WO2023044923A1 - 一种harq-ack码本配置和解码方法、装置、设备及存储介质 - Google Patents

一种harq-ack码本配置和解码方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2023044923A1
WO2023044923A1 PCT/CN2021/121072 CN2021121072W WO2023044923A1 WO 2023044923 A1 WO2023044923 A1 WO 2023044923A1 CN 2021121072 W CN2021121072 W CN 2021121072W WO 2023044923 A1 WO2023044923 A1 WO 2023044923A1
Authority
WO
WIPO (PCT)
Prior art keywords
scenario
timing
sequence
harq
ack codebook
Prior art date
Application number
PCT/CN2021/121072
Other languages
English (en)
French (fr)
Inventor
付婷
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202180003054.1A priority Critical patent/CN116210194A/zh
Priority to PCT/CN2021/121072 priority patent/WO2023044923A1/zh
Publication of WO2023044923A1 publication Critical patent/WO2023044923A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems

Definitions

  • the present disclosure relates to the technical field of wireless communication, and in particular to a HARQ-ACK codebook configuration and decoding method, device, device and storage medium.
  • the Type1 codebook is a HARQ-ACK feedback method with a fixed size of the Hybrid Automatic Repeat request acknowledgment (HARQ-ACK) codebook.
  • HARQ-ACK Hybrid Automatic Repeat request acknowledgment
  • PUCCH Physical Uplink Control Channel
  • PDSCH Physical Downlink Shared channel
  • the scenario of scheduling multiple PDSCH time slots through the Physical Downlink Control Channel (PDCCH) will be introduced, that is, the multi-slot PDSCH scheduling scenario. Due to the introduction of multi-slot PDSCH scheduling, only determining the feedback window of the Type1 codebook based on the K1 set in the single-slot scheduling scenario may result in the Type1 codebook not being able to fully contain the downlink control information (Downlink Control Information, DCI) scheduling Time slots where all PDSCHs are located.
  • DCI Downlink Control Information
  • the present disclosure provides a HARQ-ACK codebook configuration and decoding method, device, device and storage medium.
  • a hybrid automatic repeat request response HARQ-ACK codebook configuration method is provided, the method is executed by the user equipment, including:
  • each sequence k1 in the set of sequence K1 is the time interval between the time unit for transmitting the physical downlink shared channel PDSCH and the time unit for transmitting the physical uplink control channel PUCCH
  • each sequence k0 in the set of sequence K0 is the time interval for transmitting the PDSCH The time interval between the time unit and the time unit for transmitting the physical downlink control channel PDCCH;
  • the first scenario is a scenario of scheduling a single PDSCH time slot through the PDCCH
  • the second scenario is a scenario of scheduling multiple PDSCH time slots through the PDCCH.
  • the timing K0 set in the second scenario includes at least one timing K0 group, each of the timing K0 groups includes a plurality of timing k0, and each of the timing K0 groups corresponds to the second A time-domain resource scheduling method in a scenario.
  • the method also includes:
  • first configuration information from a network device, where the first configuration information includes information indicating a sequence K1 set in the first scenario;
  • the method also includes:
  • the method also includes:
  • the determining the timing K1 set in the second scenario based on the timing K1 set in the first scenario and the timing K0 set in the second scenario includes determining the second scenario based on the following formula The following timing K1 set:
  • K1' is the sequence K1 set in the second scenario
  • K1 is the sequence K1 set in the first scenario
  • k1 i is the i-th sequence k1 included in the sequence K1 set in the first scenario
  • k0 r,m is the mth timing k0 contained in the rth row containing multiple k0s in the TDRA table
  • k0 r,min is the minimum timing k0 contained in the rth row containing multiple k0s
  • L is the number of time series k1 contained in the time series K1 set in the first scenario
  • R is the number of rows containing multiple time series k0 in the TDRA table
  • M r is the rth row containing multiple k0 The number of time series k0.
  • configuring the HARQ-ACK codebook based on the timing K1 set in the second scenario includes:
  • the HARQ-ACK codebook is a Type1 codebook.
  • a hybrid automatic repeat request response HARQ-ACK codebook decoding method is provided, the method is executed by a network device, including:
  • each sequence K1 in the set of sequence K1 is the time interval between the time unit for transmitting the physical downlink shared channel PDSCH and the time unit for transmitting the physical uplink control channel PUCCH
  • each sequence k0 in the set of sequence K0 is the time interval for transmitting the PDSCH The time interval between the time unit and the time unit for transmitting the physical downlink control channel PDCCH;
  • the first scenario is a scenario of scheduling a single PDSCH time slot through the PDCCH
  • the second scenario is a scenario of scheduling multiple PDSCH time slots through the PDCCH.
  • the timing K0 set in the second scenario includes at least one timing K0 group, and the timing K0 group includes multiple timing k0 corresponding to a time-domain resource scheduling method in the second scenario. value.
  • the method also includes:
  • the method also includes:
  • the timing K0 set in the second scenario is acquired based on the time domain resource allocation TDRA table.
  • the determining the timing K1 set in the second scenario based on the timing K1 set in the first scenario and the timing K0 set in the second scenario includes determining the second scenario based on the following formula The following timing K1 set:
  • K1' is the sequence K1 set in the second scenario
  • K1 is the sequence K1 set in the first scenario
  • k1 i is the i-th sequence k1 included in the sequence K1 set in the first scenario
  • k0 r,m is the mth timing k0 contained in the rth row containing multiple K0s in the TDRA table
  • k0 r,min is the minimum timing k0 contained in the rth row containing multiple k0s
  • L is the number of time series k1 contained in the time series K1 set in the first scenario
  • R is the number of rows containing multiple time series k0 in the TDRA table
  • M r is the rth row containing multiple k0 The number of time series k0.
  • the HARQ-ACK codebook is a Type1 codebook.
  • a hybrid automatic repeat request response HARQ-ACK codebook configuration device is provided, which is applied to user equipment, including:
  • the processing module based on the timing K1 set in the first scenario and the timing K0 set in the second scenario, determines the timing K1 set in the second scenario, and
  • each sequence k1 in the set of sequence K1 is the time interval between the time unit for transmitting the physical downlink shared channel PDSCH and the time unit for transmitting the physical uplink control channel PUCCH
  • each sequence k0 in the set of sequence K0 is the time interval for transmitting the PDSCH The time interval between the time unit and the time unit for transmitting the physical downlink control channel PDCCH;
  • the first scenario is a scenario of scheduling a single PDSCH time slot through the PDCCH
  • the second scenario is a scenario of scheduling multiple PDSCH time slots through the PDCCH.
  • a hybrid automatic repeat request response HARQ-ACK codebook decoding device is provided, which is applied to network equipment, including:
  • the processing module is configured to determine the time series K1 set in the second scene based on the time series K1 set in the first scene and the time series K0 set in the second scene;
  • a receiving module configured to receive the HARQ-ACK codebook from a user equipment
  • a decoding module configured to decode the HARQ-ACK codebook based on the timing K1 set in the second scenario
  • each sequence k1 in the set of sequence K1 is the time interval between the time unit for transmitting the physical downlink shared channel PDSCH and the time unit for transmitting the physical uplink control channel PUCCH
  • each sequence k0 in the set of sequence K0 is the time interval for transmitting the PDSCH The time interval between the time unit and the time unit for transmitting the physical downlink control channel PDCCH;
  • the first scenario is a scenario of scheduling a single PDSCH time slot through the PDCCH
  • the second scenario is a scenario of scheduling multiple PDSCH time slots through the PDCCH.
  • a mobile terminal including:
  • memory for storing processor-executable instructions
  • the processor is configured to execute the executable instructions in the memory to implement the steps of the above-mentioned hybrid automatic repeat request acknowledgment HARQ-ACK codebook configuration method.
  • a network side device including:
  • memory for storing processor-executable instructions
  • the processor is configured to execute the executable instructions in the memory to implement the steps of the HARQ-ACK codebook decoding method above.
  • a non-transitory computer-readable storage medium on which executable instructions are stored.
  • executable instructions When the executable instructions are executed by a processor, the above-mentioned Hybrid Automatic Repeat Request Response HARQ- Steps in the ACK codebook configuration method or the above-mentioned HARQ-ACK codebook decoding method.
  • the technical solutions provided by the embodiments of the present disclosure may include the following beneficial effects: determine the timing K1 set in the second scenario in combination with the timing K0 set in the second scenario, so that the codebook based on the timing K1 set in the second scenario
  • the feedback window can include all PDSCHs scheduled by one DCI, so that the HARQ-ACK of PDSCHs with multiple transmission time intervals can be fed back in one HARQ-ACK codebook.
  • the network device can accurately decode the HARQ-ACK codebook to realize efficient hybrid automatic retransmission.
  • FIG. 1 is a flowchart of a method for configuring a HARQ-ACK codebook according to an exemplary embodiment
  • FIG. 2 is a flowchart of a method for configuring a HARQ-ACK codebook according to an exemplary embodiment
  • Fig. 3 is a flowchart showing a method for configuring a HARQ-ACK codebook according to an exemplary embodiment
  • Fig. 4 is a flow chart showing a method for configuring a HARQ-ACK codebook according to an exemplary embodiment
  • Fig. 5 is a flow chart showing a method for configuring a HARQ-ACK codebook according to an exemplary embodiment
  • Fig. 6 is a flow chart showing a method for configuring a HARQ-ACK codebook according to an exemplary embodiment
  • Fig. 7 is a flow chart showing a HARQ-ACK codebook decoding method according to an exemplary embodiment
  • Fig. 8 is a flow chart showing a HARQ-ACK codebook decoding method according to an exemplary embodiment
  • Fig. 9 is a flow chart showing a HARQ-ACK codebook decoding method according to an exemplary embodiment
  • Fig. 10 is a flowchart showing a HARQ-ACK codebook decoding method according to an exemplary embodiment
  • Fig. 11 is a block diagram of a device for configuring a HARQ-ACK codebook according to an exemplary embodiment
  • Fig. 12 is a block diagram of a HARQ-ACK codebook decoding device according to an exemplary embodiment
  • Fig. 13 is a structural diagram of a device for configuring a HARQ-ACK codebook according to an exemplary embodiment
  • Fig. 14 is a structural diagram showing a device for decoding a HARQ-ACK codebook according to an exemplary embodiment.
  • an embodiment of the present disclosure may include multiple steps; for the convenience of description, these steps are numbered; however, these numbers do not limit the execution time slots and execution order between the steps; these steps It can be implemented in any order, which is not limited by the embodiments of the present disclosure.
  • the HARQ-ACK of multiple PDSCHs scheduled by one DCI is fed back in the same PUCCH, and the multiple PDSCHs are determined according to the k1 in the scheduling DCI and the slot position of the last PDSCH.
  • the time slot of the PUCCH for HARQ-ACK feedback may result in the Type1 codebook not being able to completely include all the time slots of the PDSCH scheduled by the DCI.
  • FIG. 1 is a flowchart of a method for configuring a HARQ-ACK codebook according to an exemplary embodiment. As shown in Fig. 1, the method includes:
  • Step 101 based on the timing K1 set in the first scenario and the timing K0 set in the second scenario, determine the timing K1 set in the second scenario;
  • Step 102 configuring the HARQ-ACK codebook based on the timing K1 set in the second scenario
  • each sequence k1 in the set of sequence K1 is the time interval between the time unit for transmitting the physical downlink shared channel PDSCH and the time unit for transmitting the physical uplink control channel PUCCH
  • each sequence k0 in the set of sequence K0 is the time interval for transmitting the PDSCH The time interval between the time unit and the time unit for transmitting the physical downlink control channel PDCCH;
  • the first scenario is a scenario of scheduling a single PDSCH time slot through the PDCCH
  • the second scenario is a scenario of scheduling multiple PDSCH time slots through the PDCCH.
  • the user equipment acquires a set of timing K1 in the scenario of scheduling a single PDSCH time slot through the PDCCH and a set of timing K0 in the scenario of scheduling multiple PDSCH time slots through the PDCCH, and based on the acquired timing K1 set and timing K0 set, Determine the timing K1 set in the scenario of scheduling multiple PDSCH time slots through the PDCCH. Then, the HARQ-ACK codebook is configured based on the timing K1 set in the scenario of scheduling multiple PDSCH time slots through the PDCCH.
  • the user equipment receives the timing K1 set in the first scenario configured by the network device from the network device, or acquires the timing K1 set in the first scenario based on a communication protocol. In an implementation manner, the user equipment receives from the network device the timing K0 set in the second scenario configured by the network device. In one embodiment, the user equipment receives a time-domain resource allocation TDRA table from the network device, and acquires a timing K0 set in the second scenario based on the TDRA table.
  • the timing K1 set in the second scenario is determined based on the timing K1 set in the first scenario and the timing K0 set in the second scenario, so that the codebook based on the timing K1 set in the second scenario
  • the feedback window of can include all PDSCHs scheduled by one DCI, so that the HARQ-ACK of PDSCHs with multiple transmission time intervals can be fed back in one HARQ-ACK codebook.
  • An embodiment of the present disclosure provides a method for configuring a HARQ-ACK codebook, and the method is executed by a user equipment; the method may be executed independently, or may be executed in combination with any other embodiment of the embodiments of the present disclosure.
  • the sequence K0 set in the second scenario includes at least one sequence K0 group, each sequence K0 group includes multiple sequence K0s, and each sequence K0 group corresponds to a sequence K0 group in the second scenario A time-domain resource scheduling method.
  • the timing K0 set in the second scenario includes multiple timing K0 groups, each timing K0 group includes multiple timing K0s, and each timing K0 group corresponds to a timing K0 group in the second scenario.
  • a time-domain resource scheduling method is provided.
  • the timing K0 set in the second scenario is obtained based on a Time Domain Resource Allocation (TDRA) table configured by the network device.
  • TDRA Time Domain Resource Allocation
  • DMRS means demodulation reference signal (DeModulation Reference Signal).
  • each row of the TDRA table corresponds to a time-domain resource scheduling method
  • the time-domain resource scheduling methods identified by row indexes 2 and 3 correspond to multiple time sequences k0, so row indexes 2 and 3 correspond to time sequence K0 groups (0, 1,1,2) and (1,2,3,4,5,6,7,8).
  • the sequence K0 set in the second scenario includes sequence K0 groups (0, 1, 1, 2) and (1, 2, 3, 4, 5, 6, 7, 8).
  • the timing K1 set in the second scenario is determined in combination with the timing K0 set in the second scenario, so that the feedback window of the codebook based on the timing K1 set in the second scenario can include the All PDSCHs, thus HARQ-ACK of multi-transmission time interval PDSCHs can be fed back in one HARQ-ACK codebook.
  • the timing K1 set in the second scenario is determined in combination with the timing K0 set in the second scenario, so that the feedback window of the codebook based on the timing K1 set in the second scenario can include the All PDSCHs, thus HARQ-ACK of multi-transmission time interval PDSCHs can be fed back in one HARQ-ACK codebook.
  • FIG. 2 is a flowchart of a method for configuring a HARQ-ACK codebook according to an exemplary embodiment. As shown in Fig. 2, the method includes:
  • Step 201 Receive first configuration information from a network device, where the first configuration information includes information indicating a sequence K1 set in a first scenario; or acquire the sequence K1 set in the first scenario based on a communication protocol;
  • Step 202 based on the timing K1 set in the first scenario and the timing K0 set in the second scenario, determine the timing K1 set in the second scenario;
  • Step 203 configuring the HARQ-ACK codebook based on the timing K1 set in the second scenario
  • each sequence k1 in the set of sequence K1 is the time interval between the time unit for transmitting the physical downlink shared channel PDSCH and the time unit for transmitting the physical uplink control channel PUCCH
  • each sequence k0 in the set of sequence K0 is the time interval for transmitting the PDSCH The time interval between the time unit and the time unit for transmitting the physical downlink control channel PDCCH;
  • the first scenario is a scenario of scheduling a single PDSCH time slot through the PDCCH
  • the second scenario is a scenario of scheduling multiple PDSCH time slots through the PDCCH.
  • the user equipment receives the first configuration information from the network device, obtains the sequence K1 set in the first scenario based on the first configuration information, and obtains the sequence K1 set in the first scenario and the sequence K1 in the second scenario based on the first configuration information.
  • the K0 set determines the timing K1 set in the second scenario. Then configure the HARQ-ACK codebook based on the timing K1 set in the second scenario.
  • the user equipment obtains the sequence K1 set in the first scenario based on the communication protocol, and determines the sequence K1 set in the second scenario based on the sequence K1 set in the first scenario and the sequence K0 set in the second scenario . Then configure the HARQ-ACK codebook based on the timing K1 set in the second scenario.
  • the timing K1 set in the second scenario is determined based on the timing K1 set in the first scenario and the timing K0 set in the second scenario, so that the codebook based on the timing K1 set in the second scenario
  • the feedback window of can include all PDSCHs scheduled by one DCI, so that the HARQ-ACK of PDSCHs with multiple transmission time intervals can be fed back in one HARQ-ACK codebook.
  • FIG. 3 is a flowchart of a method for configuring a HARQ-ACK codebook according to an exemplary embodiment. As shown in FIG. 3 , the method includes:
  • Step 301 receiving second configuration information from a network device, the second configuration information including information indicating the timing K0 set under the second scenario;
  • Step 302 based on the timing K1 set in the first scenario and the timing K0 set in the second scenario, determine the timing K1 set in the second scenario;
  • Step 303 configuring the HARQ-ACK codebook based on the timing K1 set in the second scenario
  • each sequence k1 in the set of sequence K1 is the time interval between the time unit for transmitting the physical downlink shared channel PDSCH and the time unit for transmitting the physical uplink control channel PUCCH
  • each sequence k0 in the set of sequence K0 is the time interval for transmitting the PDSCH The time interval between the time unit and the time unit for transmitting the physical downlink control channel PDCCH;
  • the first scenario is a scenario of scheduling a single PDSCH time slot through the PDCCH
  • the second scenario is a scenario of scheduling multiple PDSCH time slots through the PDCCH.
  • the user equipment receives first configuration information from the network device, and acquires the sequence K1 set in the first scenario based on the first configuration information.
  • the user equipment receives second configuration information from the network device, and acquires a timing K0 set in the second scenario based on the second configuration information. And, based on the timing K1 set in the first scenario and the timing K0 set in the second scenario, the timing K1 set in the second scenario is determined. Then, the HARQ-ACK codebook is configured based on the timing K1 set in the second scenario.
  • the second configuration information is radio resource control layer (Radio Resource Control, RRC) signaling.
  • RRC Radio Resource Control
  • the user equipment acquires the timing K1 set in the first scenario based on the communication protocol.
  • the user equipment receives second configuration information from the network device, and acquires a timing K0 set in the second scenario based on the second configuration information. And, based on the timing K1 set in the first scenario and the timing K0 set in the second scenario, the timing K1 set in the second scenario is determined. Then, the HARQ-ACK codebook is configured based on the timing K1 set in the second scenario.
  • the timing K1 set in the second scenario is determined based on the timing K1 set in the first scenario and the timing K0 set in the second scenario, so that the codebook based on the timing K1 set in the second scenario
  • the feedback window of can include all PDSCHs scheduled by one DCI, so that the HARQ-ACK of PDSCHs with multiple transmission time intervals can be fed back in one HARQ-ACK codebook.
  • FIG. 4 is a flowchart of a method for configuring a HARQ-ACK codebook according to an exemplary embodiment. As shown in Fig. 4, the method includes:
  • Step 401 receiving second configuration information from a network device, where the second configuration information includes a time domain resource allocation TDRA table;
  • Step 402 based on the timing K1 set in the first scenario and the timing K0 set in the second scenario, determine the timing K1 set in the second scenario;
  • Step 403 configuring the HARQ-ACK codebook based on the timing K1 set in the second scenario
  • each sequence k1 in the set of sequence K1 is the time interval between the time unit for transmitting the physical downlink shared channel PDSCH and the time unit for transmitting the physical uplink control channel PUCCH
  • each sequence k0 in the set of sequence K0 is the time interval for transmitting the PDSCH The time interval between the time unit and the time unit for transmitting the physical downlink control channel PDCCH;
  • the first scenario is a scenario of scheduling a single PDSCH time slot through the PDCCH
  • the second scenario is a scenario of scheduling multiple PDSCH time slots through the PDCCH.
  • the user equipment receives first configuration information from the network device, and acquires the sequence K1 set in the first scenario based on the first configuration information.
  • the user equipment receives the TDRA table from the network device through RRC signaling, and acquires the sequence K0 set in the second scenario based on the TDRA table.
  • the timing K1 set in the second scenario is determined.
  • the HARQ-ACK codebook is configured based on the timing K1 set in the second scenario.
  • the user equipment acquires the timing K1 set in the first scenario based on the communication protocol.
  • the user equipment receives the TDRA table from the network device, and acquires the timing K0 set in the second scenario based on the TDRA table. And, based on the timing K1 set in the first scenario and the timing K0 set in the second scenario, the timing K1 set in the second scenario is determined. Then, the HARQ-ACK codebook is configured based on the timing K1 set in the second scenario.
  • the TDRA table received by the user equipment from the network device is as shown in Table 1 above, and the user equipment obtains the sequence K0 set ⁇ (0,1,1,2),(1,2, 3,4,5,6,7,8) ⁇ .
  • the timing K1 set in the second scenario is determined based on the timing K1 set in the first scenario and the timing K0 set in the second scenario, so that the codebook based on the timing K1 set in the second scenario
  • the feedback window of can include all PDSCHs scheduled by one DCI, so that the HARQ-ACK of PDSCHs with multiple transmission time intervals can be fed back in one HARQ-ACK codebook.
  • FIG. 5 is a flowchart of a method for configuring a HARQ-ACK codebook according to an exemplary embodiment. As shown in FIG. 5, the method includes:
  • Step 501 receiving second configuration information from a network device, where the second configuration information includes a time domain resource allocation TDRA table;
  • Step 502 Determine the time series K1 set in the second scene based on the time series K1 set in the first scene and the time series K0 set in the second scene through the following formula (1):
  • Step 503 configuring the HARQ-ACK codebook based on the timing K1 set in the second scenario
  • each sequence k1 in the set of sequence K1 is the time interval between the time unit for transmitting the physical downlink shared channel PDSCH and the time unit for transmitting the physical uplink control channel PUCCH
  • each sequence k0 in the set of sequence K0 is the time interval for transmitting the PDSCH The time interval between the time unit and the time unit for transmitting the physical downlink control channel PDCCH;
  • the first scenario is a scenario in which a single PDSCH time slot is scheduled through the PDCCH
  • the second scenario is a scenario in which multiple PDSCH time slots are scheduled through the PDCCH
  • K1' is the sequence K1 set in the second scenario
  • K1 is the sequence K1 set in the first scenario
  • k1 i is the i-th sequence k1 included in the sequence K1 set in the first scenario
  • k0 r m is the mth time series k0 contained in the rth row containing multiple k0 in the TDRA table
  • k0 r min is the minimum time series contained in the rth row containing multiple k0 k0
  • L is the number of time series k1 contained in the time series K1 set in the first scenario
  • R is the number of rows containing multiple time series k0 in the TDRA table
  • M r is the rth row containing multiple k0 The number of sequence k0 included.
  • the user equipment receives first configuration information from the network device, and acquires the sequence K1 set in the first scenario based on the first configuration information.
  • the user equipment receives the TDRA table from the network device, and acquires the timing K0 set in the second scenario based on the TDRA table.
  • the timing K1 set in the second scenario is determined based on formula (1).
  • the HARQ-ACK codebook is configured based on the timing K1 set in the second scenario.
  • the user equipment acquires the timing K1 set in the first scenario based on the communication protocol.
  • the user equipment receives the TDRA table from the network device, and acquires the timing K0 set in the second scenario based on the TDRA table.
  • the timing K1 set in the second scenario is determined based on formula (1).
  • the HARQ-ACK codebook is configured based on the timing K1 set in the second scenario.
  • the user equipment determines the time series K1 set in the second scene based on the time series K1 set in the first scene and the time series K0 set in the second scene by formula (1).
  • calculation process represented by formula (1) can be realized by the following pseudocode:
  • the sequence K1 set is ⁇ 1,2,3 ⁇
  • the time sequence K1' set is calculated as ⁇ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ⁇ .
  • the timing K1 set in the second scenario is determined based on the timing K1 set in the first scenario and the timing K0 set in the second scenario, so that the codebook based on the timing K1 set in the second scenario
  • the feedback window of can include all PDSCHs scheduled by one DCI, so that the HARQ-ACK of PDSCHs with multiple transmission time intervals can be fed back in one HARQ-ACK codebook.
  • FIG. 6 is a flowchart of a method for configuring a HARQ-ACK codebook according to an exemplary embodiment. As shown in FIG. 6, the method includes:
  • Step 601 based on the timing K1 set in the first scenario and the timing K0 set in the second scenario, determine the timing K1 set in the second scenario;
  • Step 602 based on the timing K1 set in the second scenario, determine the feedback window corresponding to the HARQ-ACK codebook
  • each sequence k1 in the set of sequence K1 is the time interval between the time unit for transmitting the physical downlink shared channel PDSCH and the time unit for transmitting the physical uplink control channel PUCCH
  • each sequence k0 in the set of sequence K0 is the time interval for transmitting the PDSCH The time interval between the time unit and the time unit for transmitting the physical downlink control channel PDCCH;
  • the first scenario is a scenario of scheduling a single PDSCH time slot through the PDCCH
  • the second scenario is a scenario of scheduling multiple PDSCH time slots through the PDCCH.
  • the user equipment receives the timing K1 set in the first scenario and the timing K0 set in the second scenario from the network device, and determines the timing K1 set in the first scenario and the timing K0 set in the second scenario. Timing K1 collection in the second scenario. Then, based on the timing K1 set in the second scenario, the feedback window corresponding to the HARQ-ACK codebook is determined.
  • the user equipment obtains the sequence K1 set in the first scenario based on the communication protocol, and receives the sequence K0 set in the second scenario from the network device, and based on the sequence K1 set in the first scenario and the sequence K1 set in the second scenario
  • the timing K0 set determines the timing K1 set in the second scenario. Then, based on the timing K1 set in the second scenario, the feedback window corresponding to the HARQ-ACK codebook is determined.
  • the timing K1 set in the second scenario is determined based on the timing K1 set in the first scenario and the timing K0 set in the second scenario, so that the codebook based on the timing K1 set in the second scenario
  • the feedback window of can include all PDSCHs scheduled by one DCI, so that the HARQ-ACK of PDSCHs with multiple transmission time intervals can be fed back in one HARQ-ACK codebook.
  • An embodiment of the present disclosure provides a method for configuring a HARQ-ACK codebook, and the method is executed by a user equipment. The method may be executed independently, or may be executed in combination with any other embodiment of the embodiments of the present disclosure.
  • the HARQ-ACK codebook is a Type1 codebook.
  • the user equipment acquires the timing K1 set in the first scenario and the timing K0 set in the second scenario, and determines the timing K1 set in the second scenario based on the acquired timing K1 set and timing K0 set. Then, the Type1 codebook is configured based on the timing K1 set in the second scenario.
  • the timing K1 set in the second scenario is determined based on the timing K1 set in the first scenario and the timing K0 set in the second scenario, so that the codebook based on the timing K1 set in the second scenario
  • the feedback window of can include all PDSCHs scheduled by one DCI, so that the HARQ-ACK of PDSCHs with multiple transmission time intervals can be fed back in one Type1 codebook.
  • FIG. 7 is a flowchart of a HARQ-ACK codebook decoding method according to an exemplary embodiment. As shown in FIG. 7, the method includes:
  • Step 701 based on the timing K1 set in the first scenario and the timing K0 set in the second scenario, determine the timing K1 set in the second scenario;
  • Step 702 receiving the HARQ-ACK codebook from the user equipment
  • Step 703 decoding the HARQ-ACK codebook based on the timing K1 set in the second scenario
  • each sequence K1 in the set of sequence K1 is the time interval between the time unit for transmitting the physical downlink shared channel PDSCH and the time unit for transmitting the physical uplink control channel PUCCH
  • each sequence k0 in the set of sequence K0 is the time interval for transmitting the PDSCH The time interval between the time unit and the time unit for transmitting the physical downlink control channel PDCCH;
  • the first scenario is a scenario of scheduling a single PDSCH time slot through the PDCCH
  • the second scenario is a scenario of scheduling multiple PDSCH time slots through the PDCCH.
  • the network device acquires the timing K1 set in the first scenario and the timing K0 set in the second scenario configured for the user equipment, and based on the timing K1 set in the first scenario and the timing in the second scenario The K0 set determines the timing K1 set in the second scenario.
  • the network device receives the HARQ-ACK codebook from the user equipment, and decodes the HARQ-ACK codebook based on the timing K1 set in the second scenario.
  • the network device obtains the timing K1 set in the first scenario based on the communication protocol and acquires the timing K0 set in the second scenario configured for the user equipment, and based on the timing K1 set in the first scenario and the second The timing K0 set in the scenario determines the timing K1 set in the second scenario.
  • the network device receives the HARQ-ACK codebook from the user equipment, and decodes the HARQ-ACK codebook based on the timing K1 set in the second scenario.
  • the timing K1 set in the second scenario is determined based on the timing K1 set in the first scenario and the timing K0 set in the second scenario, so that the codebook based on the timing K1 set in the second scenario
  • the feedback window of can include all PDSCHs scheduled by one DCI, so that the HARQ-ACK of PDSCHs with multiple transmission time intervals can be fed back in one HARQ-ACK codebook. Therefore, the network device can accurately decode the HARQ-ACK codebook and realize efficient hybrid automatic retransmission.
  • An embodiment of the present disclosure provides a method for decoding a HARQ-ACK codebook, and the method is executed by a network device; the method may be executed independently, or may be executed in combination with any other embodiment of the embodiments of the present disclosure.
  • the sequence K0 set in the second scenario includes at least one sequence K0 group, and the sequence K0 group includes multiple sequence k0 corresponding to a time domain resource scheduling manner in the second scenario.
  • the timing K0 set in the second scenario includes multiple timing K0 groups, each timing K0 group includes multiple timing K0s, and each timing K0 group corresponds to a timing K0 group in the second scenario.
  • a time-domain resource scheduling method is provided.
  • the network device acquires the timing K0 set in the second scenario based on the TDRA table configured for the user equipment.
  • the TDRA table and the manner of obtaining the timing K0 set based on the TDRA table reference may be made to the above description about other implementation manners, and details are not repeated here.
  • the timing K1 set in the second scenario is determined in combination with the timing K0 set in the second scenario, so that the feedback window of the codebook based on the timing K1 set in the second scenario can include the All PDSCHs, thus HARQ-ACK of multi-transmission time interval PDSCHs can be fed back in one HARQ-ACK codebook.
  • FIG. 8 is a flowchart of a HARQ-ACK codebook decoding method according to an exemplary embodiment. As shown in FIG. 8, the method includes:
  • Step 801 based on the communication protocol, acquire the sequence K1 set in the first scenario
  • Step 802 based on the timing K1 set in the first scenario and the timing K0 set in the second scenario, determine the timing K1 set in the second scenario;
  • Step 803 receiving the HARQ-ACK codebook from the user equipment
  • Step 804 decoding the HARQ-ACK codebook based on the timing K1 set in the second scenario
  • each sequence K1 in the set of sequence K1 is the time interval between the time unit for transmitting the physical downlink shared channel PDSCH and the time unit for transmitting the physical uplink control channel PUCCH
  • each sequence k0 in the set of sequence K0 is the time interval for transmitting the PDSCH The time interval between the time unit and the time unit for transmitting the physical downlink control channel PDCCH;
  • the first scenario is a scenario of scheduling a single PDSCH time slot through the PDCCH
  • the second scenario is a scenario of scheduling multiple PDSCH time slots through the PDCCH.
  • the network device obtains the sequence K1 set in the first scenario based on the communication protocol, and determines the sequence K1 set in the second scenario based on the sequence K1 set in the first scenario and the sequence K0 set in the second scenario .
  • the HARQ-ACK codebook is decoded based on the timing K1 set in the second scenario.
  • the timing K1 set in the second scenario is determined based on the timing K1 set in the first scenario and the timing K0 set in the second scenario, so that the codebook based on the timing K1 set in the second scenario
  • the feedback window of can include all PDSCHs scheduled by one DCI, so that the HARQ-ACK of PDSCHs with multiple transmission time intervals can be fed back in one HARQ-ACK codebook. Therefore, the network device can accurately decode the HARQ-ACK codebook and realize efficient hybrid automatic retransmission.
  • FIG. 9 is a flowchart of a HARQ-ACK codebook decoding method according to an exemplary embodiment. As shown in Fig. 9, the method includes:
  • Step 901 based on the time domain resource allocation TDRA table to obtain the timing K0 set in the second scenario;
  • Step 902 based on the timing K1 set in the first scenario and the timing K0 set in the second scenario, determine the timing K1 set in the second scenario;
  • Step 903 receiving the HARQ-ACK codebook from the user equipment
  • Step 904 decoding the HARQ-ACK codebook based on the timing K1 set in the second scenario
  • each sequence k1 in the set of sequence K1 is the time interval between the time unit for transmitting the physical downlink shared channel PDSCH and the time unit for transmitting the physical uplink control channel PUCCH
  • each sequence k0 in the set of sequence K0 is the time interval for transmitting the PDSCH The time interval between the time unit and the time unit for transmitting the physical downlink control channel PDCCH;
  • the first scenario is a scenario of scheduling a single PDSCH time slot through the PDCCH
  • the second scenario is a scenario of scheduling multiple PDSCH time slots through the PDCCH.
  • the network device acquires the timing K0 set in the second scenario based on the TDRA table configured for the user equipment, and then determines the second scenario based on the timing K1 set in the first scenario and the timing K0 set in the second scenario The following timing K1 set. After receiving the HARQ-ACK codebook from the user equipment, the HARQ-ACK codebook is decoded based on the timing K1 set in the second scenario.
  • the TDRA table configured by the network device is shown in Table 1 above, and the network device obtains the sequence K0 set ⁇ (0,1,1,2),(1,2,3,4) in the second scenario ,5,6,7,8) ⁇ .
  • the timing K1 set in the second scenario is determined based on the timing K1 set in the first scenario and the timing K0 set in the second scenario, so that the codebook based on the timing K1 set in the second scenario
  • the feedback window of can include all PDSCHs scheduled by one DCI, so that the HARQ-ACK of PDSCHs with multiple transmission time intervals can be fed back in one HARQ-ACK codebook. Therefore, the network device can accurately decode the HARQ-ACK codebook and realize efficient hybrid automatic retransmission.
  • FIG. 10 is a flowchart of a HARQ-ACK codebook decoding method according to an exemplary embodiment. As shown in FIG. 10, the method includes:
  • Step 1001 based on the time domain resource allocation TDRA table to obtain the timing K0 set in the second scenario;
  • Step 1002 Determine the time series K1 set in the second scene based on the time series K1 set in the first scene and the time series K0 set in the second scene through the following formula (1):
  • Step 1003 receiving the HARQ-ACK codebook from the user equipment
  • Step 1004 decoding the HARQ-ACK codebook based on the timing K1 set in the second scenario
  • each sequence k1 in the set of sequence K1 is the time interval between the time unit for transmitting the physical downlink shared channel PDSCH and the time unit for transmitting the physical uplink control channel PUCCH
  • each sequence k0 in the set of sequence K0 is the time interval for transmitting the PDSCH The time interval between the time unit and the time unit for transmitting the physical downlink control channel PDCCH;
  • the first scenario is a scenario in which a single PDSCH time slot is scheduled through the PDCCH
  • the second scenario is a scenario in which multiple PDSCH time slots are scheduled through the PDCCH
  • K1' is the sequence K1 set in the second scenario
  • K1 is the sequence K1 set in the first scenario
  • k1 i is the i-th sequence k1 included in the sequence K1 set in the first scenario
  • k0 r m is the mth time series k0 contained in the rth row containing multiple k0 in the TDRA table
  • k0 r min is the minimum time series contained in the rth row containing multiple k0 k0
  • L is the number of time series k1 contained in the time series K1 set in the first scenario
  • R is the number of rows containing multiple time series k0 in the TDRA table
  • M r is the rth row containing multiple k0 The number of sequence k0 included.
  • the network device acquires the timing K0 set in the second scenario based on its configured TDRA table. And, the timing K1 set in the second scenario is determined based on formula (1). After receiving the HARQ-ACK codebook from the user equipment, the HARQ-ACK codebook is decoded based on the timing K1 set in the second scenario.
  • the process for the network device to obtain the sequence K1 set in the second scenario by calculating according to the formula (1) is similar to the process for the user equipment to obtain the sequence K1 set in the second scenario in the above embodiment.
  • the timing K1 set in the second scenario is determined based on the timing K1 set in the first scenario and the timing K0 set in the second scenario, so that the codebook based on the timing K1 set in the second scenario
  • the feedback window of can include all PDSCHs scheduled by one DCI, so that the HARQ-ACK of PDSCHs with multiple transmission time intervals can be fed back in one HARQ-ACK codebook. Therefore, the network device can accurately decode the HARQ-ACK codebook and realize efficient hybrid automatic retransmission.
  • An embodiment of the present disclosure provides a method for decoding a HARQ-ACK codebook, and the method is executed by a user equipment. The method may be executed independently, or may be executed in combination with any other embodiment of the embodiments of the present disclosure.
  • the HARQ-ACK codebook is a Type1 codebook.
  • the network device determines the timing K1 set in the second scenario based on the timing K1 set in the first scenario and the timing K0 set in the second scenario. After receiving the Type1 codebook from the user equipment, the Type1 codebook is decoded based on the sequence K1 set in the second scenario.
  • the timing K1 set in the second scenario is determined based on the timing K1 set in the first scenario and the timing K0 set in the second scenario, so that the codebook based on the timing K1 set in the second scenario
  • the feedback window of can include all PDSCHs scheduled by one DCI, so that the HARQ-ACK of PDSCHs with multiple transmission time intervals can be fed back in one HARQ-ACK codebook. Therefore, the network device can accurately decode the HARQ-ACK codebook and realize efficient hybrid automatic retransmission.
  • An embodiment of the present disclosure provides a hybrid automatic repeat request response HARQ-ACK codebook configuration device, which is applied to a user equipment.
  • the device includes:
  • the processing module 110 based on the timing K1 set in the first scenario and the timing K0 set in the second scenario, determines the timing K1 set in the second scenario, and configures the timing K1 set in the second scenario.
  • HARQ-ACK codebook
  • each sequence k1 in the set of sequence K1 is the time interval between the time unit for transmitting the physical downlink shared channel PDSCH and the time unit for transmitting the physical uplink control channel PUCCH
  • each sequence k0 in the set of sequence K0 is the time interval for transmitting the PDSCH The time interval between the time unit and the time unit for transmitting the physical downlink control channel PDCCH;
  • the first scenario is a scenario of scheduling a single PDSCH time slot through the PDCCH
  • the second scenario is a scenario of scheduling multiple PDSCH time slots through the PDCCH.
  • An embodiment of the present disclosure provides a hybrid automatic repeat request response HARQ-ACK codebook decoding device, which is applied to network equipment, as shown in Figure 12, the device includes:
  • the processing module 1201 is configured to determine the timing K1 set in the second scenario based on the timing K1 set in the first scenario and the timing K0 set in the second scenario;
  • the receiving module 1202 is configured to receive the HARQ-ACK codebook from the user equipment
  • the decoding module 1203 is configured to decode the HARQ-ACK codebook based on the timing K1 set in the second scenario;
  • each sequence k1 in the set of sequence K1 is the time interval between the time unit for transmitting the physical downlink shared channel PDSCH and the time unit for transmitting the physical uplink control channel PUCCH
  • each sequence k0 in the set of sequence K0 is the time interval for transmitting the PDSCH The time interval between the time unit and the time unit for transmitting the physical downlink control channel PDCCH;
  • the first scenario is a scenario of scheduling a single PDSCH time slot through the PDCCH
  • the second scenario is a scenario of scheduling multiple PDSCH time slots through the PDCCH.
  • An embodiment of the present disclosure provides a mobile terminal, including:
  • memory for storing processor-executable instructions
  • the processor is configured to execute the executable instructions in the memory to implement the steps of the above-mentioned hybrid automatic repeat request acknowledgment HARQ-ACK codebook configuration method.
  • An embodiment of the present disclosure provides a network side device, including:
  • memory for storing processor-executable instructions
  • the processor is configured to execute the executable instructions in the memory to implement the steps of the HARQ-ACK codebook decoding method above.
  • An embodiment of the present disclosure provides a non-transitory computer-readable storage medium, on which executable instructions are stored, and when the executable instructions are executed by a processor, the above-mentioned hybrid automatic repeat request response HARQ-ACK codebook configuration method or Steps of the above HARQ-ACK codebook decoding method.
  • Fig. 13 is a block diagram showing a device 1300 for HARQ-ACK codebook configuration according to an exemplary embodiment.
  • the apparatus 1300 may be a mobile phone, a computer, a digital broadcast terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, and the like.
  • device 1300 may include one or more of the following components: processing component 1302, memory 1304, power supply component 1306, multimedia component 1308, audio component 1310, input/output (I/O) interface 1312, sensor component 1314, and communication component 1316.
  • processing component 1302 memory 1304, power supply component 1306, multimedia component 1308, audio component 1310, input/output (I/O) interface 1312, sensor component 1314, and communication component 1316.
  • memory 1304 power supply component 1306, multimedia component 1308, audio component 1310, input/output (I/O) interface 1312, sensor component 1314, and communication component 1316.
  • I/O input/output
  • the processing component 1302 generally controls the overall operations of the device 1300, such as those associated with display, telephone calls, data communications, camera operations, and recording operations.
  • the processing component 1302 may include one or more processors 1320 to execute instructions to complete all or part of the steps of the above method. Additionally, processing component 1302 may include one or more modules that facilitate interaction between processing component 1302 and other components. For example, processing component 1302 may include a multimedia module to facilitate interaction between multimedia component 1308 and processing component 1302 .
  • the memory 1304 is configured to store various types of data to support operations at the device 1300 . Examples of such data include instructions for any application or method operating on device 1300, contact data, phonebook data, messages, pictures, videos, and the like.
  • the memory 1304 can be implemented by any type of volatile or non-volatile storage device or their combination, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic or Optical Disk Magnetic Disk
  • the power supply component 1306 provides power to various components of the device 1300 .
  • Power components 1306 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power for device 1300 .
  • the multimedia component 1308 includes a screen that provides an output interface between the device 1300 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from a user.
  • the touch panel includes one or more touch sensors to sense touches, swipes, and gestures on the touch panel. The touch sensor may not only sense a boundary of a touch or swipe action, but also detect duration and pressure associated with the touch or swipe action.
  • the multimedia component 1308 includes a front camera and/or a rear camera. When the device 1300 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capability.
  • the audio component 1310 is configured to output and/or input audio signals.
  • the audio component 1310 includes a microphone (MIC), which is configured to receive external audio signals when the device 1300 is in operation modes, such as call mode, recording mode and voice recognition mode. Received audio signals may be further stored in memory 1304 or sent via communication component 1316 .
  • the audio component 1310 also includes a speaker for outputting audio signals.
  • the I/O interface 1312 provides an interface between the processing component 1302 and a peripheral interface module.
  • the peripheral interface module may be a keyboard, a click wheel, a button, and the like. These buttons may include, but are not limited to: a home button, volume buttons, start button, and lock button.
  • Sensor assembly 1314 includes one or more sensors for providing various aspects of status assessment for device 1300 .
  • the sensor component 1314 can detect the open/closed state of the device 1300, the relative positioning of components, such as the display and keypad of the device 1300, and the sensor component 1314 can also detect a change in the position of the device 1300 or a component of the device 1300 , the presence or absence of user contact with the device 1300 , the device 1300 orientation or acceleration/deceleration and the temperature change of the device 1300 .
  • Sensor assembly 1314 may include a proximity sensor configured to detect the presence of nearby objects in the absence of any physical contact.
  • Sensor assembly 1314 may also include optical sensors, such as CMOS or CCD image sensors, for use in imaging applications.
  • the sensor component 1314 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor or a temperature sensor.
  • the communication component 1316 is configured to facilitate wired or wireless communication between the apparatus 1300 and other devices.
  • the device 1300 can access wireless networks based on communication standards, such as WiFi, 2G or 3G, or a combination thereof.
  • the communication component 1316 receives a broadcast signal or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 1316 also includes a near field communication (NFC) module to facilitate short-range communication.
  • NFC near field communication
  • the NFC module may be implemented based on Radio Frequency Identification (RFID) technology, Infrared Data Association (IrDA) technology, Ultra Wide Band (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID Radio Frequency Identification
  • IrDA Infrared Data Association
  • UWB Ultra Wide Band
  • Bluetooth Bluetooth
  • apparatus 1300 may be programmed by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A gate array (FPGA), controller, microcontroller, microprocessor or other electronic component implementation for performing the methods described above.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor or other electronic component implementation for performing the methods described above.
  • non-transitory computer-readable storage medium including instructions, such as the memory 1304 including instructions, which can be executed by the processor 1320 of the device 1300 to implement the above method.
  • the non-transitory computer readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.
  • Fig. 14 is a block diagram showing a device 1400 for decoding a HARQ-ACK codebook according to an exemplary embodiment.
  • apparatus 1400 may be provided as a base station.
  • apparatus 1400 includes processing component 1422, which further includes one or more processors, and memory resources represented by memory 1432 for storing instructions executable by processing component 1422, such as application programs.
  • An application program stored in memory 1432 may include one or more modules each corresponding to a set of instructions.
  • the processing component 1422 is configured to execute instructions to perform the above method for accessing an unlicensed channel.
  • Device 1400 may also include a power component 1426 configured to perform power management of device 1400 , a wired or wireless network interface 1450 configured to connect device 1400 to a network, and an input-output (I/O) interface 1459 .
  • the device 1400 can operate based on an operating system stored in the memory 1432, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM or the like.
  • the technical solutions provided by the embodiments of the present disclosure may include the following beneficial effects: determine the timing K1 set in the second scenario in combination with the timing K0 set in the second scenario, so that the codebook based on the timing K1 set in the second scenario
  • the feedback window can include all PDSCHs scheduled by one DCI, so that the HARQ-ACK of PDSCHs with multiple transmission time intervals can be fed back in one HARQ-ACK codebook.
  • the network device can accurately decode the HARQ-ACK codebook to realize efficient hybrid automatic retransmission.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种HARQ-ACK码本配置和解码方法、装置、设备及存储介质。该HARQ-ACK码本配置方法被用户设备执行,包括:基于第一场景下的时序K1集合和第二场景下的时序K0集合,确定所述第二场景下的时序K1集合;基于所述第二场景下的时序K1集合配置所述HARQ-ACK码本。采用该方法,基于该第二场景下的时序K1集合的码本的反馈窗口能够包含被一个DCI调度的所有PDSCH。

Description

一种HARQ-ACK码本配置和解码方法、装置、设备及存储介质 技术领域
本公开涉及无线通信技术领域,尤其涉及一种HARQ-ACK码本配置和解码方法、装置、设备及存储介质。
背景技术
Type1码本是一种混合自动重传请求应答(Hybrid Automatic Repeat request acknowledgement,HARQ-ACK)码本大小固定的HARQ-ACK反馈方式,在一个HARQ-ACK物理上行控制信道(Physical Uplink Control channel,PUCCH)上,需要反馈一个固定大小的反馈窗口中所有时隙上的有效的候选物理下行共享信道(Physical Downlink Shared channel,PDSCH)的HARQ-ACK。
在NR 52.6-71GHz中,将会引入通过物理下行控制信道(Physical Downlink Control channel,PDCCH)调度多个PDSCH时隙的场景,即multi-slot PDSCH调度场景。由于引入了multi-slot PDSCH调度,仅根据单时隙调度场景下的K1集合来确定Type1码本的反馈窗口将可能导致Type1码本不能完全包含该下行控制信息(Downlink Control Information,DCI)调度的所有PDSCH所在的时隙。
发明内容
有鉴于此,本公开提供了一种HARQ-ACK码本配置和解码方法、装置、设备及存储介质。
根据本公开实施例的第一个方面,提供一种混合自动重传请求应答HARQ-ACK码本配置方法,所述方法被用户设备执行,包括:
基于第一场景下的时序K1集合和第二场景下的时序K0集合,确定所述第二场景下的时序K1集合;
基于所述第二场景下的时序K1集合配置所述HARQ-ACK码本;
其中,所述时序K1集合中每个时序k1是传输物理下行共享信道PDSCH的时间单元与传输物理上行控制信道PUCCH的时间单元的时间间隔,所述时序K0集合中每个时序k0是传输PDSCH的时间单元与传输物理下行控制信道PDCCH的时间单元的时间间隔;
所述第一场景是通过PDCCH调度单个PDSCH时隙的场景,所述第二场景是通过PDCCH调度多个PDSCH时隙的场景。
在一实施方式中,所述第二场景下的时序K0集合包括至少一个时序K0组,每个所述时序K0组包括多个时序k0,且每个所述时序K0组对应于所述第二场景下的一种时域资源调度方式。
在一实施方式中,所述方法还包括:
从网络设备接收第一配置信息,所述第一配置信息包括指示所述第一场景下的时序K1集合的信息;或
基于通信协议获取所述第一场景下的所述时序K1集合。
在一实施方式中,所述方法还包括:
从网络设备接收第二配置信息,所述第二配置信息包括指示所述第二场景下的时序K0集合的信息。
在一实施方式中,所述方法还包括:
从网络设备接收第二配置信息,所述第二配置信息包括时域资源分配TDRA表。
在一实施方式中,所述基于第一场景下的时序K1集合和第二场景下的时序K0集合,确定所述第二场景下的时序K1集合,包括基于下述公式确定所述第二场景下的时序K1集合:
Figure PCTCN2021121072-appb-000001
其中,K1'是所述第二场景下的时序K1集合,K1是所述第一场景下的时序K1集合,k1 i是所述第一场景下的时序K1集合包含的第i个时序k1,k0 r,m是所述TDRA表中第r个包含多个k0的行中所包含的第m个时序k0,k0 r,min是第r个包含多个k0的行中所包含的最小时序k0,L是所述第一场景下的时序K1集合包含的时序k1的个数,R是所述TDRA表中包含多个时序k0行数,M r是第r个包含多个k0的行中包含的时序k0的个数。
在一实施方式中,基于所述第二场景下的时序K1集合配置所述HARQ-ACK码本,包括:
基于所述第二场景下的时序K1集合,确定所述HARQ-ACK码本对应的反馈窗口。
在一实施方式中,所述HARQ-ACK码本为Type1码本。
根据本公开实施例的第二个方面,提供一种混合自动重传请求应答HARQ-ACK码本解码方法,所述方法被网络设备执行,包括:
基于第一场景下的时序K1集合和第二场景下的时序K0集合,确定所述第二场景下的时序K1集合;
从用户设备接收所述HARQ-ACK码本;
基于所述第二场景下的时序K1集合解码所述HARQ-ACK码本;
其中,所述时序K1集合中每个时序K1是传输物理下行共享信道PDSCH的时间单元与传输物理上行控制信道PUCCH的时间单元的时间间隔,所述时序K0集合中每个时序k0是传输PDSCH的时间单元与传输物理下行控制信道PDCCH的时间单元的时间间隔;
所述第一场景是通过PDCCH调度单个PDSCH时隙的场景,所述第二场景是通过PDCCH调度多个PDSCH时隙的场景。
在一实施方式中,所述第二场景下的时序K0集合包括至少一个时序K0组,所述时序K0组包括对应于所述第二场景下的一种时域资源调度方式的多个时序k0值。
在一实施方式中,所述方法还包括:
基于通信协议获取所述第一场景下的所述时序K1集合。
在一实施方式中,所述方法还包括:
基于时域资源分配TDRA表获取所述第二场景下的时序K0集合。
在一实施方式中,所述基于第一场景下的时序K1集合和第二场景下的时序K0集合,确定所述第二场景下的时序K1集合,包括基于下述公式确定所述第二场景下的时序K1集合:
Figure PCTCN2021121072-appb-000002
其中,K1'是所述第二场景下的时序K1集合,K1是所述第一场景下的时序K1集合,k1 i是所述第一场景下的时序K1集合包含的第i个时序k1,k0 r,m是所述TDRA表中第r个包含多个K0的行中所包含的第m个时序k0,k0 r,min是第r个包含多个k0的行中所包含的最小时序k0,L是所述第一场景下的时序K1集合包含的时序k1的个数,R是所述TDRA表中包含多个时序k0行数,M r是第r个包含多个k0的行中包含的时序k0的个数。
在一实施方式中,所述HARQ-ACK码本为Type1码本。
根据本公开实施例的第三个方面,提供一种混合自动重传请求应答HARQ-ACK码本配置装置,应用于用户设备,包括:
处理模块,基于第一场景下的时序K1集合和第二场景下的时序K0集合,确定所述第二场景下的时序K1集合,并
基于所述第二场景下的时序K1集合配置所述HARQ-ACK码本;
其中,所述时序K1集合中每个时序k1是传输物理下行共享信道PDSCH的时间单元与传输物理上行控制信道PUCCH的时间单元的时间间隔,所述时序K0集合中每个时序k0是传输PDSCH的时间单元与传输物理下行控制信道PDCCH的时间单元的时间间隔;
所述第一场景是通过PDCCH调度单个PDSCH时隙的场景,所述第二场景是通过PDCCH调度多个PDSCH时隙的场景。
根据本公开实施例的第四个方面,提供一种混合自动重传请求应答HARQ-ACK码本解码装置,应用于网络设备,包括:
处理模块,被配置为基于第一场景下的时序K1集合和第二场景下的时序K0集合,确定所述第二场景下的时序K1集合;
接收模块,被配置为从用户设备接收所述HARQ-ACK码本;
解码模块,被配置为基于所述第二场景下的时序K1集合解码所述HARQ-ACK码本;
其中,所述时序K1集合中每个时序k1是传输物理下行共享信道PDSCH的时间单元与传输物理上行控制信道PUCCH的时间单元的时间间隔,所述时序K0集合中每个时序k0是传输PDSCH的时间单元与传输物理下行控制信道PDCCH的时间单元的时间间隔;
所述第一场景是通过PDCCH调度单个PDSCH时隙的场景,所述第二场景是通过PDCCH调度多个PDSCH时隙的场景。
根据本公开实施例的第五个方面,提供一种移动终端,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为执行所述存储器中的可执行指令以实现上述混合自动重传请求应答HARQ-ACK码本配置方法的步骤。
根据本公开实施例的第六个方面,提供一种网络侧设备,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为执行所述存储器中的可执行指令以实现上述混合自动重传请求应答HARQ-ACK码本解码方法的步骤。
根据本公开实施例的第七个方面,提供一种非临时性计算机可读存储介质,其上存储有可执行指令,该可执行指令被处理器执行时实现上述混合自动重传请求应答HARQ-ACK码本配置方法或者上述HARQ-ACK码本解码方法的步骤。
本公开的实施例提供的技术方案可以包括以下有益效果:结合第二场景下的时序K0集合来确定第二场景下的时序K1集合,使得基于该第二场景下的时序K1集合的码本的反馈窗口能够包含被一个DCI调度的所有PDSCH,从而多传输时间间隔PDSCH的HARQ-ACK能在一个HARQ-ACK码本中反馈。并且,网络设备能够准确地解码HARQ-ACK码本,实现高效的混合自动重传。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处所说明的附图用来提供对本公开实施例的进一步理解,构成本申请的一部分,本公开实施例的示意性实施例及其说明用于解释本公开实施例,并不构成对本公开实施例的不当限定。在附图中:
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开实施例的实施例,并与说明书一起用于解释本公开实施例的原理。
图1是根据一示例性实施例示出的一种HARQ-ACK码本配置方法的流程图;
图2是根据一示例性实施例示出的一种HARQ-ACK码本配置方法的流程图;
图3是根据一示例性实施例示出的一种HARQ-ACK码本配置方法的流程图;
图4是根据一示例性实施例示出的一种HARQ-ACK码本配置方法的流程图;
图5是根据一示例性实施例示出的一种HARQ-ACK码本配置方法的流程图;
图6是根据一示例性实施例示出的一种HARQ-ACK码本配置方法的流程图;
图7是根据一示例性实施例示出的一种HARQ-ACK码本解码方法的流程图;
图8是根据一示例性实施例示出的一种HARQ-ACK码本解码方法的流程图;
图9是根据一示例性实施例示出的一种HARQ-ACK码本解码方法的流程图;
图10是根据一示例性实施例示出的一种HARQ-ACK码本解码方法的流程图;
图11是根据一示例性实施例示出的一种HARQ-ACK码本配置装置的框图;
图12是根据一示例性实施例示出的一种HARQ-ACK码本解码装置的框图;
图13是根据一示例性实施例示出的一种HARQ-ACK码本配置装置的结构图;
图14是根据一示例性实施例示出的一种HARQ-ACK码本解码装置的结构图。
具体实施方式
现结合附图和具体实施方式对本公开实施例进一步说明。
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
需要说明的是,本公开的一个实施例中可以包括多个步骤;为了便于描述,这些个步骤被进行了编号;但是这些编号并非是对步骤之间执行时隙、执行顺序的限定;这些步骤可以以任意的顺序被实施,本公开实施例并不对此作出限定。
在multi-slot PDSCH调度场景中,一个DCI调度的多个PDSCH的HARQ-ACK放在同一个PUCCH中反馈,根据调度DCI中的k1,以及最后一个PDSCH的时隙位置确定出对该多个PDSCH进行HARQ-ACK反馈的PUCCH的时隙。而由于引入了multi-slot PDSCH调度,仅根据单时隙调度场景下的K1集合来确定Type1码本的反馈窗口将可能导致Type1码本不能完全包含该DCI调度的所有PDSCH所在的时隙。
本公开实施例提供了一种HARQ-ACK码本配置方法,所述方法被用户设备执行。该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。图1是根据一示例性实施例示出的一种HARQ-ACK码本配置方法的流程图,如图1所示,该方法包括:
步骤101,基于第一场景下的时序K1集合和第二场景下的时序K0集合,确定所述第二场景下的时序K1集合;
步骤102,基于所述第二场景下的时序K1集合配置所述HARQ-ACK码本;
其中,所述时序K1集合中每个时序k1是传输物理下行共享信道PDSCH的时间单元与传输物理上行控制信道PUCCH的时间单元的时间间隔,所述时序K0集合中每个时序k0是传输PDSCH的时间单元与传输物理下行控制信道PDCCH的时间单元的时间间隔;
所述第一场景是通过PDCCH调度单个PDSCH时隙的场景,所述第二场景是通过PDCCH调度多个PDSCH时隙的场景。
在一实施方式中,用户设备获取通过PDCCH调度单个PDSCH时隙场景下的时序K1集合以及通过PDCCH调度多个PDSCH时隙场景下时序K0集合,并基于上述获取的时序K1集合和时序K0集合,确定通过PDCCH调度多个PDSCH时隙场景下时序K1集合。然后,基于通过PDCCH调度多个PDSCH时隙场景下时序K1集合配置HARQ-ACK码本。
在一个实施方式中,用户设备从网络设备接收该网络设备配置的第一场景下的时序K1集合,或基于通信协议获取第一场景下的时序K1集合。在一个实施方式中,用户设备从网络设备接收该网络设备配置的第二场景下的时序K0集合。在一个实施方式中,用户设备从网络设备接收时域资源分配TDRA表,基于该TDRA表获取第二场景下的时序K0集合。
在上述实施方式中,通过基于第一场景下的时序K1集合和第二场景下的时序K0集合来确定第二场景下的时序K1集合,使得基于该第二场景下的时序K1集合的码本的反馈窗口能够包含被一个DCI调度的所有PDSCH,从而多传输时间间隔PDSCH的HARQ-ACK能在一个HARQ-ACK码本中反馈。
本公开实施例提供了一种HARQ-ACK码本配置方法,所述方法被用户设备执行;该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。其中,所述第二场景下的时序K0集合包括至少一个时序K0组,每个所述时序K0组包括多个时序k0,且每个所述时序K0组对应于所述第二场景下的一种时域资源调度方式。
在一个实施方式中,第二场景下的时序K0集合包括多个时序K0组,每个时序K0组包括多个时序k0,且每个所述时序K0组对应于所述第二场景下的一种时域资源调度方式。
在一个实施方式中,基于网络设备配置的时域资源分配(Time Domain Resource Allocation,TDRA)表获取第二场景下的时序K0集合。TDRA表如表1所示:
表1 TDRA表
Figure PCTCN2021121072-appb-000003
其中,DMRS表示解调参考信号(DeModulation Reference Signal)。
其中,该TDRA表的每一行对应一种时域资源调度方式,行索引2和3标识的时域资源调度方式均对应多个时序k0,因此行索引2和3分别对应时序K0组(0,1,1,2)和(1,2,3,4,5,6,7,8)。此时,第二场景下的时序K0集合包括序K0组(0,1,1,2)和(1,2,3,4,5,6,7,8)。
可以理解的是,表1中的每一个元素都是独立存在的,这些元素被示例性的列在同一张表格中,但是并不代表表格中的所有元素必须根据表格中所示的同时存在。其中每一个元素的值,是不依赖于表1中任何其他元素值。因此本领域内技术人员可以理解,该表1中的每一个元素的取值都是一个独立的实施例。
在上述实施方式中,结合第二场景下的时序K0集合来确定第二场景下的时序K1集合,使得基于该第二场景下的时序K1集合的码本的反馈窗口能够包含被一个DCI调度的所有PDSCH,从而多传输时间间隔PDSCH的HARQ-ACK能在一个HARQ-ACK码本中反馈。
在上述实施方式中,结合第二场景下的时序K0集合来确定第二场景下的时序K1集合,使得基于该第二场景下的时序K1集合的码本的反馈窗口能够包含被一个DCI调度的所有PDSCH,从而多传输时间间隔PDSCH的HARQ-ACK能在一个HARQ-ACK码本中反馈。
本公开实施例提供了一种HARQ-ACK码本配置方法,所述方法被用户设备执行。该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。图2是根据一示例性实施例示出的一种HARQ-ACK码本配置方法的流程图,如图2所示,该 方法包括:
步骤201,从网络设备接收第一配置信息,所述第一配置信息包括指示第一场景下的时序K1集合的信息;或基于通信协议获取所述第一场景下的所述时序K1集合;
步骤202,基于第一场景下的时序K1集合和第二场景下的时序K0集合,确定所述第二场景下的时序K1集合;
步骤203,基于所述第二场景下的时序K1集合配置所述HARQ-ACK码本;
其中,所述时序K1集合中每个时序k1是传输物理下行共享信道PDSCH的时间单元与传输物理上行控制信道PUCCH的时间单元的时间间隔,所述时序K0集合中每个时序k0是传输PDSCH的时间单元与传输物理下行控制信道PDCCH的时间单元的时间间隔;
所述第一场景是通过PDCCH调度单个PDSCH时隙的场景,所述第二场景是通过PDCCH调度多个PDSCH时隙的场景。
在一个实施方式中,用户设备从网络设备接收第一配置信息,基于该第一配置信息获取第一场景下的时序K1集合,并基于第一场景下的时序K1集合和第二场景下的时序K0集合,确定第二场景下的时序K1集合。然后基于第二场景下的时序K1集合配置HARQ-ACK码本。
在一个实施方式中,用户设备基于通信协议获取第一场景下的时序K1集合,并基于第一场景下的时序K1集合和第二场景下的时序K0集合,确定第二场景下的时序K1集合。然后基于第二场景下的时序K1集合配置HARQ-ACK码本。
在上述实施方式中,通过基于第一场景下的时序K1集合和第二场景下的时序K0集合来确定第二场景下的时序K1集合,使得基于该第二场景下的时序K1集合的码本的反馈窗口能够包含被一个DCI调度的所有PDSCH,从而多传输时间间隔PDSCH的HARQ-ACK能在一个HARQ-ACK码本中反馈。
本公开实施例提供了一种HARQ-ACK码本配置方法,所述方法被用户设备执行。该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。图3是根据一示例性实施例示出的一种HARQ-ACK码本配置方法的流程图,如图3所示,该方法包括:
步骤301,从网络设备接收第二配置信息,所述第二配置信息包括指示所述第二场景 下的时序K0集合的信息;
步骤302,基于第一场景下的时序K1集合和第二场景下的时序K0集合,确定所述第二场景下的时序K1集合;
步骤303,基于所述第二场景下的时序K1集合配置所述HARQ-ACK码本;
其中,所述时序K1集合中每个时序k1是传输物理下行共享信道PDSCH的时间单元与传输物理上行控制信道PUCCH的时间单元的时间间隔,所述时序K0集合中每个时序k0是传输PDSCH的时间单元与传输物理下行控制信道PDCCH的时间单元的时间间隔;
所述第一场景是通过PDCCH调度单个PDSCH时隙的场景,所述第二场景是通过PDCCH调度多个PDSCH时隙的场景。
在一个实施方式中,用户设备从网络设备接收第一配置信息,基于该第一配置信息获取第一场景下的时序K1集合。用户设备从网络设备接收第二配置信息,基于该第二配置信息获取第二场景下的时序K0集合。并且,基于第一场景下的时序K1集合和第二场景下的时序K0集合,确定第二场景下的时序K1集合。然后,基于第二场景下的时序K1集合配置HARQ-ACK码本。在一个实施方式中,第二配置信息为无线资源控制层(Radio Resource Control,RRC)信令。
在一个实施方式中,用户设备基于通信协议获取第一场景下的时序K1集合。用户设备从网络设备接收第二配置信息,基于该第二配置信息获取第二场景下的时序K0集合。并且,基于第一场景下的时序K1集合和第二场景下的时序K0集合,确定第二场景下的时序K1集合。然后,基于第二场景下的时序K1集合配置HARQ-ACK码本。
在上述实施方式中,通过基于第一场景下的时序K1集合和第二场景下的时序K0集合来确定第二场景下的时序K1集合,使得基于该第二场景下的时序K1集合的码本的反馈窗口能够包含被一个DCI调度的所有PDSCH,从而多传输时间间隔PDSCH的HARQ-ACK能在一个HARQ-ACK码本中反馈。
本公开实施例提供了一种HARQ-ACK码本配置方法,所述方法被用户设备执行。该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。图4是根据一示例性实施例示出的一种HARQ-ACK码本配置方法的流程图,如图4所示,该方法包括:
步骤401,从网络设备接收第二配置信息,所述第二配置信息包括时域资源分配TDRA 表;
步骤402,基于第一场景下的时序K1集合和第二场景下的时序K0集合,确定所述第二场景下的时序K1集合;
步骤403,基于所述第二场景下的时序K1集合配置所述HARQ-ACK码本;
其中,所述时序K1集合中每个时序k1是传输物理下行共享信道PDSCH的时间单元与传输物理上行控制信道PUCCH的时间单元的时间间隔,所述时序K0集合中每个时序k0是传输PDSCH的时间单元与传输物理下行控制信道PDCCH的时间单元的时间间隔;
所述第一场景是通过PDCCH调度单个PDSCH时隙的场景,所述第二场景是通过PDCCH调度多个PDSCH时隙的场景。
在一个实施方式中,用户设备从网络设备接收第一配置信息,基于该第一配置信息获取第一场景下的时序K1集合。用户设备通过RRC信令从网络设备接收TDRA表,基于该TDRA表获取第二场景下的时序K0集合。并且,基于第一场景下的时序K1集合和第二场景下的时序K0集合,确定第二场景下的时序K1集合。然后,基于第二场景下的时序K1集合配置HARQ-ACK码本。
在一个实施方式中,用户设备基于通信协议获取第一场景下的时序K1集合。用户设备从网络设备接收TDRA表,基于该TDRA表获取第二场景下的时序K0集合。并且,基于第一场景下的时序K1集合和第二场景下的时序K0集合,确定第二场景下的时序K1集合。然后,基于第二场景下的时序K1集合配置HARQ-ACK码本。
在一个实施方式中,用户设备从网络设备接收的TDRA表如上述表1所示,则用户设备获取第二场景下的时序K0集合{(0,1,1,2),(1,2,3,4,5,6,7,8)}。
在上述实施方式中,通过基于第一场景下的时序K1集合和第二场景下的时序K0集合来确定第二场景下的时序K1集合,使得基于该第二场景下的时序K1集合的码本的反馈窗口能够包含被一个DCI调度的所有PDSCH,从而多传输时间间隔PDSCH的HARQ-ACK能在一个HARQ-ACK码本中反馈。
本公开实施例提供了一种HARQ-ACK码本配置方法,所述方法被用户设备执行。该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。图5是根据一示例性实施例示出的一种HARQ-ACK码本配置方法的流程图,如图5所示,该方法包括:
步骤501,从网络设备接收第二配置信息,所述第二配置信息包括时域资源分配TDRA表;
步骤502,通过下述公式(1),基于第一场景下的时序K1集合和第二场景下的时序K0集合,确定所述第二场景下的时序K1集合:
Figure PCTCN2021121072-appb-000004
步骤503,基于所述第二场景下的时序K1集合配置所述HARQ-ACK码本;
其中,所述时序K1集合中每个时序k1是传输物理下行共享信道PDSCH的时间单元与传输物理上行控制信道PUCCH的时间单元的时间间隔,所述时序K0集合中每个时序k0是传输PDSCH的时间单元与传输物理下行控制信道PDCCH的时间单元的时间间隔;
所述第一场景是通过PDCCH调度单个PDSCH时隙的场景,所述第二场景是通过PDCCH调度多个PDSCH时隙的场景;
并且其中,K1'是所述第二场景下的时序K1集合,K1是所述第一场景下的时序K1集合,k1 i是所述第一场景下的时序K1集合包含的第i个时序k1,k0 r,m是所述TDRA表中第r个包含多个k0的行中所包含的第m个时序k0,k0 r,min是第r个包含多个k0的行中所包含的最小时序k0,L是所述第一场景下的时序K1集合包含的时序k1的个数,R是所述TDRA表中包含多个时序k0行数,M r是第r个包含多个k0的行中包含的时序k0的个数。
在一个实施方式中,用户设备从网络设备接收第一配置信息,基于该第一配置信息获取第一场景下的时序K1集合。用户设备从网络设备接收TDRA表,基于该TDRA表获取第二场景下的时序K0集合。并且,基于公式(1)确定第二场景下的时序K1集合。然后,基于第二场景下的时序K1集合配置HARQ-ACK码本。
在一个实施方式中,用户设备基于通信协议获取第一场景下的时序K1集合。用户设备从网络设备接收TDRA表,基于该TDRA表获取第二场景下的时序K0集合。并且,基于公式(1)确定第二场景下的时序K1集合。然后,基于第二场景下的时序K1集合配置HARQ-ACK码本。
在一个实施方式中,用户设备通过公式(1)来基于第一场景下的时序K1集合和第二场景下的时序K0集合,确定第二场景下的时序K1集合。
在一个实施方式中,公式(1)所表示的计算过程可以通过下述伪代码实现:
Figure PCTCN2021121072-appb-000005
在一个实施方式中,时序K1集合为{1,2,3},时序K0集合包括两个K0组(0,1,1,2)和(1,2,3,4,5,6,7,8),相应地,L=3,R=2,M 1=4,M 2=8。基于上述公式(1),即基于上述伪代码,计算得到时序K1'集合为{1,2,3,4,5,6,7,8,9,10}。
在上述实施方式中,通过基于第一场景下的时序K1集合和第二场景下的时序K0集合来确定第二场景下的时序K1集合,使得基于该第二场景下的时序K1集合的码本的反馈窗口能够包含被一个DCI调度的所有PDSCH,从而多传输时间间隔PDSCH的HARQ-ACK能在一个HARQ-ACK码本中反馈。
本公开实施例提供了一种HARQ-ACK码本配置方法,所述方法被用户设备执行。该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。图6是根据一示例性实施例示出的一种HARQ-ACK码本配置方法的流程图,如图6所示,该方法包括:
步骤601,基于第一场景下的时序K1集合和第二场景下的时序K0集合,确定所述第二场景下的时序K1集合;
步骤602,基于所述第二场景下的时序K1集合,确定所述HARQ-ACK码本对应的反馈窗口;
其中,所述时序K1集合中每个时序k1是传输物理下行共享信道PDSCH的时间单元与传输物理上行控制信道PUCCH的时间单元的时间间隔,所述时序K0集合中每个时序k0是传输PDSCH的时间单元与传输物理下行控制信道PDCCH的时间单元的时间间隔;
所述第一场景是通过PDCCH调度单个PDSCH时隙的场景,所述第二场景是通过PDCCH调度多个PDSCH时隙的场景。
在一个实施方式中,用户设备从网络设备接收第一场景下的时序K1集合以及第二场景下时序K0集合,并基于第一场景下的时序K1集合以及第二场景下时序K0集合,确定第二场景下时序K1集合。然后,基于该第二场景下时序K1集合,确定所述HARQ-ACK码本对应的反馈窗口。
在一个实施方式中,用户设备基于通信协议获取第一场景下的时序K1集合,并从网络设备接收第二场景下的时序K0集合,并基于第一场景下的时序K1集合以及第二场景下时序K0集合,确定第二场景下时序K1集合。然后,基于该第二场景下时序K1集合,确定所述HARQ-ACK码本对应的反馈窗口。
在上述实施方式中,通过基于第一场景下的时序K1集合和第二场景下的时序K0集合来确定第二场景下的时序K1集合,使得基于该第二场景下的时序K1集合的码本的反馈窗口能够包含被一个DCI调度的所有PDSCH,从而多传输时间间隔PDSCH的HARQ-ACK能在一个HARQ-ACK码本中反馈。
本公开实施例提供了一种HARQ-ACK码本配置方法,所述方法被用户设备执行。该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。其中,所述HARQ-ACK码本为Type1码本。
在一个实施方式中,用户设备获取第一场景下的时序K1集合以及第二场景下时序K0集合,并基于上述获取的时序K1集合和时序K0集合,确定第二场景下时序K1集合。然后,基于第二场景下时序K1集合配置Type1码本。
在上述实施方式中,通过基于第一场景下的时序K1集合和第二场景下的时序K0集合来确定第二场景下的时序K1集合,使得基于该第二场景下的时序K1集合的码本的反馈窗口能够包含被一个DCI调度的所有PDSCH,从而多传输时间间隔PDSCH的HARQ-ACK能在一个Type1码本中反馈。
本公开实施例提供了一种HARQ-ACK码本解码方法,所述方法被网络设备执行。该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。图7是根据一示例性实施例示出的一种HARQ-ACK码本解码方法的流程图,如图7所示,该方法包括:
步骤701,基于第一场景下的时序K1集合和第二场景下的时序K0集合,确定所述第 二场景下的时序K1集合;
步骤702,从用户设备接收所述HARQ-ACK码本;
步骤703,基于所述第二场景下的时序K1集合解码所述HARQ-ACK码本;
其中,所述时序K1集合中每个时序K1是传输物理下行共享信道PDSCH的时间单元与传输物理上行控制信道PUCCH的时间单元的时间间隔,所述时序K0集合中每个时序k0是传输PDSCH的时间单元与传输物理下行控制信道PDCCH的时间单元的时间间隔;
所述第一场景是通过PDCCH调度单个PDSCH时隙的场景,所述第二场景是通过PDCCH调度多个PDSCH时隙的场景。
在一个实施方式中,网络设备获取其为用户设备配置的第一场景下的时序K1集合和第二场景下的时序K0集合,并基于第一场景下的时序K1集合和第二场景下的时序K0集合,确定第二场景下的时序K1集合。网络设备从用户设备接收HARQ-ACK码本,并基于第二场景下的时序K1集合解码该HARQ-ACK码本。
在一个实施方式中,网络设备基于通信协议获取第一场景下的时序K1集合并获取其为用户设备配置的第二场景下的时序K0集合,并基于第一场景下的时序K1集合和第二场景下的时序K0集合,确定第二场景下的时序K1集合。网络设备从用户设备接收HARQ-ACK码本,并基于第二场景下的时序K1集合解码该HARQ-ACK码本。
在上述实施方式中,通过基于第一场景下的时序K1集合和第二场景下的时序K0集合来确定第二场景下的时序K1集合,使得基于该第二场景下的时序K1集合的码本的反馈窗口能够包含被一个DCI调度的所有PDSCH,从而多传输时间间隔PDSCH的HARQ-ACK能在一个HARQ-ACK码本中反馈。因此,网络设备能够准确地解码HARQ-ACK码本,实现高效的混合自动重传。
本公开实施例提供了一种HARQ-ACK码本解码方法,所述方法被网络设备执行;该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。其中,所述第二场景下的时序K0集合包括至少一个时序K0组,所述时序K0组包括对应于所述第二场景下的一种时域资源调度方式的多个时序k0。
在一个实施方式中,第二场景下的时序K0集合包括多个时序K0组,每个时序K0组包括多个时序k0,且每个所述时序K0组对应于所述第二场景下的一种时域资源调度方式。
在一个实施方式中,网络设备基于其为用户设备配置的TDRA表获取第二场景下的时序K0集合。TDRA表以及基于TDRA表获取时序K0集合的方式可参照上述关于其它实施方式的描述,在此不再赘述。
在上述实施方式中,结合第二场景下的时序K0集合来确定第二场景下的时序K1集合,使得基于该第二场景下的时序K1集合的码本的反馈窗口能够包含被一个DCI调度的所有PDSCH,从而多传输时间间隔PDSCH的HARQ-ACK能在一个HARQ-ACK码本中反馈。
本公开实施例提供了一种HARQ-ACK码本解码方法,所述方法被网络设备执行。该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。图8是根据一示例性实施例示出的一种HARQ-ACK码本解码方法的流程图,如图8所示,该方法包括:
步骤801,基于通信协议获取第一场景下的时序K1集合;
步骤802,基于第一场景下的时序K1集合和第二场景下的时序K0集合,确定所述第二场景下的时序K1集合;
步骤803,从用户设备接收所述HARQ-ACK码本;
步骤804,基于所述第二场景下的时序K1集合解码所述HARQ-ACK码本;
其中,所述时序K1集合中每个时序K1是传输物理下行共享信道PDSCH的时间单元与传输物理上行控制信道PUCCH的时间单元的时间间隔,所述时序K0集合中每个时序k0是传输PDSCH的时间单元与传输物理下行控制信道PDCCH的时间单元的时间间隔;
所述第一场景是通过PDCCH调度单个PDSCH时隙的场景,所述第二场景是通过PDCCH调度多个PDSCH时隙的场景。
在一个实施方式中,网络设备基于通信协议获取第一场景下的时序K1集合,并基于第一场景下的时序K1集合和第二场景下的时序K0集合,确定第二场景下的时序K1集合。在从用户设备接收HARQ-ACK码本后,基于第二场景下的时序K1集合解码HARQ-ACK码本。
在上述实施方式中,通过基于第一场景下的时序K1集合和第二场景下的时序K0集合来确定第二场景下的时序K1集合,使得基于该第二场景下的时序K1集合的码本的反馈窗口能够包含被一个DCI调度的所有PDSCH,从而多传输时间间隔PDSCH的HARQ-ACK 能在一个HARQ-ACK码本中反馈。因此,网络设备能够准确地解码HARQ-ACK码本,实现高效的混合自动重传。
本公开实施例提供了一种HARQ-ACK码本解码方法,所述方法被网络设备执行。该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。图9是根据一示例性实施例示出的一种HARQ-ACK码本解码方法的流程图,如图9所示,该方法包括:
步骤901,基于时域资源分配TDRA表获取第二场景下的时序K0集合;
步骤902,基于第一场景下的时序K1集合和第二场景下的时序K0集合,确定所述第二场景下的时序K1集合;
步骤903,从用户设备接收所述HARQ-ACK码本;
步骤904,基于所述第二场景下的时序K1集合解码所述HARQ-ACK码本;
其中,所述时序K1集合中每个时序k1是传输物理下行共享信道PDSCH的时间单元与传输物理上行控制信道PUCCH的时间单元的时间间隔,所述时序K0集合中每个时序k0是传输PDSCH的时间单元与传输物理下行控制信道PDCCH的时间单元的时间间隔;
所述第一场景是通过PDCCH调度单个PDSCH时隙的场景,所述第二场景是通过PDCCH调度多个PDSCH时隙的场景。
在一个实施方式中,网络设备基于其为用户设备配置TDRA表获取第二场景下的时序K0集合,然后基于第一场景下的时序K1集合和第二场景下的时序K0集合,确定第二场景下的时序K1集合。在从用户设备接收HARQ-ACK码本后,基于第二场景下的时序K1集合解码HARQ-ACK码本。
在一个实施方式中,网络设备配置的TDRA表如上述表1所示,则网络设备获取第二场景下的时序K0集合{(0,1,1,2),(1,2,3,4,5,6,7,8)}。
在上述实施方式中,通过基于第一场景下的时序K1集合和第二场景下的时序K0集合来确定第二场景下的时序K1集合,使得基于该第二场景下的时序K1集合的码本的反馈窗口能够包含被一个DCI调度的所有PDSCH,从而多传输时间间隔PDSCH的HARQ-ACK能在一个HARQ-ACK码本中反馈。因此,网络设备能够准确地解码HARQ-ACK码本,实现高效的混合自动重传。
本公开实施例提供了一种HARQ-ACK码本解码方法,所述方法被网络设备执行。该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。图10是根据一示例性实施例示出的一种HARQ-ACK码本解码方法的流程图,如图10所示,该方法包括:
步骤1001,基于时域资源分配TDRA表获取第二场景下的时序K0集合;
步骤1002,通过下述公式(1),基于第一场景下的时序K1集合和第二场景下的时序K0集合,确定所述第二场景下的时序K1集合:
Figure PCTCN2021121072-appb-000006
步骤1003,从用户设备接收所述HARQ-ACK码本;
步骤1004,基于所述第二场景下的时序K1集合解码所述HARQ-ACK码本;
其中,所述时序K1集合中每个时序k1是传输物理下行共享信道PDSCH的时间单元与传输物理上行控制信道PUCCH的时间单元的时间间隔,所述时序K0集合中每个时序k0是传输PDSCH的时间单元与传输物理下行控制信道PDCCH的时间单元的时间间隔;
所述第一场景是通过PDCCH调度单个PDSCH时隙的场景,所述第二场景是通过PDCCH调度多个PDSCH时隙的场景;
并且其中,K1'是所述第二场景下的时序K1集合,K1是所述第一场景下的时序K1集合,k1 i是所述第一场景下的时序K1集合包含的第i个时序k1,k0 r,m是所述TDRA表中第r个包含多个k0的行中所包含的第m个时序k0,k0 r,min是第r个包含多个k0的行中所包含的最小时序k0,L是所述第一场景下的时序K1集合包含的时序k1的个数,R是所述TDRA表中包含多个时序k0行数,M r是第r个包含多个k0的行中包含的时序k0的个数。
在一个实施方式中,网络设备基于其配置的TDRA表获取第二场景下的时序K0集合。并且,基于公式(1)确定第二场景下的时序K1集合。在从用户设备接收HARQ-ACK码本后,基于第二场景下的时序K1集合解码HARQ-ACK码本。
网络设备通过公式(1)进行计算来获取第二场景下的时序K1集合的过程与上述实施方式中用户设备获取第二场景下的时序K1集合的过程类似。
在上述实施方式中,通过基于第一场景下的时序K1集合和第二场景下的时序K0集合 来确定第二场景下的时序K1集合,使得基于该第二场景下的时序K1集合的码本的反馈窗口能够包含被一个DCI调度的所有PDSCH,从而多传输时间间隔PDSCH的HARQ-ACK能在一个HARQ-ACK码本中反馈。因此,网络设备能够准确地解码HARQ-ACK码本,实现高效的混合自动重传。
本公开实施例提供了一种HARQ-ACK码本解码方法,所述方法被用户设备执行。该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。其中,所述HARQ-ACK码本为Type1码本。
在一个实施方式中,网络设备基于第一场景下的时序K1集合和第二场景下的时序K0集合,确定第二场景下的时序K1集合。在从用户设备接收Type1码本后,基于第二场景下的时序K1集合解码该Type1码本。
在上述实施方式中,通过基于第一场景下的时序K1集合和第二场景下的时序K0集合来确定第二场景下的时序K1集合,使得基于该第二场景下的时序K1集合的码本的反馈窗口能够包含被一个DCI调度的所有PDSCH,从而多传输时间间隔PDSCH的HARQ-ACK能在一个HARQ-ACK码本中反馈。因此,网络设备能够准确地解码HARQ-ACK码本,实现高效的混合自动重传。
本公开实施例提供了一种混合自动重传请求应答HARQ-ACK码本配置装置,应用于用户设备,参照图11所示,该装置包括:
处理模块1101,基于第一场景下的时序K1集合和第二场景下的时序K0集合,确定所述第二场景下的时序K1集合,并基于所述第二场景下的时序K1集合配置所述HARQ-ACK码本;
其中,所述时序K1集合中每个时序k1是传输物理下行共享信道PDSCH的时间单元与传输物理上行控制信道PUCCH的时间单元的时间间隔,所述时序K0集合中每个时序k0是传输PDSCH的时间单元与传输物理下行控制信道PDCCH的时间单元的时间间隔;
所述第一场景是通过PDCCH调度单个PDSCH时隙的场景,所述第二场景是通过PDCCH调度多个PDSCH时隙的场景。
本公开实施例提供了一种混合自动重传请求应答HARQ-ACK码本解码装置,应用于 网络设备,参照图12所示,该装置包括:
处理模块1201,被配置为基于第一场景下的时序K1集合和第二场景下的时序K0集合,确定所述第二场景下的时序K1集合;
接收模块1202,被配置为从用户设备接收所述HARQ-ACK码本;
解码模块1203,被配置为基于所述第二场景下的时序K1集合解码所述HARQ-ACK码本;
其中,所述时序K1集合中每个时序k1是传输物理下行共享信道PDSCH的时间单元与传输物理上行控制信道PUCCH的时间单元的时间间隔,所述时序K0集合中每个时序k0是传输PDSCH的时间单元与传输物理下行控制信道PDCCH的时间单元的时间间隔;
所述第一场景是通过PDCCH调度单个PDSCH时隙的场景,所述第二场景是通过PDCCH调度多个PDSCH时隙的场景。
本公开实施例提供了一种移动终端,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为执行所述存储器中的可执行指令以实现上述混合自动重传请求应答HARQ-ACK码本配置方法的步骤。
本公开实施例提供了一种网络侧设备,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为执行所述存储器中的可执行指令以实现上述混合自动重传请求应答HARQ-ACK码本解码方法的步骤。
本公开实施例提供了一种非临时性计算机可读存储介质,其上存储有可执行指令,该可执行指令被处理器执行时实现上述混合自动重传请求应答HARQ-ACK码本配置方法或者上述HARQ-ACK码本解码方法的步骤。
图13是根据一示例性实施例示出的一种用于HARQ-ACK码本配置的装置1300的框图。例如,装置1300可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控 制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图13,装置1300可以包括以下一个或多个组件:处理组件1302,存储器1304,电源组件1306,多媒体组件1308,音频组件1310,输入/输出(I/O)的接口1312,传感器组件1314,以及通信组件1316。
处理组件1302通常控制装置1300的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件1302可以包括一个或多个处理器1320来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件1302可以包括一个或多个模块,便于处理组件1302和其他组件之间的交互。例如,处理组件1302可以包括多媒体模块,以方便多媒体组件1308和处理组件1302之间的交互。
存储器1304被配置为存储各种类型的数据以支持在设备1300的操作。这些数据的示例包括用于在装置1300上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器1304可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件1306为装置1300的各种组件提供电力。电源组件1306可以包括电源管理系统,一个或多个电源,及其他与为装置1300生成、管理和分配电力相关联的组件。
多媒体组件1308包括在所述装置1300和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件1308包括一个前置摄像头和/或后置摄像头。当设备1300处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件1310被配置为输出和/或输入音频信号。例如,音频组件1310包括一个麦克风(MIC),当装置1300处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器1304或经由通信组件1316发送。在一些实施例中,音频组件1310还包括一个扬声器,用于输出音 频信号。
I/O接口1312为处理组件1302和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件1314包括一个或多个传感器,用于为装置1300提供各个方面的状态评估。例如,传感器组件1314可以检测到设备1300的打开/关闭状态,组件的相对定位,例如所述组件为装置1300的显示器和小键盘,传感器组件1314还可以检测装置1300或装置1300一个组件的位置改变,用户与装置1300接触的存在或不存在,装置1300方位或加速/减速和装置1300的温度变化。传感器组件1314可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件1314还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件1314还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件1316被配置为便于装置1300和其他设备之间有线或无线方式的通信。装置1300可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件1316经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件1316还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置1300可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器1304,上述指令可由装置1300的处理器1320执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
图14是根据一示例性实施例示出的一种用于HARQ-ACK码本解码的装置1400的框图。例如,装置1400可以被提供为一基站。参照图14,装置1400包括处理组件1422,其进一步包括一个或多个处理器,以及由存储器1432所代表的存储器资源,用于存储可 由处理组件1422的执行的指令,例如应用程序。存储器1432中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件1422被配置为执行指令,以执行上述非授权信道的接入方法。
装置1400还可以包括一个电源组件1426被配置为执行装置1400的电源管理,一个有线或无线网络接口1450被配置为将装置1400连接到网络,和一个输入输出(I/O)接口1459。装置1400可以操作基于存储在存储器1432的操作系统,例如Windows ServerTM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM或类似。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开实施例的其它实施方案。本申请旨在涵盖本公开实施例的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开实施例的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开实施例的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开实施例并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开实施例的范围仅由所附的权利要求来限制。
工业实用性
本公开的实施例提供的技术方案可以包括以下有益效果:结合第二场景下的时序K0集合来确定第二场景下的时序K1集合,使得基于该第二场景下的时序K1集合的码本的反馈窗口能够包含被一个DCI调度的所有PDSCH,从而多传输时间间隔PDSCH的HARQ-ACK能在一个HARQ-ACK码本中反馈。并且,网络设备能够准确地解码HARQ-ACK码本,实现高效的混合自动重传。

Claims (19)

  1. 一种混合自动重传请求应答HARQ-ACK码本配置方法,所述方法被用户设备执行,包括:
    基于第一场景下的时序K1集合和第二场景下的时序K0集合,确定所述第二场景下的时序K1集合;
    基于所述第二场景下的时序K1集合配置所述HARQ-ACK码本;
    其中,所述时序K1集合中每个时序K1是传输物理下行共享信道PDSCH的时间单元与传输物理上行控制信道PUCCH的时间单元的时间间隔,所述时序K0集合中每个时序k0是传输PDSCH的时间单元与传输物理下行控制信道PDCCH的时间单元的时间间隔;
    所述第一场景是通过PDCCH调度单个PDSCH时隙的场景,所述第二场景是通过PDCCH调度多个PDSCH时隙的场景。
  2. 如权利要求1所述的方法,其中,所述第二场景下的时序K0集合包括至少一个时序K0组,每个所述时序K0组包括多个时序k0,且每个所述时序K0组对应于所述第二场景下的一种时域资源调度方式。
  3. 如权利要求1所述的方法,其中,所述方法还包括:
    从网络设备接收第一配置信息,所述第一配置信息包括指示所述第一场景下的时序K1集合的信息;或
    基于通信协议获取所述第一场景下的所述时序K1集合。
  4. 如权利要求1所述的方法,其中,所述方法还包括:
    从网络设备接收第二配置信息,所述第二配置信息包括指示所述第二场景下的时序K0集合的信息。
  5. 如权利要求1所述的方法,其中,所述方法还包括:
    从网络设备接收第二配置信息,所述第二配置信息包括时域资源分配TDRA表。
  6. 如权利要求5所述的方法,其中,所述基于第一场景下的时序K1集合和第二场景下的时序K0集合,确定所述第二场景下的时序K1集合,包括基于下述公式确定所述第二场景下的时序K1集合:
    Figure PCTCN2021121072-appb-100001
    其中,K1'是所述第二场景下的时序K1集合,K1是所述第一场景下的时序K1集合,k1 i是所述第一场景下的时序K1集合包含的第i个时序k1,k0 r,m是所述TDRA表中第r个包含多个k0的行中所包含的第m个时序k0,k0 r,min是第r个包含多个k0的行中所包含的最小时序k0,L是所述第一场景下的时序K1集合包含的时序k1的个数,R是所述TDRA表中包含多个时序k0行数,M r是第r个包含多个k0的行中包含的时序k0的个数。
  7. 如权利要求1所述的方法,其中,基于所述第二场景下的时序K1集合配置所述HARQ-ACK码本,包括:
    基于所述第二场景下的时序K1集合,确定所述HARQ-ACK码本对应的反馈窗口。
  8. 如权利要求1所述的方法,其中,所述HARQ-ACK码本为Type1码本。
  9. 一种混合自动重传请求应答HARQ-ACK码本解码方法,所述方法被网络设备执行,包括:
    基于第一场景下的时序K1集合和第二场景下的时序K0集合,确定所述第二场景下的时序K1集合;
    从用户设备接收所述HARQ-ACK码本;
    基于所述第二场景下的时序K1集合解码所述HARQ-ACK码本;
    其中,所述时序K1集合中每个时序k1是传输物理下行共享信道PDSCH的时间单元与传输物理上行控制信道PUCCH的时间单元的时间间隔,所述时序K0集合中每个时序k0是传输PDSCH的时间单元与传输物理下行控制信道PDCCH的时间单元的时间间隔;
    所述第一场景是通过PDCCH调度单个PDSCH时隙的场景,所述第二场景是通过PDCCH调度多个PDSCH时隙的场景。
  10. 如权利要求9所述的方法,其中,所述第二场景下的时序K0集合包括至少一个时序K0组,所述时序K0组包括对应于所述第二场景下的一种时域资源调度方式的多个时序k0。
  11. 如权利要求9所述的方法,其中,所述方法还包括:
    基于通信协议获取所述第一场景下的所述时序K1集合。
  12. 如权利要求9所述的方法,其中,所述方法还包括:
    基于时域资源分配TDRA表获取所述第二场景下的时序K0集合。
  13. 如权利要求12所述的方法,其中,所述基于第一场景下的时序K1集合和第二场景下的时序K0集合,确定所述第二场景下的时序K1集合,包括基于下述公式确定所述第二场景下的时序K1集合:
    Figure PCTCN2021121072-appb-100002
    其中,K1'是所述第二场景下的时序K1集合,K1是所述第一场景下的时序K1集合,k1 i是所述第一场景下的时序K1集合包含的第i个时序k1,k0 r,m是所述TDRA表中第r个包含多个k0的行中所包含的第m个时序k0,k0 r,min是第r个包含多个k0的行中所包含的最小时序k0,L是所述第一场景下的时序K1集合包含的时序k1的个数,R是所述TDRA表中包含多个时序k0行数,M r是第r个包含多个k0的行中包含的时序k0的个数。
  14. 如权利要求9所述的方法,其中,所述HARQ-ACK码本为Type1码本。
  15. 一种混合自动重传请求应答HARQ-ACK码本配置装置,应用于用户设备,包括:
    处理模块,基于第一场景下的时序K1集合和第二场景下的时序K0集合,确定所述第二场景下的时序K1集合,并
    基于所述第二场景下的时序K1集合配置所述HARQ-ACK码本;
    其中,所述时序K1集合中每个时序K1是传输物理下行共享信道PDSCH的时间单元与传输物理上行控制信道PUCCH的时间单元的时间间隔,所述时序K0集合中每个时序k0是传输PDSCH的时间单元与传输物理下行控制信道PDCCH的时间单元的时间间隔;
    所述第一场景是通过PDCCH调度单个PDSCH时隙的场景,所述第二场景是通过PDCCH调度多个PDSCH时隙的场景。
  16. 一种混合自动重传请求应答HARQ-ACK码本解码装置,应用于网络设备,包括:
    处理模块,被配置为基于第一场景下的时序K1集合和第二场景下的时序K0集合,确定所述第二场景下的时序K1集合;
    接收模块,被配置为从用户设备接收所述HARQ-ACK码本;
    解码模块,被配置为基于所述第二场景下的时序K1集合解码所述HARQ-ACK码本;
    其中,所述时序K1集合中每个时序k1是传输物理下行共享信道PDSCH的时间单元与传输物理上行控制信道PUCCH的时间单元的时间间隔,所述时序K0集合中每个时序k0是传输PDSCH的时间单元与传输物理下行控制信道PDCCH的时间单元的时间间隔;
    所述第一场景是通过PDCCH调度单个PDSCH时隙的场景,所述第二场景是通过PDCCH调度多个PDSCH时隙的场景。
  17. 一种移动终端,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为执行所述存储器中的可执行指令以实现权利要求1至8中任一项的混合自动重传请求应答HARQ-ACK码本配置方法的步骤。
  18. 一种网络侧设备,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为执行所述存储器中的可执行指令以实现权利要求9至14中任一项的混合自动重传请求应答HARQ-ACK码本解码方法的步骤。
  19. 一种非临时性计算机可读存储介质,其上存储有可执行指令,该可执行指令被处理器执行时实现权利要求1至8中任一项的混合自动重传请求应答HARQ-ACK码本配置方法或者权利要求9至14中任一项的HARQ-ACK码本解码方法的步骤。
PCT/CN2021/121072 2021-09-27 2021-09-27 一种harq-ack码本配置和解码方法、装置、设备及存储介质 WO2023044923A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180003054.1A CN116210194A (zh) 2021-09-27 2021-09-27 一种harq-ack码本配置和解码方法、装置、设备及存储介质
PCT/CN2021/121072 WO2023044923A1 (zh) 2021-09-27 2021-09-27 一种harq-ack码本配置和解码方法、装置、设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/121072 WO2023044923A1 (zh) 2021-09-27 2021-09-27 一种harq-ack码本配置和解码方法、装置、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2023044923A1 true WO2023044923A1 (zh) 2023-03-30

Family

ID=85719924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/121072 WO2023044923A1 (zh) 2021-09-27 2021-09-27 一种harq-ack码本配置和解码方法、装置、设备及存储介质

Country Status (2)

Country Link
CN (1) CN116210194A (zh)
WO (1) WO2023044923A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110392997A (zh) * 2017-09-08 2019-10-29 Lg电子株式会社 在无线通信系统中发送和接收无线信号的方法和设备
CN111865506A (zh) * 2019-04-30 2020-10-30 华为技术有限公司 半静态码本生成的方法和通信装置
CN111919407A (zh) * 2018-04-06 2020-11-10 高通股份有限公司 每时隙具有多个pdsch传输的半静态harq-ack码本

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110392997A (zh) * 2017-09-08 2019-10-29 Lg电子株式会社 在无线通信系统中发送和接收无线信号的方法和设备
CN111919407A (zh) * 2018-04-06 2020-11-10 高通股份有限公司 每时隙具有多个pdsch传输的半静态harq-ack码本
CN111865506A (zh) * 2019-04-30 2020-10-30 华为技术有限公司 半静态码本生成的方法和通信装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "PDSCH/PUSCH enhancements", 3GPP DRAFT; R1-2104462, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210510 - 20210527, 11 May 2021 (2021-05-11), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052006205 *
HUAWEI, HISILICON: "Details for contiguous data transmission with cross-carrier scheduling", 3GPP DRAFT; R1-1907523, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20190513 - 20190517, 13 May 2019 (2019-05-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051728956 *

Also Published As

Publication number Publication date
CN116210194A (zh) 2023-06-02

Similar Documents

Publication Publication Date Title
US11825467B2 (en) Uplink transmission method and apparatus
US11856422B2 (en) Beam failure recovery request sending and response methods and devices, and storage medium
WO2020019217A1 (zh) 传输配置方法及装置
WO2018129936A1 (zh) 信息反馈方法、装置、基站和用户设备
US11974308B2 (en) Method and device for transmitting uplink message
WO2019024087A1 (zh) 获取剩余关键系统信息的公共控制资源集时频资源位置的方法
CN104684106B (zh) 网络连接的方法及装置
WO2019191948A1 (zh) 下行控制信息格式大小的确定方法及装置
WO2020143707A1 (zh) 一种上行传输资源选择方法、终端和存储介质
WO2019192021A1 (zh) 上行资源请求方法及装置
US11722283B2 (en) Information transmission method, device, system, and storage medium
WO2019237360A1 (zh) 确定上下行切换点的方法及装置
JP7109556B2 (ja) トリガ保持方法およびトリガ保持装置
WO2018201439A1 (zh) 随机接入方法及装置、用户设备和计算机可读存储介质
US20220272712A1 (en) Method for transmitting feedback information, user equipment
WO2020019258A1 (zh) 下行控制信息发送方法、接收方法、装置及存储介质
US11665586B2 (en) Method and apparatus for data transmission, electronic device and computer readable storage medium
US12034670B2 (en) Method for feeding back data, method for transmitting data and user equipment
CN108401482B (zh) 数据传输方法和装置
WO2023044923A1 (zh) 一种harq-ack码本配置和解码方法、装置、设备及存储介质
WO2020164041A1 (zh) 随机接入的处理方法及装置
WO2019153236A1 (zh) 将终端与待接入的核心网建立连接的的方法、装置和系统
WO2023050237A1 (zh) 一种harq-ack码本生成和接收方法、装置、设备及存储介质
WO2023133768A1 (zh) 一种信息传输和接收方法、装置、设备及存储介质
WO2023065331A1 (zh) 一种信息传输和接收方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21958041

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21958041

Country of ref document: EP

Kind code of ref document: A1