WO2023065331A1 - 一种信息传输和接收方法、装置、设备及存储介质 - Google Patents

一种信息传输和接收方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2023065331A1
WO2023065331A1 PCT/CN2021/125827 CN2021125827W WO2023065331A1 WO 2023065331 A1 WO2023065331 A1 WO 2023065331A1 CN 2021125827 W CN2021125827 W CN 2021125827W WO 2023065331 A1 WO2023065331 A1 WO 2023065331A1
Authority
WO
WIPO (PCT)
Prior art keywords
dci
slot
time slots
transmitting
pdsch
Prior art date
Application number
PCT/CN2021/125827
Other languages
English (en)
French (fr)
Inventor
付婷
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2021/125827 priority Critical patent/WO2023065331A1/zh
Priority to CN202180003319.8A priority patent/CN116368870A/zh
Publication of WO2023065331A1 publication Critical patent/WO2023065331A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the technical field of wireless communication, and in particular, to an information transmission and reception method, device, device, and storage medium.
  • the minimum interval k0_min between the time slots for transmitting downlink control information (DCI) and the time slots for transmitting DCI-scheduled physical downlink shared channel (PDSCH) is introduced limits.
  • a multi-slot Physical Downlink Control Channel (PDCCH) monitoring scheme is introduced, in which the multi-slot PDCCH monitoring capability defines the ability of the user equipment to monitor the PDCCH within X time slots. Within the X time slots, there are Y consecutive time slots that can be used to transmit the PDCCH.
  • PDCCH Physical Downlink Control Channel
  • the present disclosure provides an information transmission and reception method, device, device and storage medium.
  • an information transmission method the method being executed by a network device, including:
  • downlink control information DCI is generated, wherein the multi-slot PDCCH monitoring capability is represented in a monitoring unit including X time slots, and there are Y consecutive time slots for transmitting PDCCH, the k0 value indicated by the DCI is less than the minimum slot interval, and the DCI indicates that the time slots for sending the physical downlink shared channel PDSCH are included in the Y consecutive time slots;
  • the k0 is the time slot interval between the time slot for transmitting the DCI and the time slot for transmitting the PDSCH scheduled by the DCI
  • the minimum slot interval is the time slot for transmitting the DCI and the time slot for transmitting the PDSCH
  • the minimum slot interval between the time slots, X and Y are both positive integers greater than 1, and X ⁇ Y.
  • the generating downlink control information DCI in response to the network device configuring a multi-slot PDCCH monitoring capability for the user equipment includes:
  • the DCI indicates to send the The time slots of the PDSCH are included in the N time slots;
  • N is a positive integer greater than or equal to 1, and N ⁇ Y.
  • the DCI indicates that the time slots for sending the multiple PDSCHs are all included in the Y consecutive time slots.
  • the DCI indicates that the time slots for sending the multiple PDSCHs are all included in the N time slots.
  • the minimum slot interval is determined based on a communication protocol and/or configured through network device signaling.
  • the method also includes:
  • the PDSCH is transmitted based on the DCI.
  • the multi-slot PDCCH monitoring capability means that in a monitoring unit including X time slots, there are Y consecutive time slots for transmitting PDCCHs.
  • the multi-slot PDCCH monitoring capability means that in a monitoring unit including M time slots, there are Y consecutive time slots for transmitting PDCCH;
  • the M is a positive integer greater than 1, and M>X.
  • an information receiving method the method being executed by a user equipment, including:
  • the network device Responsive to the network device configuring the multi-slot physical downlink control channel PDCCH monitoring capability for the user equipment, receiving downlink control information DCI from the network device, wherein the multi-slot PDCCH monitoring capability indicates that a multi-slot PDCCH monitoring capability includes X time slots In the listening unit of , there are Y consecutive time slots for transmitting the PDCCH, the value of k0 indicated by the DCI is smaller than the minimum slot interval, and the time slot for sending the physical downlink shared channel PDSCH indicated by the DCI is included in the In Y consecutive time slots;
  • the k0 is the time slot interval between the time slot for transmitting the DCI and the time slot for transmitting the PDSCH scheduled by the DCI
  • the minimum slot interval is the time slot for transmitting the DCI and the time slot for transmitting the PDSCH
  • the minimum slot interval between the time slots, X and Y are both positive integers greater than 1, and X ⁇ Y.
  • the DCI indicates that the time slots for sending the PDSCH are included in the N time slots
  • N is a positive integer greater than or equal to 1, and N ⁇ Y.
  • the DCI indicates that the time slots for sending the multiple PDSCHs are all included in the Y consecutive time slots.
  • the DCI indicates that the time slots for sending the multiple PDSCHs are all included in the N time slots.
  • the minimum slot interval is determined based on a communication protocol and/or configured through network device signaling.
  • the method also includes:
  • the PDSCH is received based on the DCI.
  • the multi-slot PDCCH monitoring capability means that in a monitoring unit including X time slots, there are Y consecutive time slots for transmitting PDCCHs.
  • the multi-slot PDCCH monitoring capability means that in a monitoring unit including M time slots, there are Y consecutive time slots for transmitting PDCCH;
  • the M is a positive integer greater than 1, and M>X.
  • an information transmission device applied to network equipment including:
  • the processing module is configured to generate downlink control information DCI in response to the network device configuring a multi-slot physical downlink control channel PDCCH monitoring capability for the user equipment, wherein the multi-slot PDCCH monitoring capability represents In the monitoring unit, there are Y consecutive time slots for transmitting PDCCH, the k0 value indicated by the DCI is smaller than the minimum slot interval, and the DCI indicates that the time slots for sending the physical downlink shared channel PDSCH are included in the Y consecutive time slots in the time slot;
  • a sending module configured to send the DCI to the user equipment
  • the k0 is the time slot interval between the time slot for transmitting the DCI and the time slot for transmitting the PDSCH scheduled by the DCI
  • the minimum slot interval is the time slot for transmitting the DCI and the time slot for transmitting the PDSCH
  • the minimum slot interval between the time slots, X and Y are both positive integers greater than 1, and X ⁇ Y.
  • an information receiving apparatus applied to user equipment including:
  • the receiving module is configured to receive downlink control information DCI from the network device in response to the network device configuring the multi-slot physical downlink control channel PDCCH monitoring capability for the user equipment, wherein the multi-slot PDCCH monitoring capability is represented in In a monitoring unit including X time slots, there are Y consecutive time slots used to transmit the PDCCH, the k0 value indicated by the DCI is smaller than the minimum slot interval, and the DCI indicates the time period for sending the physical downlink shared channel PDSCH The time slot is included in the Y consecutive time slots;
  • the k0 is the time slot interval between the time slot for transmitting the DCI and the time slot for transmitting the PDSCH scheduled by the DCI
  • the minimum slot interval is the time slot for transmitting the DCI and the time slot for transmitting the PDSCH
  • the minimum slot interval between the time slots, X and Y are both positive integers greater than 1, and X ⁇ Y.
  • a network side device including:
  • memory for storing processor-executable instructions
  • the processor is configured to execute the executable instructions in the memory to implement the steps of the above information transmission method.
  • a mobile terminal including:
  • memory for storing processor-executable instructions
  • the processor is configured to execute the executable instructions in the memory to implement the steps of the above information receiving method.
  • a non-transitory computer-readable storage medium on which executable instructions are stored.
  • the executable instructions are executed by a processor, the steps of the above-mentioned information transmission method or the above-mentioned information are implemented. The steps of the receive method.
  • the DCI indicates that the time slots for sending the PDSCH are included in Y consecutive time slots, so that when the scheduled PDSCHs are in the Y consecutive time slots, the user equipment can receive the PDSCH while receiving the PDCCH. Therefore, the purpose of power saving can be achieved in the multi-slot PDCCH monitoring scheme.
  • Fig. 1 is a flowchart of an information transmission method shown according to an exemplary embodiment
  • Fig. 2 is a flowchart of an information transmission method according to an exemplary embodiment
  • Fig. 3 is a flowchart of an information transmission method according to an exemplary embodiment
  • Fig. 4 is a flow chart of an information receiving method according to an exemplary embodiment
  • Fig. 5 is a flowchart of a method for receiving information according to an exemplary embodiment
  • Fig. 6 is a block diagram of an information transmission device according to an exemplary embodiment
  • Fig. 7 is a block diagram of an information receiving device according to an exemplary embodiment
  • Fig. 8 is a structural diagram of an information receiving device according to an exemplary embodiment
  • Fig. 9 is a structural diagram of an information transmission device according to an exemplary embodiment.
  • an embodiment of the present disclosure may include a plurality of steps; these steps are numbered for ease of description; however, these numbers are not intended to limit the execution time slots and execution order between the steps; these steps may It is implemented in any order, which is not limited by the embodiments of the present disclosure.
  • the user equipment after receiving the PDCCH, the user equipment does not need to try to receive the PDSCH, but can temporarily enter the sleep state , not wake up until k0_min time slots pass after the PDCCH is received. At this time, the demodulation of the PDCCH has been completed, and the user equipment only needs to receive the PDSCH on the corresponding time-frequency resource according to the instruction of the DCI. That is, the UE does not expect k_0 of the scheduled PDSCH to be smaller than k0_min.
  • represents the parameter value corresponding to the subcarrier spacing of the BWP before the BWP switching
  • ⁇ ′ represents the parameter value corresponding to the subcarrier spacing of the BWP after the BWP switching.
  • One is a multi-slot group (X/Y) based on a fixed mode.
  • a time slot group contains X time slots fixedly. Each time slot group is continuous and does not overlap.
  • Y consecutive time slots can be Used to monitor PDCCH.
  • One is multi-slot group spanning (X/Y) based on spanning mode. X is the minimum interval between two adjacent spans, in units of time slots. In one span, only Y consecutive time slots/symbols can monitor the PDCCH.
  • FIG. 1 is a flowchart of an information transmission method according to an exemplary embodiment. As shown in Fig. 1, the method includes:
  • Step 101 in response to the network device configuring the multi-slot physical downlink control channel PDCCH monitoring capability for the user equipment, generate downlink control information DCI, wherein the multi-slot PDCCH monitoring capability is represented in a monitoring unit including X time slots , there are Y consecutive time slots used to transmit PDCCH, the k0 value indicated by the DCI is smaller than the minimum slot interval, and the time slot indicated by the DCI for sending the physical downlink shared channel PDSCH is included in the Y consecutive time slots ;
  • Step 102 sending the DCI to the user equipment
  • the k0 is the time slot interval between the time slot for transmitting the DCI and the time slot for transmitting the PDSCH scheduled by the DCI
  • the minimum slot interval is the time slot for transmitting the DCI and the time slot for transmitting the PDSCH
  • the minimum slot interval between the time slots, X and Y are both positive integers greater than 1, and X ⁇ Y.
  • the network device configures the multi-slot PDCCH monitoring capability for the user equipment, and the multi-slot PDCCH monitoring capability means that in a monitoring unit including X time slots, there are Y consecutive time slots for transmitting PDCCHs.
  • the network device In response to the configuration, the network device generates DCI and sends the DCI to the user equipment.
  • the k0 value indicated by the DCI is smaller than the minimum slot interval, and the DCI indicates that the time slots for sending the PDSCH are included in Y consecutive time slots.
  • the network device configures the multi-slot PDCCH monitoring capability for the user equipment, the multi-slot PDCCH monitoring capability means that in a monitoring unit including X time slots, there are Y consecutive time slots for transmitting PDCCH, and Search spaces are allocated to N slots among Y consecutive slots.
  • the network device generates DCI and sends the DCI to the user equipment.
  • the k0 value indicated by the DCI is smaller than the minimum slot interval, and the DCI indicates that the time slots for sending the PDSCH are included in the N time slots.
  • the minimum slot interval is determined based on a communication protocol and/or configured through network device signaling.
  • the user terminal needs to keep awake in the Y consecutive time slots to ensure monitoring of the PDCCH.
  • the DCI indicates that the time slots for sending the PDSCH are included in Y consecutive time slots, so that when the scheduled PDSCHs are in the Y consecutive time slots, the user equipment can receive the PDSCH while receiving the PDCCH. Therefore, the purpose of power saving can be achieved in the multi-slot PDCCH monitoring scheme.
  • FIG. 2 is a flowchart of an information transmission method according to an exemplary embodiment. As shown in Fig. 2, the method includes:
  • Step 201 generating the DCI in response to the network device configuring multi-slot PDCCH monitoring capability for the user equipment, and in response to configuring search spaces for N time slots in the Y consecutive time slots, wherein the The multi-slot PDCCH monitoring capability means that in a monitoring unit including X time slots, there are Y consecutive time slots for transmitting PDCCH, the k0 value indicated by the DCI is less than the minimum slot interval, and the DCI indicates that the transmission The time slot of the PDSCH is included in the N time slots;
  • Step 202 sending the DCI to the user equipment
  • the k0 is the time slot interval between the time slot for transmitting the DCI and the time slot for transmitting the PDSCH scheduled by the DCI
  • the minimum slot interval is the time slot for transmitting the DCI and the time slot for transmitting the PDSCH
  • the minimum slot interval between the time slots, X and Y are both positive integers greater than 1
  • N is a positive integer greater than or equal to 1
  • the network device configures the multi-slot PDCCH monitoring capability for the user equipment, the multi-slot PDCCH monitoring capability means that in a monitoring unit including X time slots, there are Y consecutive time slots for transmitting PDCCH, and Search spaces are allocated to N slots among Y consecutive slots.
  • the network device generates DCI and sends the DCI to the user equipment.
  • the k0 value indicated by the DCI is smaller than the minimum slot interval, and the DCI indicates that the time slots for sending the PDSCH are included in the N time slots.
  • the network device generates DCI and sends the DCI to the user equipment.
  • the k0 value indicated by the DCI is smaller than the minimum slot interval, and the DCI indicates that the time slot for sending the PDSCH is included in the above two time slots configured with the search space.
  • the user terminal needs to keep awake in the Y consecutive time slots to ensure monitoring of the PDCCH.
  • the DCI indicates that the time slots for sending the PDSCH are included in Y consecutive time slots, so that when the scheduled PDSCHs are in the Y consecutive time slots, the user equipment can receive the PDSCH while receiving the PDCCH. Therefore, the purpose of power saving can be achieved in the multi-slot PDCCH monitoring scheme.
  • An embodiment of the present disclosure provides an information transmission method, which is executed by a network device.
  • the method may be executed independently, or may be executed in combination with any other embodiment of the embodiments of the present disclosure.
  • the method includes:
  • downlink control information DCI is generated, wherein the multi-slot PDCCH monitoring capability is represented in a monitoring unit including X time slots, and there are Y consecutive time slots used to transmit PDCCH, in the scenario where the DCI schedules multiple PDSCHs, the k0 value indicated by the DCI is less than the minimum slot interval, and the DCI indicates that the time slots for sending the multiple PDSCHs are equal to included in said Y consecutive time slots;
  • the k0 is the time slot interval between the time slot for transmitting the DCI and the time slot for transmitting the PDSCH scheduled by the DCI
  • the minimum slot interval is the time slot for transmitting the DCI and the time slot for transmitting the PDSCH
  • the minimum slot interval between the time slots, X and Y are both positive integers greater than 1, and X ⁇ Y.
  • the network device configures the multi-slot PDCCH monitoring capability for the user equipment, and the multi-slot PDCCH monitoring capability means that in a monitoring unit including X time slots, there are Y consecutive time slots for transmitting PDCCHs.
  • the network device In response to the configuration, the network device generates DCI and sends the DCI to the user equipment.
  • the network device schedules multiple PDSCHs in the DCI, the k0 value indicated by the DCI is smaller than the minimum slot interval, and the DCI indicates that the time slots for sending multiple PDSCHs are all included in the Y consecutive time slots.
  • the network device configures the multi-slot PDCCH monitoring capability for the user equipment, the multi-slot PDCCH monitoring capability means that in a monitoring unit including X time slots, there are Y consecutive time slots for transmitting PDCCH, and Search spaces are allocated to N slots among Y consecutive slots.
  • the network device generates DCI and sends the DCI to the user equipment.
  • the network device schedules multiple PDSCHs in the DCI, the k0 value indicated by the DCI is smaller than the minimum slot interval, and the DCI indicates that the time slots of the multiple PDSCHs are all included in the above N time slots.
  • the minimum slot interval is determined based on a communication protocol and/or configured through network device signaling.
  • the user terminal needs to keep awake in the Y consecutive time slots to ensure monitoring of the PDCCH.
  • the DCI indicates that the time slots for sending the PDSCH are included in Y consecutive time slots, so that when the scheduled PDSCHs are in the Y consecutive time slots, the user equipment can receive the PDSCH while receiving the PDCCH. Therefore, the purpose of power saving can be achieved in the multi-slot PDCCH monitoring scheme.
  • An embodiment of the present disclosure provides an information transmission method, which is executed by a network device.
  • the method may be executed independently, or may be executed in combination with any other embodiment of the embodiments of the present disclosure.
  • the method includes:
  • the PDCCH monitoring capability means that in a monitoring unit including X time slots, there are Y consecutive time slots for transmitting PDCCH, and in the scenario where the DCI schedules multiple PDSCHs, the k0 value indicated by the DCI is less than the minimum Slot interval, and the DCI indicates that the time slots for sending the multiple PDSCHs are included in the N time slots;
  • the k0 is the time slot interval between the time slot for transmitting the DCI and the time slot for transmitting the PDSCH scheduled by the DCI
  • the minimum slot interval is the time slot for transmitting the DCI and the time slot for transmitting the PDSCH
  • the minimum slot interval between the time slots, X, Y and N are all positive integers greater than 1, and X ⁇ Y, N ⁇ Y.
  • the network device configures the multi-slot PDCCH monitoring capability for the user equipment, the multi-slot PDCCH monitoring capability means that in a monitoring unit including X time slots, there are Y consecutive time slots for transmitting PDCCH, and Search spaces are allocated to N slots among Y consecutive slots.
  • the network device generates DCI and sends the DCI to the user equipment.
  • the network device schedules multiple PDSCHs in the DCI, the k0 value indicated by the DCI is smaller than the minimum slot interval, and the DCI indicates that the time slots for sending multiple PDSCHs are all included in the N time slots.
  • the network device generates DCI and sends the DCI to the user equipment.
  • the network device schedules 2 PDSCHs in the DCI, the k0 value indicated by the DCI is smaller than the minimum slot interval, and the DCI indicates that the time slots for sending the 2 PDSCHs are included in the above 2 time slots configured with the search space.
  • the user terminal needs to keep awake in the Y consecutive time slots to ensure monitoring of the PDCCH.
  • the DCI indicates that the time slots for sending the PDSCH are included in Y consecutive time slots, so that when the scheduled PDSCHs are in the Y consecutive time slots, the user equipment can receive the PDSCH while receiving the PDCCH. Therefore, the purpose of power saving can be achieved in the multi-slot PDCCH monitoring scheme.
  • An embodiment of the present disclosure provides an information transmission method, which is executed by a network device.
  • the method may be executed independently, or may be executed in combination with any other embodiment of the embodiments of the present disclosure.
  • the method includes:
  • downlink control information DCI is generated, wherein the multi-slot PDCCH monitoring capability is represented in a monitoring unit including X time slots, and there are Y consecutive time slots for transmitting PDCCH, the k0 value indicated by the DCI is less than the minimum slot interval, and the DCI indicates that the time slots for sending the physical downlink shared channel PDSCH are included in the Y consecutive time slots;
  • the k0 is the time slot interval between the time slot for transmitting the DCI and the time slot for transmitting the PDSCH scheduled by the DCI
  • the minimum slot interval is the time slot for transmitting the DCI and the time slot for transmitting the PDSCH
  • the minimum slot interval between the time slots, and the minimum slot interval is determined based on the communication protocol and/or configured through network device signaling, the X and Y are both positive integers greater than 1, and X ⁇ Y.
  • the network device configures the multi-slot PDCCH monitoring capability for the user equipment, and the multi-slot PDCCH monitoring capability means that in a monitoring unit including X time slots, there are Y consecutive time slots for transmitting PDCCHs.
  • the network device In response to the configuration, the network device generates DCI and sends the DCI to the user equipment.
  • the k0 value indicated by the DCI is smaller than the minimum slot interval, and the DCI indicates that the time slots for sending the PDSCH are included in Y consecutive time slots.
  • the minimum slot interval is determined based on the communication protocol.
  • the network device configures the multi-slot PDCCH monitoring capability for the user equipment, and the multi-slot PDCCH monitoring capability means that in a monitoring unit including X time slots, there are Y consecutive time slots for transmitting PDCCHs.
  • the network device In response to the configuration, the network device generates DCI and sends the DCI to the user equipment.
  • the k0 value indicated by the DCI is smaller than the minimum slot interval, and the DCI indicates that the time slots for sending the PDSCH are included in Y consecutive time slots.
  • the minimum slot interval is configured through network device signaling.
  • the network device configures the multi-slot PDCCH monitoring capability for the user equipment, and the multi-slot PDCCH monitoring capability means that in a monitoring unit including X time slots, there are Y consecutive time slots for transmitting PDCCHs.
  • the network device In response to the configuration, the network device generates DCI and sends the DCI to the user equipment.
  • the k0 value indicated by the DCI is smaller than the minimum slot interval, and the DCI indicates that the time slots for sending the PDSCH are included in Y consecutive time slots.
  • the minimum slot interval is based on the communication protocol and the signaling configuration of the network equipment.
  • the network device configures the multi-slot PDCCH monitoring capability for the user equipment, and the multi-slot PDCCH monitoring capability means that in a monitoring unit including X time slots, there are Y consecutive time slots for transmitting PDCCHs.
  • the network device generates DCI and sends the DCI to the user equipment.
  • the k0 value indicated by the DCI is smaller than the minimum slot interval, and the DCI indicates that the time slots for sending the PDSCH are included in Y consecutive time slots.
  • BWP handover occurs, therefore, the minimum slot interval is obtained based on the following formula:
  • k0_min is configured based on the communication protocol
  • ⁇ and ⁇ ′ are configured through network device signaling.
  • the user terminal needs to keep awake in the Y consecutive time slots to ensure monitoring of the PDCCH.
  • the DCI indicates that the time slots for sending the PDSCH are included in Y consecutive time slots, so that when the scheduled PDSCH is in the Y consecutive time slots, the user equipment can receive the PDSCH while receiving the PDCCH. Therefore, the purpose of power saving can be achieved in the multi-slot PDCCH monitoring scheme.
  • FIG. 3 is a flowchart of an information transmission method according to an exemplary embodiment. As shown in Fig. 3, the method includes:
  • Step 301 in response to the network device configuring the multi-slot physical downlink control channel PDCCH monitoring capability for the user equipment, generate downlink control information DCI, wherein the multi-slot PDCCH monitoring capability is represented in a monitoring unit including X time slots , there are Y consecutive time slots used to transmit PDCCH, the k0 value indicated by the DCI is smaller than the minimum slot interval, and the time slot indicated by the DCI for sending the physical downlink shared channel PDSCH is included in the Y consecutive time slots ;
  • Step 302 sending the DCI to the user equipment
  • Step 303 based on the DCI, sending the PDSCH;
  • the k0 is the time slot interval between the time slot for transmitting the DCI and the time slot for transmitting the PDSCH scheduled by the DCI
  • the minimum slot interval is the time slot for transmitting the DCI and the time slot for transmitting the PDSCH
  • the minimum slot interval between the time slots, X and Y are both positive integers greater than 1, and X ⁇ Y.
  • the network device configures the multi-slot PDCCH monitoring capability for the user equipment, and the multi-slot PDCCH monitoring capability means that in a monitoring unit including X time slots, there are Y consecutive time slots for transmitting PDCCHs.
  • the network device In response to the configuration, the network device generates DCI and sends the DCI to the user equipment.
  • the k0 value indicated by the DCI is smaller than the minimum slot interval, and the DCI indicates that the time slots for sending the PDSCH are included in Y consecutive time slots.
  • the network device sends the PDSCH in the time slot for sending the PDSCH indicated in the DCI.
  • the network device configures the multi-slot PDCCH monitoring capability for the user equipment, the multi-slot PDCCH monitoring capability means that in a monitoring unit including X time slots, there are Y consecutive time slots for transmitting PDCCH, and Search spaces are allocated to N slots among Y consecutive slots.
  • the network device generates DCI and sends the DCI to the user equipment.
  • the k0 value indicated by the DCI is smaller than the minimum slot interval, and the DCI indicates that the time slots for sending the PDSCH are included in the N time slots.
  • the network device sends the PDSCH in the time slot for sending the PDSCH indicated in the DCI.
  • the network device configures the multi-slot PDCCH monitoring capability for the user equipment, and the multi-slot PDCCH monitoring capability means that in a monitoring unit including X time slots, there are Y consecutive time slots for transmitting PDCCH.
  • the network device generates DCI and sends the DCI to the user equipment.
  • the network device schedules multiple PDSCHs in the DCI, the k0 value indicated by the DCI is smaller than the minimum slot interval, and the DCI indicates that the time slots for sending multiple PDSCHs are included in Y consecutive time slots.
  • the network device sends the multiple PDSCHs respectively in the time slots for sending the multiple PDSCHs indicated in the DCI.
  • the network device configures the multi-slot PDCCH monitoring capability for the user equipment, the multi-slot PDCCH monitoring capability means that in a monitoring unit including X time slots, there are Y consecutive time slots for transmitting PDCCH, and Search spaces are allocated to N slots among Y consecutive slots.
  • the network device generates DCI and sends the DCI to the user equipment.
  • the network device schedules multiple PDSCHs in the DCI, the k0 value indicated by the DCI is smaller than the minimum slot interval, and the DCI indicates that the time slots for sending PDSCHs are included in N time slots.
  • the network device sends the multiple PDSCHs in the time slot for sending the multiple PDSCHs indicated in the DCI.
  • the user terminal needs to keep awake in the Y consecutive time slots to ensure monitoring of the PDCCH.
  • the DCI indicates that the time slots for sending the PDSCH are included in Y consecutive time slots, so that when the scheduled PDSCHs are in the Y consecutive time slots, the user equipment can receive the PDSCH while receiving the PDCCH. Therefore, the purpose of power saving can be achieved in the multi-slot PDCCH monitoring scheme.
  • An embodiment of the present disclosure provides an information transmission method, which is executed by a network device.
  • the method may be executed independently, or may be executed in combination with any other embodiment of the embodiments of the present disclosure.
  • the method includes:
  • downlink control information DCI is generated, wherein the multi-slot PDCCH monitoring capability is represented in a monitoring unit including X time slots, and there are Y consecutive time slots for transmitting PDCCH, the k0 value indicated by the DCI is less than the minimum slot interval, and the DCI indicates that the time slots for sending the physical downlink shared channel PDSCH are included in the Y consecutive time slots;
  • the k0 is the time slot interval between the time slot for transmitting the DCI and the time slot for transmitting the PDSCH scheduled by the DCI
  • the minimum slot interval is the time slot for transmitting the DCI and the time slot for transmitting the PDSCH
  • the minimum slot interval between the time slots, X and Y are both positive integers greater than 1, and X ⁇ Y.
  • the network device configures the multi-slot PDCCH monitoring capability for the user equipment, and the multi-slot PDCCH monitoring capability means that in a monitoring unit including X time slots, there are Y consecutive time slots for transmitting PDCCHs.
  • the multi-slot PDCCH monitoring capability configured by the network device for the user equipment adopts the multi-slot group based on the aforementioned fixed mode.
  • the network device In response to the configuration, the network device generates DCI and sends the DCI to the user equipment.
  • the k0 value indicated by the DCI is smaller than the minimum slot interval, and the DCI indicates that the time slots for sending the PDSCH are included in Y consecutive time slots.
  • the network device configures the multi-slot PDCCH monitoring capability for the user equipment, and the multi-slot PDCCH monitoring capability means that in a monitoring unit including X time slots, there are Y consecutive time slots for transmitting PDCCHs.
  • the multi-slot PDCCH monitoring capability configured by the network device for the user equipment adopts the multi-slot group based on the aforementioned fixed mode.
  • N slots in the Y consecutive slots are configured with search spaces.
  • the network device generates DCI and sends the DCI to the user equipment.
  • the k0 value indicated by the DCI is smaller than the minimum slot interval, and the DCI indicates that the time slots for sending the PDSCH are included in the N time slots.
  • the user terminal needs to keep awake in the Y consecutive time slots to ensure monitoring of the PDCCH.
  • the DCI indicates that the time slots for sending the PDSCH are included in Y consecutive time slots, so that when the scheduled PDSCHs are in the Y consecutive time slots, the user equipment can receive the PDSCH while receiving the PDCCH. Therefore, the purpose of power saving can be achieved in the multi-slot PDCCH monitoring scheme.
  • An embodiment of the present disclosure provides an information transmission method, which is executed by a network device.
  • the method may be executed independently, or may be executed in combination with any other embodiment of the embodiments of the present disclosure.
  • the method includes:
  • downlink control information DCI is generated, wherein the multi-slot PDCCH monitoring capability is represented in a monitoring unit including X time slots, and the The monitoring unit includes M time slots, M>X, there are Y consecutive time slots for transmitting PDCCH, the k0 value indicated by the DCI is smaller than the minimum slot interval, and the DCI indicates the time when the physical downlink shared channel PDSCH is sent The slot is included in the Y consecutive time slots;
  • the k0 is the time slot interval between the time slot for transmitting the DCI and the time slot for transmitting the PDSCH scheduled by the DCI
  • the minimum slot interval is the time slot for transmitting the DCI and the time slot for transmitting the PDSCH
  • the minimum slot interval between the time slots, the X, Y and M are all positive integers greater than 1, and X ⁇ Y, M>X.
  • the network device configures a multi-slot PDCCH monitoring capability for the user equipment, and the multi-slot PDCCH monitoring capability means that in a monitoring unit including M time slots, there are Y consecutive time slots for transmitting PDCCHs.
  • the multi-slot PDCCH monitoring capability configured by the network device for the user equipment adopts the multi-slot group span based on the aforementioned span mode.
  • the network device In response to the configuration, the network device generates DCI and sends the DCI to the user equipment.
  • the k0 value indicated by the DCI is smaller than the minimum slot interval, and the DCI indicates that the time slots for sending PDSCH are included in Y consecutive time slots.
  • the network device configures a multi-slot PDCCH monitoring capability for the user equipment, and the multi-slot PDCCH monitoring capability means that in a monitoring unit including M time slots, there are Y consecutive time slots for transmitting PDCCHs.
  • the multi-slot PDCCH monitoring capability configured by the network device for the user equipment adopts the multi-slot group span based on the span mode. And wherein, N slots in the Y consecutive slots are configured with search spaces.
  • the network device generates DCI and sends the DCI to the user equipment.
  • the k0 value indicated by the DCI is smaller than the minimum slot interval, and the DCI indicates that the time slots for sending the PDSCH are included in the N time slots.
  • the user terminal needs to keep awake in the Y consecutive time slots to ensure monitoring of the PDCCH.
  • the DCI indicates that the time slots for sending the PDSCH are included in Y consecutive time slots, so that when the scheduled PDSCHs are in the Y consecutive time slots, the user equipment can receive the PDSCH while receiving the PDCCH. Therefore, the purpose of power saving can be achieved in the multi-slot PDCCH monitoring scheme.
  • FIG. 4 is a flowchart of a method for receiving information according to an exemplary embodiment. As shown in Fig. 4, the method includes:
  • Step 401 in response to the network device configuring the multi-slot physical downlink control channel PDCCH monitoring capability for the user equipment, receive the downlink control information DCI from the network device, wherein the multi-slot PDCCH monitoring capability is represented in one including X Among the monitoring units of time slots, there are Y consecutive time slots for transmitting the PDCCH, the k0 value indicated by the DCI is smaller than the minimum slot interval, and the time slot for sending the physical downlink shared channel PDSCH indicated by the DCI includes In said Y consecutive time slots;
  • the k0 is the time slot interval between the time slot for transmitting the DCI and the time slot for transmitting the PDSCH scheduled by the DCI
  • the minimum slot interval is the time slot for transmitting the DCI and the time slot for transmitting the PDSCH
  • the minimum slot interval between the time slots, X and Y are both positive integers greater than 1, and X ⁇ Y.
  • the network device configures the multi-slot PDCCH monitoring capability for the user equipment, and the multi-slot PDCCH monitoring capability means that in a monitoring unit including X time slots, there are Y consecutive time slots for transmitting PDCCHs.
  • the user equipment receives DCI from the network device, the k0 value indicated by the DCI is smaller than the minimum slot interval, and the DCI indicates that the time slots for sending the PDSCH are included in Y consecutive time slots.
  • the network device configures the multi-slot PDCCH monitoring capability for the user equipment, the multi-slot PDCCH monitoring capability means that in a monitoring unit including X time slots, there are Y consecutive time slots for transmitting PDCCH, and Search spaces are allocated to N slots among Y consecutive slots.
  • the user equipment receives DCI from the network device, the k0 value indicated by the DCI is smaller than the minimum slot interval, and the DCI indicates that the time slot for sending the PDSCH is included in the above N time slots.
  • the minimum slot interval is determined based on a communication protocol and/or configured through network device signaling.
  • the user terminal needs to keep awake in the Y consecutive time slots to ensure monitoring of the PDCCH.
  • the DCI indicates that the time slots for sending the PDSCH are included in Y consecutive time slots, so that when the scheduled PDSCHs are in the Y consecutive time slots, the user equipment can receive the PDSCH while receiving the PDCCH. Therefore, the purpose of power saving can be achieved in the multi-slot PDCCH monitoring scheme.
  • An embodiment of the present disclosure provides an information receiving method, which is executed by a user equipment.
  • the method may be executed independently, or may be executed in combination with any other embodiment of the embodiments of the present disclosure.
  • the method includes:
  • the multi-slot PDCCH monitoring capability indicates that a multi-slot PDCCH monitoring capability includes X time slots
  • the k0 value indicated by the DCI is less than the minimum A small slot interval, and the DCI indicates that the time slot for sending the PDSCH is included in the N time slots;
  • the k0 is the time slot interval between the time slot for transmitting the DCI and the time slot for transmitting the PDSCH scheduled by the DCI
  • the minimum slot interval is the time slot for transmitting the DCI and the time slot for transmitting the PDSCH
  • the minimum slot interval between the time slots, X and Y are both positive integers greater than 1
  • N is a positive integer greater than or equal to 1
  • the network device configures the multi-slot PDCCH monitoring capability for the user equipment, the multi-slot PDCCH monitoring capability means that in a monitoring unit including X time slots, there are Y consecutive time slots for transmitting PDCCH, and Search spaces are allocated to N slots among Y consecutive slots.
  • the user equipment receives DCI from the network device, the k0 value indicated by the DCI is smaller than the minimum slot interval, and the DCI indicates that the time slot for sending the PDSCH is included in the above N time slots.
  • the user terminal needs to keep awake in the Y consecutive time slots to ensure monitoring of the PDCCH.
  • the DCI indicates that the time slots for sending the PDSCH are included in Y consecutive time slots, so that when the scheduled PDSCHs are in the Y consecutive time slots, the user equipment can receive the PDSCH while receiving the PDCCH. Therefore, the purpose of power saving can be achieved in the multi-slot PDCCH listening scheme.
  • An embodiment of the present disclosure provides an information receiving method, which is executed by a user equipment.
  • the method may be executed independently, or may be executed in combination with any other embodiment of the embodiments of the present disclosure.
  • the method includes:
  • the network device Responsive to the network device configuring the multi-slot physical downlink control channel PDCCH monitoring capability for the user equipment, receiving downlink control information DCI from the network device, wherein the multi-slot PDCCH monitoring capability indicates that a multi-slot PDCCH monitoring capability includes X time slots In the listening unit of , there are Y consecutive time slots for transmitting the PDCCH.
  • the k0 value indicated by the DCI is smaller than the minimum slot interval, and the DCI indicates that the transmission The time slots of the multiple PDSCHs are all included in the Y consecutive time slots;
  • the k0 is the time slot interval between the time slot for transmitting the DCI and the time slot for transmitting the PDSCH scheduled by the DCI
  • the minimum slot interval is the time slot for transmitting the DCI and the time slot for transmitting the PDSCH
  • the minimum slot interval between the time slots, X and Y are both positive integers greater than 1, and X ⁇ Y.
  • the network device configures the multi-slot PDCCH monitoring capability for the user equipment, and the multi-slot PDCCH monitoring capability means that in a monitoring unit including X time slots, there are Y consecutive time slots for transmitting PDCCHs.
  • the user equipment receives DCI from the network device, and the DCI schedules multiple PDSCHs.
  • the k0 value indicated by the DCI is smaller than the minimum slot interval, and the DCI indicates that the time slots for sending multiple PDSCHs are evenly spaced. Contained in Y consecutive time slots.
  • the network device configures the multi-slot PDCCH monitoring capability for the user equipment, the multi-slot PDCCH monitoring capability means that in a monitoring unit including X time slots, there are Y consecutive time slots for transmitting PDCCH, and Search spaces are allocated to N slots among Y consecutive slots.
  • the user equipment receives DCI from the network device, and the DCI schedules multiple PDSCHs.
  • the k0 value indicated by the DCI is smaller than the minimum slot interval, and the DCI indicates that the time slots for sending multiple PDSCHs are included in Y consecutive in time slot.
  • the minimum slot interval is determined based on a communication protocol and/or configured through network device signaling.
  • the user terminal needs to keep awake in the Y consecutive time slots to ensure monitoring of the PDCCH.
  • the DCI indicates that the time slots for sending the PDSCH are included in Y consecutive time slots, so that when the scheduled PDSCHs are in the Y consecutive time slots, the user equipment can receive the PDSCH while receiving the PDCCH. Therefore, the purpose of power saving can be achieved in the multi-slot PDCCH monitoring scheme.
  • An embodiment of the present disclosure provides an information receiving method, which is executed by a user equipment.
  • the method may be executed independently, or may be executed in combination with any other embodiment of the embodiments of the present disclosure.
  • the method includes:
  • the multi-slot PDCCH monitoring capability indicates that a multi-slot PDCCH monitoring capability includes X time slots
  • the multi-slot PDCCH monitoring capability indicates that a multi-slot PDCCH monitoring capability includes X time slots
  • there are Y consecutive time slots used to transmit the PDCCH and in the scenario where N time slots in the Y consecutive time slots are configured with search spaces and the DCI schedules multiple PDSCHs, the The k0 value indicated by the DCI is less than the minimum slot interval, and the DCI indicates that the time slots for sending the multiple PDSCHs are all included in the N time slots;
  • the k0 is the time slot interval between the time slot for transmitting the DCI and the time slot for transmitting the PDSCH scheduled by the DCI
  • the minimum slot interval is the time slot for transmitting the DCI and the time slot for transmitting the PDSCH
  • the minimum slot interval between the time slots, X and Y are both positive integers greater than 1
  • N is a positive integer greater than or equal to 1
  • the network device configures the multi-slot PDCCH monitoring capability for the user equipment, the multi-slot PDCCH monitoring capability means that in a monitoring unit including X time slots, there are Y consecutive time slots for transmitting PDCCH, and Search spaces are allocated to N slots among Y consecutive slots.
  • the user equipment receives DCI from the network device, and the DCI schedules multiple PDSCHs. In this scenario, the k0 value indicated by the DCI is smaller than the minimum slot interval, and the DCI indicates that the time slots for sending PDSCHs are included in the above N time slots middle.
  • the user terminal needs to keep awake in the Y consecutive time slots to ensure monitoring of the PDCCH.
  • the DCI indicates that the time slots for sending the PDSCH are included in Y consecutive time slots, so that when the scheduled PDSCHs are in the Y consecutive time slots, the user equipment can receive the PDSCH while receiving the PDCCH. Therefore, the purpose of power saving can be achieved in the multi-slot PDCCH monitoring scheme.
  • An embodiment of the present disclosure provides an information receiving method, which is executed by a user equipment. This method can be executed independently, and can also be executed in combination with any other embodiment of the embodiments of the present disclosure.
  • the method includes:
  • the network device Responsive to the network device configuring the multi-slot physical downlink control channel PDCCH monitoring capability for the user equipment, receiving downlink control information DCI from the network device, wherein the multi-slot PDCCH monitoring capability indicates that a multi-slot PDCCH monitoring capability includes X time slots In the listening unit of , there are Y consecutive time slots for transmitting the PDCCH, the value of k0 indicated by the DCI is smaller than the minimum slot interval, and the time slot for sending the physical downlink shared channel PDSCH indicated by the DCI is included in the In Y consecutive time slots;
  • the k0 is the time slot interval between the time slot for transmitting the DCI and the time slot for transmitting the PDSCH scheduled by the DCI
  • the minimum slot interval is the time slot for transmitting the DCI and the time slot for transmitting the PDSCH
  • the minimum slot interval between the time slots, the minimum slot interval is determined based on the communication protocol and/or configured through network device signaling, both X and Y are positive integers greater than 1, and X ⁇ Y.
  • the network device configures the multi-slot PDCCH monitoring capability for the user equipment, and the multi-slot PDCCH monitoring capability means that in a monitoring unit including X time slots, there are Y consecutive time slots for transmitting PDCCHs.
  • the user equipment receives DCI from the network device, the k0 value indicated by the DCI is smaller than the minimum slot interval, and the DCI indicates that the time slots for sending the PDSCH are included in Y consecutive time slots.
  • the minimum slot interval is determined based on the communication protocol.
  • the network device configures the multi-slot PDCCH monitoring capability for the user equipment, and the multi-slot PDCCH monitoring capability means that in a monitoring unit including X time slots, there are Y consecutive time slots for transmitting PDCCHs.
  • the user equipment receives DCI from the network device, the k0 value indicated by the DCI is smaller than the minimum slot interval, and the DCI indicates that the time slots for sending the PDSCH are included in Y consecutive time slots.
  • the minimum slot interval is configured through network device signaling.
  • the network device configures the multi-slot PDCCH monitoring capability for the user equipment, and the multi-slot PDCCH monitoring capability means that in a monitoring unit including X time slots, there are Y consecutive time slots for transmitting PDCCHs.
  • the user equipment receives DCI from the network device, the k0 value indicated by the DCI is smaller than the minimum slot interval, and the DCI indicates that the time slots for sending the PDSCH are included in Y consecutive time slots.
  • the minimum slot interval is based on the communication protocol and the signaling configuration of the network equipment.
  • the user terminal needs to keep awake in the Y consecutive time slots to ensure monitoring of the PDCCH.
  • the DCI indicates that the time slots for sending the PDSCH are included in Y consecutive time slots, so that when the scheduled PDSCHs are in the Y consecutive time slots, the user equipment can receive the PDSCH while receiving the PDCCH. Therefore, the purpose of power saving can be achieved in the multi-slot PDCCH monitoring scheme.
  • FIG. 5 is a flowchart of a method for receiving information according to an exemplary embodiment. As shown in Fig. 5, the method includes:
  • Step 501 in response to the network device configuring the multi-slot physical downlink control channel PDCCH monitoring capability for the user equipment, receive the downlink control information DCI from the network device, wherein the multi-slot PDCCH monitoring capability is represented in one including X In the monitoring unit of time slots, there are Y consecutive time slots for transmitting the PDCCH, the k0 value indicated by the DCI is less than the minimum slot interval, and the time slot for sending the physical downlink shared channel PDSCH indicated by the DCI includes In said Y consecutive time slots;
  • Step 502 receiving the PDSCH based on the DCI
  • the k0 is the time slot interval between the time slot for transmitting the DCI and the time slot for transmitting the PDSCH scheduled by the DCI
  • the minimum slot interval is the time slot for transmitting the DCI and the time slot for transmitting the PDSCH
  • the minimum slot interval between the time slots, X and Y are both positive integers greater than 1, and X ⁇ Y.
  • the network device configures the multi-slot PDCCH monitoring capability for the user equipment, and the multi-slot PDCCH monitoring capability means that in a monitoring unit including X time slots, there are Y consecutive time slots for transmitting PDCCHs.
  • the user equipment receives DCI from the network device, the k0 value indicated by the DCI is smaller than the minimum slot interval, and the DCI indicates that the time slots for sending the PDSCH are included in Y consecutive time slots. Then, the user equipment receives the PDSCH based on the time slot of the PDSCH indicated by the DCI.
  • the network device configures the multi-slot PDCCH monitoring capability for the user equipment, the multi-slot PDCCH monitoring capability means that in a monitoring unit including X time slots, there are Y consecutive time slots for transmitting PDCCH, and Search spaces are allocated to N slots among Y consecutive slots.
  • the user equipment receives DCI from the network device, the k0 value indicated by the DCI is smaller than the minimum slot interval, and the DCI indicates that the time slots for sending the PDSCH are included in N time slots. Then, the user equipment receives the PDSCH based on the time slot of the PDSCH indicated by the DCI.
  • the network device configures the multi-slot PDCCH monitoring capability for the user equipment, and the multi-slot PDCCH monitoring capability means that in a monitoring unit including X time slots, there are Y consecutive time slots for transmitting PDCCHs.
  • the user equipment receives DCI from the network device, and the DCI schedules multiple PDSCHs.
  • the k0 value indicated by the DCI is smaller than the minimum slot interval, and the DCI indicates that the time slots for sending multiple PDSCHs are evenly spaced. Contained in Y consecutive time slots. Then, the user equipment receives the multiple PDSCHs based on the time slots of the multiple PDSCHs indicated by the DCI.
  • the network device configures the multi-slot PDCCH monitoring capability for the user equipment, the multi-slot PDCCH monitoring capability means that in a monitoring unit including X time slots, there are Y consecutive time slots for transmitting PDCCH, and Search spaces are allocated to N slots among Y consecutive slots.
  • the user equipment receives DCI from the network device, and the DCI schedules multiple PDSCHs.
  • the k0 value indicated by the DCI is smaller than the minimum slot interval, and the DCI indicates that the time slots for sending multiple PDSCHs are evenly spaced. Contained in N slots. Then, the user equipment receives the multiple PDSCHs based on the time slots of the multiple PDSCHs indicated by the DCI.
  • the user terminal needs to keep awake in the Y consecutive time slots to ensure monitoring of the PDCCH.
  • the DCI indicates that the time slots for sending the PDSCH are included in Y consecutive time slots, so that when the scheduled PDSCH is in the Y consecutive time slots, the user equipment can receive the PDSCH while receiving the PDCCH. Therefore, the purpose of power saving can be achieved in the multi-slot PDCCH monitoring scheme.
  • An embodiment of the present disclosure provides an information receiving method, which is executed by a user equipment.
  • the method may be executed independently, or may be executed in combination with any other embodiment of the embodiments of the present disclosure.
  • the method includes:
  • the network device Responsive to the network device configuring the multi-slot physical downlink control channel PDCCH monitoring capability for the user equipment, receiving downlink control information DCI from the network device, wherein the multi-slot PDCCH monitoring capability indicates that a multi-slot PDCCH monitoring capability includes X time slots In the listening unit of , there are Y consecutive time slots for transmitting the PDCCH, the value of k0 indicated by the DCI is smaller than the minimum slot interval, and the time slot for sending the physical downlink shared channel PDSCH indicated by the DCI is included in the In Y consecutive time slots;
  • the k0 is the time slot interval between the time slot for transmitting the DCI and the time slot for transmitting the PDSCH scheduled by the DCI
  • the minimum slot interval is the time slot for transmitting the DCI and the time slot for transmitting the PDSCH
  • the minimum slot interval between the time slots, X and Y are both positive integers greater than 1, and X ⁇ Y.
  • the network device configures the multi-slot PDCCH monitoring capability for the user equipment, and the multi-slot PDCCH monitoring capability means that in a monitoring unit including X time slots, there are Y consecutive time slots for transmitting PDCCHs.
  • the multi-slot PDCCH monitoring capability configured by the network device for the user equipment adopts the multi-slot group based on the aforementioned fixed mode.
  • the user equipment receives DCI from the network device, the k0 value indicated by the DCI is smaller than the minimum slot interval, and the DCI indicates that the time slots for sending the PDSCH are included in Y consecutive time slots.
  • the network device configures the multi-slot PDCCH monitoring capability for the user equipment, and the multi-slot PDCCH monitoring capability means that in a monitoring unit including X time slots, there are Y consecutive time slots for transmitting PDCCHs.
  • the multi-slot PDCCH monitoring capability configured by the network device for the user equipment adopts the multi-slot group based on the aforementioned fixed mode.
  • N slots in the Y consecutive slots are configured with search spaces.
  • the user equipment receives DCI from the network device, the k0 value indicated by the DCI is smaller than the minimum slot interval, and the DCI indicates that the time slots for sending the PDSCH are included in N time slots.
  • the user terminal needs to keep awake in the Y consecutive time slots to ensure monitoring of the PDCCH.
  • the DCI indicates that the time slots for sending the PDSCH are included in Y consecutive time slots, so that when the scheduled PDSCHs are in the Y consecutive time slots, the user equipment can receive the PDSCH while receiving the PDCCH. Therefore, the purpose of power saving can be achieved in the multi-slot PDCCH monitoring scheme.
  • An embodiment of the present disclosure provides an information receiving method, which is executed by a user equipment.
  • the method may be executed independently, or may be executed in combination with any other embodiment of the embodiments of the present disclosure.
  • the method includes:
  • the multi-slot PDCCH monitoring capability indicates that a multi-slot PDCCH monitoring capability includes X time slots
  • the monitoring unit includes M time slots, M>X, there are Y consecutive time slots for transmitting the PDCCH, the k0 value indicated by the DCI is less than the minimum slot interval, and the DCI indicating that the time slots for sending the physical downlink shared channel PDSCH are included in the Y consecutive time slots;
  • the k0 is the time slot interval between the time slot for transmitting the DCI and the time slot for transmitting the PDSCH scheduled by the DCI
  • the minimum slot interval is the time slot for transmitting the DCI and the time slot for transmitting the PDSCH
  • the minimum slot interval between the time slots, the X, Y and M are all positive integers greater than 1, and X ⁇ Y, M>X.
  • the network device configures a multi-slot PDCCH monitoring capability for the user equipment, and the multi-slot PDCCH monitoring capability means that in a monitoring unit including M time slots, there are Y consecutive time slots for transmitting PDCCHs.
  • the multi-slot PDCCH monitoring capability configured by the network device for the user equipment adopts the multi-slot group span based on the aforementioned span mode.
  • the user equipment receives DCI from the network device, the k0 value indicated by the DCI is smaller than the minimum slot interval, and the DCI indicates that the time slots for sending the PDSCH are included in Y consecutive time slots.
  • the network device configures a multi-slot PDCCH monitoring capability for the user equipment, and the multi-slot PDCCH monitoring capability means that in a monitoring unit including M time slots, there are Y consecutive time slots for transmitting PDCCHs.
  • the multi-slot PDCCH monitoring capability configured by the network device for the user equipment adopts the multi-slot group span based on the aforementioned span mode.
  • N slots in the Y consecutive slots are configured with search spaces.
  • the user equipment receives DCI from the network device, the k0 value indicated by the DCI is smaller than the minimum slot interval, and the DCI indicates that the time slots for sending the PDSCH are included in N time slots.
  • the user terminal needs to keep awake in the Y consecutive time slots to ensure monitoring of the PDCCH.
  • the DCI indicates that the time slots for sending the PDSCH are included in Y consecutive time slots, so that when the scheduled PDSCHs are in the Y consecutive time slots, the user equipment can receive the PDSCH while receiving the PDCCH. Therefore, the purpose of power saving can be achieved in the multi-slot PDCCH monitoring scheme.
  • An embodiment of the present disclosure provides an information transmission device, which is applied to a network device, as shown in FIG. 6 , including:
  • the processing module 601 is configured to generate downlink control information DCI in response to the network device configuring a multi-slot physical downlink control channel PDCCH monitoring capability for the user equipment, wherein the multi-slot PDCCH monitoring capability indicates that a multi-slot PDCCH monitoring capability includes X time slots In the monitoring unit of , there are Y consecutive time slots for transmitting PDCCH, the k0 value indicated by the DCI is smaller than the minimum slot interval, and the time slot for sending the physical downlink shared channel PDSCH indicated by the DCI is included in the Y in consecutive time slots;
  • the k0 is the time slot interval between the time slot for transmitting the DCI and the time slot for transmitting the PDSCH scheduled by the DCI
  • the minimum slot interval is the time slot for transmitting the DCI and the time slot for transmitting the PDSCH
  • the minimum slot interval between the time slots, X and Y are both positive integers greater than 1, and X ⁇ Y.
  • An embodiment of the present disclosure provides an information receiving device, which is applied to a user equipment, as shown in FIG. 7 , including:
  • the receiving module 701 is configured to receive downlink control information DCI from the network device in response to the network device configuring a multi-slot physical downlink control channel PDCCH monitoring capability for the user equipment, wherein the multi-slot PDCCH monitoring capability indicates In a monitoring unit including X time slots, there are Y consecutive time slots for transmitting the PDCCH, the k0 value indicated by the DCI is smaller than the minimum slot interval, and the DCI indicates sending the physical downlink shared channel PDSCH The time slots of are included in the Y consecutive time slots;
  • the k0 is the time slot interval between the time slot for transmitting the DCI and the time slot for transmitting the PDSCH scheduled by the DCI
  • the minimum slot interval is the time slot for transmitting the DCI and the time slot for transmitting the PDSCH
  • the minimum slot interval between the time slots, X and Y are both positive integers greater than 1, and X ⁇ Y.
  • An embodiment of the present disclosure provides a network side device, including:
  • memory for storing processor-executable instructions
  • the processor is configured to execute the executable instructions in the memory to implement the steps of the above information transmission method.
  • An embodiment of the present disclosure provides a mobile terminal, including:
  • memory for storing processor-executable instructions
  • the processor is configured to execute the executable instructions in the memory to realize the steps of the above information receiving method.
  • An embodiment of the present disclosure provides a non-transitory computer-readable storage medium on which executable instructions are stored. When the executable instructions are executed by a processor, the steps of the above information transmission method or the steps of the above information reception method are implemented.
  • Fig. 8 is a block diagram of an information receiving device 800 according to an exemplary embodiment.
  • the apparatus 800 may be a mobile phone, a computer, a digital broadcast terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, and the like.
  • device 800 may include one or more of the following components: a processing component 802, a memory 804, a power supply component 806, a multimedia component 808, an audio component 810, an input/output (I/O) interface 812, a sensor component 814, and communication component 816 .
  • the processing component 802 generally controls the overall operations of the device 800, such as those associated with display, telephone calls, data communications, camera operations, and recording operations.
  • the processing component 802 may include one or more processors 820 to execute instructions to complete all or part of the steps of the above method. Additionally, processing component 802 may include one or more modules that facilitate interaction between processing component 802 and other components. For example, processing component 802 may include a multimedia module to facilitate interaction between multimedia component 808 and processing component 802 .
  • the memory 804 is configured to store various types of data to support operations at the device 800 . Examples of such data include instructions for any application or method operating on device 800, contact data, phonebook data, messages, pictures, videos, and the like.
  • the memory 804 can be implemented by any type of volatile or non-volatile storage device or their combination, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic or Optical Disk Magnetic Disk
  • the power supply component 806 provides power to the various components of the device 800 .
  • Power components 806 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power for device 800 .
  • the multimedia component 808 includes a screen that provides an output interface between the device 800 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from a user.
  • the touch panel includes one or more touch sensors to sense touches, swipes, and gestures on the touch panel. The touch sensor may not only sense a boundary of a touch or swipe action, but also detect duration and pressure associated with the touch or swipe action.
  • the multimedia component 808 includes a front camera and/or a rear camera. When the device 800 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capability.
  • the audio component 810 is configured to output and/or input audio signals.
  • the audio component 810 includes a microphone (MIC) configured to receive external audio signals when the device 800 is in operation modes, such as call mode, recording mode and voice recognition mode. Received audio signals may be further stored in memory 804 or sent via communication component 816 .
  • the audio component 810 also includes a speaker for outputting audio signals.
  • the I/O interface 812 provides an interface between the processing component 802 and a peripheral interface module, which may be a keyboard, a click wheel, a button, and the like. These buttons may include, but are not limited to: a home button, volume buttons, start button, and lock button.
  • Sensor assembly 814 includes one or more sensors for providing status assessments of various aspects of device 800 .
  • the sensor component 814 can detect the open/closed state of the device 800, the relative positioning of components, such as the display and keypad of the device 800, and the sensor component 814 can also detect a change in the position of the device 800 or a component of the device 800 , the presence or absence of user contact with the device 800 , the device 800 orientation or acceleration/deceleration and the temperature change of the device 800 .
  • Sensor assembly 814 may include a proximity sensor configured to detect the presence of nearby objects in the absence of any physical contact.
  • Sensor assembly 814 may also include an optical sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 814 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor or a temperature sensor.
  • the communication component 816 is configured to facilitate wired or wireless communication between the apparatus 800 and other devices.
  • the device 800 can access wireless networks based on communication standards, such as WiFi, 2G or 3G, or a combination thereof.
  • the communication component 816 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 816 also includes a near field communication (NFC) module to facilitate short-range communication.
  • NFC near field communication
  • the NFC module may be implemented based on Radio Frequency Identification (RFID) technology, Infrared Data Association (IrDA) technology, Ultra Wide Band (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID Radio Frequency Identification
  • IrDA Infrared Data Association
  • UWB Ultra Wide Band
  • Bluetooth Bluetooth
  • apparatus 800 may be programmed by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A gate array (FPGA), controller, microcontroller, microprocessor or other electronic component implementation for performing the methods described above.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor or other electronic component implementation for performing the methods described above.
  • non-transitory computer-readable storage medium including instructions, such as the memory 804 including instructions, which can be executed by the processor 820 of the device 800 to implement the above method.
  • the non-transitory computer readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.
  • Fig. 9 is a block diagram of an information transmission device 900 according to an exemplary embodiment.
  • apparatus 900 may be provided as a base station.
  • apparatus 900 includes processing component 922, which further includes one or more processors, and memory resources represented by memory 932 for storing instructions executable by processing component 922, such as application programs.
  • the application program stored in memory 932 may include one or more modules each corresponding to a set of instructions.
  • the processing component 922 is configured to execute instructions to perform the above method for accessing an unlicensed channel.
  • Device 900 may also include a power component 926 configured to perform power management of device 900 , a wired or wireless network interface 950 configured to connect device 900 to a network, and an input-output (I/O) interface 959 .
  • the device 900 can operate based on an operating system stored in the memory 932, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM or the like.
  • the DCI indicates that the time slots for sending the PDSCH are included in Y consecutive time slots, so that when the scheduled PDSCH is in the Y consecutive time slots, the user equipment can receive the PDSCH while receiving the PDCCH. Therefore, the purpose of power saving can be achieved in the multi-slot PDCCH monitoring scheme.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供一种信息传输和接收方法、装置、设备及存储介质。该信息传输方法被网络设备执行,包括:响应于所述网络设备为用户设备配置多时隙物理下行控制信道PDCCH监听能力,生成下行控制信息DCI,其中,所述多时隙PDCCH监听能力表示在一个包括X个时隙的监听单元中,存在Y个用于传输PDCCH的连续时隙,所述DCI指示的k0值小于最小时隙间隔,且所述DCI指示发送物理下行共享信道PDSCH的时隙包含在所述Y个连续时隙中;向用户设备发送所述DCI。采用该方法,用户设备可以在接收PDCCH的同时接收PDSCH,从而可以在多时隙PDCCH监听方案中实现功率节省的目的。

Description

一种信息传输和接收方法、装置、设备及存储介质 技术领域
本公开涉及无线通信技术领域,尤其涉及一种信息传输和接收方法、装置、设备及存储介质。
背景技术
为了降低用户设备功耗,引入了传输下行控制信息(Downlink Control Information,DCI)的时隙与传输DCI调度的物理下行共享信道(Physical Downlink Shared channel,PDSCH)的时隙之间的间隔最小值k0_min的限制。
在NR 52.6-71GHz项目中引入了多时隙物理下行控制信道(Physical Downlink Control channel,PDCCH)监听方案,其中,多时隙PDCCH监听能力定义了用户设备在X个时隙内监听PDCCH的能力,在该X个时隙内,有连续的Y个时隙可以用于传输PDCCH。
在多时隙PDCCH监听方案中,就需要对间隔最小值k0_min的限制进行调整。
发明内容
有鉴于此,本公开提供了一种信息传输和接收方法、装置、设备及存储介质。
根据本公开实施例的第一个方面,提供一种信息传输方法,所述方法被网络设备执行,包括:
响应于所述网络设备为用户设备配置多时隙物理下行控制信道PDCCH监听能力,生成下行控制信息DCI,其中,所述多时隙PDCCH监听能力表示在一个包括X个时隙的监听单元中,存在Y个用于传输PDCCH的连续时隙,所述DCI指示的k0值小于最小时隙间隔,且所述DCI指示发送物理下行共享信道PDSCH的时隙包含在所述Y个连续时隙中;
向用户设备发送所述DCI;
其中,所述k0为传输所述DCI的时隙与传输所述DCI调度的PDSCH的时隙之间的时隙间隔,所述最小时隙间隔为传输所述DCI的时隙与传输所述PDSCH的时隙之间的最小时隙间隔,所述X和Y均为大于1的正整数,且X≥Y。
在一个实施方式中,所述响应于所述网络设备为用户设备配置多时隙PDCCH监听能力,生成下行控制信息DCI,包括:
响应于所述网络设备为所述用户设备配置多时隙PDCCH监听能力,且响应于所述Y个连续时隙中的N个时隙配置有搜索空间,生成所述DCI,所述DCI指示发送所述PDSCH 的时隙包含在所述N个时隙中;
其中,N为大于或等于1的正整数,且N≤Y。
在一个实施方式中,在所述DCI调度多个PDSCH的场景下,所述DCI指示发送所述多个PDSCH的时隙均包含在所述Y个连续时隙中。
在一个实施方式中,在所述DCI调度多个PDSCH的场景下,所述DCI指示发送所述多个PDSCH的时隙均包含在所述N个时隙中。
在一个实施方式中,所述最小时隙间隔基于通信协议确定和/或通过网络设备信令配置。
在一个实施方式中,所述方法还包括:
基于所述DCI,发送所述PDSCH。
在一个实施方式中,所述多时隙PDCCH监听能力表示在一个包括X个时隙的监听单元中,存在Y个用于传输PDCCH的连续时隙。
在一个实施方式中,所述多时隙PDCCH监听能力表示在一个包括M个时隙的监听单元中,存在Y个用于传输PDCCH的连续时隙;
其中,所述M为大于1的正整数,且M>X。
根据本公开实施例的第二个方面,提供一种信息接收方法,所述方法被用户设备执行,包括:
响应于网络设备为所述用户设备配置多时隙物理下行控制信道PDCCH监听能力,接收来自于所述网络设备的下行控制信息DCI,其中,所述多时隙PDCCH监听能力表示在一个包括X个时隙的监听单元中,存在Y个用于传输所述PDCCH的连续时隙,所述DCI指示的k0值小于最小时隙间隔,且所述DCI指示发送物理下行共享信道PDSCH的时隙包含在所述Y个连续时隙中;
其中,所述k0为传输所述DCI的时隙与传输所述DCI调度的PDSCH的时隙之间的时隙间隔,所述最小时隙间隔为传输所述DCI的时隙与传输所述PDSCH的时隙之间的最小时隙间隔,所述X和Y均为大于1的正整数,且X≥Y。
在一个实施方式中,在所述Y个连续时隙中的N个时隙配置有搜索空间的场景下,所述DCI指示发送所述PDSCH的时隙包含在所述N个时隙中;
其中,N为大于或等于1的正整数,且N≤Y。
在一个实施方式中,在所述DCI调度多个PDSCH的场景下,所述DCI指示发送所述多个PDSCH的时隙均包含在所述Y个连续时隙中。
在一个实施方式中,在所述DCI调度多个PDSCH的场景下,所述DCI指示发送所述多个PDSCH的时隙均包含在所述N个时隙中。
在一个实施方式中,所述最小时隙间隔基于通信协议确定和/或通过网络设备信令配置。
在一个实施方式中,所述方法还包括:
基于所述DCI,接收所述PDSCH。
在一个实施方式中,所述多时隙PDCCH监听能力表示在一个包括X个时隙的监听单元中,存在Y个用于传输PDCCH的连续时隙。
在一个实施方式中,所述多时隙PDCCH监听能力表示在一个包括M个时隙的监听单元中,存在Y个用于传输PDCCH的连续时隙;
其中,所述M为大于1的正整数,且M>X。
根据本公开实施例的第三个方面,提供一种信息传输装置,应用于网络设备,包括:
处理模块,被配置为响应于所述网络设备为用户设备配置多时隙物理下行控制信道PDCCH监听能力,生成下行控制信息DCI,其中,所述多时隙PDCCH监听能力表示在一个包括X个时隙的监听单元中,存在Y个用于传输PDCCH的连续时隙,所述DCI指示的k0值小于最小时隙间隔,且所述DCI指示发送物理下行共享信道PDSCH的时隙包含在所述Y个连续时隙中;
发送模块,被配置为向用户设备发送所述DCI;
其中,所述k0为传输所述DCI的时隙与传输所述DCI调度的PDSCH的时隙之间的时隙间隔,所述最小时隙间隔为传输所述DCI的时隙与传输所述PDSCH的时隙之间的最小时隙间隔,所述X和Y均为大于1的正整数,且X≥Y。
根据本公开实施例的第四个方面,提供一种信息接收装置,应用于用户设备,包括:
接收模块,被配置为响应于网络设备为所述用户设备配置多时隙物理下行控制信道PDCCH监听能力,接收来自于所述网络设备的下行控制信息DCI,其中,所述多时隙PDCCH监听能力表示在一个包括X个时隙的监听单元中,存在Y个用于传输所述PDCCH的连续时隙,所述DCI指示的k0值小于最小时隙间隔,且所述DCI指示发送物理下行共享信道PDSCH的时隙包含在所述Y个连续时隙中;
其中,所述k0为传输所述DCI的时隙与传输所述DCI调度的PDSCH的时隙之间的时隙间隔,所述最小时隙间隔为传输所述DCI的时隙与传输所述PDSCH的时隙之间的最小时隙间隔,所述X和Y均为大于1的正整数,且X≥Y。
根据本公开实施例的第五个方面,提供一种网络侧设备,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为执行所述存储器中的可执行指令以实现上述信息传输方法的步骤。
根据本公开实施例的第六个方面,提供一种移动终端,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为执行所述存储器中的可执行指令以实现上述信息接收方法的步骤。
根据本公开实施例的第七个方面,提供一种非临时性计算机可读存储介质,其上存储有可执行指令,该可执行指令被处理器执行时实现上述信息传输方法的步骤或者上述信息接收方法的步骤。
本公开的实施例提供的技术方案可以包括以下有益效果:
DCI指示发送PDSCH的时隙包含在Y个连续时隙中,这样在调度的PDSCH处于在该Y个连续时隙的情况下,用户设备可以在接收PDCCH的同时接收PDSCH。因此,可以在多时隙PDCCH监听方案中实现功率节省的目的。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处所说明的附图用来提供对本公开实施例的进一步理解,构成本申请的一部分,本公开实施例的示意性实施例及其说明用于解释本公开实施例,并不构成对本公开实施例的不当限定。在附图中:
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开实施例的实施例,并与说明书一起用于解释本公开实施例的原理。
图1是根据一示例性实施例示出的信息传输方法的流程图;
图2是根据一示例性实施例示出的信息传输方法的流程图;
图3是根据一示例性实施例示出的信息传输方法的流程图;
图4是根据一示例性实施例示出的信息接收方法的流程图;
图5是根据一示例性实施例示出的信息接收方法的流程图;
图6是根据一示例性实施例示出的一种信息传输装置的框图;
图7是根据一示例性实施例示出的一种信息接收装置的框图;
图8是根据一示例性实施例示出的一种信息接收装置的结构图;
图9是根据一示例性实施例示出的一种信息传输装置的结构图。
具体实施方式
现结合附图和具体实施方式对本公开实施例进一步说明。
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
需要说明的是,本公开的一个实施例中可以包括多个步骤;为了便于描述,这些步骤被进行了编号;但是这些编号并非是对步骤之间执行时隙、执行顺序的限定;这些步骤可以以任意的顺序被实施,本公开实施例并不对此作出限定。
在配置了传输DCI的时隙与传输DCI调度的PDSCH的时隙之间的最小时隙间隔k0_min的情况下,用户设备在收完PDCCH之后,无需尝试接收PDSCH,而是可以暂时的进入睡眠状态,直到收完PDCCH之后经过k0_min个时隙才唤醒。此时PDCCH已经解调完成了,用户设备按照DCI的指示在对应的时频资源上接收PDSCH即可。即,UE不期望所调度的PDSCH的k_0小于k0_min。
在发生带宽部分(Band Width Part,BWP)切换的情况下,k0_min的计算方式相应地进行了变化。BWP切换后的k0_min由下式计算:
Figure PCTCN2021125827-appb-000001
其中,μ表示BWP切换前BWP的子载波间隔对应的参数值,μ′表示BWP切换后BWP的子载波间隔对应的参数值。
对多时隙PDCCH监听能力的待定的两种解释如下:
一种是基于固定模式的多时隙组(X/Y),一个时隙组固定的包含X个时隙,各个时隙组连续且不重叠,X个时隙中有Y个连续的时隙可以用于监听PDCCH。一种是基于跨度模式的多时隙组跨度(X/Y)。X是相邻的两个跨度之间的最小间隔,以时隙为单位。 在一个跨度中,只有Y个连续的时隙/符号上能够监听PDCCH。
本公开实施例提供了一种信息传输方法,其被网络设备执行。该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。图1是根据一示例性实施例示出的一种信息传输方法的流程图,如图1所示,该方法包括:
步骤101,响应于所述网络设备为用户设备配置多时隙物理下行控制信道PDCCH监听能力,生成下行控制信息DCI,其中,所述多时隙PDCCH监听能力表示在一个包括X个时隙的监听单元中,存在Y个用于传输PDCCH的连续时隙,所述DCI指示的k0值小于最小时隙间隔,且所述DCI指示发送物理下行共享信道PDSCH的时隙包含在所述Y个连续时隙中;
步骤102,向用户设备发送所述DCI;
其中,所述k0为传输所述DCI的时隙与传输所述DCI调度的PDSCH的时隙之间的时隙间隔,所述最小时隙间隔为传输所述DCI的时隙与传输所述PDSCH的时隙之间的最小时隙间隔,所述X和Y均为大于1的正整数,且X≥Y。
在一个实施方式中,网络设备为用户设备配置多时隙PDCCH监听能力,该多时隙PDCCH监听能力表示在一个包括X个时隙的监听单元中,存在Y个用于传输PDCCH的连续时隙。网络设备响应于该配置,生成DCI,并向用户设备发送该DCI。该DCI指示的k0值小于最小时隙间隔,且DCI指示发送PDSCH的时隙包含在Y个连续时隙中。
在一个实施方式中,网络设备为用户设备配置多时隙PDCCH监听能力,该多时隙PDCCH监听能力表示在一个包括X个时隙的监听单元中,存在Y个用于传输PDCCH的连续时隙,并且Y个连续时隙中的N个时隙配置有搜索空间。网络设备响应于该配置,生成DCI,并向用户设备发送该DCI。该DCI指示的k0值小于最小时隙间隔,且DCI指示发送PDSCH的时隙包含在N个时隙中。其中最小时隙间隔基于通信协议确定和/或通过网络设备信令配置。
在多时隙PDCCH监听方案中,用户终端在上述Y个连续时隙上,需要保持唤醒状态以保证对PDCCH的监听。在上述实施方式中,DCI指示发送PDSCH的时隙包含在Y个连续时隙中,这样在调度的PDSCH处于在该Y个连续时隙的情况下,用户设备可以在接收PDCCH的同时接收PDSCH。因此,可以在多时隙PDCCH监听方案中实现功率节省的目的。
本公开实施例提供了一种信息传输方法,其被网络设备执行。该方法可以独立被执行, 也可以结合本公开实施例的任意一个其他实施例一起被执行。图2是根据一示例性实施例示出的一种信息传输方法的流程图,如图2所示,该方法包括:
步骤201,响应于所述网络设备为所述用户设备配置多时隙PDCCH监听能力,且响应于所述Y个连续时隙中的N个时隙配置有搜索空间,生成所述DCI,其中,所述多时隙PDCCH监听能力表示在一个包括X个时隙的监听单元中,存在Y个用于传输PDCCH的连续时隙,所述DCI指示的k0值小于最小时隙间隔,且所述DCI指示发送所述PDSCH的时隙包含在所述N个时隙中;
步骤202,向用户设备发送所述DCI;
其中,所述k0为传输所述DCI的时隙与传输所述DCI调度的PDSCH的时隙之间的时隙间隔,所述最小时隙间隔为传输所述DCI的时隙与传输所述PDSCH的时隙之间的最小时隙间隔,所述X和Y均为大于1的正整数,N为大于或等于1的正整数,且X≥Y,N≤Y。
在一个实施方式中,网络设备为用户设备配置多时隙PDCCH监听能力,该多时隙PDCCH监听能力表示在一个包括X个时隙的监听单元中,存在Y个用于传输PDCCH的连续时隙,并且Y个连续时隙中的N个时隙配置有搜索空间。网络设备响应于该配置,生成DCI,并向用户设备发送该DCI。该DCI指示的k0值小于最小时隙间隔,且DCI指示发送PDSCH的时隙包含在N个时隙中。
在一个实施方式中,网络设备为用户设备配置多时隙PDCCH监听能力,该多时隙PDCCH监听能力表示在一个包括X个时隙的监听单元中,存在Y个用于传输PDCCH的连续时隙,并且Y个连续时隙中的N个时隙配置有搜索空间,其中Y=3,N=2。网络设备响应于该配置,生成DCI,并向用户设备发送该DCI。该DCI指示的k0值小于最小时隙间隔,且DCI指示发送PDSCH的时隙包含在上述配置有搜索空间的2个时隙中。
在多时隙PDCCH监听方案中,用户终端在上述Y个连续时隙上,需要保持唤醒状态以保证对PDCCH的监听。在上述实施方式中,DCI指示发送PDSCH的时隙包含在Y个连续时隙中,这样在调度的PDSCH处于在该Y个连续时隙的情况下,用户设备可以在接收PDCCH的同时接收PDSCH。因此,可以在多时隙PDCCH监听方案中实现功率节省的目的。
本公开实施例提供了一种信息传输方法,其被网络设备执行。该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。该方法包括:
响应于所述网络设备为用户设备配置多时隙物理下行控制信道PDCCH监听能力,生成下行控制信息DCI,其中,所述多时隙PDCCH监听能力表示在一个包括X个时隙的监听单元中,存在Y个用于传输PDCCH的连续时隙,在所述DCI调度多个PDSCH的场景下,所述DCI指示的k0值小于最小时隙间隔,且所述DCI指示发送所述多个PDSCH的时隙均包含在所述Y个连续时隙中;
向用户设备发送所述DCI;
其中,所述k0为传输所述DCI的时隙与传输所述DCI调度的PDSCH的时隙之间的时隙间隔,所述最小时隙间隔为传输所述DCI的时隙与传输所述PDSCH的时隙之间的最小时隙间隔,所述X和Y均为大于1的正整数,且X≥Y。
在一个实施方式中,网络设备为用户设备配置多时隙PDCCH监听能力,该多时隙PDCCH监听能力表示在一个包括X个时隙的监听单元中,存在Y个用于传输PDCCH的连续时隙。网络设备响应于该配置,生成DCI,并向用户设备发送该DCI。网络设备在该DCI中调度多个PDSCH时,该DCI指示的k0值小于最小时隙间隔,且DCI指示发送多个PDSCH的时隙均包含在上述Y个连续时隙中。
在一个实施方式中,网络设备为用户设备配置多时隙PDCCH监听能力,该多时隙PDCCH监听能力表示在一个包括X个时隙的监听单元中,存在Y个用于传输PDCCH的连续时隙,并且Y个连续时隙中的N个时隙配置有搜索空间。网络设备响应于该配置,生成DCI,并向用户设备发送该DCI。网络设备在该DCI中调度多个PDSCH时,该DCI指示的k0值小于最小时隙间隔,且DCI指示多个PDSCH的时隙均包含在上述N个时隙中。其中,最小时隙间隔基于通信协议确定和/或通过网络设备信令配置。
在多时隙PDCCH监听方案中,用户终端在上述Y个连续时隙上,需要保持唤醒状态以保证对PDCCH的监听。在上述实施方式中,DCI指示发送PDSCH的时隙包含在Y个连续时隙中,这样在调度的PDSCH处于在该Y个连续时隙的情况下,用户设备可以在接收PDCCH的同时接收PDSCH。因此,可以在多时隙PDCCH监听方案中实现功率节省的目的。
本公开实施例提供了一种信息传输方法,其被网络设备执行。该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。该方法包括:
响应于所述网络设备为所述用户设备配置多时隙PDCCH监听能力,且响应于所述Y个连续时隙中的N个时隙配置有搜索空间,生成所述DCI,其中,所述多时隙PDCCH监 听能力表示在一个包括X个时隙的监听单元中,存在Y个用于传输PDCCH的连续时隙,在所述DCI调度多个PDSCH的场景下,所述DCI指示的k0值小于最小时隙间隔,且所述DCI指示发送所述多个PDSCH的时隙均包含在所述N个时隙中;
向用户设备发送所述DCI;
其中,所述k0为传输所述DCI的时隙与传输所述DCI调度的PDSCH的时隙之间的时隙间隔,所述最小时隙间隔为传输所述DCI的时隙与传输所述PDSCH的时隙之间的最小时隙间隔,所述X、Y和N均为大于1的正整数,且X≥Y,N≤Y。
在一个实施方式中,网络设备为用户设备配置多时隙PDCCH监听能力,该多时隙PDCCH监听能力表示在一个包括X个时隙的监听单元中,存在Y个用于传输PDCCH的连续时隙,并且Y个连续时隙中的N个时隙配置有搜索空间。网络设备响应于该配置,生成DCI,并向用户设备发送该DCI。网络设备在该DCI中调度多个PDSCH时,该DCI指示的k0值小于最小时隙间隔,且DCI指示发送多个PDSCH的时隙均包含在N个时隙中。
在一个实施方式中,网络设备为用户设备配置多时隙PDCCH监听能力,该多时隙PDCCH监听能力表示在一个包括X个时隙的监听单元中,存在Y个用于传输PDCCH的连续时隙,并且Y个连续时隙中的N个时隙配置有搜索空间,其中Y=3,N=2。网络设备响应于该配置,生成DCI,并向用户设备发送该DCI。网络设备在该DCI中调度2个PDSCH时,该DCI指示的k0值小于最小时隙间隔,且DCI指示发送2个PDSCH的时隙包含在上述配置有搜索空间的2个时隙中。
在多时隙PDCCH监听方案中,用户终端在上述Y个连续时隙上,需要保持唤醒状态以保证对PDCCH的监听。在上述实施方式中,DCI指示发送PDSCH的时隙包含在Y个连续时隙中,这样在调度的PDSCH处于在该Y个连续时隙的情况下,用户设备可以在接收PDCCH的同时接收PDSCH。因此,可以在多时隙PDCCH监听方案中实现功率节省的目的。
本公开实施例提供了一种信息传输方法,其被网络设备执行。该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。该方法包括:
响应于所述网络设备为用户设备配置多时隙物理下行控制信道PDCCH监听能力,生成下行控制信息DCI,其中,所述多时隙PDCCH监听能力表示在一个包括X个时隙的监听单元中,存在Y个用于传输PDCCH的连续时隙,所述DCI指示的k0值小于最小时隙间隔,且所述DCI指示发送物理下行共享信道PDSCH的时隙包含在所述Y个连续时隙中;
向用户设备发送所述DCI;
其中,所述k0为传输所述DCI的时隙与传输所述DCI调度的PDSCH的时隙之间的时隙间隔,所述最小时隙间隔为传输所述DCI的时隙与传输所述PDSCH的时隙之间的最小时隙间隔,且所述最小时隙间隔基于通信协议确定和/或通过网络设备信令配置,所述X和Y均为大于1的正整数,且X≥Y。
在一个实施方式中,网络设备为用户设备配置多时隙PDCCH监听能力,该多时隙PDCCH监听能力表示在一个包括X个时隙的监听单元中,存在Y个用于传输PDCCH的连续时隙。网络设备响应于该配置,生成DCI,并向用户设备发送该DCI。该DCI指示的k0值小于最小时隙间隔,且DCI指示发送PDSCH的时隙包含在Y个连续时隙中。其中,最小时隙间隔基于通信协议确定。
在一个实施方式中,网络设备为用户设备配置多时隙PDCCH监听能力,该多时隙PDCCH监听能力表示在一个包括X个时隙的监听单元中,存在Y个用于传输PDCCH的连续时隙。网络设备响应于该配置,生成DCI,并向用户设备发送该DCI。该DCI指示的k0值小于最小时隙间隔,且DCI指示发送PDSCH的时隙包含在Y个连续时隙中。其中,最小时隙间隔通过网络设备信令配置。
在一个实施方式中,网络设备为用户设备配置多时隙PDCCH监听能力,该多时隙PDCCH监听能力表示在一个包括X个时隙的监听单元中,存在Y个用于传输PDCCH的连续时隙。网络设备响应于该配置,生成DCI,并向用户设备发送该DCI。该DCI指示的k0值小于最小时隙间隔,且DCI指示发送PDSCH的时隙包含在Y个连续时隙中。其中,最小时隙间隔基于通信协议以及通过网络设备信令配置。
在一个实施方式中,网络设备为用户设备配置多时隙PDCCH监听能力,该多时隙PDCCH监听能力表示在一个包括X个时隙的监听单元中,存在Y个用于传输PDCCH的连续时隙。网络设备响应于该配置,生成DCI,并向用户设备发送该DCI。该DCI指示的k0值小于最小时隙间隔,且DCI指示发送PDSCH的时隙包含在Y个连续时隙中。此实施方式中发生了BWP的切换,因此,最小时隙间隔基于下述公式得到:
Figure PCTCN2021125827-appb-000002
其中,k0_min基于通信协议配置,μ和μ′通过网络设备信令配置。
在多时隙PDCCH监听方案中,用户终端在上述Y个连续时隙上,需要保持唤醒状态以保证对PDCCH的监听。在上述实施方式中,DCI指示发送PDSCH的时隙包含在Y个 连续时隙中,这样在调度的PDSCH处于在该Y个连续时隙的情况下,用户设备可以在接收PDCCH的同时接收PDSCH。因此,可以在多时隙PDCCH监听方案中实现功率节省的目的。
本公开实施例提供了一种信息传输方法,其被网络设备执行。该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。图3是根据一示例性实施例示出的一种信息传输方法的流程图,如图3所示,该方法包括:
步骤301,响应于所述网络设备为用户设备配置多时隙物理下行控制信道PDCCH监听能力,生成下行控制信息DCI,其中,所述多时隙PDCCH监听能力表示在一个包括X个时隙的监听单元中,存在Y个用于传输PDCCH的连续时隙,所述DCI指示的k0值小于最小时隙间隔,且所述DCI指示发送物理下行共享信道PDSCH的时隙包含在所述Y个连续时隙中;
步骤302,向用户设备发送所述DCI;
步骤303,基于所述DCI,发送所述PDSCH;
其中,所述k0为传输所述DCI的时隙与传输所述DCI调度的PDSCH的时隙之间的时隙间隔,所述最小时隙间隔为传输所述DCI的时隙与传输所述PDSCH的时隙之间的最小时隙间隔,所述X和Y均为大于1的正整数,且X≥Y。
在一个实施方式中,网络设备为用户设备配置多时隙PDCCH监听能力,该多时隙PDCCH监听能力表示在一个包括X个时隙的监听单元中,存在Y个用于传输PDCCH的连续时隙。网络设备响应于该配置,生成DCI,并向用户设备发送该DCI。该DCI指示的k0值小于最小时隙间隔,且DCI指示发送PDSCH的时隙包含在Y个连续时隙中。网络设备在该DCI中指示的发送PDSCH的时隙中,发送该PDSCH。
在一个实施方式中,网络设备为用户设备配置多时隙PDCCH监听能力,该多时隙PDCCH监听能力表示在一个包括X个时隙的监听单元中,存在Y个用于传输PDCCH的连续时隙,并且Y个连续时隙中的N个时隙配置有搜索空间。网络设备响应于该配置,生成DCI,并向用户设备发送该DCI。该DCI指示的k0值小于最小时隙间隔,且DCI指示发送PDSCH的时隙包含在N个时隙中。网络设备在该DCI中指示的发送PDSCH的时隙中,发送该PDSCH。
在一个实施方式中,网络设备为用户设备配置多时隙PDCCH监听能力,该多时隙PDCCH监听能力表示在一个包括X个时隙的监听单元中,存在Y个用于传输PDCCH的 连续时隙。网络设备响应于该配置,生成DCI,并向用户设备发送该DCI。网络设备在该DCI中调度多个PDSCH时,该DCI指示的k0值小于最小时隙间隔,且DCI指示发送多个PDSCH的时隙包含在Y个连续时隙中。网络设备在该DCI中指示的发送多个PDSCH的时隙中,分别发送该多个PDSCH。
在一个实施方式中,网络设备为用户设备配置多时隙PDCCH监听能力,该多时隙PDCCH监听能力表示在一个包括X个时隙的监听单元中,存在Y个用于传输PDCCH的连续时隙,并且Y个连续时隙中的N个时隙配置有搜索空间。网络设备响应于该配置,生成DCI,并向用户设备发送该DCI。网络设备在该DCI中调度多个PDSCH时,该DCI指示的k0值小于最小时隙间隔,且DCI指示发送PDSCH的时隙包含在N个时隙中。网络设备在该DCI中指示的发送多个PDSCH的时隙中,发送该多个PDSCH。
在多时隙PDCCH监听方案中,用户终端在上述Y个连续时隙上,需要保持唤醒状态以保证对PDCCH的监听。在上述实施方式中,DCI指示发送PDSCH的时隙包含在Y个连续时隙中,这样在调度的PDSCH处于在该Y个连续时隙的情况下,用户设备可以在接收PDCCH的同时接收PDSCH。因此,可以在多时隙PDCCH监听方案中实现功率节省的目的。
本公开实施例提供了一种信息传输方法,其被网络设备执行。该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。该方法包括:
响应于所述网络设备为用户设备配置多时隙物理下行控制信道PDCCH监听能力,生成下行控制信息DCI,其中,所述多时隙PDCCH监听能力表示在一个包括X个时隙的监听单元中,存在Y个用于传输PDCCH的连续时隙,所述DCI指示的k0值小于最小时隙间隔,且所述DCI指示发送物理下行共享信道PDSCH的时隙包含在所述Y个连续时隙中;
向用户设备发送所述DCI;
其中,所述k0为传输所述DCI的时隙与传输所述DCI调度的PDSCH的时隙之间的时隙间隔,所述最小时隙间隔为传输所述DCI的时隙与传输所述PDSCH的时隙之间的最小时隙间隔,所述X和Y均为大于1的正整数,且X≥Y。
在一个实施方式中,网络设备为用户设备配置多时隙PDCCH监听能力,该多时隙PDCCH监听能力表示在一个包括X个时隙的监听单元中,存在Y个用于传输PDCCH的连续时隙。其中,网络设备为用户设备配置的多时隙PDCCH监听能力采用基于上述提到的固定模式的多时隙组。网络设备响应于该配置,生成DCI,并向用户设备发送该DCI。 该DCI指示的k0值小于最小时隙间隔,且DCI指示发送PDSCH的时隙包含在Y个连续时隙中。
在一个实施方式中,网络设备为用户设备配置多时隙PDCCH监听能力,该多时隙PDCCH监听能力表示在一个包括X个时隙的监听单元中,存在Y个用于传输PDCCH的连续时隙。其中,网络设备为用户设备配置的多时隙PDCCH监听能力采用基于上述提到的固定模式的多时隙组。其中,Y个连续时隙中的N个时隙配置有搜索空间。网络设备响应于该配置,生成DCI,并向用户设备发送该DCI。该DCI指示的k0值小于最小时隙间隔,且DCI指示发送PDSCH的时隙包含在N个时隙中。
在多时隙PDCCH监听方案中,用户终端在上述Y个连续时隙上,需要保持唤醒状态以保证对PDCCH的监听。在上述实施方式中,DCI指示发送PDSCH的时隙包含在Y个连续时隙中,这样在调度的PDSCH处于在该Y个连续时隙的情况下,用户设备可以在接收PDCCH的同时接收PDSCH。因此,可以在多时隙PDCCH监听方案中实现功率节省的目的。
本公开实施例提供了一种信息传输方法,其被网络设备执行。该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。该方法包括:
响应于所述网络设备为用户设备配置多时隙物理下行控制信道PDCCH监听能力,生成下行控制信息DCI,其中,所述多时隙PDCCH监听能力表示在一个包括X个时隙的监听单元中,并且该监听单元包括M个时隙,M>X,存在Y个用于传输PDCCH的连续时隙,所述DCI指示的k0值小于最小时隙间隔,且所述DCI指示发送物理下行共享信道PDSCH的时隙包含在所述Y个连续时隙中;
向用户设备发送所述DCI;
其中,所述k0为传输所述DCI的时隙与传输所述DCI调度的PDSCH的时隙之间的时隙间隔,所述最小时隙间隔为传输所述DCI的时隙与传输所述PDSCH的时隙之间的最小时隙间隔,所述X、Y和M均为大于1的正整数,且X≥Y,M>X。
在一个实施方式中,网络设备为用户设备配置多时隙PDCCH监听能力,该多时隙PDCCH监听能力表示在一个包括M个时隙的监听单元中,存在Y个用于传输PDCCH的连续时隙。其中,网络设备为用户设备配置的多时隙PDCCH监听能力采用基于上述提到的跨度模式的多时隙组跨度。网络设备响应于该配置,生成DCI,并向用户设备发送该DCI。该DCI指示的k0值小于最小时隙间隔,且DCI指示发送PDSCH的时隙包含在Y个连续 时隙中。
在一个实施方式中,网络设备为用户设备配置多时隙PDCCH监听能力,该多时隙PDCCH监听能力表示在一个包括M个时隙的监听单元中,存在Y个用于传输PDCCH的连续时隙。其中,网络设备为用户设备配置的多时隙PDCCH监听能力采用基于跨度模式的多时隙组跨度。并且其中,Y个连续时隙中的N个时隙配置有搜索空间。网络设备响应于该配置,生成DCI,并向用户设备发送该DCI。该DCI指示的k0值小于最小时隙间隔,且DCI指示发送PDSCH的时隙包含在N个时隙中。
在多时隙PDCCH监听方案中,用户终端在上述Y个连续时隙上,需要保持唤醒状态以保证对PDCCH的监听。在上述实施方式中,DCI指示发送PDSCH的时隙包含在Y个连续时隙中,这样在调度的PDSCH处于在该Y个连续时隙的情况下,用户设备可以在接收PDCCH的同时接收PDSCH。因此,可以在多时隙PDCCH监听方案中实现功率节省的目的。
本公开实施例提供了一种信息接收方法,其被用户设备执行。该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。图4是根据一示例性实施例示出的一种信息接收方法的流程图,如图4所示,该方法包括:
步骤401,响应于网络设备为所述用户设备配置多时隙物理下行控制信道PDCCH监听能力,接收来自于所述网络设备的下行控制信息DCI,其中,所述多时隙PDCCH监听能力表示在一个包括X个时隙的监听单元中,存在Y个用于传输所述PDCCH的连续时隙,所述DCI指示的k0值小于最小时隙间隔,且所述DCI指示发送物理下行共享信道PDSCH的时隙包含在所述Y个连续时隙中;
其中,所述k0为传输所述DCI的时隙与传输所述DCI调度的PDSCH的时隙之间的时隙间隔,所述最小时隙间隔为传输所述DCI的时隙与传输所述PDSCH的时隙之间的最小时隙间隔,所述X和Y均为大于1的正整数,且X≥Y。
在一个实施方式中,网络设备为用户设备配置多时隙PDCCH监听能力,该多时隙PDCCH监听能力表示在一个包括X个时隙的监听单元中,存在Y个用于传输PDCCH的连续时隙。在该场景下,用户设备接收来自于网络设备的DCI,该DCI指示的k0值小于最小时隙间隔,且该DCI指示发送PDSCH的时隙包含在Y个连续时隙中。
在一个实施方式中,网络设备为用户设备配置多时隙PDCCH监听能力,该多时隙PDCCH监听能力表示在一个包括X个时隙的监听单元中,存在Y个用于传输PDCCH的 连续时隙,并且Y个连续时隙中的N个时隙配置有搜索空间。在该场景下,用户设备接收来自于网络设备的DCI,该DCI指示的k0值小于最小时隙间隔,且该DCI指示发送PDSCH的时隙包含在上述N个时隙中。其中最小时隙间隔基于通信协议确定和/或通过网络设备信令配置。
在多时隙PDCCH监听方案中,用户终端在上述Y个连续时隙上,需要保持唤醒状态以保证对PDCCH的监听。在上述实施方式中,DCI指示发送PDSCH的时隙包含在Y个连续时隙中,这样在调度的PDSCH处于在该Y个连续时隙的情况下,用户设备可以在接收PDCCH的同时接收PDSCH。因此,可以在多时隙PDCCH监听方案中实现功率节省的目的。
本公开实施例提供了一种信息接收方法,其被用户设备执行。该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。该方法包括:
响应于网络设备为所述用户设备配置多时隙物理下行控制信道PDCCH监听能力,接收来自于所述网络设备的下行控制信息DCI,其中,所述多时隙PDCCH监听能力表示在一个包括X个时隙的监听单元中,存在Y个用于传输所述PDCCH的连续时隙,在所述Y个连续时隙中的N个时隙配置有搜索空间的场景下,所述DCI指示的k0值小于最小时隙间隔,且所述DCI指示发送所述PDSCH的时隙包含在所述N个时隙中;
其中,所述k0为传输所述DCI的时隙与传输所述DCI调度的PDSCH的时隙之间的时隙间隔,所述最小时隙间隔为传输所述DCI的时隙与传输所述PDSCH的时隙之间的最小时隙间隔,所述X和Y均为大于1的正整数,N为大于或等于1的正整数,且X≥Y,N≤Y。
在一个实施方式中,网络设备为用户设备配置多时隙PDCCH监听能力,该多时隙PDCCH监听能力表示在一个包括X个时隙的监听单元中,存在Y个用于传输PDCCH的连续时隙,并且Y个连续时隙中的N个时隙配置有搜索空间。在该场景下,用户设备接收来自于网络设备的DCI,该DCI指示的k0值小于最小时隙间隔,且该DCI指示发送PDSCH的时隙包含在上述N个时隙中。
在多时隙PDCCH监听方案中,用户终端在上述Y个连续时隙上,需要保持唤醒状态以保证对PDCCH的监听。在上述实施方式中,DCI指示发送PDSCH的时隙包含在Y个连续时隙中,这样在调度的PDSCH处于在该Y个连续时隙的情况下,用户设备可以在接收PDCCH的同时接收PDSCH。因此,可以在多时隙PDCCH监听方案中实现功率节省的 目的。
本公开实施例提供了一种信息接收方法,其被用户设备执行。该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。该方法包括:
响应于网络设备为所述用户设备配置多时隙物理下行控制信道PDCCH监听能力,接收来自于所述网络设备的下行控制信息DCI,其中,所述多时隙PDCCH监听能力表示在一个包括X个时隙的监听单元中,存在Y个用于传输所述PDCCH的连续时隙,在所述DCI调度多个PDSCH的场景下,所述DCI指示的k0值小于最小时隙间隔,且所述DCI指示发送所述多个PDSCH的时隙均包含在所述Y个连续时隙中;
其中,所述k0为传输所述DCI的时隙与传输所述DCI调度的PDSCH的时隙之间的时隙间隔,所述最小时隙间隔为传输所述DCI的时隙与传输所述PDSCH的时隙之间的最小时隙间隔,所述X和Y均为大于1的正整数,且X≥Y。
在一个实施方式中,网络设备为用户设备配置多时隙PDCCH监听能力,该多时隙PDCCH监听能力表示在一个包括X个时隙的监听单元中,存在Y个用于传输PDCCH的连续时隙。在该场景下,用户设备接收来自于网络设备的DCI,该DCI调度多个PDSCH,此场景下,该DCI指示的k0值小于最小时隙间隔,且该DCI指示发送多个PDSCH的时隙均包含在Y个连续时隙中。
在一个实施方式中,网络设备为用户设备配置多时隙PDCCH监听能力,该多时隙PDCCH监听能力表示在一个包括X个时隙的监听单元中,存在Y个用于传输PDCCH的连续时隙,并且Y个连续时隙中的N个时隙配置有搜索空间。用户设备接收来自于网络设备的DCI,该DCI调度多个PDSCH,此场景下,该DCI指示的k0值小于最小时隙间隔,且该DCI指示发送多个PDSCH的时隙均包含在Y个连续时隙中。其中,最小时隙间隔基于通信协议确定和/或通过网络设备信令配置。
在多时隙PDCCH监听方案中,用户终端在上述Y个连续时隙上,需要保持唤醒状态以保证对PDCCH的监听。在上述实施方式中,DCI指示发送PDSCH的时隙包含在Y个连续时隙中,这样在调度的PDSCH处于在该Y个连续时隙的情况下,用户设备可以在接收PDCCH的同时接收PDSCH。因此,可以在多时隙PDCCH监听方案中实现功率节省的目的。
本公开实施例提供了一种信息接收方法,其被用户设备执行。该方法可以独立被执行, 也可以结合本公开实施例的任意一个其他实施例一起被执行。该方法包括:
响应于网络设备为所述用户设备配置多时隙物理下行控制信道PDCCH监听能力,接收来自于所述网络设备的下行控制信息DCI,其中,所述多时隙PDCCH监听能力表示在一个包括X个时隙的监听单元中,存在Y个用于传输所述PDCCH的连续时隙,在所述Y个连续时隙中的N个时隙配置有搜索空间且所述DCI调度多个PDSCH的场景下,所述DCI指示的k0值小于最小时隙间隔,且所述DCI指示发送所述多个PDSCH的时隙均包含在所述N个时隙中;
其中,所述k0为传输所述DCI的时隙与传输所述DCI调度的PDSCH的时隙之间的时隙间隔,所述最小时隙间隔为传输所述DCI的时隙与传输所述PDSCH的时隙之间的最小时隙间隔,所述X和Y均为大于1的正整数,N为大于或等于1的正整数,且X≥Y,N≤Y。
在一个实施方式中,网络设备为用户设备配置多时隙PDCCH监听能力,该多时隙PDCCH监听能力表示在一个包括X个时隙的监听单元中,存在Y个用于传输PDCCH的连续时隙,并且Y个连续时隙中的N个时隙配置有搜索空间。用户设备接收来自于网络设备的DCI,该DCI调度多个PDSCH,此场景下,该DCI指示的k0值小于最小时隙间隔,且该DCI指示发送PDSCH的时隙均包含在上述N个时隙中。
在多时隙PDCCH监听方案中,用户终端在上述Y个连续时隙上,需要保持唤醒状态以保证对PDCCH的监听。在上述实施方式中,DCI指示发送PDSCH的时隙包含在Y个连续时隙中,这样在调度的PDSCH处于在该Y个连续时隙的情况下,用户设备可以在接收PDCCH的同时接收PDSCH。因此,可以在多时隙PDCCH监听方案中实现功率节省的目的。
本公开实施例提供了一种信息接收方法,其被用户设备执行。该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行该方法包括:
响应于网络设备为所述用户设备配置多时隙物理下行控制信道PDCCH监听能力,接收来自于所述网络设备的下行控制信息DCI,其中,所述多时隙PDCCH监听能力表示在一个包括X个时隙的监听单元中,存在Y个用于传输所述PDCCH的连续时隙,所述DCI指示的k0值小于最小时隙间隔,且所述DCI指示发送物理下行共享信道PDSCH的时隙包含在所述Y个连续时隙中;
其中,所述k0为传输所述DCI的时隙与传输所述DCI调度的PDSCH的时隙之间的 时隙间隔,所述最小时隙间隔为传输所述DCI的时隙与传输所述PDSCH的时隙之间的最小时隙间隔,所述最小时隙间隔基于通信协议确定和/或通过网络设备信令配置,所述X和Y均为大于1的正整数,且X≥Y。
在一个实施方式中,网络设备为用户设备配置多时隙PDCCH监听能力,该多时隙PDCCH监听能力表示在一个包括X个时隙的监听单元中,存在Y个用于传输PDCCH的连续时隙。在该场景下,用户设备接收来自于网络设备的DCI,该DCI指示的k0值小于最小时隙间隔,且该DCI指示发送PDSCH的时隙包含在Y个连续时隙中。其中,最小时隙间隔基于通信协议确定。
在一个实施方式中,网络设备为用户设备配置多时隙PDCCH监听能力,该多时隙PDCCH监听能力表示在一个包括X个时隙的监听单元中,存在Y个用于传输PDCCH的连续时隙。在该场景下,用户设备接收来自于网络设备的DCI,该DCI指示的k0值小于最小时隙间隔,且该DCI指示发送PDSCH的时隙包含在Y个连续时隙中。其中,最小时隙间隔通过网络设备信令配置。
在一个实施方式中,网络设备为用户设备配置多时隙PDCCH监听能力,该多时隙PDCCH监听能力表示在一个包括X个时隙的监听单元中,存在Y个用于传输PDCCH的连续时隙。在该场景下,用户设备接收来自于网络设备的DCI,该DCI指示的k0值小于最小时隙间隔,且该DCI指示发送PDSCH的时隙包含在Y个连续时隙中。其中,最小时隙间隔基于通信协议以及通过网络设备信令配置。
在多时隙PDCCH监听方案中,用户终端在上述Y个连续时隙上,需要保持唤醒状态以保证对PDCCH的监听。在上述实施方式中,DCI指示发送PDSCH的时隙包含在Y个连续时隙中,这样在调度的PDSCH处于在该Y个连续时隙的情况下,用户设备可以在接收PDCCH的同时接收PDSCH。因此,可以在多时隙PDCCH监听方案中实现功率节省的目的。
本公开实施例提供了一种信息接收方法,其被用户设备执行。该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。图5是根据一示例性实施例示出的一种信息接收方法的流程图,如图5所示,该方法包括:
步骤501,响应于网络设备为所述用户设备配置多时隙物理下行控制信道PDCCH监听能力,接收来自于所述网络设备的下行控制信息DCI,其中,所述多时隙PDCCH监听能力表示在一个包括X个时隙的监听单元中,存在Y个用于传输所述PDCCH的连续时隙, 所述DCI指示的k0值小于最小时隙间隔,且所述DCI指示发送物理下行共享信道PDSCH的时隙包含在所述Y个连续时隙中;
步骤502,基于所述DCI,接收所述PDSCH;
其中,所述k0为传输所述DCI的时隙与传输所述DCI调度的PDSCH的时隙之间的时隙间隔,所述最小时隙间隔为传输所述DCI的时隙与传输所述PDSCH的时隙之间的最小时隙间隔,所述X和Y均为大于1的正整数,且X≥Y。
在一个实施方式中,网络设备为用户设备配置多时隙PDCCH监听能力,该多时隙PDCCH监听能力表示在一个包括X个时隙的监听单元中,存在Y个用于传输PDCCH的连续时隙。在该场景下,用户设备接收来自于网络设备的DCI,该DCI指示的k0值小于最小时隙间隔,且该DCI指示发送PDSCH的时隙包含在Y个连续时隙中。然后,用户设备基于该DCI指示的PDSCH的时隙,接收PDSCH。
在一个实施方式中,网络设备为用户设备配置多时隙PDCCH监听能力,该多时隙PDCCH监听能力表示在一个包括X个时隙的监听单元中,存在Y个用于传输PDCCH的连续时隙,并且Y个连续时隙中的N个时隙配置有搜索空间。在该场景下,用户设备接收来自于网络设备的DCI,该DCI指示的k0值小于最小时隙间隔,且该DCI指示发送PDSCH的时隙包含在N个时隙中。然后,用户设备基于该DCI指示的PDSCH的时隙,接收PDSCH。
在一个实施方式中,网络设备为用户设备配置多时隙PDCCH监听能力,该多时隙PDCCH监听能力表示在一个包括X个时隙的监听单元中,存在Y个用于传输PDCCH的连续时隙。在该场景下,用户设备接收来自于网络设备的DCI,该DCI调度多个PDSCH,此场景下,该DCI指示的k0值小于最小时隙间隔,且该DCI指示发送多个PDSCH的时隙均包含在Y个连续时隙中。然后,用户设备基于该DCI指示的该多个PDSCH的时隙,接收该多个PDSCH。
在一个实施方式中,网络设备为用户设备配置多时隙PDCCH监听能力,该多时隙PDCCH监听能力表示在一个包括X个时隙的监听单元中,存在Y个用于传输PDCCH的连续时隙,并且Y个连续时隙中的N个时隙配置有搜索空间。在该场景下,用户设备接收来自于网络设备的DCI,该DCI调度多个PDSCH,此场景下,该DCI指示的k0值小于最小时隙间隔,且该DCI指示发送多个PDSCH的时隙均包含在N个时隙中。然后,用户设备基于该DCI指示的该多个PDSCH的时隙,接收该多个PDSCH。
在多时隙PDCCH监听方案中,用户终端在上述Y个连续时隙上,需要保持唤醒状态以保证对PDCCH的监听。在上述实施方式中,DCI指示发送PDSCH的时隙包含在Y个 连续时隙中,这样在调度的PDSCH处于在该Y个连续时隙的情况下,用户设备可以在接收PDCCH的同时接收PDSCH。因此,可以在多时隙PDCCH监听方案中实现功率节省的目的。
本公开实施例提供了一种信息接收方法,其被用户设备执行。该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。该方法包括:
响应于网络设备为所述用户设备配置多时隙物理下行控制信道PDCCH监听能力,接收来自于所述网络设备的下行控制信息DCI,其中,所述多时隙PDCCH监听能力表示在一个包括X个时隙的监听单元中,存在Y个用于传输所述PDCCH的连续时隙,所述DCI指示的k0值小于最小时隙间隔,且所述DCI指示发送物理下行共享信道PDSCH的时隙包含在所述Y个连续时隙中;
其中,所述k0为传输所述DCI的时隙与传输所述DCI调度的PDSCH的时隙之间的时隙间隔,所述最小时隙间隔为传输所述DCI的时隙与传输所述PDSCH的时隙之间的最小时隙间隔,所述X和Y均为大于1的正整数,且X≥Y。
在一个实施方式中,网络设备为用户设备配置多时隙PDCCH监听能力,该多时隙PDCCH监听能力表示在一个包括X个时隙的监听单元中,存在Y个用于传输PDCCH的连续时隙。其中,网络设备为用户设备配置的多时隙PDCCH监听能力采用基于上述提到的固定模式的多时隙组。在该场景下,用户设备接收来自于网络设备的DCI,该DCI指示的k0值小于最小时隙间隔,且该DCI指示发送PDSCH的时隙包含在Y个连续时隙中。
在一个实施方式中,网络设备为用户设备配置多时隙PDCCH监听能力,该多时隙PDCCH监听能力表示在一个包括X个时隙的监听单元中,存在Y个用于传输PDCCH的连续时隙。其中,网络设备为用户设备配置的多时隙PDCCH监听能力采用基于上述提到的固定模式的多时隙组。其中,Y个连续时隙中的N个时隙配置有搜索空间。在该场景下,用户设备接收来自于网络设备的DCI,该DCI指示的k0值小于最小时隙间隔,且该DCI指示发送PDSCH的时隙包含在N个时隙中。
在多时隙PDCCH监听方案中,用户终端在上述Y个连续时隙上,需要保持唤醒状态以保证对PDCCH的监听。在上述实施方式中,DCI指示发送PDSCH的时隙包含在Y个连续时隙中,这样在调度的PDSCH处于在该Y个连续时隙的情况下,用户设备可以在接收PDCCH的同时接收PDSCH。因此,可以在多时隙PDCCH监听方案中实现功率节省的目的。
本公开实施例提供了一种信息接收方法,其被用户设备执行。该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。该方法包括:
响应于网络设备为所述用户设备配置多时隙物理下行控制信道PDCCH监听能力,接收来自于所述网络设备的下行控制信息DCI,其中,所述多时隙PDCCH监听能力表示在一个包括X个时隙的监听单元中,并且该监听单元包括M个时隙,M>X,存在Y个用于传输所述PDCCH的连续时隙,所述DCI指示的k0值小于最小时隙间隔,且所述DCI指示发送物理下行共享信道PDSCH的时隙包含在所述Y个连续时隙中;
其中,所述k0为传输所述DCI的时隙与传输所述DCI调度的PDSCH的时隙之间的时隙间隔,所述最小时隙间隔为传输所述DCI的时隙与传输所述PDSCH的时隙之间的最小时隙间隔,所述X、Y和M均为大于1的正整数,且X≥Y,M>X。
在一个实施方式中,网络设备为用户设备配置多时隙PDCCH监听能力,该多时隙PDCCH监听能力表示在一个包括M个时隙的监听单元中,存在Y个用于传输PDCCH的连续时隙。其中,网络设备为用户设备配置的多时隙PDCCH监听能力采用基于上述提到的跨度模式的多时隙组跨度。在该场景下,用户设备接收来自于网络设备的DCI,该DCI指示的k0值小于最小时隙间隔,且该DCI指示发送PDSCH的时隙包含在Y个连续时隙中。
在一个实施方式中,网络设备为用户设备配置多时隙PDCCH监听能力,该多时隙PDCCH监听能力表示在一个包括M个时隙的监听单元中,存在Y个用于传输PDCCH的连续时隙。其中,网络设备为用户设备配置的多时隙PDCCH监听能力采用基于上述提到的跨度模式的多时隙组跨度。其中,Y个连续时隙中的N个时隙配置有搜索空间。在该场景下,用户设备接收来自于网络设备的DCI,该DCI指示的k0值小于最小时隙间隔,且该DCI指示发送PDSCH的时隙包含在N个时隙中。
在多时隙PDCCH监听方案中,用户终端在上述Y个连续时隙上,需要保持唤醒状态以保证对PDCCH的监听。在上述实施方式中,DCI指示发送PDSCH的时隙包含在Y个连续时隙中,这样在调度的PDSCH处于在该Y个连续时隙的情况下,用户设备可以在接收PDCCH的同时接收PDSCH。因此,可以在多时隙PDCCH监听方案中实现功率节省的目的。
本公开实施例提供了一种信息传输装置,应用于网络设备,参照图6所示,包括:
处理模块601,被配置为响应于所述网络设备为用户设备配置多时隙物理下行控制信道PDCCH监听能力,生成下行控制信息DCI,其中,所述多时隙PDCCH监听能力表示在一个包括X个时隙的监听单元中,存在Y个用于传输PDCCH的连续时隙,所述DCI指示的k0值小于最小时隙间隔,且所述DCI指示发送物理下行共享信道PDSCH的时隙包含在所述Y个连续时隙中;
发送模块602,被配置为向用户设备发送所述DCI;
其中,所述k0为传输所述DCI的时隙与传输所述DCI调度的PDSCH的时隙之间的时隙间隔,所述最小时隙间隔为传输所述DCI的时隙与传输所述PDSCH的时隙之间的最小时隙间隔,所述X和Y均为大于1的正整数,且X≥Y。
本公开实施例提供了一种信息接收装置,应用于用户设备,参照图7所示,包括:
接收模块701,被配置为响应于网络设备为所述用户设备配置多时隙物理下行控制信道PDCCH监听能力,接收来自于所述网络设备的下行控制信息DCI,其中,所述多时隙PDCCH监听能力表示在一个包括X个时隙的监听单元中,存在Y个用于传输所述PDCCH的连续时隙,所述DCI指示的k0值小于最小时隙间隔,且所述DCI指示发送物理下行共享信道PDSCH的时隙包含在所述Y个连续时隙中;
其中,所述k0为传输所述DCI的时隙与传输所述DCI调度的PDSCH的时隙之间的时隙间隔,所述最小时隙间隔为传输所述DCI的时隙与传输所述PDSCH的时隙之间的最小时隙间隔,所述X和Y均为大于1的正整数,且X≥Y。
本公开实施例提供了一种网络侧设备,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为执行所述存储器中的可执行指令以实现上述信息传输方法的步骤。
本公开实施例提供了一种移动终端,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为执行所述存储器中的可执行指令以实现上述信息接收方法 的步骤。
本公开实施例提供了一种非临时性计算机可读存储介质,其上存储有可执行指令,该可执行指令被处理器执行时实现上述信息传输方法的步骤或者上述信息接收方法的步骤。
图8是根据一示例性实施例示出的一种用于信息接收装置800的框图。例如,装置800可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图8,装置800可以包括以下一个或多个组件:处理组件802,存储器804,电源组件806,多媒体组件808,音频组件810,输入/输出(I/O)的接口812,传感器组件814,以及通信组件816。
处理组件802通常控制装置800的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件802可以包括一个或多个处理器820来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件802可以包括一个或多个模块,便于处理组件802和其他组件之间的交互。例如,处理组件802可以包括多媒体模块,以方便多媒体组件808和处理组件802之间的交互。
存储器804被配置为存储各种类型的数据以支持在设备800的操作。这些数据的示例包括用于在装置800上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器804可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件806为装置800的各种组件提供电力。电源组件806可以包括电源管理系统,一个或多个电源,及其他与为装置800生成、管理和分配电力相关联的组件。
多媒体组件808包括在所述装置800和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件808包括一个前置摄像头和/或后置摄像头。当设备800处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄 像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件810被配置为输出和/或输入音频信号。例如,音频组件810包括一个麦克风(MIC),当装置800处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器804或经由通信组件816发送。在一些实施例中,音频组件810还包括一个扬声器,用于输出音频信号。
I/O接口812为处理组件802和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件814包括一个或多个传感器,用于为装置800提供各个方面的状态评估。例如,传感器组件814可以检测到设备800的打开/关闭状态,组件的相对定位,例如所述组件为装置800的显示器和小键盘,传感器组件814还可以检测装置800或装置800一个组件的位置改变,用户与装置800接触的存在或不存在,装置800方位或加速/减速和装置800的温度变化。传感器组件814可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件814还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件814还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件816被配置为便于装置800和其他设备之间有线或无线方式的通信。装置800可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件816经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件816还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置800可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器804,上述指令可由装置800的处理器820执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
图9是根据一示例性实施例示出的一种信息传输装置900的框图。例如,装置900可以被提供为一基站。参照图9,装置900包括处理组件922,其进一步包括一个或多个处理器,以及由存储器932所代表的存储器资源,用于存储可由处理组件922的执行的指令,例如应用程序。存储器932中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件922被配置为执行指令,以执行上述非授权信道的接入方法。
装置900还可以包括一个电源组件926被配置为执行装置900的电源管理,一个有线或无线网络接口950被配置为将装置900连接到网络,和一个输入输出(I/O)接口959。装置900可以操作基于存储在存储器932的操作系统,例如Windows ServerTM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM或类似。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开实施例的其它实施方案。本申请旨在涵盖本公开实施例的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开实施例的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开实施例的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开实施例并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开实施例的范围仅由所附的权利要求来限制。
工业实用性
本公开中DCI指示发送PDSCH的时隙包含在Y个连续时隙中,这样在调度的PDSCH处于在该Y个连续时隙的情况下,用户设备可以在接收PDCCH的同时接收PDSCH。因此,可以在多时隙PDCCH监听方案中实现功率节省的目的。

Claims (21)

  1. 一种信息传输方法,所述方法被网络设备执行,包括:
    响应于所述网络设备为用户设备配置多时隙物理下行控制信道PDCCH监听能力,生成下行控制信息DCI,其中,所述多时隙PDCCH监听能力表示在一个包括X个时隙的监听单元中,存在Y个用于传输PDCCH的连续时隙,所述DCI指示的k0值小于最小时隙间隔,且所述DCI指示发送物理下行共享信道PDSCH的时隙包含在所述Y个连续时隙中;
    向用户设备发送所述DCI;
    其中,所述k0为传输所述DCI的时隙与传输所述DCI调度的PDSCH的时隙之间的时隙间隔,所述最小时隙间隔为传输所述DCI的时隙与传输所述PDSCH的时隙之间的最小时隙间隔,所述X和Y均为大于1的正整数,且X≥Y。
  2. 如权利要求1所述的方法,其中,所述响应于所述网络设备为用户设备配置多时隙PDCCH监听能力,生成下行控制信息DCI,包括:
    响应于所述网络设备为所述用户设备配置多时隙PDCCH监听能力,且响应于所述Y个连续时隙中的N个时隙配置有搜索空间,生成所述DCI,所述DCI指示发送所述PDSCH的时隙包含在所述N个时隙中;
    其中,N为大于或等于1的正整数,且N≤Y。
  3. 如权利要求1所述的方法,其中,在所述DCI调度多个PDSCH的场景下,所述DCI指示发送所述多个PDSCH的时隙均包含在所述Y个连续时隙中。
  4. 如权利要求2所述的方法,其中,在所述DCI调度多个PDSCH的场景下,所述DCI指示发送所述多个PDSCH的时隙均包含在所述N个时隙中。
  5. 如权利要求1所述的方法,其中,所述最小时隙间隔基于通信协议确定和/或通过网络设备信令配置。
  6. 如权利要求1所述的方法,其中,所述方法还包括:
    基于所述DCI,发送所述PDSCH。
  7. 如权利要求1所述的方法,其中,所述多时隙PDCCH监听能力表示在一个包括X个时隙的监听单元中,存在Y个用于传输PDCCH的连续时隙。
  8. 如权利要求1所述的方法,其中,所述多时隙PDCCH监听能力表示在一个包括M个时隙的监听单元中,存在Y个用于传输PDCCH的连续时隙;
    其中,所述M为大于1的正整数,且M>X。
  9. 一种信息接收方法,所述方法被用户设备执行,包括:
    响应于网络设备为所述用户设备配置多时隙物理下行控制信道PDCCH监听能力,接收来自于所述网络设备的下行控制信息DCI,其中,所述多时隙PDCCH监听能力表示在一个包括X个时隙的监听单元中,存在Y个用于传输所述PDCCH的连续时隙,所述DCI指示的k0值小于最小时隙间隔,且所述DCI指示发送物理下行共享信道PDSCH的时隙包含在所述Y个连续时隙中;
    其中,所述k0为传输所述DCI的时隙与传输所述DCI调度的PDSCH的时隙之间的时隙间隔,所述最小时隙间隔为传输所述DCI的时隙与传输所述PDSCH的时隙之间的最小时隙间隔,所述X和Y均为大于1的正整数,且X≥Y。
  10. 如权利要求9所述的方法,其中,在所述Y个连续时隙中的N个时隙配置有搜索空间的场景下,所述DCI指示发送所述PDSCH的时隙包含在所述N个时隙中;
    其中,N为大于或等于1的正整数,且N≤Y。
  11. 如权利要求9所述的方法,其中,在所述DCI调度多个PDSCH的场景下,所述DCI指示发送所述多个PDSCH的时隙均包含在所述Y个连续时隙中。
  12. 如权利要求10所述的方法,其中,在所述DCI调度多个PDSCH的场景下,所述DCI指示发送所述多个PDSCH的时隙均包含在所述N个时隙中。
  13. 如权利要求9所述的方法,其中,所述最小时隙间隔基于通信协议确定和/或通过网络设备信令配置。
  14. 如权利要求9所述的方法,其中,所述方法还包括:
    基于所述DCI,接收所述PDSCH。
  15. 如权利要求9所述的方法,其中,所述多时隙PDCCH监听能力表示在一个包括X个时隙的监听单元中,存在Y个用于传输PDCCH的连续时隙。
  16. 如权利要求9所述的方法,其中,所述多时隙PDCCH监听能力表示在一个包括M个时隙的监听单元中,存在Y个用于传输PDCCH的连续时隙;
    其中,所述M为大于1的正整数,且M>X。
  17. 一种信息传输装置,应用于网络设备,包括:
    处理模块,被配置为响应于所述网络设备为用户设备配置多时隙物理下行控制信道PDCCH监听能力,生成下行控制信息DCI,其中,所述多时隙PDCCH监听能力表示在一个包括X个时隙的监听单元中,存在Y个用于传输PDCCH的连续时隙,所述DCI指示的k0值小于最小时隙间隔,且所述DCI指示发送物理下行共享信道PDSCH的时隙包含在 所述Y个连续时隙中;
    发送模块,被配置为向用户设备发送所述DCI;
    其中,所述k0为传输所述DCI的时隙与传输所述DCI调度的PDSCH的时隙之间的时隙间隔,所述最小时隙间隔为传输所述DCI的时隙与传输所述PDSCH的时隙之间的最小时隙间隔,所述X和Y均为大于1的正整数,且X≥Y。
  18. 一种信息接收装置,应用于用户设备,包括:
    接收模块,被配置为响应于网络设备为所述用户设备配置多时隙物理下行控制信道PDCCH监听能力,接收来自于所述网络设备的下行控制信息DCI,其中,所述多时隙PDCCH监听能力表示在一个包括X个时隙的监听单元中,存在Y个用于传输所述PDCCH的连续时隙,所述DCI指示的k0值小于最小时隙间隔,且所述DCI指示发送物理下行共享信道PDSCH的时隙包含在所述Y个连续时隙中;
    其中,所述k0为传输所述DCI的时隙与传输所述DCI调度的PDSCH的时隙之间的时隙间隔,所述最小时隙间隔为传输所述DCI的时隙与传输所述PDSCH的时隙之间的最小时隙间隔,所述X和Y均为大于1的正整数,且X≥Y。
  19. 一种网络侧设备,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为执行所述存储器中的可执行指令以实现权利要求1-8中任一项所述的信息传输方法的步骤。
  20. 一种移动终端,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为执行所述存储器中的可执行指令以实现权利要求9-16中任一项所述的信息接收方法的步骤。
  21. 一种非临时性计算机可读存储介质,其上存储有可执行指令,该可执行指令被处理器执行时实现权利要求1-8中任一项所述的信息传输方法的步骤或者权利要求9-16中任一项所述的信息接收方法的步骤。
PCT/CN2021/125827 2021-10-22 2021-10-22 一种信息传输和接收方法、装置、设备及存储介质 WO2023065331A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/125827 WO2023065331A1 (zh) 2021-10-22 2021-10-22 一种信息传输和接收方法、装置、设备及存储介质
CN202180003319.8A CN116368870A (zh) 2021-10-22 2021-10-22 一种信息传输和接收方法、装置、设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/125827 WO2023065331A1 (zh) 2021-10-22 2021-10-22 一种信息传输和接收方法、装置、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2023065331A1 true WO2023065331A1 (zh) 2023-04-27

Family

ID=86058765

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/125827 WO2023065331A1 (zh) 2021-10-22 2021-10-22 一种信息传输和接收方法、装置、设备及存储介质

Country Status (2)

Country Link
CN (1) CN116368870A (zh)
WO (1) WO2023065331A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102647791A (zh) * 2011-02-22 2012-08-22 华为技术有限公司 下行控制消息的发送、接收方法及装置
CN110351016A (zh) * 2018-04-04 2019-10-18 展讯通信(上海)有限公司 下行控制信息的传输方法及装置
US20200029323A1 (en) * 2016-09-30 2020-01-23 Telefonaktiebolaget Lm Ericsson (Publ) Scheduled UCI Transmission Scheme
CN113453322A (zh) * 2020-03-27 2021-09-28 展讯通信(上海)有限公司 物理下行控制信道监听方法、用户终端及可读存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102647791A (zh) * 2011-02-22 2012-08-22 华为技术有限公司 下行控制消息的发送、接收方法及装置
US20200029323A1 (en) * 2016-09-30 2020-01-23 Telefonaktiebolaget Lm Ericsson (Publ) Scheduled UCI Transmission Scheme
CN110351016A (zh) * 2018-04-04 2019-10-18 展讯通信(上海)有限公司 下行控制信息的传输方法及装置
CN113453322A (zh) * 2020-03-27 2021-09-28 展讯通信(上海)有限公司 物理下行控制信道监听方法、用户终端及可读存储介质

Also Published As

Publication number Publication date
CN116368870A (zh) 2023-06-30

Similar Documents

Publication Publication Date Title
US11844136B2 (en) Discontinuous reception (DRX) parameter configuration method and device
US11924869B2 (en) Method and device for configuration and adjusting search space parameter
CN106604376B (zh) 信道监听控制方法、装置和用户终端
US20230059900A1 (en) Transmitting method and device and receiving method and device
WO2023044624A1 (zh) 一种bwp切换方法、装置及存储介质
WO2019232807A1 (zh) 下行控制信令检测方法、装置及存储介质
WO2019227318A1 (zh) 物理下行控制信道监测配置、监测方法及装置和基站
US20220015185A1 (en) Timer control method and apparatus, electronic device and computer readable storage medium
WO2022151280A1 (zh) 一种通信方法、装置及存储介质
CN111147210B (zh) 状态转换方法及装置
US11496281B2 (en) Method and device for indicating transmission direction
WO2023123123A1 (zh) 一种频域资源确定方法、装置及存储介质
WO2023065331A1 (zh) 一种信息传输和接收方法、装置、设备及存储介质
WO2023015535A1 (zh) 一种执行小数据包传输和确定随机接入消息传输方式的方法、装置、设备及存储介质
WO2022151342A1 (zh) 一种上报方法、发送方法、装置、设备及存储介质
WO2020133200A1 (zh) 载波配置方法及装置
WO2020154974A1 (zh) 检测下行传输、传输配置信息和下行传输的方法及装置
WO2023133768A1 (zh) 一种信息传输和接收方法、装置、设备及存储介质
WO2023060553A1 (zh) 一种传输和接收节能指示信息的方法、装置、设备及存储介质
WO2022006813A1 (zh) 盲检能力优化方法和装置
WO2022188067A1 (zh) 一种发送、接收下行控制信道的方法、装置、设备及介质
WO2023082111A1 (zh) 一种信息传输和接收方法、装置、设备及存储介质
WO2022188074A1 (zh) 一种配置、确定下行调度信息的方法、装置、设备及介质
WO2023039889A1 (zh) 一种传输和获取调度信息的方法、装置、设备及存储介质
WO2023130395A1 (zh) 一种信道监听方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21961075

Country of ref document: EP

Kind code of ref document: A1