WO2022006813A1 - 盲检能力优化方法和装置 - Google Patents

盲检能力优化方法和装置 Download PDF

Info

Publication number
WO2022006813A1
WO2022006813A1 PCT/CN2020/101086 CN2020101086W WO2022006813A1 WO 2022006813 A1 WO2022006813 A1 WO 2022006813A1 CN 2020101086 W CN2020101086 W CN 2020101086W WO 2022006813 A1 WO2022006813 A1 WO 2022006813A1
Authority
WO
WIPO (PCT)
Prior art keywords
blind detection
control channel
downlink control
detection capability
physical downlink
Prior art date
Application number
PCT/CN2020/101086
Other languages
English (en)
French (fr)
Inventor
付婷
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2020/101086 priority Critical patent/WO2022006813A1/zh
Priority to EP20944746.5A priority patent/EP4181444A4/en
Priority to CN202080001450.6A priority patent/CN114208088A/zh
Priority to US18/003,092 priority patent/US20230261783A1/en
Publication of WO2022006813A1 publication Critical patent/WO2022006813A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0036Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the receiver
    • H04L1/0038Blind format detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular, to a method for optimizing blind detection capability, an apparatus for optimizing blind detection capability, an electronic device, and a computer-readable storage medium.
  • the terminal can perform blind detection on the Physical Downlink Control Channel (PDCCH).
  • DCI Downlink Control Information
  • the blind detection capability of the terminal is defined for each time slot slot, but there are some problems in this configuration.
  • the terminal and the base station mainly communicate in the frequency band below 52.6GHz.
  • the subcarrier spacing (SCS) of the communication can be 15kHz, 30kHz, 60kHz, 120kHz, and a time slot is The length on the field is related to the subcarriers. For example, when the subcarrier spacing is 15kHz, one time slot is 1ms, when the subcarrier spacing is 30kHz, one time slot is 0.5ms, and when the subcarrier spacing is 60kHz, one time slot is 0.25ms, that is, the subcarrier spacing The larger the size, the shorter the length of the time slot in the time domain.
  • the terminal and the base station also need to communicate in the frequency band above 60GHz, and in the high frequency band, in order to cope with the phase noise, the subcarrier spacing needs to be expanded, for example, the subcarrier spacing is 960kHz.
  • a The time slot is 0.015625ms or 1/64ms.
  • the length of a time slot is much less than 1ms.
  • the processing capability of the terminal is limited.
  • Uplink Shared Channel Physical Uplink Shared Channel, PUSCH for short
  • Physical Downlink Shared Channel Physical Downlink Shared Channel, PDSCH for short
  • the base station may not configure the physical downlink carrying downlink control information in each time slot in this case. control channel.
  • the blind detection capability of the terminal in the case that the blind detection capability of the terminal is limited for each time slot, the blind detection capability of the terminal must be dispersed in each time slot, so that the terminal cannot concentrate the blind detection capability only on the configuration with the physical downlink control channel. Blind detection of the time slot will waste the computing resources of the terminal.
  • embodiments of the present disclosure propose a method for optimizing blind detection capability, an apparatus for optimizing blind detection capability, an electronic device, and a computer-readable storage medium, so as to solve technical problems in the related art.
  • a method for optimizing blind detection capability is proposed, which is applicable to a terminal, and the method includes:
  • the blind detection capability information includes the maximum number of physical downlink control channel (PDCCH) candidates detected in every n timeslots under the first subcarrier interval, and/or under the first subcarrier interval
  • the first subcarrier interval is greater than 120KHz.
  • the first subcarrier spacing is one of the following:
  • the blind detection capability information further includes the maximum number of physical downlink control channel candidates detected in each time slot under the second subcarrier interval, and/or the non-overlapping control channel in each time slot under the second subcarrier interval.
  • the second subcarrier spacing is one of the following:
  • the method further includes:
  • the downlink control information is blindly detected in the physical downlink control channel of the target time slot according to the blind detection capability information.
  • the resource information includes a control resource set and a search space.
  • an apparatus for optimizing blind detection capability which is applicable to a terminal, and the apparatus includes:
  • a capability determination module configured to determine blind detection capability information, wherein the blind detection capability information includes the maximum number of physical downlink control channel candidates detected in every n time slots under the first subcarrier interval, and/or the first subcarrier The maximum number of non-overlapping control channel elements per n timeslots under carrier spacing, where n is an integer greater than 1.
  • the first subcarrier interval is greater than 120KHz.
  • the first subcarrier spacing is one of the following:
  • the blind detection capability information further includes the maximum number of physical downlink control channel candidates detected in each time slot under the second subcarrier interval, and/or the non-overlapping control channel in each time slot under the second subcarrier interval.
  • the second subcarrier spacing is one of the following:
  • the device further includes:
  • an information receiving module configured to receive resource information of the physical downlink control channel sent by the base station
  • a time slot determination module configured to determine, according to the resource information, a target time slot where the physical downlink control channel is located in the n time slots;
  • the information determination module is configured to blindly detect downlink control information in the physical downlink control channel of the target time slot according to the blind detection capability information.
  • the resource information includes a control resource set and a search space.
  • an electronic device including:
  • memory for storing processor-executable instructions
  • the processor is configured to implement the method described in any of the above embodiments.
  • a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, implements the steps in the method described in any of the foregoing embodiments.
  • the terminal can flexibly apply the blind detection capability in the n time slots according to the actual situation.
  • a physical downlink control channel is configured in the target time slot, all blind detection capabilities can be applied to the target time slot, then a maximum of 16 physical downlink control channel candidates can be detected in the target time slot, and the maximum number of non-overlapping control channel units is 20. Accordingly, the blind detection capability is not easily wasted, and the number of physical downlink control channel candidates to be detected in the target time slot is sufficient, which is beneficial to the detection of the physical downlink control channel carrying the downlink control information.
  • FIG. 1 is a schematic flowchart of a method for optimizing blind detection capability according to an embodiment of the present disclosure.
  • FIGS. 2A and 2B are schematic diagrams of blind detection capability information in the related art.
  • 3A and 3B are schematic diagrams illustrating blind detection capability information according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic flowchart of another method for optimizing blind detection capability according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic block diagram of an apparatus for optimizing blind detection capability according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic block diagram of another apparatus for optimizing blind detection capability according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic block diagram of an apparatus for optimizing blind detection capability according to an embodiment of the present disclosure.
  • FIG. 1 is a schematic flowchart of a method for optimizing blind detection capability according to an embodiment of the present disclosure.
  • the method shown in this embodiment can be applied to a terminal.
  • the terminal can be used as user equipment to communicate with a base station.
  • the base station can be a 5G base station.
  • the terminal includes but is not limited to mobile phones, tablet computers, wearable devices, sensors, Electronic devices such as IoT devices.
  • the blind detection capability optimization method may include the following steps:
  • step S101 determine blind detection capability information, wherein the blind detection capability information includes the maximum number of physical downlink control channel candidates detected in every n time slots under the first subcarrier interval, and/or the first subcarrier interval The maximum number of non-overlapping control channel elements per n timeslots, where n is an integer greater than 1.
  • the maximum number of non-overlapping control channel elements per n timeslots under the first subcarrier interval can be blindly detected every n timeslots under the first subcarrier interval.
  • the blind detection capability information determined by the terminal may be pre-stored in the terminal, for example, in information pre-specified in a communication protocol between the terminal and the base station.
  • the blind detection capability information may mainly include two aspects: on the one hand, the maximum number of physical downlink control channel candidates detected in every n time slots under the first subcarrier interval, and on the other hand, under the first subcarrier interval, every n time slots The maximum number of non-overlapping control channel elements of n slots, where n is an integer greater than 1.
  • the maximum number of physical downlink control channel candidates detected in each time slot may be as shown in FIG. 2A .
  • the maximum number of non-overlapping control channel elements per slot may be as shown in Figure 3B.
  • the maximum number of physical downlink control channel candidates detected in every n time slots under the first subcarrier interval may be stored in the terminal in the form of a table, as shown in FIG. 3A .
  • the maximum number of non-overlapping control channel elements per n timeslots under the first subcarrier interval may be stored in the terminal in the form of a table as shown in FIG. 3B .
  • the blind detection capability information of the terminal is defined for each time slot.
  • the subcarrier spacing is 15 kHz
  • the maximum number of physical downlink control channel candidates detected in each time slot is 44
  • the maximum number of non-overlapping control channel units in each time slot is 56.
  • 3A and 3B only show the cases where ⁇ is 4, 5, 6, that is, the subcarrier spacing is 240 kHz, 480 kHz, 960 kHz, and for the cases where ⁇ is 0, 1, 2, and 3, it can be configured as required .
  • the specific numerical values A1, A2 and A3 in FIG. 3A and the specific numerical values B1, B2 and B3 in FIG. 3B can be set according to actual conditions.
  • n can be different or the same; for different subcarrier intervals, the maximum number of physical downlink control channel candidates detected in every n time slots can be different or the same; for different subcarriers The interval, the maximum number of non-overlapping control channel elements per n timeslots, can be different or the same.
  • the maximum number of physical downlink control channel candidates detected every 4 timeslots is 16, and the maximum number of non-overlapping control channel elements every 4 timeslots is 20.
  • the configuration In each time slot the maximum number of physical downlink control channel candidates detected in each time slot is 4, and the maximum number of non-overlapping control channel units in each time slot is 5.
  • the terminal determines that the base station configures the physical downlink control channel in the target time slot among the four time slots.
  • the terminal can only detect at most 4 physical downlink control channel candidates in the target time slot, and the maximum number of non-overlapping control channel elements is 5. Since the blind detection capability is configured for each time slot, part of the blind detection capability is scattered in the time slots where the physical downlink control channel is not configured, which wastes the blind detection capability, and the number of physical downlink control channel candidates is detected in the target time slot. Too few, so that the base station can only select the time-frequency resources for carrying the scheduling DCI in a very limited time-frequency resource position, and it is difficult to gain sometimes frequency domain diversity. PDCCH is blocked. .
  • the terminal can flexibly apply the blind detection capability in the n time slots according to the actual situation.
  • the physical downlink control channel is configured in the target time slot, all blind detection capabilities can be applied to the target time slot, then a maximum of 16 physical downlink control channel candidates can be detected in the target time slot, and the maximum number of non-overlapping control channel units is 20. Accordingly, blind detection capability is not easily wasted, and the number of physical downlink control channel candidates to be detected in the target time slot is sufficient, which is beneficial to obtain time-frequency diversity gain and reduce the DCI blocking probability.
  • the number of target time slots may be less than n, or may be equal to n, which may be specifically determined according to the resource information of the physical downlink control channel configured by the base station.
  • the first subcarrier interval is greater than 120KHz.
  • the first subcarrier spacing is one of the following:
  • the range of the first subcarrier interval is not limited to the above-mentioned three intervals of 240KHz, 480KHz, and 960KHz, and can be adjusted as needed.
  • the first subcarrier interval can also include an interval smaller than 240KHz, and can also include an interval greater than 960KHz.
  • the interval can be specifically 1920KHz, etc.
  • the blind detection capability information determined by the terminal is as described in the foregoing embodiment, that is, under the first subcarrier interval, every n The maximum number of physical downlink control channel candidates per time slot is detected, and/or the maximum number of non-overlapping control channel elements per n time slots under the first subcarrier interval.
  • the processing capability of the terminal is difficult to schedule the physical downlink shared channel on each time slot.
  • the base station is more likely to target every n time slots.
  • Physical downlink control channel candidates are configured in the time slot. Therefore, the blind detection capability information determined by the terminal in this case may be configured for every n time slots, so that in the case of the above embodiment, all blind detection capabilities are applied to the target time slot.
  • the terminal may report the processing capability to the base station, so that the base station determines whether the physical downlink control channel candidate needs to be configured in the target time slot of every n time slots. For example, when the processing capability of the terminal is weak, the specific If the amount of data that can be processed per unit time is greater than the preset value, the base station configures physical downlink control channel candidates in the target time slot of every n time slots; Physical downlink control channel candidates are configured in the time slot. Specifically, the amount of data that can be processed per unit time may be less than the preset value.
  • the blind detection capability information further includes the maximum number of physical downlink control channel candidates detected in each time slot under the second subcarrier interval, and/or the non-overlapping control channel in each time slot under the second subcarrier interval.
  • the second subcarrier spacing is one of the following:
  • the second subcarrier interval and the first subcarrier interval in the above-mentioned embodiment are both the subcarrier interval for the communication between the terminal and the base station.
  • the subcarrier interval is fixed during a communication process.
  • the subcarrier interval may be different from the subcarrier interval in the previous communication.
  • the blind detection capability information determined by the terminal may be the maximum number of physical downlink control channel candidates detected in each time slot, and /or the maximum number of non-overlapping control channel elements per slot under the second subcarrier spacing.
  • the processing capability of the terminal is easy to schedule the physical downlink shared channel on each time slot.
  • the base station is more likely to target the target of each time slot Physical downlink control channel candidates are configured in the time slot. Therefore, the blind detection capability information determined by the terminal in this case may be configured for each time slot, and the terminal does not need to calculate how to allocate the blind detection capability in each time slot, which is beneficial to reduce the workload of the terminal.
  • FIG. 4 is a schematic flowchart of another method for optimizing blind detection capability according to an embodiment of the present disclosure. As shown in Figure 4, the method further includes:
  • step S102 the resource information of the physical downlink control channel sent by the base station is received; the resource information may be specifically composed of time domain resource information and frequency domain resource information.
  • step S103 the target time slot where the physical downlink control channel is located in the n time slots is determined according to the resource information
  • step S104 downlink control information is blindly detected in the physical downlink control channel of the target time slot according to the blind detection capability information.
  • the resource information includes a control resource set and a search space.
  • the base station may send resource information of the physical downlink control channel to the terminal, the resource information may include a control resource set CORESET and a search space Search Space, and the terminal may determine, according to the resource information, that the physical downlink control channel is in n time slots In the target time slot in the target time slot, the terminal can blindly detect downlink control information in the physical downlink control channel of the target time slot according to the blind detection capability information.
  • the resource information may include a control resource set CORESET and a search space Search Space
  • the terminal may determine, according to the resource information, that the physical downlink control channel is in n time slots In the target time slot in the target time slot, the terminal can blindly detect downlink control information in the physical downlink control channel of the target time slot according to the blind detection capability information.
  • the target time slot may be one time slot in every n time slots, or may be a plurality of time slots in every n time slots, and the target time slot is a plurality of time slots in every n time slots In the case of time slots, the terminal may equally divide the blind detection capability into each of the multiple time slots.
  • n 4
  • the target time slot is the 3rd time slot in every 4 time slots
  • the terminal can apply the full blind detection capability in the 3rd time slot in every 4 time slots, so that at the target time slot
  • the detection of a sufficient number of physical downlink control channel candidates in the slot is beneficial to the detection of the physical downlink control channel carrying the downlink control information.
  • n 4
  • the target timeslot is the 2nd and 3rd timeslots in every 4 timeslots
  • the terminal can evenly divide all blind detection capabilities into the 2nd and 3rd timeslots, so that in these two timeslots
  • the physical downlink control channel carrying the downlink control information has the same possibility to be detected in the target time slot.
  • the present disclosure also provides an embodiment of a blind detection capability optimization apparatus.
  • FIG. 5 is a schematic block diagram of an apparatus for optimizing blind detection capability according to an embodiment of the present disclosure.
  • the apparatus shown in this embodiment can be applied to a terminal, the terminal can be used as user equipment to communicate with a base station, the base station can be a 5G base station, and the terminal includes but is not limited to mobile phones, tablet computers, wearable devices, sensors, Electronic devices such as IoT devices.
  • the blind detection capability optimization device may include:
  • the capability determination module 101 is configured to determine blind detection capability information, wherein the blind detection capability information includes the maximum number of physical downlink control channel candidates detected in every n time slots under the first subcarrier interval, and/or the first The maximum number of non-overlapping control channel elements per n timeslots under subcarrier spacing, where n is an integer greater than 1.
  • the first subcarrier interval is greater than 120KHz.
  • the first subcarrier spacing is one of the following:
  • the blind detection capability information further includes the maximum number of physical downlink control channel candidates detected in each time slot under the second subcarrier interval, and/or the non-overlapping control channel in each time slot under the second subcarrier interval.
  • the second subcarrier spacing is one of the following:
  • FIG. 6 is a schematic block diagram of another apparatus for optimizing blind detection capability according to an embodiment of the present disclosure. As shown in Figure 6, the device further includes:
  • the information receiving module 102 is configured to receive the resource information of the physical downlink control channel sent by the base station;
  • a time slot determination module 103 configured to determine, according to the resource information, a target time slot where the physical downlink control channel is located in the n time slots;
  • the information determining module 104 is configured to blindly detect downlink control information in the physical downlink control channel of the target time slot according to the blind detection capability information.
  • the resource information includes a control resource set and a search space.
  • Embodiments of the present disclosure also provide an electronic device, including:
  • memory for storing processor-executable instructions
  • the processor is configured to implement the method described in any of the above embodiments.
  • Embodiments of the present disclosure also provide a computer-readable storage medium, on which a computer program is stored, and when the program is executed by a processor, implements the steps in the method described in any of the foregoing embodiments.
  • FIG. 7 is a schematic block diagram of an apparatus 700 for optimizing blind detection capability according to an embodiment of the present disclosure.
  • apparatus 700 may be a mobile phone, computer, digital broadcast terminal, messaging device, game console, tablet device, medical device, fitness device, personal digital assistant, and the like.
  • the apparatus 700 may include one or more of the following components: a processing component 702, a memory 704, a power supply component 706, a multimedia component 708, an audio component 710, an input/output (I/O) interface 712, a sensor component 714, And the communication component 716 .
  • the processing component 702 generally controls the overall operation of the device 700, such as operations associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 702 can include one or more processors 720 to execute instructions to perform all or some of the steps of the methods described above.
  • processing component 702 may include one or more modules to facilitate interaction between processing component 702 and other components.
  • processing component 702 may include a multimedia module to facilitate interaction between multimedia component 708 and processing component 702.
  • Memory 704 is configured to store various types of data to support operations at device 700 . Examples of such data include instructions for any application or method operating on device 700, contact data, phonebook data, messages, pictures, videos, and the like. Memory 704 may be implemented by any type of volatile or nonvolatile storage device or combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic or Optical Disk Magnetic Disk
  • Power supply assembly 706 provides power to the various components of device 700 .
  • Power components 706 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power to device 700 .
  • Multimedia component 708 includes screens that provide an output interface between the device 700 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from a user.
  • the touch panel includes one or more touch sensors to sense touch, swipe, and gestures on the touch panel. The touch sensor may not only sense the boundaries of a touch or swipe action, but also detect the duration and pressure associated with the touch or swipe action.
  • multimedia component 708 includes a front-facing camera and/or a rear-facing camera. When the apparatus 700 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera may receive external multimedia data.
  • Each of the front and rear cameras can be a fixed optical lens system or have focal length and optical zoom capability.
  • Audio component 710 is configured to output and/or input audio signals.
  • audio component 710 includes a microphone (MIC) that is configured to receive external audio signals when device 700 is in operating modes, such as calling mode, recording mode, and voice recognition mode.
  • the received audio signal may be further stored in memory 704 or transmitted via communication component 716 .
  • audio component 710 also includes a speaker for outputting audio signals.
  • the I/O interface 712 provides an interface between the processing component 702 and a peripheral interface module, which may be a keyboard, a click wheel, a button, or the like. These buttons may include, but are not limited to: home button, volume buttons, start button, and lock button.
  • Sensor assembly 714 includes one or more sensors for providing status assessment of various aspects of device 700 .
  • the sensor assembly 714 can detect the open/closed state of the device 700, the relative positioning of components, such as the display and keypad of the device 700, and the sensor assembly 714 can also detect a change in the position of the device 700 or a component of the device 700 , the presence or absence of user contact with the device 700 , the orientation or acceleration/deceleration of the device 700 and the temperature change of the device 700 .
  • Sensor assembly 714 may include a proximity sensor configured to detect the presence of nearby objects in the absence of any physical contact.
  • Sensor assembly 714 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor assembly 714 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Communication component 716 is configured to facilitate wired or wireless communication between apparatus 700 and other devices.
  • Device 700 may access wireless networks based on communication standards, such as WiFi, 2G or 3G, 4G LTE, 5G NR, or a combination thereof.
  • the communication component 716 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 716 also includes a near field communication (NFC) module to facilitate short-range communication.
  • the NFC module may be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • apparatus 700 may be implemented by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A gate array (FPGA), controller, microcontroller, microprocessor or other electronic component implementation is used to perform the above method.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor or other electronic component implementation is used to perform the above method.
  • non-transitory computer-readable storage medium including instructions, such as a memory 704 including instructions, executable by the processor 720 of the apparatus 700 to perform the method described above.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提出了盲检能力优化方法和装置、电子设备以及计算机可读存储介质。所述方法:确定盲检能力信息,其中,盲检能力信息包括第一子载波间隔下在每n个时隙检测物理下行控制信道候选的最大数目,第一子载波间隔下在每n个时隙非重叠控制信道单元的最大数目,n为大于1的整数。根据本公开的实施例,由于盲检能力是针对每n个时隙配置的,终端可以根据实际情况在n个时隙中灵活应用盲检能力,不易浪费盲检能力,并且在目标时隙内检测物理下行控制信道候选的数目足够多,有利于检测到承载了下行控制信息的物理下行控制信道。

Description

盲检能力优化方法和装置 技术领域
本公开涉及通信技术领域,具体而言,涉及盲检能力优化方法、及盲检能力优化装置、电子设备和计算机可读存储介质。
背景技术
在终端与基站的通信过程中,终端为了获取基站发送的下行控制信息(Downlink Control Information,简称DCI),可以对物理下行控制信道(Physical Downlink Control Channel,简称PDCCH)进行盲检。在相关技术中,终端的盲检能力是针对每个时隙slot限定的,但是如此配置存在一些问题。
具体在于,终端与基站主要在52.6GHz以下的频段中通信,在这种情况下,通信的子载波间隔(Subcarrier Spacing,简称SCS)可以为15kHz、30kHz、60kHz、120kHz,而一个时隙在时域上的长度与子载波是相关的。例如在子载波间隔为15kHz时,一个时隙为1ms,在子载波间隔为30kHz时,一个时隙为0.5ms,在子载波间隔为60kHz时,一个时隙为0.25ms,也即子载波间隔越大,时隙在时域上的长度越短。
但是随着频段的拓展,终端和基站也需要在60GHz以上的频段进行通信,而在高频段,为了应对相位噪声,需要扩大子载波间隔,例如子载波间隔为960kHz,在这种情况下,一个时隙为0.015625ms也即1/64ms。
可见,在高频段通信时,一个时隙的长度远小于1ms,然而终端的处理能力有限,在时隙极短的情况下,可能难以在每个时隙中都能根据下行控制信息来调度物理上行共享信道(Physical Uplink Shared Channel,简称PUSCH)/物理下行共享信道(Physical Downlink Shared Channel,简称PDSCH),那么基站在这种情况下可以不在每个时隙中都配置承载下行控制信息的物理下行控制信道。那么在终端的盲检能力是针对每个时隙限定的情况下,终端的盲检能力就必须分散使用在每个时隙中,导致终端不能将盲检能力仅集中在配置有物理下行控制信道的时隙进行盲检而浪费终端的计算资源。
发明内容
有鉴于此,本公开的实施例提出了盲检能力优化方法、及盲检能力优化装置、电子设备和计算机可读存储介质,以解决相关技术中的技术问题。
根据本公开实施例的第一方面,提出一种盲检能力优化方法,适用于终端,所述方法包括:
确定盲检能力信息,其中,所述盲检能力信息包括第一子载波间隔下在每n个时隙检测物理下行控制信道(PDCCH)候选的最大数目,和/或第一子载波间隔下在每n个时隙非重叠控制信道单元(CCE)的最大数目,n为大于1的整数。
可选地,所述第一子载波间隔大于120KHz。
可选地,所述第一子载波间隔为以下之一:
240KHz、480KHz、960KHz。
可选地,所述盲检能力信息还包括第二子载波间隔下在每个时隙检测物理下行控制信道候选的最大数目,和/或第二子载波间隔下在每个时隙非重叠控制信道单元的最大数目,其中,所述第二子载波间隔小于所述第一子载波间隔。
可选地,所述第二子载波间隔为以下之一:
15KHz、30KHz、60KHz、120KHz。
可选地,所述方法还包括:
接收基站发送的物理下行控制信道的资源信息;
根据所述资源信息确定所述物理下行控制信道在所述n个时隙中所处的目标时隙;
根据所述盲检能力信息在所述目标时隙的物理下行控制信道中盲检下行控制信息。
可选地,所述资源信息包括控制资源集和搜索空间。
根据本公开实施例的第二方面,提出一种盲检能力优化装置,适用于终端,所述装置包括:
能力确定模块,被配置为确定盲检能力信息,其中,所述盲检能力信息包括第一子载波间隔下在每n个时隙检测物理下行控制信道候选的最大数目,和/或第一子载 波间隔下在每n个时隙非重叠控制信道单元的最大数目,n为大于1的整数。
可选地,所述第一子载波间隔大于120KHz。
可选地,所述第一子载波间隔为以下之一:
240KHz、480KHz、960KHz。
可选地,所述盲检能力信息还包括第二子载波间隔下在每个时隙检测物理下行控制信道候选的最大数目,和/或第二子载波间隔下在每个时隙非重叠控制信道单元的最大数目,其中,所述第二子载波间隔小于所述第一子载波间隔。
可选地,所述第二子载波间隔为以下之一:
15KHz、30KHz、60KHz、120KHz。
可选地,所述装置还包括:
信息接收模块,被配置为接收基站发送的物理下行控制信道的资源信息;
时隙确定模块,被配置为根据所述资源信息确定所述物理下行控制信道在所述n个时隙中所处的目标时隙;
信息确定模块,被配置为根据所述盲检能力信息在所述目标时隙的物理下行控制信道中盲检下行控制信息。
可选地,所述资源信息包括控制资源集和搜索空间。
根据本公开实施例的第二方面,提出一种电子设备,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为实现上述任一实施例所述的方法。
根据本公开实施例的第二方面,提出一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述任一实施例所述方法中的步骤。
根据本公开的实施例,由于盲检能力是针对每n个时隙配置的,终端可以根据实际情况在n个时隙中灵活应用盲检能力,例如在确定了基站在4个时隙中的目标时隙内配置了物理下行控制信道时,可以将全部盲检能力应用在目标时隙,那么在目标时隙最多能够检测16个物理下行控制信道候选,并且非重叠控制信道单元的最大数目为20。据此,不易浪费盲检能力,并且在目标时隙内检测物理下行控制信道候选的数 目足够多,有利于检测到承载了下行控制信息的物理下行控制信道。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是根据本公开的实施例示出的一种盲检能力优化方法的示意流程图。
图2A和图2B是相关技术中盲检能力信息的示意图。
图3A和图3B是根据本公开的实施例示出的一种盲检能力信息的示意图。
图4是根据本公开的实施例示出的另一种盲检能力优化方法的示意流程图。
图5是根据本公开的实施例示出的一种盲检能力优化装置的示意框图。
图6是根据本公开的实施例示出的另一种盲检能力优化装置的示意框图。
图7是根据本公开的实施例示出的一种用于盲检能力优化的装置的示意框图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
图1是根据本公开的实施例示出的一种盲检能力优化方法的示意流程图。本实施例所示的方法可以适用于终端,所述终端可以作为用户设备与基站进行通信,所述基站可以是5G基站,所述终端包括但不限于手机、平板电脑、可穿戴设备、传感器、物联网设备等电子设备。
如图1所示,盲检能力优化方法可以包括以下步骤:
在步骤S101中,确定盲检能力信息,其中,所述盲检能力信息包括第一子载波间隔下在每n个时隙检测物理下行控制信道候选的最大数目,和/或第一子载波间隔下在每n个时隙非重叠控制信道单元的最大数目,n为大于1的整数。
需要说明的是,第一子载波间隔下在每n个时隙非重叠控制信道单元的最大数目,针对终端而言,具体可以是第一子载波间隔下在每n个时隙能够盲检的非重叠控制信道单元的最大数目。
在一个实施例中,终端所确定的盲检能力信息,可以是预先存储在终端中的,例如位于终端与基站的通信协议预先规定的信息中。
其中,盲检能力信息可以主要包括两方面内容,一方面是第一子载波间隔下在每n个时隙检测物理下行控制信道候选的最大数目,另一方面是第一子载波间隔下在每n个时隙非重叠控制信道单元的最大数目,n为大于1的整数。
在相关技术中,在每个时隙检测物理下行控制信道候选的最大数目可以如图2A所示。每个时隙非重叠控制信道单元的最大数目可以如图3B所示。
在一个实施例中,第一子载波间隔下在每n个时隙检测物理下行控制信道候选的最大数目可以如图3A所示,以表格的形式存储在终端中。第一子载波间隔下在每n个时隙非重叠控制信道单元的最大数目可以如图3B所示,以表格的形式存储在终端中。
如图2A和图2B所示,在相关技术中,终端的盲检能力信息,是针对每个时隙进行限定的,例如在图2A中,在μ=0的情况下,子载波间隔为15kHz,每个时隙检测物理下行控制信道候选的最大数目为44,每个时隙非重叠控制信道单元的最大数目为56。
图3A和图3B仅示出了μ为4、5、6,也即子载波间隔为240kHz、480kHz、960kHz的情况,而对于μ为0、1、2和3的情况,可以根据需要进行配置。其中图3A中具体的数值A1、A2和A3,以及图3B中具体的数值B1、B2和B3可以根据实际情况进行设置。
针对不同的子载波间隔,n可以不同,也可以相同;针对不同的子载波间隔,在每n个时隙检测物理下行控制信道候选的最大数目,可以不同,也可以相同;针对不同的子载波间隔,在每n个时隙非重叠控制信道单元的最大数目,可以不同,也可以相同。
以n=4为例,在子载波间隔为960kHz的情况下,每4个时隙检测物理下行控制信道候选的最大数目为16,每4个时隙非重叠控制信道单元的最大数目为20。在相关技术中,由于终端的盲检能力是针对每个时隙配置的,那么在子载波间隔为960kHz 的情况下,若终端的盲检能力与本申请所述的上述实施例相同,那么配置到每个时隙,就是每个时隙检测物理下行控制信道候选的最大数目为4,每个时隙非重叠控制信道单元的最大数目为5。
例如终端根据基站发送的物理下行控制信道的资源信息,确定基站在4个时隙中的目标时隙内配置了物理下行控制信道。
基于相关技术中的盲检能力,终端在目标时隙最多只能检测4个物理下行控制信道候选,并且非重叠控制信道单元的最大数目为5。由于盲检能力是针对每个时隙配置的,导致部分盲检能力分散在未配置物理下行控制信道的时隙,浪费了盲检能力,而在目标时隙内检测物理下行控制信道候选的数目过少,造成基站只能在很有限的时频资源位置上选择用于承载调度DCI的时频资源,很难有时频域分集增益,而且在有其他DCI也待传输的情况下,极易造成PDCCH阻塞。。
而根据本公开的实施例,由于盲检能力是针对每n个时隙配置的,终端可以根据实际情况在n个时隙中灵活应用盲检能力,那么在确定了基站在4个时隙中的目标时隙内配置了物理下行控制信道时,可以将全部盲检能力应用在目标时隙,那么在目标时隙最多能够检测16个物理下行控制信道候选,并且非重叠控制信道单元的最大数目为20。据此,不易浪费盲检能力,并且在目标时隙内检测物理下行控制信道候选的个数足够多,有利于获得时频分集增益,且降低DCI阻塞概率。
需要说明的是,目标时隙的数量可以小于n,也可以等于n,具体可以根据基站配置的物理下行控制信道的资源信息确定。
可选地,所述第一子载波间隔大于120KHz。
可选地,所述第一子载波间隔为以下之一:
240KHz、480KHz、960KHz。
需要说明的是,第一子载波间隔的范围并不限于上述240KHz、480KHz、960KHz三个间隔,可以根据需要进行调整,例如第一子载波间隔还可以包含小于240KHz的间隔,也可以包含大于960KHz的间隔,具体可以是1920KHz等。
在一个实施例中,在子载波间隔(也即第一子载波间隔)较大的情况下,终端确定的盲检能力信息如上述实施例所述,也即第一子载波间隔下在每n个时隙检测物理下行控制信道候选的最大数目,和/或第一子载波间隔下在每n个时隙非重叠控制信道单元的最大数目。
由于在子载波间隔较大时,时隙的长度很短,终端的处理能力难以在每个时隙上调度物理下行共享信道,基站在这种情况下更有可能在每n个时隙的目标时隙中配置物理下行控制信道候选。因此终端在这种情况下确定的盲检能力信息,可以是针对每n个时隙配置的,以便在上述实施例的情况下,将全部盲检能力应用在目标时隙。
在一个实施例中,终端可以向基站上报处理能力,从而使得基站确定是否需要每n个时隙的目标时隙中配置物理下行控制信道候选,例如在终端的处理能力较弱时,具体可以是单位时间内能够处理数据的数据量大于预设值,基站在每n个时隙的目标时隙中配置物理下行控制信道候选;在终端的处理能力较强时,基站在每个时隙的目标时隙中配置物理下行控制信道候选。具体可以是单位时间内能够处理数据的数据量小于预设值。
可选地,所述盲检能力信息还包括第二子载波间隔下在每个时隙检测物理下行控制信道候选的最大数目,和/或第二子载波间隔下在每个时隙非重叠控制信道单元的最大数目,其中,所述第二子载波间隔小于所述第一子载波间隔。
可选地,所述第二子载波间隔为以下之一:
15KHz、30KHz、60KHz、120KHz。
需要说明的是,第二子载波间隔和上述实施例中的第一子载波间隔,都是终端和基站通信的子载波间隔,一般情况下,在一次通信过程中子载波间隔是固定不变,而在不同次通信过程中,例如终端与基站断开通信连接后,再次接入基站与基站进行通信,那么子载波间隔可以与前一次通信时的子载波间隔不同。
在一个实施例中,在子载波间隔(也即第二子载波间隔)较小的情况下,终端确定的盲检能力信息,可以是每个时隙检测物理下行控制信道候选的最大数目,和/或第二子载波间隔下在每个时隙非重叠控制信道单元的最大数目。
由于在子载波间隔较大时,时隙的长度相对较长,终端的处理能力容易在每个时隙上调度物理下行共享信道,基站在这种情况下更有可能在每个时隙的目标时隙中配置物理下行控制信道候选。因此终端在这种情况下确定的盲检能力信息,可以是针对每个时隙配置的,无需终端计算在每个时隙中如何分配盲检能力,有利于减少终端的工作量。
图4是根据本公开的实施例示出的另一种盲检能力优化方法的示意流程图。如图4所示,所述方法还包括:
在步骤S102中,接收基站发送的物理下行控制信道的资源信息;资源信息具体可以由时域资源信息和频域资源信息构成。
在步骤S103中,根据所述资源信息确定所述物理下行控制信道在所述n个时隙中所处的目标时隙;
在步骤S104中,根据所述盲检能力信息在所述目标时隙的物理下行控制信道中盲检下行控制信息。
可选地,所述资源信息包括控制资源集和搜索空间。
在一个实施例中,基站可以向终端发送物理下行控制信道的资源信息,所述资源信息可以包括控制资源集CORESET和搜索空间Search Space,终端根据资源信息可以确定物理下行控制信道在n个时隙中所处的目标时隙,那么终端可以根据盲检能力信息在所述目标时隙的物理下行控制信道中盲检下行控制信息。
需要说明的是,目标时隙可以是每n个时隙中的一个时隙,也可以是每n个时隙中的多个时隙,在目标时隙是每n个时隙中的多个时隙的情况下,终端可以将盲检能力均分在多个时隙的每个时隙中。
例如n为4,目标时隙为每4个时隙中的第3个时隙,那么终端可以将全部盲检能力应用在每4个时隙中的第3个时隙中,以便在目标时隙内足够多数目的检测物理下行控制信道候选,有利于检测到承载了下行控制信息的物理下行控制信道。
例如n为4,目标时隙为每4个时隙中的第2和第3个时隙,那么终端可以将全部盲检能力均分在第2和第3个时隙,以便在这两个目标时隙内都有相同可能性检测到承载了下行控制信息的物理下行控制信道。
与前述的盲检能力优化方法的实施例相对应,本公开还提供了盲检能力优化装置的实施例。
图5是根据本公开的实施例示出的一种盲检能力优化装置的示意框图。本实施例所示的装置可以适用于终端,所述终端可以作为用户设备与基站进行通信,所述基站可以是5G基站,所述终端包括但不限于手机、平板电脑、可穿戴设备、传感器、物联网设备等电子设备。
如图5所示,盲检能力优化装置可以包括:
能力确定模块101,被配置为确定盲检能力信息,其中,所述盲检能力信息包 括第一子载波间隔下在每n个时隙检测物理下行控制信道候选的最大数目,和/或第一子载波间隔下在每n个时隙非重叠控制信道单元的最大数目,n为大于1的整数。
可选地,所述第一子载波间隔大于120KHz。
可选地,所述第一子载波间隔为以下之一:
240KHz、480KHz、960KHz。
可选地,所述盲检能力信息还包括第二子载波间隔下在每个时隙检测物理下行控制信道候选的最大数目,和/或第二子载波间隔下在每个时隙非重叠控制信道单元的最大数目,其中,所述第二子载波间隔小于所述第一子载波间隔。
可选地,所述第二子载波间隔为以下之一:
15KHz、30KHz、60KHz、120KHz。
图6是根据本公开的实施例示出的另一种盲检能力优化装置的示意框图。如图6所示,所述装置还包括:
信息接收模块102,被配置为接收基站发送的物理下行控制信道的资源信息;
时隙确定模块103,被配置为根据所述资源信息确定所述物理下行控制信道在所述n个时隙中所处的目标时隙;
信息确定模块104,被配置为根据所述盲检能力信息在所述目标时隙的物理下行控制信道中盲检下行控制信息。
可选地,所述资源信息包括控制资源集和搜索空间。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在相关方法的实施例中进行了详细描述,此处将不做详细阐述说明。
对于装置实施例而言,由于其基本对应于方法实施例,所以相关之处参见方法实施例的部分说明即可。以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
本公开的实施例还提出一种电子设备,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为实现上述任一实施例所述的方法。
本公开的实施例还提出一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现述任一实施例所述方法中的步骤。
图7是根据本公开的实施例示出的一种用于盲检能力优化的装置700的示意框图。例如,装置700可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图7,装置700可以包括以下一个或多个组件:处理组件702,存储器704,电源组件706,多媒体组件708,音频组件710,输入/输出(I/O)的接口712,传感器组件714,以及通信组件716。
处理组件702通常控制装置700的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件702可以包括一个或多个处理器720来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件702可以包括一个或多个模块,便于处理组件702和其他组件之间的交互。例如,处理组件702可以包括多媒体模块,以方便多媒体组件708和处理组件702之间的交互。
存储器704被配置为存储各种类型的数据以支持在装置700的操作。这些数据的示例包括用于在装置700上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器704可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件706为装置700的各种组件提供电力。电源组件706可以包括电源管理系统,一个或多个电源,及其他与为装置700生成、管理和分配电力相关联的组件。
多媒体组件708包括在所述装置700和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间 和压力。在一些实施例中,多媒体组件708包括一个前置摄像头和/或后置摄像头。当装置700处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件710被配置为输出和/或输入音频信号。例如,音频组件710包括一个麦克风(MIC),当装置700处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器704或经由通信组件716发送。在一些实施例中,音频组件710还包括一个扬声器,用于输出音频信号。
I/O接口712为处理组件702和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件714包括一个或多个传感器,用于为装置700提供各个方面的状态评估。例如,传感器组件714可以检测到装置700的打开/关闭状态,组件的相对定位,例如所述组件为装置700的显示器和小键盘,传感器组件714还可以检测装置700或装置700一个组件的位置改变,用户与装置700接触的存在或不存在,装置700方位或加速/减速和装置700的温度变化。传感器组件714可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件714还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件714还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件716被配置为便于装置700和其他设备之间有线或无线方式的通信。装置700可以接入基于通信标准的无线网络,如WiFi,2G或3G,4G LTE、5G NR或它们的组合。在一个示例性实施例中,通信组件716经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件716还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置700可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、 现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器704,上述指令可由装置700的处理器720执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
本领域技术人员在考虑说明书及实践这里公开的公开后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上对本公开实施例所提供的方法和装置进行了详细介绍,本文中应用了具体个例对本公开的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本公开的方法及其核心思想;同时,对于本领域的一般技术人员,依据本公开的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本公开的限制。

Claims (12)

  1. 一种盲检能力优化方法,其特征在于,适用于终端,所述方法包括:
    确定盲检能力信息,其中,所述盲检能力信息包括第一子载波间隔下在每n个时隙检测物理下行控制信道PDCCH候选的最大数目,和/或第一子载波间隔下在每n个时隙非重叠控制信道单元CCE的最大数目,n为大于1的整数。
  2. 根据权利要求1所述的方法,其特征在于,所述第一子载波间隔大于120KHz。
  3. 根据权利要求2所述的方法,其特征在于,所述第一子载波间隔为以下之一:
    240KHz、480KHz、960KHz。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述方法还包括:
    接收基站发送的物理下行控制信道的资源信息;
    根据所述资源信息确定所述物理下行控制信道在所述n个时隙中所处的目标时隙;
    根据所述盲检能力信息在所述目标时隙的物理下行控制信道中盲检下行控制信息。
  5. 根据权利要求4所述的方法,其特征在于,所述资源信息包括控制资源集和搜索空间。
  6. 一种盲检能力优化装置,其特征在于,适用于终端,所述装置包括:
    能力确定模块,被配置为确定盲检能力信息,其中,所述盲检能力信息包括第一子载波间隔下在每n个时隙检测物理下行控制信道PDCCH候选的最大数目,和/或第一子载波间隔下在每n个时隙非重叠控制信道单元CCE的最大数目,n为大于1的整数。
  7. 根据权利要求6所述的装置,其特征在于,所述第一子载波间隔大于120KHz。
  8. 根据权利要求7所述的装置,其特征在于,所述第一子载波间隔为以下之一:
    240KHz、480KHz、960KHz。
  9. 根据权利要求6至8中任一项所述的装置,其特征在于,所述装置还包括:
    信息接收模块,被配置为接收基站发送的物理下行控制信道的资源信息;
    时隙确定模块,被配置为根据所述资源信息确定所述物理下行控制信道在所述n个时隙中所处的目标时隙;
    信息确定模块,被配置为根据所述盲检能力信息在所述目标时隙的物理下行控制信道中盲检下行控制信息。
  10. 根据权利要求9所述的装置,其特征在于,所述资源信息包括控制资源集和 搜索空间。
  11. 一种电子设备,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为实现权利要求1至5中任一项所述的方法。
  12. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现权利要求1至5中任一项所述方法中的步骤。
PCT/CN2020/101086 2020-07-09 2020-07-09 盲检能力优化方法和装置 WO2022006813A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2020/101086 WO2022006813A1 (zh) 2020-07-09 2020-07-09 盲检能力优化方法和装置
EP20944746.5A EP4181444A4 (en) 2020-07-09 2020-07-09 BLIND DETECTION CAPACITY OPTIMIZATION METHOD AND APPARATUS
CN202080001450.6A CN114208088A (zh) 2020-07-09 2020-07-09 盲检能力优化方法和装置
US18/003,092 US20230261783A1 (en) 2020-07-09 2020-07-09 Blind detection capability optimization method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/101086 WO2022006813A1 (zh) 2020-07-09 2020-07-09 盲检能力优化方法和装置

Publications (1)

Publication Number Publication Date
WO2022006813A1 true WO2022006813A1 (zh) 2022-01-13

Family

ID=79553478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/101086 WO2022006813A1 (zh) 2020-07-09 2020-07-09 盲检能力优化方法和装置

Country Status (4)

Country Link
US (1) US20230261783A1 (zh)
EP (1) EP4181444A4 (zh)
CN (1) CN114208088A (zh)
WO (1) WO2022006813A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109391967A (zh) * 2017-08-11 2019-02-26 维沃移动通信有限公司 一种信息上报及信息处理方法、终端及网络设备
WO2019099435A1 (en) * 2017-11-14 2019-05-23 Idac Holdings, Inc. Methods for physical downlink control channel (pdcch) candidate determination
CN110740008A (zh) * 2018-07-18 2020-01-31 华为技术有限公司 一种pdcch发送、盲检测方法及装置
CN110831181A (zh) * 2018-08-10 2020-02-21 华为技术有限公司 信息检测方法、通信设备与计算机可读存储介质

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019192304A1 (zh) * 2018-04-03 2019-10-10 电信科学技术研究院有限公司 信道盲检方法、信号传输方法和相关设备
CN110740514B (zh) * 2018-07-20 2021-11-23 维沃移动通信有限公司 一种监听方法及终端设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109391967A (zh) * 2017-08-11 2019-02-26 维沃移动通信有限公司 一种信息上报及信息处理方法、终端及网络设备
WO2019099435A1 (en) * 2017-11-14 2019-05-23 Idac Holdings, Inc. Methods for physical downlink control channel (pdcch) candidate determination
CN110740008A (zh) * 2018-07-18 2020-01-31 华为技术有限公司 一种pdcch发送、盲检测方法及装置
CN110831181A (zh) * 2018-08-10 2020-02-21 华为技术有限公司 信息检测方法、通信设备与计算机可读存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "Corrections on Ultra Reliable Low Latency Communications Enhancements", 3GPP DRAFT; R1-2001460, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200224 - 20200306, 10 March 2020 (2020-03-10), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051863841 *

Also Published As

Publication number Publication date
US20230261783A1 (en) 2023-08-17
CN114208088A (zh) 2022-03-18
EP4181444A1 (en) 2023-05-17
EP4181444A4 (en) 2023-08-23

Similar Documents

Publication Publication Date Title
WO2019183854A1 (zh) 寻呼同步指示方法及装置、寻呼同步方法及装置和基站
WO2022077492A1 (zh) 一种trs/csi-rs配置方法和装置
US11910442B2 (en) Random access control method and random access control device
WO2018201439A1 (zh) 随机接入方法及装置、用户设备和计算机可读存储介质
WO2020087348A1 (zh) 信息反馈方法及装置
WO2019227318A1 (zh) 物理下行控制信道监测配置、监测方法及装置和基站
US11812386B2 (en) Configuration adjustment methods, apparatuses, electronic device and computer readable storage medium
CN111147210B (zh) 状态转换方法及装置
WO2024000113A1 (zh) 调度确定、指示确定、关联关系指示方法和装置
WO2022188067A1 (zh) 一种发送、接收下行控制信道的方法、装置、设备及介质
WO2022006813A1 (zh) 盲检能力优化方法和装置
WO2023015535A1 (zh) 一种执行小数据包传输和确定随机接入消息传输方式的方法、装置、设备及存储介质
WO2019023880A1 (zh) 传输方向的指示方法及装置
WO2022082349A1 (zh) 激活指示方法和装置、激活确定方法和装置
WO2022036718A1 (zh) 共享指示方法和装置、共享确定方法和装置
WO2019071480A1 (zh) 通信控制方法和通信控制装置
US12028724B2 (en) Method and device for configuring network parameter and computer-readable storage medium
WO2020133200A1 (zh) 载波配置方法及装置
US11190298B2 (en) Methods and apparatuses for determining number of times of blind decoding schedule signaling, user equipment and base station
US20220256372A1 (en) Downlink transmission detecting method and device, configuration information transmission method and device, and downlink transmission method and device
WO2022170499A1 (zh) 一种接收下行控制信息的方法、装置、设备及存储介质
WO2019183939A1 (zh) 数据传输方法及装置
US20210351968A1 (en) Message transmission method and device
WO2022188074A1 (zh) 一种配置、确定下行调度信息的方法、装置、设备及介质
WO2019047095A1 (zh) 调度信令的检测方法、装置、用户设备和基站

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20944746

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020944746

Country of ref document: EP

Effective date: 20230209

NENP Non-entry into the national phase

Ref country code: DE