方式, 在本发 明第六方面的第三种可能的实现方式中, 所述第一服务小区为所述 UE的 主服务小区, 所述第一服务小区的双工方式为时分双工 TDD, 所述第二服 务小区的双工方式为频分双工 FDD,所述第二服务小区为更高层信令指示 的用于传输 PUCCH的辅服务小区。
本发明第七方面提供一种用户设备 UE, 包括:
接收模块, 用于在下行子帧 N接收基站发送的下行控制信道, 所述下 行控制信道承载于所述 UE的第一服务小区上;
发送模块, 用于在上行子帧 N+4通过物理上行控制信道 PUCCH向所 述基站发送所述下行控制信道对应的混合自动重传确认, 当所述上行子帧 N+4属于第一上行子帧集合时, 所述 PUCCH承载于所述 UE的第二服务 小区上, 当所述上行子帧 N+4属于第二上行子帧集合时, 所述 PUCCH承 载于所述第一服务小区上, 其中, 所述第一服务小区和所述第二服务小区 的双工方式不同, 所述第一上行子帧集合包括的上行子帧个数与所述第二 上行子帧集合包括的上行子帧个数之和等于一个无线帧的个数, 所述第一 上行子帧集合包括的上行子帧和所述第二上行子帧集合包括的上行子帧 对应无线帧中不同的子帧。
在本发明第七方面的第一种可能的实现方式中, 当所述第一服务小区 的双工方式为时分双工 TDD, 所述第二服务小区的双工方式为频分双工 FDD时,所述第二上行子帧集合包括的上行子帧对应一个无线帧中所述第 一服务小区的上行子帧, 所述第一上行子帧集合包括的上行子帧对应所述 无线帧中除所述第二上行子帧集合包括的上行子帧外的其他上行子帧; 当所述第一服务小区的双工方式为 FDD,且所述第二服务小区的双工 方式为 TDD时, 所述第一上行子帧集合包括的上行子帧对应一个无线帧 中所述第一服务小区的上行子帧, 所述第二上行子帧集合包括的上行子帧 对应所述无线帧中的除所述第一上行子帧集合包括的上行子帧外的其他 上行子帧。
结合本发明第七方面以及第七方面的第一种可能的实现方式, 在本发 明第七方面的第二种可能的实现方式中, 所述下行控制信道为物理下行控 制信道 PDCCH或增强的物理下行控制信道 EPDCCH, 所述下行控制信道 用于指示承载在所述第一服务小区上的物理下行共享信道 PDSCH传输, 或者用于指示下行半持续调度 SPS释放;
当所述下行控制信道用于指示所述 PDSCH传输时, 所述下行控制信 道对应的混合自动重传确认具体为所述下行控制信道对应的 PDSCH的混 合自动重传确认, 当所述下行控制信道用于指示所述 SPS释放时, 所述下 行控制信道对应的混合自动重传确认具体为指示所述 SPS 释放的所述下 行控制信道对应的混合自动重传确认。
结合本发明第七方面以及第七方面的第一种和第二种可能的实现方 式,在本发明第七方面的第三种可能的实现方式中,所述用户设备还包括: 获取模块, 用于获取所述 PUCCH的 PUCCH资源和 /或 PUCCH发射 功率。
在本发明第七方面的第四种可能的实现方式中, 当所述上行子帧 N+4 属于第一上行子帧集合时, 所述获取模块具体用于:
根据所述下行控制信道的下行控制信息 DCI 格式中的发射功率控制
TPC命令域确定所述 PUCCH资源。
在本发明第七方面的第五种可能的实现方式中, 当所述上行子帧 N+4 属于第二上行子帧集合时, 所述获取模块具体用于:
根据所述下行控制信道的下行控制信息 DCI 格式中的发射功率控制 TPC命令域确定所述 PUCCH发射功率。
本发明第八方面提供一种基站, 包括:
发送模块, 用于在下行子帧 N向用户设备 UE发送下行控制信道, 所 述下行控制信道承载于所述 UE的第一服务小区上;
接收模块, 用于在上行子帧 N+4接收所述 UE通过物理上行控制信道 PUCCH 发送的所述下行控制信道对应的混合自动重传确认, 当所述上行 子帧 N+4属于第一上行子帧集合时, 所述 PUCCH承载于所述 UE的第二 服务小区上,当所述上行子帧 N+4属于第二上行子帧集合时,所述 PUCCH 承载于所述第一服务小区上, 其中, 所述第一服务小区和所述第二服务小 区的双工方式不同, 所述第一上行子帧集合包括的上行子帧个数与所述第 二上行子帧集合包括的上行子帧个数之和等于一个无线帧的个数, 所述第 一上行子帧集合包括的上行子帧和所述第二上行子帧集合包括的上行子 帧对应无线帧中不同的子帧。
在本发明第八方面的第一种可能的实现方式中, 当所述第一服务小区 的双工方式为时分双工 TDD, 所述第二服务小区的双工方式为频分双工 FDD时,则所述第二上行子帧集合包括的上行子帧对应一个无线帧中所述 第一服务小区的上行子帧, 所述第一上行子帧集合包括的上行子帧对应所 述无线帧中的除所述第二上行子帧集合包括的上行子帧外的其他上行子 帧;
当所述第一服务小区的双工方式为 FDD,且所述第二服务小区的双工 方式为 TDD 时, 所述第一上行子帧集合包括的上行子帧对应一个无线帧 中所述第一服务小区的上行子帧, 所述第二上行子帧集合包括的上行子帧 对应所述无线帧中的除所述第一上行子帧集合包括的上行子帧外的其他 上行子帧。
结合本发明第八方面以及第八方面的第一种可能的实现方式, 在本发 明第八方面的第二种可能的实现方式中, 所述下行控制信道为物理下行控 制信道 PDCCH或增强的物理下行控制信道 EPDCCH, 所述下行控制信道 用于指示承载在所述第一服务小区上的物理下行共享信道 PDSCH传输, 或者用于指示下行半持续调度 SPS释放;
当所述下行控制信道用于指示所述 PDSCH传输时, 所述下行控制信 道对应的混合自动重传确认具体为所述下行控制信道对应的 PDSCH的混 合自动重传确认, 当所述下行控制信道用于指示所述 SPS释放时, 所述下 行控制信道对应的混合自动重传确认具体为指示所述 SPS 释放的所述下 行控制信道对应的混合自动重传确认。
本发明第九方面提供一种用户设备, 包括:
接收模块, 用于在下行子帧 N接收下行控制信道, 所述下行控制信道 承载于所述 UE的第一服务小区上, 所述第一服务小区的双工方式为时分 双工 TDD;
发送模块,用于在上行子帧 N+4通过物理上行控制信道 PUCCH发送 所述下行控制信道对应的混合自动重传确认, 其中, 所述 PUCCH承载于 所述 UE 的第二服务小区上, 所述第二服务小区的双工方式为频分双工 FDD。
在本发明第九方面的第一种可能的实现方式中, 所述下行控制信道为 物理下行控制信道 PDCCH或增强的物理下行控制信道 EPDCCH, 所述下 行控制信道用于指示承载在所述第一服务小区上的物理下行共享信道 PDSCH传输, 或者用于指示下行半持续调度 SPS释放;
当所述下行控制信道用于指示所述 PDSCH传输时, 所述下行控制信 道对应的混合自动重传确认具体为所述下行控制信道对应的 PDSCH的混 合自动重传确认, 当所述下行控制信道用于指示所述 SPS释放时, 所述下 行控制信道对应的混合自动重传确认具体为指示所述 SPS 释放的所述下 行控制信道对应的混合自动重传确认。
结合本发明第九方面以及第九方面的第一种可能的实现方式, 在本发 明第九方面的第二种可能的实现方式中, 所述用户设备还包括:
获取模块, 用于获取所述 PUCCH的 PUCCH资源。
在本发明第九方面的第三种可能的实现方式中, 所述获取模块具体用 于:
根据所述下行控制信道的下行控制信息 DCI 格式中的下行分配指示 DAI或发射功率控制 TPC命令确定所述 PUCCH资源。
结合本发明第九方面以及第九方面的第一种至第三种可能的实现方 式, 在本发明第九方面的第四种可能的实现方式中, 所述第一服务小区为 所述 UE的主服务小区, 所述第二服务小区为所述 UE的辅服务小区。
在本发明第九方面的第五种可能的实现方式中, 所述第二服务小区为 所述 UE的小区索引最小的 FDD辅服务小区, 或者,所述第二服务小区为 更高层信令指示的用于传输所述 PUCCH的辅服务小区。
本发明第十方面提供一种基站, 包括:
发送模块, 用于在下行子帧 N向用户设备 UE发送下行控制信道, 所 述下行控制信道承载于所述 UE的第一服务小区上, 所述第一服务小区的 双工方式为时分双工 TDD, 所述下行控制信道的下行控制信息 DCI格式 中的下行分配指示 DAI或发射功率控制 TPC命令用于指示物理上行控制 信道 PUCCH资源;
接收模块, 用于在上行子帧 N+4根据所述 PUCCH资源接收所述 UE 通过 PUCCH发送的所述下行控制信道对应的混合自动重传确认, 其中, 所述 PUCCH承载于所述 UE的第二服务小区上, 所述第二服务小区的双 工方式为频分双工 FDD。
在本发明第十方面的第一种可能的实现方式中, 所述下行控制信道为 物理下行控制信道 PDCCH或增强的物理下行控制信道 EPDCCH, 所述下 行控制信道用于指示承载在所述第一服务小区上的物理下行共享信道 PDSCH传输, 或者用于指示下行半持续调度 SPS释放;
当所述下行控制信道用于指示所述 PDSCH传输时, 所述下行控制信 道对应的混合自动重传确认具体为所述下行控制信道对应的 PDSCH的混 合自动重传确认, 当所述下行控制信道用于指示所述 SPS释放时, 所述下 行控制信道对应的混合自动重传确认具体为指示所述 SPS释放的所述下 行控制信道对应的混合自动重传确认。
结合本发明第十方面以及第四方面的第一种可能的实现方式, 在本发 明第十方面的第二种可能的实现方式中, 所述第一服务小区为所述 UE的 主服务小区, 所述第二服务小区为所述 UE的辅服务小区。
在本发明第十方面的第三种可能的实现方式中, 所述第二服务小区为 所述 UE的小区索引最小的 FDD辅服务小区, 或者,所述第二服务小区为 所述基站通过更高层信令指示的用于传输 PUCCH的辅服务小区。
本发明第十一方面提供一种用户设备 UE, 包括:
接收模块, 用于在下行子帧 N接收下行控制信道, 所述下行控制信道 承载于所述 UE的第一服务小区上, 所述下行控制信道为物理下行控制信 道 PDCCH或增强的物理下行控制信道 EPDCCH。
确定模块, 用于当所述下行控制信道对应的混合自动重传确认承载于 所述 UE的第二服务小区上时, 所述 UE根据所述下行控制信道的下行控 制信息 DCI格式中的发射功率控制 TPC命令域确定物理上行控制信道 PUCCH资源; 且当所述下行控制信道对应的混合自动重传确认承载于所 述第一服务小区上时, 所述 UE根据所述下行控制信道的下行控制信息 DCI格式中的发送功率控制 TPC命令域确定所述 PUCCH的发射功率,其 中, 所述第一服务小区和所述第二服务小区的双工方式不同。
发送模块,用于根据所述 PUCCH资源或所述 PUCCH的发射功率通过 所述 PUCCH发送所述下行控制信道对应的混合自动重传确认。
在本发明第十一方面的第一种可能的实现方式中, 所述下行控制信道 用于指示承载在所述第一服务小区上的物理下行共享信道 PDSCH传输, 或者用于指示下行半持续调度 SPS释放;
当所述下行控制信道用于指示所述 PDSCH传输时, 所述下行控制信 道对应的混合自动重传确认具体为所述下行控制信道对应的 PDSCH的混 合自动重传确认, 当所述下行控制信道用于指示所述 SPS释放时, 所述下 行控制信道对应的混合自动重传确认具体为指示所述 SPS 释放的所述下 行控制信道对应的混合自动重传确认。
结合本发明第十一方面以及第十一方面的第一种可能的实现方式, 在 本发明第十一方面的第二种可能的实现方式中, 所述第一服务小区为所述
UE的主服务小区, 所述第一服务小区的双工方式为时分双工 TDD, 所述 第二服务小区的双工方式为频分双工 FDD , 且所述第二服务小区为所述 UE的小区索引最小的 FDD辅服务小区。
结合本发明第十一方面以及第十一方面的第一种可能的实现方式, 在 本发明第十一方面的第三种可能的实现方式中, 所述第一服务小区为所述 UE的主服务小区, 所述第一服务小区的双工方式为时分双工 TDD, 所述 第二服务小区的双工方式为频分双工 FDD,所述第二服务小区为更高层信 令指示的用于传输 PUCCH的辅服务小区。
本发明第十二方面提供一种基站, 包括:
发送模块, 用于在下行子帧 N向用户设备 UE发送下行控制信道, 所 述下行信道承载于所述 UE的第一服务小区上, 所述下行控制信道为物理 下行控制信道 PDCCH或增强的物理下行控制信道 EPDCCH;
指示模块, 用于当所述下行控制信道对应的混合自动重传确认承载于 所述 UE的第二服务小区上时, 通过所述下行控制信道的下行控制信息 DCI格式中的发射功率控制 TPC命令域指示物理上行控制信道 PUCCH资 源;
当所述下行控制信道对应的混合自动重传确认承载于所述第一服务 小区上时,通过所述下行控制信道的下行控制信息 DCI格式中的发送功率 控制 TPC命令域指示所述 PUCCH的发射功率, 其中, 所述第一服务小区 和所述第二服务小区的双工方式不同;
发送模块,用于根据所述 PUCCH资源接收所述 UE发送的所述下行控 制信道对应的混合自动重传确认。
在本发明第十二方面的第一种可能的实现方式中, 所述下行控制信道 用于指示承载在所述第一服务小区上的指示物理下行共享信道 PDSCH传 输, 或者用于指示下行半持续调度 SPS释放;
当所述下行控制信道用于指示物理下行共享信道 PDSCH传输时, 所 述下行控制信道对应的混合自动重传确认具体为所述下行控制信道对应 的 PDSCH的混合自动重传确认, 当所述下行控制信道用于指示下行半持 续调度 SPS释放时,所述下行控制信道对应的混合自动重传确认具体为指 示下行半持续调度 SPS 释放的所述下行控制信道对应的混合自动重传确 认。
结合本发明第十二方面以及第十二方面的第一种可能的实现方式, 在 本发明第十二方面的第二种可能的实现方式中, 所述第一服务小区为所述 UE的主服务小区, 所述第一服务小区的双工方式为时分双工 TDD, 所述 第二服务小区的双工方式为频分双工 FDD , 且所述第二服务小区为所述 UE的小区索引最小的 FDD辅服务小区。
结合本发明第十二方面以及第十二方面的第一种可能的实现方式, 在 本发明第十二方面的第三种可能的实现方式中, 所述第一服务小区为所述 UE的主服务小区, 所述第一服务小区的双工方式为时分双工 TDD, 所述 第二服务小区的双工方式为频分双工 FDD,所述第二服务小区为更高层信 令指示的用于传输 PUCCH的辅服务小区。
本发明实施例提供的上行控制信息的传输方法、 基站和用户设备, UE 在下行子帧 N接收到基站发送的下行控制信道,并在上行子帧 N+4通过物理 上行控制信道 PUCCH 向基站发送下行控制信道对应的混合自动重传确认, 当上行子帧 N+4属于第一上行子帧集合时, PUCCH承载于 UE的第二服务小 区上, 当上行子帧 N+4属于第二上行子帧集合时, PUCCH承载于第一服务 小区上。 通过上述方法, 解决了不同双工方式载波聚合时如何传输 HARQ-ACK的问题, 使得每个下行子帧(包括 FDD下行子帧和 TDD下行子 帧) 均有对应的反馈 HARQ-ACK 的上行子帧, 提高资源利用率; 同时不改 变 FDD载波的 HARQ-ACK定时。 附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对 实施例或现有技术描述中所需要使用的附图作一简单地介绍, 显而易见 地, 下面描述中的附图是本发明的一些实施例, 对于本领域普通技术人员 来讲, 在不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的 附图。
图 1为本发明上行控制信息的传输方法实施例一的流程图; 图 2为本发明中 PUCCH传输机制示意图;
图 3为本发明上行控制信息的传输方法实施例二的流程图; 图 4为本发明上行控制信息的传输方法实施例三的流程图; 图 5为本发明上行控制信息的传输方法实施例四的流程图; 图 6为本发明上行控制信息的传输方法实施例五的流程图; 图 7为本发明上行控制信息的传输方法实施例六的流程图; 图 8为本发明用户设备实施例一的结构示意图;
图 9为本发明基站实施例一的结构示意图;
图 10为本发明用户设备实施例二的结构示意图;
图 11为本发明基站实施例二的结构示意图;
图 12为本发明用户设备实施例三的结构示意图;
图 13为本发明基站实施例三的结构示意图;
图 14为本发明上行控制信息的传输方法实施例七的流程图;
图 15为本发明上行控制信息的传输方法实施例八的流程图;
图 16为本发明上行控制信息的传输方法实施例九的流程图;
图 17为本发明上行控制信息的传输方法实施例十的流程图;
图 18为本发明上行控制信息的传输方法实施例十一的流程图; 图 19为本发明上行控制信息的传输方法实施例十二的流程图; 图 20为本发明上行控制信息的传输方法实施例十三的流程图; 图 21为本发明上行控制信息的传输方法实施例十四的流程图; 图 22为本发明用户设备实施例四的结构示意图; 图 23为本发明基站实施例四的结构示意图;
图 24为本发明用户设备实施例五的结构示意图;
图 25为本发明基站实施例五的结构示意图;
图 26为本发明用户设备实施例六的结构示意图;
图 27为本发明基站实施例六的结构示意图;
图 28为本发明用户设备实施例七的结构示意图;
图 29为本发明基站实施例七的结构示意图;
图 30为本发明用户设备实施例八的结构示意图;
图 31为本发明基站实施例八的结构示意图;
图 32为本发明用户设备实施例九的结构示意图;
图 33为本发明基站实施例九的结构示意图;
图 34为本发明用户设备实施例十的结构示意图;
图 35为本发明基站实施例十的结构示意图。 具体实施方式 为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本 发明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描 述, 显然,所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作出创造性劳动前提 下所获得的所有其他实施例, 都属于本发明保护的范围。
图 1为本发明上行控制信息的传输方法实施例一的流程图,如图 1所示, 本实施例的方法可以包括:
步骤 101、 UE在下行子帧 N接收下行控制信道, 该下行控制信道承载于 该 UE的第一服务小区上。
该步骤具体可以为 UE在下行子帧 N接收基站发送的下行控制信道, 该 下行控制信道承载于 UE的第一服务小区上。
本发明所有实施例中, 用户设备 (User Equipment, 简称 UE) 对应的服 务小区可以指网络侧设备 (例如基站) 给 UE配置的服务小区, 或指为 UE 服务的服务小区, 或指 UE接入的服务小区。 UE对应的服务小区包括第一服 务小区和第二服务小区, 该第一服务小区和第二服务小区可以是基站配置给 该 UE的服务小区包括的第一服务小区和第二服务小区,也可以是该 UE接入 的服务小区中包括第一服务小区和第二服务小区。需要说明的是, UE对应的 服务小区也可以指 UE的成员载波 (也称分量载波) , 第一服务小区也可称 为第一成员载波, 第二服务小区也可称为第二成员载波。
本发明所有实施例中, 子帧编号 (n)指子帧在多个无线帧中的编号, 可 按如下方式获得: 按照时间先后顺序对多个无线帧中的子帧以单调递增方式 从 0开始进行编号, 即若上一个无线帧的最后一个子帧的编号为 , 则下一 个无线帧的第一个子帧的编号为 +1。 另外, 多个无线帧中, 每个子帧在其 对应的无线帧中也有一个子帧序号, 即为该子帧在该无线帧中的子帧序号。
本步骤中, UE在下行子帧 N接收承载于第一服务小区上的下行控制信 道, 其中, 该第一服务小区为该 UE对应的服务小区, 该下行控制信道为物 理下行控制信道 (Physical Downlink Control Channel, 简称 PDCCH) 或增强 的物理下行控制信道 (Enhance Physical Downlink Control Channel , 简称 EPDCCH) , 该下行控制信道可以用于指示在第一服务小区上传输的物理下 行共享信道 PDSCH,或说该下行控制信道可以用于指示承载在第一服务小区 上的 PDSCH 传输; 或者, 该下行控制信道可以用于指示下行半持续调度 (Semi-Persistent Scheduling, 简称 SPS ) 释放。 该下行控制信道的下行控制 信息(Downlink Control Information, 简称 DCI)格式可以为 DCI格式 1、 DCI 格式 1A、 DCI格式 1B、 DCI格式 1D、 DCI格式 2A、 DCI格式 2B、 DCI格 式 2C、 DCI格式 2D中的一个或多个, 本发明并不对此做限制。
步骤 102、 UE在上行子帧 N+4通过物理上行控制信道 PUCCH发送下行 控制信道对应的混合自动重传确认。
该步骤具体可以为 UE在上行子帧 N+4通过物理上行控制信道 PUCCH 向基站发送下行控制信道对应的混合自动重传确认 HARQ-ACK,即向基站发 送步骤 1中接收到的下行控制信道对应的混合自动重传确认。
进一步地, 本步骤中, 当上行子帧 N+4属于第一上行子帧集合时, 物理 上行控制信道 (Physical Uplink Control Channel, 简称 PUCCH) 承载于 UE 的第二服务小区上, 当上行子帧 N+4属于第二上行子帧集合时, PUCCH承 载于第一服务小区上, 其中, 第一服务小区和第二服务小区的双工方式不同, 第一上行子帧集合包括的上行子帧个数与第二上行子帧集合包括的上行子帧 个数之和等于一个无线帧的个数, 第一上行子帧集合包括的上行子帧和第二 上行子帧集合包括的上行子帧对应无线帧中不同的子帧。
进一步地, 本步骤中, 当该上行子帧 n+4属于第一上行子帧集合时, 该 PUCCH承载于该用户设备的第二服务小区上,且该下行控制信道的下行控制 信息 DCI格式中的发射功率控制 TPC命令域指示该 PUCCH的 PUCCH资源, 即步骤 1中的下行控制信道的下行控制信息 DCI格式中的发射功率控制 TPC 命令域指示该 PUCCH的 PUCCH资源,此时用户设备可以根据步骤 1中的下 行控制信道的下行控制信息 DCI格式中的发射功率控制 TPC命令域确定该 PUCCH的 PUCCH资源, 然后利用该 PUCCH资源在上行子帧 n+4通过该 PUCCH反馈步骤 1中的下行控制信道对应的物理下行共享信道 PDSCH的混 合自动重传确认 HARQ-ACK。 当该上行子帧 n+4属于第二上行子帧集合时, 该 PUCCH承载于该用户设备的第一服务小区上, 即可以为承载于步骤 1 中 的第一服务小区上, 此时步骤 1中的下行控制信道的下行控制信息 DCI格式 中的发射功率控制 TPC命令域可以用于确定该 PUCCH的发射功率, 此时用 户设备可以根据步骤 1中的下行控制信道的下行控制信息 DCI格式中的发射 功率控制 TPC命令域确定该 PUCCH的发射功率, 然后利用该 PUCCH的发 射功率在上行子帧 n+4通过该 PUCCH反馈步骤 1中的下行控制信道对应的 物理下行共享信道 PDSCH的混合自动重传确认 HARQ-ACK。
可选地,本实施例中,步骤 102之前还可以包括以下步骤: UE获取 PUCCH 的 PUCCH 资源和 /或 PUCCH 发射功率。 在本实施例中, UE 可以只获取 PUCCH资源或 PUCCH发射功率, UE也可以两者都获取。 一种可行的实现 方式中, 当该上行子帧 N+4属于第一上行子帧集合时, 该 PUCCH承载于该 UE的第二服务小区上, 基站通过下行控制信道的下行控制信息 DCI格式中 的发射功率控制 (Transmit Power Control, 简称 TPC)命令域指示该 PUCCH 的 PUCCH资源, 即步骤 101中的下行控制信道的 DCI格式中的发射功率控 制 TPC命令域指示该 PUCCH的 PUCCH资源, 此时 UE可以根据步骤 101 中的下行控制信道的下行控制信息 DCI格式中的发射功率控制 TPC命令域确 定该 PUCCH的 PUCCH资源, 然后利用该 PUCCH资源在上行子帧 N+4通 过该 PUCCH 反馈步骤 101 中的下行控制信道对应的混合自动重传确认 ( HARQ Hybrid Automatic Repeat request Acknowledgment , 简 禾尔 HARQ-ACK) 。 当该上行子帧 N+4属于第二上行子帧集合时, 该 PUCCH承 载于该 UE的第一服务小区上,即 PUCCH承载于步骤 101中的第一服务小区 上,此时步骤 101中的下行控制信道的 DCI格式中的 TPC命令域可以用于确 定该 PUCCH的发射功率, UE可以根据步骤 101 中的下行控制信道的 DCI 格式中的 TPC命令域确定该 PUCCH的发射功率, 然后利用该 PUCCH的发 射功率在上行子帧 N+4通过该 PUCCH反馈步骤 101中的下行控制信道对应 的混合自动重传确认消息。
进一步地, 本步骤中, 当该下行控制信道用于指示承载在第一服务小区 上的物理下行共享信道 (Physical Downlink Shared Channel, 简称 PDSCH) 传输时, 下行控制信道对应的混合自动重传确认具体为下行控制信道对应的 PDSCH的 HARQ-ACK, 当下行控制信道用于指示下行半持续调度 SPS释放 时, 下行控制信道对应的混合自动重传确认具体为指示 SPS释放的下行控制 信道对应的 HARQ-ACK:。
进一步地, 本实施例中, 第一服务小区和第二服务小区的双工方式不同, 当第一服务小区的双工方式为 TDD, 且第二服务小区的双工方式为 FDD时, 则第二上行子帧集合包括的上行子帧对应一个无线帧中第一服务小区的上行 子帧, 第一上行子帧集合包括的上行子帧对应无线帧中除第二上行子帧集合 包括的上行子帧外的其他上行子帧。 当第一服务小区的双工方式为 FDD, 且 第二服务小区的双工方式为 TDD时,第一上行子帧集合包括的上行子帧对应 一个无线帧中第一服务小区的上行子帧, 第二上行子帧集合包括的上行子帧 对应无线帧中的除第一上行子帧集合包括的上行子帧外的其他上行子帧。
进一步地, 当第一服务小区为该 UE的主服务小区时, 第二服务小区可 以为该 UE 的小区索引最小的 FDD辅服务小区, 第二服务小区也可以为该 UE的辅服务小区中更高层信令指示的辅服务小区,具体可以为该 UE的辅服 务小区中更高层信令指示的用于传输 PUCCH的辅服务小区。
通常情况下一个无线帧的子帧个数为 10, 所以第一上行子帧集合包括的 上行子帧数与该第二上行子帧集合包括的上行子帧数之和可以为 10, 当第一 服务小区的双工方式为 TDD, 第二服务小区的双工方式为频分双工 FDD时, 第二上行子帧集合包括的上行子帧对应一个无线帧中该第一服务小区的上行 子帧,第一上行子帧集合包括的上行子帧对应一个无线帧中的其余上行子帧, 即对应一个无线帧中除第二上行子帧集合包括的上行子帧外的上行子帧。 举 例来说, 当该第一服务小区的上下行配比为配比 2时, 此时 UE可以按照图 2 所示的方式传输 PUCCH, 图 2为本发明中 PUCCH传输机制示意图, 其中, UE在第一服务小区为上行子帧时在该第一服务小区上传输 PUCCH, 当该第 一服务小区为下行子帧时在第二服务小区上传输 PUCCH,此时该第二上行子 帧集合为一个无线帧中该第一服务小区对应的上行子帧 (图 2中第一服务小 区对应的无线子帧中用竖线标注的子帧) , 该第一上行子帧集合为同一个无 线帧中的其余上行子帧 (图 2中第二服务小区对应的无线子帧中用横线标注 的子帧) , 即同一个无线帧中除第二上行子帧集合包括的上行子帧外的上行 子帧。
本发明实施例, 例如图 2所示的例子, 当主载波为 TDD载波时, FDD 载波和 TDD载波均可按照 FDD载波的现有定时进行 HARQ-ACK反馈, 即 若 UE在下行子帧 N接收控制信道, 则在上行子帧 N+4反馈 FDD载波和 / 或 TDD载波的 HARQ-ACK, 且若上行子侦 N+4刚好对应于 TDD的上行子 帧, 则采用 TDD载波反馈 HARQ-ACK, 若上行子帧 N+4对应于 TDD的下 行子帧, 则采用 FDD载波反馈 HARQ-ACK。 一方面, 使得 FDD载波上所有 下行子帧都有对应的反馈 HARQ-ACK 的上行子帧, 提高资源利用率, 同时 不改变 FDD载波的 HARQ-ACK定时;另一方面,对于 TDD载波也按照 FDD 载波的现有定时进行 HARQ-ACK反馈, 避免了 HARQ-ACK捆绑, 减小了 TDD载波的 RTT延迟。
另外, 本发明实施例中, 当该上行子帧 n+4属于第一上行子帧集合时, 该 PUCCH承载于该用户设备的第二服务小区上, 且该下行控制信道的下行 控制信息 DCI格式中的发射功率控制 TPC命令域指示该 PUCCH的 PUCCH 资源; 当该上行子帧 n+4属于第二上行子帧集合时, 该 PUCCH承载于该用 户设备的第一服务小区上, 且该下行控制信道的下行控制信息 DCI格式中的 发射功率控制 TPC命令域用于确定该 PUCCH的发射功率; 本发明实施例通 过上述特征, 一方面使得 TPC命令承载于传输 PUCCH的载波对应的下行载 波上, 便于实现该方式下的独立功率控制, 使得功率控制更简单; 另一方面, 当 PUCCH承载于另一个服务小区上时, 利用 TPC命令域指示 PUCCH的资 源, 从而使得 UE能根据该 PUCCH资源反馈 HARQ-ACK, 并且通过动态指 示, 提高了 PUCCH资源的利用率。
本实施例提供的方案, UE在下行子帧 N接收到基站发送的下行控制信 道, 并在上行子帧 N+4通过物理上行控制信道 PUCCH向基站发送下行控制 信道对应的混合自动重传确认, 当上行子帧 N+4属于第一上行子帧集合时, PUCCH承载于 UE的第二服务小区上,当上行子帧 N+4属于第二上行子帧集 合时, PUCCH承载于第一服务小区上。通过上述方法, 解决了不同双工方式 载波聚合时如何传输 HARQ-ACK的问题, 同时通过当上行子帧 N+4属于第 一上行子帧集合时, PUCCH承载于 UE的第二服务小区上, 当上行子帧 N+4 属于第二上行子帧集合时, PUCCH承载于第一服务小区上, 使得每个下行子 帧 (包括 FDD下行子帧和 TDD下行子帧) 均有对应的反馈 HARQ-ACK的 上行子帧, 提高资源利用率; 同时不改变 FDD载波的 HARQ-ACK定时。
图 3为本发明上行控制信息的传输方法实施例二的流程图,如图 3所示, 本实施例提供的方法包括以下步骤:
步骤 201、 基站在下行子帧 N向 UE发送下行控制信道, 下行控制信道 承载于 UE的第一服务小区上;
本步骤中, 基站在下行子帧 N在第一服务小区上给 UE发送下行控制信 道, 该下行控制信道为物理下行控制信道 PDCCH或增强的物理下行控制信 道 EPDCCH, 该下行控制信道用于指示承载在第一服务小区上的 PDSCH传 输, 或者用于指示下行半持续调度 SPS释放。 对本步骤的其他描述可参照实 施例一步骤 101的描述, 此处不再赘述。
步骤 202、基站在上行子帧 N+4接收 UE通过物理上行控制信道 PUCCH 发送的下行控制信道对应的混合自动重传确认。
本实施例中, 若下行控制信道用于指示承载在第一服务小区上 PDSCH 传输, 则下行控制信道对应的混合自动重传确认具体为下行控制信道对应的 PDSCH的混合自动重传确认 HARQ-ACK, 若下行控制信道用于指示下行半 持续调度 SPS 释放, 则下行控制信道对应的混合自动重传确认具体为指示 SPS释放的下行控制信道对应的混合自动重传确认消息 HARQ-ACK。
本步骤中, 当上行子帧 N+4属于第一上行子帧集合时, PUCCH承载于 UE的第二服务小区上, 当上行子帧 N+4属于第二上行子帧集合时, PUCCH 承载于第一服务小区上, 其中, 第一服务小区和第二服务小区的双工方式不 同, 第一上行子帧集合包括的上行子帧个数与第二上行子帧集合包括的上行 子帧个数之和等于一个无线帧的个数, 第一上行子帧集合包括的上行子帧和 第二上行子帧集合包括的上行子帧对应无线帧中不同的子帧。
本步骤中, 当上行子帧 N+4属于第一上行子帧集合时, 该 PUCCH承载 于该 UE的第二服务小区上, 且该下行控制信道的下行控制信息 DCI格式中 的发射功率控制 TPC命令域指示该 PUCCH的 PUCCH资源, 此时, 基站可 以通过步骤 201中的下行控制信道的下行控制信息 DCI格式中的发射功率控 制 TPC命令域指示该 PUCCH的 PUCCH资源, 然后利用该 PUCCH资源在 上行子帧 N+4在该 PUCCH上接收下行控制信道对应的混合自动重传确认消 息。
当上行子帧 N+4属于第二上行子帧集合时, 该 PUCCH承载于该 UE的 第一服务小区上, 此时步骤 201中的下行控制信道的下行控制信息 DCI格式 中的发射功率控制 TPC命令域可以用于 UE确定该 PUCCH的发射功率, 基 站可以根据该下行控制信道的下行控制信息 DCI格式中的发射功率控制 TPC 命令域指示该 PUCCH的发射功率。
本实施例中, 第一服务小区和第二服务小区的双工方式不同, 当第一服 务小区的双工方式为 TDD, 第二服务小区的双工方式为 FDD, 则第二上行子 帧集合包括的上行子帧对应一个无线帧中第一服务小区的上行子帧, 第一上 行子帧集合包括的上行子帧对应无线帧中的除第二上行子帧集合包括的上行 子帧外的其他上行子帧。 当第一服务小区的双工方式为 FDD, 且第二服务小 区的双工方式为 TDD时,第一上行子帧集合包括的上行子帧对应一个无线帧 中第一服务小区的上行子帧, 第二上行子帧集合包括的上行子帧对应无线帧 中的除第一上行子帧集合包括的上行子帧外的其他上行子帧。
当第一服务小区为该 UE 的主服务小区时, 第二服务小区可以为该 UE 的小区索引最小的 FDD辅服务小区,第二服务小区也可以为该 UE的辅服务 小区中更高层信令指示的辅服务小区, 具体可以为该 UE的辅服务小区中更 高层信令指示的用于传输 PUCCH的辅服务小区,即该 UE的服务小区中基站 指示的用于传输 PUCCH的辅服务小区。
如果无线帧的子帧个数为 10, 第一上行子帧集合包括的上行子帧数与该 第二上行子帧集合包括的上行子帧数之和可以为 10, 当第一服务小区的双工 方式为 TDD, 第二服务小区的双工方式为频分双工 FDD时, 第二上行子帧 集合包括的上行子帧对应一个无线帧中该第一服务小区的上行子帧, 第一上 行子帧集合包括的上行子帧对应一个无线帧中的其余上行子帧, 即对应一个 无线帧中除第二上行子帧集合包括的上行子帧外的上行子帧。 举例来说, 当 该第一服务小区的上下行配比为配比 2时, 此时 UE可以按照图 2所示的方 式传输 PUCCH, 图 2为本发明中 PUCCH传输机制示意图, 其中, UE在第 一服务小区为上行子帧时在该第一服务小区上传输 PUCCH,当该第一服务小 区为下行子帧时在第二服务小区上传输 PUCCH,此时该第二上行子帧集合为 一个无线帧中该第一服务小区对应的上行子帧 (图 2中第一服务小区对应的 无线子帧中用竖线标注的子帧) , 该第一上行子帧集合为同一个无线帧中的 其余上行子帧(图 2中第二服务小区对应的无线子帧中用横线标注的子帧), 即同一个无线帧中除第二上行子帧集合包括的上行子帧外的上行子帧。
本实施例提供的方法, 基站通过在下行子帧 N发送下行控制信道, 并在 上行子帧 N+4接收下行控制信道对应的混合自动重传确认, 当上行子帧 N+4 属于不同的上行子帧集合时, PUCCH承载于不同的服务小区上, 当上行子帧 N+4属于第一上行子帧集合时, PUCCH承载于 UE的第二服务小区上, 当上 行子帧 N+4属于第二上行子帧集合时, PUCCH承载于第一服务小区上, 从 而解决了 FDD和 TDD载波聚合场景下 HARQ-ACK如何传输的问题。 同时 通过当上行子帧 N+4属于第一上行子帧集合时, PUCCH承载于 UE的第二服 务小区上, 当上行子帧 N+4属于第二上行子帧集合时, PUCCH承载于第一 服务小区上, 使得每个子帧均可反馈 HARQ-ACK, 使得 FDD载波上所有下 行子帧都有对应的反馈 HARQ-ACK 的上行子帧, 提高资源利用率, 同时不 改变 FDD载波的 HARQ-ACK定时。 本发明是实施例的其他有益效果与实施 例 1一致, 此处不再赘述。
图 4为本发明上行控制信息的传输方法实施例三的流程图,如图 3所示, 本实施例与图 2所示实施例的区别在于, PUCCH可以仅在 UE的辅服务小区 上传输,且该辅服务小区的双工方式为 FDD。下面具体描述本实施例的方案, 本实施例的方法可以包括:
步骤 301、 UE在下行子帧 N接收下行控制信道, 该下行控制信道承载于 该 UE的第一服务小区上, 该第一服务小区的双工方式为时分双工 TDD。 本实施例中, 该下行控制信道可以为物理下行控制信道 PDCCH或增强 的物理下行控制信道 EPDCCH, 该下行控制信道可以用于指示承载在第一服 务小区上的物理下行共享信道 PDSCH传输, 或者可以用于指示下行半持续 调度 SPS释放。
该步骤还可以进一步包括, UE在下行子帧 N接收承载于该 UE的第二服 务小区上的 PDSCH, 该第二服务小区的双工方式为频分双工 FDD。
步骤 302、 UE根据该下行控制信道的下行控制信息 DCI格式确定物理上 行控制信道 PUCCH资源。
本步骤中, UE根据该下行控制信道的下行控制信息 DCI格式确定物理 上行控制信道 PUCCH的资源, 可以有如下两种实现方式:
方式一: UE根据该下行控制信道的下行控制信息 DCI格式中的下行分 配指示 DAI确定物理上行控制信道 PUCCH资源。
该方式一下, UE根据该下行控制信道的下行控制信息 DCI格式中的下 行分配指示 DAI确定物理上行控制信道 PUCCH资源, 即根据该下行控制信 道的下行控制信息 DCI格式中的下行分配指示 DAI从高层信令配置的 4个 PUCCH资源中确定一个 PUCCH资源, 该高层信令配置的 4个 PUCCH资源 对应的物理资源块 PRB位于该 UE的第二服务小区上。
该方式下, 当该双工方式为 TDD的第一服务小区对应的 HARQ-ACK在 双工方式为 FDD的第二服务小区上传输时, 该 TDD的 HARQ-ACK定时可 以采用 FDD的 HARQ-ACK定时, 因而可以重用该 DCI格式中的 DAI域指 示 PUCCH资源。 一方面, 可以更好的利用现有 DCI格式中的域, 提高资源 利用率; 另一方面, 此时该下行控制信道承载于第一服务小区上, 而对应的 PUCCH承载于第二服务小区上,使得 UE无法按照该下行控制信道的资源隐 式计算该 PUCCH的资源, 本实施例通过 DCI格式中的 DAI进行该 PUCCH 资源的指示,使得 UE能够反馈 HARQ-ACK,同时可以通过与其他用户复用, 提高 PUCCH资源利用率; 再则, 利用 DAI进行指示, 可以释放原本用于指 示 PUCCH资源的 TPC,使得 TPC在任何情况下都可以获得,提高了 PUCCH 的功率控制效率。
方式二: UE根据该下行控制信道的下行控制信息 DCI格式中的发射功 率控制 TPC命令确定物理上行控制信道 PUCCH资源。 该方式二下, UE通过第一服务小区 (主服务小区) 对应的 DCI格式中 的 TPC命令指示承载于第二服务小区 (辅服务小区) 上的 PUCCH资源; 此 时, 第二服务小区(辅服务小区)对应的 DCI格式中的 TPC命令用于指示该 PUCCH资源的发射功率控制命令。
当步骤 301中用户设备接收到承载于该 UE的第二服务小区上的 PDSCH 时, 该步骤还可以进一步包括, UE根据承载于第二服务小区上的 PDSCH对 应的下行控制信道的 DCI格式中的 TPC命令域确定 PUCCH的发射功率。
步骤 303、 UE在上行子帧 N+4通过 PUCCH发送下行控制信道对应的混 合自动重传确认, 其中, PUCCH承载于 UE的第二服务小区上, 第二服务小 区的双工方式为频分双工 FDD。
UE在上行子帧 N+4在第二服务小区上基于该 PUCCH资源反馈该下行控 制信道对应的混合自动重传确认, 该下行控制信道可以用于指示承载在第一 服务小区上的物理下行共享信道 PDSCH传输, 或者可以用于指示下行半持 续调度 SPS释放; 当该下行控制信道用于指示 PDSCH传输时, 该下行控制 信道对应的混合自动重传确认具体为该下行控制信道对应的 PDSCH 的混合 自动重传确认, 当该下行控制信道用于指示下行半持续调度 SPS释放时, 该 下行控制信道对应的混合自动重传确认具体为该指示下行半持续调度 SPS释 放的下行控制信道对应的混合自动重传确认。
该步骤中, 当步骤 301中用户设备接收到承载于该 UE的第二服务小区 上的 PDSCH时,该步骤还可以进一步包括: UE在上行子帧 N+4通过 PUCCH 发送该承载于第二服务小区上的 PDSCH 的混合自动重传确认, 其中, 该 PUCCH承载于 UE的该第二服务小区上, 该第二服务小区的双工方式为频分 双工 FDD。 即此时, 用户设备在承载域该第二服务小区上的 PUCCH上反馈 该承载于第一服务小区上的下行控制信道对应的 HARQ-ACK和该承载于第 二服务小区上的 PDSCH的 HARQ-ACK。
本实施例中, 第一服务小区为 UE 的主服务小区, 第二服务小区为 UE 的辅服务小区。 该第二服务小区为 UE的小区索引最小的 FDD辅服务小区, 或者, 该第二服务小区为更高层信令指示的用于传输 PUCCH的辅服务小区, 即该第二服务小区为该用户设备的辅服务小区中的哪个辅服务小区可以由更 高层进行指示。 本实施例中, 当 UE的主服务小区 (即第一服务小区) 为 TDD时, 通过 在双工方式为 FDD的辅服务小区 (即第二服务小区) 上发送 PUCCH, 从而 使得该 UE的所有 FDD服务小区和 TDD服务小区都能按照 FDD服务小区的 现有 HARQ-ACK定时进行 HARQ-ACK的反馈。 一方面, 使得 FDD载波上 所有下行子帧都有对应的反馈 HARQ-ACK 的上行子帧, 提高资源利用率, 同时不改变 FDD载波的 HARQ-ACK定时; 另一方面, 减小了 TDD服务小 区上的 HARQ-ACK捆绑, 减小了 TDD服务小区的 RTT延迟。
现有载波聚合机制中, 辅服务小区在配置给 UE后还可以进行激活或去 激活, 但主服务小区配置给 UE后不能被去激活。 如果一个辅服务小区被去 激活了, 则该辅服务小区的上行不发送信号。 本发明实施例中, 由于承载 PUCCH的第二服务小区为辅服务小区,若该传输 PUCCH的辅服务小区被去 激活, 则不能在该辅服务小区上传输 PUCCH, 此时会影响该 UE的主服务小 区的 PDSCH的调度, 为了解决该问题, 可以有如下几种方法:
方法一: 该用于传输 PUCCH的第二服务小区 (辅服务小区) 不能被去 激活。
该方法下, 一旦给 UE配置了服务小区, 且确定了一个辅服务小区将用 于传输 PUCCH, 则该辅服务小区不能被去激活。
方法二: 若用户设备在下行子帧 N接收到去激活信令, 则该 UE在子帧 N+K后才停止在该第二服务小区上发送 PUCCH, 该 K的值大于等于 8; 该方法二还可以为:用户设备在下行子帧 N接收到去激活信令,则该 UE 在子帧 N+K后才在第三服务小区上传输 PUCCH, 该第三服务小区为 UE的 辅服务小区, 该第三服务小区的双工方式为 FDD, 该第三服务小区为激活的 服务小区, 该 K的值大于等于 8;
该方法二下, UE在子帧 N+K后才根据在子帧 N接收到的去激活信令, 确定 UE对应的所有辅服务小区中哪些辅服务小区当前处于激活状态, 并从 这些处于激活状态的服务小区中确定出承载 PUCCH的辅服务小区, 从而避 免在确定了新的承载 PUCCH辅服务小区之前,主服务小区 PDSCH无法调度 的问题, 保证了主服务小区的传输。
方法三: 若用户设备只接收到承载于主服务小区上的 PDSCH, 则 UE在 主服务小区上发送 PUCCH; 若用户设备在辅服务小区上接收到 PDSCH, 则 UE在辅服务小区上发送 PUCCH;
该辅服务小区为 FDD服务小区, 该辅服务小区为小区索引最小的 FDD 辅服务小区, 或者, 该辅服务小区为更高层信令指示的用于传输 PUCCH 的 辅服务小区。
该方法三下, 若辅服务小区被去激活, 则基站可只在主服务小区上调度
PDSCH , 此时 UE 在主服务小区上通过 PUCCH 反馈该主服务小区的 HARQ-ACK, 从而避免辅服务小区载波去激活带来的影响。
即该方法三下, 步骤 303可以记一步包括该方法三的步骤。
需要说明的是, 上述描述方式也适用于其他实施例, 尤其是需要在辅服 务小区上传输 PUCCH的实施例, 例如方法实施例一。
本实施例, UE在下行子帧 N接收基站发送的下行控制信道, 下行信道 承载于 UE 的第一服务小区上, 在上行子帧 N+4通过承载第二服务小区上 PUCCH向基站发送下行控制信道对应的混合自动重传确认消息,第一服务小 区的双工方式为时分双工 TDD, 第二服务小区的双工方式为频分双工 FDD。 通过上述方法, 解决了不同双工方式载波聚合时如何传输 HARQ-ACK 的问 题。通过在频分双工 FDD载波上反馈 PUCCH, 使得用户设备的 FDD服务小 区所有下行子帧都又对应的反馈 HARQ-ACK 的上行子帧, 提高了资源利用 率, 同时不改变 FDD服务小区的 HARQ-ACK定时。
图 5为本发明上行控制信息的传输方法实施例四的流程图, 实施例三从 UE侧给出上行控制信息的传输方法,本实施例从基站侧对该传输方法进行描 述。 如图 5所示, 本实施例提供的方法包括以下步骤:
步骤 401、 基站在下行子帧 N发送下行控制信道, 该下行控制信道承载 于该 UE的第一服务小区上, 该第一服务小区的双工方式为时分双工 TDD。
该下行控制信道可以为物理下行控制信道 PDCCH或增强的物理下行控 制信道 EPDCCH, 该下行控制信道可以用于指示承载在第一服务小区上的物 理下行共享信道 PDSCH传输, 或者可以用于指示下行半持续调度 SPS释放。
本实施例中, 下行控制信道的下行控制信息 DCI格式中的下行分配指示 DAI或发射功率控制 TPC命令可以用于指示物理上行控制信道 PUCCH资源, 或可以为基站通过该下行控制信道的下行控制信息 DCI格式中的预定义的域 指示物理上行控制信道 PUCCH资源;该预定义的域可以为下行分配指示 DAI 或发射功率控制 TPC命令, 对应地, 该步骤可以分别如下:
方式一: 基站在下行子帧 N给 UE发送下行控制信道, 该下行控制信道 对应的物理下行共享信道 PDSCH承载于第一服务小区上, 或该下行控制信 道承载于第一服务小区上且该下行控制信道为指示下行半持续调度 SPS释放 的下行控制信道, 该第一服务小区为该 UE的服务小区, 且该第一服务小区 的双工方式为时分双工 TDD,该下行控制信道的下行控制信息 DCI格式中的 下行分配指示 DAI指示物理上行控制信道 PUCCH资源;
该方式下, 当该双工方式为 TDD的第一服务小区对应的 HARQ-ACK在 双工方式为 FDD的第二服务小区上传输时, 该 TDD的 HARQ-ACK定时可 以采用 FDD的 HARQ-ACK定时, 因而可以重用该 DCI格式中的 DAI域指 示 PUCCH资源。 一方面, 可以更好的利用现有 DCI格式中的域, 提高资源 利用率; 另一方面, 此时该下行控制信道承载于第一服务小区上, 而对应的 PUCCH承载于第二服务小区上,使得 UE无法按照该下行控制信道的资源隐 式计算该 PUCCH的资源, 本实施例通过 DCI格式中的 DAI进行该 PUCCH 资源的指示,使得 UE能够反馈 HARQ-ACK,同时可以通过与其他用户复用, 提高 PUCCH资源利用率; 再则, 利用 DAI进行指示, 可以释放原本用于指 示 PUCCH资源的 TPC,使得 TPC在任何情况下都可以获得,提高了 PUCCH 的功率控制效率。
方式二: 基站在下行子帧 N给 UE发送下行控制信道, 该下行控制信道 对应的物理下行共享信道 PDSCH承载于第一服务小区上, 或该下行控制信 道承载于第一服务小区上且该下行控制信道为指示下行半持续调度 SPS释放 的下行控制信道, 该第一服务小区为该 UE的服务小区, 且该第一服务小区 的双工方式为时分双工 TDD,该下行控制信道的下行控制信息 DCI格式中的 发射功率控制 TPC命令指示物理上行控制信道 PUCCH资源。
该方式二下, 基站通过第一服务小区 (主服务小区) 对应的 DCI格式中 的 TPC命令指示承载于第二服务小区 (辅服务小区) 上的 PUCCH资源; 此 时, 第二服务小区(辅服务小区)对应的 DCI格式中的 TPC命令可以用于指 示该 PUCCH资源的发射功率控制命令。
该步骤 401还可以进一步包括, 基站在下行子帧 N在该 UE的第二服务 小区上给该用户设备发送 PDSCH, 该第二服务小区的双工方式为频分双工 FDD。 此时该步骤中的方式二下, 还可以进一步包括, 基站通过承载于第二 服务小区上的 PDSCH对应的下行控制信道的 DCI格式中的 TPC命令域指示 PUCCH的发射功率。
步骤 402、基站在上行子帧 N+4根据该 PUCCH资源接收 UE通过 PUCCH 发送的该下行控制信道对应的混合自动重传确认, 其中, 该 PUCCH承载于 UE的第二服务小区上, 该第二服务小区的双工方式为频分双工 FDD。
当该下行控制信道用于指示 PDSCH传输时, 该下行控制信道对应的混 合自动重传确认具体为该下行控制信道对应的 PDSCH的混合自动重传确认, 当该下行控制信道用于指示下行半持续调度 SPS释放时, 该下行控制信道对 应的混合自动重传确认具体为该指示下行半持续调度 SPS释放的下行控制信 道对应的混合自动重传确认。
当步骤 401还包括基站在下行子帧 N在该 UE的第二服务小区上给该用 户设备发送 PDSCH, 且该第二服务小区的双工方式为频分双工 FDD时, 该 步骤 402还可以进一步包括: 基站在上行子帧 N+4根据该 PUCCH资源接收 UE通过 PUCCH发送的该承载于第二服务小区上的 PDSCH的 HARQ-ACK. 本实施例中, 第一服务小区为 UE 的主服务小区, 第二服务小区为 UE 的辅服务小区。 该第二服务小区为 UE的小区索引最小的 FDD辅服务小区, 或者, 该第二服务小区为基站指示的用于传输 PUCCH 的辅服务小区, 例如 基站可以通过 RRC信令指示该用户传输 PUCCH的第二服务小区。
本实施例中, 当 UE的主服务小区 (即第一服务小区) 为 TDD时, 通过 在双工方式为 FDD的辅服务小区 (即第二服务小区) 上发送 PUCCH, 从而 使得该 UE的所有 FDD服务小区和 TDD服务小区都能按照 FDD服务小区的 现有 HARQ-ACK定时进行 HARQ-ACK的反馈。 一方面, 使得 FDD载波上 所有下行子帧都有对应的反馈 HARQ-ACK 的上行子帧, 提高资源利用率, 同时不改变 FDD载波的 HARQ-ACK定时; 另一方面, 减小了 TDD服务小 区上的 HARQ-ACK捆绑, 减小了 TDD服务小区的 RTT延迟。
本实施例, 基站在下行子帧 N向用户设备 UE发送下行控制信道, 所述 下行控制信道承载于所述 UE的第一服务小区上, 所述第一服务小区的双工 方式为时分双工 TDD,所述下行控制信道的下行控制信息 DCI格式中的下行 分配指示 DAI或发射功率控制 TPC命令用于指示物理上行控制信道 PUCCH 资源; 所述基站在上行子帧 N+4根据所述 PUCCH资源接收所述 UE通过 PUCCH 发送的所述下行控制信道对应的混合自动重传确认, 其中, 所述 PUCCH承载于所述 UE的第二服务小区上,所述第二服务小区的双工方式为 频分双工 FDD。 通过上述方法, 解决了不同双工方式载波聚合时如何传输 HARQ-ACK的问题。 通过在频分双工 FDD载波上反馈 PUCCH, 使得 FDD 载波上所有下行子帧都有对应的反馈 HARQ-ACK 的上行子帧, 提高资源利 用率, 同时不改变 FDD载波的 HARQ-ACK定时。
图 6为本发明上行控制信息的传输方法实施例五的流程图,本实施例中, PUCCH可以在 UE的主服务小区和辅服务小区上传输, 当主服务小区为上行 子帧时, UE在主服务小区上传输 PUCCH, 当主服务小区为下行子帧时, 用 户设备在辅服务小区上传输 PUCCH。下面具体描述本发明方案,如图 5所示, 本实施例提供的方法包括以下步骤:
步骤 501、 UE在下行子帧 N接收下行控制信道, 该下行控制信道承载于 UE的第一服务小区上。
该步骤中, UE接收承载于第一服务小区上的下行控制信道, 该下行控制 信道为物理下行控制信道 PDCCH或增强的物理下行控制信道 EPDCCH, 该 下行控制信道可以用于指示承载在第一服务小区上的物理下行共享信道 PDSCH传输,或者可以用于指示下行半持续调度 SPS释放。该下行控制信道 的下行控制信息 DCI格式可以为 DCI格式 1、 DCI格式 1A、 DCI格式 1B、 DCI格式 1D、 DCI格式 2A、 DCI格式 2B、 DCI格式 2C、 DCI格式 2D中的 一个或多个。 其中, 该第一服务小区为该 UE对应的服务小区。
该步骤还可以进一步包括, UE在下行子帧 N接收承载于 UE的第二服务 小区上的 PDSCH。
步骤 502、 UE 根据下行控制信道的 DCI 格式确定物理上行控制信道 PUCCH资源。
该步骤中, UE根据步骤 1 中承载于第一服务小区上的下行控制信道的 DCI格式确定物理上行控制信道 PUCCH资源。
进一步地, 当该下行控制信道对应的混合自动重传确认承载于 UE的第 二服务小区上时, UE根据该下行控制信道的下行控制信息 DCI格式中的发 射功率控制 TPC命令域确定物理上行控制信道 PUCCH资源。 步骤 503、 UE 根据下行控制信道的 DCI 格式确定物理上行控制信道 PUCCH的发射功率。
该步骤中, UE根据步骤 1 中承载于第一服务小区上的下行控制信道的 DCI格式确定物理上行控制信道 PUCCH的发射功率。
进一步地, 当该下行控制信道对应的混合自动重传确认承载于第一服务 小区上时, UE根据该下行控制信道的下行控制信息 DCI格式中的发送功率 控制 TPC命令域确定 PUCCH的发射功率。
其中, 第一服务小区和第二服务小区都为该 UE对应的服务小区, 第一 服务小区和第二服务小区的双工方式不同; 步骤 502和 503针对同一个上行 子帧不同时存在。
本实施例中, 当第一服务小区为 UE的主服务小区, 且第一服务小区的 双工方式为时分双工 TDD, 第二服务小区的双工方式为频分双工 FDD, 第二 服务小区为 UE的小区索引最小的 FDD辅服务小区。 或者, 当第一服务小区 为 UE的主服务小区, 且第一服务小区的双工方式为时分双工 TDD, 第二服 务小区的双工方式为频分双工 FDD, 第二服务小区为更高层信令指示的用于 传输 PUCCH 的辅服务小区, 即该第二服务小区为该用户设备的辅服务小区 中的哪个辅服务小区可以由更高层进行指示。
步骤 504、 UE根据 PUCCH资源或 PUCCH的发射功率通过 PUCCH向 基站发送下行控制信道对应的混合自动重传确认。
当下行控制信道用于指示物理下行共享信道 PDSCH传输时, 下行控制 信道对应的混合自动重传确认具体为下行控制信道对应的 PDSCH 的混合自 动重传确认, 当下行控制信道用于指示下行半持续调度 SPS释放时, 下行控 制信道对应的混合自动重传确认消息具体为指示下行半持续调度 SPS释放的 下行控制信道对应的混合自动重传确认。
本实施例提供的方案, 用户设备 UE在下行子帧 N接收下行控制信道, 所述下行控制信道承载于所述 UE的第一服务小区上, 所述下行控制信道为 物理下行控制信道 PDCCH或增强的物理下行控制信道 EPDCCH; 当所述下 行控制信道对应的混合自动重传确认承载于所述 UE的第二服务小区上时, 所述 UE根据所述下行控制信道的下行控制信息 DCI格式中的发射功率控制 TPC命令域确定物理上行控制信道 PUCCH资源; 且当所述下行控制信道对 应的混合自动重传确认承载于所述第一服务小区上时, 所述 UE根据所述下 行控制信道的下行控制信息 DCI格式中的发送功率控制 TPC命令域确定所述 PUCCH的发射功率, 其中,所述第一服务小区和所述第二服务小区的双工方 式不同;所述 UE根据所述 PUCCH资源或所述 PUCCH的发射功率通过所述 PUCCH发送所述下行控制信道对应的混合自动重传确认。通过上述方法,解 决了不同双工方式载波聚合时如何传输 HARQ-ACK的问题,同时解决了 FDD 和 TDD载波聚合场景下 HARQ-ACK如何传输的问题, 使得 FDD载波上所 有下行子帧都有对应的反馈 HARQ-ACK 的上行子帧, 提高资源利用率, 同 时不改变 FDD载波的 HARQ-ACK定时。
图 7为本发明上行控制信息的传输方法实施例六的流程图, 实施例五从
UE侧给出了的上行控制信息的传输方法描述,本实施例则是在基站侧进行描 述, 如图 7所示, 本实施例提供的方法包括以下步骤:
步骤 601、 基站在下行子帧 N向用户设备 UE发送下行控制信道, 该下 行信道承载于 UE的第一服务小区上。
基站在第一服务小区上给 UE发送下行控制信道, 该下行控制信道为物 理下行控制信道 PDCCH或增强的物理下行控制信道 EPDCCH, 该下行控制 信道用于指示承载在第一服务小区上的指示物理下行共享信道 PDSCH传输, 或者用于指示下行半持续调度 SPS释放, 该第一服务小区为该用户设备对应 的服务小区。 该下行控制信道的下行控制信息 DCI格式可以为 DCI格式 1、 DCI格式 1A、 DCI格式 1B、 DCI格式 1D、 DCI格式 2A、 DCI格式 2B、 DCI 格式 2C、 DCI格式 2D中的一个或多个。
步骤 602、 基站通过下行控制信道的 DCI 格式指示物理上行控制信道 PUCCH资源。
该步骤 602中, 基站通过步骤 601中的下行控制信道的 DCI格式指示物 理上行控制信道 PUCCH资源;
当该下行控制信道对应的混合自动重传确认承载于 UE的第二服务小区 上时, 基站通过该下行控制信道的下行控制信息 DCI格式中的发射功率控制 TPC命令域指示物理上行控制信道 PUCCH资源。
步骤 603、 基站通过下行控制信道的 DCI 格式指示物理上行控制信道 PUCCH的发射功率。 该步骤 603中, 基站通过步骤 601中的下行控制信道的 DCI格式指示物 理上行控制信道 PUCCH的发射功率;
当该下行控制信道对应的混合自动重传确认承载于第一服务小区上时, 基站通过下行控制信道的下行控制信息 DCI格式中的发送功率控制 TPC命令 域指示 PUCCH的发射功率。
本实施例中, 第一服务小区和第二服务小区都为 UE对应的服务小区, 第一服务小区和第二服务小区的双工方式不同。 当第一服务小区为 UE的主 服务小区, 且第一服务小区的双工方式为时分双工 TDD, 第二服务小区的双 工方式为频分双工 FDD,第二服务小区为 UE的小区索引最小的 FDD辅服务 小区。 当第一服务小区为 UE的主服务小区, 且第一服务小区的双工方式为 时分双工 TDD, 第二服务小区的双工方式为频分双工 FDD, 第二服务小区为 UE 的各辅服务小区中通过更高层信令指示的用于传输 PUCCH 的辅服务小 区, 或该第二服务小区为基站指示的用于传输 PUCCH的辅服务小区。
步骤 604、基站根据 PUCCH资源接收 UE发送的下行控制信道对应的混 合自动重传确认。
当下行控制信道用于指示物理下行共享信道 PDSCH传输时, 下行控制 信道对应的混合自动重传确认具体为下行控制信道对应的 PDSCH 的混合自 动重传确认, 当下行控制信道用于指示下行半持续调度 SPS释放时, 下行控 制信道对应的混合自动重传确认消息具体为指示下行半持续调度 SPS释放的 下行控制信道对应的混合自动重传确认。
本实施例提供的方法, 解决了不同双工方式载波聚合时如何传输 HARQ-ACK的问题, 同时解决了 FDD和 TDD载波聚合场景下 HARQ-ACK 如何传输的问题,使得 FDD载波上所有下行子帧都有对应的反馈 HARQ-ACK 的上行子帧, 提高资源利用率, 同时不改变 FDD载波的 HARQ-ACK定时。
图 8为本发明用户设备实施例一的结构示意图, 如图 8所示, 本实施例 提供的用户设备包括: 接收模块 71和发送模块 72。
其中, 接收模块 71, 用于在下行子帧 N接收基站发送的下行控制信道, 下行控制信道承载于 UE的第一服务小区上;
发送模块 72, 用于在上行子帧 N+4通过物理上行控制信道 PUCCH向基 站发送下行控制信道对应的混合自动重传确认, 当上行子帧 N+4属于第一上 行子帧集合时, PUCCH承载于 UE的第二服务小区上, 当上行子帧 N+4属于 第二上行子帧集合时, PUCCH承载于第一服务小区上, 其中, 第一服务小区 和第二服务小区的双工方式不同, 第一上行子帧集合包括的上行子帧个数与 第二上行子帧集合包括的上行子帧个数之和等于一个无线帧的个数, 第一上 行子帧集合包括的上行子帧和第二上行子帧集合包括的上行子帧对应无线帧 中不同的子帧。
本实施例中, 当下行控制信道为物理下行控制信道 PDCCH或增强的物 理下行控制信道 EPDCCH, 下行控制信道用于指示承载在第一服务小区上的 物理下行共享信道 PDSCH传输, 或者用于指示下行半持续调度 SPS释放; 当下行控制信道用于指示 PDSCH传输时, 下行控制信道对应的混合自动重 传确认具体为下行控制信道对应的 PDSCH 的混合自动重传确认, 当下行控 制信道用于指示 SPS释放时, 下行控制信道对应的混合自动重传确认具体为 指示 SPS释放的下行控制信道对应的混合自动重传确认。
本实施例中, 第一服务小区和第二服务小区共同为 UE服务, 但是第一 服务小区和第二服务小区的双工方式不同。 当第一服务小区的双工方式为时 分双工 TDD, 第二服务小区的双工方式为频分双工 FDD时, 第二上行子帧 集合包括的上行子帧对应一个无线帧中第一服务小区的上行子帧, 第一上行 子帧集合包括的上行子帧对应无线帧中除第二上行子帧集合包括的上行子帧 外的其他上行子帧。 当第一服务小区的双工方式为 FDD, 且第二服务小区的 双工方式为 TDD时,第一上行子帧集合包括的上行子帧对应一个无线帧中第 一服务小区的上行子帧, 第二上行子帧集合包括的上行子帧对应无线帧中的 除第一上行子帧集合包括的上行子帧外的其他上行子帧。
进一步, 本实施例提供的用户设备, 还可以包括: 获取模块, 用于获取 PUCCH的 PUCCH资源和 /或 PUCCH发射功率。 具体的, 当上行子帧 N+4 属于第一上行子帧集合时, 获取模块具体用于: 根据下行控制信道的下行控 制信息 DCI格式中的发射功率控制 TPC命令域确定 PUCCH资源。当上行子 帧 N+4属于第二上行子帧集合时, 获取模块具体用于: 根据下行控制信道的 下行控制信息 DCI格式中的发射功率控制 TPC命令域确定 PUCCH发射功率。
本实施例提供的用户设备可用于执行方法实施例一所示的技术方案, 具 体实现方式和技术效果类似, 这里不再赘述。 图 9为本发明基站实施例一的结构示意图, 如图 9所示, 本实施例提供 的基站包括: 发送模块 81, 接收模块 82。
其中, 发送模块 81, 用于在下行子帧 N向用户设备 UE发送下行控制信 道, 下行控制信道承载于 UE的第一服务小区上;
接收模块 82, 用于在上行子帧 N+4 接收 UE通过物理上行控制信道
PUCCH发送的下行控制信道对应的混合自动重传确认, 当上行子帧 N+4属 于第一上行子帧集合时, PUCCH承载于 UE的第二服务小区上, 当上行子帧 N+4属于第二上行子帧集合时, PUCCH承载于第一服务小区上, 其中, 第一 服务小区和第二服务小区的双工方式不同, 第一上行子帧集合包括的上行子 帧个数与第二上行子帧集合包括的上行子帧个数之和等于一个无线帧的个 数, 第一上行子帧集合包括的上行子帧和第二上行子帧集合包括的上行子帧 对应无线帧中不同的子帧。
本实施例中, 下行控制信道为物理下行控制信道 PDCCH或增强的物理 下行控制信道 EPDCCH, 下行控制信道用于指示承载在第一服务小区上的物 理下行共享信道 PDSCH传输, 或者用于指示下行半持续调度 SPS释放。 当 下行控制信道用于指示 PDSCH传输时, 下行控制信道对应的混合自动重传 确认具体为下行控制信道对应的 PDSCH 的混合自动重传确认, 当下行控制 信道用于指示 SPS释放时, 下行控制信道对应的混合自动重传确认具体为指 示 SPS释放的下行控制信道对应的混合自动重传确认。
本实施例中, 第一服务小区和第二服务小区的双工方式不同, 当第一服 务小区的双工方式为时分双工 TDD, 第二服务小区的双工方式为频分双工 FDD时, 则第二上行子帧集合包括的上行子帧对应一个无线帧中第一服务小 区的上行子帧, 第一上行子帧集合包括的上行子帧对应无线帧中的除第二上 行子帧集合包括的上行子帧外的其他上行子帧。 当第一服务小区的双工方式 为 FDD, 且第二服务小区的双工方式为 TDD时, 第一上行子帧集合包括的 上行子帧对应一个无线帧中第一服务小区的上行子帧, 第二上行子帧集合包 括的上行子帧对应无线帧中的除第一上行子帧集合包括的上行子帧外的其他 上行子帧。
本实施例提供的基站, 可用于执行方法实施例二的技术方案, 具体实现 方式和技术效果类似, 这里不再赘述。 图 10为本发明用户设备实施例二的结构示意图, 如图 10所示, 本实施 例提供的用户设备包括: 接收模块 91和发送模块 92。
其中, 接收模块 91, 用于在下行子帧 N接收下行控制信道, 下行控制信 道承载于 UE的第一服务小区上,第一服务小区的双工方式为时分双工 TDD; 发送模块 92, 用于在上行子帧 N+4通过物理上行控制信道 PUCCH发送 下行控制信道对应的混合自动重传确认, 其中, PUCCH承载于 UE的第二服 务小区上, 第二服务小区的双工方式为频分双工 FDD。
本实施例中, 下行控制信道为物理下行控制信道 PDCCH或增强的物理 下行控制信道 EPDCCH, 下行控制信道用于指示承载在第一服务小区上的物 理下行共享信道 PDSCH传输, 或者用于指示下行半持续调度 SPS释放。 当 下行控制信道用于指示 PDSCH传输时, 下行控制信道对应的混合自动重传 确认具体为下行控制信道对应的 PDSCH 的混合自动重传确认, 当下行控制 信道用于指示 SPS释放时, 下行控制信道对应的混合自动重传确认具体为指 示 SPS释放的下行控制信道对应的混合自动重传确认。
进一步的,本实施例的用户设备还可以包括:获取模块,用于获取 PUCCH 的 PUCCH资源。获取模块具体用于:根据下行控制信道的下行控制信息 DCI 格式中的下行分配指示 DAI或发射功率控制 TPC命令确定 PUCCH资源。
本实施例中, 第一服务小区可以为 UE的主服务小区, 第二服务小区为 UE的辅服务小区。 第二服务小区具体可以为 UE的小区索引最小的 FDD辅 服务小区, 或者, 第二服务小区为更高层信令指示的用于传输 PUCCH 的辅 服务小区。
本实施例提供的用户设备, 可用于执行方法实施例三的技术方案, 具体 实现方式和技术效果类似, 这里不再赘述。
图 11为本发明基站实施例二的结构示意图, 如图 11所示, 本实施例提 供的基站包括: 发送模块 11和接收模块 12。
其中, 发送模块 11, 用于在下行子帧 N向用户设备 UE发送下行控制信 道, 下行控制信道承载于 UE的第一服务小区上, 第一服务小区的双工方式 为时分双工 TDD,下行控制信道的下行控制信息 DCI格式中的下行分配指示 DAI或发射功率控制 TPC命令用于指示物理上行控制信道 PUCCH资源; 接收模块 12, 用于在上行子帧 N+4 根据 PUCCH 资源接收 UE通过 PUCCH发送的下行控制信道对应的混合自动重传确认, 其中, PUCCH承载 于 UE的第二服务小区上, 第二服务小区的双工方式为频分双工 FDD。
本实施例中, 下行控制信道为物理下行控制信道 PDCCH或增强的物理 下行控制信道 EPDCCH, 下行控制信道用于指示承载在第一服务小区上的物 理下行共享信道 PDSCH传输, 或者用于指示下行半持续调度 SPS释放。 当 下行控制信道用于指示 PDSCH传输时, 下行控制信道对应的混合自动重传 确认具体为下行控制信道对应的 PDSCH 的混合自动重传确认, 当下行控制 信道用于指示 SPS释放时, 下行控制信道对应的混合自动重传确认具体为指 示 SPS释放的下行控制信道对应的混合自动重传确认。
本实施例中, 第一服务小区可以为 UE的主服务小区, 第二服务小区为
UE的辅服务小区。 具体地, 第二服务小区为 UE的小区索引最小的 FDD辅 服务小区, 或者, 第二服务小区为基站通过更高层信令指示的用于传输 PUCCH的辅服务小区。
本实施例提供的基站, 可用于执行方法实施例四的技术方案, 具体实现 方式和技术效果类似, 这里不再赘述。
图 12为本发明用户设备实施例三的结构示意图, 如图 12所示, 本实施 例提供用户设备包括: 接收模块 21、 确定模块 22、 发送模块 23。
其中, 接收模块 21, 用于在下行子帧 N接收下行控制信道, 下行控制信 道承载于 UE的第一服务小区上,下行控制信道为物理下行控制信道 PDCCH 或增强的物理下行控制信道 EPDCCH。
确定模块 22, 用于当下行控制信道对应的混合自动重传确认承载于 UE 的第二服务小区上时, UE根据下行控制信道的下行控制信息 DCI格式中的 发射功率控制 TPC命令域确定物理上行控制信道 PUCCH资源; 当下行控制 信道对应的混合自动重传确认承载于第一服务小区上时, UE根据下行控制信 道的下行控制信息 DCI格式中的发送功率控制 TPC命令域确定 PUCCH的发 射功率, 其中, 第一服务小区和第二服务小区的双工方式不同。
发送模块 23,用于根据 PUCCH资源或 PUCCH的发射功率通过 PUCCH 发送下行控制信道对应的混合自动重传确认。
本实施例中, 下行控制信道用于指示承载在第一服务小区上的物理下行 共享信道 PDSCH传输, 或者用于指示下行半持续调度 SPS释放。 当下行控 制信道用于指示 PDSCH传输时, 下行控制信道对应的混合自动重传确认具 体为下行控制信道对应的 PDSCH 的混合自动重传确认, 当下行控制信道用 于指示 SPS释放时, 下行控制信道对应的混合自动重传确认具体为指示 SPS 释放的下行控制信道对应的混合自动重传确认。
本实施例中, 第一服务小区可以为 UE的主服务小区, 第一服务小区的 双工方式为时分双工 TDD, 第二服务小区的双工方式为频分双工 FDD, 且第 二服务小区为 UE的小区索引最小的 FDD辅服务小区。
或者, 当第一服务小区为 UE的主服务小区, 第一服务小区的双工方式 为时分双工 TDD时, 第二服务小区的双工方式为频分双工 FDD, 第二服务 小区为更高层信令指示的用于传输 PUCCH的辅服务小区。
本实施例提供的用户设备可用于执行方法实施例五的技术方案, 具体实 现方式和技术效果类似, 这里不再赘述。
图 13为本发明基站实施例三的结构示意图, 如图 13所示, 本实施例提 供基站包括: 发送模块 31、 指示模块 32、 接收模块 33。
其中, 发送模块 31, 用于在下行子帧 N向用户设备 UE发送下行控制信 道, 下行信道承载于 UE 的第一服务小区上, 下行控制信道为物理下行控制 信道 PDCCH或增强的物理下行控制信道 EPDCCH。
指示模块 32, 用于当下行控制信道对应的混合自动重传确认承载于 UE 的第二服务小区上时, 通过下行控制信道的下行控制信息 DCI格式中的发射 功率控制 TPC命令域指示物理上行控制信道 PUCCH资源; 当下行控制信道 对应的混合自动重传确认承载于第一服务小区上时, 通过下行控制信道的下 行控制信息 DCI格式中的发送功率控制 TPC命令域指示 PUCCH的发射功率, 其中, 第一服务小区和第二服务小区的双工方式不同。
接收模块 33, 用于根据 PUCCH资源接收 UE发送的下行控制信道对 应的混合自动重传确认。
下行控制信道用于指示承载在第一服务小区上的指示物理下行共享信道 PDSCH的传输, 或者用于指示下行半持续调度 SPS的释放。
当下行控制信道用于指示物理下行共享信道 PDSCH传输时, 下行控制 信道对应的混合自动重传确认具体为下行控制信道对应的 PDSCH混合自动 重传确认, 当下行控制信道用于指示下行半持续调度 SPS释放时, 下行控制 信道对应的混合自动重传确认具体为指示下行半持续调度 SPS释放的下行控 制信道对应的混合自动重传确认。
本实施例中, 第一服务小区可以为 UE的主服务小区, 且第一服务小区 的双工方式为时分双工 TDD, 第二服务小区的双工方式为频分双工 FDD, 且 第二服务小区为 UE的小区索引最小的 FDD辅服务小区。 或者, 当第一服务 小区为 UE的主服务小区, 且第一服务小区的双工方式为时分双工 TDD, 第 二服务小区的双工方式为频分双工 FDD, 第二服务小区为更高层信令指示的 用于传输 PUCCH的辅服务小区。
本实施例提供的基站, 可用于执行方法实施例六的技术方案, 具体实现 方式和技术效果类似, 这里不再赘述。
图 14为本发明上行控制信息的传输方法实施例七的流程图, 如图 14所 示, 本实施例提供的方法包括以下步骤:
步骤 1401、 UE接收承载于 UE的第一服务小区上的下行控制信道,该下 行控制信道用于指示承载于 UE的第二服务小区上的 PDSCH传输,该第一服 务小区的双工方式为时分双工 TDD, 该第二服务小区的双工方式为频分双工 不同双工方式的载波聚合中, 如果给用户设备配置了跨载波调度, 则会 出现承载于 FDD服务小区上的 PDSCH对应的下行控制信道承载于 TDD服 务小区上。
该步骤中, 当该第二服务小区的 HARQ-ACK定时按照该第一服务小区 的 HARQ-ACK 定时进行时, 该第二服务小区多个下行子帧对应的 HARQ-ACK在第一服务小区对应的一个上行子帧上反馈, 此时该步骤 1401 中接收到的该下行控制信道可以包括在多个下行子帧接收到的下行控制信 道, 其中第一个接收到的下行控制信道的 DCI格式中的 DAI= 1, 第二个接 收到的下行控制信道的 DCI格式中的 DAI=2, 依次类推。
该步骤中, 当该第二服务小区的 HARQ-ACK 定时按照自己的 HARQ-ACK定时进行, 即按照 FDD服务小区的 HARQ-ACK定时进行时, 该步骤 1401 接收到的下行控制信道仅对应一个下行子帧中接收到的下行控 制 道。
该步骤中的下行控制信道可以是 PDCCH或 EPDCCH。 步骤 1402、 UE确定物理上行控制信道 PUCCH资源。
该方式中, UE确定 PUCCH资源, 可以有如下几种实现方式:
方式一: UE根据承载于第一服务小区上的下行控制信道的 DCI格式中 的 TPC命令域确定 PUCCH资源。
具体, UE根据承载于第一服务小区上的 DAI= 1的下行控制信道的 DCI 格式中的 TPC命令域确定 PUCCH资源, 该 PUCCH资源对应的 PRB位于该 UE的第二服务小区上;
该方式一下, 该步骤 1402还可以进一步包括 UE确定 PUCCH的发射功 率,具体 UE根据承载于第一服务小区上的 DAI大于 1的下行控制信道的 DCI 格式中的 TPC命令域确定 PUCCH的发射功率;
该方式一适用于当该第二服务小区的 HARQ-ACK定时按照该第一服务 小区的 HARQ-ACK定时进行时的情况。
该方式一下, 该 PUCCH资源通过 DCI格式中的 TPC进行指示, 可以动 态显示指示该 PUCCH资源,并可以实现 PUCCH资源与其他用户的统计复用, 从而提高 PUCCH资源利用率。
方式二: UE根据更高层信令确定 PUCCH资源;
该方式二下, UE根据更高层信令确定 PUCCH资源, 即该 PUCCH资源 由更高层进行指示, 该更高层信令可以是无线资源控制 (Radio Resource Control, 简称 RRC) 信令。 此时, 该 PUCCH资源半静态预留。
该方式二下, 该步骤 1402还可以进一步包括 UE确定 PUCCH的发射功 率, 具体可以为 UE根据承载于第一服务小区上的下行控制信道的 DCI格式 中的 TPC命令域确定 PUCCH的发射功率;
该方式二通过半静态预留 PUCCH 资源, 适用于任何场景, 且使得该 PUCCH资源的 TPC可以永远获得, 从而提高功率控制的效率。
方式三: UE根据承载于第一服务小区上的下行控制信道的 DCI格式中 的预定义的域确定 PUCCH资源;
该方式三下, 该预定义的域可以为该 DCI格式中的一个新增的域, 该域 对应 2比特信息。
该方式三下, 该步骤 1402还可以进一步包括 UE确定 PUCCH的发射功 率, 具体可以为 UE根据承载于第一服务小区上的下行控制信道的 DCI格式 中的 TPC命令域确定 PUCCH的发射功率;
该方式三下, 该 PUCCH资源通过 DCI格式中的 TPC进行指示, 可以动 态显示指示该 PUCCH资源,并可以实现 PUCCH资源与其他用户的统计复用, 从而提高 PUCCH资源利用率; 同时, 该方式三适用于任何场景。
方式四: UE根据承载于第一服务小区上的下行控制信道的 DCI格式中 的 HARQ-ACK资源偏移 (resource offset) 域确定 PUCCH资源。
该方式四适用于当该下行控制信道为 EPDCCH时。在方式四下, 该步骤 1402还可以进一步包括 UE确定 PUCCH的发射功率, 具体可以为 UE根据 承载于第一服务小区上的下行控制信道的 DCI 格式中的 TPC 命令域确定 PUCCH的发射功率。
该方式四下, 该 PUCCH资源通过 DCI格式中的 TPC进行指示, 可以动 态显示指示该 PUCCH资源,并可以实现 PUCCH资源与其他用户的统计复用, 从而提高 PUCCH资源利用率。
步骤 1403、 UE根据该 PUCCH资源通过承载于 UE的第二服务小区上的 PUCCH发送 PDSCH的 HARQ-ACK;
该步骤中, UE根据该 PUCCH资源通过承载于 UE的第二服务小区上的 PUCCH发送 PDSCH的 HARQ-ACK, 即根据该 PUCCH资源通过承载于 UE 的第二服务小区上的 PUCCH发送步骤 1401中的 PDSCH的 HARQ-ACK。
该步骤还可以进一步为 UE根据该 PUCCH资源和该 PUCCH发射功率通 过承载于 UE的第二服务小区上的 PUCCH发送 PDSCH的 HARQ-ACK。
本发明实施例解决了不同双工方式载波聚合下, 如何传输 HARQ-ACK 的问题, 同时解决了跨载波调度情况下 PUCCH资源如何指示的问题。 例如, 不同双工方式载波聚合下, 如果配置了跨载波调度, 且当承载 PDSCH对应 的下行控制信道的服务小区与承载该 PDSCH对应的 HARQ-ACK的服务小区 不同时, UE无法按照该下行控制信道的资源隐式计算该 PUCCH的资源, 因 此, 如何指示 PUCCH资源需要解决。
图 15为本发明上行控制信息的传输方法实施例八的流程图,本实施例为 实施例七对应的基站侧的方法, 如图 15所示, 本实施例提供的方法包括以下 步骤:
步骤 1501、 基站在 UE的第一服务小区上向 UE发送下行控制信道, 该 下行控制信道用于指示承载于 UE的第二服务小区上的 PDSCH传输,该第一 服务小区的双工方式为时分双工 TDD, 该第二服务小区的双工方式为频分双 工 FDD。
该步骤中, 当该第二服务小区的 HARQ-ACK定时按照该第一服务小区 的 HARQ-ACK 定时进行时, 该第二服务小区多个下行子帧对应的 HARQ-ACK在第一服务小区对应的一个上行子帧上反馈, 此时该步骤 1501 中基站在多个下行子帧在 UE的第一服务小区上向 UE发送下行控制信道,其 中第一个发送的下行控制信道的 DCI格式中的 DAI= 1, 第二个发送的下行 控制信道的 DCI格式中的 DAI = 2, 依次类推。
该步骤中, 当该第二服务小区的 HARQ-ACK 定时按照自己的
HARQ-ACK定时进行, 即按照 FDD服务小区的 HARQ-ACK定时进行时, 该步骤 1501基站在 UE的第一服务小区上给 UE发送下行控制信道, 仅对应 一个下行子帧中接收到的下行控制信道。
对该步骤的其他描述参照实施例七中步骤 1401的描述, 此处不再赘述。 步骤 1502、 基站指示物理上行控制信道 PUCCH资源。
该方式中, 基站指示 PUCCH资源, 可以有如下几种实现方式: 方式一: 基站通过承载于第一服务小区上的下行控制信道的 DCI格式 中的 TPC命令域指示 PUCCH资源.
具体,基站通过承载于第一服务小区上的 DAI= 1的下行控制信道的 DCI 格式中的 TPC命令域指示 PUCCH资源, 该 PUCCH资源对应的 PRB位于该 UE的第二服务小区上。
该方式一下, 该步骤 1502还可以进一步包括基站指示 PUCCH的发射功 率, 具体基站通过承载于第一服务小区上的 DAI大于 1 的下行控制信道的 DCI格式中的 TPC命令域指示 PUCCH的发射功率。
该方式一适用于当该第二服务小区的 HARQ-ACK定时按照该第一服务 小区的 HARQ-ACK定时进行的情况。
该方式一下, 该 PUCCH资源通过 DCI格式中的 TPC进行指示, 可以动 态显示指示该 PUCCH资源,并可以实现 PUCCH资源与其他用户的统计复用, 从而提高 PUCCH资源利用率。
方式二: 基站通过高层信令指示 PUCCH资源。 该方式二下, 基站通过高层信令指示 PUCCH资源, 该高层信令可以是 无线资源控制 RRC信令。 此时, 该 PUCCH资源半静态预留。
该方式二下, 该步骤 1502还可以进一步包括基站指示 PUCCH的发射功 率, 具体可以为基站通过承载于第一服务小区上的下行控制信道的 DCI格式 中的 TPC命令域指示 PUCCH的发射功率;
该方式二通过半静态预留 PUCCH 资源, 适用于任何场景, 且使得该 PUCCH资源的 TPC可以永远获得, 从而提高功率控制的效率。
方式三: 基站通过承载于第一服务小区上的下行控制信道的 DCI格式中 的预定义的域指示 PUCCH资源。
该方式三下, 该预定义的域可以为该 DCI格式中的一个新增的域, 该域 对应 2比特信息。
该方式三下, 该步骤 1502还可以进一步包括基站指示 PUCCH的发射功 率, 具体可以为基站通过承载于第一服务小区上的下行控制信道的 DCI格式 中的 TPC命令域指示 PUCCH的发射功率。
该方式三下, 该 PUCCH资源通过 DCI格式中的 TPC进行指示, 可以动 态显示指示该 PUCCH资源,并可以实现 PUCCH资源与其他用户的统计复用, 从而提高 PUCCH资源利用率; 同时, 该方式三适用于任何场景。
方式四: 基站通过承载于第一服务小区上的下行控制信道的 DCI格式中 的 HARQ-ACK资源偏移 (resource offset) 域指示 PUCCH资源;
该方式四适用于当该下行控制信道为 EPDCCH时, 在方式四中, 该步骤
1502还可以进一步包括基站指示 PUCCH的发射功率, 具体可以为基站通过 承载于第一服务小区上的下行控制信道的 DCI 格式中的 TPC 命令域指示 PUCCH的发射功率。
该方式四下, 该 PUCCH资源通过 DCI格式中的 TPC进行指示, 可以动 态显示指示该 PUCCH资源,并可以实现 PUCCH资源与其他用户的统计复用, 从而提高 PUCCH资源利用率。
步骤 1503、 基站根据该 PUCCH资源接收 UE通过承载于 UE的第二服 务小区上的 PUCCH发送的 PDSCH的 HARQ-ACK。
该步骤中,基站根据该 PUCCH资源接收 UE通过承载于 UE的第二服务 小区上的 PUCCH发送的 PDSCH的 HARQ-ACK,即接收 UE通过承载于 UE 的第二服务小区上的 PUCCH发送的步骤 1501中的 PDSCH的 HARQ-ACK。 本发明实施例解决了不同双工方式载波聚合下, 如何传输 HARQ-ACK 的问题, 同时解决了跨载波调度情况下 PUCCH资源如何指示的问题。 例如, 不同双工方式载波聚合下, 如果配置了跨载波调度, 且当承载 PDSCH对应 的下行控制信道的服务小区与承载该 PDSCH对应的 HARQ-ACK的服务小区 不同时, UE无法按照该下行控制信道的资源隐式计算该 PUCCH的资源, 因 此, 需要解决如何指示 PUCCH资源的问题解决。
图 16为本发明上行控制信息的传输方法实施例九的流程图,适用于 FDD 载波跨载波调度 TDD载波,且该 TDD载波的 HARQ-ACK承载于 TDD载波 上的场景。 如图 16所示, 本实施例提供的方法包括以下步骤:
步骤 1601、 UE接收承载于 UE的第一服务小区上的下行控制信道,该下 行控制信道用于指示承载于 UE的第二服务小区上的 PDSCH传输,该第一服 务小区的双工方式为频分双工 FDD, 该第二服务小区的双工方式为时分双工 TDD;
该步骤中, 该第二服务小区的 HARQ-ACK定时按照自己的 HARQ-ACK 定时,或者按照承载 PUCCH的服务小区的 HARQ-ACK定时进行, 无论是自 己的 HARQ-ACK定时还是承载 PUCCH的服务小区 HARQ-ACK定时, 都为
TDD定时, 因此该第二服务小区多个下行子帧对应的 HARQ-ACK在一个上 行子帧上反馈,此时该步骤 1601中接收到的该下行控制信道可以包括在多个 下行子帧接收到的下行控制信道, 其中第一个接收到的下行控制信道的 DCI 格式中的 DAI= 1, 第二个接收到的下行控制信道的 DCI格式中的 DAI= 1, 依次类推。
其他描述如步骤 1401, 此处不再赘述。
步骤 1602、 UE确定物理上行控制信道 PUCCH资源。
该步骤和实施例七中的步骤 1402—致, 此处不再赘述。但是在本实施例 中, 四种方式中方式一为优选方式。
步骤 1603、 UE根据该 PUCCH资源通过承载于 UE的第二服务小区上的 PUCCH发送 PDSCH的 HARQ-ACK
该步骤与实施例七中的步骤 1403—致, 此处不再赘述。
本发明实施例解决了不同双工方式载波聚合下, 如何传输 HARQ-ACK 的问题, 同时解决了跨载波调度情况下 PUCCH资源如何指示的问题。 例如, 不同双工方式载波聚合下, 如果配置了跨载波调度, 且当承载 PDSCH对应 的下行控制信道的服务小区与承载该 PDSCH对应的 HARQ-ACK的服务小区 不同时, UE无法按照该下行控制信道的资源隐式计算该 PUCCH的资源, 从 而如何指示 PUCCH资源需要解决。
图 17为本发明上行控制信息的传输方法实施例十的流程图,本实施例为 实施例九对应的基站侧的方法, 如图 17所示, 本实施例提供的方法包括以下 步骤:
步骤 1701、 基站在 UE的第一服务小区上给 UE发送下行控制信道, 该 下行控制信道用于指示承载于 UE的第二服务小区上的 PDSCH传输,该第一 服务小区的双工方式为频分双工 FDD, 该第二服务小区的双工方式为时分双 工 TDD。
该步骤中, 该第二服务小区的 HARQ-ACK定时按照自己的 HARQ-ACK 定时或者按照承载 PUCCH的服务小区的 HARQ-ACK定时进行,无论是自己 的 HARQ-ACK定时还是承载 PUCCH的服务小区 HARQ-ACK定时, 都为
TDD定时, 因此该第二服务小区多个下行子帧对应的 HARQ-ACK在一个上 行子帧上反馈, 此时该步骤 1701中基站在多个下行子帧在 UE的第一服务小 区上给 UE发送下行控制信道, 其中第一个发送的下行控制信道的 DCI格式 中的 DAI= 1, 第二个发送的下行控制信道的 DCI格式中的 DAI= 1, 依次类 推。
步骤 1702、 基站指示物理上行控制信道 PUCCH资源。
该步骤与实施例八中的步骤 1502—致, 此处不再赘述。 本实施例中, 四 种方式中方式一为优选方式。
步骤 1703、 基站根据该 PUCCH资源接收 UE通过承载于 UE的第二服 务小区上的 PUCCH发送的 PDSCH的 HARQ-ACK。
该步骤与实施例八中的步骤 1503—致, 此处不再赘述。
本发明实施例解决了不同双工方式载波聚合下, 如何传输 HARQ-ACK 的问题, 同时解决了跨载波调度情况下 PUCCH资源如何指示的问题。 例如, 不同双工方式载波聚合下, 如果配置了跨载波调度, 且当承载 PDSCH对应 的下行控制信道的服务小区与承载该 PDSCH对应的 HARQ-ACK的服务小区 不同时, UE无法按照该下行控制信道的资源隐式计算该 PUCCH的资源, 从 而如何指示 PUCCH资源需要解决。
图 18为本发明上行控制信息的传输方法实施例十一的流程图, 如图 18 所示, 对于不同双工方式聚合和 /或基站间聚合的场景下上行控制信息的传 输, 该上行控制信息的传输方法具体可以包括以下步骤:
步骤 1801、 用户设备接收物理上行控制信道配置信息。
该步骤中, 用户设备接收物理上行控制信道 PUCCH配置信息, 用户设 备可以根据该 PUCCH配置信息传输上行控制信息。
具体, 该 PUCCH配置信息可以包括指示承载物理上行控制信道的服务 小区的指示信息, 该指示信息可以为承载 PUCCH 的服务小区的小区索引。 该指示承载物理上行控制信道的服务小区的指示信息,指示 N个传输 PUCCH 的服务小区。 N可以大于 1, 此时该指示信息指示 UE在多个服务小区上传输 PUCCH, 此时若该 PUCCH配置信息中不包括这指示 N个传输 PUCCH的服 务小区的信息, 则 UE仅在主载波上传输 PUCCH。 N也可以等于 1, 此时该 传输 PUCCH的服务小区为用户设备的主服务小区。
进一步, 该 PUCCH配置信息还可以包括指示 N个传输 PUCCH的服务 小区中, 每个服务小区对应的服务小区集合中的服务小区的指示信息, 该指 示信息可以为该服务小区集合中的服务小区的小区索引, 该指示信息可以指 示每个传输 PUCCH的服务小区需承载哪些服务小区的上行控制信息, 例如 HARQ-ACK。 该服务小区集合可以包括多个服务小区, 当该服务小区集合仅 包括一个服务小区时, 该服务小区集合中的服务小区与该传输 PUCCH 的服 务小区相同。
进一步, 该 PUCCH配置信息还可以包括指示 N个传输 PUCCH的服务 小区中, 每个服务小区对应的 PUCCH格式, 该格式可以为 PUCCH格式 la、 PUCCH格式 lb、 信道选择和 PUCCH格式 3中的一种。
步骤 1802、 用户设备根据物理上行控制信道配置信息确定承载物理上行 控制信道的服务小区。
具体, 用户设备可以根据物理上行控制信道配置信息中的指示承载物理 上行控制信道的服务小区的指示信息确定承载物理上行控制信道的服务小 区。 该步骤还可以进一步包括 UE根据 PUCCH配置信息确定各传输 PUCCH 的服务小区对应的服务小区集合中的服务小区,即确定各 PUCCH承载哪些服 务小区的上行控制信息, 例如 HARQ-ACK。
步骤 1803、 用户设备在承载物理上行控制信道的服务小区上通过物理上 行控制信道发送上行控制信息。
该步骤中,用户设备在各承载 PUCCH的服务小区上通过对应的 PUCCH 发送对应的上行控制信息, 例如该上行控制信息为 HARQ-ACK。
本实施例提出一种上行控制信息的传输方法, 解决了不同双工方式聚合 和 /或基站间聚合的场景下上行控制信息怎么传输的问题。 该方法基站可以根 据实际场景, 灵活配置传输 PUCCH 的服务小区, 可以重用各服务小区的 HARQ-ACK定时, 不引入标准复杂度, 从而适用于基站间的载波聚合。
图 19为本发明上行控制信息的传输方法实施例十二的流程图,该实施例 为实施例 ^一对应的基站侧描述。 如图 19所示, 对于不同双工方式聚合和 / 或基站间聚合的场景下上行控制信息的传输, 该传输方法具体可以包括以下 步骤:
步骤 1901、 基站向用户设备发送物理上行控制信道配置信息。
该步骤中, 基站给用户设备发送物理上行控制信道配置信息, 使得用户 设备能够根据该物理上行控制信道配置信息发送上行控制信息。
对该 PUCCH配置信息的其他解释如上述实施例的步骤 1801的解释, 此 处不再赘述。
步骤 1902、 基站在承载上行控制信道的服务小区上通过上行控制信道接 收用户设备发送的上行控制信息。
该步骤中,用户设备在各承载 PUCCH的服务小区上通过对应的 PUCCH 发送对应的上行控制信息, 例如该上行控制信息为 HARQ-ACK。
本实施例提出一种上行控制信息的传输方法, 解决了不同双工方式聚合 和 /或基站间聚合的场景下上行控制信息怎么传输的问题。 该方法基站可以根 据实际场景, 灵活配置传输 PUCCH 的服务小区, 可以重用各服务小区的 HARQ-ACK定时, 不引入标准复杂度, 从而适用于基站间的载波聚合。
图 20为本发明上行控制信息的传输方法实施例十三的流程图, 如图 20 所示, 对于不同双工方式聚合和 /或基站间聚合的场景下上行控制信息的传 输, 该上行控制信息的传输方法具体可以包括以下步骤:
步骤 2001、 用户设备接收物理上行控制信道配置信息。
该步骤中, 用户设备接收物理上行控制信道 PUCCH配置信息, 用户设 备可以根据该 PUCCH配置信息传输上行控制信息。
具体, 该 PUCCH配置信息可以包括指示承载第一物理上行控制信道的 服务小区的指示信息, 该指示信息可以为承载第一物理上行控制信道的服务 小区的小区索引, 该承载第一物理上行控制信道的服务小区可以为用户设备 的辅服务小区。 通过该指示承载第一物理上行控制信道的服务小区的指示信 息, 还可以配置该第一物理上行控制信道与用户设备的第二物理上行控制信 道一起传输该用户设备的上行控制信息, 例如此时该用户设备的第二物理上 行控制信道为在该用户设备的主服务小区上传输的物理上行控制信道, 若该
PUCCH配置信息配置了第一物理上行控制信道,则该用户设备将通过该第一 物理上行控制信道和该第二物理上行控制信道传输上行控制信息,与 PUCCH 仅在该用户设备的主服务小区上传输相比, 可以不修改各服务小区的 HARQ-ACK定时。若该 PUCCH配置信息中不包括该第一物理上行控制信道 配置信息, 则该用户设备将仅在主服务小区上传输上行控制信息。 该用户设 备通过该第一物理上行控制信道和该第二物理上行控制信道传输上行控制信 息, 可以按照如下方式传输: 主服务小区对应上行子帧, 则用户设备在第二 物理上行控制信道上传输上行控制信息; 否则, 用户设备在第一物理上行控 制信道上传输上行控制信息。
该 PUCCH配置信息还可以包括指示第一物理上行控制信道的格式的指 示信息, 该第一物理上行控制信道的格式可以为 PUCCH格式 la、 PUCCH格 式 lb、 信道选择和 PUCCH格式 3中的一种。
步骤 2002、 用户设备根据物理上行控制信道配置信息确定承载第一物理 上行控制信道的服务小区。
该步骤中,用户设备根据步骤 2001中收到的物理上行控制信道配置信息 确定承载第一物理上行控制信道的服务小区。
具体, 用户设备可以根据物理上行控制信道配置信息中的指示承载第一 物理上行控制信道的服务小区的指示信息确定承载第一物理上行控制信道的 服务小区, 进一步可以为根据物理上行控制信道配置信息中的承载第一上行 控制信道的服务小区的小区索引确定承载第一物理上行控制信道的服务小 区,该承载第一物理上行控制信道的服务小区为所述用户设备的辅服务小区。
步骤 2003、 用户设备在承载第一物理上行控制信道的服务小区上通过第 一物理上行控制信道发送上行控制信息。
该步骤可以为: 当主服务小区对应上行子帧, 则用户设备在第二物理上 行控制信道上传输上行控制信息; 否则, 用户设备在第一物理上行控制信道 上传输上行控制信息。
需要说明的是, 该步骤中的上行控制信息 (Uplink Control Information, 简称 UCI) 可以为混合自动重传请求 HARQ-ACK、 信道状态信息 (Channel State Information, 简称 CSI) 、 调度请求(Scheduling Request, 简称 SR)等。 其中, 第一上行控制信息和第二上行控制信息的类型可以相同, 也可以不相 同。
本实施例提出一种上行控制信息的传输方法, 解决了不同双工方式聚合 和 /或基站间聚合的场景下上行控制信息怎么传输的问题。
图 21 为本发明上行控制信息的传输方法实施例十四的流程图, 如图 21 所示, 对于不同双工方式聚合和 /或基站间聚合的场景下的上行控制信息传 输, 该上行控制信息的传输方法具体可以包括以下步骤:
步骤 2101、 基站向用户设备发送物理上行控制信道配置信息, 该物理上 行控制信道配置信息包括指示承载第一物理上行控制信道的服务小区的指示 信息, 该服务小区为用户设备对应的服务小区。
该步骤中, 基站给用户设备发送物理上行控制信道配置信息, 使得用户 设备能够根据该物理上行控制信道配置信息发送上行控制信息。
具体, 该指示承载第一物理上行控制信道的服务小区的指示信息可以为 承载第一物理上行控制信道的服务小区的小区索引, 该承载第一物理上行控 制信道的服务小区为该用户设备的辅服务小区。
对该 PUCCH配置信息的其他解释如上述实施例的步骤 2001, 此处不再 赘述。
步骤 2102、 基站在承载第一物理上行控制信道的服务小区上通过第一物 理上行控制信道上接收用户设备发送的上行控制信息。
该步骤可以为: 当主服务小区对应上行子帧, 则基站在第二物理上行控 制信道上接收上行控制信息; 否则, 基站在第一物理上行控制信道上接收上 行控制信息。
需要说明的是, 该步骤中的上行控制信息 UCI可以为混合自动重传请求 HARQ-ACK, 信道状态信息 CSI、 调度请求 SR等。 其中, 第一上行控制信 息和第二上行控制信息的类型可以相同, 也可以不相同。
本实施例提出一种上行控制信息的传输方法, 解决了不同双工方式聚合 和 /或基站间聚合的场景下上行控制信息怎么传输的问题。
图 22为本发明用户设备实施例四的结构示意图, 如图 22所示, 本实施 例提供的用户设备包括: 接收模块 221、 确定模块 222、 发送模块 223。
其中, 接收模块 221, 用于接收承载于 UE的第一服务小区上的下行控制 信道,该下行控制信道用于指示承载于 UE的第二服务小区上的 PDSCH传输, 第一服务小区的双工方式为时分双工 TDD, 第二服务小区的双工方式为频分 双工 FDD。
确定模块 222, 用于确定物理上行控制信道 PUCCH资源。
发送模块 223,用于根据 PUCCH资源通过承载于 UE的第二服务小区上 的 PUCCH发送 PDSCH的 HARQ-ACK。
可选地, 确定模块 222具体用于: 根据承载于第一服务小区上的下行控 制信道的 DCI格式中的 TPC命令域确定 PUCCH资源。
可选地, 确定模块 222具体用于: 根据更高层信令确定 PUCCH资源。 可选地, 确定模块 22具体用于: 根据承载于第一服务小区上的下行控制 信道的 DCI格式中的预定义的域确定 PUCCH资源。
可选地, 确定模块 222具体用于: 根据承载于第一服务小区上的下行控 制信道的 DCI格式中的 HARQ-ACK资源偏移域确定 PUCCH资源。
本实施例中, 下行控制信道用于指示承载在所述第一服务小区上的指示 物理下行共享信道 PDSCH传输, 或者用于指示下行半持续调度 SPS释放; 当所述下行控制信道用于指示物理下行共享信道 PDSCH传输时, 所述下行 控制信道对应的混合自动重传确认具体为所述下行控制信道对应的 PDSCH 的混合自动重传确认, 当所述下行控制信道用于指示下行半持续调度 SPS释 放时, 所述下行控制信道对应的混合自动重传确认具体为指示下行半持续调 度 SPS释放的所述下行控制信道对应的混合自动重传确认。 本实施例中, 第一服务小区可以为 UE的主服务小区, 第一服务小区的 双工方式为时分双工 TDD, 第二服务小区的双工方式为频分双工 FDD, 第二 服务小区为更高层信令指示的用于传输 PUCCH 的辅服务小区, 或者第二服 务小区为所述 UE的小区索引最小的辅服务小区。
本实施例提供的用户设备, 可用于执行方法实施例七提供的技术方案, 具体实现方式和技术效果类似, 这里不再赘述。
如图 23所示, 本实施提供给的基站包括: 发送模块 231、 指示模块 232、 接收模块 233。
其中, 发送模块 231, 用于在 UE的第一服务小区上给 UE发送下行控制 信道,该下行控制信道用于指示承载于 UE的第二服务小区上的 PDSCH传输, 该第一服务小区的双工方式为时分双工 TDD, 该第二服务小区的双工方式为 频分双工 FDD。
指示模块 232, 用于指示物理上行控制信道 PUCCH资源。
接收模块 233, 用于根据该 PUCCH资源接收 UE通过承载于 UE的第二 服务小区上的 PUCCH发送的 PDSCH的 HARQ-ACK。
可选地, 指示模块 232具体用于: 通过承载于第一服务小区上的下行控 制信道的 DCI格式中的 TPC命令域指示 PUCCH资源。
可选地, 指示模块 232具体用于: 通过高层信令指示 PUCCH资源。 可选地, 指示模块 232具体用于: 通过承载于第一服务小区上的下行控 制信道的 DCI格式中的预定义的域指示 PUCCH资源。
可选地, 指示模块 232具体用于: 通过承载于第一服务小区上的下行控 制信道的 DCI格式中的 HARQ-ACK资源偏移域指示 PUCCH资源。
本实施例中, 下行控制信道用于指示承载在所述第一服务小区上的指示 物理下行共享信道 PDSCH传输, 或者用于指示下行半持续调度 SPS释放; 当所述下行控制信道用于指示物理下行共享信道 PDSCH传输时, 所述下行 控制信道对应的混合自动重传确认具体为所述下行控制信道对应的 PDSCH 的混合自动重传确认, 当所述下行控制信道用于指示下行半持续调度 SPS释 放时, 所述下行控制信道对应的混合自动重传确认具体为指示下行半持续调 度 SPS释放的所述下行控制信道对应的混合自动重传确认。
本实施例中, 第一服务小区可以为 UE的主服务小区, 第一服务小区的 双工方式为时分双工 TDD, 第二服务小区的双工方式为频分双工 FDD, 第二 服务小区为更高层信令指示的用于传输 PUCCH 的辅服务小区, 或者第二服 务小区为所述 UE的小区索引最小的辅服务小区。
本实施例提供的基站, 可用于执行方法实施例八提供的技术方案, 具体 实现方式和技术效果类型, 这里不再赘述。
图 24为本发明用户设备实施例五的结构示意图, 如图 24所示, 本实施 例提供的用户设备包括: 接收模块 241、 确定模块 242、 发送模块 243。
其中, 接收模块 241, 用于接收承载于 UE的第一服务小区上的下行控制 信道,该下行控制信道用于指示承载于 UE的第二服务小区上的 PDSCH传输, 该第一服务小区的双工方式为时分双工 FDD, 该第二服务小区的双工方式为 频分双工 TDD。
确定模块 242, 用于确定物理上行控制信道 PUCCH资源。
发送模块 243,用于根据该 PUCCH资源通过承载于 UE的第二服务小区 上的 PUCCH发送 PDSCH的 HARQ-ACK。
可选地, 确定模块 242具体用于: 根据承载于第一服务小区上的下行控 制信道的 DCI格式中的 TPC命令域确定 PUCCH资源。
可选地, 确定模块 242具体用于: 根据更高层信令确定 PUCCH资源。 可选地, 确定模块 242具体用于: 根据承载于第一服务小区上的下行控 制信道的 DCI格式中的预定义的域确定 PUCCH资源。
可选地, 确定模块 242具体用于: 根据承载于第一服务小区上的下行控 制信道的 DCI格式中的 HARQ-ACK资源偏移域确定 PUCCH资源。
本实施例提供的用户设备, 可用于执行方法实施例九提供的技术方案, 具体实现方式和技术效果类似, 这里不再赘述。
图 25为本发明基站实施例五的结构示意图, 如图 25所示, 本实施提供 给的基站包括: 发送模块 251、 指示模块 252、 接收模块 253。
其中, 发送模块 251, 用于在 UE的第一服务小区上给 UE发送下行控制 信道,该下行控制信道用于指示承载于 UE的第二服务小区上的 PDSCH传输, 该第一服务小区的双工方式为时分双工 FDD, 该第二服务小区的双工方式为 频分双工 TDD。
指示模块 252, 用于指示物理上行控制信道 PUCCH资源。 接收模块 253, 用于根据该 PUCCH资源接收 UE通过承载于 UE的第二 服务小区上的 PUCCH发送的 PDSCH的 HARQ-ACK。
可选地, 指示模块 232具体用于: 通过承载于第一服务小区上的下行控 制信道的 DCI格式中的 TPC命令域指示 PUCCH资源。
可选地, 指示模块 252具体用于: 通过高层信令指示 PUCCH资源。 可选地, 指示模块 252具体用于: 通过承载于第一服务小区上的下行控 制信道的 DCI格式中的预定义的域指示 PUCCH资源。
可选地, 指示模块 252具体用于: 通过承载于第一服务小区上的下行控 制信道的 DCI格式中的 HARQ-ACK资源偏移域指示 PUCCH资源。
本实施例中, 下行控制信道用于指示承载在所述第一服务小区上的指示 物理下行共享信道 PDSCH传输, 或者用于指示下行半持续调度 SPS释放; 当所述下行控制信道用于指示物理下行共享信道 PDSCH传输时, 所述下行 控制信道对应的混合自动重传确认具体为所述下行控制信道对应的 PDSCH 的混合自动重传确认, 当所述下行控制信道用于指示下行半持续调度 SPS释 放时, 所述下行控制信道对应的混合自动重传确认具体为指示下行半持续调 度 SPS释放的所述下行控制信道对应的混合自动重传确认。
本实施例中, 第一服务小区可以为 UE的主服务小区, 第一服务小区的 双工方式为时分双工 TDD, 第二服务小区的双工方式为频分双工 FDD, 第二 服务小区为更高层信令指示的用于传输 PUCCH 的辅服务小区, 或者第二服 务小区为所述 UE的小区索引最小的辅服务小区。
本实施例提供的基站, 可用于执行方法实施例十提供的技术方案, 具体 实现方式和技术效果类型, 这里不再赘述。
图 26为本发明用户设备实施例六的结构示意图, 如图 26所示, 本实施 例提供的用户设备包括: 接收模块 261、 确定模块 262、 发送模块 263。
其中, 接收模块 261, 用于接收物理上行控制信道配置信息;
确定模块 262, 用于根据物理上行控制信道配置信息确定承载物理上行 控制信道的服务小区;
发送模块 263, 用于在承载物理上行控制信道的服务小区上通过物理上 行控制信道发送上行控制信息。
可选地, PUCCH配置信息可以包括指示承载物理上行控制信道的服务小 区的指示信息, 该指示信息可以为承载 PUCCH的服务小区的小区索引。 可选地, 该 PUCCH配置信息还可以包括指示 N个传输 PUCCH的服务 小区中, 每个服务小区对应的服务小区集合中的服务小区的指示信息, 该指 示信息可以为该服务小区集合中的服务小区的小区索引, 该指示信息可以指 示每个传输 PUCCH的服务小区需承载哪些服务小区的上行控制信息。
可选地, 该 PUCCH配置信息还可以包括指示 N个传输 PUCCH的服务 小区中, 每个服务小区对应的 PUCCH格式。
本实施例中, 用户设备接收物理上行控制信道 PUCCH配置信息, 然后 根据该 PUCCH配置信息传输上行控制信息。
本实施例提供的用户设备,可用于执行方法实施例十一提供的技术方案, 具体实现方式和技术效果类型, 这里不再赘述。
图 27为本发明基站实施例六的结构示意图, 如图 27所示, 本实施提供 给的基站包括: 发送模块 271、 指示模块 272。
其中, 发送模块 271, 用于向用户设备发送物理上行控制信道配置信息; 接收模块 272, 用于在承载上行控制信道的服务小区上在上行控制信道 上接收用户设备发送的上行控制信息。
可选地, PUCCH配置信息可以包括指示承载物理上行控制信道的服务小 区的指示信息, 该指示信息可以为承载 PUCCH的服务小区的小区索引。
可选地, 该 PUCCH配置信息还可以包括指示 N个传输 PUCCH的服务 小区中, 每个服务小区对应的服务小区集合中的服务小区的指示信息, 该指 示信息可以为该服务小区集合中的服务小区的小区索引, 该指示信息可以指 示每个传输 PUCCH的服务小区需承载哪些服务小区的上行控制信息。
可选地, 该 PUCCH配置信息还可以包括指示 N个传输 PUCCH的服务 小区中, 每个服务小区对应的 PUCCH格式。
基站通过给用户设备发送物理上行控制信道配置信息, 使得用户设备能 够根据该物理上行控制信道配置信息发送上行控制信息。
本实施例提供的基站, 可用于执行方法实施例十二提供的技术方案, 具 体实现方式和技术效果类似, 这里不再赘述。
图 28为本发明用户设备实施例七的结构示意图, 如图 28所示, 本实施 例提供的用户设备包括: 接收模块 281、 确定模块 282、 发送模块 283。 其中, 接收模块 281, 用于接收物理上行控制信道配置信息; 确定模块 282, 用于根据物理上行控制信道配置信息确定承载第一物理 上行控制信道的服务小区;
发送模块 283, 用于在承载第一物理上行控制信道的服务小区上通过第 一物理上行控制信道发送上行控制信息。
用户设备接收物理上行控制信道 PUCCH配置信息,根据该 PUCCH配置 信息传输上行控制信息。
PUCCH 配置信息可以包括指示承载第一物理上行控制信道的服务小区 的指示信息, 该指示信息可以为承载第一 PUCCH的服务小区的小区索引。
可选地, 该 PUCCH配置信息还可以包括该 PUCCH的格式的指示信息, 该第一物理上行控制信道的格式可以为 PUCCH格式 la、 PUCCH格式 lb、 信道选择和 PUCCH格式 3中的任意一种。
本实施例提供的用户设备,可用于执行方法实施例十三提供的技术方案, 具体实现方式和技术效果类似。
图 29为本发明基站实施例七的结构示意图, 如图 29所示, 本实施提供 给的基站包括: 发送模块 291、 接收模块 292。
其中, 发送模块 291, 用于向用户设备发送物理上行控制信道配置信息, 该物理上行控制信道配置信息包括指示承载第一物理上行控制信道的服务小 区的指示信息, 该服务小区为用户设备对应的服务小区;
接收模块 292, 用于在承载第一物理上行控制信道的服务小区上通过第 一物理上行控制信道上接收用户设备发送的上行控制信息。
其中, 指示承载第一物理上行控制信道的服务小区的指示信息为承载第 一物理上行控制信道的服务小区的小区索引, 承载第一物理上行控制信道的 服务小区为该用户设备的辅服务小区。
PUCCH 配置信息可以包括指示承载第一物理上行控制信道的服务小区 的指示信息, 该指示信息可以为承载第一 PUCCH的服务小区的小区索引。
可选地, 该 PUCCH配置信息还可以包括该 PUCCH的格式的指示信息, 该第一物理上行控制信道的格式可以为 PUCCH格式 la、 PUCCH格式 lb、 信道选择和 PUCCH格式 3中的任意一种。
本实施例提供的基站, 可用于执行方法实施例十四提供的技术方案, 具 体实现方式和技术效果类似, 这里不再赘述。
图 30为本发明用户设备实施例八的结构示意图, 如图 30所示, 本实施 例提供的用户设备 UE3100可以包括存储器 311和处理器 312, 其中,存储器 311 中存储有一组程序代码, 处理器 312用于调用存储器 311中的程序代码 并执行以下操作:
在下行子帧 N接收基站发送的下行控制信道, 所述下行控制信道承载于 所述 UE的第一服务小区上;
在上行子帧 N+4通过物理上行控制信道 PUCCH向所述基站发送所述下 行控制信道对应的混合自动重传确认, 当所述上行子帧 N+4属于第一上行子 帧集合时,所述 PUCCH承载于所述 UE的第二服务小区上, 当所述上行子帧 N+4属于第二上行子帧集合时, 所述 PUCCH承载于所述第一服务小区上, 其中, 所述第一服务小区和所述第二服务小区的双工方式不同, 所述第一上 行子帧集合包括的上行子帧个数与所述第二上行子帧集合包括的上行子帧个 数之和等于一个无线帧的个数, 所述第一上行子帧集合包括的上行子帧和所 述第二上行子帧集合包括的上行子帧对应无线帧中不同的子帧。
当所述第一服务小区的双工方式为时分双工 TDD, 所述第二服务小区的 双工方式为频分双工 FDD时,所述第二上行子帧集合包括的上行子帧对应一 个无线帧中所述第一服务小区的上行子帧, 所述第一上行子帧集合包括的上 行子帧对应所述无线帧中除所述第二上行子帧集合包括的上行子帧外的其他 上行子帧; 当所述第一服务小区的双工方式为 FDD, 且所述第二服务小区的 双工方式为 TDD时,所述第一上行子帧集合包括的上行子帧对应一个无线帧 中所述第一服务小区的上行子帧, 所述第二上行子帧集合包括的上行子帧对 应所述无线帧中的除所述第一上行子帧集合包括的上行子帧外的其他上行子 帧。
本实施例中, 下行控制信道为物理下行控制信道 PDCCH或增强的物理 下行控制信道 EPDCCH, 所述下行控制信道用于指示承载在所述第一服务小 区上的物理下行共享信道 PDSCH传输, 或者用于指示下行半持续调度 SPS 释放; 当所述下行控制信道用于指示所述 PDSCH 的传输时, 所述下行控制 信道对应的混合自动重传确认具体为所述下行控制信道对应 PDSCH 的混合 自动重传确认, 当所述下行控制信道用于指示所述 SPS释放时, 所述下行控 制信道对应的混合自动重传确认具体为指示所述 SPS释放的所述下行控制信 道对应的混合自动重传确认。
处理器 312还用于获取所述 PUCCH的 PUCCH资源和 /或 PUCCH发射 功率。 当所述上行子帧 N+4属于第一上行子帧集合时, 处理器 312具体用于 根据所述下行控制信道的下行控制信息 DCI格式中的发射功率控制 TPC命令 域确定所述 PUCCH资源。 当所述上行子帧 N+4属于第二上行子帧集合时, 处理器 312具体用于根据所述下行控制信道的下行控制信息 DCI格式中的发 射功率控制 TPC命令域确定所述 PUCCH发射功率。
本实施例提供的用户设备, 可用于执行方法实施例一的技术方案, 具体 实现方式和技术效果类型, 这里不再赘述。
图 31为本发明基站实施例八的结构示意图, 如图 31所示, 本实施例提 供的基站 3200可以包括存储器 321和处理器 322, 其中, 存储器 321中存储 有一组程序代码, 处理器 322用于调用存储器 321中的程序代码并执行以下 操作:
在下行子帧 N向用户设备 UE发送下行控制信道, 所述下行控制信道承 载于所述 UE的第一服务小区上;
在上行子帧 N+4接收所述 UE通过物理上行控制信道 PUCCH发送的所 述下行控制信道对应的混合自动重传确认, 当所述上行子帧 N+4属于第一上 行子帧集合时,所述 PUCCH承载于所述 UE的第二服务小区上, 当所述上行 子帧 N+4属于第二上行子帧集合时, 所述 PUCCH承载于所述第一服务小区 上, 其中, 所述第一服务小区和所述第二服务小区的双工方式不同, 所述第 一上行子帧集合包括的上行子帧个数与所述第二上行子帧集合包括的上行子 帧个数之和等于一个无线帧的个数, 所述第一上行子帧集合包括的上行子帧 和所述第二上行子帧集合包括的上行子帧对应无线帧中不同的子帧。
当所述第一服务小区的双工方式为时分双工 TDD, 所述第二服务小区的 双工方式为频分双工 FDD时,则所述第二上行子帧集合包括的上行子帧对应 一个无线帧中所述第一服务小区的上行子帧, 所述第一上行子帧集合包括的 上行子帧对应所述无线帧中的除所述第二上行子帧集合包括的上行子帧外的 其他上行子帧; 当所述第一服务小区的双工方式为 FDD, 且所述第二服务小 区的双工方式为 TDD时,所述第一上行子帧集合包括的上行子帧对应一个无 线帧中所述第一服务小区的上行子帧, 所述第二上行子帧集合包括的上行子 帧对应所述无线帧中的除所述第一上行子帧集合包括的上行子帧外的其他上 行子帧。
本实施例中, 下行控制信道为物理下行控制信道 PDCCH或增强的物理 下行控制信道 EPDCCH, 所述下行控制信道用于指示承载在所述第一服务小 区上的物理下行共享信道 PDSCH传输, 或者用于指示下行半持续调度 SPS 释放; 当所述下行控制信道用于指示所述 PDSCH传输时, 所述下行控制信 道对应的混合自动重传确认具体为所述下行控制信道对应的 PDSCH 的混合 自动重传确认, 当所述下行控制信道用于指示所述 SPS释放时, 所述下行控 制信道对应的混合自动重传确认具体为指示所述 SPS释放所述下行控制信道 对应的混合自动重传确认。
本实施例提供基站, 可用于执行方法实施例二提供的技术方案, 具体实 现方式和技术效果类似, 这里不再赘述。
图 32为本发明用户设备实施例九的结构示意图, 如图 32所示, 本实施 例提供的用户设备 UE3300可以包括存储器 331和处理器 332, 其中,存储器 331 中存储有一组程序代码, 处理器 332用于调用存储器 331中的程序代码 并执行以下操作:
下行子帧 N接收下行控制信道, 所述下行控制信道承载于所述 UE的第 一服务小区上, 所述第一服务小区的双工方式为时分双工 TDD;
在上行子帧 N+4通过物理上行控制信道 PUCCH发送所述下行控制信道 对应的混合自动重传确认,其中,所述 PUCCH承载于所述 UE的第二服务小 区上, 所述第二服务小区的双工方式为频分双工 FDD。
其中, 所述下行控制信道为物理下行控制信道 PDCCH或增强的物理下 行控制信道 EPDCCH, 所述下行控制信道用于指示承载在所述第一服务小区 上的物理下行共享信道 PDSCH传输, 或者用于指示下行半持续调度 SPS释 放; 当所述下行控制信道用于指示所述 PDSCH传输时, 所述下行控制信道 对应的混合自动重传确认具体为所述下行控制信道对应的 PDSCH 的混合自 动重传确认, 当所述下行控制信道用于指示所述 SPS释放时, 所述下行控制 信道对应的混合自动重传确认具体为指示所述 SPS释放的所述下行控制信道 对应的混合自动重传确认。 本实施例中,处理器 332在上行子帧 N+4通过物理上行控制信道 PUCCH 发送所述下行控制信道对应的混合自动重传确认之前, 还用于获取所述 PUCCH的 PUCCH资源。 处理器 332获取所述 PUCCH的 PUCCH资源, 具 体为: 根据所述下行控制信道的下行控制信息 DCI 格式中的下行分配指示 DAI或发射功率控制 TPC命令确定所述 PUCCH资源。
本实施例中, 所述第一服务小区为所述 UE的主服务小区, 所述第二服 务小区为所述 UE的辅服务小区。 具体地, 所述第二服务小区可以为所述 UE 的小区索引最小的辅服务小区, 或者, 所述第二服务小区为更高层信令指示 的用于传输 PUCCH的辅服务小区。
本实施例提供的用户设备, 可用于执行方法实施例三提供的技术方案, 具体实现方式和技术效果类型, 这里不再赘述。
图 33为本发明基站实施例九的结构示意图, 如图 33所示, 本实施例提 供的基站 3400可以包括存储器 341和处理器 342, 其中, 存储器 341中存储 有一组程序代码, 处理器 342用于调用存储器 341中的程序代码并执行以下 操作:
在下行子帧 N向用户设备 UE发送下行控制信道, 所述下行控制信道承 载于所述 UE的第一服务小区上, 所述第一服务小区的双工方式为时分双工 TDD, 所述下行控制信道的下行控制信息 DCI格式中的下行分配指示 DAI 或发射功率控制 TPC命令用于指示物理上行控制信道 PUCCH资源;
在上行子帧 N+4根据所述 PUCCH资源接收所述 UE通过 PUCCH发送 的所述下行控制信道对应的混合自动重传确认, 其中, 所述 PUCCH承载于 所述 UE的第二服务小区上,所述第二服务小区的双工方式为频分双工 FDD。
其中, 下行控制信道为物理下行控制信道 PDCCH或增强的物理下行控 制信道 EPDCCH, 所述下行控制信道用于指示承载在所述第一服务小区上的 物理下行共享信道 PDSCH传输, 或者用于指示下行半持续调度 SPS释放; 当所述下行控制信道用于指示所述 PDSCH传输时, 所述下行控制信道对应 的混合自动重传确认具体为所述下行控制信道对应的 PDSCH 的混合自动重 传确认, 当所述下行控制信道用于指示所述 SPS释放时, 所述下行控制信道 对应的混合自动重传确认具体为指示所述 SPS释放的所述下行控制信道对应 的混合自动重传确认。 本实施例中, 第一服务小区为所述 UE的主服务小区, 所述第二服务小 区为所述 UE的辅服务小区。具体地,所述第二服务小区可以为所述 UE的小 区索引最小辅服务小区, 或者, 所述第二服务小区为所述基站通过更高层信 令指示的用于传输 PUCCH的辅服务小区。
本实施例提供的基站, 可用于执行方法实施例四的技术方案, 具体实现 方式和技术效果类似, 这里不再赘述。
图 34为本发明用户设备实施例十的结构示意图, 如图 34所示, 本实施 例提供的用户设备 UE3500可以包括存储器 351和处理器 352, 其中,存储器 351 中存储有一组程序代码, 处理器 352用于调用存储器 351中的程序代码 并执行以下操作:
在下行子帧 N接收下行控制信道, 所述下行控制信道承载于所述 UE的 第一服务小区上, 所述下行控制信道为物理下行控制信道 PDCCH或增强的 物理下行控制信道 EPDCCH;
当所述下行控制信道对应的混合自动重传确认承载于所述 UE的第二服 务小区上时, 处理器 812根据所述下行控制信道的下行控制信息 DCI格式中 的发射功率控制 TPC命令域确定物理上行控制信道 PUCCH资源;
且当所述下行控制信道对应的混合自动重传确认承载于所述第一服务小 区上时, 处理器 812根据所述下行控制信道的下行控制信息 DCI格式中的发 送功率控制 TPC命令域确定所述 PUCCH的发射功率, 其中, 所述第一服务 小区和所述第二服务小区的双工方式不同;
根据所述 PUCCH资源或所述 PUCCH的发射功率通过所述 PUCCH发送 所述下行控制信道对应的混合自动重传确认。
其中, 所述下行控制信道用于指示承载在所述第一服务小区上的物理下 行共享信道 PDSCH传输, 或者用于指示下行半持续调度 SPS释放; 当所述 下行控制信道用于指示所述 PDSCH传输时, 所述下行控制信道对应的混合 自动重传确认具体为所述下行控制信道对应的 PDSCH的混合自动重传确认, 当所述下行控制信道用于指示所述 SPS释放时, 所述下行控制信道对应的混 合自动重传确认具体为指示所述 SPS释放的所述下行控制信道对应的混合自 动重传确认。
本实施例中, 所述第一服务小区为所述 UE的主服务小区, 所述第一服 务小区的双工方式为时分双工 TDD, 所述第二服务小区的双工方式为频分双 工 FDD, 且所述第二服务小区为所述 UE的小区索引最小辅服务小区。或者, 所述第一服务小区为所述 UE的主服务小区, 所述第一服务小区的双工方式 为时分双工 TDD, 所述第二服务小区的双工方式为频分双工 FDD, 所述第二 服务小区为更高层信令指示的用于传输 PUCCH的辅服务小区。
本实施例提供的用户设备, 可用于执行方法实施例五的技术方案, 具体 实现方式和技术效果类似, 这里不再赘述。
图 35为本发明基站实施例十的结构示意图, 如图 35所示, 本实施例提 供的基站 3600可以包括存储器 361和处理器 362, 其中, 存储器 361中存储 有一组程序代码, 处理器 362用于调用存储器 361中的程序代码并执行以下 操作:
在下行子帧 N向用户设备 UE发送下行控制信道, 所述下行信道承载于 所述 UE的第一服务小区上,所述下行控制信道为物理下行控制信道 PDCCH 或增强的物理下行控制信道 EPDCCH;
当所述下行控制信道对应的混合自动重传确认承载于所述 UE的第二服 务小区上时, 通过所述下行控制信道的下行控制信息 DCI格式中的发射功率 控制 TPC命令域指示物理上行控制信道 PUCCH资源;
当所述下行控制信道对应的混合自动重传确认承载于所述第一服务小区 上时, 通过所述下行控制信道的下行控制信息 DCI 格式中的发送功率控制 TPC命令域指示所述 PUCCH的发射功率, 其中, 所述第一服务小区和所述 第二服务小区的双工方式不同;
根据所述 PUCCH资源接收所述 UE发送的所述下行控制信道对应的混合 自动重传确认。
其中, 所述下行控制信道用于承载在所述第一服务小区上的指示物理下 行共享信道 PDSCH传输, 或者用于指示下行半持续调度 SPS释放; 当所述 下行控制信道用于指示物理下行共享信道 PDSCH传输时, 所述下行控制信 道对应的混合自动重传确认具体为所述下行控制信道对应的 PDSCH 的混合 自动重传确认, 当所述下行控制信道用于指示下行半持续调度 SPS释放时, 所述下行控制信道对应的混合自动重传确认具体为指示下行半持续调度 SPS 释放的所述下行控制信道对应的混合自动重传确认。 本实施例红, 所述第一服务小区可以为所述 UE的主服务小区, 所述第 一服务小区的双工方式为时分双工 TDD, 所述第二服务小区的双工方式为频 分双工 FDD,且所述第二服务小区为所述 UE的小区索引最小的辅服务小区。 或者, 所述第一服务小区为所述 UE的主服务小区, 所述第一服务小区的双 工方式为时分双工 TDD, 所述第二服务小区的双工方式为频分双工 FDD, 所 述第二服务小区为更高层信令指示的用于传输 PUCCH的辅服务小区。
本实施例提供的基站, 可用于执行方法实施例六的技术方案, 具体实现 方式和技术效果类似, 这里不再赘述。
本领域普通技术人员可以理解: 实现上述各方法实施例的全部或部分 步骤可以通过程序指令相关的硬件来完成。 前述的程序可以存储于一计算 机可读取存储介质中。 该程序在执行时, 执行包括上述各方法实施例的步 骤; 而前述的存储介质包括: ROM、 RAM, 磁碟或者光盘等各种可以存 储程序代码的介质。
最后应说明的是: 以上各实施例仅用以说明本发明的技术方案, 而非 对其限制; 尽管参照前述各实施例对本发明进行了详细的说明, 本领域的 普通技术人员应当理解: 其依然可以对前述各实施例所记载的技术方案进 行修改, 或者对其中部分或者全部技术特征进行等同替换; 而这些修改或 者替换, 并不使相应技术方案的本质脱离本发明各实施例技术方案的范 围。

Claims

权 利 要 求 书
1、 一种上行控制信息的传输方法, 其特征在于, 包括:
用户设备 UE在下行子帧 N接收基站发送的下行控制信道, 所述下行 控制信道承载于所述 UE的第一服务小区上;
所述 UE在上行子帧 N+4通过物理上行控制信道 PUCCH向所述基站 发送所述下行控制信道对应的混合自动重传确认, 当所述上行子帧 N+4 属于第一上行子帧集合时, 所述 PUCCH承载于所述 UE的第二服务小区 上, 当所述上行子帧 N+4属于第二上行子帧集合时, 所述 PUCCH承载于 所述第一服务小区上, 其中, 所述第一服务小区和所述第二服务小区的双 工方式不同, 所述第一上行子帧集合包括的上行子帧个数与所述第二上行 子帧集合包括的上行子帧个数之和等于一个无线帧的个数, 所述第一上行 子帧集合包括的上行子帧和所述第二上行子帧集合包括的上行子帧对应 无线帧中不同的子帧。
2、 根据权利要求 1所述的方法, 其特征在于, 当所述第一服务小区 的双工方式为时分双工 TDD, 所述第二服务小区的双工方式为频分双工
FDD时,所述第二上行子帧集合包括的上行子帧对应一个无线帧中所述第 一服务小区的上行子帧, 所述第一上行子帧集合包括的上行子帧对应所述 无线帧中除所述第二上行子帧集合包括的上行子帧外的其他上行子帧; 当所述第一服务小区的双工方式为 FDD,且所述第二服务小区的双工 方式为 TDD时, 所述第一上行子帧集合包括的上行子帧对应一个无线帧 中所述第一服务小区的上行子帧, 所述第二上行子帧集合包括的上行子帧 对应所述无线帧中的除所述第一上行子帧集合包括的上行子帧外的其他 上行子帧。
3、 根据权利要求 1或 2所述的方法, 其特征在于, 所述下行控制信 道为物理下行控制信道 PDCCH或增强的物理下行控制信道 EPDCCH, 所 述下行控制信道用于指示承载在所述第一服务小区上的物理下行共享信 道 PDSCH传输, 或者用于指示下行半持续调度 SPS释放;
当所述下行控制信道用于指示所述 PDSCH的传输时, 所述下行控制 信道对应的混合自动重传确认具体为所述下行控制信道对应 PDSCH的混 合自动重传确认, 当所述下行控制信道用于指示所述 SPS释放时, 所述下 行控制信道对应的混合自动重传确认具体为指示所述 SPS释放的所述下 行控制信道对应的混合自动重传确认。
4、 根据权利要求 1-3任一项所述的方法, 其特征在于, 所述 UE在上 行子帧 N+4通过物理上行控制信道 PUCCH向所述基站发送所述下行控制 信道对应的混合自动重传确认之前, 还包括:
所述 UE获取所述 PUCCH的 PUCCH资源和 /或 PUCCH发射功率。
5、 根据权利要求 4所述的方法, 其特征在于, 当所述上行子帧 N+4 属于第一上行子帧集合时, 所述 UE获取所述 PUCCH的 PUCCH资源, 包括:
所述 UE根据所述下行控制信道的下行控制信息 DCI格式中的发射功 率控制 TPC命令域确定所述 PUCCH资源。
6、 根据权利要求 4所述的方法, 其特征在于, 当所述上行子帧 N+4 属于第二上行子帧集合时, 所述 UE获取所述 PUCCH的 PUCCH发射功 率, 包括:
所述 UE根据所述下行控制信道的下行控制信息 DCI格式中的发射功 率控制 TPC命令域确定所述 PUCCH发射功率。
7、 一种上行控制信息的传输方法, 其特征在于, 包括:
基站在下行子帧 N向用户设备 UE发送下行控制信道, 所述下行控制 信道承载于所述 UE的第一服务小区上;
所述基站在上行子帧 N+4接收所述 UE通过物理上行控制信道
PUCCH发送的所述下行控制信道对应的混合自动重传确认, 当所述上行 子帧 N+4属于第一上行子帧集合时, 所述 PUCCH承载于所述 UE的第二 服务小区上,当所述上行子帧 N+4属于第二上行子帧集合时,所述 PUCCH 承载于所述第一服务小区上, 其中, 所述第一服务小区和所述第二服务小 区的双工方式不同, 所述第一上行子帧集合包括的上行子帧个数与所述第 二上行子帧集合包括的上行子帧个数之和等于一个无线帧的个数, 所述第 一上行子帧集合包括的上行子帧和所述第二上行子帧集合包括的上行子 帧对应无线帧中不同的子帧。
8、 根据权利要求 7所述的方法, 其特征在于, 当所述第一服务小区 的双工方式为时分双工 TDD, 所述第二服务小区的双工方式为频分双工 FDD时,则所述第二上行子帧集合包括的上行子帧对应一个无线帧中所述 第一服务小区的上行子帧, 所述第一上行子帧集合包括的上行子帧对应所 述无线帧中的除所述第二上行子帧集合包括的上行子帧外的其他上行子 帧;
当所述第一服务小区的双工方式为 FDD,且所述第二服务小区的双工 方式为 TDD时, 所述第一上行子帧集合包括的上行子帧对应一个无线帧 中所述第一服务小区的上行子帧, 所述第二上行子帧集合包括的上行子帧 对应所述无线帧中的除所述第一上行子帧集合包括的上行子帧外的其他 上行子帧。
9、 根据权利要求 7或 8所述的方法, 其特征在于, 所述下行控制信 道为物理下行控制信道 PDCCH或增强的物理下行控制信道 EPDCCH, 所 述下行控制信道用于指示承载在所述第一服务小区上的物理下行共享信 道 PDSCH传输, 或者用于指示下行半持续调度 SPS释放;
当所述下行控制信道用于指示所述 PDSCH传输时, 所述下行控制信 道对应的混合自动重传确认具体为所述下行控制信道对应的 PDSCH的混 合自动重传确认, 当所述下行控制信道用于指示所述 SPS释放时, 所述下 行控制信道对应的混合自动重传确认具体为指示所述 SPS释放所述下行 控制信道对应的混合自动重传确认。
10、 一种上行控制信息的传输方法, 其特征在于, 包括:
用户设备 UE在下行子帧 N接收下行控制信道, 所述下行控制信道承 载于所述 UE的第一服务小区上, 所述第一服务小区的双工方式为时分双 工 TDD;
所述 UE在上行子帧 N+4通过物理上行控制信道 PUCCH发送所述下 行控制信道对应的混合自动重传确认,其中,所述 PUCCH承载于所述 UE 的第二服务小区上, 所述第二服务小区的双工方式为频分双工 FDD。
11、 根据权利要求 10所述的方法, 其特征在于, 所述下行控制信道 为物理下行控制信道 PDCCH或增强的物理下行控制信道 EPDCCH, 所述 下行控制信道用于指示承载在所述第一服务小区上的物理下行共享信道 PDSCH传输, 或者用于指示下行半持续调度 SPS释放;
当所述下行控制信道用于指示所述 PDSCH传输时, 所述下行控制信 道对应的混合自动重传确认具体为所述下行控制信道对应的 PDSCH的混 合自动重传确认, 当所述下行控制信道用于指示所述 SPS释放时, 所述下 行控制信道对应的混合自动重传确认具体为指示所述 SPS释放的所述下 行控制信道对应的混合自动重传确认。
12、 根据权利要求 10或 11所述的方法, 其特征在于, 所述 UE在上 行子帧 N+4通过物理上行控制信道 PUCCH发送所述下行控制信道对应的 混合自动重传确认之前, 还包括:
所述 UE获取所述 PUCCH的 PUCCH资源。
13、 根据权利要求 12所述的方法, 其特征在于, 所述 UE获取所述 PUCCH的 PUCCH资源, 包括:
所述 UE根据所述下行控制信道的下行控制信息 DCI格式中的下行分 配指示 DAI或发射功率控制 TPC命令确定所述 PUCCH资源。
14、 根据权利要求 10-13任一项所述的方法, 其特征在于, 所述第一 服务小区为所述 UE的主服务小区, 所述第二服务小区为所述 UE的辅服 务小区。
15、 根据权利要求 14所述的方法, 其特征在于, 所述第二服务小区 为所述 UE的小区索引最小的 FDD辅服务小区, 或者,所述第二服务小区 为更高层信令指示的用于传输 PUCCH的辅服务小区。
16、 一种上行控制信息的传输方法, 其特征在于, 包括:
基站在下行子帧 N向用户设备 UE发送下行控制信道, 所述下行控制 信道承载于所述 UE的第一服务小区上, 所述第一服务小区的双工方式为 时分双工 TDD, 所述下行控制信道的下行控制信息 DCI格式中的下行分 配指示 DAI或发射功率控制 TPC命令用于指示物理上行控制信道 PUCCH 资源;
所述基站在上行子帧 N+4根据所述 PUCCH资源接收所述 UE通过
PUCCH发送的所述下行控制信道对应的混合自动重传确认, 其中, 所述 PUCCH承载于所述 UE的第二服务小区上, 所述第二服务小区的双工方 式为频分双工 FDD。
17、 根据权利要求 16所述的方法, 其特征在于, 所述下行控制信道 为物理下行控制信道 PDCCH或增强的物理下行控制信道 EPDCCH, 所述 下行控制信道用于指示承载在所述第一服务小区上的物理下行共享信道
PDSCH传输, 或者用于指示下行半持续调度 SPS释放;
当所述下行控制信道用于指示所述 PDSCH传输时, 所述下行控制信 道对应的混合自动重传确认具体为所述下行控制信道对应的 PDSCH的混 合自动重传确认, 当所述下行控制信道用于指示所述 SPS释放时, 所述下 行控制信道对应的混合自动重传确认具体为指示所述 SPS释放的所述下 行控制信道对应的混合自动重传确认。
18、 根据权利要求 16或 17所述的方法, 其特征在于, 所述第一服务 小区为所述 UE的主服务小区, 所述第二服务小区为所述 UE的辅服务小 区。
19、 根据权利要求 18所述的方法, 其特征在于, 所述第二服务小区 为所述 UE的小区索引最小的 FDD辅服务小区, 或者,所述第二服务小区 为所述基站通过更高层信令指示的用于传输 PUCCH的辅服务小区。
20、 一种上行控制信息的传输方法, 其特征在于, 包括:
用户设备 UE在下行子帧 N接收下行控制信道, 所述下行控制信道承 载于所述 UE的第一服务小区上, 所述下行控制信道为物理下行控制信道
PDCCH或增强的物理下行控制信道 EPDCCH;
当所述下行控制信道对应的混合自动重传确认承载于所述 UE的第二 服务小区上时, 所述 UE根据所述下行控制信道的下行控制信息 DCI格式 中的发射功率控制 TPC命令域确定物理上行控制信道 PUCCH资源; 且当所述下行控制信道对应的混合自动重传确认承载于所述第一服 务小区上时, 所述 UE根据所述下行控制信道的下行控制信息 DCI格式中 的发送功率控制 TPC命令域确定所述 PUCCH的发射功率, 其中, 所述第 一服务小区和所述第二服务小区的双工方式不同;
所述 UE根据所述 PUCCH资源或所述 PUCCH的发射功率通过所述
PUCCH发送所述下行控制信道对应的混合自动重传确认。
21、 根据权利要求 20所述的方法, 其特征在于, 所述下行控制信道 用于指示承载在所述第一服务小区上的物理下行共享信道 PDSCH传输, 或者用于指示下行半持续调度 SPS释放;
当所述下行控制信道用于指示所述 PDSCH传输时, 所述下行控制信 道对应的混合自动重传确认具体为所述下行控制信道对应的 PDSCH的混 合自动重传确认, 当所述下行控制信道用于指示所述 SPS释放时, 所述下 行控制信道对应的混合自动重传确认具体为指示所述 SPS释放的所述下 行控制信道对应的混合自动重传确认。
22、 根据权利要求 20或 21所述的方法, 其特征在于, 所述第一服务 小区为所述 UE的主服务小区, 所述第一服务小区的双工方式为时分双工 TDD, 所述第二服务小区的双工方式为频分双工 FDD, 且所述第二服务小 区为所述 UE的小区索引最小的 FDD辅服务小区。
23、 根据权利要求 20或 21所述的方法, 其特征在于, 所述第一服务 小区为所述 UE的主服务小区, 所述第一服务小区的双工方式为时分双工
TDD, 所述第二服务小区的双工方式为频分双工 FDD, 所述第二服务小区 为更高层信令指示的用于传输 PUCCH的辅服务小区。
24、 一种上行控制信息的传输方法, 其特征在于, 包括:
基站在下行子帧 N向用户设备 UE发送下行控制信道, 所述下行信道 承载于所述 UE的第一服务小区上, 所述下行控制信道为物理下行控制信 道 PDCCH或增强的物理下行控制信道 EPDCCH;
当所述下行控制信道对应的混合自动重传确认承载于所述 UE的第二 服务小区上时,所述基站通过所述下行控制信道的下行控制信息 DCI格式 中的发射功率控制 TPC命令域指示物理上行控制信道 PUCCH资源; 当所述下行控制信道对应的混合自动重传确认承载于所述第一服务 小区上时,所述基站通过所述下行控制信道的下行控制信息 DCI格式中的 发送功率控制 TPC命令域指示所述 PUCCH的发射功率, 其中, 所述第一 服务小区和所述第二服务小区的双工方式不同;
所述基站根据所述 PUCCH资源接收所述 UE发送的所述下行控制信 道对应的混合自动重传确认。
25、 根据权利要求 24所述的方法, 其特征在于, 所述下行控制信道 用于承载在所述第一服务小区上的指示物理下行共享信道 PDSCH传输, 或者用于指示下行半持续调度 SPS释放;
当所述下行控制信道用于指示物理下行共享信道 PDSCH传输时, 所 述下行控制信道对应的混合自动重传确认具体为所述下行控制信道对应 的 PDSCH的混合自动重传确认, 当所述下行控制信道用于指示下行半持 续调度 SPS释放时,所述下行控制信道对应的混合自动重传确认具体为指 示下行半持续调度 SPS释放的所述下行控制信道对应的混合自动重传确 认。
26、 根据权利要求 24或 25所述的方法, 其特征在于, 所述第一服务 小区为所述 UE的主服务小区, 所述第一服务小区的双工方式为时分双工 TDD, 所述第二服务小区的双工方式为频分双工 FDD, 且所述第二服务小 区为所述 UE的小区索引最小的 FDD辅服务小区。
27、 根据权利要求 24或 25所述的方法, 其特征在于, 所述第一服务 小区为所述 UE的主服务小区, 所述第一服务小区的双工方式为时分双工
TDD, 所述第二服务小区的双工方式为频分双工 FDD, 所述第二服务小区 为更高层信令指示的用于传输 PUCCH的辅服务小区。
28、 一种用户设备 UE, 其特征在于, 包括:
接收模块, 用于在下行子帧 N接收基站发送的下行控制信道, 所述下 行控制信道承载于所述 UE的第一服务小区上;
发送模块, 用于在上行子帧 N+4通过物理上行控制信道 PUCCH向所 述基站发送所述下行控制信道对应的混合自动重传确认, 当所述上行子帧 N+4属于第一上行子帧集合时, 所述 PUCCH承载于所述 UE的第二服务 小区上, 当所述上行子帧 N+4属于第二上行子帧集合时, 所述 PUCCH承 载于所述第一服务小区上, 其中, 所述第一服务小区和所述第二服务小区 的双工方式不同, 所述第一上行子帧集合包括的上行子帧个数与所述第二 上行子帧集合包括的上行子帧个数之和等于一个无线帧的个数, 所述第一 上行子帧集合包括的上行子帧和所述第二上行子帧集合包括的上行子帧 对应无线帧中不同的子帧。
29、 根据权利要求 28所述的用户设备, 其特征在于, 当所述第一服 务小区的双工方式为时分双工 TDD,所述第二服务小区的双工方式为频分 双工 FDD时, 所述第二上行子帧集合包括的上行子帧对应一个无线帧中 所述第一服务小区的上行子帧, 所述第一上行子帧集合包括的上行子帧对 应所述无线帧中除所述第二上行子帧集合包括的上行子帧外的其他上行 子帧; 当所述第一服务小区的双工方式为 FDD,且所述第二服务小区的双工 方式为 TDD时, 所述第一上行子帧集合包括的上行子帧对应一个无线帧 中所述第一服务小区的上行子帧, 所述第二上行子帧集合包括的上行子帧 对应所述无线帧中的除所述第一上行子帧集合包括的上行子帧外的其他 上行子帧。
30、 根据权利要求 28或 29所述的用户设备, 其特征在于, 所述下行控 制信道为物理下行控制信道 PDCCH 或增强的物理下行控制信道 EPDCCH, 所述下行控制信道用于指示承载在所述第一服务小区上的物理 下行共享信道 PDSCH传输, 或者用于指示下行半持续调度 SPS释放; 当所述下行控制信道用于指示所述 PDSCH传输时, 所述下行控制信 道对应的混合自动重传确认具体为所述下行控制信道对应的 PDSCH的混 合自动重传确认, 当所述下行控制信道用于指示所述 SPS释放时, 所述下 行控制信道对应的混合自动重传确认具体为指示所述 SPS 释放的所述下 行控制信道对应的混合自动重传确认。
31、 根据权利要求 28-30任一项所述的用户设备, 其特征在于, 还包 括:
获取模块, 用于获取所述 PUCCH的 PUCCH资源和 /或 PUCCH发射 功率。
32、 根据权利要求 31 所述的用户设备, 其特征在于, 当所述上行子 帧 N+4属于第一上行子帧集合时, 所述获取模块具体用于:
根据所述下行控制信道的下行控制信息 DCI 格式中的发射功率控制 TPC命令域确定所述 PUCCH资源。
33、 根据权利要求 32所述的用户设备, 其特征在于, 当所述上行子 帧 N+4属于第二上行子帧集合时, 所述获取模块具体用于:
根据所述下行控制信道的下行控制信息 DCI 格式中的发射功率控制
TPC命令域确定所述 PUCCH发射功率。
34、 一种基站, 其特征在于, 包括:
发送模块, 用于在下行子帧 N向用户设备 UE发送下行控制信道, 所 述下行控制信道承载于所述 UE的第一服务小区上;
接收模块, 用于在上行子帧 N+4接收所述 UE通过物理上行控制信道 PUCCH 发送的所述下行控制信道对应的混合自动重传确认, 当所述上行 子帧 N+4属于第一上行子帧集合时, 所述 PUCCH承载于所述 UE的第二 服务小区上,当所述上行子帧 N+4属于第二上行子帧集合时,所述 PUCCH 承载于所述第一服务小区上, 其中, 所述第一服务小区和所述第二服务小 区的双工方式不同, 所述第一上行子帧集合包括的上行子帧个数与所述第 二上行子帧集合包括的上行子帧个数之和等于一个无线帧的个数, 所述第 一上行子帧集合包括的上行子帧和所述第二上行子帧集合包括的上行子 帧对应无线帧中不同的子帧。
35、 根据权利要求 34所述的基站, 其特征在于, 当所述第一服务小 区的双工方式为时分双工 TDD,所述第二服务小区的双工方式为频分双工 FDD时,则所述第二上行子帧集合包括的上行子帧对应一个无线帧中所述 第一服务小区的上行子帧, 所述第一上行子帧集合包括的上行子帧对应所 述无线帧中的除所述第二上行子帧集合包括的上行子帧外的其他上行子 帧;
当所述第一服务小区的双工方式为 FDD,且所述第二服务小区的双工 方式为 TDD 时, 所述第一上行子帧集合包括的上行子帧对应一个无线帧 中所述第一服务小区的上行子帧, 所述第二上行子帧集合包括的上行子帧 对应所述无线帧中的除所述第一上行子帧集合包括的上行子帧外的其他 上行子帧。
36、 根据权利要求 34或 35所述的基站, 其特征在于, 所述下行控制 信道为物理下行控制信道 PDCCH或增强的物理下行控制信道 EPDCCH, 所述下行控制信道用于指示承载在所述第一服务小区上的物理下行共享 信道 PDSCH传输, 或者用于指示下行半持续调度 SPS释放;
当所述下行控制信道用于指示所述 PDSCH传输时, 所述下行控制信 道对应的混合自动重传确认具体为所述下行控制信道对应的 PDSCH的混 合自动重传确认, 当所述下行控制信道用于指示所述 SPS释放时, 所述下 行控制信道对应的混合自动重传确认具体为指示所述 SPS 释放的所述下 行控制信道对应的混合自动重传确认。
37、 一种用户设备, 其特征在于, 包括:
接收模块, 用于在下行子帧 N接收下行控制信道, 所述下行控制信道 承载于所述 UE的第一服务小区上, 所述第一服务小区的双工方式为时分 双工 TDD;
发送模块,用于在上行子帧 N+4通过物理上行控制信道 PUCCH发送 所述下行控制信道对应的混合自动重传确认, 其中, 所述 PUCCH承载于 所述 UE 的第二服务小区上, 所述第二服务小区的双工方式为频分双工 FDD。
38、 根据权利要求 37所述的用户设备, 其特征在于, 所述下行控制信 道为物理下行控制信道 PDCCH或增强的物理下行控制信道 EPDCCH, 所 述下行控制信道用于指示承载在所述第一服务小区上的物理下行共享信 道 PDSCH传输, 或者用于指示下行半持续调度 SPS释放;
当所述下行控制信道用于指示所述 PDSCH传输时, 所述下行控制信 道对应的混合自动重传确认具体为所述下行控制信道对应的 PDSCH的混 合自动重传确认, 当所述下行控制信道用于指示所述 SPS释放时, 所述下 行控制信道对应的混合自动重传确认具体为指示所述 SPS 释放的所述下 行控制信道对应的混合自动重传确认。
39、 根据权利要求 37或 38所述的用户设备, 其特征在于, 还包括: 获取模块, 用于获取所述 PUCCH的 PUCCH资源。
40、 根据权利要求 39所述的用户设备, 其特征在于, 所述获取模块 具体用于:
根据所述下行控制信道的下行控制信息 DCI 格式中的下行分配指示
DAI或发射功率控制 TPC命令确定所述 PUCCH资源。
41、 根据权利要求 38-40任一项所述的用户设备, 其特征在于, 所述 第一服务小区为所述 UE的主服务小区, 所述第二服务小区为所述 UE的 辅服务小区。
42、 根据权利要求 41 所述的用户设备, 其特征在于, 所述第二服务 小区为所述 UE的小区索引最小的 FDD辅服务小区, 或者,所述第二服务 小区为更高层信令指示的用于传输所述 PUCCH的辅服务小区。
43、 一种基站, 其特征在于, 包括:
发送模块, 用于在下行子帧 N向用户设备 UE发送下行控制信道, 所 述下行控制信道承载于所述 UE的第一服务小区上, 所述第一服务小区的 双工方式为时分双工 TDD, 所述下行控制信道的下行控制信息 DCI格式 中的下行分配指示 DAI或发射功率控制 TPC命令用于指示物理上行控制 信道 PUCCH资源;
接收模块, 用于在上行子帧 N+4根据所述 PUCCH资源接收所述 UE 通过 PUCCH发送的所述下行控制信道对应的混合自动重传确认, 其中, 所述 PUCCH承载于所述 UE的第二服务小区上, 所述第二服务小区的双 工方式为频分双工 FDD。
44、 根据权利要求 43所述的基站, 其特征在于, 所述下行控制信道 为物理下行控制信道 PDCCH或增强的物理下行控制信道 EPDCCH, 所述 下行控制信道用于指示承载在所述第一服务小区上的物理下行共享信道 PDSCH传输, 或者用于指示下行半持续调度 SPS释放;
当所述下行控制信道用于指示所述 PDSCH传输时, 所述下行控制信 道对应的混合自动重传确认具体为所述下行控制信道对应的 PDSCH的混 合自动重传确认, 当所述下行控制信道用于指示所述 SPS释放时, 所述下 行控制信道对应的混合自动重传确认具体为指示所述 SPS释放的所述下 行控制信道对应的混合自动重传确认。
45、 根据权利要求 43或 44所述的基站, 其特征在于, 所述第一服务 小区为所述 UE的主服务小区, 所述第二服务小区为所述 UE的辅服务小 区。
46、 根据权利要求 45 所述的基站, 其特征在于, 所述第二服务小区 为所述 UE的小区索引最小的 FDD辅服务小区, 或者,所述第二服务小区 为所述基站通过更高层信令指示的用于传输 PUCCH的辅服务小区。
47、 一种用户设备 UE, 其特征在于, 包括:
接收模块, 用于在下行子帧 N接收下行控制信道, 所述下行控制信道 承载于所述 UE的第一服务小区上, 所述下行控制信道为物理下行控制信 道 PDCCH或增强的物理下行控制信道 EPDCCH。
确定模块, 用于当所述下行控制信道对应的混合自动重传确认承载于 所述 UE的第二服务小区上时, 所述 UE根据所述下行控制信道的下行控 制信息 DCI格式中的发射功率控制 TPC命令域确定物理上行控制信道 PUCCH资源; 且当所述下行控制信道对应的混合自动重传确认承载于所 述第一服务小区上时, 所述 UE根据所述下行控制信道的下行控制信息 DCI格式中的发送功率控制 TPC命令域确定所述 PUCCH的发射功率,其 中, 所述第一服务小区和所述第二服务小区的双工方式不同。
发送模块,用于根据所述 PUCCH资源或所述 PUCCH的发射功率通过 所述 PUCCH发送所述下行控制信道对应的混合自动重传确认。
48、 根据权利要求 47所述的用户设备, 其特征在于, 所述下行控制 信道用于指示承载在所述第一服务小区上的物理下行共享信道 PDSCH传 输, 或者用于指示下行半持续调度 SPS释放;
当所述下行控制信道用于指示所述 PDSCH传输时, 所述下行控制信 道对应的混合自动重传确认具体为所述下行控制信道对应的 PDSCH的混 合自动重传确认, 当所述下行控制信道用于指示所述 SPS释放时, 所述下 行控制信道对应的混合自动重传确认具体为指示所述 SPS 释放的所述下 行控制信道对应的混合自动重传确认。
49、 根据权利要求 47或 48所述的用户设备, 其特征在于, 所述第一 服务小区为所述 UE的主服务小区, 所述第一服务小区的双工方式为时分 双工 TDD, 所述第二服务小区的双工方式为频分双工 FDD, 且所述第二 服务小区为所述 UE的小区索引最小的 FDD辅服务小区。
50、 根据权利要求 47或 48所述的用户设备, 其特征在于, 所述第一 服务小区为所述 UE的主服务小区, 所述第一服务小区的双工方式为时分 双工 TDD, 所述第二服务小区的双工方式为频分双工 FDD, 所述第二服 务小区为更高层信令指示的用于传输 PUCCH的辅服务小区。
51、 一种基站, 其特征在于, 包括:
发送模块, 用于在下行子帧 N向用户设备 UE发送下行控制信道, 所 述下行信道承载于所述 UE的第一服务小区上, 所述下行控制信道为物理 下行控制信道 PDCCH或增强的物理下行控制信道 EPDCCH;
指示模块, 用于当所述下行控制信道对应的混合自动重传确认承载于 所述 UE的第二服务小区上时, 通过所述下行控制信道的下行控制信息 DCI格式中的发射功率控制 TPC命令域指示物理上行控制信道 PUCCH资 源;
当所述下行控制信道对应的混合自动重传确认承载于所述第一服务 小区上时,通过所述下行控制信道的下行控制信息 DCI格式中的发送功率 控制 TPC命令域指示所述 PUCCH的发射功率, 其中, 所述第一服务小区 和所述第二服务小区的双工方式不同;
发送模块,用于根据所述 PUCCH资源接收所述 UE发送的所述下行控 制信道对应的混合自动重传确认。
52、 根据权利要求 51所述的基站, 其特征在于, 所述下行控制信道 用于指示承载在所述第一服务小区上的指示物理下行共享信道 PDSCH传 输, 或者用于指示下行半持续调度 SPS释放;
当所述下行控制信道用于指示物理下行共享信道 PDSCH传输时, 所 述下行控制信道对应的混合自动重传确认具体为所述下行控制信道对应 的 PDSCH的混合自动重传确认, 当所述下行控制信道用于指示下行半持 续调度 SPS释放时,所述下行控制信道对应的混合自动重传确认具体为指 示下行半持续调度 SPS 释放的所述下行控制信道对应的混合自动重传确 认。
53、 根据权利要求 51或 52所述基站, 其特征在于, 所述第一服务小 区为所述 UE 的主服务小区, 所述第一服务小区的双工方式为时分双工 TDD, 所述第二服务小区的双工方式为频分双工 FDD, 且所述第二服务小 区为所述 UE的小区索引最小的 FDD辅服务小区。
54、 根据权利要求 51或 52所述基站, 其特征在于, 所述第一服务小 区为所述 UE 的主服务小区, 所述第一服务小区的双工方式为时分双工 TDD, 所述第二服务小区的双工方式为频分双工 FDD, 所述第二服务小区 为更高层信令指示的用于传输 PUCCH的辅服务小区。
PCT/CN2013/086431 2013-11-01 2013-11-01 上行控制信息的传输方法、基站和用户设备 WO2015062078A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/CN2013/086431 WO2015062078A1 (zh) 2013-11-01 2013-11-01 上行控制信息的传输方法、基站和用户设备
JP2016527197A JP2016539561A (ja) 2013-11-01 2013-11-01 アップリンク制御情報送信方法、基地局、及びユーザ機器
EP13896690.8A EP3054614B1 (en) 2013-11-01 2013-11-01 Transmission method for uplink control information, base station and user equipment
CN201380003141.2A CN105264807B (zh) 2013-11-01 2013-11-01 上行控制信息的传输方法、基站和用户设备
US15/142,442 US10129856B2 (en) 2013-11-01 2016-04-29 Uplink control information transmission method, base station, and user equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/086431 WO2015062078A1 (zh) 2013-11-01 2013-11-01 上行控制信息的传输方法、基站和用户设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/142,442 Continuation US10129856B2 (en) 2013-11-01 2016-04-29 Uplink control information transmission method, base station, and user equipment

Publications (1)

Publication Number Publication Date
WO2015062078A1 true WO2015062078A1 (zh) 2015-05-07

Family

ID=53003186

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/086431 WO2015062078A1 (zh) 2013-11-01 2013-11-01 上行控制信息的传输方法、基站和用户设备

Country Status (5)

Country Link
US (1) US10129856B2 (zh)
EP (1) EP3054614B1 (zh)
JP (1) JP2016539561A (zh)
CN (1) CN105264807B (zh)
WO (1) WO2015062078A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111865506A (zh) * 2019-04-30 2020-10-30 华为技术有限公司 半静态码本生成的方法和通信装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017185294A1 (en) * 2016-04-28 2017-11-02 Nokia Technologies Oy Method and apparatus for performing hybrid automatic repeat request processes
CN107801246B (zh) * 2016-09-06 2019-12-17 北京佰才邦技术有限公司 一种上行控制信息的传输方法、装置及用户终端
CN108271262B (zh) * 2017-01-03 2024-03-15 北京三星通信技术研究有限公司 分配上行控制信道的方法及设备
WO2018150500A1 (ja) * 2017-02-15 2018-08-23 富士通株式会社 基地局、端末、無線通信システム、および無線通信方法
CN108631952B (zh) * 2017-03-24 2021-12-10 华为技术有限公司 一种反馈信息传输方法、终端设备和接入网设备
US11337190B2 (en) 2017-05-10 2022-05-17 Lg Electronics Inc. Method for transmitting uplink signal in wireless communication system and apparatus therefor
WO2020034066A1 (en) * 2018-08-13 2020-02-20 Nokia Shanghai Bell Co., Ltd. Apparatus, method and computer program
WO2021035667A1 (en) * 2019-08-30 2021-03-04 Qualcomm Incorporated Acknowledgment feedback for carrier aggregation
US20220295392A1 (en) * 2021-03-11 2022-09-15 Samsung Electronics Co., Ltd. Cell selection for uplink transmission

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012070839A2 (en) * 2010-11-22 2012-05-31 Lg Electronics Inc. Method and apparatus for transmitting ack/nack for downlink transmission in wireless communication system
CN103209061A (zh) * 2012-01-17 2013-07-17 北京三星通信技术研究有限公司 一种harq-ack反馈信息的发送方法
CN103270710A (zh) * 2010-12-21 2013-08-28 株式会社泛泰 用于在无线通信系统中发送和接收信号的方法和装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8259602B2 (en) * 2008-04-21 2012-09-04 Lg Electronics Inc. Method of transmitting control signal in wireless communication system
CN112202536A (zh) * 2009-10-01 2021-01-08 交互数字专利控股公司 上行链路控制数据传输
MY163403A (en) * 2010-01-08 2017-09-15 Interdigital Patent Holdings Inc Maintaining time alignment with multiple uplink carriers
US9160513B2 (en) * 2011-07-28 2015-10-13 Qualcomm Incorporated Method and apparatus for signaling control data of aggregated carriers
CN103563436B (zh) * 2011-08-10 2017-09-22 太阳专利信托公司 终端装置、基站装置和发送接收方法
CN103945449B (zh) * 2013-01-18 2018-12-04 中兴通讯股份有限公司 Csi测量方法和装置
CN104348591B (zh) * 2013-08-01 2019-03-12 中兴通讯股份有限公司 一种上行控制信息的发送方法及用户设备、基站
CN104767593A (zh) * 2014-01-03 2015-07-08 中兴通讯股份有限公司 应答信息传输方法及装置、终端、基站

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012070839A2 (en) * 2010-11-22 2012-05-31 Lg Electronics Inc. Method and apparatus for transmitting ack/nack for downlink transmission in wireless communication system
CN103270710A (zh) * 2010-12-21 2013-08-28 株式会社泛泰 用于在无线通信系统中发送和接收信号的方法和装置
CN103209061A (zh) * 2012-01-17 2013-07-17 北京三星通信技术研究有限公司 一种harq-ack反馈信息的发送方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3054614A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111865506A (zh) * 2019-04-30 2020-10-30 华为技术有限公司 半静态码本生成的方法和通信装置
WO2020221303A1 (zh) * 2019-04-30 2020-11-05 华为技术有限公司 半静态码本生成的方法和通信装置
CN111865506B (zh) * 2019-04-30 2023-12-12 华为技术有限公司 半静态码本生成的方法和通信装置

Also Published As

Publication number Publication date
JP2016539561A (ja) 2016-12-15
US10129856B2 (en) 2018-11-13
US20160249340A1 (en) 2016-08-25
EP3054614B1 (en) 2019-09-25
EP3054614A1 (en) 2016-08-10
EP3054614A4 (en) 2016-11-16
CN105264807A (zh) 2016-01-20
CN105264807B (zh) 2019-01-18

Similar Documents

Publication Publication Date Title
US10880065B2 (en) Systems and methods for carrier aggregation
KR101863203B1 (ko) 피드백 정보를 전송하는 방법 및 장치
US10644843B2 (en) Method, apparatus, UE, and base station for transmitting hybrid automatic repeat request—acknowledgement information
US9749094B2 (en) Devices for sending and receiving feedback information
US10129856B2 (en) Uplink control information transmission method, base station, and user equipment
JP6388768B2 (ja) ユーザ端末、無線基地局及び無線通信方法
US20180020335A1 (en) Systems and methods for processing time reduction signaling
EP2663008B1 (en) Method, user equipment and base station for information transmission in time division duplex system
WO2016041178A1 (zh) 应答信息的传输方法、装置及设备
WO2015027798A1 (zh) 一种tdd-fdd联合系统中的传输方法和装置
US10588095B2 (en) Power usage state information transmission method and apparatus
CN104581911B (zh) 节点间信令交互、上行功率控制、上行传输的方法及装置
WO2014173351A1 (zh) 一种上行控制信息的发送方法及用户设备、基站
WO2014173333A1 (zh) 一种上行控制信息的发送方法及装置
WO2015024248A1 (zh) 信息传输方法和设备
WO2016019513A1 (zh) 终端、网络设备和上行控制信息处理方法
JP6474500B2 (ja) アップリンク制御情報送信方法、基地局、及びユーザ機器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380003141.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13896690

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016527197

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013896690

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013896690

Country of ref document: EP