WO2016041178A1 - 应答信息的传输方法、装置及设备 - Google Patents

应答信息的传输方法、装置及设备 Download PDF

Info

Publication number
WO2016041178A1
WO2016041178A1 PCT/CN2014/086854 CN2014086854W WO2016041178A1 WO 2016041178 A1 WO2016041178 A1 WO 2016041178A1 CN 2014086854 W CN2014086854 W CN 2014086854W WO 2016041178 A1 WO2016041178 A1 WO 2016041178A1
Authority
WO
WIPO (PCT)
Prior art keywords
subframe
serving cell
harq
uplink
ack
Prior art date
Application number
PCT/CN2014/086854
Other languages
English (en)
French (fr)
Inventor
官磊
薛丽霞
成艳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2017515159A priority Critical patent/JP6460430B2/ja
Priority to KR1020177010233A priority patent/KR20170055534A/ko
Priority to EP14901982.0A priority patent/EP3185457A4/en
Priority to PCT/CN2014/086854 priority patent/WO2016041178A1/zh
Priority to CN201480026405.0A priority patent/CN105612711B/zh
Publication of WO2016041178A1 publication Critical patent/WO2016041178A1/zh
Priority to US15/462,291 priority patent/US10313081B2/en
Priority to ZA2017/02166A priority patent/ZA201702166B/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1893Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex

Definitions

  • the embodiments of the present invention relate to communication technologies, and in particular, to a method, device, and device for transmitting response information.
  • the Time Division Duplex (TDD) system of the Long Term Evolution (LTE) system that is, the LTE TDD system supports Carrier Aggregation (CA) technology, which can take multiple component carriers. Or the serving cell is simultaneously assigned to a user equipment (User equipment, UE for short) to support higher data rate transmission.
  • LTE Long Term Evolution
  • CA Carrier Aggregation
  • up to five carriers or serving cells can be configured for one UE.
  • the configuration of a certain carrier or serving cell is the uplink and downlink configuration 5
  • the transmission of the response information is restricted.
  • the maximum number of bits of the response information supported is 20, and in the prior art, one carrier is in the carrier aggregation scenario.
  • the carrier is configured in some reference uplink and downlink configurations
  • up to two carriers can be configured for the UE.
  • the response information corresponding to all downlink subframes of the secondary serving cell is fed back in one or a few uplink subframes, resulting in an increase in feedback delay and a decrease in feedback performance.
  • the embodiments of the present invention provide a method, a device, and a device for transmitting response information, so that in the uplink and downlink configuration of the LTE TDD system, more carriers can be configured for the UE, and the feedback delay of the response information is shortened and the feedback is improved. performance.
  • an embodiment of the present invention provides a transmission device for response information, which is applied to a time division duplex TDD system, and the device includes:
  • a determining module configured to determine to send a physical downlink shared channel PDSCH to the user equipment UE on the secondary serving cell;
  • a sending module configured to send the determining module to the UE on the secondary serving cell to determine The PDSCH
  • the determining module is further configured to determine a hybrid automatic repeat request (HARQ) timing relationship corresponding to the secondary serving cell, where the HARQ timing relationship is a HARQ timing relationship of the PDSCH and the HARQ response information HARQ-ACK;
  • HARQ hybrid automatic repeat request
  • a receiving module configured to receive, according to the HARQ timing relationship determined by the determining module, a HARQ-ACK corresponding to the PDSCH on a primary serving cell;
  • the primary serving cell is a TDD primary serving cell configured by the base station for the UE
  • the secondary serving cell is a secondary serving cell in the N TDD secondary serving cells configured by the base station for the UE, the N Is a natural number greater than or equal to 1.
  • the HARQ timing relationship includes:
  • the uplink and downlink configuration of the primary serving cell is any one of uplink and downlink configuration 0, uplink and downlink configuration 1, uplink and downlink configuration 2, and uplink and downlink configuration 6.
  • the uplink subframe of the primary serving cell includes subframe 2, subframe 3, subframe 4, subframe 7, subframe 8, and subframe 9,
  • the uplink subframe of the primary serving cell includes subframe 2, subframe 3, subframe 4, subframe 7, subframe 8, and subframe 9,
  • the subframe 2 of the primary serving cell HARQ of the subframe corresponding to the secondary serving cell corresponding to the subframe 2 offset by 5 forwards and/or forwardly offset by 6 subframes ACK
  • the subframe 3 of the primary serving cell the HARQ of the subframe corresponding to the secondary serving cell corresponding to the subframe 3 being forwardly shifted by 4 and/or forwardly offset by 5 subframes - ACK
  • the subframe 4 of the primary serving cell feeding back a HARQ-ACK corresponding to the subframe of the secondary serving cell corresponding to the subframe 4 being forwardly shifted by 4 subframes, in the primary
  • the subframe 7 of the serving cell feeds back a HARQ-ACK corresponding to the subframe of the secondary serving cell corresponding to the
  • the subframe 8 of the primary serving cell feeds back a HARQ-ACK corresponding to the subframe of the secondary serving cell corresponding to the sub-frame 8 offset by 5 forwards and/or forwarded by 4 subframes.
  • the subframe 9 of the serving cell feeds back a HARQ-ACK corresponding to the subframe of the secondary serving cell corresponding to the subframe 9 forward offset by 4 subframes;
  • the uplink subframe of the primary serving cell includes a subframe 2, a subframe 3, a subframe 7, and a subframe 8, in the child of the primary serving cell.
  • Feeding on the frame 2 corresponds to the HARQ-ACK of the subframe of the secondary serving cell corresponding to the subframe 2 offset by 7 and/or offset by 6 subframes forward, in the primary serving cell
  • the subframe 3 feedback corresponds to the subframe 3 being shifted forward by 6 subframes, forwardly offset by 5 subframes, and forwardly offset by 4 subframes.
  • the HARQ-ACK of the subframe of the corresponding at least one of the secondary serving cells is forward-shifted by 7 subframes and/or forward offset corresponding to the subframe 7 on the subframe 7 of the primary serving cell.
  • the HARQ-ACK of the subframe of the secondary serving cell corresponding to the 6 subframes is forwarded to the subframe 8 of the primary serving cell, and the forward offset is forwarded by 6 subframes and forward biased.
  • the uplink subframe of the primary serving cell includes a subframe 2 and a subframe 7, and the feedback on the subframe 2 of the primary serving cell corresponds to the Subframe 2 is offset by 8 subframes forward, 7 subframes forward, 6 subframes forward, 5 subframes forward, and at least one of which is offset by 4 subframes forward.
  • the HARQ-ACK of the subframe of the secondary serving cell, the feedback on the subframe 7 of the primary serving cell is offset by 8 subframes forward, 7 subframes forward, and forward offset corresponding to the subframe 7 6 subframes, 5 subframes offset forward, and HARQ-ACKs of subframes of at least one of the secondary serving cells corresponding to the subframes forwardly offset by 4 subframes;
  • the uplink subframe of the primary serving cell includes a subframe 2, a subframe 3, a subframe 4, a subframe 7, and a subframe 8, in which the primary The subframe 2 of the serving cell feeds back a HARQ-ACK corresponding to the subframe of the secondary serving cell corresponding to the subframe 2 offset by 8 and/or forwarded by 7 subframes.
  • the subframe 3 feedback of the primary serving cell corresponds to the HARQ-ACK of the subframe of the secondary serving cell corresponding to the sub-frame 3 offset by 7 and/or forwarded by 6 subframes.
  • the subframe 4 of the primary serving cell feeds back HARQ- of the subframe corresponding to the secondary serving cell corresponding to the subframe 4 being forwardly shifted by 6 subframes and/or forwarded by 5 subframes.
  • ACK in the subframe 7 of the primary serving cell, the HARQ-ACK corresponding to the subframe of the secondary serving cell corresponding to the subframe 7 forwarded by 7 subframes is fed back, in the primary service
  • the subframe 8 of the cell is fed back to the sub-frame 8 which is forward-shifted by 7 subframes, forward-shifted by 6 subframes, and forward-shifted by 5 subframes corresponding to at least one subframe of the secondary serving cell.
  • HARQ-ACK in the subframe 7 of the primary serving cell, the HARQ-ACK corresponding to the subframe of the secondary serving cell corresponding to the subframe 7 forwarded by 7 subframes is fed back, in the primary service
  • the subframe 8 of the cell is fed back to the sub-frame 8 which is forward-shifted by 7 subframe
  • the uplink subframe of the primary serving cell includes an uplink that does not belong to the secondary serving cell The uplink subframe of the subframe.
  • the uplink and downlink configurations of the primary serving cell are uplink and downlink
  • the number of secondary serving cell subframes corresponding to the HARQ-ACK of the secondary serving cell subframe in which the subframe 2, the subframe 3, the subframe 7 and the subframe 8 of the primary serving cell can be fed back is 2
  • the number of the secondary serving cell subframes corresponding to the HARQ-ACK of the secondary serving cell subframe that can be fed back by the subframe 4 and the subframe 9 of the primary serving cell is 1;
  • the subframe 2 and the subframe 7 of the primary serving cell can feed back the secondary serving cell subframe corresponding to the HARQ-ACK of the secondary serving cell subframe.
  • the number of the secondary serving cell subframe corresponding to the HARQ-ACK of the secondary serving cell subframe in which the subframe 3 and the subframe 8 of the primary serving cell can be fed back is 3;
  • the secondary serving cell subframes corresponding to the HARQ-ACK of the secondary serving cell subframe that can be fed back by the subframe 2 and the subframe 7 of the primary serving cell The number is 5;
  • the subframe 2, the subframe 3, and the subframe 4 of the primary serving cell can feed back the secondary service corresponding to the HARQ-ACK of the secondary serving cell subframe.
  • the number of subframes of the primary serving cell is 2, and the number of secondary serving cell subframes corresponding to the HARQ-ACK of the secondary serving cell subframe that can be fed back by the subframe 7 of the primary serving cell is 1, and the subframe of the primary serving cell 8
  • the number of secondary serving cell subframes corresponding to the HARQ-ACK of the secondary serving cell subframe that can be fed back is 3.
  • the UE is a full-duplex UE, and the receiving module is specifically configured to:
  • the M value is a secondary serving cell corresponding to the HARQ-ACK of the subframe of the primary serving cell that can feed back the secondary serving cell subframe
  • the number of frames is subtracted from the value obtained by the number of uplink subframes in the subframe of the secondary serving cell;
  • the UE is a full-duplex UE, and the receiving module is specifically configured to:
  • the UE is a half-duplex UE, and the receiving module is specifically configured to:
  • the M value is a subframe of the secondary serving cell
  • the subframe of the primary serving cell can be fed back to the secondary serving cell subframe corresponding to the HARQ-ACK of the secondary serving cell subframe
  • the UE is a half-duplex UE, and the receiving module is specifically configured to:
  • the M value is a subframe of the secondary serving cell
  • the subframe of the primary serving cell can be fed back to the secondary serving cell subframe corresponding to the HARQ-ACK of the secondary serving cell subframe
  • the receiving module is further configured to:
  • the determining module is further configured to:
  • the uplink and downlink configuration of the primary serving cell meets the following conditions at least one:
  • the uplink and downlink configurations of the primary serving cell are uplink and downlink configuration 0, at least one of subframe 2, subframe 3, subframe 4, subframe 7, subframe 8, and subframe 9 of the primary serving cell
  • the sub-frame of the secondary serving cell corresponding to the HARQ-ACK of the subframe of the secondary serving cell that is fed back is reduced by at least one;
  • the sub-frames of the secondary serving cell, the sub-frame 2, the subframe 3, the subframe 7 and the subframe 8 are fed back by the at least one subframe
  • the subframe of the secondary serving cell corresponding to the HARQ-ACK of the frame is reduced by at least one;
  • the HARQ-ACK corresponding to the subframe of the secondary serving cell fed back by at least one of the subframe 2 and the subframe 7 of the primary serving cell corresponds to The subframe of the secondary serving cell is reduced by at least one;
  • the secondary subframe 2 When the uplink and downlink configurations of the primary serving cell are the uplink and downlink configuration 6, the secondary subframe 2, the subframe 3, the subframe 4, the subframe 7, and the subframe 8 are fed back by at least one subframe.
  • the subframe of the secondary serving cell corresponding to the HARQ-ACK of the subframe of the serving cell is reduced by at least one.
  • the uplink and downlink configuration of the secondary serving cell is an uplink and downlink configuration Time
  • the uplink and downlink configuration of the primary serving cell meets at least one of the following conditions:
  • the uplink and downlink configurations of the primary serving cell are uplink and downlink configuration 0, at least one of subframe 2, subframe 3, subframe 4, subframe 7, subframe 8, and subframe 9 of the primary serving cell
  • the sub-frame of the secondary serving cell corresponding to the HARQ-ACK of the sub-frame of the fed secondary serving cell is reduced by one;
  • the sub-frames of the secondary serving cell, the sub-frame 2, the subframe 3, the subframe 7 and the subframe 8 are fed back by the at least one subframe
  • the subframe of the secondary serving cell corresponding to the HARQ-ACK of the frame is reduced by one;
  • the primary serving cell When the uplink and downlink configuration of the primary serving cell is the uplink and downlink configuration 2, the primary serving cell The subframe of the secondary serving cell corresponding to the HARQ-ACK of the subframe of the secondary serving cell fed back by the subframe 2 and the subframe 7 is reduced by one;
  • the secondary subframe 2 When the uplink and downlink configurations of the primary serving cell are the uplink and downlink configuration 6, the secondary subframe 2, the subframe 3, the subframe 4, the subframe 7, and the subframe 8 are fed back by at least one subframe.
  • the subframe of the secondary serving cell corresponding to the HARQ-ACK of the subframe of the serving cell is reduced by one.
  • an embodiment of the present invention provides a transmission device for response information, which is applied to a time division duplex TDD system, and the device includes:
  • a receiving module configured to receive a physical downlink shared channel PDSCH on the secondary serving cell
  • a determining module configured to determine a hybrid automatic repeat request (HARQ) timing relationship corresponding to the secondary serving cell, where the HARQ timing relationship is a HARQ timing relationship between the PDSCH and the HARQ response information HARQ-ACK received by the receiving module;
  • HARQ hybrid automatic repeat request
  • a sending module configured to send, according to the HARQ timing relationship determined by the determining module, a HARQ-ACK corresponding to the PDSCH on a primary serving cell;
  • the primary serving cell is a TDD primary serving cell configured by the base station for the user equipment UE
  • the secondary serving cell is a secondary serving cell in the N TDD secondary serving cells configured by the base station for the UE, the N Is a natural number greater than or equal to 1.
  • the HARQ timing relationship includes:
  • the uplink and downlink configuration of the primary serving cell is any one of uplink and downlink configuration 0, uplink and downlink configuration 1, uplink and downlink configuration 2, and uplink and downlink configuration 6.
  • the uplink subframe of the primary serving cell includes subframe 2, subframe 3, subframe 4, subframe 7, subframe 8, and subframe 9,
  • the uplink subframe of the primary serving cell includes subframe 2, subframe 3, subframe 4, subframe 7, subframe 8, and subframe 9,
  • the subframe 2 of the primary serving cell HARQ of the subframe corresponding to the secondary serving cell corresponding to the subframe 2 offset by 5 forwards and/or forwardly offset by 6 subframes ACK
  • the subframe 3 of the primary serving cell the HARQ of the subframe corresponding to the secondary serving cell corresponding to the subframe 3 being forwardly shifted by 4 and/or forwardly offset by 5 subframes - ACK
  • the subframe 4 of the primary serving cell feeding back a HARQ-ACK corresponding to the subframe of the secondary serving cell corresponding to the subframe 4 being forwardly shifted by 4 subframes, in the primary
  • the subframe 7 of the serving cell feeds back a HARQ-ACK corresponding to the subframe of the secondary serving cell corresponding to the
  • the sub-frame 8 of the primary serving cell feeds back a subframe corresponding to the secondary serving cell corresponding to the sub-frame 8 offset by 5 and/or forwarded by 4 subframes.
  • the HARQ-ACK on the subframe 9 of the primary serving cell, feeds back a HARQ-ACK corresponding to the subframe of the secondary serving cell corresponding to the subframe 9 forwarded by 4 subframes;
  • the uplink subframe of the primary serving cell includes a subframe 2, a subframe 3, a subframe 7, and a subframe 8, in the child of the primary serving cell.
  • Feeding on the frame 2 corresponds to the HARQ-ACK of the subframe of the secondary serving cell corresponding to the subframe 2 offset by 7 and/or offset by 6 subframes forward, in the primary serving cell
  • the sub-frame 3 feedback corresponds to the sub-frame 3 offsetting 6 subframes forward, 5 subframes forward, and 3 subframes forward offset 4 subframes corresponding to at least one subframe of the secondary serving cell
  • the HARQ-ACK, on the subframe 7 of the primary serving cell feeds back the secondary serving cell corresponding to the sub-frame 7 offset by 7 subframes and/or forwarded by 6 subframes.
  • the HARQ-ACK of the subframe is fed back on the subframe 8 of the primary serving cell corresponding to the subframe 8 offset by 6 subframes forward, 5 subframes forward, and 4 subframes forward.
  • the uplink subframe of the primary serving cell includes a subframe 2 and a subframe 7, and the feedback on the subframe 2 of the primary serving cell corresponds to the Subframe 2 is offset by 8 subframes forward, 7 subframes forward, 6 subframes forward, 5 subframes forward, and at least one of which is offset by 4 subframes forward.
  • the HARQ-ACK of the subframe of the secondary serving cell, the feedback on the subframe 7 of the primary serving cell is offset by 8 subframes forward, 7 subframes forward, and forward offset corresponding to the subframe 7 6 subframes, 5 subframes offset forward, and HARQ-ACKs of subframes of at least one of the secondary serving cells corresponding to the subframes forwardly offset by 4 subframes;
  • the uplink subframe of the primary serving cell includes a subframe 2, a subframe 3, a subframe 4, a subframe 7, and a subframe 8, in which the primary The subframe 2 of the serving cell feeds back a HARQ-ACK corresponding to the subframe of the secondary serving cell corresponding to the subframe 2 offset by 8 and/or forwarded by 7 subframes.
  • the subframe 3 feedback of the primary serving cell corresponds to the HARQ-ACK of the subframe of the secondary serving cell corresponding to the sub-frame 3 offset by 7 and/or forwarded by 6 subframes.
  • the subframe 4 of the primary serving cell feeds back HARQ- of the subframe corresponding to the secondary serving cell corresponding to the subframe 4 being forwardly shifted by 6 subframes and/or forwarded by 5 subframes.
  • ACK in the subframe 7 of the primary serving cell, the HARQ-ACK corresponding to the subframe of the secondary serving cell corresponding to the subframe 7 forwarded by 7 subframes is fed back, in the primary service
  • the feedback on the subframe 8 of the cell corresponds to the subframe 8 offset by 7 forward and forward offset 6 a subframe and a HARQ-ACK of a subframe of at least one of the secondary serving cells corresponding to the forward offset of five.
  • the uplink subframe of the primary serving cell includes an uplink that does not belong to the secondary serving cell The uplink subframe of the subframe.
  • the uplink and downlink configurations of the primary serving cell are configured as an uplink and downlink configuration
  • the number of the secondary serving cell subframes corresponding to the HARQ-ACK of the secondary serving cell subframe in which the subframe 2, the subframe 3, the subframe 7 and the subframe 8 of the primary serving cell can be fed back is 2, the primary The number of the secondary serving cell subframes corresponding to the HARQ-ACK of the secondary serving cell subframe that can be fed back by the subframe 4 and the subframe 9 of the serving cell is 1;
  • the subframe 2 and the subframe 7 of the primary serving cell can feed back the secondary serving cell subframe corresponding to the HARQ-ACK of the secondary serving cell subframe.
  • the number of the secondary serving cell subframe corresponding to the HARQ-ACK of the secondary serving cell subframe in which the subframe 3 and the subframe 8 of the primary serving cell can be fed back is 3;
  • the secondary serving cell subframes corresponding to the HARQ-ACK of the secondary serving cell subframe that can be fed back by the subframe 2 and the subframe 7 of the primary serving cell The number is 5;
  • the subframe 2, the subframe 3, and the subframe 4 of the primary serving cell can feed back the secondary service corresponding to the HARQ-ACK of the secondary serving cell subframe.
  • the number of subframes of the primary serving cell is 2, and the number of secondary serving cell subframes corresponding to the HARQ-ACK of the secondary serving cell subframe that can be fed back by the subframe 7 of the primary serving cell is 1, and the subframe of the primary serving cell 8
  • the number of secondary serving cell subframes corresponding to the HARQ-ACK of the secondary serving cell subframe that can be fed back is 3.
  • the UE is a full-duplex UE
  • the sending module is specifically configured to:
  • the M value is a secondary serving cell corresponding to the HARQ-ACK of the subframe in which the primary serving cell can feed back the secondary serving cell subframe
  • the number of frames is subtracted from the value obtained by the number of uplink subframes in the subframe of the secondary serving cell;
  • the UE is a full-duplex UE
  • the sending module is specifically configured to:
  • the M value is a secondary serving cell corresponding to the HARQ-ACK of the subframe in which the primary serving cell can feed back the secondary serving cell subframe
  • the number of frames is subtracted from the value obtained by the number of uplink subframes in the subframe of the secondary serving cell;
  • the UE is a half-duplex UE
  • the sending module is specifically configured to:
  • the M value is a subframe of the secondary serving cell
  • the subframe of the primary serving cell can feed back the secondary serving cell subframe corresponding to the HARQ-ACK of the secondary serving cell subframe
  • Subtracting the number of uplink subframes in the subframe of the secondary serving cell, and subtracting the value obtained by the number of downlink subframes in the subframe of the secondary serving cell, where the downlink subframe is The subframes of the same time are the uplink subframes or the special subframes on the primary serving cell, where the subframes that are the same as the downlink subframes are uplink subframes or special subframes on the primary serving cell;
  • the UE is a half-duplex UE
  • the sending module is specifically configured to:
  • the M value is a subframe of the secondary serving cell
  • the subframe of the primary serving cell can feed back the secondary serving cell subframe corresponding to the HARQ-ACK of the secondary serving cell subframe
  • the sending module is further configured to:
  • the receiving module receives the PDSCH on the secondary serving cell, reporting capability information to the base station, where the capability information is used to indicate whether the UE supports the HARQ timing relationship;
  • the determining module is further configured to:
  • the uplink and downlink configuration of the primary serving cell meets the following conditions at least one:
  • the uplink and downlink configurations of the primary serving cell are uplink and downlink configuration 0, at least one of subframe 2, subframe 3, subframe 4, subframe 7, subframe 8, and subframe 9 of the primary serving cell
  • the sub-frame of the secondary serving cell corresponding to the HARQ-ACK of the subframe of the secondary serving cell that is fed back is reduced by at least one;
  • the sub-frames of the secondary serving cell, the sub-frame 2, the subframe 3, the subframe 7 and the subframe 8 are fed back by the at least one subframe
  • the subframe of the secondary serving cell corresponding to the HARQ-ACK of the frame is reduced by at least one;
  • the HARQ-ACK corresponding to the subframe of the secondary serving cell fed back by at least one of the subframe 2 and the subframe 7 of the primary serving cell corresponds to The subframe of the secondary serving cell is reduced by at least one;
  • the secondary subframe 2 When the uplink and downlink configurations of the primary serving cell are the uplink and downlink configuration 6, the secondary subframe 2, the subframe 3, the subframe 4, the subframe 7, and the subframe 8 are fed back by at least one subframe.
  • the subframe of the secondary serving cell corresponding to the HARQ-ACK of the subframe of the serving cell is reduced by at least one.
  • the uplink and downlink configuration of the secondary serving cell is an uplink and downlink configuration Time
  • the uplink and downlink configuration of the primary serving cell meets at least one of the following conditions:
  • the uplink and downlink configurations of the primary serving cell are uplink and downlink configuration 0, at least one of subframe 2, subframe 3, subframe 4, subframe 7, subframe 8, and subframe 9 of the primary serving cell
  • the sub-frame of the secondary serving cell corresponding to the HARQ-ACK of the sub-frame of the fed secondary serving cell is reduced by one;
  • the sub-frames of the secondary serving cell, the sub-frame 2, the subframe 3, the subframe 7 and the subframe 8 are fed back by the at least one subframe
  • the subframe of the secondary serving cell corresponding to the HARQ-ACK of the frame is reduced by one;
  • the HARQ-ACK corresponding to the subframe of the secondary serving cell fed back by at least one of the subframe 2 and the subframe 7 of the primary serving cell corresponds to The subframe of the secondary serving cell is reduced by one;
  • the secondary subframe 2 When the uplink and downlink configurations of the primary serving cell are the uplink and downlink configuration 6, the secondary subframe 2, the subframe 3, the subframe 4, the subframe 7, and the subframe 8 are fed back by at least one subframe.
  • the subframe of the secondary serving cell corresponding to the HARQ-ACK of the subframe of the serving cell is reduced by one.
  • an embodiment of the present invention provides a transmission device for response information, which is applied to a time division duplex TDD system, where the device includes: a processor, a transmitter, and a receiver;
  • the processor is configured to determine to send a physical downlink shared channel PDSCH to the user equipment UE on the secondary serving cell;
  • the transmitter configured to send, by the processor, the PDSCH determined by the processor on the secondary serving cell;
  • the processor is further configured to determine a hybrid automatic repeat request (HARQ) timing relationship corresponding to the secondary serving cell, where the HARQ timing relationship is a HARQ timing relationship of the PDSCH and the HARQ response information HARQ-ACK;
  • HARQ hybrid automatic repeat request
  • the receiver is configured to receive, according to the HARQ timing relationship determined by the processor, a HARQ-ACK corresponding to the PDSCH on a primary serving cell;
  • the primary serving cell is a TDD primary serving cell configured by the base station for the UE
  • the secondary serving cell is a secondary serving cell in the N TDD secondary serving cells configured by the base station for the UE, the N Is a natural number greater than or equal to 1.
  • an embodiment of the present invention provides a transmission device for response information, which is applied to a time division duplex TDD system, where the device includes: a processor, a receiver, and a transmitter;
  • the receiver is configured to receive a physical downlink shared channel PDSCH on the secondary serving cell;
  • the processor is configured to determine a hybrid automatic repeat request (HARQ) timing relationship of the secondary serving cell, where the HARQ timing relationship is a HARQ timing relationship between the PDSCH and the HARQ response information HARQ-ACK received by the receiver;
  • HARQ hybrid automatic repeat request
  • the transmitter is configured to send, according to the HARQ timing relationship determined by the processor, a HARQ-ACK corresponding to the PDSCH on a primary serving cell;
  • the primary serving cell is a TDD primary serving cell configured by the base station for the user equipment UE
  • the secondary serving cell is a secondary serving cell in the N TDD secondary serving cells configured by the base station for the UE, the N Is a natural number greater than or equal to 1.
  • an embodiment of the present invention provides a method for transmitting response information, which is applied to a time division duplex TDD system, and the method includes:
  • HARQ timing relationship a hybrid automatic repeat request (HARQ) timing relationship corresponding to the secondary serving cell, where the HARQ timing relationship is a HARQ timing relationship of the PDSCH and the HARQ response information HARQ-ACK;
  • the primary serving cell is a TDD primary serving cell configured by the base station for the UE
  • the secondary serving cell is a secondary serving cell in the N TDD secondary serving cells configured by the base station for the UE, the N Is a natural number greater than or equal to 1.
  • the HARQ timing relationship includes:
  • the uplink and downlink configuration of the primary serving cell is any one of uplink and downlink configuration 0, uplink and downlink configuration 1, uplink and downlink configuration 2, and uplink and downlink configuration 6.
  • the uplink subframe of the primary serving cell includes subframe 2, subframe 3, subframe 4, subframe 7, subframe 8, and subframe 9,
  • the uplink subframe of the primary serving cell includes subframe 2, subframe 3, subframe 4, subframe 7, subframe 8, and subframe 9,
  • the HARQ of the subframe corresponding to the secondary serving cell corresponding to the subframe 2 offset by 5 forwards and/or forwardly offset by 6 subframes ACK
  • the HARQ of the subframe corresponding to the secondary serving cell corresponding to the subframe 3 being forwardly shifted by 4 and/or forwardly offset by 5 subframes - ACK
  • feedback on the subframe 4 of the primary serving cell corresponding to the subframe of the secondary serving cell corresponding to the subframe 4 being offset by 4 subframes forward
  • the HARQ-ACK on the subframe 7 of the primary serving cell, feeds back the sub-frame corresponding to the secondary serving cell corresponding to the subframe 7 offset by 6 and/or forwarded by 5 subframes
  • the HARQ-ACK on the subframe
  • the uplink subframe of the primary serving cell includes a subframe 2, a subframe 3, a subframe 7, and a subframe 8, in the child of the primary serving cell.
  • Feeding on the frame 2 corresponds to the HARQ-ACK of the subframe of the secondary serving cell corresponding to the subframe 2 offset by 7 and/or offset by 6 subframes forward, in the primary serving cell
  • the sub-frame 3 feedback corresponds to the sub-frame 3 offsetting 6 subframes forward, 5 subframes forward, and 3 subframes forward offset 4 subframes corresponding to at least one subframe of the secondary serving cell
  • the HARQ-ACK, on the subframe 7 of the primary serving cell feeds back the secondary serving cell corresponding to the sub-frame 7 offset by 7 subframes and/or forwarded by 6 subframes.
  • the HARQ-ACK of the subframe is fed back on the subframe 8 of the primary serving cell corresponding to the subframe 8 offset by 6 subframes forward, 5 subframes forward, and 4 subframes forward.
  • the uplink subframe of the primary serving cell includes a subframe 2 and a subframe 7, and the feedback on the subframe 2 of the primary serving cell corresponds to the Subframe 2 is offset by 8 subframes forward, 7 subframes forward, 6 subframes forward, 5 subframes forward, and at least one of which is offset by 4 subframes forward.
  • the HARQ-ACK of the subframe of the secondary serving cell, the feedback on the subframe 7 of the primary serving cell is offset by 8 subframes forward, 7 subframes forward, and forward offset corresponding to the subframe 7 6 subframes, 5 subframes offset forward, and HARQ-ACKs of subframes of at least one of the secondary serving cells corresponding to the subframes forwardly offset by 4 subframes;
  • the uplink subframe of the primary serving cell includes a subframe 2, a subframe 3, a subframe 4, a subframe 7, and a subframe 8, in which the primary The subframe 2 of the serving cell feeds back a HARQ-ACK corresponding to the subframe of the secondary serving cell corresponding to the subframe 2 offset by 8 and/or forwarded by 7 subframes.
  • the subframe 3 feedback of the primary serving cell corresponds to the HARQ-ACK of the subframe of the secondary serving cell corresponding to the sub-frame 3 offset by 7 and/or forwarded by 6 subframes.
  • the feedback on the subframe 4 of the primary serving cell corresponds to the The subframe 4 is forward-shifted by 6 subframes and/or the HARQ-ACK of the subframe of the secondary serving cell corresponding to the subframe after being offset by 5 subframes, and feedback is performed on the subframe 7 of the primary serving cell.
  • the HARQ-ACK of the subframe corresponding to the secondary serving cell corresponding to the subframe 7 being forwardly shifted by 7 subframes, and feedback corresponding to the subframe 8 on the subframe 8 of the primary serving cell
  • the HARQ-ACK of the subframe of at least one of the secondary serving cells that is offset by 7 forward, 6 subframes forward, and 5 offsets forward.
  • the uplink subframe of the primary serving cell includes an uplink that does not belong to the secondary serving cell The uplink subframe of the subframe.
  • the uplink and downlink configurations of the primary serving cell are configured as an uplink and downlink configuration
  • the number of the secondary serving cell subframes corresponding to the HARQ-ACK of the secondary serving cell subframe in which the subframe 2, the subframe 3, the subframe 7 and the subframe 8 of the primary serving cell can be fed back is 2, the primary The number of the secondary serving cell subframes corresponding to the HARQ-ACK of the secondary serving cell subframe that can be fed back by the subframe 4 and the subframe 9 of the serving cell is 1;
  • the subframe 2 and the subframe 7 of the primary serving cell can feed back the secondary serving cell subframe corresponding to the HARQ-ACK of the secondary serving cell subframe.
  • the number of the secondary serving cell subframe corresponding to the HARQ-ACK of the secondary serving cell subframe in which the subframe 3 and the subframe 8 of the primary serving cell can be fed back is 3;
  • the secondary serving cell subframes corresponding to the HARQ-ACK of the secondary serving cell subframe that can be fed back by the subframe 2 and the subframe 7 of the primary serving cell The number is 5;
  • the subframe 2, the subframe 3, and the subframe 4 of the primary serving cell can feed back the secondary service corresponding to the HARQ-ACK of the secondary serving cell subframe.
  • the number of subframes of the primary serving cell is 2, and the number of secondary serving cell subframes corresponding to the HARQ-ACK of the secondary serving cell subframe that can be fed back by the subframe 7 of the primary serving cell is 1, and the subframe of the primary serving cell 8
  • the number of secondary serving cell subframes corresponding to the HARQ-ACK of the secondary serving cell subframe that can be fed back is 3.
  • the UE is a full duplex UE, and according to the HARQ timing relationship, in the main service Receiving the HARQ-ACK corresponding to the PDSCH on the serving cell includes:
  • the M value is a secondary serving cell corresponding to the HARQ-ACK of the subframe of the primary serving cell that can feed back the secondary serving cell subframe
  • the number of frames is subtracted from the value obtained by the number of uplink subframes in the subframe of the secondary serving cell;
  • the UE is a full-duplex UE, and the primary serving cell is configured according to the HARQ timing relationship Receiving the HARQ-ACK corresponding to the PDSCH, including:
  • the UE is a half-duplex UE, and the primary serving cell is configured according to the HARQ timing relationship Receiving the HARQ-ACK corresponding to the PDSCH, including:
  • the M value is a subframe of the secondary serving cell
  • the subframe of the primary serving cell can be fed back to the secondary serving cell subframe corresponding to the HARQ-ACK of the secondary serving cell subframe
  • the UE is a half-duplex UE, and the primary serving cell is configured according to the HARQ timing relationship Receiving the HARQ-ACK corresponding to the PDSCH, including:
  • the M value is a subframe of the secondary serving cell
  • the subframe of the primary serving cell can be fed back to the secondary serving cell subframe corresponding to the HARQ-ACK of the secondary serving cell subframe
  • the method before the sending the PDSCH to the UE on the secondary serving cell, the method further includes :
  • the uplink and downlink configuration of the primary serving cell meets the following conditions at least one:
  • the uplink and downlink configurations of the primary serving cell are uplink and downlink configuration 0, at least one of subframe 2, subframe 3, subframe 4, subframe 7, subframe 8, and subframe 9 of the primary serving cell
  • the sub-frame of the secondary serving cell corresponding to the HARQ-ACK of the subframe of the secondary serving cell that is fed back is reduced by at least one;
  • the sub-frames of the secondary serving cell, the sub-frame 2, the subframe 3, the subframe 7 and the subframe 8 are fed back by the at least one subframe
  • the subframe of the secondary serving cell corresponding to the HARQ-ACK of the frame is reduced by at least one;
  • the HARQ-ACK corresponding to the subframe of the secondary serving cell fed back by at least one of the subframe 2 and the subframe 7 of the primary serving cell corresponds to The subframe of the secondary serving cell is reduced by at least one;
  • the secondary subframe 2 When the uplink and downlink configurations of the primary serving cell are the uplink and downlink configuration 6, the secondary subframe 2, the subframe 3, the subframe 4, the subframe 7, and the subframe 8 are fed back by at least one subframe.
  • the subframe of the secondary serving cell corresponding to the HARQ-ACK of the subframe of the serving cell is reduced by at least one.
  • the uplink and downlink configuration of the secondary serving cell is an uplink and downlink configuration Time
  • the uplink and downlink configuration of the primary serving cell meets at least one of the following conditions:
  • the uplink and downlink configurations of the primary serving cell are uplink and downlink configuration 0, at least one of subframe 2, subframe 3, subframe 4, subframe 7, subframe 8, and subframe 9 of the primary serving cell
  • the sub-frame of the secondary serving cell corresponding to the HARQ-ACK of the sub-frame of the fed secondary serving cell is reduced by one;
  • the sub-frames of the secondary serving cell, the sub-frame 2, the subframe 3, the subframe 7 and the subframe 8 are fed back by the at least one subframe
  • the subframe of the secondary serving cell corresponding to the HARQ-ACK of the frame is reduced by one;
  • the HARQ-ACK corresponding to the subframe of the secondary serving cell fed back by at least one of the subframe 2 and the subframe 7 of the primary serving cell corresponds to The subframe of the secondary serving cell is reduced by one;
  • the secondary subframe 2 When the uplink and downlink configurations of the primary serving cell are the uplink and downlink configuration 6, the secondary subframe 2, the subframe 3, the subframe 4, the subframe 7, and the subframe 8 are fed back by at least one subframe.
  • the subframe of the secondary serving cell corresponding to the HARQ-ACK of the subframe of the serving cell is reduced by one.
  • an embodiment of the present invention provides a method for transmitting response information, which is applied to a time division duplex TDD system, and the method includes:
  • HARQ timing relationship a hybrid automatic repeat request (HARQ) timing relationship corresponding to the secondary serving cell, where the HARQ timing relationship is a HARQ timing relationship of the PDSCH and the HARQ response information HARQ-ACK;
  • the primary serving cell is a TDD primary serving cell configured by the base station for the user equipment UE
  • the secondary serving cell is a secondary serving cell in the N TDD secondary serving cells configured by the base station for the UE, the N Is a natural number greater than or equal to 1.
  • the HARQ timing relationship includes:
  • the uplink and downlink configuration of the primary serving cell is any one of uplink and downlink configuration 0, uplink and downlink configuration 1, uplink and downlink configuration 2, and uplink and downlink configuration 6.
  • the uplink subframe of the primary serving cell includes subframe 2, subframe 3, subframe 4, subframe 7, subframe 8, and subframe 9,
  • the uplink subframe of the primary serving cell includes subframe 2, subframe 3, subframe 4, subframe 7, subframe 8, and subframe 9,
  • the subframe 2 of the primary serving cell HARQ of the subframe corresponding to the secondary serving cell corresponding to the subframe 2 offset by 5 forwards and/or forwardly offset by 6 subframes ACK
  • the subframe 3 of the primary serving cell the HARQ of the subframe corresponding to the secondary serving cell corresponding to the subframe 3 being forwardly shifted by 4 and/or forwardly offset by 5 subframes - ACK
  • the subframe 4 of the primary serving cell feeding back a HARQ-ACK corresponding to the subframe of the secondary serving cell corresponding to the subframe 4 being forwardly shifted by 4 subframes, in the primary
  • the subframe 7 of the serving cell feeds back a HARQ-ACK corresponding to the subframe of the secondary serving cell corresponding to the
  • the subframe 8 of the primary serving cell feeds back a HARQ-ACK corresponding to the subframe of the secondary serving cell corresponding to the sub-frame 8 offset by 5 forwards and/or forwarded by 4 subframes.
  • the subframe 9 of the serving cell feeds back a HARQ-ACK corresponding to the subframe of the secondary serving cell corresponding to the subframe 9 forward offset by 4 subframes;
  • the uplink subframe of the primary serving cell includes a subframe 2, a subframe 3, a subframe 7, and a subframe 8, in the child of the primary serving cell.
  • Feeding on the frame 2 corresponds to the HARQ-ACK of the subframe of the secondary serving cell corresponding to the subframe 2 offset by 7 and/or offset by 6 subframes forward, in the primary serving cell
  • the sub-frame 3 feedback corresponds to the sub-frame 3 offsetting 6 subframes forward, 5 subframes forward, and 3 subframes forward offset 4 subframes corresponding to at least one subframe of the secondary serving cell
  • the HARQ-ACK, on the subframe 7 of the primary serving cell feeds back the secondary serving cell corresponding to the sub-frame 7 offset by 7 subframes and/or forwarded by 6 subframes.
  • the HARQ-ACK of the subframe is fed back on the subframe 8 of the primary serving cell corresponding to the subframe 8 offset by 6 subframes forward, 5 subframes forward, and 4 subframes forward.
  • the uplink subframe of the primary serving cell includes a subframe 2 and a subframe 7, and the feedback on the subframe 2 of the primary serving cell corresponds to the Subframe 2 is offset by 8 subframes forward, 7 subframes forward, 6 subframes forward, 5 subframes forward, and at least one of which is offset by 4 subframes forward.
  • Sub-service community The HARQ-ACK of the frame is fed back on the subframe 7 of the primary serving cell corresponding to the subframe 7 by 8 subframes forward, 7 subframes forward, and 6 subframes forward.
  • the HARQ-ACK of the subframe of the at least one of the secondary serving cells corresponding to the offset of 5 subframes and the forward offset of 4 subframes;
  • the uplink subframe of the primary serving cell includes a subframe 2, a subframe 3, a subframe 4, a subframe 7, and a subframe 8, in which the primary The subframe 2 of the serving cell feeds back a HARQ-ACK corresponding to the subframe of the secondary serving cell corresponding to the subframe 2 offset by 8 and/or forwarded by 7 subframes.
  • the subframe 3 feedback of the primary serving cell corresponds to the HARQ-ACK of the subframe of the secondary serving cell corresponding to the sub-frame 3 offset by 7 and/or forwarded by 6 subframes.
  • the subframe 4 of the primary serving cell feeds back HARQ- of the subframe corresponding to the secondary serving cell corresponding to the subframe 4 being forwardly shifted by 6 subframes and/or forwarded by 5 subframes.
  • ACK in the subframe 7 of the primary serving cell, the HARQ-ACK corresponding to the subframe of the secondary serving cell corresponding to the subframe 7 forwarded by 7 subframes is fed back, in the primary service
  • the subframe 8 of the cell is fed back to the sub-frame 8 which is forward-shifted by 7 subframes, forward-shifted by 6 subframes, and forward-shifted by 5 subframes corresponding to at least one subframe of the secondary serving cell.
  • HARQ-ACK in the subframe 7 of the primary serving cell, the HARQ-ACK corresponding to the subframe of the secondary serving cell corresponding to the subframe 7 forwarded by 7 subframes is fed back, in the primary service
  • the subframe 8 of the cell is fed back to the sub-frame 8 which is forward-shifted by 7 subframe
  • the uplink subframe of the primary serving cell includes an uplink that does not belong to the secondary serving cell The uplink subframe of the subframe.
  • the uplink and downlink configurations of the primary serving cell are configured as an uplink and downlink configuration
  • the number of the secondary serving cell subframes corresponding to the HARQ-ACK of the secondary serving cell subframe in which the subframe 2, the subframe 3, the subframe 7 and the subframe 8 of the primary serving cell can be fed back is 2, the primary The number of the secondary serving cell subframes corresponding to the HARQ-ACK of the secondary serving cell subframe that can be fed back by the subframe 4 and the subframe 9 of the serving cell is 1;
  • the subframe 2 and the subframe 7 of the primary serving cell can feed back the secondary serving cell subframe corresponding to the HARQ-ACK of the secondary serving cell subframe.
  • the number of the secondary serving cell subframe corresponding to the HARQ-ACK of the secondary serving cell subframe in which the subframe 3 and the subframe 8 of the primary serving cell can be fed back is 3;
  • the primary serving cell When the uplink and downlink configuration of the primary serving cell is the uplink and downlink configuration 2, the primary serving cell The number of secondary serving cell subframes corresponding to the HARQ-ACK of the secondary serving cell subframe that can be fed back by the subframe 2 and the subframe 7 is 5;
  • the subframe 2, the subframe 3, and the subframe 4 of the primary serving cell can feed back the secondary service corresponding to the HARQ-ACK of the secondary serving cell subframe.
  • the number of subframes of the primary serving cell is 2, and the number of secondary serving cell subframes corresponding to the HARQ-ACK of the secondary serving cell subframe that can be fed back by the subframe 7 of the primary serving cell is 1, and the subframe of the primary serving cell 8
  • the number of secondary serving cell subframes corresponding to the HARQ-ACK of the secondary serving cell subframe that can be fed back is 3.
  • the UE is a full-duplex UE, and the primary serving cell is configured according to the HARQ timing relationship Sending the HARQ-ACK corresponding to the PDSCH includes:
  • the M value is a secondary serving cell corresponding to the HARQ-ACK of the subframe in which the primary serving cell can feed back the secondary serving cell subframe
  • the number of frames is subtracted from the value obtained by the number of uplink subframes in the subframe of the secondary serving cell;
  • the UE is a full-duplex UE, and the primary serving cell is configured according to the HARQ timing relationship Sending the HARQ-ACK corresponding to the PDSCH includes:
  • the M value is a secondary serving cell corresponding to the HARQ-ACK of the subframe in which the primary serving cell can feed back the secondary serving cell subframe
  • the number of frames is subtracted from the value obtained by the number of uplink subframes in the subframe of the secondary serving cell;
  • the sixth possible implementation in the sixth aspect In the current mode, the UE is a half-duplex UE, and the transmitting the HARQ-ACK corresponding to the PDSCH on the primary serving cell according to the HARQ timing relationship includes:
  • the M value is a subframe of the secondary serving cell
  • the subframe of the primary serving cell can feed back the secondary serving cell subframe corresponding to the HARQ-ACK of the secondary serving cell subframe
  • Subtracting the number of uplink subframes in the subframe of the secondary serving cell, and subtracting the value obtained by the number of downlink subframes in the subframe of the secondary serving cell, where the downlink subframe is The subframes of the same time are the uplink subframes or the special subframes on the primary serving cell, where the subframes that are the same as the downlink subframes are uplink subframes or special subframes on the primary serving cell;
  • the UE is a half-duplex UE, and the primary serving cell is configured according to the HARQ timing relationship Sending the HARQ-ACK corresponding to the PDSCH includes:
  • the M value is a subframe of the secondary serving cell
  • the subframe of the primary serving cell can feed back the secondary serving cell subframe corresponding to the HARQ-ACK of the secondary serving cell subframe
  • the method before the receiving the PDSCH on the secondary serving cell, the method further includes:
  • the uplink and downlink configurations of the primary serving cell meet at least one of the following conditions:
  • the uplink and downlink configurations of the primary serving cell are uplink and downlink configuration 0, at least one of subframe 2, subframe 3, subframe 4, subframe 7, subframe 8, and subframe 9 of the primary serving cell
  • the sub-frame of the secondary serving cell corresponding to the HARQ-ACK of the subframe of the secondary serving cell that is fed back is reduced by at least one;
  • the sub-frames of the secondary serving cell, the sub-frame 2, the subframe 3, the subframe 7 and the subframe 8 are fed back by the at least one subframe
  • the subframe of the secondary serving cell corresponding to the HARQ-ACK of the frame is reduced by at least one;
  • the HARQ-ACK corresponding to the subframe of the secondary serving cell fed back by at least one of the subframe 2 and the subframe 7 of the primary serving cell corresponds to The subframe of the secondary serving cell is reduced by at least one;
  • the secondary subframe 2 When the uplink and downlink configurations of the primary serving cell are the uplink and downlink configuration 6, the secondary subframe 2, the subframe 3, the subframe 4, the subframe 7, and the subframe 8 are fed back by at least one subframe.
  • the subframe of the secondary serving cell corresponding to the HARQ-ACK of the subframe of the serving cell is reduced by at least one.
  • the uplink and downlink configuration of the secondary serving cell is an uplink and downlink configuration Time
  • the uplink and downlink configuration of the primary serving cell meets at least one of the following conditions:
  • the uplink and downlink configurations of the primary serving cell are uplink and downlink configuration 0, at least one of subframe 2, subframe 3, subframe 4, subframe 7, subframe 8, and subframe 9 of the primary serving cell
  • the sub-frame of the secondary serving cell corresponding to the HARQ-ACK of the sub-frame of the fed secondary serving cell is reduced by one;
  • the sub-frames of the secondary serving cell, the sub-frame 2, the subframe 3, the subframe 7 and the subframe 8 are fed back by the at least one subframe
  • the subframe of the secondary serving cell corresponding to the HARQ-ACK of the frame is reduced by one;
  • the HARQ-ACK corresponding to the subframe of the secondary serving cell fed back by at least one of the subframe 2 and the subframe 7 of the primary serving cell corresponds to The subframe of the secondary serving cell is reduced by one;
  • the secondary subframe 2 When the uplink and downlink configurations of the primary serving cell are the uplink and downlink configuration 6, the secondary subframe 2, the subframe 3, the subframe 4, the subframe 7, and the subframe 8 are fed back by at least one subframe.
  • the subframe of the secondary serving cell corresponding to the HARQ-ACK of the subframe of the serving cell is reduced by one.
  • the uplink and downlink configurations of the primary serving cell are defined as any of the uplink and downlink configurations, so that the carrier aggregation that meets the foregoing qualification conditions can be configured in some uplink and downlink configurations of the TDD.
  • the PUCCH format 3 mode can support more than two CAs of the secondary serving cells of the uplink and downlink configuration 5, and can perform the HARQ timing relationship in the foregoing carrier aggregation.
  • the HARQ-ACK that needs to be fed back is distributed in multiple different uplink subframes for feedback, which shortens the feedback delay and improves the feedback performance.
  • Embodiment 1 is a schematic structural diagram of Embodiment 1 of a transmission apparatus for response information according to the present invention
  • Embodiment 2 is a schematic structural diagram of Embodiment 2 of a transmission apparatus for response information according to the present invention
  • Embodiment 3 is a schematic structural diagram of Embodiment 1 of a transmission device for response information according to the present invention.
  • Embodiment 4 is a schematic flowchart of Embodiment 1 of a method for transmitting response information according to the present invention
  • FIG. 5 is a schematic flowchart diagram of Embodiment 2 of a method for transmitting response information according to the present invention.
  • the subframes in the LTE TDD system include a downlink subframe, an uplink subframe, and a special subframe.
  • the special subframe includes a Downlink Pilot Time Slot (DwPTS) and a Guard Period (abbreviation: GP) and uplink pilot time slot (Uplink Pilot Time Slot (referred to as UpPTS), where GP is mainly used for downlink to uplink conversion time and propagation delay compensation.
  • DwPTS Downlink Pilot Time Slot
  • GP Guard Period
  • UpPTS Uplink Pilot Time Slot
  • the special subframe can transmit downlink data. Therefore, the special subframe can also be treated as a downlink subframe.
  • the downlink data transmitted on the DwPTS needs to have corresponding response information feedback.
  • the status of the response information includes an acknowledgement (ACK), or a non-acknowledgement (NACK).
  • the LTE TDD system can support 7 different uplink and downlink configurations.
  • the specific configuration is shown in Table 1.
  • D represents a downlink subframe
  • S represents a special subframe
  • U represents an uplink subframe
  • the downlink-uplink conversion period of the uplink and downlink configurations 0, 1, 2, and 6 is 5 milliseconds (ms), uplink and downlink.
  • the downlink-uplink conversion period for configurations 3, 4, and 5 is 10 ms.
  • the TDD CA includes CAs of the same uplink and downlink configuration, such as two CAs of uplink and downlink configuration 1; and CAs of different uplink and downlink configurations, such as CAs of uplink and downlink configuration 1 and configuration 2.
  • the CA includes one primary serving cell and at least one secondary serving cell, and the PUCCH carrying the HARQ-ACK is transmitted only on the primary serving cell.
  • the transmission mode of the PUCCH in the CA includes two modes, a channel selection mode and a PUCCH format 3.
  • the Hybrid Automatic Repeat Request Acknowledge (HARQ-ACK) timing relationship of the primary and secondary serving cells is the same as the timing relationship of the TDD for a single carrier.
  • the HARQ-ACK timing relationship of the primary serving cell follows the HARQ-ACK timing relationship of the uplink and downlink configurations of the primary serving cell, but the HARQ-ACK timing relationship of the secondary serving cell follows the reference uplink and downlink configuration.
  • the reference uplink and downlink configuration may be configured for the uplink and downlink of the primary serving cell, the uplink and downlink configuration of the secondary serving cell, or the uplink and downlink configuration of the primary and secondary serving cells.
  • the specific reference uplink and downlink configuration is determined by the combination of uplink and downlink configuration of the primary and secondary serving cell pairs, as shown in Table 2.
  • Table 3 The primary serving cell configuration 2 and the secondary serving cell configuration 5 perform the carrier number limitation problem of the CA
  • the primary serving cell is configured for uplink and downlink
  • the secondary serving cell is configured for uplink and downlink.
  • the reference uplink and downlink configuration of the secondary serving cell can be determined according to Table 2 above.
  • the uplink and downlink configuration 5 of the secondary serving cell itself is set.
  • the specific data scheduling and the HARQ-ACK feedback process is that the subframe 8 of the secondary serving cell schedules a physical downlink shared channel (Physical Downlink Shared Channel, PDSCH), and needs to feed back the PDSCH on the subframe 2 of the next radio frame.
  • PDSCH Physical Downlink Shared Channel
  • the specific HARQ timing relationship can be seen according to the number of digits 4 in the digital set included in the uplink subframe 2 in Table 3, that is, when the subframe 2 is a HARQ-ACK feedback subframe,
  • the subframe carrying the PDSCH corresponding to the HARQ-ACK fed back on the subframe is n-4, that is, the subframe 8 of the previous radio frame.
  • the HARQ-ACK feedback timing delay is long, for example, the longest timing is n-13, that is, the delay of 13 subframes; and since the M value is 9. , causing the performance of HARQ-ACK to drop.
  • the order of numbers in the set of numbers included in the uplink subframe 2 is not limited, that is, any order may be used as long as the number of corresponding PDSCH subframes and the subframe number are identical. It is applicable to other TDD uplink and downlink configurations and other uplink subframes that are fed back to the HARQ-ACK in other TDD uplink and downlink configurations, that is, the PDSCH subframe order problem is not considered.
  • the primary serving cell is on the macro base station, and the TDD is configured as an uplink and downlink configuration with multiple uplink subframes to ensure feedback performance and delay, such as uplink and downlink configuration 1 or 2;
  • the TDD is configured as an uplink and downlink configuration with a large number of downlink subframes to ensure the transmission of the high downlink data rate, that is, the downlink service of the macro base station is offloaded to the micro base station, for example, the uplink and downlink configuration 5 is configured.
  • an embodiment of the present invention provides a method and device for transmitting response information.
  • the device is applied to the LTE TDD system and can be used for the base station side and the UE side respectively. Specifically, the following is a detailed description.
  • FIG. 1 is a schematic structural diagram of Embodiment 1 of a transmission apparatus for response information according to the present invention.
  • the embodiment of the invention provides a transmission device for response information, which is applied to a TDD system, and the device can be integrated in a device such as a base station.
  • the apparatus includes: a transmitting module 11, a determining module 12, and a receiving module 13.
  • the determining module 12 is configured to determine to send a PDSCH to the UE on the secondary serving cell, and the sending module 11 is configured to send the PDSCH determined by the determining module 12 to the UE on the secondary serving cell, where the determining module 12 is further configured to determine the corresponding serving cell.
  • the HARQ timing relationship is the HARQ timing relationship between the PDSCH and the HARQ-ACK.
  • the receiving module 13 is configured to receive the HARQ-ACK corresponding to the PDSCH on the primary serving cell according to the HARQ timing relationship determined by the determining module 12.
  • the primary serving cell is a TDD primary serving cell configured by the base station for the UE
  • the secondary serving cell is a secondary serving cell in the N TDD secondary serving cells configured by the base station for the UE, where N is a natural number greater than or equal to 1.
  • the device of the embodiment of the present invention may be used to implement the technical solution of the method embodiment shown in FIG. 4, and the implementation principle and the technical effect are similar, and details are not described herein again.
  • the HARQ timing relationship includes: the uplink and downlink configuration of the primary serving cell is any one of uplink and downlink configuration 0, uplink and downlink configuration 1, uplink and downlink configuration 2, and uplink and downlink configuration 6.
  • the uplink subframe of the primary serving cell includes subframe 2, subframe 3, subframe 4, subframe 7, subframe 8, and subframe. 9. Subsequent to the subframe 2 of the primary serving cell, the subframe corresponding to the secondary serving cell corresponding to the subframe 2 being forwardly offset by 5 and/or forwardly offset by 6 subframes.
  • the HARQ-ACK in the subframe 3 of the primary serving cell, feeds back a subframe corresponding to the secondary serving cell corresponding to the subframe 3 being forwardly shifted by 4 and/or forwardly offset by 5 subframes.
  • the HARQ-ACK of the subframe corresponding to the secondary serving cell corresponding to the subframe 4 forwarded by 4 subframes is fed back.
  • the subframe 7 of the primary serving cell feeds back a HARQ-ACK corresponding to the subframe of the secondary serving cell corresponding to the subframe 7 forwarded by 6 and/or forwarded by 5 subframes.
  • the uplink subframe of the primary serving cell includes a subframe 2, a subframe 3, a subframe 7, and a subframe 8, in the child of the primary serving cell.
  • Feeding on the frame 2 corresponds to the HARQ-ACK of the subframe of the secondary serving cell corresponding to the subframe 2 offset by 7 and/or offset by 6 subframes forward, in the primary serving cell
  • the sub-frame 3 feedback corresponds to the sub-frame 3 offsetting 6 subframes forward, 5 subframes forward, and 3 subframes forward offset 4 subframes corresponding to at least one subframe of the secondary serving cell
  • the HARQ-ACK, on the subframe 7 of the primary serving cell feeds back the secondary serving cell corresponding to the sub-frame 7 offset by 7 subframes and/or forwarded by 6 subframes.
  • the HARQ-ACK of the subframe is fed back on the subframe 8 of the primary serving cell corresponding to the subframe 8 offset by 6 subframes forward, 5 subframes forward, and 4 subframes forward. Corresponding HARQ-ACK of at least one subframe of the secondary serving cell.
  • the uplink subframe of the primary serving cell includes a subframe 2 and a subframe 7, and the feedback on the subframe 2 of the primary serving cell corresponds to the Subframe 2 is offset by 8 subframes forward, 7 subframes forward, 6 subframes forward, 5 subframes forward, and at least one of which is offset by 4 subframes forward.
  • the HARQ-ACK of the subframe of the secondary serving cell, the feedback on the subframe 7 of the primary serving cell is offset by 8 subframes forward, 7 subframes forward, and forward offset corresponding to the subframe 7 6 subframes, 5 subframes offset forward, and HARQ-ACKs of subframes of at least one of the secondary serving cells corresponding to the subframes forwarded by 4 subframes.
  • the uplink subframe of the primary serving cell includes a subframe 2, a subframe 3, a subframe 4, a subframe 7, and a subframe 8, in which the primary The subframe 2 of the serving cell feeds back a HARQ-ACK corresponding to the subframe of the secondary serving cell corresponding to the subframe 2 offset by 8 and/or forwarded by 7 subframes.
  • the subframe 3 feedback of the primary serving cell corresponds to the HARQ-ACK of the subframe of the secondary serving cell corresponding to the sub-frame 3 offset by 7 and/or forwarded by 6 subframes.
  • the subframe 4 of the primary serving cell feeds back HARQ- of the subframe corresponding to the secondary serving cell corresponding to the subframe 4 being forwardly shifted by 6 subframes and/or forwarded by 5 subframes.
  • ACK in the subframe 7 of the primary serving cell, the HARQ-ACK corresponding to the subframe of the secondary serving cell corresponding to the subframe 7 forwarded by 7 subframes is fed back, in the primary service
  • the subframe 8 of the cell is fed back to the sub-frame 8 which is forward-shifted by 7 subframes, forward-shifted by 6 subframes, and forward-shifted by 5 subframes corresponding to at least one subframe of the secondary serving cell.
  • HARQ-ACK in the subframe 7 of the primary serving cell, the HARQ-ACK corresponding to the subframe of the secondary serving cell corresponding to the subframe 7 forwarded by 7 subframes is fed back, in the primary service
  • the subframe 8 of the cell is fed back to the sub-frame 8 which is forward-shifted by 7 subframe
  • the uplink and downlink configurations of the primary serving cell are defined as any of the uplink and downlink configurations, so that the carrier aggregation that meets the foregoing qualification conditions can be configured in some uplink and downlink configurations of the TDD.
  • the PUCCH format 3 mode can support more than two CAs of the secondary serving cells of the uplink and downlink configuration 5, and can perform the HARQ timing relationship in the foregoing carrier aggregation.
  • the HARQ-ACK that needs to be fed back is distributed in multiple different uplink subframes for feedback, which shortens the feedback delay and improves the feedback performance.
  • the uplink subframe of the primary serving cell includes an uplink subframe that does not belong to the uplink subframe of the secondary serving cell.
  • the primary serving cell when the primary serving cell is configured in different uplink and downlink configurations, the number of secondary serving cell subframes corresponding to the HARQ-ACK of the secondary serving cell subframe that can be fed back in different subframes of the primary serving cell is different. There are the following situations:
  • the HARQ-ACK of the secondary serving cell subframe that can be fed back by the subframe 2 the subframe 3, the subframe 7 and the subframe 8 of the primary serving cell
  • the number of the secondary serving cell subframes is 2, and the number of the secondary serving cell subframes corresponding to the HARQ-ACK of the secondary serving cell subframe that can be fed back by the subframe 4 and the subframe 9 of the primary serving cell is 1;
  • the subframe 2 and the subframe 7 of the primary serving cell can feed back the secondary serving cell subframe corresponding to the HARQ-ACK of the secondary serving cell subframe.
  • the number of the secondary serving cell subframe corresponding to the HARQ-ACK of the secondary serving cell subframe in which the subframe 3 and the subframe 8 of the primary serving cell can be fed back is 3;
  • the secondary serving cell subframes corresponding to the HARQ-ACK of the secondary serving cell subframe that can be fed back by the subframe 2 and the subframe 7 of the primary serving cell The number is 5;
  • the subframe 2, the subframe 3, and the subframe 4 of the primary serving cell can feed back the secondary service corresponding to the HARQ-ACK of the secondary serving cell subframe.
  • the number of subframes of the primary serving cell is 2, and the number of secondary serving cell subframes corresponding to the HARQ-ACK of the secondary serving cell subframe that can be fed back by the subframe 7 of the primary serving cell is 1, and the subframe of the primary serving cell 8
  • the number of secondary serving cell subframes corresponding to the HARQ-ACK of the secondary serving cell subframe that can be fed back is 3.
  • the UE may be a full-duplex UE based on different transmission modes. It can also be a half-duplex UE.
  • the specific uses of the receiving module 13 are different for UEs of different transmission modes, and the following examples are provided.
  • the UE is a full-duplex UE
  • the receiving module 13 is specifically configured to: determine an M value according to a subframe that receives the HARQ-ACK corresponding to the PDSCH, where the M value is the primary
  • the subframe of the serving cell can feed back the number of the secondary serving cell subframe corresponding to the HARQ-ACK of the secondary serving cell subframe minus the number of the uplink subframe in the secondary serving cell subframe; Determining the HARQ-ACK feedback table in the channel selection mode, and receiving the HARQ-ACK corresponding to the PDSCH on the primary serving cell according to the HARQ-ACK feedback table.
  • the UE is a full-duplex UE
  • the receiving module 13 is specifically configured to: determine an M value according to a subframe that receives the HARQ-ACK corresponding to the PDSCH, where the M value is the primary service.
  • the subframe of the cell can be fed back the number of the secondary serving cell subframe corresponding to the HARQ-ACK of the secondary serving cell subframe minus the number of the uplink subframe in the secondary serving cell subframe;
  • the M value is used to determine a codebook size of the HARQ-ACK in the physical uplink control channel format 3 mode; and the HARQ-ACK corresponding to the PDSCH is received on the primary serving cell according to the codebook size of the HARQ-ACK.
  • the UE is a half-duplex UE
  • the receiving module 13 is specifically configured to: determine an M value according to a subframe that receives the HARQ-ACK corresponding to the PDSCH, where the M value is the primary service.
  • the subframe of the cell can be fed back the number of the secondary serving cell subframe corresponding to the HARQ-ACK of the secondary serving cell subframe minus the number of the uplink subframe in the secondary serving cell subframe, and the auxiliary service is subtracted a value obtained by the number of the downlink subframes in the cell subframe, where the subframes that are the same as the time of the downlink subframe are uplink subframes or special subframes on the primary serving cell; And determining a HARQ-ACK feedback table in the channel selection mode, and receiving, according to the HARQ-ACK feedback table, a HARQ-ACK corresponding to the PDSCH on the primary serving cell.
  • the UE is a half-duplex UE
  • the receiving module 13 is specifically configured to: determine an M value according to a subframe that receives the HARQ-ACK corresponding to the PDSCH, where the M value is the primary service.
  • the subframe of the cell can be fed back the number of the secondary serving cell subframe corresponding to the HARQ-ACK of the secondary serving cell subframe minus the number of the uplink subframe in the secondary serving cell subframe, and the auxiliary service is subtracted a value obtained by the number of the downlink subframes in the cell subframe, where the subframes that are the same as the time of the downlink subframe are uplink subframes or special subframes on the primary serving cell; , Determining a codebook size of the HARQ-ACK in the physical uplink control channel format 3 mode; receiving, according to the codebook size of the HARQ-ACK, the HARQ-ACK corresponding to the PDSCH on the primary serving cell.
  • the receiving module 13 may be further configured to: before the transmitting module 11 sends the PDSCH determined by the determining module 12 to the UE on the secondary serving cell, receive the capability information reported by the UE, where the capability information is received. And used to indicate whether the UE supports the HARQ timing relationship.
  • the determining module 12 is further configured to: determine, according to the capability information, that the UE supports the HARQ timing relationship.
  • the uplink and downlink configuration of the primary serving cell meets at least one of the following conditions:
  • the subframe 2 when the uplink and downlink configuration of the primary serving cell is the uplink and downlink configuration 0, the subframe 2, the subframe 3, the subframe 4, the subframe 7, the subframe 8, and the subframe 9 of the primary serving cell
  • the subframe of the secondary serving cell corresponding to the HARQ-ACK of the subframe of the secondary serving cell fed back by the at least one subframe is reduced by at least one.
  • the uplink and downlink configuration of the primary serving cell is the uplink and downlink configuration 1
  • at least one of the subframe 2, the subframe 3, the subframe 7, and the subframe 8 of the primary serving cell is fed back.
  • the subframe of the secondary serving cell corresponding to the HARQ-ACK of the subframe of the secondary serving cell is reduced by at least one.
  • the uplink and downlink configuration of the primary serving cell is the uplink and downlink configuration 2
  • the subframe of the secondary serving cell fed back by at least one of the subframe 2 and the subframe 7 of the primary serving cell
  • the subframe of the secondary serving cell corresponding to the HARQ-ACK is reduced by at least one.
  • the uplink and downlink configurations of the primary serving cell are the uplink and downlink configuration 6, at least one of the subframe 2, the subframe 3, the subframe 4, the subframe 7, and the subframe 8 of the primary serving cell
  • the subframe of the secondary serving cell corresponding to the HARQ-ACK of the subframe of the secondary serving cell fed back by the subframe is reduced by at least one.
  • the uplink and downlink configuration of the secondary serving cell is the uplink and downlink configuration 5
  • the uplink and downlink configuration of the primary serving cell meets at least one of the foregoing different scenarios.
  • FIG. 2 is a schematic structural diagram of Embodiment 2 of a transmission apparatus for response information according to the present invention.
  • Embodiments of the present invention provide a transmission device for response information, which is applied to a TDD system, and the device can Integrated in devices such as user devices.
  • the apparatus includes: a receiving module 21, a determining module 22, and a transmitting module 23.
  • the receiving module 21 is configured to receive the PDSCH on the secondary serving cell
  • the determining module 22 is configured to determine a HARQ timing relationship corresponding to the secondary serving cell, where the HARQ timing relationship is the HARQ of the PDSCH and the HARQ-ACK received by the receiving module 21.
  • the timing module is configured to send the HARQ-ACK corresponding to the PDSCH on the primary serving cell according to the HARQ timing relationship determined by the determining module.
  • the primary serving cell is a TDD primary serving cell configured by the base station for the user equipment UE
  • the secondary serving cell is a secondary serving cell in the N TDD secondary serving cells configured by the base station for the UE.
  • the N is a natural number greater than or equal to 1.
  • Embodiments of the present invention are provided corresponding to the device embodiment shown in FIG. 1.
  • the corresponding setting means that for the same information, for example, the PDSCH or the HARQ-ACK corresponding to the PDSCH, two devices are configured as a transmitting end and the other as a receiving end.
  • the device of the embodiment of the present invention may be used to implement the technical solution of the method embodiment shown in FIG. 5, and the implementation principle and the technical effect are similar, and details are not described herein again.
  • the HARQ timing relationship may include: the uplink and downlink configuration of the primary serving cell is any one of uplink and downlink configuration 0, uplink and downlink configuration 1, uplink and downlink configuration 2, and uplink and downlink configuration 6.
  • the uplink subframe of the primary serving cell includes subframe 2, subframe 3, subframe 4, subframe 7, subframe 8, and sub Frame 9, feeding back, on the subframe 2 of the primary serving cell, a subframe corresponding to the secondary serving cell corresponding to the forward offset of the subframe 2 by 5 and/or the forward offset by 6 subframes HARQ-ACK, in the subframe 3 of the primary serving cell, the feedback corresponds to the sub-frame 3 offset 4 forwards and/or the forward offset 5 subframes corresponding to the sub-serving cell sub-frame
  • the HARQ-ACK of the frame is fed back to the subframe 4 of the primary serving cell, and the HARQ-ACK of the subframe corresponding to the secondary serving cell corresponding to the subframe 4 being offset by 4 subframes is forwarded.
  • the subframe 7 of the primary serving cell feeds back HARQ-ACK corresponding to the subframe of the secondary serving cell corresponding to the subframe 7 offset by 6 and/or forwarded by 5 subframes. And transmitting, on the subframe 8 of the primary serving cell, a HARQ of the subframe corresponding to the secondary serving cell corresponding to the subframe 8 offset by 5 forwards and/or forwardly offset by 4 subframes -ACK, The HARQ-ACK of the subframe corresponding to the secondary serving cell corresponding to the subframe 9 forward offset by 4 subframes is fed back on the subframe 9 of the primary serving cell.
  • the uplink subframe of the primary serving cell includes a subframe 2, a subframe 3, a subframe 7, and a subframe 8, in the child of the primary serving cell.
  • Feeding on the frame 2 corresponds to the HARQ-ACK of the subframe of the secondary serving cell corresponding to the subframe 2 offset by 7 and/or offset by 6 subframes forward, in the primary serving cell
  • the sub-frame 3 feedback corresponds to the sub-frame 3 offsetting 6 subframes forward, 5 subframes forward, and 3 subframes forward offset 4 subframes corresponding to at least one subframe of the secondary serving cell
  • the HARQ-ACK, on the subframe 7 of the primary serving cell feeds back the secondary serving cell corresponding to the sub-frame 7 offset by 7 subframes and/or forwarded by 6 subframes.
  • the HARQ-ACK of the subframe is fed back on the subframe 8 of the primary serving cell corresponding to the subframe 8 offset by 6 subframes forward, 5 subframes forward, and 4 subframes forward. Corresponding HARQ-ACK of at least one subframe of the secondary serving cell.
  • the uplink subframe of the primary serving cell includes a subframe 2 and a subframe 7, and the feedback on the subframe 2 of the primary serving cell corresponds to the Subframe 2 is offset by 8 subframes forward, 7 subframes forward, 6 subframes forward, 5 subframes forward, and at least one of which is offset by 4 subframes forward.
  • the HARQ-ACK of the subframe of the secondary serving cell, the feedback on the subframe 7 of the primary serving cell is offset by 8 subframes forward, 7 subframes forward, and forward offset corresponding to the subframe 7 6 subframes, 5 subframes offset forward, and HARQ-ACKs of subframes of at least one of the secondary serving cells corresponding to the subframes forwarded by 4 subframes.
  • the uplink subframe of the primary serving cell includes a subframe 2, a subframe 3, a subframe 4, a subframe 7, and a subframe 8, in which the primary The subframe 2 of the serving cell feeds back a HARQ-ACK corresponding to the subframe of the secondary serving cell corresponding to the subframe 2 offset by 8 and/or forwarded by 7 subframes.
  • the subframe 3 feedback of the primary serving cell corresponds to the HARQ-ACK of the subframe of the secondary serving cell corresponding to the sub-frame 3 offset by 7 and/or forwarded by 6 subframes.
  • the subframe 4 of the primary serving cell feeds back HARQ- of the subframe corresponding to the secondary serving cell corresponding to the subframe 4 being forwardly shifted by 6 subframes and/or forwarded by 5 subframes.
  • ACK in the subframe 7 of the primary serving cell, the HARQ-ACK corresponding to the subframe of the secondary serving cell corresponding to the subframe 7 forwarded by 7 subframes is fed back, in the primary service
  • the subframe 8 of the cell is fed back to the sub-frame 8 which is forward-shifted by 7 subframes, forward-shifted by 6 subframes, and forward-shifted by 5 subframes corresponding to at least one subframe of the secondary serving cell.
  • HARQ-ACK in the subframe 7 of the primary serving cell, the HARQ-ACK corresponding to the subframe of the secondary serving cell corresponding to the subframe 7 forwarded by 7 subframes is fed back, in the primary service
  • the subframe 8 of the cell is fed back to the sub-frame 8 which is forward-shifted by 7 subframe
  • the uplink subframe of the primary serving cell includes an uplink subframe that does not belong to the uplink subframe of the secondary serving cell.
  • the HARQ of the secondary serving cell subframe that can be fed back by the subframe 2 is the uplink and downlink configuration 0
  • the HARQ of the secondary serving cell subframe that can be fed back by the subframe 2 is the uplink and downlink configuration 0
  • the subframe 3 the subframe 7 and the subframe 8 of the primary serving cell
  • the number of the secondary serving cell subframes corresponding to the ACK is 2, and the number of the secondary serving cell subframes corresponding to the HARQ-ACK of the secondary serving cell subframe that can be fed back by the subframe 4 and the subframe 9 of the primary serving cell is 1.
  • the subframe 2 and the subframe 7 of the primary serving cell can feed back the secondary serving cell subframe corresponding to the HARQ-ACK of the secondary serving cell subframe.
  • the number of the secondary serving cell subframe corresponding to the HARQ-ACK of the secondary serving cell subframe in which the subframe 3 and the subframe 8 of the primary serving cell can be fed back is 3.
  • the secondary serving cell subframes corresponding to the HARQ-ACK of the secondary serving cell subframe that can be fed back by the subframe 2 and the subframe 7 of the primary serving cell The number is 5.
  • the subframe 2, the subframe 3, and the subframe 4 of the primary serving cell can feed back the secondary service corresponding to the HARQ-ACK of the secondary serving cell subframe.
  • the number of subframes of the primary serving cell is 2, and the number of secondary serving cell subframes corresponding to the HARQ-ACK of the secondary serving cell subframe that can be fed back by the subframe 7 of the primary serving cell is 1, and the subframe of the primary serving cell 8
  • the number of secondary serving cell subframes corresponding to the HARQ-ACK of the secondary serving cell subframe that can be fed back is 3.
  • the UE is a full-duplex UE
  • the sending module 23 is specifically configured to: determine an M value according to a subframe that sends the HARQ-ACK corresponding to the PDSCH, where the M value is the primary serving cell.
  • the subframe can be fed back the number of the secondary serving cell subframe corresponding to the HARQ-ACK of the secondary serving cell subframe minus the number of the uplink subframe in the secondary serving cell subframe; according to the M And determining a HARQ-ACK feedback table in the channel selection mode, and transmitting, according to the HARQ-ACK feedback table, the HARQ-ACK corresponding to the PDSCH on the primary serving cell.
  • the UE is a full-duplex UE
  • the sending module 23 is specifically configured to: determine an M value according to a subframe that sends the HARQ-ACK corresponding to the PDSCH, where the M value is the primary serving cell.
  • the subframe can be fed back to the secondary service corresponding to the HARQ-ACK of the secondary serving cell subframe.
  • the number of the sub-frames is the value obtained by subtracting the number of uplink sub-frames in the sub-subframe of the secondary serving cell; determining the codebook size of the HARQ-ACK in the physical uplink control channel format 3 mode according to the M value. And transmitting, according to the codebook size of the HARQ-ACK, the HARQ-ACK corresponding to the PDSCH on the primary serving cell.
  • the UE is a half-duplex UE
  • the sending module 23 is specifically configured to: determine an M value according to a subframe that sends the HARQ-ACK corresponding to the PDSCH, where the M value is a sub-subcarrier of the primary serving cell.
  • the frame is capable of feeding back the number of the secondary serving cell subframe corresponding to the HARQ-ACK of the secondary serving cell subframe, subtracting the number of the uplink subframe from the secondary serving cell subframe, and subtracting the secondary serving cell subframe
  • the subframes with the same time are the uplink subframe or the special subframe on the primary serving cell; determining the HARQ-ACK feedback table in the channel selection mode according to the M value; according to the HARQ-ACK feedback table,
  • the HARQ-ACK corresponding to the PDSCH is sent on the primary serving cell.
  • the UE is a half-duplex UE
  • the sending module 23 is specifically configured to: determine an M value according to a subframe that sends the HARQ-ACK corresponding to the PDSCH, where the M value is a sub-subcarrier of the primary serving cell.
  • the frame is capable of feeding back the number of the secondary serving cell subframe corresponding to the HARQ-ACK of the secondary serving cell subframe, subtracting the number of the uplink subframe from the secondary serving cell subframe, and subtracting the secondary serving cell subframe
  • the codebook size of the HARQ-ACK in the uplink control channel format 3 mode; the HARQ-ACK corresponding to the PDSCH is transmitted on the primary serving cell according to the codebook size of the HARQ-ACK.
  • the sending module 23 is further configured to: before the receiving module 21 receives the PDSCH on the secondary serving cell, report the capability information to the base station, where the capability information is used to indicate the Whether the UE supports the HARQ timing relationship.
  • the determining module 22 is further configured to: determine, according to the capability information, that the HARQ timing relationship is supported by itself.
  • the uplink and downlink configuration of the primary serving cell meets at least one of the following conditions:
  • Condition 1 when the uplink and downlink configurations of the primary serving cell are configured as uplink and downlink configuration 0, at least 2, subframe 3, subframe 4, subframe 7, subframe 8, and subframe 9 of the primary serving cell Subframe reduction of the secondary serving cell corresponding to the HARQ-ACK of the subframe of the secondary serving cell fed back by one subframe at least one;
  • Condition 2 when the uplink and downlink configuration of the primary serving cell is the uplink and downlink configuration 1, the secondary service fed back by at least one of the subframe 2, the subframe 3, the subframe 7 and the subframe 8 of the primary serving cell The subframe of the secondary serving cell corresponding to the HARQ-ACK of the subframe of the cell is reduced by at least one.
  • the uplink and downlink configuration of the secondary serving cell is the uplink and downlink configuration 5
  • the uplink and downlink configuration of the primary serving cell meets at least one of the condition one, the second condition, and the third condition.
  • FIG. 3 is a schematic structural diagram of Embodiment 1 of a transmission device for response information according to the present invention.
  • the device is applied to a TDD system and can be a device such as a base station.
  • the device 30 includes a transmitter 31, a processor 32, and a receiver 33.
  • the processor 32 is configured to determine to send a PDSCH to the UE on the secondary serving cell, the transmitter 31 is configured to send the PDSCH determined by the processor 32 to the UE on the secondary serving cell, and the processor 32 is further configured to determine, by the processor, the secondary serving cell.
  • the HARQ timing relationship is the HARQ timing relationship of the PDSCH and the HARQ response information HARQ-ACK; the receiver 33 is configured to receive the HARQ corresponding to the PDSCH on the primary serving cell according to the HARQ timing relationship determined by the processor 32. -ACK.
  • the primary serving cell is a TDD primary serving cell configured by the base station for the UE
  • the secondary serving cell is a secondary serving cell in the N TDD secondary serving cells configured by the base station for the UE, the N Is a natural number greater than or equal to 1.
  • the device of the embodiment of the present invention may be used to implement the technical solution of the method embodiment shown in FIG. 4, and the implementation principle and the technical effect are similar, and details are not described herein again.
  • the transmitter 31, processor 32 and receiver 33 can also be used for the following purposes.
  • the receiver 33 is configured to receive a PDSCH on the secondary serving cell
  • the processor 32 is configured to determine a HARQ timing relationship corresponding to the secondary serving cell, where the HARQ timing relationship is a HARQ timing relationship between the PDSCH and the HARQ-ACK received by the receiver 33.
  • the transmitter 31 is configured to send, according to the HARQ timing relationship determined by the processor 32, the corresponding PDSCH on the primary serving cell.
  • a HARQ-ACK wherein the primary serving cell is a TDD primary serving cell configured by the base station for the user equipment UE, and the secondary serving cell is a secondary serving cell of the N TDD secondary serving cells configured by the base station for the UE , N is a natural number greater than or equal to 1.
  • the device in the embodiment of the present invention may be used to perform the technical solution of the method embodiment shown in FIG. 5, and the implementation principle and the technical effect are similar, and details are not described herein again.
  • FIG. 4 is a schematic flowchart diagram of Embodiment 1 of a method for transmitting response information according to the present invention.
  • the embodiment of the invention provides a method for transmitting response information, which is applied to an LTE TDD system, and can be performed by a transmission device for response information, and the device can be integrated in a device such as a base station. As shown in FIG. 4, the method includes:
  • the PDSCH is sent to the UE on the secondary serving cell, where the secondary serving cell is a secondary serving cell in the N TDD secondary serving cells configured by the base station, and N is a natural number greater than or equal to 1.
  • S104 Receive, according to a HARQ timing relationship, a HARQ-ACK corresponding to a PDSCH, where the primary serving cell is a TDD primary serving cell configured by the base station for the UE.
  • the base station may add or delete a serving cell for the UE, for example, according to the service volume and/or power consumption capability of the UE, Add or delete a serving cell for the UE.
  • RRC Radio Resource Control
  • the UE is configured with more than one serving cell, the UE is served by one primary serving cell and N secondary serving cells, where N is less than or equal to 4, but for the primary serving cell, the uplink and downlink configuration 2, the secondary serving cell
  • the base station may add or delete the secondary serving cell for the UE through RRC signaling, or replace the primary serving cell for the UE by using a handover procedure.
  • the embodiment of the present invention is directed to a TDD CA, that is, all serving cells of the UE are TDD serving cells.
  • the base station may send the PDSCH to the UE on the secondary serving cell, where the secondary serving cell is any one of the N secondary serving cells configured by the base station for the UE.
  • the base station determines a HARQ timing relationship corresponding to the secondary serving cell, where the HARQ timing relationship is a HARQ timing relationship between the PDSCH and the HARQ-ACK.
  • the HARQ timing relationship is not the reference uplink and downlink configuration 5 in the current mechanism, but introduces a new HARQ timing relationship. Further, according to the timing relationship, the HARQ-ACK corresponding to the PDSCH is received on the primary serving cell.
  • the PUCCH channel resource that carries the HARQ-ACK needs to be determined, for example, according to the configuration of the RRC signaling, the PUCCH channel resource that carries the HARQ-ACK is determined, or according to other physical and physical
  • the implicitly corresponding resource of the downlink control channel determines the PUCCH channel resource that carries the HARQ-ACK; and further determines the M value of the HARQ-ACK feedback subframe in the PUCCH format 3 mode, and further determines all HARQs in the feedback subframe.
  • the uplink and downlink configurations of the primary serving cell are defined as any of the uplink and downlink configurations, so that the carrier aggregation that meets the foregoing qualification conditions can be configured in some uplink and downlink configurations of the TDD.
  • the PUCCH format 3 mode can support more than two CAs of the secondary serving cells of the uplink and downlink configuration 5, and can perform the HARQ timing relationship in the foregoing carrier aggregation.
  • the HARQ-ACK that needs to be fed back is distributed in multiple different uplink subframes for feedback, which shortens the feedback delay and improves the feedback performance.
  • Table 4 The corresponding HARQ timing relationship of the secondary serving cell in the case where the primary serving cell adopts different uplink and downlink configurations
  • the following is a description of the HARQ timing relationship of the secondary serving cell in the case where the primary serving cell adopts different uplink and downlink configurations.
  • the HARQ timing relationship provided by the embodiment of the present invention is described in detail below.
  • the HARQ timing relationship includes: the uplink and downlink configuration of the primary serving cell is any one of uplink and downlink configuration 0, uplink and downlink configuration 1, uplink and downlink configuration 2, and uplink and downlink configuration 6.
  • the uplink subframe of the primary serving cell includes subframe 2, subframe 3, subframe 4, subframe 7, subframe 8, and sub Frame 9, feeding back, on the subframe 2 of the primary serving cell, a subframe corresponding to the secondary serving cell corresponding to the forward offset of the subframe 2 by 5 and/or the forward offset by 6 subframes HARQ-ACK, in the subframe 3 of the primary serving cell, the feedback corresponds to the sub-frame 3 offset 4 forwards and/or the forward offset 5 subframes corresponding to the sub-serving cell sub-frame
  • the HARQ-ACK of the frame is fed back to the subframe 4 of the primary serving cell, and the HARQ-ACK of the subframe corresponding to the secondary serving cell corresponding to the subframe 4 being offset by 4 subframes is forwarded.
  • the subframe 7 of the primary serving cell feeds back HARQ-ACK corresponding to the subframe of the secondary serving cell corresponding to the subframe 7 offset by 6 and/or forwarded by 5 subframes. And transmitting, on the subframe 8 of the primary serving cell, a HARQ of the subframe corresponding to the secondary serving cell corresponding to the subframe 8 offset by 5 forwards and/or forwardly offset by 4 subframes -ACK, Returning, on the subframe 9 of the primary serving cell, a HARQ-ACK corresponding to the subframe of the secondary serving cell corresponding to the subframe 9 forward offset by 4 subframes;
  • the uplink subframe of the primary serving cell includes a subframe 2, a subframe 3, a subframe 7, and a subframe 8, in the child of the primary serving cell.
  • Feeding on the frame 2 corresponds to the HARQ-ACK of the subframe of the secondary serving cell corresponding to the subframe 2 offset by 7 and/or offset by 6 subframes forward, in the primary serving cell
  • the sub-frame 3 feedback corresponds to the sub-frame 3 offsetting 6 subframes forward, 5 subframes forward, and 3 subframes forward offset 4 subframes corresponding to at least one subframe of the secondary serving cell
  • the HARQ-ACK, on the subframe 7 of the primary serving cell feeds back the secondary serving cell corresponding to the sub-frame 7 offset by 7 subframes and/or forwarded by 6 subframes.
  • the HARQ-ACK of the subframe is fed back on the subframe 8 of the primary serving cell corresponding to the subframe 8 offset by 6 subframes forward, 5 subframes forward, and 4 subframes forward.
  • the uplink subframe of the primary serving cell includes a subframe 2 and a subframe 7, and the feedback on the subframe 2 of the primary serving cell corresponds to the Subframe 2 is offset by 8 subframes forward, 7 subframes forward, 6 subframes forward, 5 subframes forward, and at least one of which is offset by 4 subframes forward.
  • the HARQ-ACK of the subframe of the secondary serving cell, the feedback on the subframe 7 of the primary serving cell is offset by 8 subframes forward, 7 subframes forward, and forward offset corresponding to the subframe 7 6 subframes, 5 subframes offset forward, and subframes of at least one of the secondary serving cells corresponding to 4 subframes offset forward HARQ-ACK;
  • the uplink subframe of the primary serving cell includes a subframe 2, a subframe 3, a subframe 4, a subframe 7, and a subframe 8, in which the primary The subframe 2 of the serving cell feeds back a HARQ-ACK corresponding to the subframe of the secondary serving cell corresponding to the subframe 2 offset by 8 and/or forwarded by 7 subframes.
  • the subframe 3 feedback of the primary serving cell corresponds to the HARQ-ACK of the subframe of the secondary serving cell corresponding to the sub-frame 3 offset by 7 and/or forwarded by 6 subframes.
  • the subframe 4 of the primary serving cell feeds back HARQ- of the subframe corresponding to the secondary serving cell corresponding to the subframe 4 being forwardly shifted by 6 subframes and/or forwarded by 5 subframes.
  • ACK in the subframe 7 of the primary serving cell, the HARQ-ACK corresponding to the subframe of the secondary serving cell corresponding to the subframe 7 forwarded by 7 subframes is fed back, in the primary service
  • the subframe 8 of the cell is fed back to the sub-frame 8 which is forward-shifted by 7 subframes, forward-shifted by 6 subframes, and forward-shifted by 5 subframes corresponding to at least one subframe of the secondary serving cell.
  • HARQ-ACK in the subframe 7 of the primary serving cell, the HARQ-ACK corresponding to the subframe of the secondary serving cell corresponding to the subframe 7 forwarded by 7 subframes is fed back, in the primary service
  • the subframe 8 of the cell is fed back to the sub-frame 8 which is forward-shifted by 7 subframe
  • the scheme of the embodiment of the present invention only considers that the TDD uplink and downlink configuration of the primary serving cell is a limited one of the seven types of uplink and downlink configurations as shown in Table 1, for example, as shown in Table 4, the uplink and downlink configuration is 0, and the uplink and downlink configuration is 1. Any one of the uplink and downlink configuration 2 and the uplink and downlink configuration 6, that is, the downlink-uplink conversion period is an uplink and downlink configuration with a length of 5 subframes.
  • the secondary serving cell may be any one of the seven uplink and downlink configurations as shown in Table 1, and is not limited herein. However, there is a certain limit to the combination of the primary and secondary cells.
  • the embodiment of the present invention considers the combination scenario limitation, and the uplink subframe of the primary serving cell includes an uplink subframe that does not belong to the uplink subframe of the secondary serving cell, that is, the uplink subframe of the primary serving cell is not used by the uplink subframe of the secondary serving cell.
  • the frame is included.
  • the first uplink subframe of the primary serving cell includes an uplink subframe of the secondary serving cell, for example, the primary and secondary serving cell combinations are (1, 2), (2, 5), (0, 5), or (1, 5) etc.
  • the second set of uplink subframes of the second primary and secondary serving cells are not completely included, for example, the primary and secondary serving cell combinations are (2, 4), or (2, 3), and the like.
  • the subframe 2 the subframe 3, the subframe 4, the subframe 7, the subframe 8, and the subframe 9 of the primary serving cell are uplink subframes, for a total of 6
  • the uplink and downlink configuration of the primary serving cell is the uplink and downlink configuration 1
  • the subframe 2, the subframe 3, the subframe 7 and the subframe 8 of the primary serving cell are uplink subframes, and a total of 4 uplink subframes.
  • Other uplink and downlink configurations are similar to ensure feedback performance and delay.
  • the subframe 2 when the uplink and downlink configuration of the primary serving cell is the uplink and downlink configuration 0, the subframe 2, the subframe 3, the subframe 7 and the subframe 8 of the primary serving cell can be fed back.
  • the number of the secondary serving cell subframes corresponding to the HARQ-ACK of the serving cell subframe is 2, and the secondary services corresponding to the HARQ-ACK of the secondary serving cell subframe that can be fed back by the subframe 4 and the subframe 9 of the primary serving cell
  • the number of the subframes of the secondary serving cell is 1; when the uplink and downlink of the primary serving cell is configured as the uplink and downlink configuration 1, the HARQ-ACK of the secondary serving cell subframe that can be fed back by the subframe 2 and the subframe 7 of the primary serving cell
  • the number of the secondary serving cell subframes is 2, and the number of the secondary serving cell subframes corresponding to the HARQ-ACK of the secondary serving cell subframe that can be fed back by the subframe 3 and the subframe 8 of the primary
  • the number of the secondary serving cell subframes corresponding to the HARQ-ACK of the secondary serving cell subframe is 1, and the secondary serving cell of the secondary serving cell is capable of feeding back the secondary serving cell corresponding to the HARQ-ACK of the secondary serving cell subframe.
  • the number of frames is 3.
  • the uplink and downlink configurations of the primary serving cell are defined as any of the uplink and downlink configurations, so that the carrier aggregation that meets the foregoing qualification conditions can be configured in some uplink and downlink configurations of the TDD.
  • the PUCCH format 3 mode can support more than two CAs of the secondary serving cells of the uplink and downlink configuration 5, and can perform the HARQ timing relationship in the foregoing carrier aggregation.
  • the HARQ-ACK that needs to be fed back is distributed in multiple different uplink subframes for feedback, which shortens the feedback delay and improves the inverse Feed performance.
  • the UE includes a full-duplex UE and a half-duplex UE based on different transmission mode modes.
  • the primary and secondary serving cell combination is (2, 5), or the primary serving cell is the uplink and downlink configuration 2, and the uplink and downlink configuration 5 are multiple secondary serving cells.
  • the UE is a full-duplex UE, that is, the UE supports simultaneous reception and transmission on two serving cells, for example, assuming that the primary serving cell is an uplink subframe, and the secondary serving cell is a downlink subframe, full duplex.
  • the UE may simultaneously transmit information on the primary serving cell and receive information on the secondary serving cell.
  • the S104 may include: determining, according to the subframe that receives the HARQ-ACK corresponding to the PDSCH, the M value, where the M value of the primary serving cell is capable of feeding back the secondary serving cell subframe corresponding to the HARQ-ACK of the secondary serving cell subframe. The number obtained by subtracting the number of uplink subframes in the secondary serving cell subframe is determined; determining a HARQ-ACK feedback table in the channel selection mode according to the M value; and performing the primary service according to the HARQ-ACK feedback table The HARQ-ACK corresponding to the PDSCH is received on the cell.
  • the subframe 2 and the subframe 7 of the primary serving cell of the uplink and downlink configuration 2 are subframes of the HARQ-ACK that feed back the secondary serving cell subframe, and the UE needs to determine the M value of the subframe separately.
  • the sub-frame 2 can feed back the secondary serving cell subframe corresponding to the HARQ-ACK
  • the secondary serving cell subframe includes the digital set ⁇ 8, 7, 6, 5, 4 ⁇
  • the sub-frames of the secondary serving cell corresponding to the uplink and downlink configuration 5 are all downlink subframes or special subframes, specifically the secondary serving cell subframes 4, 5, and 6 , 7 and 8, so no deduction is required, ie the M value is 5.
  • the subframe 7 can feed back the secondary serving cell subframe corresponding to the HARQ-ACK of the secondary serving cell subframe, and the digital service set includes the digital set ⁇ 8, 7, 6, 5, 4
  • the base station and the UE may determine the HARQ-ACK feedback table in the channel selection mode according to the M value; further, receive the HARQ corresponding to the PDSCH on the primary serving cell according to the HARQ-ACK feedback table. -ACK.
  • M value in this example It may be equal to 5, so when the UE is a full-duplex UE, the PUCCH transmission mode in which the primary and secondary serving cell combinations are (2, 5) does not support the channel selection mode.
  • Table 5, Table 6, and Table 7, from the leftmost end of each table the first column indicates the state of the HARQ-ACK, that is, the ACK or the NACK; and the second column indicates the selected channel for transmitting the HARQ-ACK;
  • the third column indicates the state of the modulation symbol for transmitting the HARQ-ACK, where N/A indicates not considered.
  • the secondary serving cell of the uplink and downlink configuration 5 is used for the full-duplex UE, and the secondary serving cell of the uplink and downlink configuration 5, that is, the CA of at most 4 serving cells, may be supported at most;
  • the HARQ-ACK performance and feedback delay of the serving cell are optimized.
  • the UE is a full-duplex UE
  • the S104 may include: determining an M value according to the subframe that receives the HARQ-ACK corresponding to the PDSCH, where the M-subframe of the primary serving cell can feed back the secondary serving cell.
  • the number of the secondary serving cell subframes corresponding to the HARQ-ACK of the subframe is subtracted from the number obtained by the number of uplink subframes in the secondary serving cell; and the HARQ of the PUCCH format 3 mode is determined according to the M value.
  • the codebook size is the number of information bits of the HARQ-ACK. For example, if one transport block of downlink data is scheduled, one bit of HARQ-ACK needs to be fed back; if N transport blocks of downlink data are scheduled, it is necessary to feed back N bits of HARQ-ACK.
  • the difference between the application scenario and the previous application scenario is only that the determined PUCCH transmission mode is different according to the determined M value, and details are not described herein again.
  • the UE is a half-duplex UE, that is, the UE does not support simultaneous reception and transmission on two serving cells.
  • the primary serving cell is an uplink subframe and the secondary serving cell is In the downlink subframe
  • the half-duplex UE may not simultaneously transmit information on the primary serving cell and receive information on the secondary serving cell.
  • the UE may adopt the principle that the priority of the primary serving cell subframe direction is high, that is, the UE may send information on the primary serving cell, but at the same time, the secondary serving cell cannot receive information, and of course, the base station does not use the subframe.
  • the UE schedules downlink information on the secondary serving cell. The reverse is also true. If the primary serving cell is a downlink subframe and the secondary serving cell is an uplink subframe, the UE can receive information on the primary serving cell, but cannot send information on the secondary serving cell at the same time.
  • the S104 may include: determining an M value according to the subframe that receives the HARQ-ACK corresponding to the PDSCH, where the M value of the subframe serving as the primary serving cell can be fed back to the secondary corresponding to the HARQ-ACK of the secondary serving cell subframe.
  • the number of serving cell subframes is the number of uplink subframes in the secondary serving cell, and the number obtained by subtracting the number of downlink subframes in the secondary serving cell subframe, where
  • the subframe with the same frame time is an uplink subframe or a special subframe on the primary serving cell; determining a HARQ-ACK feedback table in the channel selection mode according to the M value; and in the primary serving cell according to the HARQ-ACK feedback table The HARQ-ACK corresponding to the PDSCH is received.
  • the subframe 2 and the subframe 7 of the primary serving cell of the uplink and downlink configuration 2 are subframes of the HARQ-ACK that feed back the secondary serving cell subframe, and the UE needs to determine the M value of the subframe separately.
  • the sub-frame 2 can feed back the secondary serving cell subframe corresponding to the HARQ-ACK, and the secondary serving cell subframe includes the digital set ⁇ 8, 7, 6, 5, 4 ⁇
  • the sub-frames of the secondary serving cell corresponding to the uplink and downlink configuration 5 are all downlink subframes or special subframes, specifically the secondary serving cell subframes 4, 5, and 6 , 7 and 8, but the secondary serving cell subframe corresponding to the number 5 is the subframe 7, and considering that the subframe 7 of the primary serving cell is an uplink subframe, the half-duplex UE is in the subframe 7 of the secondary serving cell.
  • the PDSCH may not be received.
  • the secondary serving cell subframe corresponding to the number 6 is the downlink subframe 6.
  • the subframe 6 of the primary serving cell is a special subframe
  • only one of the foregoing subframes may be subtracted, that is, only the subframe 7 of the secondary serving cell corresponding to the number 5 may be subtracted, and the sub-serving cell corresponding to the number 6 is not subtracted.
  • the M value is 4; the subframe 6 of the secondary serving cell corresponding to the above number 6 may be subtracted, and the subframe 7 of the secondary serving cell corresponding to the number 5 is not subtracted.
  • the value is also 4.
  • the secondary serving cell subframe corresponding to the ACK includes a total of 5 subframes of the digital set ⁇ 8, 7, 6, 5, 4 ⁇ , and the secondary service corresponding to the uplink and downlink configuration 5 can be fed back by the subframe in the digital set.
  • the order of numbers in the digital set is not limited.
  • the base station and the UE may determine the HARQ-ACK feedback table in the channel selection mode according to the M value; further, receive the HARQ corresponding to the PDSCH on the primary serving cell according to the HARQ-ACK feedback table.
  • ACK since the M values are all less than or equal to 4, when the UE is a half-duplex UE, the PUCCH transmission mode in which the primary and secondary serving cell combinations are (2, 5) can support the channel selection mode.
  • the secondary serving cell of the uplink and downlink configuration 5 is used for the half-duplex UE, and the secondary serving cell of the uplink and downlink configuration 5, that is, the CA of at most 5 serving cells, may be supported at most;
  • the HARQ-ACK performance and feedback delay of the serving cell are optimized.
  • the UE is a half-duplex UE
  • the S104 may include: determining, according to the subframe that receives the HARQ-ACK corresponding to the PDSCH, the M value, where the M value of the subframe serving as the primary serving cell can be fed back to the secondary serving cell.
  • the number of the secondary serving cell subframes corresponding to the HARQ-ACK of the subframe is the number of the uplink subframes in the secondary serving cell, and the number of the downlink subframes in the secondary serving cell is obtained.
  • the value of the subframe that is the same as the time of the downlink subframe is an uplink subframe or a special subframe on the primary serving cell; and determines the codebook size of the HARQ-ACK in the PUCCH format 3 mode according to the M value. And receiving the HARQ-ACK corresponding to the PDSCH on the primary serving cell according to the codebook size of the HARQ-ACK.
  • the difference between the application scenario and the previous application scenario is only that the determined PUCCH transmission mode is different according to the determined M value, and details are not described herein again.
  • the primary and secondary serving cell combinations are (1, 2), or the primary serving cell is configured for uplink and downlink configuration 1 and the uplink and downlink configuration 2 are multiple secondary serving cells.
  • the reference uplink and downlink configuration of the secondary serving cell of the uplink and downlink configuration 2 in the primary and secondary serving cell combination (1, 2) is the uplink and downlink configuration of the secondary serving cell itself. 2.
  • the subframe of the HARQ-ACK that feeds back the secondary serving cell is two of the four uplink subframes of the primary serving cell, and each M value is 4;
  • the new timing of Table 8 and Table 4 are consistent for the primary and secondary cell combinations (1, 2), and the method of obtaining the M value is also consistent.
  • the HARQ-ACK of the secondary serving cell is fed back.
  • the subframe is extended to the uplink subframe of all the primary serving cells, and therefore, the balance of the M value among the multiple subframes is optimized, and the performance is improved due to the decrease of the M value.
  • the feedback delay for partial subframes is also optimized. For example, the feedback delay of PDSCH subframe 4 and subframe 9 is shortened by 4 subframes.
  • the CA of the five serving cells can be supported at most. And, the HARQ-ACK performance and feedback delay of the secondary serving cell are optimized.
  • the scenario corresponding to the full-duplex UE is only described herein.
  • the scenario corresponding to the half-duplex UE is similar to that of the foregoing embodiment, and details are not described herein again.
  • the present invention is used to indicate that the UE is a full-duplex UE or a half-duplex UE, and may reuse a single message with the duplex capability reporting in the current system. It can also be independent of the half-duplex capability in the current system.
  • the method may further include: receiving capability information reported by the UE, where the capability information is used to indicate whether the UE supports the HARQ timing relationship; and determining, according to the capability information, the UE support office.
  • the HARQ timing relationship is described.
  • the HARQ timing relationship under the existing TDD CA exists in the current system, it is temporarily called the original HARQ timing relationship; the newly added capability information introduces the above HARQ timing relationship.
  • the reporting of the capability information may be bound or multiplexed with the reporting capability of the TDD-FDD CA, that is, once the UE reports the support of the TDD-FDD CA. The ability, then the UE also has the ability to support the above HARQ timing relationship.
  • it can also be a capability report independent of the TDD-FDD CA capability in the current system.
  • the uplink and downlink configuration of the primary serving cell meets at least one of the following conditions: One:
  • Condition 1 when the uplink and downlink configurations of the primary serving cell are configured as uplink and downlink configuration 0, at least 2, subframe 3, subframe 4, subframe 7, subframe 8, and subframe 9 of the primary serving cell
  • the subframe of the secondary serving cell corresponding to the HARQ-ACK of the subframe of the secondary serving cell fed back by one subframe is reduced by at least one.
  • Condition 2 when the uplink and downlink configuration of the primary serving cell is the uplink and downlink configuration 1, the secondary service fed back by at least one of the subframe 2, the subframe 3, the subframe 7 and the subframe 8 of the primary serving cell The subframe of the secondary serving cell corresponding to the HARQ-ACK of the subframe of the cell is reduced by at least one.
  • Condition 3 When the uplink and downlink of the primary serving cell is configured as the uplink and downlink configuration 2, the HARQ-ACK of the subframe of the secondary serving cell fed back by at least one of the subframe 2 and the subframe 7 of the primary serving cell The subframe of the corresponding secondary serving cell is reduced by at least one.
  • the TDD uplink and downlink configuration of the secondary serving cell may be the uplink and downlink configuration 5.
  • the uplink and downlink configuration of the secondary serving cell meets at least one of the foregoing conditions.
  • the PUCCH format 3 mode can support more than two.
  • the CA of the secondary serving cell of the uplink and downlink configuration 5, and the HARQ timing of the carrier aggregation can be dispersed in a plurality of different uplink subframes for feedback, thereby shortening the feedback delay and improving the feedback. performance.
  • FIG. 5 is a schematic flowchart diagram of Embodiment 2 of a method for transmitting response information according to the present invention.
  • Embodiments of the present invention provide a method for transmitting response information, which is applied to a TDD system, and may be performed by a transmission device that responds to information, and the device may be integrated in a device such as a user equipment. As shown in FIG. 5, the method includes:
  • S501 Receive a PDSCH on the secondary serving cell, where the secondary serving cell is a secondary serving cell in the N TDD secondary serving cells configured by the base station for the UE, where N is a natural number greater than or equal to 1;
  • the method of the embodiment of the present invention corresponds to the above method embodiment.
  • the PDSCH is sent on the secondary serving cell, and the HARQ-ACK corresponding to the PDSCH is received on the primary serving cell according to the HARQ timing relationship.
  • the PDSCH is received on the secondary serving cell. And transmitting the HARQ-ACK corresponding to the PDSCH on the primary serving cell according to the HARQ timing relationship, and the implementation principle and technical effect are similar. Therefore, only a brief description will be given here, and will not be repeated one by one.
  • the HARQ timing relationship includes: the uplink and downlink configuration of the primary serving cell is any one of uplink and downlink configuration 0, uplink and downlink configuration 1, uplink and downlink configuration 2, and uplink and downlink configuration 6.
  • the configuration of the primary serving cell is the different uplink and downlink configuration
  • the subframe of the secondary serving cell corresponding to the HARQ-ACK that can be fed back by the primary serving cell is different, which is specifically described below.
  • the uplink subframe of the primary serving cell includes subframe 2, subframe 3, subframe 4, subframe 7, subframe 8, and subframe 9,
  • the uplink subframe of the primary serving cell includes subframe 2, subframe 3, subframe 4, subframe 7, subframe 8, and subframe 9,
  • the subframe 2 of the primary serving cell HARQ of the subframe corresponding to the secondary serving cell corresponding to the subframe 2 offset by 5 forwards and/or forwardly offset by 6 subframes ACK
  • the subframe 3 of the primary serving cell the HARQ of the subframe corresponding to the secondary serving cell corresponding to the subframe 3 being forwardly shifted by 4 and/or forwardly offset by 5 subframes - ACK
  • the subframe 4 of the primary serving cell feeding back a HARQ-ACK corresponding to the subframe of the secondary serving cell corresponding to the subframe 4 being forwardly shifted by 4 subframes, in the primary
  • the subframe 7 of the serving cell feeds back a HARQ-ACK corresponding to the subframe of the secondary serving cell corresponding to the
  • the subframe 8 of the primary serving cell feeds back a HARQ-ACK corresponding to the subframe of the secondary serving cell corresponding to the sub-frame 8 offset by 5 forwards and/or forwarded by 4 subframes.
  • the subframe 9 of the serving cell feeds back a HARQ-ACK corresponding to the subframe of the secondary serving cell corresponding to the subframe 9 forward offset by 4 subframes.
  • the uplink subframe of the primary serving cell includes a subframe 2, a subframe 3, a subframe 7, and a subframe 8, in the child of the primary serving cell.
  • Feeding on the frame 2 corresponds to the HARQ-ACK of the subframe of the secondary serving cell corresponding to the subframe 2 offset by 7 and/or offset by 6 subframes forward, in the primary serving cell
  • the subframe 3 feedback corresponds to the subframe 3 being shifted forward by 6 subframes, forwardly offset by 5 subframes, and forwardly offset by 4 subframes.
  • the HARQ-ACK of the subframe of the corresponding at least one of the secondary serving cells is forward-shifted by 7 subframes and/or forward offset corresponding to the subframe 7 on the subframe 7 of the primary serving cell.
  • the HARQ-ACK of the subframe of the secondary serving cell corresponding to the 6 subframes is forwarded to the subframe 8 of the primary serving cell, and the forward offset is forwarded by 6 subframes and forward biased.
  • the uplink subframe of the primary serving cell includes a subframe 2 and a subframe 7, and the feedback on the subframe 2 of the primary serving cell corresponds to the Subframe 2 is offset by 8 subframes forward, 7 subframes forward, 6 subframes forward, 5 subframes forward, and at least one of which is offset by 4 subframes forward.
  • the HARQ-ACK of the subframe of the secondary serving cell, the feedback on the subframe 7 of the primary serving cell is offset by 8 subframes forward, 7 subframes forward, and forward offset corresponding to the subframe 7 6 subframes, 5 subframes offset forward, and HARQ-ACKs of subframes of at least one of the secondary serving cells corresponding to the subframes forwarded by 4 subframes.
  • the uplink subframe of the primary serving cell includes a subframe 2, a subframe 3, a subframe 4, a subframe 7, and a subframe 8, in which the primary The subframe 2 of the serving cell feeds back a HARQ-ACK corresponding to the subframe of the secondary serving cell corresponding to the subframe 2 offset by 8 and/or forwarded by 7 subframes.
  • the subframe 3 feedback of the primary serving cell corresponds to the HARQ-ACK of the subframe of the secondary serving cell corresponding to the sub-frame 3 offset by 7 and/or forwarded by 6 subframes.
  • the subframe 4 of the primary serving cell feeds back HARQ- of the subframe corresponding to the secondary serving cell corresponding to the subframe 4 being forwardly shifted by 6 subframes and/or forwarded by 5 subframes.
  • ACK in the subframe 7 of the primary serving cell, the HARQ-ACK corresponding to the subframe of the secondary serving cell corresponding to the subframe 7 forwarded by 7 subframes is fed back, in the primary service
  • the subframe 8 of the cell is fed back to the sub-frame 8 which is forward-shifted by 7 subframes, forward-shifted by 6 subframes, and forward-shifted by 5 subframes corresponding to at least one subframe of the secondary serving cell.
  • HARQ-ACK in the subframe 7 of the primary serving cell, the HARQ-ACK corresponding to the subframe of the secondary serving cell corresponding to the subframe 7 forwarded by 7 subframes is fed back, in the primary service
  • the subframe 8 of the cell is fed back to the sub-frame 8 which is forward-shifted by 7 subframe
  • the uplink subframe of the primary serving cell includes an uplink subframe that does not belong to the uplink subframe of the secondary serving cell.
  • the HARQ of the secondary serving cell subframe that can be fed back by the subframe 2 is 2, the subframe 3, the subframe 7, and the subframe 8 of the primary serving cell
  • the number of the secondary serving cell subframes corresponding to the ACK is 2, and the subframe 4 and the subframe 9 of the primary serving cell
  • the number of secondary serving cell subframes corresponding to the HARQ-ACK of the secondary serving cell subframe that can be fed back is 1.
  • the subframe 2 and the subframe 7 of the primary serving cell can feed back the secondary serving cell subframe corresponding to the HARQ-ACK of the secondary serving cell subframe.
  • the number of the secondary serving cell subframe corresponding to the HARQ-ACK of the secondary serving cell subframe in which the subframe 3 and the subframe 8 of the primary serving cell can be fed back is 3.
  • the secondary serving cell subframes corresponding to the HARQ-ACK of the secondary serving cell subframe that can be fed back by the subframe 2 and the subframe 7 of the primary serving cell The number is 5.
  • the subframe 2, the subframe 3, and the subframe 4 of the primary serving cell can feed back the secondary service corresponding to the HARQ-ACK of the secondary serving cell subframe.
  • the number of subframes of the primary serving cell is 2, and the number of secondary serving cell subframes corresponding to the HARQ-ACK of the secondary serving cell subframe that can be fed back by the subframe 7 of the primary serving cell is 1, and the subframe of the primary serving cell 8
  • the number of secondary serving cell subframes corresponding to the HARQ-ACK of the secondary serving cell subframe that can be fed back is 3.
  • UEs with different transmission modes include, but are not limited to, the following different scenarios.
  • the UE is a full-duplex UE, and S503 may include: determining an M value according to a subframe in which the HARQ-ACK corresponding to the PDSCH is sent, where the M value is a sub-frame feedback of the primary serving cell.
  • the number of the secondary serving cell subframes corresponding to the HARQ-ACK of the secondary serving cell subframe minus the number obtained by the number of uplink subframes in the secondary serving cell subframe; determining the channel selection according to the M value a HARQ-ACK feedback table in a mode; transmitting, according to the HARQ-ACK feedback table, a HARQ-ACK corresponding to the PDSCH on the primary serving cell.
  • the UE is a full-duplex UE, and S503 may include: determining an M value according to a subframe in which the HARQ-ACK corresponding to the PDSCH is sent, where the M value is a feedback of a subframe of the primary serving cell.
  • the number of the secondary serving cell subframes corresponding to the HARQ-ACK of the secondary serving cell subframe minus the number obtained by the number of uplink subframes in the secondary serving cell subframe; determining the physical uplink according to the M value Controlling the codebook size of the HARQ-ACK in the channel format 3 mode; transmitting, according to the codebook size of the HARQ-ACK, the HARQ-ACK corresponding to the PDSCH on the primary serving cell.
  • the UE is a half-duplex UE, and S503 may include: sending the PDSCH according to And determining, by the subframe of the corresponding HARQ-ACK, an M value, where the value of the sub-frame of the primary serving cell can be fed back to the number of the secondary serving cell subframe corresponding to the HARQ-ACK of the secondary serving cell subframe minus the
  • the sub-frame of the secondary serving cell is the number of uplink subframes, and the value obtained by the number of downlink subframes in the subframe of the secondary serving cell is subtracted, wherein the subframe is the same as the subframe of the downlink subframe.
  • an uplink subframe or a special subframe where the same subframe as the downlink subframe time is an uplink subframe or a special subframe on the primary serving cell; according to the M value And determining a HARQ-ACK feedback table in the channel selection mode, and transmitting, according to the HARQ-ACK feedback table, the HARQ-ACK corresponding to the PDSCH on the primary serving cell.
  • the UE is a half-duplex UE, and S503 may include: determining an M value according to a subframe in which the HARQ-ACK corresponding to the PDSCH is sent, where the M value is a sub-frame of the primary serving cell, and the secondary service can be fed back.
  • the number of the secondary serving cell subframes corresponding to the HARQ-ACK of the cell subframe is the number of the uplink subframes in the subframe of the secondary serving cell, and the downlink subframe is subtracted from the subframe of the secondary serving cell.
  • the method may further include: reporting capability information to the base station, where the capability information is used to indicate whether the UE supports the HARQ timing relationship; and determining its own support according to the capability information.
  • the HARQ timing relationship may further include: reporting capability information to the base station, where the capability information is used to indicate whether the UE supports the HARQ timing relationship; and determining its own support according to the capability information.
  • the HARQ timing relationship may further include: reporting capability information to the base station, where the capability information is used to indicate whether the UE supports the HARQ timing relationship; and determining its own support according to the capability information.
  • the HARQ timing relationship may further include: reporting capability information to the base station, where the capability information is used to indicate whether the UE supports the HARQ timing relationship; and determining its own support according to the capability information.
  • the uplink and downlink configuration of the primary serving cell meets at least one of the following conditions: when the uplink and downlink configuration of the primary serving cell is configured as uplink and downlink configuration 0, subframe 2 and subframe 3 of the primary serving cell Subframes of the secondary serving cell corresponding to the HARQ-ACK of the subframe of the secondary serving cell fed back by at least one of the subframe 4, the subframe 7, the subframe 8, and the subframe 9 are reduced by at least one; When the uplink and downlink configuration of the serving cell is the uplink and downlink configuration 1, the HARQ of the subframe of the secondary serving cell fed back by at least one of the subframe 2, the subframe 3, the subframe 7 and the subframe 8 of the primary serving cell The subframe of the secondary serving cell corresponding to the ACK is reduced by at least one; when the uplink and downlink of the primary serving cell is configured as the uplink and downlink configuration 2, at least one of the subframe 2 and the subframe 7 of the primary serving cell is fed back The subframe of the secondary serving cell corresponding to the
  • the uplink and downlink configuration of the secondary serving cell is the uplink and downlink configuration 5
  • the uplink and downlink configuration of the primary serving cell meets at least one of the following conditions:
  • the uplink and downlink configurations of the primary serving cell are uplink and downlink configuration 0, at least one of subframe 2, subframe 3, subframe 4, subframe 7, subframe 8, and subframe 9 of the primary serving cell
  • the sub-frame of the secondary serving cell corresponding to the HARQ-ACK of the sub-frame of the fed secondary serving cell is reduced by one;
  • the sub-frames of the secondary serving cell, the sub-frame 2, the subframe 3, the subframe 7 and the subframe 8 are fed back by the at least one subframe
  • the subframe of the secondary serving cell corresponding to the HARQ-ACK of the frame is reduced by one;
  • the HARQ-ACK corresponding to the subframe of the secondary serving cell fed back by at least one of the subframe 2 and the subframe 7 of the primary serving cell corresponds to The subframe of the secondary serving cell is reduced by one;
  • the secondary subframe 2 When the uplink and downlink configurations of the primary serving cell are the uplink and downlink configuration 6, the secondary subframe 2, the subframe 3, the subframe 4, the subframe 7, and the subframe 8 are fed back by at least one subframe.
  • the subframe of the secondary serving cell corresponding to the HARQ-ACK of the subframe of the serving cell is reduced by one.
  • the uplink and downlink configurations of the primary serving cell are defined as any of the uplink and downlink configurations, so that the carrier aggregation that meets the foregoing qualification conditions can be configured in some uplink and downlink configurations of the TDD.
  • the PUCCH format 3 mode can support more than two CAs of the secondary serving cells of the uplink and downlink configuration 5, and can perform the HARQ timing relationship in the foregoing carrier aggregation.
  • the HARQ-ACK that needs to be fed back is distributed in multiple different uplink subframes for feedback, which shortens the feedback delay and improves the feedback performance.
  • the aforementioned program can be stored in a computer readable storage medium.
  • the program when executed, performs the steps including the foregoing method embodiments; and the foregoing storage medium includes various media that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Abstract

本发明实施例提供一种应答信息的传输方法、装置及设备,该装置包括:发送模块用于在辅服务小区上向UE发送PDSCH;确定模块,用于确定辅服务小区对应的HARQ时序关系,该HARQ时序关系为PDSCH与HARQ-ACK的HARQ时序关系;接收模块,用于根据确定模块确定的HARQ时序关系,在主服务小区上接收PDSCH所对应的HARQ-ACK;其中,主服务小区为基站为UE配置的TDD主服务小区,辅服务小区为基站为UE配置的N个TDD辅服务小区中的辅服务小区,N为大于或等于1的自然数。本发明实施例实现在LTE TDD系统某些上下行配置下,可以给UE配置更多的载波,且缩短应答信息的反馈时延并提高反馈性能。

Description

应答信息的传输方法、装置及设备 技术领域
本发明实施例涉及通信技术,尤其涉及一种应答信息的传输方法、装置及设备。
背景技术
长期演进(Long Term Evolution,简称:LTE)系统的时分双工(Time Division Duplex,简称:TDD)制式,即LTE TDD系统支持载波聚合(Carrier Aggregation,简称:CA)技术,可以把多个成员载波或服务小区同时分给一个用户设备(User equipment,简称:UE)以支持更高的数据速率传输。
现有技术中,最多可以给一个UE配置5个载波或服务小区。但是,如果某个载波或服务小区的配置是上下行配置5,就会限制应答信息的传输。例如,对于物理上行控制信道(Physical Uplink Control Channel,简称:PUCCH)格式3的传输模式,其支持的应答信息最大比特数为20,现有技术中,在载波聚合的场景下有一个载波是在某些TDD上下行配置下或该载波在某些参考上下行配置下,最多可以给UE配置两个载波。此外,在某些TDD参考配置下,辅服务小区的所有下行子帧对应的应答信息都在一个或少数几个上行子帧上反馈,导致反馈时延增加且反馈性能下降。
发明内容
本发明实施例提供一种应答信息的传输方法、装置及设备,以实现在LTE TDD系统某些上下行配置下,可以给UE配置更多的载波,且缩短应答信息的反馈时延并提高反馈性能。
第一方面,本发明实施例提供一种应答信息的传输装置,应用于时分双工TDD系统,所述装置包括:
确定模块,用于确定在辅服务小区上向用户设备UE发送物理下行共享信道PDSCH;
发送模块,用于在所述辅服务小区上向所述UE发送所述确定模块确定 的所述PDSCH;
所述确定模块,还用于确定所述辅服务小区对应的混合自动重传请求HARQ时序关系,所述HARQ时序关系为所述PDSCH与HARQ应答信息HARQ-ACK的HARQ时序关系;
接收模块,用于根据所述确定模块确定的所述HARQ时序关系,在主服务小区上接收所述PDSCH所对应的HARQ-ACK;
其中,所述主服务小区为基站为所述UE配置的TDD主服务小区,所述辅服务小区为所述基站为所述UE配置的N个TDD辅服务小区中的辅服务小区,所述N为大于或等于1的自然数。
在第一方面的第一种可能的实现方式中,所述HARQ时序关系包括:
所述主服务小区的上下行配置为上下行配置0、上下行配置1、上下行配置2和上下行配置6中任一个,其中,
当所述主服务小区的上下行配置为上下行配置0时,所述主服务小区的上行子帧包括子帧2、子帧3、子帧4、子帧7、子帧8和子帧9,在所述主服务小区的子帧2上反馈对应于所述子帧2向前偏移5个和/或向前偏移6个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧3反馈对应于所述子帧3向前偏移4个和/或向前偏移5个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧4上反馈对应于所述子帧4向前偏移4个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧7上反馈对应于所述子帧7向前偏移6个和/或向前偏移5个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧8上反馈对应于所述子帧8向前偏移5个和/或向前偏移4个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧9上反馈对应于所述子帧9向前偏移4个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK;
当所述主服务小区的上下行配置为上下行配置1时,所述主服务小区的上行子帧包括子帧2、子帧3、子帧7和子帧8,在所述主服务小区的子帧2上反馈对应于所述子帧2向前偏移7个和/或向前偏移6个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧3反馈对应于所述子帧3向前偏移6个子帧、向前偏移5个子帧和向前偏移4个子帧后所 对应的至少一个所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧7上反馈对应于所述子帧7向前偏移7个子帧和/或向前偏移6个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧8上反馈对应于所述子帧8向前偏移6个子帧、向前偏移5个子帧和向前偏移4个子帧后所对应的至少一个所述辅服务小区的子帧的HARQ-ACK;
当所述主服务小区的上下行配置为上下行配置2时,所述主服务小区的上行子帧包括子帧2和子帧7,在所述主服务小区的子帧2上反馈对应于所述子帧2向前偏移8个子帧、向前偏移7个子帧、向前偏移6个子帧、向前偏移5个子帧和向前偏移4个子帧后所对应的至少一个所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧7上反馈对应于所述子帧7向前偏移8个子帧、向前偏移7个子帧、向前偏移6个子帧、向前偏移5个子帧和向前偏移4个子帧后所对应的至少一个所述辅服务小区的子帧的HARQ-ACK;
当所述主服务小区的上下行配置为上下行配置6时,所述主服务小区的上行子帧包括子帧2、子帧3、子帧4、子帧7和子帧8,在所述主服务小区的子帧2上反馈对应于所述子帧2向前偏移8个和/或向前偏移7个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧3反馈对应于所述子帧3向前偏移7个和/或向前偏移6个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧4上反馈对应于所述子帧4向前偏移6个子帧和/或向前偏移5个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧7上反馈对应于所述子帧7向前偏移7个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧8上反馈对应于所述子帧8向前偏移7个、向前偏移6个子帧和向前偏移5个后所对应的至少一个所述辅服务小区的子帧的HARQ-ACK。
结合第一方面或第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,所述主服务小区的上行子帧包含不属于所述辅服务小区的上行子帧的上行子帧。
结合第一方面或第一方面的第一种或第二种可能的实现方式,在第一方面的第三种可能的实现方式中,当所述主服务小区的上下行配置为上下行配 置0时,所述主服务小区的子帧2、子帧3、子帧7和子帧8能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为2,所述主服务小区的子帧4和子帧9能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为1;
当所述主服务小区的上下行配置为上下行配置1时,所述主服务小区的子帧2和子帧7能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为2,所述主服务小区的子帧3和子帧8能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为3;
当所述主服务小区的上下行配置为上下行配置2时,所述主服务小区的子帧2和子帧7能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为5;
当所述主服务小区的上下行配置为上下行配置6时,所述主服务小区的子帧2、子帧3和子帧4能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为2,所述主服务小区的子帧7能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为1,所述主服务小区的子帧8能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为3。
结合第一方面的第三种可能的实现方式,在第一方面的第四种可能的实现方式中,所述UE为全双工UE,所述接收模块具体用于:
根据接收所述PDSCH对应的HARQ-ACK的子帧确定M值,其中,所述M值为所述主服务小区的子帧能够反馈辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数减去所述辅服务小区子帧中是上行子帧的个数所获得的数值;
根据所述M值,确定信道选择模式下的HARQ-ACK反馈表格;
根据所述HARQ-ACK反馈表格,在所述主服务小区上接收所述PDSCH所对应的HARQ-ACK。
结合第一方面的第三种可能的实现方式,在第一方面的第五种可能的实现方式中,所述UE为全双工UE,所述接收模块具体用于:
根据接收所述PDSCH对应的HARQ-ACK的子帧确定M值,所述M值为所述主服务小区的子帧能够反馈辅服务小区子帧的HARQ-ACK所对应的 辅服务小区子帧个数减去所述辅服务小区子帧中是上行子帧的个数所获得的数值;
根据所述M值,确定物理上行控制信道格式3模式下的HARQ-ACK的码本大小;
根据所述HARQ-ACK的码本大小,在所述主服务小区上接收所述PDSCH所对应的HARQ-ACK。
结合第一方面的第三种可能的实现方式,在第一方面的第六种可能的实现方式中,所述UE为半双工UE,所述接收模块具体用于:
根据接收所述PDSCH对应的HARQ-ACK的子帧确定M值,所述M值为所述主服务小区的子帧能够反馈辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数减去所述辅服务小区子帧中是上行子帧的个数,再减去所述辅服务小区子帧中是下行子帧的个数所获得的数值,其中,与所述下行子帧时刻相同的子帧在所述主服务小区上是上行子帧或特殊子帧;
根据所述M值,确定信道选择模式下的HARQ-ACK反馈表格;
根据所述HARQ-ACK反馈表格,在所述主服务小区上接收所述PDSCH所对应的HARQ-ACK。
结合第一方面的第三种可能的实现方式,在第一方面的第七种可能的实现方式中,所述UE为半双工UE,所述接收模块具体用于:
根据接收所述PDSCH对应的HARQ-ACK的子帧确定M值,所述M值为所述主服务小区的子帧能够反馈辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数减去所述辅服务小区子帧中是上行子帧的个数,再减去所述辅服务小区子帧中是下行子帧的个数所获得的数值,其中,与所述下行子帧时刻相同的子帧在所述主服务小区上是上行子帧或特殊子帧;
根据所述M值,确定物理上行控制信道格式3模式下的HARQ-ACK的码本大小;
根据所述HARQ-ACK的码本大小,在所述主服务小区上接收所述PDSCH所对应的HARQ-ACK。
结合第一方面的第三种至第七种可能的实现方式中任意一种,在第一方面的第八种可能的实现方式中,所述接收模块还用于:
在所述发送模块在所述辅服务小区上向所述UE发送所述确定模块确定 的所述PDSCH之前,接收所述UE上报的能力信息,所述能力信息用于指示所述UE是否支持所述HARQ时序关系;
所述确定模块还用于:
根据所述能力信息,确定所述UE支持所述HARQ时序关系。
结合第一方面的第一种至第八种可能的实现方式中任意一种,在第一方面的第九种可能的实现方式中,所述主服务小区的上下行配置满足下述条件中的至少一个:
当所述主服务小区的上下行配置为上下行配置0时,所述主服务小区的子帧2、子帧3、子帧4、子帧7、子帧8和子帧9中至少一个子帧所反馈的辅服务小区的子帧的HARQ-ACK所对应的辅服务小区的子帧减少至少一个;
当所述主服务小区的上下行配置为上下行配置1时,所述主服务小区的子帧2、子帧3、子帧7和子帧8中至少一个子帧所反馈的辅服务小区的子帧的HARQ-ACK所对应的辅服务小区的子帧减少至少一个;
当所述主服务小区的上下行配置为上下行配置2时,所述主服务小区的子帧2和子帧7中至少一个子帧所反馈的辅服务小区的子帧的HARQ-ACK所对应的辅服务小区的子帧减少至少一个;
当所述主服务小区的上下行配置为上下行配置6时,所述主服务小区的子帧2、子帧3、子帧4、子帧7和子帧8中至少一个子帧所反馈的辅服务小区的子帧的HARQ-ACK所对应的辅服务小区的子帧减少至少一个。
结合第一方面的第一种至第八种可能的实现方式中任意一种,在第一方面的第十种可能的实现方式中,当所述辅服务小区的上下行配置为上下行配置5时,
所述主服务小区的上下行配置满足下述条件中的至少一个:
当所述主服务小区的上下行配置为上下行配置0时,所述主服务小区的子帧2、子帧3、子帧4、子帧7、子帧8和子帧9中至少一个子帧所反馈的辅服务小区的子帧的HARQ-ACK所对应的辅服务小区的子帧减少一个;
当所述主服务小区的上下行配置为上下行配置1时,所述主服务小区的子帧2、子帧3、子帧7和子帧8中至少一个子帧所反馈的辅服务小区的子帧的HARQ-ACK所对应的辅服务小区的子帧减少一个;
当所述主服务小区的上下行配置为上下行配置2时,所述主服务小区的 子帧2和子帧7中至少一个子帧所反馈的辅服务小区的子帧的HARQ-ACK所对应的辅服务小区的子帧减少一个;
当所述主服务小区的上下行配置为上下行配置6时,所述主服务小区的子帧2、子帧3、子帧4、子帧7和子帧8中至少一个子帧所反馈的辅服务小区的子帧的HARQ-ACK所对应的辅服务小区的子帧减少一个。
第二方面,本发明实施例提供一种应答信息的传输装置,应用于时分双工TDD系统,所述装置包括:
接收模块,用于在辅服务小区上接收物理下行共享信道PDSCH;
确定模块,用于确定所述辅服务小区对应的混合自动重传请求HARQ时序关系,所述HARQ时序关系为所述接收模块接收的PDSCH与HARQ应答信息HARQ-ACK的HARQ时序关系;
发送模块,用于根据所述确定模块确定的所述HARQ时序关系,在主服务小区上发送所述PDSCH所对应的HARQ-ACK;
其中,所述主服务小区为基站为用户设备UE配置的TDD主服务小区,所述辅服务小区为所述基站为所述UE配置的N个TDD辅服务小区中的辅服务小区,所述N为大于或等于1的自然数。
在第二方面的第一种可能的实现方式中,所述HARQ时序关系包括:
所述主服务小区的上下行配置为上下行配置0、上下行配置1、上下行配置2和上下行配置6中任一个,其中,
当所述主服务小区的上下行配置为上下行配置0时,所述主服务小区的上行子帧包括子帧2、子帧3、子帧4、子帧7、子帧8和子帧9,在所述主服务小区的子帧2上反馈对应于所述子帧2向前偏移5个和/或向前偏移6个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧3反馈对应于所述子帧3向前偏移4个和/或向前偏移5个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧4上反馈对应于所述子帧4向前偏移4个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧7上反馈对应于所述子帧7向前偏移6个和/或向前偏移5个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧8上反馈对应于所述子帧8向前偏移5个和/或向前偏移4个子帧后所对应的所述辅服务小区的子帧的 HARQ-ACK,在所述主服务小区的子帧9上反馈对应于所述子帧9向前偏移4个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK;
当所述主服务小区的上下行配置为上下行配置1时,所述主服务小区的上行子帧包括子帧2、子帧3、子帧7和子帧8,在所述主服务小区的子帧2上反馈对应于所述子帧2向前偏移7个和/或向前偏移6个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧3反馈对应于所述子帧3向前偏移6个子帧、向前偏移5个子帧和向前偏移4个子帧后所对应的至少一个所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧7上反馈对应于所述子帧7向前偏移7个子帧和/或向前偏移6个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧8上反馈对应于所述子帧8向前偏移6个子帧、向前偏移5个子帧和向前偏移4个子帧后所对应的至少一个所述辅服务小区的子帧的HARQ-ACK;
当所述主服务小区的上下行配置为上下行配置2时,所述主服务小区的上行子帧包括子帧2和子帧7,在所述主服务小区的子帧2上反馈对应于所述子帧2向前偏移8个子帧、向前偏移7个子帧、向前偏移6个子帧、向前偏移5个子帧和向前偏移4个子帧后所对应的至少一个所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧7上反馈对应于所述子帧7向前偏移8个子帧、向前偏移7个子帧、向前偏移6个子帧、向前偏移5个子帧和向前偏移4个子帧后所对应的至少一个所述辅服务小区的子帧的HARQ-ACK;
当所述主服务小区的上下行配置为上下行配置6时,所述主服务小区的上行子帧包括子帧2、子帧3、子帧4、子帧7和子帧8,在所述主服务小区的子帧2上反馈对应于所述子帧2向前偏移8个和/或向前偏移7个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧3反馈对应于所述子帧3向前偏移7个和/或向前偏移6个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧4上反馈对应于所述子帧4向前偏移6个子帧和/或向前偏移5个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧7上反馈对应于所述子帧7向前偏移7个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧8上反馈对应于所述子帧8向前偏移7个、向前偏移6 个子帧和向前偏移5个后所对应的至少一个所述辅服务小区的子帧的HARQ-ACK。
结合第二方面或第二方面的第一种可能的实现方式,在第二方面的第二种可能的实现方式中,所述主服务小区的上行子帧包含不属于所述辅服务小区的上行子帧的上行子帧。
结合第二方面或第二方面的第一种或第二种可能的实现方式,在第二方面的第三种可能的实现方式中,当所述主服务小区的上下行配置为上下行配置0时,所述主服务小区的子帧2、子帧3、子帧7和子帧8能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为2,所述主服务小区的子帧4和子帧9能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为1;
当所述主服务小区的上下行配置为上下行配置1时,所述主服务小区的子帧2和子帧7能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为2,所述主服务小区的子帧3和子帧8能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为3;
当所述主服务小区的上下行配置为上下行配置2时,所述主服务小区的子帧2和子帧7能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为5;
当所述主服务小区的上下行配置为上下行配置6时,所述主服务小区的子帧2、子帧3和子帧4能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为2,所述主服务小区的子帧7能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为1,所述主服务小区的子帧8能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为3。
结合第二方面的第三种可能的实现方式,在第二方面的第四种可能的实现方式中,所述UE为全双工UE,所述发送模块具体用于:
根据发送所述PDSCH对应的HARQ-ACK的子帧确定M值,其中,所述M值为所述主服务小区的子帧能够反馈辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数减去所述辅服务小区子帧中是上行子帧的个数所获得的数值;
根据所述M值,确定信道选择模式下的HARQ-ACK反馈表格;
根据所述HARQ-ACK反馈表格,在所述主服务小区上发送所述PDSCH所对应的HARQ-ACK。
结合第二方面的第三种可能的实现方式,在第二方面的第五种可能的实现方式中,所述UE为全双工UE,所述发送模块具体用于:
根据发送所述PDSCH对应的HARQ-ACK的子帧确定M值,其中,所述M值为所述主服务小区的子帧能够反馈辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数减去所述辅服务小区子帧中是上行子帧的个数所获得的数值;
根据所述M值,确定物理上行控制信道格式3模式下的HARQ-ACK的码本大小;
根据所述HARQ-ACK的码本大小,在所述主服务小区上发送所述PDSCH所对应的HARQ-ACK。
结合第二方面的第三种可能的实现方式,在第二方面的第六种可能的实现方式中,所述UE为半双工UE,所述发送模块具体用于:
根据发送所述PDSCH对应的HARQ-ACK的子帧确定M值,所述M值为所述主服务小区的子帧能够反馈辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数减去所述辅服务小区子帧中是上行子帧的个数,再减去所述辅服务小区子帧中是下行子帧的个数所获得的数值,其中,与所述下行子帧时刻相同的子帧在所述主服务小区上是上行子帧或特殊子帧,其中,与所述下行子帧时刻相同的子帧在所述主服务小区上是上行子帧或特殊子帧;
根据所述M值,确定信道选择模式下的HARQ-ACK反馈表格;
根据所述HARQ-ACK反馈表格,在所述主服务小区上发送所述PDSCH所对应的HARQ-ACK。
结合第二方面的第三种可能的实现方式,在第二方面的第七种可能的实现方式中,所述UE为半双工UE,所述发送模块具体用于:
根据发送所述PDSCH对应的HARQ-ACK的子帧确定M值,所述M值为所述主服务小区的子帧能够反馈辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数减去所述辅服务小区子帧中是上行子帧的个数,再减去所述辅服务小区子帧中是下行子帧的个数所获得的数值,其中,与所述下行 子帧时刻相同的子帧在所述主服务小区上是上行子帧或特殊子帧;
根据所述M值,确定物理上行控制信道格式3模式下的HARQ-ACK的码本大小;
根据所述HARQ-ACK的码本大小,在所述主服务小区上发送所述PDSCH所对应的HARQ-ACK。
结合第二方面的第三种至第七种可能的实现方式中任意一种,在第二方面的第八种可能的实现方式中,所述发送模块还用于:
在所述接收模块在所述辅服务小区上接收所述PDSCH之前,向所述基站上报能力信息,所述能力信息用于指示所述UE是否支持所述HARQ时序关系;
所述确定模块还用于:
根据所述能力信息,确定其自身支持所述HARQ时序关系。
结合第二方面的第一种至第八种可能的实现方式中任意一种,在第二方面的第九种可能的实现方式中,所述主服务小区的上下行配置满足下述条件中的至少一个:
当所述主服务小区的上下行配置为上下行配置0时,所述主服务小区的子帧2、子帧3、子帧4、子帧7、子帧8和子帧9中至少一个子帧所反馈的辅服务小区的子帧的HARQ-ACK所对应的辅服务小区的子帧减少至少一个;
当所述主服务小区的上下行配置为上下行配置1时,所述主服务小区的子帧2、子帧3、子帧7和子帧8中至少一个子帧所反馈的辅服务小区的子帧的HARQ-ACK所对应的辅服务小区的子帧减少至少一个;
当所述主服务小区的上下行配置为上下行配置2时,所述主服务小区的子帧2和子帧7中至少一个子帧所反馈的辅服务小区的子帧的HARQ-ACK所对应的辅服务小区的子帧减少至少一个;
当所述主服务小区的上下行配置为上下行配置6时,所述主服务小区的子帧2、子帧3、子帧4、子帧7和子帧8中至少一个子帧所反馈的辅服务小区的子帧的HARQ-ACK所对应的辅服务小区的子帧减少至少一个。
结合第二方面的第一种至第八种可能的实现方式中任意一种,在第二方面的第十种可能的实现方式中,当所述辅服务小区的上下行配置为上下行配置5时,
所述主服务小区的上下行配置满足下述条件中的至少一个:
当所述主服务小区的上下行配置为上下行配置0时,所述主服务小区的子帧2、子帧3、子帧4、子帧7、子帧8和子帧9中至少一个子帧所反馈的辅服务小区的子帧的HARQ-ACK所对应的辅服务小区的子帧减少一个;
当所述主服务小区的上下行配置为上下行配置1时,所述主服务小区的子帧2、子帧3、子帧7和子帧8中至少一个子帧所反馈的辅服务小区的子帧的HARQ-ACK所对应的辅服务小区的子帧减少一个;
当所述主服务小区的上下行配置为上下行配置2时,所述主服务小区的子帧2和子帧7中至少一个子帧所反馈的辅服务小区的子帧的HARQ-ACK所对应的辅服务小区的子帧减少一个;
当所述主服务小区的上下行配置为上下行配置6时,所述主服务小区的子帧2、子帧3、子帧4、子帧7和子帧8中至少一个子帧所反馈的辅服务小区的子帧的HARQ-ACK所对应的辅服务小区的子帧减少一个。
第三方面,本发明实施例提供一种应答信息的传输设备,应用于时分双工TDD系统,所述设备包括:处理器,发射器以及接收器;
所述处理器,用于确定在辅服务小区上向用户设备UE发送物理下行共享信道PDSCH;
所述发射器,用于在所述辅服务小区上向所述UE发送所述处理器确定的所述PDSCH;
所述处理器,还用于确定所述辅服务小区对应的混合自动重传请求HARQ时序关系,所述HARQ时序关系为所述PDSCH与HARQ应答信息HARQ-ACK的HARQ时序关系;
所述接收器,用于根据所述所述处理器确定的HARQ时序关系,在主服务小区上接收所述PDSCH所对应的HARQ-ACK;
其中,所述主服务小区为基站为所述UE配置的TDD主服务小区,所述辅服务小区为所述基站为所述UE配置的N个TDD辅服务小区中的辅服务小区,所述N为大于或等于1的自然数。
第四方面,本发明实施例提供一种应答信息的传输设备,应用于时分双工TDD系统,所述设备包括:处理器,接收器以及发射器;
所述接收器,用于在辅服务小区上接收物理下行共享信道PDSCH;
所述处理器,用于确定所述辅服务小区对应的混合自动重传请求HARQ时序关系,所述HARQ时序关系为所述接收器接收的PDSCH与HARQ应答信息HARQ-ACK的HARQ时序关系;
所述发射器,用于根据所述处理器确定的所述HARQ时序关系,在主服务小区上发送所述PDSCH所对应的HARQ-ACK;
其中,所述主服务小区为基站为用户设备UE配置的TDD主服务小区,所述辅服务小区为所述基站为所述UE配置的N个TDD辅服务小区中的辅服务小区,所述N为大于或等于1的自然数。
第五方面,本发明实施例提供一种应答信息的传输方法,应用于时分双工TDD系统,所述方法包括:
确定在辅服务小区上向用户设备UE发送物理下行共享信道PDSCH;
在所述辅服务小区上向所述UE发送所述PDSCH;
确定所述辅服务小区对应的混合自动重传请求HARQ时序关系,所述HARQ时序关系为所述PDSCH与HARQ应答信息HARQ-ACK的HARQ时序关系;
根据所述HARQ时序关系,在主服务小区上接收所述PDSCH所对应的HARQ-ACK;
其中,所述主服务小区为基站为所述UE配置的TDD主服务小区,所述辅服务小区为所述基站为所述UE配置的N个TDD辅服务小区中的辅服务小区,所述N为大于或等于1的自然数。
在第五方面的第一种可能的实现方式中,所述HARQ时序关系包括:
所述主服务小区的上下行配置为上下行配置0、上下行配置1、上下行配置2和上下行配置6中任一个,其中,
当所述主服务小区的上下行配置为上下行配置0时,所述主服务小区的上行子帧包括子帧2、子帧3、子帧4、子帧7、子帧8和子帧9,在所述主服务小区的子帧2上反馈对应于所述子帧2向前偏移5个和/或向前偏移6个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧3反馈对应于所述子帧3向前偏移4个和/或向前偏移5个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧4上反馈对应于所述子帧4向前偏移4个子帧后所对应的所述辅服务小区的子帧的 HARQ-ACK,在所述主服务小区的子帧7上反馈对应于所述子帧7向前偏移6个和/或向前偏移5个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧8上反馈对应于所述子帧8向前偏移5个和/或向前偏移4个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧9上反馈对应于所述子帧9向前偏移4个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK;
当所述主服务小区的上下行配置为上下行配置1时,所述主服务小区的上行子帧包括子帧2、子帧3、子帧7和子帧8,在所述主服务小区的子帧2上反馈对应于所述子帧2向前偏移7个和/或向前偏移6个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧3反馈对应于所述子帧3向前偏移6个子帧、向前偏移5个子帧和向前偏移4个子帧后所对应的至少一个所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧7上反馈对应于所述子帧7向前偏移7个子帧和/或向前偏移6个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧8上反馈对应于所述子帧8向前偏移6个子帧、向前偏移5个子帧和向前偏移4个子帧后所对应的至少一个所述辅服务小区的子帧的HARQ-ACK;
当所述主服务小区的上下行配置为上下行配置2时,所述主服务小区的上行子帧包括子帧2和子帧7,在所述主服务小区的子帧2上反馈对应于所述子帧2向前偏移8个子帧、向前偏移7个子帧、向前偏移6个子帧、向前偏移5个子帧和向前偏移4个子帧后所对应的至少一个所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧7上反馈对应于所述子帧7向前偏移8个子帧、向前偏移7个子帧、向前偏移6个子帧、向前偏移5个子帧和向前偏移4个子帧后所对应的至少一个所述辅服务小区的子帧的HARQ-ACK;
当所述主服务小区的上下行配置为上下行配置6时,所述主服务小区的上行子帧包括子帧2、子帧3、子帧4、子帧7和子帧8,在所述主服务小区的子帧2上反馈对应于所述子帧2向前偏移8个和/或向前偏移7个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧3反馈对应于所述子帧3向前偏移7个和/或向前偏移6个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧4上反馈对应于所 述子帧4向前偏移6个子帧和/或向前偏移5个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧7上反馈对应于所述子帧7向前偏移7个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧8上反馈对应于所述子帧8向前偏移7个、向前偏移6个子帧和向前偏移5个后所对应的至少一个所述辅服务小区的子帧的HARQ-ACK。
结合第五方面或第五方面的第一种可能的实现方式,在第五方面的第二种可能的实现方式中,所述主服务小区的上行子帧包含不属于所述辅服务小区的上行子帧的上行子帧。
结合第五方面或第五方面的第一种或第二种可能的实现方式,在第五方面的第三种可能的实现方式中,当所述主服务小区的上下行配置为上下行配置0时,所述主服务小区的子帧2、子帧3、子帧7和子帧8能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为2,所述主服务小区的子帧4和子帧9能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为1;
当所述主服务小区的上下行配置为上下行配置1时,所述主服务小区的子帧2和子帧7能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为2,所述主服务小区的子帧3和子帧8能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为3;
当所述主服务小区的上下行配置为上下行配置2时,所述主服务小区的子帧2和子帧7能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为5;
当所述主服务小区的上下行配置为上下行配置6时,所述主服务小区的子帧2、子帧3和子帧4能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为2,所述主服务小区的子帧7能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为1,所述主服务小区的子帧8能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为3。
结合第五方面的第三种可能的实现方式,在第五方面的第四种可能的实现方式中,所述UE为全双工UE,所述根据所述HARQ时序关系,在主服 务小区上接收所述PDSCH所对应的HARQ-ACK,包括:
根据接收所述PDSCH对应的HARQ-ACK的子帧确定M值,其中,所述M值为所述主服务小区的子帧能够反馈辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数减去所述辅服务小区子帧中是上行子帧的个数所获得的数值;
根据所述M值,确定信道选择模式下的HARQ-ACK反馈表格;
根据所述HARQ-ACK反馈表格,在所述主服务小区上接收所述PDSCH所对应的HARQ-ACK。
结合第五方面的第三种可能的实现方式,在第五方面的第五种可能的实现方式中,所述UE为全双工UE,所述根据所述HARQ时序关系,在主服务小区上接收所述PDSCH所对应的HARQ-ACK,包括:
根据接收所述PDSCH对应的HARQ-ACK的子帧确定M值,所述M值为所述主服务小区的子帧能够反馈辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数减去所述辅服务小区子帧中是上行子帧的个数所获得的数值;
根据所述M值,确定物理上行控制信道格式3模式下的HARQ-ACK的码本大小;
根据所述HARQ-ACK的码本大小,在所述主服务小区上接收所述PDSCH所对应的HARQ-ACK。
结合第五方面的第三种可能的实现方式,在第五方面的第六种可能的实现方式中,所述UE为半双工UE,所述根据所述HARQ时序关系,在主服务小区上接收所述PDSCH所对应的HARQ-ACK,包括:
根据接收所述PDSCH对应的HARQ-ACK的子帧确定M值,所述M值为所述主服务小区的子帧能够反馈辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数减去所述辅服务小区子帧中是上行子帧的个数,再减去所述辅服务小区子帧中是下行子帧的个数所获得的数值,其中,与所述下行子帧时刻相同的子帧在所述主服务小区上是上行子帧或特殊子帧;
根据所述M值,确定信道选择模式下的HARQ-ACK反馈表格;
根据所述HARQ-ACK反馈表格,在所述主服务小区上接收所述PDSCH所对应的HARQ-ACK。
结合第五方面的第三种可能的实现方式,在第五方面的第七种可能的实现方式中,所述UE为半双工UE,所述根据所述HARQ时序关系,在主服务小区上接收所述PDSCH所对应的HARQ-ACK,包括:
根据接收所述PDSCH对应的HARQ-ACK的子帧确定M值,所述M值为所述主服务小区的子帧能够反馈辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数减去所述辅服务小区子帧中是上行子帧的个数,再减去所述辅服务小区子帧中是下行子帧的个数所获得的数值,其中,与所述下行子帧时刻相同的子帧在所述主服务小区上是上行子帧或特殊子帧;
根据所述M值,确定物理上行控制信道格式3模式下的HARQ-ACK的码本大小;
根据所述HARQ-ACK的码本大小,在所述主服务小区上接收所述PDSCH所对应的HARQ-ACK。
结合第五方面的第三种至第七种可能的实现方式中任意一种,在第五方面的第八种可能的实现方式中,所述在辅服务小区上向UE发送PDSCH之前,还包括:
接收所述UE上报的能力信息,所述能力信息用于指示所述UE是否支持所述HARQ时序关系;
根据所述能力信息,确定所述UE支持所述HARQ时序关系。
结合第五方面的第一种至第八种可能的实现方式中任意一种,在第五方面的第九种可能的实现方式中,所述主服务小区的上下行配置满足下述条件中的至少一个:
当所述主服务小区的上下行配置为上下行配置0时,所述主服务小区的子帧2、子帧3、子帧4、子帧7、子帧8和子帧9中至少一个子帧所反馈的辅服务小区的子帧的HARQ-ACK所对应的辅服务小区的子帧减少至少一个;
当所述主服务小区的上下行配置为上下行配置1时,所述主服务小区的子帧2、子帧3、子帧7和子帧8中至少一个子帧所反馈的辅服务小区的子帧的HARQ-ACK所对应的辅服务小区的子帧减少至少一个;
当所述主服务小区的上下行配置为上下行配置2时,所述主服务小区的子帧2和子帧7中至少一个子帧所反馈的辅服务小区的子帧的HARQ-ACK所对应的辅服务小区的子帧减少至少一个;
当所述主服务小区的上下行配置为上下行配置6时,所述主服务小区的子帧2、子帧3、子帧4、子帧7和子帧8中至少一个子帧所反馈的辅服务小区的子帧的HARQ-ACK所对应的辅服务小区的子帧减少至少一个。
结合第五方面的第一种至第八种可能的实现方式中任意一种,在第五方面的第十种可能的实现方式中,当所述辅服务小区的上下行配置为上下行配置5时,
所述主服务小区的上下行配置满足下述条件中的至少一个:
当所述主服务小区的上下行配置为上下行配置0时,所述主服务小区的子帧2、子帧3、子帧4、子帧7、子帧8和子帧9中至少一个子帧所反馈的辅服务小区的子帧的HARQ-ACK所对应的辅服务小区的子帧减少一个;
当所述主服务小区的上下行配置为上下行配置1时,所述主服务小区的子帧2、子帧3、子帧7和子帧8中至少一个子帧所反馈的辅服务小区的子帧的HARQ-ACK所对应的辅服务小区的子帧减少一个;
当所述主服务小区的上下行配置为上下行配置2时,所述主服务小区的子帧2和子帧7中至少一个子帧所反馈的辅服务小区的子帧的HARQ-ACK所对应的辅服务小区的子帧减少一个;
当所述主服务小区的上下行配置为上下行配置6时,所述主服务小区的子帧2、子帧3、子帧4、子帧7和子帧8中至少一个子帧所反馈的辅服务小区的子帧的HARQ-ACK所对应的辅服务小区的子帧减少一个。
第六方面,本发明实施例提供一种应答信息的传输方法,应用于时分双工TDD系统,所述方法包括:
在辅服务小区上接收物理下行共享信道PDSCH;
确定所述辅服务小区对应的混合自动重传请求HARQ时序关系,所述HARQ时序关系为所述PDSCH与HARQ应答信息HARQ-ACK的HARQ时序关系;
根据所述HARQ时序关系,在主服务小区上发送所述PDSCH所对应的HARQ-ACK;
其中,所述主服务小区为基站为用户设备UE配置的TDD主服务小区,所述辅服务小区为所述基站为所述UE配置的N个TDD辅服务小区中的辅服务小区,所述N为大于或等于1的自然数。
在第六方面的第一种可能的实现方式中,所述HARQ时序关系包括:
所述主服务小区的上下行配置为上下行配置0、上下行配置1、上下行配置2和上下行配置6中任一个,其中,
当所述主服务小区的上下行配置为上下行配置0时,所述主服务小区的上行子帧包括子帧2、子帧3、子帧4、子帧7、子帧8和子帧9,在所述主服务小区的子帧2上反馈对应于所述子帧2向前偏移5个和/或向前偏移6个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧3反馈对应于所述子帧3向前偏移4个和/或向前偏移5个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧4上反馈对应于所述子帧4向前偏移4个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧7上反馈对应于所述子帧7向前偏移6个和/或向前偏移5个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧8上反馈对应于所述子帧8向前偏移5个和/或向前偏移4个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧9上反馈对应于所述子帧9向前偏移4个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK;
当所述主服务小区的上下行配置为上下行配置1时,所述主服务小区的上行子帧包括子帧2、子帧3、子帧7和子帧8,在所述主服务小区的子帧2上反馈对应于所述子帧2向前偏移7个和/或向前偏移6个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧3反馈对应于所述子帧3向前偏移6个子帧、向前偏移5个子帧和向前偏移4个子帧后所对应的至少一个所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧7上反馈对应于所述子帧7向前偏移7个子帧和/或向前偏移6个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧8上反馈对应于所述子帧8向前偏移6个子帧、向前偏移5个子帧和向前偏移4个子帧后所对应的至少一个所述辅服务小区的子帧的HARQ-ACK;
当所述主服务小区的上下行配置为上下行配置2时,所述主服务小区的上行子帧包括子帧2和子帧7,在所述主服务小区的子帧2上反馈对应于所述子帧2向前偏移8个子帧、向前偏移7个子帧、向前偏移6个子帧、向前偏移5个子帧和向前偏移4个子帧后所对应的至少一个所述辅服务小区的子 帧的HARQ-ACK,在所述主服务小区的子帧7上反馈对应于所述子帧7向前偏移8个子帧、向前偏移7个子帧、向前偏移6个子帧、向前偏移5个子帧和向前偏移4个子帧后所对应的至少一个所述辅服务小区的子帧的HARQ-ACK;
当所述主服务小区的上下行配置为上下行配置6时,所述主服务小区的上行子帧包括子帧2、子帧3、子帧4、子帧7和子帧8,在所述主服务小区的子帧2上反馈对应于所述子帧2向前偏移8个和/或向前偏移7个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧3反馈对应于所述子帧3向前偏移7个和/或向前偏移6个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧4上反馈对应于所述子帧4向前偏移6个子帧和/或向前偏移5个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧7上反馈对应于所述子帧7向前偏移7个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧8上反馈对应于所述子帧8向前偏移7个、向前偏移6个子帧和向前偏移5个后所对应的至少一个所述辅服务小区的子帧的HARQ-ACK。
结合第六方面或第六方面的第一种可能的实现方式,在第六方面的第二种可能的实现方式中,所述主服务小区的上行子帧包含不属于所述辅服务小区的上行子帧的上行子帧。
结合第六方面或第六方面的第一种或第二种可能的实现方式,在第六方面的第三种可能的实现方式中,当所述主服务小区的上下行配置为上下行配置0时,所述主服务小区的子帧2、子帧3、子帧7和子帧8能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为2,所述主服务小区的子帧4和子帧9能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为1;
当所述主服务小区的上下行配置为上下行配置1时,所述主服务小区的子帧2和子帧7能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为2,所述主服务小区的子帧3和子帧8能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为3;
当所述主服务小区的上下行配置为上下行配置2时,所述主服务小区的 子帧2和子帧7能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为5;
当所述主服务小区的上下行配置为上下行配置6时,所述主服务小区的子帧2、子帧3和子帧4能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为2,所述主服务小区的子帧7能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为1,所述主服务小区的子帧8能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为3。
结合第六方面的第三种可能的实现方式,在第六方面的第四种可能的实现方式中,所述UE为全双工UE,所述根据所述HARQ时序关系,在主服务小区上发送所述PDSCH所对应的HARQ-ACK,包括:
根据发送所述PDSCH对应的HARQ-ACK的子帧确定M值,其中,所述M值为所述主服务小区的子帧能够反馈辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数减去所述辅服务小区子帧中是上行子帧的个数所获得的数值;
根据所述M值,确定信道选择模式下的HARQ-ACK反馈表格;
根据所述HARQ-ACK反馈表格,在所述主服务小区上发送所述PDSCH所对应的HARQ-ACK。
结合第六方面的第三种可能的实现方式,在第六方面的第五种可能的实现方式中,所述UE为全双工UE,所述根据所述HARQ时序关系,在主服务小区上发送所述PDSCH所对应的HARQ-ACK,包括:
根据发送所述PDSCH对应的HARQ-ACK的子帧确定M值,其中,所述M值为所述主服务小区的子帧能够反馈辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数减去所述辅服务小区子帧中是上行子帧的个数所获得的数值;
根据所述M值,确定物理上行控制信道格式3模式下的HARQ-ACK的码本大小;
根据所述HARQ-ACK的码本大小,在所述主服务小区上发送所述PDSCH所对应的HARQ-ACK。
结合第六方面的第三种可能的实现方式,在第六方面的第六种可能的实 现方式中,所述UE为半双工UE,所述根据所述HARQ时序关系,在主服务小区上发送所述PDSCH所对应的HARQ-ACK,包括:
根据发送所述PDSCH对应的HARQ-ACK的子帧确定M值,所述M值为所述主服务小区的子帧能够反馈辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数减去所述辅服务小区子帧中是上行子帧的个数,再减去所述辅服务小区子帧中是下行子帧的个数所获得的数值,其中,与所述下行子帧时刻相同的子帧在所述主服务小区上是上行子帧或特殊子帧,其中,与所述下行子帧时刻相同的子帧在所述主服务小区上是上行子帧或特殊子帧;
根据所述M值,确定信道选择模式下的HARQ-ACK反馈表格;
根据所述HARQ-ACK反馈表格,在所述主服务小区上发送所述PDSCH所对应的HARQ-ACK。
结合第六方面的第三种可能的实现方式,在第六方面的第七种可能的实现方式中,所述UE为半双工UE,所述根据所述HARQ时序关系,在主服务小区上发送所述PDSCH所对应的HARQ-ACK,包括:
根据发送所述PDSCH对应的HARQ-ACK的子帧确定M值,所述M值为所述主服务小区的子帧能够反馈辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数减去所述辅服务小区子帧中是上行子帧的个数,再减去所述辅服务小区子帧中是下行子帧的个数所获得的数值,其中,与所述下行子帧时刻相同的子帧在所述主服务小区上是上行子帧或特殊子帧;
根据所述M值,确定物理上行控制信道格式3模式下的HARQ-ACK的码本大小;
根据所述HARQ-ACK的码本大小,在所述主服务小区上发送所述PDSCH所对应的HARQ-ACK。
结合第六方面的第三种至第七种可能的实现方式中任意一种,在第六方面的第八种可能的实现方式中,所述在辅服务小区上接收PDSCH之前,还包括:
向所述基站上报能力信息,所述能力信息用于指示所述UE是否支持所述HARQ时序关系;
根据所述能力信息,确定其自身支持所述HARQ时序关系。
结合第六方面的第一种至第八种可能的实现方式中任意一种,在第六方 面的第九种可能的实现方式中,所述主服务小区的上下行配置满足下述条件中的至少一个:
当所述主服务小区的上下行配置为上下行配置0时,所述主服务小区的子帧2、子帧3、子帧4、子帧7、子帧8和子帧9中至少一个子帧所反馈的辅服务小区的子帧的HARQ-ACK所对应的辅服务小区的子帧减少至少一个;
当所述主服务小区的上下行配置为上下行配置1时,所述主服务小区的子帧2、子帧3、子帧7和子帧8中至少一个子帧所反馈的辅服务小区的子帧的HARQ-ACK所对应的辅服务小区的子帧减少至少一个;
当所述主服务小区的上下行配置为上下行配置2时,所述主服务小区的子帧2和子帧7中至少一个子帧所反馈的辅服务小区的子帧的HARQ-ACK所对应的辅服务小区的子帧减少至少一个;
当所述主服务小区的上下行配置为上下行配置6时,所述主服务小区的子帧2、子帧3、子帧4、子帧7和子帧8中至少一个子帧所反馈的辅服务小区的子帧的HARQ-ACK所对应的辅服务小区的子帧减少至少一个。
结合第六方面的第一种至第八种可能的实现方式中任意一种,在第六方面的第十种可能的实现方式中,当所述辅服务小区的上下行配置为上下行配置5时,
所述主服务小区的上下行配置满足下述条件中的至少一个:
当所述主服务小区的上下行配置为上下行配置0时,所述主服务小区的子帧2、子帧3、子帧4、子帧7、子帧8和子帧9中至少一个子帧所反馈的辅服务小区的子帧的HARQ-ACK所对应的辅服务小区的子帧减少一个;
当所述主服务小区的上下行配置为上下行配置1时,所述主服务小区的子帧2、子帧3、子帧7和子帧8中至少一个子帧所反馈的辅服务小区的子帧的HARQ-ACK所对应的辅服务小区的子帧减少一个;
当所述主服务小区的上下行配置为上下行配置2时,所述主服务小区的子帧2和子帧7中至少一个子帧所反馈的辅服务小区的子帧的HARQ-ACK所对应的辅服务小区的子帧减少一个;
当所述主服务小区的上下行配置为上下行配置6时,所述主服务小区的子帧2、子帧3、子帧4、子帧7和子帧8中至少一个子帧所反馈的辅服务小区的子帧的HARQ-ACK所对应的辅服务小区的子帧减少一个。
本发明实施例通过重新定义载波聚合中HARQ时序关系,限定主服务小区的上下行配置为上述任一上下行配置,以对满足上述限定条件的载波聚合在TDD某些上下行配置下可以配置多个载波,如,当一辅服务小区配置为上下行配置5时,PUCCH格式3模式可支持多于两个上下行配置5的辅服务小区的CA,并且通过上述载波聚合中HARQ时序关系,能够将需要反馈的HARQ-ACK分散于多个不同的上行子帧进行反馈,缩短了反馈时延并提高反馈性能。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明应答信息的传输装置实施例一的结构示意图;
图2为本发明应答信息的传输装置实施例二的结构示意图;
图3为本发明应答信息的传输设备实施例一的结构示意图;
图4为本发明应答信息的传输方法实施例一的流程示意图;
图5为本发明应答信息的传输方法实施例二的流程示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在LTE TDD系统中,收发在同一载波的不同时间完成,即上下行传输在时间上以子帧粒度进行区分。LTE TDD系统中的子帧包括下行子帧、上行子帧和特殊子帧,其中,特殊子帧包括下行导频时隙(Downlink Pilot Time Slot,简称:DwPTS),保护间隔(Guard Period,简称:GP)和上行导频时隙(Uplink  Pilot Time Slot,简称:UpPTS),其中,GP主要用于下行到上行的转换时间和传播时延的补偿。特别地,特殊子帧的DwPTS可以传输下行数据,因此,有时也可以把特殊子帧看做下行子帧来处理,比如DwPTS上传输的下行数据需要有相应的应答信息反馈。其中,应答信息的状态包括确认(ACKnowledge,简称:ACK)或不确认(NACKnowledge,简称:NACK)。
LTE TDD系统可以支持7种不同的上下行配置,具体的配置如表1所示。在表1中,D表示下行子帧,S表示特殊子帧,U表示上行子帧,其中,上下行配置0、1、2和6的下行-上行转换周期为5毫秒(ms),上下行配置3、4和5的下行-上行转换周期为10 ms。
表1 LTE TDD系统不同的上下行配置
Figure PCTCN2014086854-appb-000001
另外,TDD CA包括相同上下行配置的CA,比如两个上下行配置1的CA;和,不同上下行配置的CA,比如上下行配置1和配置2的CA。CA包括一个主服务小区和至少一个辅服务小区,且承载HARQ-ACK的PUCCH仅发送在主服务小区上。CA中PUCCH的发送模式包括信道选择模式和PUCCH格式3两种模式。
对于相同上下行配置的CA,主辅服务小区的混合自动重传请求应答信息(Hybrid Automatic Repeat Request Acknowledge,简称:HARQ-ACK)时序关系与单载波时TDD的时序关系相同。对于不同上下行配置的CA,主服务小区的HARQ-ACK时序关系遵循主服务小区自身的上下行配置的HARQ-ACK时序关系,但辅服务小区的HARQ-ACK时序关系遵循参考上下行配置的 HARQ-ACK时序关系,该参考上下行配置可以为主服务小区的上下行配置,也可以为辅服务小区自己的上下行配置,还可以为不同于主辅服务小区的上下行配置。具体的参考上下行配置由主辅服务小区对的上下行配置组合来确定,如表2所示。
表2 基于主辅服务小区对的辅服务小区的HARQ-ACK时序关系
Figure PCTCN2014086854-appb-000002
这里,举例说明上下行配置5下的最多两个载波CA的限制问题,以CA组合(2,5)为例进行说明如下。
表3 主服务小区配置2和辅服务小区配置5进行CA的载波数量限制问题
Figure PCTCN2014086854-appb-000003
假设主服务小区为上下行配置2,辅服务小区为上下行配置5。如表3所示,当只有一个辅服务小区时,根据上述表2可以确定辅服务小区的参考上下行配 置为该辅服务小区自身的上下行配置5。具体的数据调度和HARQ-ACK反馈流程为,假设辅服务小区的子帧8调度了物理下行共享信道(Physical Downlink Shared Channel,简称:PDSCH),需要在下一个无线帧的子帧2上反馈该PDSCH对应的HARQ-ACK,这个具体的HARQ时序关系可以根据表3中的上行子帧2上包含的数字集合中的数字个数4看出,即当子帧2为HARQ-ACK反馈子帧时,该子帧上反馈的HARQ-ACK对应的承载PDSCH的子帧为n-4,即上一个无线帧的子帧8。辅服务小区对应该子帧上的数字集合的总数为9,辅服务小区上的所有9个下行子帧上传输的PDSCH对应的HARQ-ACK都需要在该上行子帧上反馈。将这个总数定义为M值,此时,该M值=9。
由于信道选择模式最大支持M值=4,因此,信道选择模式不支持上下行配置5,CA中PUCCH的发送模式采用PUCCH格式3模式。而PUCCH格式3模式最大支持大小为20比特的HARQ-ACK,若主服务小区为上下行配置2,两个辅服务小区均为上下行配置5时,子帧2上的所有小区各自的M值总和为4+9+9=22,该总和大于20,因此,PUCCH格式3模式无法支持多于两个上下行配置5的辅服务小区的CA。另外,对于一个辅服务小区为上下行配置5的情况,其HARQ-ACK反馈时序延时很长,比如最长的时序为n-13,即13个子帧的延时;且由于M值为9,导致HARQ-ACK性能下降。特别的,对于上行子帧2上包含的数字集合中的数字顺序不受限制,即任何顺序都可以,只要对应的PDSCH子帧个数和子帧号一致就行。对于其他TDD上下行配置和其他TDD上下行配置下的其他反馈HARQ-ACK的上行子帧都适用,即都不考虑PDSCH子帧顺序问题。
将来网络部署的一个重要场景是主服务小区在宏基站上,且TDD配置为上行子帧多的上下行配置以保证反馈性能和时延,比如上下行配置1或2;而辅服务小区在微基站或微微基站上,且TDD配置为下行子帧多的上下行配置以保证高下行数据速率的传输,即把宏基站的下行业务向微基站卸载,比如配置上下行配置5。鉴于(0/1/2,5)这些CA组合的大量部署和配置,且考虑到上述载波数量限制和反馈时延以及反馈性能的问题,需要新的解决方案来克服,以达到TDD某些上下行配置下可以配置更多载波,且缩短反馈时延并提高反馈性能。
基于上述问题,本发明实施例提供了一种应答信息的传输方法、装置及 设备,应用于LTE TDD系统,可以分别用于基站侧和UE侧,具体的,以下进行详细说明。
图1为本发明应答信息的传输装置实施例一的结构示意图。本发明实施例提供一种应答信息的传输装置,该装置应用于TDD系统,该装置可以集成在例如基站等设备中。如图1所示,该装置包括:发送模块11、确定模块12和接收模块13。
其中,确定模块12用于确定在辅服务小区上向UE发送PDSCH;发送模块11用于在辅服务小区上向UE发送确定模块12确定的PDSCH;确定模块12还用于确定辅服务小区对应的HARQ时序关系,该HARQ时序关系为PDSCH与HARQ-ACK的HARQ时序关系;接收模块13用于根据确定模块12确定的HARQ时序关系,在主服务小区上接收PDSCH所对应的HARQ-ACK。该实施例中,主服务小区为基站为UE配置的TDD主服务小区,辅服务小区为基站为UE配置的N个TDD辅服务小区中的辅服务小区,N为大于或等于1的自然数。
本发明实施例的装置,可以用于执行如图4所示方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
在上述实施例中,所述HARQ时序关系包括:所述主服务小区的上下行配置为上下行配置0、上下行配置1、上下行配置2和上下行配置6中任一个。
其中,当所述主服务小区的上下行配置为上下行配置0时,所述主服务小区的上行子帧包括子帧2、子帧3、子帧4、子帧7、子帧8和子帧9,在所述主服务小区的子帧2上反馈对应于所述子帧2向前偏移5个和/或向前偏移6个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧3反馈对应于所述子帧3向前偏移4个和/或向前偏移5个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧4上反馈对应于所述子帧4向前偏移4个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧7上反馈对应于所述子帧7向前偏移6个和/或向前偏移5个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧8上反馈对应于所述子帧8向前偏移5个和/或向前偏移4个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧9上反馈对应于所述子帧9向前偏移4个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK。
当所述主服务小区的上下行配置为上下行配置1时,所述主服务小区的上行子帧包括子帧2、子帧3、子帧7和子帧8,在所述主服务小区的子帧2上反馈对应于所述子帧2向前偏移7个和/或向前偏移6个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧3反馈对应于所述子帧3向前偏移6个子帧、向前偏移5个子帧和向前偏移4个子帧后所对应的至少一个所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧7上反馈对应于所述子帧7向前偏移7个子帧和/或向前偏移6个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧8上反馈对应于所述子帧8向前偏移6个子帧、向前偏移5个子帧和向前偏移4个子帧后所对应的至少一个所述辅服务小区的子帧的HARQ-ACK。
当所述主服务小区的上下行配置为上下行配置2时,所述主服务小区的上行子帧包括子帧2和子帧7,在所述主服务小区的子帧2上反馈对应于所述子帧2向前偏移8个子帧、向前偏移7个子帧、向前偏移6个子帧、向前偏移5个子帧和向前偏移4个子帧后所对应的至少一个所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧7上反馈对应于所述子帧7向前偏移8个子帧、向前偏移7个子帧、向前偏移6个子帧、向前偏移5个子帧和向前偏移4个子帧后所对应的至少一个所述辅服务小区的子帧的HARQ-ACK。
当所述主服务小区的上下行配置为上下行配置6时,所述主服务小区的上行子帧包括子帧2、子帧3、子帧4、子帧7和子帧8,在所述主服务小区的子帧2上反馈对应于所述子帧2向前偏移8个和/或向前偏移7个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧3反馈对应于所述子帧3向前偏移7个和/或向前偏移6个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧4上反馈对应于所述子帧4向前偏移6个子帧和/或向前偏移5个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧7上反馈对应于所述子帧7向前偏移7个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧8上反馈对应于所述子帧8向前偏移7个、向前偏移6个子帧和向前偏移5个后所对应的至少一个所述辅服务小区的子帧的HARQ-ACK。
本发明实施例通过重新定义载波聚合中HARQ时序关系,限定主服务小区的上下行配置为上述任一上下行配置,以对满足上述限定条件的载波聚合在TDD某些上下行配置下可以配置多个载波,如,当一辅服务小区配置为上下行配置5时,PUCCH格式3模式可支持多于两个上下行配置5的辅服务小区的CA,并且通过上述载波聚合中HARQ时序关系,能够将需要反馈的HARQ-ACK分散于多个不同的上行子帧进行反馈,缩短了反馈时延并提高反馈性能。
需要说明的是,所述主服务小区的上行子帧包含不属于所述辅服务小区的上行子帧的上行子帧。
在上述实施例的基础上,主服务小区为不同上下行配置时,主服务小区的不同子帧能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数是有差异的,存在以下几种情况:
当所述主服务小区的上下行配置为上下行配置0时,所述主服务小区的子帧2、子帧3、子帧7和子帧8能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为2,所述主服务小区的子帧4和子帧9能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为1;
当所述主服务小区的上下行配置为上下行配置1时,所述主服务小区的子帧2和子帧7能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为2,所述主服务小区的子帧3和子帧8能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为3;
当所述主服务小区的上下行配置为上下行配置2时,所述主服务小区的子帧2和子帧7能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为5;
当所述主服务小区的上下行配置为上下行配置6时,所述主服务小区的子帧2、子帧3和子帧4能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为2,所述主服务小区的子帧7能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为1,所述主服务小区的子帧8能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为3。
上述发明实施例中,基于传输模式的不同所述的UE可以为全双工UE, 也可以为半双工UE。针对不同传输模式的UE,接收模块13的具体用途不同,以下举例说明。
一种实现方式中,所述UE为全双工UE,接收模块13可具体用于:根据接收所述PDSCH对应的HARQ-ACK的子帧确定M值,其中,所述M值为所述主服务小区的子帧能够反馈辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数减去所述辅服务小区子帧中是上行子帧的个数所获得的数值;根据所述M值,确定信道选择模式下的HARQ-ACK反馈表格;根据所述HARQ-ACK反馈表格,在所述主服务小区上接收所述PDSCH所对应的HARQ-ACK。
另一种实现方式中,所述UE为全双工UE,接收模块13可具体用于:根据接收所述PDSCH对应的HARQ-ACK的子帧确定M值,所述M值为所述主服务小区的子帧能够反馈辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数减去所述辅服务小区子帧中是上行子帧的个数所获得的数值;根据所述M值,确定物理上行控制信道格式3模式下的HARQ-ACK的码本大小;根据所述HARQ-ACK的码本大小,在所述主服务小区上接收所述PDSCH所对应的HARQ-ACK。
又一种实现方式中,所述UE为半双工UE,接收模块13可具体用于:根据接收所述PDSCH对应的HARQ-ACK的子帧确定M值,所述M值为所述主服务小区的子帧能够反馈辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数减去所述辅服务小区子帧中是上行子帧的个数,再减去所述辅服务小区子帧中是下行子帧的个数所获得的数值,其中,与所述下行子帧时刻相同的子帧在所述主服务小区上是上行子帧或特殊子帧;根据所述M值,确定信道选择模式下的HARQ-ACK反馈表格;根据所述HARQ-ACK反馈表格,在所述主服务小区上接收所述PDSCH所对应的HARQ-ACK。
再一种实现方式中,所述UE为半双工UE,接收模块13可具体用于:根据接收所述PDSCH对应的HARQ-ACK的子帧确定M值,所述M值为所述主服务小区的子帧能够反馈辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数减去所述辅服务小区子帧中是上行子帧的个数,再减去所述辅服务小区子帧中是下行子帧的个数所获得的数值,其中,与所述下行子帧时刻相同的子帧在所述主服务小区上是上行子帧或特殊子帧;根据所述M值, 确定物理上行控制信道格式3模式下的HARQ-ACK的码本大小;根据所述HARQ-ACK的码本大小,在所述主服务小区上接收所述PDSCH所对应的HARQ-ACK。
其中,上述各种实现方式的详细说明可参考如图4所示方法实施例的具体描述,此处不再赘述。
进一步地,接收模块13还可以用于:在发送模块11在所述辅服务小区上向所述UE发送确定模块12确定的所述PDSCH之前,接收所述UE上报的能力信息,所述能力信息用于指示所述UE是否支持所述HARQ时序关系。该实施例中,确定模块12还可以用于:根据所述能力信息,确定所述UE支持所述HARQ时序关系。
在上述实施例中,所述主服务小区的上下行配置满足下述条件中的至少一个:
一种场景中,当所述主服务小区的上下行配置为上下行配置0时,所述主服务小区的子帧2、子帧3、子帧4、子帧7、子帧8和子帧9中至少一个子帧所反馈的辅服务小区的子帧的HARQ-ACK所对应的辅服务小区的子帧减少至少一个。
另一种场景中,当所述主服务小区的上下行配置为上下行配置1时,所述主服务小区的子帧2、子帧3、子帧7和子帧8中至少一个子帧所反馈的辅服务小区的子帧的HARQ-ACK所对应的辅服务小区的子帧减少至少一个。
又一种场景中,当所述主服务小区的上下行配置为上下行配置2时,所述主服务小区的子帧2和子帧7中至少一个子帧所反馈的辅服务小区的子帧的HARQ-ACK所对应的辅服务小区的子帧减少至少一个。
再一种场景中,当所述主服务小区的上下行配置为上下行配置6时,所述主服务小区的子帧2、子帧3、子帧4、子帧7和子帧8中至少一个子帧所反馈的辅服务小区的子帧的HARQ-ACK所对应的辅服务小区的子帧减少至少一个。
可选地,当所述辅服务小区的上下行配置为上下行配置5时,所述主服务小区的上下行配置满足上述不同场景中的至少一个。
图2为本发明应答信息的传输装置实施例二的结构示意图。本发明实施例提供一种应答信息的传输装置,该装置应用于TDD系统,该装置可以 集成在例如用户设备等设备中。如图2所示,该装置包括:接收模块21、确定模块22和发送模块23。
其中,接收模块21用于在辅服务小区上接收PDSCH;确定模块22用于确定所述辅服务小区对应的HARQ时序关系,所述HARQ时序关系为接收模块21接收的PDSCH与HARQ-ACK的HARQ时序关系;发送模块23用于根据所述确定模块确定的所述HARQ时序关系,在主服务小区上发送所述PDSCH所对应的HARQ-ACK。该实施例中,所述主服务小区为基站为用户设备UE配置的TDD主服务小区,所述辅服务小区为所述基站为所述UE配置的N个TDD辅服务小区中的辅服务小区,所述N为大于或等于1的自然数。
本发明实施例与如图1所示的装置实施例对应设置。所谓对应设置是指对于同一信息,例如,上述PDSCH或该PDSCH所对应的HARQ-ACK,两个装置一个作为发送端,另一个作为接收端,如此设置。
本发明实施例的装置,可以用于执行如图5所示方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
其中,所述HARQ时序关系可以包括:所述主服务小区的上下行配置为上下行配置0、上下行配置1、上下行配置2和上下行配置6中任一个。
具体地,当所述主服务小区的上下行配置为上下行配置0时,所述主服务小区的上行子帧包括子帧2、子帧3、子帧4、子帧7、子帧8和子帧9,在所述主服务小区的子帧2上反馈对应于所述子帧2向前偏移5个和/或向前偏移6个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧3反馈对应于所述子帧3向前偏移4个和/或向前偏移5个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧4上反馈对应于所述子帧4向前偏移4个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧7上反馈对应于所述子帧7向前偏移6个和/或向前偏移5个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧8上反馈对应于所述子帧8向前偏移5个和/或向前偏移4个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧9上反馈对应于所述子帧9向前偏移4个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK。
当所述主服务小区的上下行配置为上下行配置1时,所述主服务小区的上行子帧包括子帧2、子帧3、子帧7和子帧8,在所述主服务小区的子帧2上反馈对应于所述子帧2向前偏移7个和/或向前偏移6个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧3反馈对应于所述子帧3向前偏移6个子帧、向前偏移5个子帧和向前偏移4个子帧后所对应的至少一个所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧7上反馈对应于所述子帧7向前偏移7个子帧和/或向前偏移6个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧8上反馈对应于所述子帧8向前偏移6个子帧、向前偏移5个子帧和向前偏移4个子帧后所对应的至少一个所述辅服务小区的子帧的HARQ-ACK。
当所述主服务小区的上下行配置为上下行配置2时,所述主服务小区的上行子帧包括子帧2和子帧7,在所述主服务小区的子帧2上反馈对应于所述子帧2向前偏移8个子帧、向前偏移7个子帧、向前偏移6个子帧、向前偏移5个子帧和向前偏移4个子帧后所对应的至少一个所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧7上反馈对应于所述子帧7向前偏移8个子帧、向前偏移7个子帧、向前偏移6个子帧、向前偏移5个子帧和向前偏移4个子帧后所对应的至少一个所述辅服务小区的子帧的HARQ-ACK。
当所述主服务小区的上下行配置为上下行配置6时,所述主服务小区的上行子帧包括子帧2、子帧3、子帧4、子帧7和子帧8,在所述主服务小区的子帧2上反馈对应于所述子帧2向前偏移8个和/或向前偏移7个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧3反馈对应于所述子帧3向前偏移7个和/或向前偏移6个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧4上反馈对应于所述子帧4向前偏移6个子帧和/或向前偏移5个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧7上反馈对应于所述子帧7向前偏移7个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧8上反馈对应于所述子帧8向前偏移7个、向前偏移6个子帧和向前偏移5个后所对应的至少一个所述辅服务小区的子帧的HARQ-ACK。
在上述实施例中,所述主服务小区的上行子帧包含不属于所述辅服务小区的上行子帧的上行子帧。
进一步地,当所述主服务小区的上下行配置为上下行配置0时,所述主服务小区的子帧2、子帧3、子帧7和子帧8能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为2,所述主服务小区的子帧4和子帧9能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为1。
当所述主服务小区的上下行配置为上下行配置1时,所述主服务小区的子帧2和子帧7能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为2,所述主服务小区的子帧3和子帧8能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为3。
当所述主服务小区的上下行配置为上下行配置2时,所述主服务小区的子帧2和子帧7能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为5。
当所述主服务小区的上下行配置为上下行配置6时,所述主服务小区的子帧2、子帧3和子帧4能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为2,所述主服务小区的子帧7能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为1,所述主服务小区的子帧8能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为3。
可选地,所述UE为全双工UE,发送模块23可具体用于:根据发送所述PDSCH对应的HARQ-ACK的子帧确定M值,其中,所述M值为所述主服务小区的子帧能够反馈辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数减去所述辅服务小区子帧中是上行子帧的个数所获得的数值;根据所述M值,确定信道选择模式下的HARQ-ACK反馈表格;根据所述HARQ-ACK反馈表格,在所述主服务小区上发送所述PDSCH所对应的HARQ-ACK。
可选地,所述UE为全双工UE,发送模块23可具体用于:根据发送所述PDSCH对应的HARQ-ACK的子帧确定M值,其中,所述M值为所述主服务小区的子帧能够反馈辅服务小区子帧的HARQ-ACK所对应的辅服务小 区子帧个数减去所述辅服务小区子帧中是上行子帧的个数所获得的数值;根据所述M值,确定物理上行控制信道格式3模式下的HARQ-ACK的码本大小;根据所述HARQ-ACK的码本大小,在所述主服务小区上发送所述PDSCH所对应的HARQ-ACK。
可选地,所述UE为半双工UE,发送模块23可具体用于:根据发送所述PDSCH对应的HARQ-ACK的子帧确定M值,所述M值为所述主服务小区的子帧能够反馈辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数减去所述辅服务小区子帧中是上行子帧的个数,再减去所述辅服务小区子帧中是下行子帧的个数所获得的数值,其中,与所述下行子帧时刻相同的子帧在所述主服务小区上是上行子帧或特殊子帧,其中,与所述下行子帧时刻相同的子帧在所述主服务小区上是上行子帧或特殊子帧;根据所述M值,确定信道选择模式下的HARQ-ACK反馈表格;根据所述HARQ-ACK反馈表格,在所述主服务小区上发送所述PDSCH所对应的HARQ-ACK。
可选地,所述UE为半双工UE,发送模块23可具体用于:根据发送所述PDSCH对应的HARQ-ACK的子帧确定M值,所述M值为所述主服务小区的子帧能够反馈辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数减去所述辅服务小区子帧中是上行子帧的个数,再减去所述辅服务小区子帧中是下行子帧的个数所获得的数值,其中,与所述下行子帧时刻相同的子帧在所述主服务小区上是上行子帧或特殊子帧;根据所述M值,确定物理上行控制信道格式3模式下的HARQ-ACK的码本大小;根据所述HARQ-ACK的码本大小,在所述主服务小区上发送所述PDSCH所对应的HARQ-ACK。
在上述实施例的基础上,发送模块23还可以用于:在接收模块21在所述辅服务小区上接收所述PDSCH之前,向所述基站上报能力信息,所述能力信息用于指示所述UE是否支持所述HARQ时序关系。确定模块22还可以用于:根据所述能力信息,确定其自身支持所述HARQ时序关系。
在上述实施例中,所述主服务小区的上下行配置满足下述条件中的至少一个:
条件一:当所述主服务小区的上下行配置为上下行配置0时,所述主服务小区的子帧2、子帧3、子帧4、子帧7、子帧8和子帧9中至少一个子帧所反馈的辅服务小区的子帧的HARQ-ACK所对应的辅服务小区的子帧减少 至少一个;
条件二:当所述主服务小区的上下行配置为上下行配置1时,所述主服务小区的子帧2、子帧3、子帧7和子帧8中至少一个子帧所反馈的辅服务小区的子帧的HARQ-ACK所对应的辅服务小区的子帧减少至少一个。
当所述主服务小区的上下行配置为上下行配置2时,所述主服务小区的子帧2和子帧7中至少一个子帧所反馈的辅服务小区的子帧的HARQ-ACK所对应的辅服务小区的子帧减少至少一个。
条件三:当所述主服务小区的上下行配置为上下行配置6时,所述主服务小区的子帧2、子帧3、子帧4、子帧7和子帧8中至少一个子帧所反馈的辅服务小区的子帧的HARQ-ACK所对应的辅服务小区的子帧减少至少一个。
进一步地,当所述辅服务小区的上下行配置为上下行配置5时,所述主服务小区的上下行配置满足条件一、条件二和条件三中的至少一个。
图3为本发明应答信息的传输设备实施例一的结构示意图。该设备应用于TDD系统,可以为基站等设备。如图3所示,该设备30包括:发射器31、处理器32和接收器33。
其中,处理器32用于确定在辅服务小区上向UE发送PDSCH;发射器31用于在辅服务小区上向UE发送处理器32确定的PDSCH;处理器32还用于确定辅服务小区对应的HARQ时序关系,该HARQ时序关系为PDSCH与HARQ应答信息HARQ-ACK的HARQ时序关系;接收器33用于根据处理器32确定的HARQ时序关系,在主服务小区上接收所述PDSCH所对应的HARQ-ACK。其中,所述主服务小区为基站为所述UE配置的TDD主服务小区,所述辅服务小区为所述基站为所述UE配置的N个TDD辅服务小区中的辅服务小区,所述N为大于或等于1的自然数。
本发明实施例的设备,可以用于执行如图4所示方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
如图3所示,发射器31、处理器32和接收器33还可以用于以下用途。
接收器33用于在辅服务小区上接收PDSCH;处理器32用于确定所述辅服务小区对应的HARQ时序关系,所述HARQ时序关系为接收器33接收的PDSCH与HARQ-ACK的HARQ时序关系;发射器31用于根据处理器32确定的所述HARQ时序关系,在主服务小区上发送所述PDSCH所对应的 HARQ-ACK;其中,所述主服务小区为基站为用户设备UE配置的TDD主服务小区,所述辅服务小区为所述基站为所述UE配置的N个TDD辅服务小区中的辅服务小区,所述N为大于或等于1的自然数。
本发明实施例的设备,可以用于执行如图5所示方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
图4为本发明应答信息的传输方法实施例一的流程示意图。本发明实施例提供一种应答信息的传输方法,该方法应用于LTE TDD系统,可以由应答信息的传输装置执行,该装置可以集成在例如基站等设备中。如图4所示,该方法包括:
S101、确定在辅服务小区上向UE发送PDSCH;
S102、在辅服务小区上向UE发送PDSCH,其中,该辅服务小区为基站为该UE配置的N个TDD辅服务小区中的辅服务小区,N为大于或等于1的自然数。
S103、确定辅服务小区对应的HARQ时序关系,该HARQ时序关系为PDSCH与HARQ-ACK的HARQ时序关系。
S104、根据HARQ时序关系,在主服务小区上接收PDSCH所对应的HARQ-ACK,其中,该主服务小区为基站为上述UE配置的TDD主服务小区。
具体地,UE接入网络建立无线资源控制(Radio Resource Control,简称:RRC)连接以后,基站可以为该UE添加或删除服务小区,例如,根据该UE的业务量和/或功耗能力等,为该UE添加或删除服务小区。当UE被配置多于一个服务小区时,该UE由一个主服务小区和N个辅服务小区提供服务,其中,N小于或等于4,但对于上述主服务小区为上下行配置2,辅服务小区为上下行配置5的CA,PUCCH格式3模式最多支持两个服务小区,即N=1。具体的,基站可以通过RRC信令为UE添加或删除辅服务小区,或通过切换流程为UE更换主服务小区。本发明实施例针对TDD CA,即该UE所有的服务小区均为TDD服务小区。
UE被基站配置了CA后,基站就可以在辅服务小区上向UE发送PDSCH,该辅服务小区为基站为该UE配置的N个辅服务小区中任意一个。基站确定所述辅服务小区对应的HARQ时序关系,所述HARQ时序关系为PDSCH与HARQ-ACK的HARQ时序关系。为了解决上述两个服务小区限制的问题, 该HARQ时序关系不是当前机制下的参考上下行配置5,而是引入一个新的HARQ时序关系;进而,根据该时序关系,在主服务小区上接收所述PDSCH所对应的HARQ-ACK。
在基站接收或UE发送该HARQ-ACK之前,需要确定承载该HARQ-ACK的PUCCH信道资源,例如,根据RRC信令的配置,确定承载该HARQ-ACK的PUCCH信道资源,或,根据其他与物理下行控制信道隐式对应的资源,确定承载该HARQ-ACK的PUCCH信道资源;还需要确定PUCCH格式3模式下的HARQ-ACK反馈子帧的M值,并进而确定该反馈子帧上所有HARQ-ACK比特的顺序,以及这些比特的总数,即码本大小。这些步骤可以是现有的机制或其他机制,在此不做限定;另外,步骤之间的实施顺序也不做限定。
本发明实施例通过重新定义载波聚合中HARQ时序关系,限定主服务小区的上下行配置为上述任一上下行配置,以对满足上述限定条件的载波聚合在TDD某些上下行配置下可以配置多个载波,如,当一辅服务小区配置为上下行配置5时,PUCCH格式3模式可支持多于两个上下行配置5的辅服务小区的CA,并且通过上述载波聚合中HARQ时序关系,能够将需要反馈的HARQ-ACK分散于多个不同的上行子帧进行反馈,缩短了反馈时延并提高反馈性能。
表4 辅服务小区在主服务小区采用不同上下行配置的情况下分别对应的HARQ时序关系
Figure PCTCN2014086854-appb-000004
其中,表4所示为辅服务小区在主服务小区采用不同上下行配置的情况下分别对应的HARQ时序关系,以下对本发明实施例提供的HARQ时序关系进行详细说明。
如图4所示,该HARQ时序关系包括:所述主服务小区的上下行配置为上下行配置0、上下行配置1、上下行配置2和上下行配置6中任一个。
具体地,当所述主服务小区的上下行配置为上下行配置0时,所述主服务小区的上行子帧包括子帧2、子帧3、子帧4、子帧7、子帧8和子帧9,在所述主服务小区的子帧2上反馈对应于所述子帧2向前偏移5个和/或向前偏移6个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧3反馈对应于所述子帧3向前偏移4个和/或向前偏移5个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧4上反馈对应于所述子帧4向前偏移4个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧7上反馈对应于所述子帧7向前偏移6个和/或向前偏移5个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧8上反馈对应于所述子帧8向前偏移5个和/或向前偏移4个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧9上反馈对应于所述子帧9向前偏移4个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK;
当所述主服务小区的上下行配置为上下行配置1时,所述主服务小区的上行子帧包括子帧2、子帧3、子帧7和子帧8,在所述主服务小区的子帧2上反馈对应于所述子帧2向前偏移7个和/或向前偏移6个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧3反馈对应于所述子帧3向前偏移6个子帧、向前偏移5个子帧和向前偏移4个子帧后所对应的至少一个所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧7上反馈对应于所述子帧7向前偏移7个子帧和/或向前偏移6个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧8上反馈对应于所述子帧8向前偏移6个子帧、向前偏移5个子帧和向前偏移4个子帧后所对应的至少一个所述辅服务小区的子帧的HARQ-ACK;
当所述主服务小区的上下行配置为上下行配置2时,所述主服务小区的上行子帧包括子帧2和子帧7,在所述主服务小区的子帧2上反馈对应于所述子帧2向前偏移8个子帧、向前偏移7个子帧、向前偏移6个子帧、向前偏移5个子帧和向前偏移4个子帧后所对应的至少一个所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧7上反馈对应于所述子帧7向前偏移8个子帧、向前偏移7个子帧、向前偏移6个子帧、向前偏移5个子帧和向前偏移4个子帧后所对应的至少一个所述辅服务小区的子帧的 HARQ-ACK;
当所述主服务小区的上下行配置为上下行配置6时,所述主服务小区的上行子帧包括子帧2、子帧3、子帧4、子帧7和子帧8,在所述主服务小区的子帧2上反馈对应于所述子帧2向前偏移8个和/或向前偏移7个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧3反馈对应于所述子帧3向前偏移7个和/或向前偏移6个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧4上反馈对应于所述子帧4向前偏移6个子帧和/或向前偏移5个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧7上反馈对应于所述子帧7向前偏移7个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧8上反馈对应于所述子帧8向前偏移7个、向前偏移6个子帧和向前偏移5个后所对应的至少一个所述辅服务小区的子帧的HARQ-ACK。
本发明实施例方案仅考虑主服务小区的TDD上下行配置为如表1所示7种上下行配置中有限的几种,例如,如表4所示,上下行配置0,上下行配置1,上下行配置2和上下行配置6中的任意一种,即下行-上行的转换周期均为5个子帧的长度的上下行配置。辅服务小区可以为如表1所示7种上下行配置中的任何一种,在此不做限定。但对于主辅小区组合有一定限定。具体地,本发明实施例考虑组合场景限制,主服务小区的上行子帧包含不属于辅服务小区的上行子帧的上行子帧,即主服务小区的上行子帧不被辅服务小区的上行子帧所包含。该限定可以分为两种情况:
第一种为主服务小区的上行子帧包含辅服务小区的上行子帧,例如,主辅服务小区组合为(1,2),(2,5),(0,5),或(1,5)等;
第二种为主辅服务小区两者的上行子帧集合互不完全包含,例如,主辅服务小区组合为(2,4),或(2,3)等。
同时参考表1和表4。例如,当主服务小区的上下行配置为上下行配置0时,主服务小区的子帧2、子帧3、子帧4、子帧7、子帧8和子帧9均为上行子帧,共6个上行子帧;当主服务小区的上下行配置为上下行配置1时,主服务小区的子帧2、子帧3、子帧7和子帧8均为上行子帧,共4个上行子帧,其他上下行配置时类似,以保证反馈性能和时延。
在本发明任一实施例中,当所述主服务小区的上下行配置为上下行配置0时,所述主服务小区的子帧2、子帧3、子帧7和子帧8能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为2,所述主服务小区的子帧4和子帧9能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为1;当所述主服务小区的上下行配置为上下行配置1时,所述主服务小区的子帧2和子帧7能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为2,所述主服务小区的子帧3和子帧8能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为3;当所述主服务小区的上下行配置为上下行配置2时,所述主服务小区的子帧2和子帧7能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为5;当所述主服务小区的上下行配置为上下行配置6时,所述主服务小区的子帧2、子帧3和子帧4能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为2,所述主服务小区的子帧7能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为1,所述主服务小区的子帧8能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为3。
其中,表4中,主服务小区子帧序号中的子帧为用于反馈辅服务小区子帧的HARQ-ACK的上行子帧,每一上行子帧所对应的列中各数字分别表示在当前的上行子帧n上需要反馈辅服务小区子帧n-k(k属于K)的这些下行子帧上的PDSCH所对应的HARQ-ACK,例如,对于主服务小区的上下行配置为上下行配置1的主服务小区,主服务小区的子帧n=2中的K={7,6}表示这个n=2的上行子帧用来反馈辅服务小区子帧n-7和/或n-6这两个下行子帧上的PDSCH所对应的HARQ-ACK,具体地,子帧n-7就是以当前主服务小区的子帧n=2的子帧时间为基准,往前数7个子帧,即上个无线帧的子帧5;同理,n-6对应子帧6。
本发明实施例通过重新定义载波聚合中HARQ时序关系,限定主服务小区的上下行配置为上述任一上下行配置,以对满足上述限定条件的载波聚合在TDD某些上下行配置下可以配置多个载波,如,当一辅服务小区配置为上下行配置5时,PUCCH格式3模式可支持多于两个上下行配置5的辅服务小区的CA,并且通过上述载波聚合中HARQ时序关系,能够将需要反馈的HARQ-ACK分散于多个不同的上行子帧进行反馈,缩短了反馈时延并提高反 馈性能。
接下来以主辅服务小区组合为(2,5)和主辅服务小区组合为(1,2)为例分别进行详细说明。其中,基于传输模模式的不同,UE包括全双工UE和半双工UE。
一、对于主辅服务小区组合为(2,5),或主服务小区为上下行配置2,上下行配置5的多个辅服务小区的场景
一种实际应用场景中,UE为全双工UE,即UE支持在两个服务小区上同时接收和发送,例如,假设主服务小区是上行子帧,辅服务小区是下行子帧,全双工UE可以同时在主服务小区上发送信息和在辅服务小区上接收信息。
S104可以包括:根据接收PDSCH对应的HARQ-ACK的子帧确定M值,其中,M值为主服务小区的子帧能够反馈辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数减去辅服务小区子帧中是上行子帧的个数所获得的数值;根据上述M值,确定信道选择模式下的HARQ-ACK反馈表格;根据所述HARQ-ACK反馈表格,在主服务小区上接收PDSCH所对应的HARQ-ACK。
具体地,如表4所示,上下行配置2的主服务小区的子帧2和子帧7为反馈辅服务小区子帧的HARQ-ACK的子帧,UE需要分别确定该子帧的M值。以子帧为子帧2为例,由于子帧2能够反馈辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧中包含数字集合{8,7,6,5,4}共5个子帧;该数字集合中所有子帧能够反馈的、对应于该上下行配置5的辅服务小区的子帧均为下行子帧或特殊子帧,具体为辅服务小区子帧4,5,6,7和8,因此不需要扣除,即M值为5。
以子帧为子帧7为例,同理,由于子帧7能够反馈辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧中包含数字集合{8,7,6,5,4}共5个子帧,该数字集合中子帧能够反馈的、对应于该上下行配置5的辅服务小区的上行子帧的个数为1,具体的该上行子帧对应数字集合{8,7,6,5,4}共5个子帧,该数字集合中的数字5对应的该上行子帧为辅服务小区的上行子帧2,那么上行子帧7的M值为5-1=4。需要说明的是,这里对数字集合中的数字顺序不做限定。
在确定M值之后,基站和UE就可以根据该M值,确定信道选择模式下的HARQ-ACK反馈表格;进一步地,根据该HARQ-ACK反馈表格,在主服务小区上接收PDSCH所对应的HARQ-ACK。另外需要说明的是,由于该例中M值 可以等于5,所以,当UE为全双工UE时,主辅服务小区组合为(2,5)的PUCCH发送模式不支持信道选择模式。
其中,上述HARQ-ACK反馈表格是预先设置的,然后根据M的取值,比如M=2,或3,或4,来选择对应的表格。当M=2时,HARQ-ACK反馈表格如表5所示;当M=3时,HARQ-ACK反馈表格如表6所示;当M=4时,HARQ-ACK反馈表格如表7所示。在表5、表6和表7中,自每个表格的最左端数起,第一列表示HARQ-ACK的状态,即ACK还是NACK;第二列为选择出的传输HARQ-ACK的信道;第三列表示发送HARQ-ACK的调制符号的状态,其中,N/A表示不考虑。
表5 M=2对应的HARQ-ACK反馈表格
Figure PCTCN2014086854-appb-000005
表6 M=3对应的HARQ-ACK反馈表格
Figure PCTCN2014086854-appb-000006
Figure PCTCN2014086854-appb-000007
表7 M=4对应的HARQ-ACK反馈表格
Figure PCTCN2014086854-appb-000008
Figure PCTCN2014086854-appb-000009
在本发明实施例中,对全双工UE使用上下行配置5的辅服务小区的情况,可以最多支持3个上下行配置5的辅服务小区,即最多4个服务小区的CA;且对于辅服务小区的HARQ-ACK性能和反馈时延都进行了优化。
另一种实际应用场景中,UE为全双工UE,S104可以包括:根据接收PDSCH对应的HARQ-ACK的子帧确定M值,其中,M值为主服务小区的子帧能够反馈辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数减去所述辅服务小区中是上行子帧的个数所获得的数值;根据上述M值,确定PUCCH格式3模式下的HARQ-ACK的码本大小;根据HARQ-ACK的码本大小,在主服务小区上接收PDSCH所对应的HARQ-ACK。其中,码本大小为HARQ-ACK的信息比特数。比如,若调度了下行数据的一个传输块,则需反馈1比特的HARQ-ACK;如果调度了下行数据的N个传输块,就需反馈N个比特的HARQ-ACK。该应用场景与上一应用场景的区别仅在于根据所确定的M值,所确定PUCCH发送模式的不同,此处不再赘述。
再一种实际应用场景中,UE为半双工UE,即UE不支持在两个服务小区上同时接收和发送,例如,假设主服务小区是上行子帧,辅服务小区是 下行子帧,半双工UE不可以同时在主服务小区上发送信息和在辅服务小区上接收信息。具体的,UE可以采用主服务小区子帧方向优先级高的原则,即UE可以在主服务小区上发送信息,但同时不能辅服务小区上接收信息,当然基站也不会在这个子帧为该UE在辅服务小区上调度下行信息。反之也成立,如果主服务小区是下行子帧,同时辅服务小区是上行子帧,那么UE可以在主服务小区上接收信息,但同时不能辅服务小区上发送信息。
该应用场景中,S104可以包括:根据接收PDSCH对应的HARQ-ACK的子帧确定M值,其中,M值为主服务小区的子帧能够反馈辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数减去所述辅服务小区中是上行子帧的个数,再减去所述辅服务小区子帧中是下行子帧的个数所获得的数值,其中,与下行子帧时刻相同的子帧在所述主服务小区上是上行子帧或特殊子帧;根据上述M值,确定信道选择模式下的HARQ-ACK反馈表格;根据HARQ-ACK反馈表格,在主服务小区上接收PDSCH所对应的HARQ-ACK。
具体的,如表4所示,上下行配置2的主服务小区的子帧2和子帧7为反馈辅服务小区子帧的HARQ-ACK的子帧,UE需要分别确定该子帧的M值。以子帧为子帧2为例,由于子帧2能够反馈辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧中包含数字集合{8,7,6,5,4}共5个子帧;该数字集合中所有子帧能够反馈的、对应于该上下行配置5的辅服务小区的子帧均为下行子帧或特殊子帧,具体为辅服务小区子帧4,5,6,7和8,但对应于数字5的辅服务小区子帧为子帧7,考虑到主服务小区的子帧7为上行子帧,那么半双工UE在该辅服务小区的子帧7是不可以接收PDSCH的;此外,对应于数字6的辅服务小区子帧为下行子帧6,考虑到主服务小区的子帧6为特殊子帧,那么半双工UE在该辅服务小区的下行子帧6上也是不可以接收PDSCH的,因此,需要减去2个子帧(5和6),即M值为5-2=3。可选地,也可以只减去上述子帧中的一个,即可以只减去上述数字为5对应的辅服务小区的子帧7,而不减去上述数字为6对应的辅服务小区的子帧6,此时M值为4;也可以只减去上述数字为6对应的辅服务小区的子帧6,而不减去上述数字为5对应的辅服务小区的子帧7,此时M值也为4。
以子帧为子帧7为例,由于子帧2中能够反馈辅服务小区子帧的HARQ- ACK所对应的辅服务小区子帧中包含数字集合{8,7,6,5,4}共5个子帧,而该数字集合中子帧能够反馈的、对应于该上下行配置5的辅服务小区的上行子帧的个数为1,具体的该数字集合中数字5对应的上行子帧为辅服务小区的上行子帧2,则该子帧7上的M值为5-1=4。本发明实施例中,对数字集合中的数字顺序不做限定。
在确定M值之后,基站和UE就可以根据该M值确定信道选择模式下的HARQ-ACK反馈表格;进一步地,根据该HARQ-ACK反馈表格,在主服务小区上接收PDSCH所对应的HARQ-ACK。该发明实施例中,由于M值都小于或等于4,所以,当UE为半双工UE时,主辅服务小区组合为(2,5)的PUCCH发送模式可以支持信道选择模式。
在本发明实施例中,对半双工UE使用上下行配置5的辅服务小区的情况,可以最多支持4个上下行配置5的辅服务小区,即最多5个服务小区的CA;且对于辅服务小区的HARQ-ACK性能和反馈时延都进行了优化。
又一种实际应用场景中,UE为半双工UE,S104可以包括:根据接收PDSCH对应的HARQ-ACK的子帧确定M值,其中,M值为主服务小区的子帧能够反馈辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数减去所述辅服务小区中是上行子帧的个数,再减去所述辅服务小区中是下行子帧的个数所获得的数值,其中,与下行子帧时刻相同的子帧在所述主服务小区上是上行子帧或特殊子帧;根据所述M值,确定PUCCH格式3模式下的HARQ-ACK的码本大小;根据HARQ-ACK的码本大小,在主服务小区上接收PDSCH所对应的HARQ-ACK。该应用场景与上一应用场景的区别仅在于根据所确定的M值,所确定PUCCH发送模式的不同,此处不再赘述。
二、对于主辅服务小区组合为(1,2),或主服务小区为上下行配置1,上下行配置2的多个辅服务小区的场景
具体地,在表8中,根据辅服务小区的当前时序,主辅服务小区组合(1,2)下的上下行配置2的辅服务小区的参考上下行配置为辅服务小区自身的上下行配置2。如表8所示,可以看到反馈该辅服务小区的HARQ-ACK的子帧为主服务小区的4个上行子帧中的两个,且各自的M值均为4;采用辅服务小区的新时序后,表8的新时序和表4对于主辅小区组合(1,2)是一致的,获取M值的方法也是一致的。另外,采用新时序之后,反馈辅服务小区的HARQ-ACK的 子帧扩展到了所有主服务小区的上行子帧上,因此,优化了M值在多个子帧间的平衡,且由于M值的减小带来了性能的提升。此外,对于部分子帧的反馈延时也进行了优化,例如,PDSCH子帧4和子帧9的反馈时延缩短了一个4个子帧。
表8 主服务小区配置1和辅服务小区配置2下的新时序
Figure PCTCN2014086854-appb-000010
该实施例对其他TDD CA组合满足条件“主服务小区的上行子帧不被辅服务小区的上行子帧所包含”的情况,若不考虑上下行配置5,可以最多支持5个服务小区的CA;且,对于辅服务小区的HARQ-ACK性能和反馈时延都进行了优化。
这里仅说明全双工UE对应的场景,对于半双工UE对应的场景与上述实施例类似,此处不再赘述。
另外,由于当前系统中存在双工能力的上报,所以本发明用于指示所述UE为全双工UE或半双工UE的信令,可以与当前系统中的双工能力上报复用一条信令,也可以是独立于当前系统中的半双工能力。
在上述实施例的基础上,S101之前,该方法还可以包括:接收UE上报的能力信息,该能力信息用于指示UE是否支持HARQ时序关系;并,根据该能力信息,确定所述UE支持所述HARQ时序关系。
具体的,由于当前系统中存在已有的TDD CA下的HARQ时序关系,暂且叫做原HARQ时序关系;新添加的能力信息引入了上述HARQ时序关系。此外,鉴于当前系统中还支持TDD-FDD的CA,因此,该能力信息的上报可以与上述TDD-FDD CA的能力绑定或复用一条上报信令,即一旦UE上报了支持TDD-FDD CA的能力,那么该UE也就同时具备了支持上述HARQ时序关系的能力。可选地,也可以是独立于当前系统中的TDD-FDD CA能力的能力上报。
在上述实施例中,所述主服务小区的上下行配置满足下述条件中的至少 一个:
条件一:当所述主服务小区的上下行配置为上下行配置0时,所述主服务小区的子帧2、子帧3、子帧4、子帧7、子帧8和子帧9中至少一个子帧所反馈的辅服务小区的子帧的HARQ-ACK所对应的辅服务小区的子帧减少至少一个。
条件二:当所述主服务小区的上下行配置为上下行配置1时,所述主服务小区的子帧2、子帧3、子帧7和子帧8中至少一个子帧所反馈的辅服务小区的子帧的HARQ-ACK所对应的辅服务小区的子帧减少至少一个。
条件三:当所述主服务小区的上下行配置为上下行配置2时,所述主服务小区的子帧2和子帧7中至少一个子帧所反馈的辅服务小区的子帧的HARQ-ACK所对应的辅服务小区的子帧减少至少一个。
条件四:当所述主服务小区的上下行配置为上下行配置6时,所述主服务小区的子帧2、子帧3、子帧4、子帧7和子帧8中至少一个子帧所反馈的辅服务小区的子帧的HARQ-ACK所对应的辅服务小区的子帧减少至少一个。
可选地,所述辅服务小区的TDD上下行配置可以为上下行配置5。当所述辅服务小区的上下行配置为5时,所述主服务小区的上下行配置满足上述条件中的至少一。且此时仍具有本发明实施例的效果:在TDD某些上下行配置下可以配置多个载波,如,当一辅服务小区配置为上下行配置5时,PUCCH格式3模式可支持多于两个上下行配置5的辅服务小区的CA,并且通过上述载波聚合中HARQ时序关系,能够将需要反馈的HARQ-ACK分散于多个不同的上行子帧进行反馈,缩短了反馈时延并提高反馈性能。
图5为本发明应答信息的传输方法实施例二的流程示意图。本发明实施例提供一种应答信息的传输方法,该方法应用于TDD系统,可以由应答信息的传输装置执行,该装置可以集成在例如用户设备等设备中。如图5所示,该方法包括:
S501、在辅服务小区上接收PDSCH,辅服务小区为基站为UE配置的N个TDD辅服务小区中的辅服务小区,N为大于或等于1的自然数;
S502、确定辅服务小区对应的HARQ时序关系,该HARQ时序关系为PDSCH与HARQ-ACK的HARQ时序关系;
S503、根据所述HARQ时序关系,在主服务小区上发送所述PDSCH所 对应的HARQ-ACK,其中,主服务小区为基站为UE配置的TDD主服务小区。
本发明实施例的方法,与上述方法实施例相对应。上述方法实施例中,在辅服务小区上发送PDSCH,并根据所HARQ时序关系,在主服务小区上接收所述PDSCH所对应的HARQ-ACK;本实施例中,在辅服务小区上接收PDSCH,并根据所HARQ时序关系,在主服务小区上发送所述PDSCH所对应的HARQ-ACK,其实现原理和技术效果类似。因此,在这里仅做简略说明,不再一一赘述。
在上述基础上,所述HARQ时序关系包括:所述主服务小区的上下行配置为上下行配置0、上下行配置1、上下行配置2和上下行配置6中任一个。具体地,当所述主服务小区的配置为上述不同上下行配置时,主服务小区能够反馈的HARQ-ACK所对应的辅服务小区的子帧不同,以下具体说明。
当所述主服务小区的上下行配置为上下行配置0时,所述主服务小区的上行子帧包括子帧2、子帧3、子帧4、子帧7、子帧8和子帧9,在所述主服务小区的子帧2上反馈对应于所述子帧2向前偏移5个和/或向前偏移6个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧3反馈对应于所述子帧3向前偏移4个和/或向前偏移5个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧4上反馈对应于所述子帧4向前偏移4个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧7上反馈对应于所述子帧7向前偏移6个和/或向前偏移5个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧8上反馈对应于所述子帧8向前偏移5个和/或向前偏移4个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧9上反馈对应于所述子帧9向前偏移4个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK。
当所述主服务小区的上下行配置为上下行配置1时,所述主服务小区的上行子帧包括子帧2、子帧3、子帧7和子帧8,在所述主服务小区的子帧2上反馈对应于所述子帧2向前偏移7个和/或向前偏移6个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧3反馈对应于所述子帧3向前偏移6个子帧、向前偏移5个子帧和向前偏移4个子帧后所 对应的至少一个所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧7上反馈对应于所述子帧7向前偏移7个子帧和/或向前偏移6个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧8上反馈对应于所述子帧8向前偏移6个子帧、向前偏移5个子帧和向前偏移4个子帧后所对应的至少一个所述辅服务小区的子帧的HARQ-ACK。
当所述主服务小区的上下行配置为上下行配置2时,所述主服务小区的上行子帧包括子帧2和子帧7,在所述主服务小区的子帧2上反馈对应于所述子帧2向前偏移8个子帧、向前偏移7个子帧、向前偏移6个子帧、向前偏移5个子帧和向前偏移4个子帧后所对应的至少一个所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧7上反馈对应于所述子帧7向前偏移8个子帧、向前偏移7个子帧、向前偏移6个子帧、向前偏移5个子帧和向前偏移4个子帧后所对应的至少一个所述辅服务小区的子帧的HARQ-ACK。
当所述主服务小区的上下行配置为上下行配置6时,所述主服务小区的上行子帧包括子帧2、子帧3、子帧4、子帧7和子帧8,在所述主服务小区的子帧2上反馈对应于所述子帧2向前偏移8个和/或向前偏移7个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧3反馈对应于所述子帧3向前偏移7个和/或向前偏移6个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧4上反馈对应于所述子帧4向前偏移6个子帧和/或向前偏移5个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧7上反馈对应于所述子帧7向前偏移7个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧8上反馈对应于所述子帧8向前偏移7个、向前偏移6个子帧和向前偏移5个后所对应的至少一个所述辅服务小区的子帧的HARQ-ACK。
需要说明的是,在本发明任一实施例中,主服务小区的上行子帧包含不属于辅服务小区的上行子帧的上行子帧。
另外,当所述主服务小区的上下行配置为上下行配置0时,所述主服务小区的子帧2、子帧3、子帧7和子帧8能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为2,所述主服务小区的子帧4和子帧9 能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为1。
当所述主服务小区的上下行配置为上下行配置1时,所述主服务小区的子帧2和子帧7能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为2,所述主服务小区的子帧3和子帧8能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为3。
当所述主服务小区的上下行配置为上下行配置2时,所述主服务小区的子帧2和子帧7能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为5。
当所述主服务小区的上下行配置为上下行配置6时,所述主服务小区的子帧2、子帧3和子帧4能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为2,所述主服务小区的子帧7能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为1,所述主服务小区的子帧8能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为3。
对于不同传输模式的UE,包括但不限于以下不同场景。
场景一:所述UE为全双工UE,S503可以包括:根据发送所述PDSCH对应的HARQ-ACK的子帧确定M值,其中,所述M值为所述主服务小区的子帧能够反馈辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数减去所述辅服务小区子帧中是上行子帧的个数所获得的数值;根据所述M值,确定信道选择模式下的HARQ-ACK反馈表格;根据所述HARQ-ACK反馈表格,在所述主服务小区上发送所述PDSCH所对应的HARQ-ACK。
场景二:所述UE为全双工UE,S503可以包括:根据发送所述PDSCH对应的HARQ-ACK的子帧确定M值,其中,所述M值为所述主服务小区的子帧能够反馈辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数减去所述辅服务小区子帧中是上行子帧的个数所获得的数值;根据所述M值,确定物理上行控制信道格式3模式下的HARQ-ACK的码本大小;根据所述HARQ-ACK的码本大小,在所述主服务小区上发送所述PDSCH所对应的HARQ-ACK。
场景三:所述UE为半双工UE,S503可以包括:根据发送所述PDSCH 对应的HARQ-ACK的子帧确定M值,所述M值为所述主服务小区的子帧能够反馈辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数减去所述辅服务小区子帧中是上行子帧的个数,再减去所述辅服务小区子帧中是下行子帧的个数所获得的数值,其中,与所述下行子帧时刻相同的子帧在所述主服务小区上是上行子帧或特殊子帧,其中,与所述下行子帧时刻相同的子帧在所述主服务小区上是上行子帧或特殊子帧;根据所述M值,确定信道选择模式下的HARQ-ACK反馈表格;根据所述HARQ-ACK反馈表格,在所述主服务小区上发送所述PDSCH所对应的HARQ-ACK。
场景四:所述UE为半双工UE,S503可以包括:根据发送所述PDSCH对应的HARQ-ACK的子帧确定M值,所述M值为所述主服务小区的子帧能够反馈辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数减去所述辅服务小区子帧中是上行子帧的个数,再减去所述辅服务小区子帧中是下行子帧的个数所获得的数值,其中,与所述下行子帧时刻相同的子帧在所述主服务小区上是上行子帧或特殊子帧;根据所述M值,确定物理上行控制信道格式3模式下的HARQ-ACK的码本大小;根据所述HARQ-ACK的码本大小,在所述主服务小区上发送所述PDSCH所对应的HARQ-ACK。
进一步地,在S501之前,所述方法还可以包括:向所述基站上报能力信息,所述能力信息用于指示所述UE是否支持所述HARQ时序关系;根据所述能力信息,确定其自身支持所述HARQ时序关系。
其中,所述主服务小区的上下行配置满足下述条件中的至少一个:当所述主服务小区的上下行配置为上下行配置0时,所述主服务小区的子帧2、子帧3、子帧4、子帧7、子帧8和子帧9中至少一个子帧所反馈的辅服务小区的子帧的HARQ-ACK所对应的辅服务小区的子帧减少至少一个;当所述主服务小区的上下行配置为上下行配置1时,所述主服务小区的子帧2、子帧3、子帧7和子帧8中至少一个子帧所反馈的辅服务小区的子帧的HARQ-ACK所对应的辅服务小区的子帧减少至少一个;当所述主服务小区的上下行配置为上下行配置2时,所述主服务小区的子帧2和子帧7中至少一个子帧所反馈的辅服务小区的子帧的HARQ-ACK所对应的辅服务小区的子帧减少至少一个;当所述主服务小区的上下行配置为上下行配置6时,所述主服务小区的子帧2、子帧3、子帧4、子帧7和子帧8中至少一个子帧所反 馈的辅服务小区的子帧的HARQ-ACK所对应的辅服务小区的子帧减少至少一个。
且,当所述辅服务小区的上下行配置为上下行配置5时,所述主服务小区的上下行配置满足下述条件中的至少一个:
当所述主服务小区的上下行配置为上下行配置0时,所述主服务小区的子帧2、子帧3、子帧4、子帧7、子帧8和子帧9中至少一个子帧所反馈的辅服务小区的子帧的HARQ-ACK所对应的辅服务小区的子帧减少一个;
当所述主服务小区的上下行配置为上下行配置1时,所述主服务小区的子帧2、子帧3、子帧7和子帧8中至少一个子帧所反馈的辅服务小区的子帧的HARQ-ACK所对应的辅服务小区的子帧减少一个;
当所述主服务小区的上下行配置为上下行配置2时,所述主服务小区的子帧2和子帧7中至少一个子帧所反馈的辅服务小区的子帧的HARQ-ACK所对应的辅服务小区的子帧减少一个;
当所述主服务小区的上下行配置为上下行配置6时,所述主服务小区的子帧2、子帧3、子帧4、子帧7和子帧8中至少一个子帧所反馈的辅服务小区的子帧的HARQ-ACK所对应的辅服务小区的子帧减少一个。
本发明实施例通过重新定义载波聚合中HARQ时序关系,限定主服务小区的上下行配置为上述任一上下行配置,以对满足上述限定条件的载波聚合在TDD某些上下行配置下可以配置多个载波,如,当一辅服务小区配置为上下行配置5时,PUCCH格式3模式可支持多于两个上下行配置5的辅服务小区的CA,并且通过上述载波聚合中HARQ时序关系,能够将需要反馈的HARQ-ACK分散于多个不同的上行子帧进行反馈,缩短了反馈时延并提高反馈性能。
本领域普通技术人员可以理解:实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一计算机可读取存储介质中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通 技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (46)

  1. 一种应答信息的传输装置,其特征在于,应用于时分双工TDD系统,所述装置包括:
    确定模块,用于确定在辅服务小区上向用户设备UE发送物理下行共享信道PDSCH;
    发送模块,用于在所述辅服务小区上向所述UE发送所述确定模块确定的所述PDSCH;
    所述确定模块,还用于确定所述辅服务小区对应的混合自动重传请求HARQ时序关系,所述HARQ时序关系为所述PDSCH与HARQ应答信息HARQ-ACK的HARQ时序关系;
    接收模块,用于根据所述确定模块确定的所述HARQ时序关系,在主服务小区上接收所述PDSCH所对应的HARQ-ACK;
    其中,所述主服务小区为基站为所述UE配置的TDD主服务小区,所述辅服务小区为所述基站为所述UE配置的N个TDD辅服务小区中的辅服务小区,所述N为大于或等于1的自然数。
  2. 根据权利要求1所述的装置,其特征在于,所述HARQ时序关系包括:
    所述主服务小区的上下行配置为上下行配置0、上下行配置1、上下行配置2和上下行配置6中任一个,其中,
    当所述主服务小区的上下行配置为上下行配置0时,所述主服务小区的上行子帧包括子帧2、子帧3、子帧4、子帧7、子帧8和子帧9,在所述主服务小区的子帧2上反馈对应于所述子帧2向前偏移5个和/或向前偏移6个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧3反馈对应于所述子帧3向前偏移4个和/或向前偏移5个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧4上反馈对应于所述子帧4向前偏移4个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧7上反馈对应于所述子帧7向前偏移6个和/或向前偏移5个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧8上反馈对应于所述子帧8向前偏移5个和/或向前偏移4个子帧后所对应的所述辅服务小区的子帧的 HARQ-ACK,在所述主服务小区的子帧9上反馈对应于所述子帧9向前偏移4个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK;
    当所述主服务小区的上下行配置为上下行配置1时,所述主服务小区的上行子帧包括子帧2、子帧3、子帧7和子帧8,在所述主服务小区的子帧2上反馈对应于所述子帧2向前偏移7个和/或向前偏移6个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧3反馈对应于所述子帧3向前偏移6个子帧、向前偏移5个子帧和向前偏移4个子帧后所对应的至少一个所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧7上反馈对应于所述子帧7向前偏移7个子帧和/或向前偏移6个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧8上反馈对应于所述子帧8向前偏移6个子帧、向前偏移5个子帧和向前偏移4个子帧后所对应的至少一个所述辅服务小区的子帧的HARQ-ACK;
    当所述主服务小区的上下行配置为上下行配置2时,所述主服务小区的上行子帧包括子帧2和子帧7,在所述主服务小区的子帧2上反馈对应于所述子帧2向前偏移8个子帧、向前偏移7个子帧、向前偏移6个子帧、向前偏移5个子帧和向前偏移4个子帧后所对应的至少一个所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧7上反馈对应于所述子帧7向前偏移8个子帧、向前偏移7个子帧、向前偏移6个子帧、向前偏移5个子帧和向前偏移4个子帧后所对应的至少一个所述辅服务小区的子帧的HARQ-ACK;
    当所述主服务小区的上下行配置为上下行配置6时,所述主服务小区的上行子帧包括子帧2、子帧3、子帧4、子帧7和子帧8,在所述主服务小区的子帧2上反馈对应于所述子帧2向前偏移8个和/或向前偏移7个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧3反馈对应于所述子帧3向前偏移7个和/或向前偏移6个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧4上反馈对应于所述子帧4向前偏移6个子帧和/或向前偏移5个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧7上反馈对应于所述子帧7向前偏移7个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧8上反馈对应于所述子帧8向前偏移7个、向前偏移6 个子帧和向前偏移5个后所对应的至少一个所述辅服务小区的子帧的HARQ-ACK。
  3. 根据权利要求1或2所述的装置,其特征在于,所述主服务小区的上行子帧包含不属于所述辅服务小区的上行子帧的上行子帧。
  4. 根据权利要求1-3任一项所述的装置,其特征在于,
    当所述主服务小区的上下行配置为上下行配置0时,所述主服务小区的子帧2、子帧3、子帧7和子帧8能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为2,所述主服务小区的子帧4和子帧9能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为1;
    当所述主服务小区的上下行配置为上下行配置1时,所述主服务小区的子帧2和子帧7能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为2,所述主服务小区的子帧3和子帧8能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为3;
    当所述主服务小区的上下行配置为上下行配置2时,所述主服务小区的子帧2和子帧7能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为5;
    当所述主服务小区的上下行配置为上下行配置6时,所述主服务小区的子帧2、子帧3和子帧4能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为2,所述主服务小区的子帧7能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为1,所述主服务小区的子帧8能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为3。
  5. 根据权利要求4所述的装置,其特征在于,所述UE为全双工UE,所述接收模块具体用于:
    根据接收所述PDSCH对应的HARQ-ACK的子帧确定M值,其中,所述M值为所述主服务小区的子帧能够反馈辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数减去所述辅服务小区子帧中是上行子帧的个数所获得的数值;
    根据所述M值,确定信道选择模式下的HARQ-ACK反馈表格;
    根据所述HARQ-ACK反馈表格,在所述主服务小区上接收所述PDSCH 所对应的HARQ-ACK。
  6. 根据权利要求4所述的装置,其特征在于,所述UE为全双工UE,所述接收模块具体用于:
    根据接收所述PDSCH对应的HARQ-ACK的子帧确定M值,所述M值为所述主服务小区的子帧能够反馈辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数减去所述辅服务小区子帧中是上行子帧的个数所获得的数值;
    根据所述M值,确定物理上行控制信道格式3模式下的HARQ-ACK的码本大小;
    根据所述HARQ-ACK的码本大小,在所述主服务小区上接收所述PDSCH所对应的HARQ-ACK。
  7. 根据权利要求4所述的装置,其特征在于,所述UE为半双工UE,所述接收模块具体用于:
    根据接收所述PDSCH对应的HARQ-ACK的子帧确定M值,所述M值为所述主服务小区的子帧能够反馈辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数减去所述辅服务小区子帧中是上行子帧的个数,再减去所述辅服务小区子帧中是下行子帧的个数所获得的数值,其中,与所述下行子帧时刻相同的子帧在所述主服务小区上是上行子帧或特殊子帧;
    根据所述M值,确定信道选择模式下的HARQ-ACK反馈表格;
    根据所述HARQ-ACK反馈表格,在所述主服务小区上接收所述PDSCH所对应的HARQ-ACK。
  8. 根据权利要求4所述的装置,其特征在于,所述UE为半双工UE,所述接收模块具体用于:
    根据接收所述PDSCH对应的HARQ-ACK的子帧确定M值,所述M值为所述主服务小区的子帧能够反馈辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数减去所述辅服务小区子帧中是上行子帧的个数,再减去所述辅服务小区子帧中是下行子帧的个数所获得的数值,其中,与所述下行子帧时刻相同的子帧在所述主服务小区上是上行子帧或特殊子帧;
    根据所述M值,确定物理上行控制信道格式3模式下的HARQ-ACK的码本大小;
    根据所述HARQ-ACK的码本大小,在所述主服务小区上接收所述PDSCH所对应的HARQ-ACK。
  9. 根据权利要求4-8任一项所述的装置,其特征在于,所述接收模块还用于:
    在所述发送模块在所述辅服务小区上向所述UE发送所述确定模块确定的所述PDSCH之前,接收所述UE上报的能力信息,所述能力信息用于指示所述UE是否支持所述HARQ时序关系;
    所述确定模块还用于:
    根据所述能力信息,确定所述UE支持所述HARQ时序关系。
  10. 根据权利要求2-9任一项所述的装置,其特征在于,
    所述主服务小区的上下行配置满足下述条件中的至少一个:
    当所述主服务小区的上下行配置为上下行配置0时,所述主服务小区的子帧2、子帧3、子帧4、子帧7、子帧8和子帧9中至少一个子帧所反馈的辅服务小区的子帧的HARQ-ACK所对应的辅服务小区的子帧减少至少一个;
    当所述主服务小区的上下行配置为上下行配置1时,所述主服务小区的子帧2、子帧3、子帧7和子帧8中至少一个子帧所反馈的辅服务小区的子帧的HARQ-ACK所对应的辅服务小区的子帧减少至少一个;
    当所述主服务小区的上下行配置为上下行配置2时,所述主服务小区的子帧2和子帧7中至少一个子帧所反馈的辅服务小区的子帧的HARQ-ACK所对应的辅服务小区的子帧减少至少一个;
    当所述主服务小区的上下行配置为上下行配置6时,所述主服务小区的子帧2、子帧3、子帧4、子帧7和子帧8中至少一个子帧所反馈的辅服务小区的子帧的HARQ-ACK所对应的辅服务小区的子帧减少至少一个。
  11. 根据权利要求2-9任一项所述的装置,其特征在于,
    当所述辅服务小区的上下行配置为上下行配置5时,
    所述主服务小区的上下行配置满足下述条件中的至少一个:
    当所述主服务小区的上下行配置为上下行配置0时,所述主服务小区的子帧2、子帧3、子帧4、子帧7、子帧8和子帧9中至少一个子帧所反馈的辅服务小区的子帧的HARQ-ACK所对应的辅服务小区的子帧减少一个;
    当所述主服务小区的上下行配置为上下行配置1时,所述主服务小区的 子帧2、子帧3、子帧7和子帧8中至少一个子帧所反馈的辅服务小区的子帧的HARQ-ACK所对应的辅服务小区的子帧减少一个;
    当所述主服务小区的上下行配置为上下行配置2时,所述主服务小区的子帧2和子帧7中至少一个子帧所反馈的辅服务小区的子帧的HARQ-ACK所对应的辅服务小区的子帧减少一个;
    当所述主服务小区的上下行配置为上下行配置6时,所述主服务小区的子帧2、子帧3、子帧4、子帧7和子帧8中至少一个子帧所反馈的辅服务小区的子帧的HARQ-ACK所对应的辅服务小区的子帧减少一个。
  12. 一种应答信息的传输装置,其特征在于,应用于时分双工TDD系统,所述装置包括:
    接收模块,用于在辅服务小区上接收物理下行共享信道PDSCH;
    确定模块,用于确定所述辅服务小区对应的混合自动重传请求HARQ时序关系,所述HARQ时序关系为所述接收模块接收的PDSCH与HARQ应答信息HARQ-ACK的HARQ时序关系;
    发送模块,用于根据所述确定模块确定的所述HARQ时序关系,在主服务小区上发送所述PDSCH所对应的HARQ-ACK;
    其中,所述主服务小区为基站为用户设备UE配置的TDD主服务小区,所述辅服务小区为所述基站为所述UE配置的N个TDD辅服务小区中的辅服务小区,所述N为大于或等于1的自然数。
  13. 根据权利要求12所述的装置,其特征在于,所述HARQ时序关系包括:
    所述主服务小区的上下行配置为上下行配置0、上下行配置1、上下行配置2和上下行配置6中任一个,其中,
    当所述主服务小区的上下行配置为上下行配置0时,所述主服务小区的上行子帧包括子帧2、子帧3、子帧4、子帧7、子帧8和子帧9,在所述主服务小区的子帧2上反馈对应于所述子帧2向前偏移5个和/或向前偏移6个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧3反馈对应于所述子帧3向前偏移4个和/或向前偏移5个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧4上反馈对应于所述子帧4向前偏移4个子帧后所对应的所述辅服务小区的子帧的 HARQ-ACK,在所述主服务小区的子帧7上反馈对应于所述子帧7向前偏移6个和/或向前偏移5个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧8上反馈对应于所述子帧8向前偏移5个和/或向前偏移4个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧9上反馈对应于所述子帧9向前偏移4个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK;
    当所述主服务小区的上下行配置为上下行配置1时,所述主服务小区的上行子帧包括子帧2、子帧3、子帧7和子帧8,在所述主服务小区的子帧2上反馈对应于所述子帧2向前偏移7个和/或向前偏移6个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧3反馈对应于所述子帧3向前偏移6个子帧、向前偏移5个子帧和向前偏移4个子帧后所对应的至少一个所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧7上反馈对应于所述子帧7向前偏移7个子帧和/或向前偏移6个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧8上反馈对应于所述子帧8向前偏移6个子帧、向前偏移5个子帧和向前偏移4个子帧后所对应的至少一个所述辅服务小区的子帧的HARQ-ACK;
    当所述主服务小区的上下行配置为上下行配置2时,所述主服务小区的上行子帧包括子帧2和子帧7,在所述主服务小区的子帧2上反馈对应于所述子帧2向前偏移8个子帧、向前偏移7个子帧、向前偏移6个子帧、向前偏移5个子帧和向前偏移4个子帧后所对应的至少一个所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧7上反馈对应于所述子帧7向前偏移8个子帧、向前偏移7个子帧、向前偏移6个子帧、向前偏移5个子帧和向前偏移4个子帧后所对应的至少一个所述辅服务小区的子帧的HARQ-ACK;
    当所述主服务小区的上下行配置为上下行配置6时,所述主服务小区的上行子帧包括子帧2、子帧3、子帧4、子帧7和子帧8,在所述主服务小区的子帧2上反馈对应于所述子帧2向前偏移8个和/或向前偏移7个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧3反馈对应于所述子帧3向前偏移7个和/或向前偏移6个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧4上反馈对应于所 述子帧4向前偏移6个子帧和/或向前偏移5个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧7上反馈对应于所述子帧7向前偏移7个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧8上反馈对应于所述子帧8向前偏移7个、向前偏移6个子帧和向前偏移5个后所对应的至少一个所述辅服务小区的子帧的HARQ-ACK。
  14. 根据权利要求12或13所述的装置,其特征在于,所述主服务小区的上行子帧包含不属于所述辅服务小区的上行子帧的上行子帧。
  15. 根据权利要求12-14任一项所述的装置,其特征在于,
    当所述主服务小区的上下行配置为上下行配置0时,所述主服务小区的子帧2、子帧3、子帧7和子帧8能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为2,所述主服务小区的子帧4和子帧9能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为1;
    当所述主服务小区的上下行配置为上下行配置1时,所述主服务小区的子帧2和子帧7能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为2,所述主服务小区的子帧3和子帧8能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为3;
    当所述主服务小区的上下行配置为上下行配置2时,所述主服务小区的子帧2和子帧7能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为5;
    当所述主服务小区的上下行配置为上下行配置6时,所述主服务小区的子帧2、子帧3和子帧4能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为2,所述主服务小区的子帧7能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为1,所述主服务小区的子帧8能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为3。
  16. 根据权利要求15所述的装置,其特征在于,所述UE为全双工UE,所述发送模块具体用于:
    根据发送所述PDSCH对应的HARQ-ACK的子帧确定M值,其中,所述M值为所述主服务小区的子帧能够反馈辅服务小区子帧的HARQ-ACK所 对应的辅服务小区子帧个数减去所述辅服务小区子帧中是上行子帧的个数所获得的数值;
    根据所述M值,确定信道选择模式下的HARQ-ACK反馈表格;
    根据所述HARQ-ACK反馈表格,在所述主服务小区上发送所述PDSCH所对应的HARQ-ACK。
  17. 根据权利要求15所述的装置,其特征在于,所述UE为全双工UE,所述发送模块具体用于:
    根据发送所述PDSCH对应的HARQ-ACK的子帧确定M值,其中,所述M值为所述主服务小区的子帧能够反馈辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数减去所述辅服务小区子帧中是上行子帧的个数所获得的数值;
    根据所述M值,确定物理上行控制信道格式3模式下的HARQ-ACK的码本大小;
    根据所述HARQ-ACK的码本大小,在所述主服务小区上发送所述PDSCH所对应的HARQ-ACK。
  18. 根据权利要求15所述的装置,其特征在于,所述UE为半双工UE,所述发送模块具体用于:
    根据发送所述PDSCH对应的HARQ-ACK的子帧确定M值,所述M值为所述主服务小区的子帧能够反馈辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数减去所述辅服务小区子帧中是上行子帧的个数,再减去所述辅服务小区子帧中是下行子帧的个数所获得的数值,其中,与所述下行子帧时刻相同的子帧在所述主服务小区上是上行子帧或特殊子帧,其中,与所述下行子帧时刻相同的子帧在所述主服务小区上是上行子帧或特殊子帧;
    根据所述M值,确定信道选择模式下的HARQ-ACK反馈表格;
    根据所述HARQ-ACK反馈表格,在所述主服务小区上发送所述PDSCH所对应的HARQ-ACK。
  19. 根据权利要求15所述的装置,其特征在于,所述UE为半双工UE,所述发送模块具体用于:
    根据发送所述PDSCH对应的HARQ-ACK的子帧确定M值,所述M值为所述主服务小区的子帧能够反馈辅服务小区子帧的HARQ-ACK所对应的 辅服务小区子帧个数减去所述辅服务小区子帧中是上行子帧的个数,再减去所述辅服务小区子帧中是下行子帧的个数所获得的数值,其中,与所述下行子帧时刻相同的子帧在所述主服务小区上是上行子帧或特殊子帧;
    根据所述M值,确定物理上行控制信道格式3模式下的HARQ-ACK的码本大小;
    根据所述HARQ-ACK的码本大小,在所述主服务小区上发送所述PDSCH所对应的HARQ-ACK。
  20. 根据权利要求15-19任一项所述的装置,其特征在于,所述发送模块还用于:
    在所述接收模块在所述辅服务小区上接收所述PDSCH之前,向所述基站上报能力信息,所述能力信息用于指示所述UE是否支持所述HARQ时序关系;
    所述确定模块还用于:
    根据所述能力信息,确定其自身支持所述HARQ时序关系。
  21. 根据权利要求13-20任一项所述的装置,其特征在于,
    所述主服务小区的上下行配置满足下述条件中的至少一个:
    当所述主服务小区的上下行配置为上下行配置0时,所述主服务小区的子帧2、子帧3、子帧4、子帧7、子帧8和子帧9中至少一个子帧所反馈的辅服务小区的子帧的HARQ-ACK所对应的辅服务小区的子帧减少至少一个;
    当所述主服务小区的上下行配置为上下行配置1时,所述主服务小区的子帧2、子帧3、子帧7和子帧8中至少一个子帧所反馈的辅服务小区的子帧的HARQ-ACK所对应的辅服务小区的子帧减少至少一个;
    当所述主服务小区的上下行配置为上下行配置2时,所述主服务小区的子帧2和子帧7中至少一个子帧所反馈的辅服务小区的子帧的HARQ-ACK所对应的辅服务小区的子帧减少至少一个;
    当所述主服务小区的上下行配置为上下行配置6时,所述主服务小区的子帧2、子帧3、子帧4、子帧7和子帧8中至少一个子帧所反馈的辅服务小区的子帧的HARQ-ACK所对应的辅服务小区的子帧减少至少一个。
  22. 根据权利要求13-20任一项所述的装置,其特征在于,
    当所述辅服务小区的上下行配置为上下行配置5时,
    所述主服务小区的上下行配置满足下述条件中的至少一个:
    当所述主服务小区的上下行配置为上下行配置0时,所述主服务小区的子帧2、子帧3、子帧4、子帧7、子帧8和子帧9中至少一个子帧所反馈的辅服务小区的子帧的HARQ-ACK所对应的辅服务小区的子帧减少一个;
    当所述主服务小区的上下行配置为上下行配置1时,所述主服务小区的子帧2、子帧3、子帧7和子帧8中至少一个子帧所反馈的辅服务小区的子帧的HARQ-ACK所对应的辅服务小区的子帧减少一个;
    当所述主服务小区的上下行配置为上下行配置2时,所述主服务小区的子帧2和子帧7中至少一个子帧所反馈的辅服务小区的子帧的HARQ-ACK所对应的辅服务小区的子帧减少一个;
    当所述主服务小区的上下行配置为上下行配置6时,所述主服务小区的子帧2、子帧3、子帧4、子帧7和子帧8中至少一个子帧所反馈的辅服务小区的子帧的HARQ-ACK所对应的辅服务小区的子帧减少一个。
  23. 一种应答信息的传输设备,其特征在于,应用于时分双工TDD系统,所述设备包括:处理器,发射器以及接收器;
    所述处理器,用于确定在辅服务小区上向用户设备UE发送物理下行共享信道PDSCH;
    所述发射器,用于在所述辅服务小区上向所述UE发送所述处理器确定的所述PDSCH;
    所述处理器,还用于确定所述辅服务小区对应的混合自动重传请求HARQ时序关系,所述HARQ时序关系为所述PDSCH与HARQ应答信息HARQ-ACK的HARQ时序关系;
    所述接收器,用于根据所述所述处理器确定的HARQ时序关系,在主服务小区上接收所述PDSCH所对应的HARQ-ACK;
    其中,所述主服务小区为基站为所述UE配置的TDD主服务小区,所述辅服务小区为所述基站为所述UE配置的N个TDD辅服务小区中的辅服务小区,所述N为大于或等于1的自然数。
  24. 一种应答信息的传输设备,其特征在于,应用于时分双工TDD系统,所述设备包括:处理器,接收器以及发射器;
    所述接收器,用于在辅服务小区上接收物理下行共享信道PDSCH;
    所述处理器,用于确定所述辅服务小区对应的混合自动重传请求HARQ时序关系,所述HARQ时序关系为所述接收器接收的PDSCH与HARQ应答信息HARQ-ACK的HARQ时序关系;
    所述发射器,用于根据所述处理器确定的所述HARQ时序关系,在主服务小区上发送所述PDSCH所对应的HARQ-ACK;
    其中,所述主服务小区为基站为用户设备UE配置的TDD主服务小区,所述辅服务小区为所述基站为所述UE配置的N个TDD辅服务小区中的辅服务小区,所述N为大于或等于1的自然数。
  25. 一种应答信息的传输方法,其特征在于,应用于时分双工TDD系统,所述方法包括:
    确定在辅服务小区上向用户设备UE发送物理下行共享信道PDSCH;
    在所述辅服务小区上向所述UE发送所述PDSCH;
    确定所述辅服务小区对应的混合自动重传请求HARQ时序关系,所述HARQ时序关系为所述PDSCH与HARQ应答信息HARQ-ACK的HARQ时序关系;
    根据所述HARQ时序关系,在主服务小区上接收所述PDSCH所对应的HARQ-ACK;
    其中,所述主服务小区为基站为所述UE配置的TDD主服务小区,所述辅服务小区为所述基站为所述UE配置的N个TDD辅服务小区中的辅服务小区,所述N为大于或等于1的自然数。
  26. 根据权利要求25所述的方法,其特征在于,所述HARQ时序关系包括:
    所述主服务小区的上下行配置为上下行配置0、上下行配置1、上下行配置2和上下行配置6中任一个,其中,
    当所述主服务小区的上下行配置为上下行配置0时,所述主服务小区的上行子帧包括子帧2、子帧3、子帧4、子帧7、子帧8和子帧9,在所述主服务小区的子帧2上反馈对应于所述子帧2向前偏移5个和/或向前偏移6个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧3反馈对应于所述子帧3向前偏移4个和/或向前偏移5个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧4上反馈 对应于所述子帧4向前偏移4个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧7上反馈对应于所述子帧7向前偏移6个和/或向前偏移5个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧8上反馈对应于所述子帧8向前偏移5个和/或向前偏移4个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧9上反馈对应于所述子帧9向前偏移4个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK;
    当所述主服务小区的上下行配置为上下行配置1时,所述主服务小区的上行子帧包括子帧2、子帧3、子帧7和子帧8,在所述主服务小区的子帧2上反馈对应于所述子帧2向前偏移7个和/或向前偏移6个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧3反馈对应于所述子帧3向前偏移6个子帧、向前偏移5个子帧和向前偏移4个子帧后所对应的至少一个所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧7上反馈对应于所述子帧7向前偏移7个子帧和/或向前偏移6个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧8上反馈对应于所述子帧8向前偏移6个子帧、向前偏移5个子帧和向前偏移4个子帧后所对应的至少一个所述辅服务小区的子帧的HARQ-ACK;
    当所述主服务小区的上下行配置为上下行配置2时,所述主服务小区的上行子帧包括子帧2和子帧7,在所述主服务小区的子帧2上反馈对应于所述子帧2向前偏移8个子帧、向前偏移7个子帧、向前偏移6个子帧、向前偏移5个子帧和向前偏移4个子帧后所对应的至少一个所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧7上反馈对应于所述子帧7向前偏移8个子帧、向前偏移7个子帧、向前偏移6个子帧、向前偏移5个子帧和向前偏移4个子帧后所对应的至少一个所述辅服务小区的子帧的HARQ-ACK;
    当所述主服务小区的上下行配置为上下行配置6时,所述主服务小区的上行子帧包括子帧2、子帧3、子帧4、子帧7和子帧8,在所述主服务小区的子帧2上反馈对应于所述子帧2向前偏移8个和/或向前偏移7个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧3反馈对应于所述子帧3向前偏移7个和/或向前偏移6个子帧后所对应的所述辅 服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧4上反馈对应于所述子帧4向前偏移6个子帧和/或向前偏移5个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧7上反馈对应于所述子帧7向前偏移7个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧8上反馈对应于所述子帧8向前偏移7个、向前偏移6个子帧和向前偏移5个后所对应的至少一个所述辅服务小区的子帧的HARQ-ACK。
  27. 根据权利要求25或26所述的方法,其特征在于,所述主服务小区的上行子帧包含不属于所述辅服务小区的上行子帧的上行子帧。
  28. 根据权利要求25-27任一项所述的方法,其特征在于,
    当所述主服务小区的上下行配置为上下行配置0时,所述主服务小区的子帧2、子帧3、子帧7和子帧8能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为2,所述主服务小区的子帧4和子帧9能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为1;
    当所述主服务小区的上下行配置为上下行配置1时,所述主服务小区的子帧2和子帧7能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为2,所述主服务小区的子帧3和子帧8能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为3;
    当所述主服务小区的上下行配置为上下行配置2时,所述主服务小区的子帧2和子帧7能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为5;
    当所述主服务小区的上下行配置为上下行配置6时,所述主服务小区的子帧2、子帧3和子帧4能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为2,所述主服务小区的子帧7能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为1,所述主服务小区的子帧8能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为3。
  29. 根据权利要求28所述的方法,其特征在于,所述UE为全双工UE,所述根据所述HARQ时序关系,在主服务小区上接收所述PDSCH所对应的HARQ-ACK,包括:
    根据接收所述PDSCH对应的HARQ-ACK的子帧确定M值,其中,所述M值为所述主服务小区的子帧能够反馈辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数减去所述辅服务小区子帧中是上行子帧的个数所获得的数值;
    根据所述M值,确定信道选择模式下的HARQ-ACK反馈表格;
    根据所述HARQ-ACK反馈表格,在所述主服务小区上接收所述PDSCH所对应的HARQ-ACK。
  30. 根据权利要求28所述的方法,其特征在于,所述UE为全双工UE,所述根据所述HARQ时序关系,在主服务小区上接收所述PDSCH所对应的HARQ-ACK,包括:
    根据接收所述PDSCH对应的HARQ-ACK的子帧确定M值,所述M值为所述主服务小区的子帧能够反馈辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数减去所述辅服务小区子帧中是上行子帧的个数所获得的数值;
    根据所述M值,确定物理上行控制信道格式3模式下的HARQ-ACK的码本大小;
    根据所述HARQ-ACK的码本大小,在所述主服务小区上接收所述PDSCH所对应的HARQ-ACK。
  31. 根据权利要求28所述的方法,其特征在于,所述UE为半双工UE,所述根据所述HARQ时序关系,在主服务小区上接收所述PDSCH所对应的HARQ-ACK,包括:
    根据接收所述PDSCH对应的HARQ-ACK的子帧确定M值,所述M值为所述主服务小区的子帧能够反馈辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数减去所述辅服务小区子帧中是上行子帧的个数,再减去所述辅服务小区子帧中是下行子帧的个数所获得的数值,其中,与所述下行子帧时刻相同的子帧在所述主服务小区上是上行子帧或特殊子帧;
    根据所述M值,确定信道选择模式下的HARQ-ACK反馈表格;
    根据所述HARQ-ACK反馈表格,在所述主服务小区上接收所述PDSCH所对应的HARQ-ACK。
  32. 根据权利要求28所述的方法,其特征在于,所述UE为半双工UE, 所述根据所述HARQ时序关系,在主服务小区上接收所述PDSCH所对应的HARQ-ACK,包括:
    根据接收所述PDSCH对应的HARQ-ACK的子帧确定M值,所述M值为所述主服务小区的子帧能够反馈辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数减去所述辅服务小区子帧中是上行子帧的个数,再减去所述辅服务小区子帧中是下行子帧的个数所获得的数值,其中,与所述下行子帧时刻相同的子帧在所述主服务小区上是上行子帧或特殊子帧;
    根据所述M值,确定物理上行控制信道格式3模式下的HARQ-ACK的码本大小;
    根据所述HARQ-ACK的码本大小,在所述主服务小区上接收所述PDSCH所对应的HARQ-ACK。
  33. 根据权利要求28-32任一项所述的方法,其特征在于,所述在辅服务小区上向UE发送PDSCH之前,还包括:
    接收所述UE上报的能力信息,所述能力信息用于指示所述UE是否支持所述HARQ时序关系;
    根据所述能力信息,确定所述UE支持所述HARQ时序关系。
  34. 根据权利要求26-33任一项所述的方法,其特征在于,
    所述主服务小区的上下行配置满足下述条件中的至少一个:
    当所述主服务小区的上下行配置为上下行配置0时,所述主服务小区的子帧2、子帧3、子帧4、子帧7、子帧8和子帧9中至少一个子帧所反馈的辅服务小区的子帧的HARQ-ACK所对应的辅服务小区的子帧减少至少一个;
    当所述主服务小区的上下行配置为上下行配置1时,所述主服务小区的子帧2、子帧3、子帧7和子帧8中至少一个子帧所反馈的辅服务小区的子帧的HARQ-ACK所对应的辅服务小区的子帧减少至少一个;
    当所述主服务小区的上下行配置为上下行配置2时,所述主服务小区的子帧2和子帧7中至少一个子帧所反馈的辅服务小区的子帧的HARQ-ACK所对应的辅服务小区的子帧减少至少一个;
    当所述主服务小区的上下行配置为上下行配置6时,所述主服务小区的子帧2、子帧3、子帧4、子帧7和子帧8中至少一个子帧所反馈的辅服务小区的子帧的HARQ-ACK所对应的辅服务小区的子帧减少至少一个。
  35. 根据权利要求26-33任一项所述的方法,其特征在于,
    当所述辅服务小区的上下行配置为上下行配置5时,
    所述主服务小区的上下行配置满足下述条件中的至少一个:
    当所述主服务小区的上下行配置为上下行配置0时,所述主服务小区的子帧2、子帧3、子帧4、子帧7、子帧8和子帧9中至少一个子帧所反馈的辅服务小区的子帧的HARQ-ACK所对应的辅服务小区的子帧减少一个;
    当所述主服务小区的上下行配置为上下行配置1时,所述主服务小区的子帧2、子帧3、子帧7和子帧8中至少一个子帧所反馈的辅服务小区的子帧的HARQ-ACK所对应的辅服务小区的子帧减少一个;
    当所述主服务小区的上下行配置为上下行配置2时,所述主服务小区的子帧2和子帧7中至少一个子帧所反馈的辅服务小区的子帧的HARQ-ACK所对应的辅服务小区的子帧减少一个;
    当所述主服务小区的上下行配置为上下行配置6时,所述主服务小区的子帧2、子帧3、子帧4、子帧7和子帧8中至少一个子帧所反馈的辅服务小区的子帧的HARQ-ACK所对应的辅服务小区的子帧减少一个。
  36. 一种应答信息的传输方法,其特征在于,应用于时分双工TDD系统,所述方法包括:
    在辅服务小区上接收物理下行共享信道PDSCH;
    确定所述辅服务小区对应的混合自动重传请求HARQ时序关系,所述HARQ时序关系为所述PDSCH与HARQ应答信息HARQ-ACK的HARQ时序关系;
    根据所述HARQ时序关系,在主服务小区上发送所述PDSCH所对应的HARQ-ACK;
    其中,所述主服务小区为基站为用户设备UE配置的TDD主服务小区,所述辅服务小区为所述基站为所述UE配置的N个TDD辅服务小区中的辅服务小区,所述N为大于或等于1的自然数。
  37. 根据权利要求36所述的方法,其特征在于,所述HARQ时序关系包括:
    所述主服务小区的上下行配置为上下行配置0、上下行配置1、上下行配置2和上下行配置6中任一个,其中,
    当所述主服务小区的上下行配置为上下行配置0时,所述主服务小区的上行子帧包括子帧2、子帧3、子帧4、子帧7、子帧8和子帧9,在所述主服务小区的子帧2上反馈对应于所述子帧2向前偏移5个和/或向前偏移6个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧3反馈对应于所述子帧3向前偏移4个和/或向前偏移5个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧4上反馈对应于所述子帧4向前偏移4个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧7上反馈对应于所述子帧7向前偏移6个和/或向前偏移5个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧8上反馈对应于所述子帧8向前偏移5个和/或向前偏移4个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧9上反馈对应于所述子帧9向前偏移4个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK;
    当所述主服务小区的上下行配置为上下行配置1时,所述主服务小区的上行子帧包括子帧2、子帧3、子帧7和子帧8,在所述主服务小区的子帧2上反馈对应于所述子帧2向前偏移7个和/或向前偏移6个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧3反馈对应于所述子帧3向前偏移6个子帧、向前偏移5个子帧和向前偏移4个子帧后所对应的至少一个所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧7上反馈对应于所述子帧7向前偏移7个子帧和/或向前偏移6个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧8上反馈对应于所述子帧8向前偏移6个子帧、向前偏移5个子帧和向前偏移4个子帧后所对应的至少一个所述辅服务小区的子帧的HARQ-ACK;
    当所述主服务小区的上下行配置为上下行配置2时,所述主服务小区的上行子帧包括子帧2和子帧7,在所述主服务小区的子帧2上反馈对应于所述子帧2向前偏移8个子帧、向前偏移7个子帧、向前偏移6个子帧、向前偏移5个子帧和向前偏移4个子帧后所对应的至少一个所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧7上反馈对应于所述子帧7向前偏移8个子帧、向前偏移7个子帧、向前偏移6个子帧、向前偏移5个子帧和向前偏移4个子帧后所对应的至少一个所述辅服务小区的子帧的 HARQ-ACK;
    当所述主服务小区的上下行配置为上下行配置6时,所述主服务小区的上行子帧包括子帧2、子帧3、子帧4、子帧7和子帧8,在所述主服务小区的子帧2上反馈对应于所述子帧2向前偏移8个和/或向前偏移7个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧3反馈对应于所述子帧3向前偏移7个和/或向前偏移6个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧4上反馈对应于所述子帧4向前偏移6个子帧和/或向前偏移5个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧7上反馈对应于所述子帧7向前偏移7个子帧后所对应的所述辅服务小区的子帧的HARQ-ACK,在所述主服务小区的子帧8上反馈对应于所述子帧8向前偏移7个、向前偏移6个子帧和向前偏移5个后所对应的至少一个所述辅服务小区的子帧的HARQ-ACK。
  38. 根据权利要求36或37所述的方法,其特征在于,所述主服务小区的上行子帧包含不属于所述辅服务小区的上行子帧的上行子帧。
  39. 根据权利要求36-38任一项所述的方法,其特征在于,
    当所述主服务小区的上下行配置为上下行配置0时,所述主服务小区的子帧2、子帧3、子帧7和子帧8能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为2,所述主服务小区的子帧4和子帧9能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为1;
    当所述主服务小区的上下行配置为上下行配置1时,所述主服务小区的子帧2和子帧7能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为2,所述主服务小区的子帧3和子帧8能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为3;
    当所述主服务小区的上下行配置为上下行配置2时,所述主服务小区的子帧2和子帧7能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为5;
    当所述主服务小区的上下行配置为上下行配置6时,所述主服务小区的子帧2、子帧3和子帧4能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为2,所述主服务小区的子帧7能够反馈的辅服务小 区子帧的HARQ-ACK所对应的辅服务小区子帧个数为1,所述主服务小区的子帧8能够反馈的辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数为3。
  40. 根据权利要求39所述的方法,其特征在于,所述UE为全双工UE,所述根据所述HARQ时序关系,在主服务小区上发送所述PDSCH所对应的HARQ-ACK,包括:
    根据发送所述PDSCH对应的HARQ-ACK的子帧确定M值,其中,所述M值为所述主服务小区的子帧能够反馈辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数减去所述辅服务小区子帧中是上行子帧的个数所获得的数值;
    根据所述M值,确定信道选择模式下的HARQ-ACK反馈表格;
    根据所述HARQ-ACK反馈表格,在所述主服务小区上发送所述PDSCH所对应的HARQ-ACK。
  41. 根据权利要求39所述的方法,其特征在于,所述UE为全双工UE,所述根据所述HARQ时序关系,在主服务小区上发送所述PDSCH所对应的HARQ-ACK,包括:
    根据发送所述PDSCH对应的HARQ-ACK的子帧确定M值,其中,所述M值为所述主服务小区的子帧能够反馈辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数减去所述辅服务小区子帧中是上行子帧的个数所获得的数值;
    根据所述M值,确定物理上行控制信道格式3模式下的HARQ-ACK的码本大小;
    根据所述HARQ-ACK的码本大小,在所述主服务小区上发送所述PDSCH所对应的HARQ-ACK。
  42. 根据权利要求39所述的方法,其特征在于,所述UE为半双工UE,所述根据所述HARQ时序关系,在主服务小区上发送所述PDSCH所对应的HARQ-ACK,包括:
    根据发送所述PDSCH对应的HARQ-ACK的子帧确定M值,所述M值为所述主服务小区的子帧能够反馈辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数减去所述辅服务小区子帧中是上行子帧的个数,再减去 所述辅服务小区子帧中是下行子帧的个数所获得的数值,其中,与所述下行子帧时刻相同的子帧在所述主服务小区上是上行子帧或特殊子帧,其中,与所述下行子帧时刻相同的子帧在所述主服务小区上是上行子帧或特殊子帧;
    根据所述M值,确定信道选择模式下的HARQ-ACK反馈表格;
    根据所述HARQ-ACK反馈表格,在所述主服务小区上发送所述PDSCH所对应的HARQ-ACK。
  43. 根据权利要求39所述的方法,其特征在于,所述UE为半双工UE,所述根据所述HARQ时序关系,在主服务小区上发送所述PDSCH所对应的HARQ-ACK,包括:
    根据发送所述PDSCH对应的HARQ-ACK的子帧确定M值,所述M值为所述主服务小区的子帧能够反馈辅服务小区子帧的HARQ-ACK所对应的辅服务小区子帧个数减去所述辅服务小区子帧中是上行子帧的个数,再减去所述辅服务小区子帧中是下行子帧的个数所获得的数值,其中,与所述下行子帧时刻相同的子帧在所述主服务小区上是上行子帧或特殊子帧;
    根据所述M值,确定物理上行控制信道格式3模式下的HARQ-ACK的码本大小;
    根据所述HARQ-ACK的码本大小,在所述主服务小区上发送所述PDSCH所对应的HARQ-ACK。
  44. 根据权利要求39-43任一项所述的方法,其特征在于,所述在辅服务小区上接收PDSCH之前,还包括:
    向所述基站上报能力信息,所述能力信息用于指示所述UE是否支持所述HARQ时序关系;
    根据所述能力信息,确定其自身支持所述HARQ时序关系。
  45. 根据权利要求37-44任一项所述的方法,其特征在于,
    所述主服务小区的上下行配置满足下述条件中的至少一个:
    当所述主服务小区的上下行配置为上下行配置0时,所述主服务小区的子帧2、子帧3、子帧4、子帧7、子帧8和子帧9中至少一个子帧所反馈的辅服务小区的子帧的HARQ-ACK所对应的辅服务小区的子帧减少至少一个;
    当所述主服务小区的上下行配置为上下行配置1时,所述主服务小区的子帧2、子帧3、子帧7和子帧8中至少一个子帧所反馈的辅服务小区的子帧 的HARQ-ACK所对应的辅服务小区的子帧减少至少一个;
    当所述主服务小区的上下行配置为上下行配置2时,所述主服务小区的子帧2和子帧7中至少一个子帧所反馈的辅服务小区的子帧的HARQ-ACK所对应的辅服务小区的子帧减少至少一个;
    当所述主服务小区的上下行配置为上下行配置6时,所述主服务小区的子帧2、子帧3、子帧4、子帧7和子帧8中至少一个子帧所反馈的辅服务小区的子帧的HARQ-ACK所对应的辅服务小区的子帧减少至少一个。
  46. 根据权利要求37-44任一项所述的方法,其特征在于,
    当所述辅服务小区的上下行配置为上下行配置5时,
    所述主服务小区的上下行配置满足下述条件中的至少一个:
    当所述主服务小区的上下行配置为上下行配置0时,所述主服务小区的子帧2、子帧3、子帧4、子帧7、子帧8和子帧9中至少一个子帧所反馈的辅服务小区的子帧的HARQ-ACK所对应的辅服务小区的子帧减少一个;
    当所述主服务小区的上下行配置为上下行配置1时,所述主服务小区的子帧2、子帧3、子帧7和子帧8中至少一个子帧所反馈的辅服务小区的子帧的HARQ-ACK所对应的辅服务小区的子帧减少一个;
    当所述主服务小区的上下行配置为上下行配置2时,所述主服务小区的子帧2和子帧7中至少一个子帧所反馈的辅服务小区的子帧的HARQ-ACK所对应的辅服务小区的子帧减少一个;
    当所述主服务小区的上下行配置为上下行配置6时,所述主服务小区的子帧2、子帧3、子帧4、子帧7和子帧8中至少一个子帧所反馈的辅服务小区的子帧的HARQ-ACK所对应的辅服务小区的子帧减少一个。
PCT/CN2014/086854 2014-09-18 2014-09-18 应答信息的传输方法、装置及设备 WO2016041178A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2017515159A JP6460430B2 (ja) 2014-09-18 2014-09-18 応答情報を送信するための方法、装置及びデバイス
KR1020177010233A KR20170055534A (ko) 2014-09-18 2014-09-18 확인응답 정보를 송신하기 위한 방법, 장치, 및 디바이스
EP14901982.0A EP3185457A4 (en) 2014-09-18 2014-09-18 Response information transmission method, apparatus and device
PCT/CN2014/086854 WO2016041178A1 (zh) 2014-09-18 2014-09-18 应答信息的传输方法、装置及设备
CN201480026405.0A CN105612711B (zh) 2014-09-18 2014-09-18 应答信息的传输方法、装置及设备
US15/462,291 US10313081B2 (en) 2014-09-18 2017-03-17 Method, apparatus, and device for transmitting acknowledgement information
ZA2017/02166A ZA201702166B (en) 2014-09-18 2017-03-28 Method, apparatus, and device for transmitting acknowledgement information

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/086854 WO2016041178A1 (zh) 2014-09-18 2014-09-18 应答信息的传输方法、装置及设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/462,291 Continuation US10313081B2 (en) 2014-09-18 2017-03-17 Method, apparatus, and device for transmitting acknowledgement information

Publications (1)

Publication Number Publication Date
WO2016041178A1 true WO2016041178A1 (zh) 2016-03-24

Family

ID=55532464

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/086854 WO2016041178A1 (zh) 2014-09-18 2014-09-18 应答信息的传输方法、装置及设备

Country Status (7)

Country Link
US (1) US10313081B2 (zh)
EP (1) EP3185457A4 (zh)
JP (1) JP6460430B2 (zh)
KR (1) KR20170055534A (zh)
CN (1) CN105612711B (zh)
WO (1) WO2016041178A1 (zh)
ZA (1) ZA201702166B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018062459A1 (ja) * 2016-09-29 2018-04-05 株式会社Nttドコモ ユーザ端末及び無線通信方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107634821B (zh) * 2016-07-18 2020-06-30 上海朗帛通信技术有限公司 一种无线传输的ue和基站中的方法和装置
CN109391422B (zh) * 2017-08-11 2020-11-17 华为技术有限公司 一种反馈码本确定的方法及终端设备、网络设备
CN117318905A (zh) 2017-09-29 2023-12-29 北京三星通信技术研究有限公司 上行传输方法和相应设备
US10673573B2 (en) 2017-09-29 2020-06-02 Samsung Electronics Co., Ltd. Uplink transmission method and corresponding equipment
CN110034866B (zh) * 2018-01-12 2020-08-07 华为技术有限公司 一种用于反馈的方法、装置及计算机存储介质
CN110324117B (zh) * 2018-03-30 2021-10-26 大唐移动通信设备有限公司 一种数据传输方法、终端设备及网络设备
CN110505040B (zh) * 2018-05-18 2020-05-26 维沃移动通信有限公司 信息传输方法、终端及网络设备
US11382093B2 (en) * 2019-04-19 2022-07-05 Qualcomm Incorporated Local coordination to support spatial division multiplex operation in integrated access and backhaul networks
US11811699B2 (en) * 2021-08-31 2023-11-07 Qualcomm Incorporated Full-duplex turbo HARQ-ACK

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102651680A (zh) * 2011-02-24 2012-08-29 华为技术有限公司 用于载波聚合系统的通信方法和装置
CN103209061A (zh) * 2012-01-17 2013-07-17 北京三星通信技术研究有限公司 一种harq-ack反馈信息的发送方法
CN103384189A (zh) * 2012-05-04 2013-11-06 北京三星通信技术研究有限公司 一种pdsch的harq-ack信息传输方法和设备
CN103493417A (zh) * 2011-02-18 2014-01-01 三星电子株式会社 移动通信系统及其信道发送/接收方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103563436B (zh) * 2011-08-10 2017-09-22 太阳专利信托公司 终端装置、基站装置和发送接收方法
ES2642682T3 (es) 2011-09-23 2017-11-17 Lg Electronics, Inc. Método para transmitir información de control y aparato para el mismo
US9072089B2 (en) 2011-09-23 2015-06-30 Lg Electronics Inc. Method for transmitting control information and apparatus for same
WO2013119090A1 (ko) * 2012-02-09 2013-08-15 엘지전자 주식회사 신호 송수신 방법 및 이를 위한 장치
US8953635B2 (en) * 2012-05-17 2015-02-10 Sharp Kabushiki Kaisha Devices for sending and receiving feedback information
US9407302B2 (en) * 2012-12-03 2016-08-02 Intel Corporation Communication device, mobile terminal, method for requesting information and method for providing information
KR102025385B1 (ko) * 2013-02-26 2019-11-27 삼성전자주식회사 셀 내의 캐리어 집적 시스템에서 단말의 능력에 따른 제어 채널 전송 방법 및 장치
CN105323849B (zh) * 2014-06-30 2020-04-07 中兴通讯股份有限公司 上行控制信道的配置和发送方法、装置及基站和用户设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103493417A (zh) * 2011-02-18 2014-01-01 三星电子株式会社 移动通信系统及其信道发送/接收方法
CN102651680A (zh) * 2011-02-24 2012-08-29 华为技术有限公司 用于载波聚合系统的通信方法和装置
CN103209061A (zh) * 2012-01-17 2013-07-17 北京三星通信技术研究有限公司 一种harq-ack反馈信息的发送方法
CN103384189A (zh) * 2012-05-04 2013-11-06 北京三星通信技术研究有限公司 一种pdsch的harq-ack信息传输方法和设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3185457A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018062459A1 (ja) * 2016-09-29 2018-04-05 株式会社Nttドコモ ユーザ端末及び無線通信方法

Also Published As

Publication number Publication date
EP3185457A4 (en) 2017-08-30
JP2017532876A (ja) 2017-11-02
US10313081B2 (en) 2019-06-04
CN105612711B (zh) 2019-07-19
EP3185457A1 (en) 2017-06-28
CN105612711A (zh) 2016-05-25
JP6460430B2 (ja) 2019-01-30
KR20170055534A (ko) 2017-05-19
ZA201702166B (en) 2019-04-24
US20170195103A1 (en) 2017-07-06

Similar Documents

Publication Publication Date Title
US10880065B2 (en) Systems and methods for carrier aggregation
WO2016041178A1 (zh) 应答信息的传输方法、装置及设备
EP2838301B1 (en) Method and apparatus for transmitting hybrid automatic repeat request acknowledge information
KR101863203B1 (ko) 피드백 정보를 전송하는 방법 및 장치
CN107682099B (zh) 无线通信中确认时序的选择
KR101823842B1 (ko) Tdd 시스템을 위한 스케줄링 타이밍 설계
CN115209357B (zh) 无线通信中的确认定时的选择
US8594037B2 (en) Method and apparatus for assigning response channel resources
RU2625319C9 (ru) Способ отправки восходящей управляющей информации, пользовательское оборудование и базовая станция
TWI547118B (zh) 處理混合自動重送請求回傳的方法及其通訊裝置
US10129856B2 (en) Uplink control information transmission method, base station, and user equipment
WO2014052375A1 (en) TRANSMISSION OF UPLINK CONTROL INFORMATION IN INTER-eNB CARRIER AGGREGATION
WO2015039313A1 (zh) 混合自动重传请求确认的传输方法、用户设备和基站
CN104581911B (zh) 节点间信令交互、上行功率控制、上行传输的方法及装置
TW201424442A (zh) 用於蜂巢式網路下的設備到設備通信的訊號傳輸方法
WO2014173333A1 (zh) 一种上行控制信息的发送方法及装置
US20140092788A1 (en) Method and apparatus for transmitting and receiving data in mobile communication system
WO2019029287A1 (zh) Pucch传输方法、用户设备和装置
KR101774183B1 (ko) 스펙트럼 통합의 데이터 발송 방법 및 장치
CN105191463B (zh) 信息传输方法和设备
WO2012130005A1 (zh) Tdd系统中回程链路上行反馈信息的处理方法与系统
JP2019500816A (ja) ミリ波システムにおいてサブフレームをスケジューリングする方法
JP6474500B2 (ja) アップリンク制御情報送信方法、基地局、及びユーザ機器
CN108352949A (zh) 业务反馈方法和通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14901982

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017515159

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014901982

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014901982

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177010233

Country of ref document: KR

Kind code of ref document: A