WO2023050237A1 - 一种harq-ack码本生成和接收方法、装置、设备及存储介质 - Google Patents

一种harq-ack码本生成和接收方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2023050237A1
WO2023050237A1 PCT/CN2021/121963 CN2021121963W WO2023050237A1 WO 2023050237 A1 WO2023050237 A1 WO 2023050237A1 CN 2021121963 W CN2021121963 W CN 2021121963W WO 2023050237 A1 WO2023050237 A1 WO 2023050237A1
Authority
WO
WIPO (PCT)
Prior art keywords
harq
transmission
configuration information
ack codebook
ack
Prior art date
Application number
PCT/CN2021/121963
Other languages
English (en)
French (fr)
Inventor
付婷
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202180002989.8A priority Critical patent/CN116210186A/zh
Priority to PCT/CN2021/121963 priority patent/WO2023050237A1/zh
Priority to EP21958822.5A priority patent/EP4412121A1/en
Priority to KR1020247014218A priority patent/KR20240073934A/ko
Publication of WO2023050237A1 publication Critical patent/WO2023050237A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1864ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1614Details of the supervisory signal using bitmaps
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1621Group acknowledgement, i.e. the acknowledgement message defining a range of identifiers, e.g. of sequence numbers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1825Adaptation of specific ARQ protocol parameters according to transmission conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements

Definitions

  • the present disclosure relates to the technical field of wireless communication, and in particular to a method, device, device and storage medium for generating and receiving a HARQ-ACK codebook.
  • PDSCH physical downlink shared channel
  • DCI Downlink Control Information
  • the method of feeding back one Hybrid Automatic Repeat Request Acknowledgment (HARQ-ACK) information for each code block group (Code Block Group, CBG) is the CBG-based HARQ-ACK feedback.
  • HARQ-ACK Hybrid Automatic Repeat Request Acknowledgment
  • the Type2 HARQ-ACK codebook has a dynamic codebook size.
  • DCI Downlink Assignment Index
  • the method for constructing a Type2 HARQ-ACK codebook when multiple cells in a PUCCH group are respectively configured for multi-slot PDSCH transmission and/or CBG transmission is required.
  • the present disclosure provides a method, device, device and storage medium for generating and receiving a HARQ-ACK codebook.
  • a method for generating a HARQ-ACK codebook which is executed by a user equipment, including:
  • the first configuration information indicates whether to configure multi-slot PDSCH transmission through the physical uplink control channel PDCCH
  • the second configuration information indicates whether to configure code block group CBG transmission.
  • the generating a HARQ-ACK codebook for feeding back PDSCH based on the first configuration information and the second configuration information includes:
  • the second configuration information indicates to configure CBG transmission, and determine that the number of HARQ-ACK information bits corresponding to each downlink control information DCI is M and N maximum value;
  • the M is the maximum number of CBGs included in a transmission block configured by the network device
  • the N is the maximum number of PDSCHs corresponding to PDSCH transmission through PDCCH scheduling multi-slots
  • the maximum number of PDSCHs is It is the maximum number of PDSCHs scheduled by one DCI determined according to the network device configuration, or the maximum number of PDSCHs scheduled by one DCI determined by the protocol.
  • both M and N are positive integers greater than zero.
  • determining that the number of bits of HARQ-ACK information corresponding to each downlink control information DCI is the maximum value of M and N includes:
  • the HARQ-ACK information corresponding to the DCI includes M information bits corresponding to the M CBGs corresponding to the PDSCH;
  • the HARQ-ACK information corresponding to the DCI includes M information bits and (N-M) stuffing bits corresponding to the M CBGs corresponding to the PDSCH, so The values of the (N-M) padding bits are all the same;
  • the HARQ-ACK information corresponding to the DCI includes L information bits and (M-L) stuffing bits corresponding to the L PDSCHs, the ( The values of M-L) padding bits are all the same;
  • the HARQ-ACK information corresponding to the DCI includes L information bits and (N-L) stuffing bits corresponding to the L PDSCHs, the ( The values of N-L) padding bits are all the same;
  • L is a positive integer greater than zero.
  • the generating a HARQ-ACK codebook for feeding back PDSCH based on the first configuration information and the second configuration information includes:
  • each transmission scenario group includes at least one transmission scenario
  • the generating the HARQ-ACK codebook based on the transmission scenario group includes:
  • For cells belonging to the same transmission scenario group determine the number of HARQ-ACK information bits corresponding to each DCI as the maximum value of the HARQ-ACK information bits corresponding to each DCI in each transmission scenario in the transmission scenario group.
  • the transmission scenarios include: a transmission scenario in which no PDCCH is configured to schedule multi-slot PDSCH transmission and CBG transmission is not configured; a transmission scenario in which PDCCH is not configured to use PDCCH to schedule multi-slot PDSCH transmission and CBG transmission is configured; A transmission scenario in which multi-slot PDSCH transmission is scheduled and CBG transmission is not configured, and a transmission scenario in which multi-slot PDSCH transmission is scheduled through PDCCH and CBG transmission is configured.
  • the generating a HARQ-ACK codebook for feeding back PDSCH based on the first configuration information and the second configuration information includes:
  • the HARQ-ACK codebook corresponding to the PUCCH group is obtained by concatenating the codebooks corresponding to the cells belonging to different transmission scenarios;
  • the HARQ-ACK codebook corresponding to the PUCCH group is obtained by concatenating the codebooks corresponding to the cells belonging to different transmission scenario groups.
  • a hybrid automatic repeat request acknowledgment HARQ-ACK codebook receiving method is provided, which is executed by a network device, including:
  • the first configuration information indicates whether to configure multi-slot PDSCH transmission through the physical uplink control channel PDCCH
  • the second configuration information indicates whether to configure code block group CBG transmission.
  • a hybrid automatic repeat request response HARQ-ACK codebook generation device is provided, which is applied to user equipment, including:
  • a receiving module configured to receive first configuration information and second configuration information
  • a processing module configured to generate a HARQ-ACK codebook for feeding back a physical downlink shared channel PDSCH based on the first configuration information and the second configuration information;
  • a sending module configured to send the HARQ-ACK codebook to a network device
  • the first configuration information indicates whether to configure multi-slot PDSCH transmission through physical uplink control channel PDCCH scheduling
  • the second configuration information indicates whether to configure code block group CBG transmission.
  • a hybrid automatic repeat request response HARQ-ACK codebook receiving apparatus is provided, which is applied to network equipment, including:
  • a sending module configured to send the first configuration information and the second configuration information to the user equipment
  • a receiving module configured to receive a HARQ-ACK codebook for feeding back a physical downlink shared channel PDSCH from the user equipment;
  • the first configuration information indicates whether to configure multi-slot PDSCH transmission through the physical uplink control channel PDCCH
  • the second configuration information indicates whether to configure code block group CBG transmission.
  • a mobile terminal including:
  • memory for storing processor-executable instructions
  • the processor is configured to execute the executable instructions in the memory to realize the steps of the hybrid automatic repeat request acknowledgment HARQ-ACK codebook generation method according to any one of claims 1 to 7.
  • a network side device including:
  • memory for storing processor-executable instructions
  • the processor is configured to execute the executable instructions in the memory to realize the steps of the hybrid automatic repeat request acknowledgment HARQ-ACK codebook receiving method in claim 8 .
  • a non-transitory computer-readable storage medium on which executable instructions are stored, and when the executable instructions are executed by a processor, any one of claims 1 to 7 is implemented.
  • the user equipment generates the HARQ-ACK codebook for feeding back the PDSCH based on the configuration method of scheduling multi-slot PDSCH transmission through the PDCCH and the configuration method of CBG transmission, so that it can In the case of the above two configuration modes, a HARQ-ACK codebook is generated.
  • Fig. 1 is a flow chart showing a method for generating a HARQ-ACK codebook according to an exemplary embodiment
  • Fig. 2 is a flow chart showing a method for generating a HARQ-ACK codebook according to an exemplary embodiment
  • Fig. 3 is a flow chart showing a method for generating a HARQ-ACK codebook according to an exemplary embodiment
  • Fig. 4 is a flow chart showing a method for generating a HARQ-ACK codebook according to an exemplary embodiment
  • Fig. 5 is a flow chart showing a method for generating a HARQ-ACK codebook according to an exemplary embodiment
  • Fig. 6 is a flow chart showing a method for generating a HARQ-ACK codebook according to an exemplary embodiment
  • Fig. 7 is a flow chart showing a method for receiving a HARQ-ACK codebook according to an exemplary embodiment
  • Fig. 8 is a block diagram of a device for generating a HARQ-ACK codebook according to an exemplary embodiment
  • Fig. 9 is a block diagram of a HARQ-ACK codebook receiving device according to an exemplary embodiment
  • Fig. 10 is a structural diagram of a device for generating a HARQ-ACK codebook according to an exemplary embodiment
  • Fig. 11 is a structural diagram of a device for receiving a HARQ-ACK codebook according to an exemplary embodiment.
  • an embodiment of the present disclosure may include multiple steps; for the convenience of description, these steps are numbered; however, these numbers do not limit the execution time slots and execution order between the steps; these steps It can be implemented in any order, which is not limited by the embodiments of the present disclosure.
  • the HARQ-ACKs of multiple PDSCHs scheduled by one DCI are fed back in the same PUCCH.
  • the time slot of the PUCCH for HARQ-ACK feedback for the multiple PDSCHs is determined according to k1 in the scheduling DCI and the time slot position of the last PDSCH.
  • a transport block (Transport Block, TB) can be divided into one or more CBs, and multiple CBs can be divided into several CBGs. For example, 1 TB is divided into 8 CBs, and the 8 CBs are divided into 4 CBGs, and each CBG includes 2 CBs. Therefore, if 1-bit HARQ-ACK information is fed back for each CBG, a total of 4-bit HARQ-ACK information must be fed back.
  • Using the CBG feedback method can improve the efficiency of HARQ retransmission, that is, only the erroneous CBG needs to be retransmitted, and the entire TB does not need to be retransmitted; however, HARQ-ACK overhead is correspondingly added.
  • DAI includes Counter DAI (C-DAI) and Total-DAI (T-DAI).
  • C-DAI Counter DAI
  • T-DAI Total-DAI
  • UE User Equipment
  • DAI is counted according to the number of scheduled DCIs, that is, every time a network device schedules a DCI (the DCI can schedule one or more PDSCHs), C-DAI will increase by 1; and when multiple carriers are configured , T-DAI is also increased by 1.
  • FIG. 1 is a flowchart of a method for generating a HARQ-ACK codebook according to an exemplary embodiment. As shown in Fig. 1, the method includes:
  • Step 101 receiving first configuration information and second configuration information
  • Step 102 based on the first configuration information and the second configuration information, generate a HARQ-ACK codebook for feeding back the physical downlink shared channel PDSCH;
  • Step 103 sending the HARQ-ACK codebook to the network device
  • the first configuration information indicates whether to configure multi-slot PDSCH transmission through the physical uplink control channel PDCCH
  • the second configuration information indicates whether to configure code block group CBG transmission.
  • the user equipment receives first configuration information and second configuration information, wherein the first configuration information indicates whether to configure multi-slot PDSCH transmission through PDCCH scheduling, and the second configuration information indicates whether to configure CBG transmission.
  • the user equipment generates a HARQ-ACK codebook for feeding back the PDSCH based on the first configuration information and the second configuration information, and sends the HARQ-ACK codebook to the network device.
  • the user equipment generates a Type2 HARQ-ACK codebook for feeding back the PDSCH based on the first configuration information and the second configuration information.
  • the user equipment receives the first configuration information and the second configuration information from the network device, and based on the first configuration information and the second configuration information, determines the current transmission scenario or transmission scenario group, and based on the current transmission scenario Or a transmission scenario group, determining the number of HARQ-ACK information bits corresponding to each DCI, correspondingly generating a HARQ-ACK codebook, and sending the HARQ-ACK codebook to the network device.
  • the user equipment generates the HARQ-ACK codebook for feeding back the PDSCH based on the configuration method of scheduling multi-slot PDSCH transmission through the PDCCH and the configuration method of CBG transmission, so that it can be suitable for the above two configuration methods. to generate a HARQ-ACK codebook.
  • FIG. 2 is a flowchart of a method for generating a HARQ-ACK codebook according to an exemplary embodiment. As shown in Fig. 2, the method includes:
  • Step 201 receiving first configuration information and second configuration information
  • Step 202 Responding to the first configuration information indicating to configure multi-slot PDSCH transmission through PDCCH scheduling, the second configuration information indicating to configure CBG transmission, determine the number of HARQ-ACK information bits corresponding to each downlink control information DCI as M and The maximum value in N, generating the HARQ-ACK codebook based on the number of bits of the HARQ-ACK information;
  • Step 203 sending the HARQ-ACK codebook to the network device
  • the first configuration information indicates whether to configure multi-slot PDSCH transmission through the physical uplink control channel PDCCH, and the second configuration information indicates whether to configure code block group CBG transmission;
  • the M is the maximum number of CBGs included in a transmission block configured by the network device
  • the N is the maximum number of PDSCHs corresponding to PDSCH transmission through PDCCH scheduling multi-slots
  • the maximum number of PDSCHs is It is the maximum number of PDSCHs scheduled by one DCI determined according to the network device configuration, or the maximum number of PDSCHs scheduled by one DCI determined by the protocol
  • both M and N are positive integers greater than zero.
  • the user equipment receives first configuration information and second configuration information, wherein the first configuration information indicates that PDCCH is used to schedule multi-slot PDSCH transmission, and the second configuration information indicates that CBG transmission is configured; the user equipment responds to the received first One configuration information and second configuration information, determine that the HARQ-ACK information bit corresponding to each DCI is the maximum value of M and N, and generate a HARQ-ACK codebook based on the determined HARQ-ACK information bit; then send the Generated HARQ-ACK codebook.
  • M is the maximum number of CBGs included in one transport block configured by the network device
  • N is the maximum number of PDSCHs scheduled by one DCI determined by the protocol.
  • the user equipment receives first configuration information and second configuration information, wherein the first configuration information indicates that PDCCH is used to schedule multi-slot PDSCH transmission, and the second configuration information indicates that CBG transmission is configured; the user equipment responds to the received first One configuration information and second configuration information, determine that the HARQ-ACK information bit corresponding to each DCI is the maximum value of M and N, and generate a HARQ-ACK codebook based on the determined HARQ-ACK information bit; then send the Generated HARQ-ACK codebook.
  • M is the maximum number of CBGs included in one transport block configured by the network device
  • N is the maximum number of PDSCHs scheduled by one DCI determined according to the configuration of the network device.
  • the user equipment receives first configuration information and second configuration information, wherein the first configuration information indicates that PDCCH is used to schedule multi-slot PDSCH transmission, and the second configuration information indicates that CBG transmission is configured; the user equipment responds to the received first One configuration information and second configuration information, determine that the HARQ-ACK information bit corresponding to each DCI is the maximum value of M and N, and generate a HARQ-ACK codebook based on the determined HARQ-ACK information bit; then send the Generated HARQ-ACK codebook.
  • M is the maximum number of CBGs included in a transport block configured by the network device
  • N is the time domain resource allocation (Time Domain Resource Allocation, TDRA) table indicated by the network device through RRC signaling.
  • TDRA Time Domain Resource Allocation
  • the user equipment receives the scheduling DCI from the network device, and the TDRA field in the DCI points to a row in the TDRA table, that is, a certain TDRA element. If the TDRA element contains N ⁇ k0, mapping type, SLIV ⁇ , the DCI schedules N PDSCHs.
  • the user equipment generates the HARQ-ACK codebook for feeding back the PDSCH based on the configuration method of scheduling multi-slot PDSCH transmission through the PDCCH and the configuration method of CBG transmission, so that it can be suitable for the above two configuration methods. to generate a HARQ-ACK codebook.
  • the multi-slot PDSCH scheduled by the DCI will not be transmitted/retransmitted according to the CBG.
  • using the maximum value of M and N as the number of bits of HARQ-ACK information corresponding to DCI can reduce the number of bits of HARQ-ACK information in the scenario of configuring multi-slot PDSCH transmission and configuring CBG transmission, and improve feedback HARQ-ACK information. Efficiency of the ACK codebook.
  • FIG. 3 is a flowchart of a method for generating a HARQ-ACK codebook according to an exemplary embodiment. As shown in FIG. 3 , the method includes:
  • Step 301 receiving first configuration information and second configuration information
  • Step 303 sending the HARQ-ACK codebook to the network device
  • the first configuration information indicates whether to configure multi-slot PDSCH transmission through the physical uplink control channel PDCCH, and the second configuration information indicates whether to configure code block group CBG transmission;
  • the M is the maximum number of CBGs included in one transport block configured by the network device
  • the N is the maximum number of PDSCHs corresponding to PDSCH transmission scheduled through the PDCCH
  • the maximum number of PDSCHs is The value is the maximum number of PDSCHs scheduled by a DCI determined according to the network device configuration, or the maximum number of PDSCHs scheduled by a DCI determined by the protocol
  • M and N are both positive integers greater than zero
  • L is greater than zero positive integer.
  • the user equipment generates the HARQ-ACK codebook for feeding back the PDSCH based on the configuration method of scheduling multi-slot PDSCH transmission through the PDCCH and the configuration method of CBG transmission, so that it can be suitable for the above two configuration methods. to generate a HARQ-ACK codebook.
  • An embodiment of the present disclosure provides a method for generating a HARQ-ACK codebook, which is executed by a user equipment.
  • the method may be executed independently, or may be executed in combination with any other embodiment of the embodiments of the present disclosure.
  • the method includes:
  • the HARQ-ACK information bits corresponding to the DCI include M information bits corresponding to the M CBGs corresponding to the PDSCH and (N-M) stuffing bits, the values of the (N-M) stuffing bits are all the same, and based on the HARQ- ACK information bits generate the HARQ-ACK codebook;
  • the first configuration information indicates whether to configure multi-slot PDSCH transmission through the physical uplink control channel PDCCH, and the second configuration information indicates whether to configure code block group CBG transmission;
  • the M is the maximum number of CBGs included in one transport block configured by the network device
  • the N is the maximum number of PDSCHs corresponding to PDSCH transmission scheduled through the PDCCH
  • the maximum number of PDSCHs is The value is the maximum number of PDSCHs scheduled by a DCI determined according to the network device configuration, or the maximum number of PDSCHs scheduled by a DCI determined by the protocol
  • M and N are both positive integers greater than zero
  • L is greater than zero positive integer.
  • the user equipment generates the HARQ-ACK codebook for feeding back the PDSCH based on the configuration method of scheduling multi-slot PDSCH transmission through the PDCCH and the configuration method of CBG transmission, so that it can be suitable for the above two configuration methods. to generate a HARQ-ACK codebook.
  • An embodiment of the present disclosure provides a method for generating a HARQ-ACK codebook, which is executed by a user equipment.
  • the method may be executed independently, or may be executed in combination with any other embodiment of the embodiments of the present disclosure.
  • the method includes:
  • the second configuration information indicates to configure CBG transmission, and in response to one DCI scheduling L PDSCH and 1 ⁇ L ⁇ N, M ⁇ N, determine
  • the HARQ-ACK information bits corresponding to the DCI include L information bits corresponding to L PDSCHs and (M-L) stuffing bits, the values of the (M-L) stuffing bits are all the same, and based on the HARQ-ACK information The number of digits generates the HARQ-ACK codebook;
  • the first configuration information indicates whether to configure multi-slot PDSCH transmission through the physical uplink control channel PDCCH, and the second configuration information indicates whether to configure code block group CBG transmission;
  • the M is the maximum number of CBGs included in one transport block configured by the network device
  • the N is the maximum number of PDSCHs corresponding to PDSCH transmission scheduled through the PDCCH
  • the maximum number of PDSCHs is The value is the maximum number of PDSCHs scheduled by a DCI determined according to the network device configuration, or the maximum number of PDSCHs scheduled by a DCI determined by the protocol
  • M and N are both positive integers greater than zero
  • L is greater than zero positive integer.
  • the user equipment receives first configuration information and second configuration information, wherein the first configuration information indicates that PDCCH is used to schedule multi-slot PDSCH transmission, and the second configuration information indicates that CBG transmission is configured; the user equipment responds to the received first One configuration information and second configuration information, and in response to one DCI scheduling L PDSCHs and 1 ⁇ L ⁇ N, M ⁇ N, the HARQ-ACK information corresponding to the DCI includes L information bits corresponding to L PDSCHs and (M-L) stuffing bits, where the stuffing bits are all 0s or all 1s, and generate a HARQ-ACK codebook based on the N information bits; then send the generated HARQ-ACK codebook.
  • the user equipment generates the HARQ-ACK codebook for feeding back the PDSCH based on the configuration method of scheduling multi-slot PDSCH transmission through the PDCCH and the configuration method of CBG transmission, so that it can be suitable for the above two configuration methods. to generate a HARQ-ACK codebook.
  • An embodiment of the present disclosure provides a method for generating a HARQ-ACK codebook, which is executed by a user equipment.
  • the method may be executed independently, or may be executed in combination with any other embodiment of the embodiments of the present disclosure.
  • the method includes:
  • the second configuration information indicates to configure CBG transmission, and in response to one DCI scheduling L PDSCH and 1 ⁇ L ⁇ N, M ⁇ N, determine
  • the HARQ-ACK information bits corresponding to the DCI include L information bits corresponding to L PDSCHs and (N-L) stuffing bits, the values of the (N-L) stuffing bits are all the same, and based on the HARQ-ACK information The number of digits generates the HARQ-ACK codebook;
  • the first configuration information indicates whether to configure multi-slot PDSCH transmission through the physical uplink control channel PDCCH, and the second configuration information indicates whether to configure code block group CBG transmission;
  • the M is the maximum number of CBGs included in one transport block configured by the network device
  • the N is the maximum number of PDSCHs corresponding to PDSCH transmission scheduled through the PDCCH
  • the maximum number of PDSCHs is The value is the maximum number of PDSCHs scheduled by a DCI determined according to the network device configuration, or the maximum number of PDSCHs scheduled by a DCI determined by the protocol
  • M and N are both positive integers greater than zero
  • L is greater than zero positive integer.
  • the user equipment receives first configuration information and second configuration information, wherein the first configuration information indicates that PDCCH is used to schedule multi-slot PDSCH transmission, and the second configuration information indicates that CBG transmission is configured; the user equipment responds to the received first One configuration information and second configuration information, and in response to one DCI scheduling L PDSCHs and 1 ⁇ L ⁇ N, M ⁇ N, the HARQ-ACK information corresponding to the DCI includes L information bits corresponding to L PDSCHs and (N-L) stuffing bits, where the stuffing bits are all 0s or all 1s, and generate a HARQ-ACK codebook based on the N information bits; then send the generated HARQ-ACK codebook.
  • One PDSCH corresponds to 1 bit, and 5 PDSCHs correspond to 5 bits. When all 5 PDSCHs are decoded correctly, 1 1 1 1 will be fed back, and the remaining 1 bit is a padding bit, and the default value 0 will be added.
  • the user equipment generates the HARQ-ACK codebook for feeding back the PDSCH based on the configuration method of scheduling multi-slot PDSCH transmission through the PDCCH and the configuration method of CBG transmission, so that it can be suitable for the above two configuration methods. to generate a HARQ-ACK codebook.
  • FIG. 4 is a flowchart of a method for generating a HARQ-ACK codebook according to an exemplary embodiment. As shown in FIG. 4, the method includes:
  • Step 401 receiving first configuration information and second configuration information
  • Step 402 Determine a transmission scenario group based on the first configuration information and the second configuration information, and each transmission scenario group includes at least one transmission scenario;
  • Step 403 Generate the HARQ-ACK codebook based on the transmission scenario group.
  • Step 404 sending the HARQ-ACK codebook to the network device
  • the first configuration information indicates whether to configure multi-slot PDSCH transmission through the physical uplink control channel PDCCH
  • the second configuration information indicates whether to configure code block group CBG transmission.
  • the user equipment receives the first configuration information and the second configuration information, determines a transmission scenario group based on the first configuration information and the second configuration information, and then generates a HARQ-ACK codebook based on the transmission scenario group and sends it to the network equipment.
  • Whether to configure multi-slot PDSCH transmission through PDCCH and whether to configure code block group CBG transmission can form four transmission scenarios: the transmission scenario where multi-slot PDSCH transmission is not configured through PDCCH and CBG transmission is not configured, and multi-slot PDSCH is not configured through PDCCH Transmission scenario with CBG transmission configured, transmission scenario with multi-slot PDSCH transmission scheduled through PDCCH without CBG transmission configured, transmission scenario with multi-slot PDSCH transmission scheduled through PDCCH and CBG transmission configured.
  • a transmission scenario group includes at least one transmission scenario.
  • the transmission scenario group includes: a transmission scenario group composed of a first transmission scenario and a second transmission scenario, and a transmission scenario group composed of a third transmission scenario and a fourth transmission scenario.
  • the transmission scenario group includes: a transmission scenario group composed of the first transmission scenario and the third transmission scenario, and a transmission scenario group composed of the second transmission scenario and the fourth transmission scenario.
  • the first transmission scenario is a transmission scenario in which multi-slot PDSCH transmission is not configured through PDCCH and CBG transmission is not configured.
  • the second transmission scenario is a transmission scenario in which multi-slot PDSCH transmission is not configured through PDCCH and CBG transmission is configured.
  • the third transmission The scenario is a transmission scenario in which multi-slot PDSCH transmission is configured through PDCCH and CBG transmission is not configured.
  • the fourth transmission scenario is a transmission scenario in which multi-slot PDSCH transmission is configured through PDCCH and CBG transmission is configured.
  • the user equipment receives the first configuration information and the second configuration information, determines the transmission scenario group based on the first configuration information and the second configuration information, and determines each DCI corresponding to the cells belonging to the same transmission scenario group.
  • the number of bits of the HARQ-ACK information generate the HARQ-ACK codebook based on the number of bits of the HARQ-ACK information, and send the codebook to the network device.
  • the user equipment generates the HARQ-ACK codebook for feeding back the PDSCH based on the configuration method of scheduling multi-slot PDSCH transmission through the PDCCH and the configuration method of CBG transmission, so that it can be suitable for the above two configuration methods. to generate a HARQ-ACK codebook.
  • generating the HARQ-ACK codebook based on the transmission scenario group can reduce the number of HARQ-ACK information bits and improve the efficiency of feeding back the HARQ-ACK codebook.
  • FIG. 5 is a flowchart of a method for generating a HARQ-ACK codebook according to an exemplary embodiment. As shown in FIG. 5, the method includes:
  • Step 501 receiving first configuration information and second configuration information
  • Step 502 Determine a transmission scenario group based on the first configuration information and the second configuration information, and each transmission scenario group includes at least one transmission scenario;
  • Step 503 for cells belonging to the same transmission scenario group, determine that the number of HARQ-ACK information bits corresponding to each DCI is the number of HARQ-ACK information bits corresponding to each DCI in each of the transmission scenarios in the transmission scenario group maximum value.
  • Step 504 sending the HARQ-ACK codebook to the network device
  • the first configuration information indicates whether to configure multi-slot PDSCH transmission through the physical uplink control channel PDCCH
  • the second configuration information indicates whether to configure code block group CBG transmission.
  • the user equipment receives the first configuration information and the second configuration information, determines the transmission scenario group based on the first configuration information and the second configuration information, and determines the HARQ protocol corresponding to each DCI for the cells belonging to the same transmission scenario group.
  • the number of bits of ACK information is the maximum value of the number of bits of HARQ-ACK information corresponding to each DCI in each transmission scenario in the transmission scenario group, and a HARQ-ACK codebook is generated and sent to the network device.
  • the transmission scenarios included in the transmission scenario group are transmission scenarios in which PDCCH scheduling of multi-slot PDSCH transmission is not configured and CBG transmission is not configured, and transmission scenarios in which PDCCH scheduling of multi-slot PDSCH transmission is not configured and CBG transmission is configured.
  • the number of HARQ-ACK information bits corresponding to each DCI is 1.
  • the number of HARQ-ACK information bits corresponding to each DCI is the maximum number of CBGs included in a transmission block configured by the network device, for example, 4. Then, for the cells belonging to the transmission scenario group, it is determined that the number of bits of HARQ-ACK information corresponding to each DCI is 4.
  • the transmission scenarios included in the transmission scenario group are a transmission scenario in which multi-slot PDSCH transmission is configured through PDCCH and CBG transmission is not configured, and a transmission scenario in which multi-slot PDSCH transmission is configured through PDCCH and CBG transmission is configured.
  • the number of HARQ-ACK information bits corresponding to each DCI is the number of multi-slot PDSCH indicated in the TDRA table, for example, 6.
  • the number of HARQ-ACK information bits corresponding to each DCI is M*N, for example, 24; where M is the CBG included in a transmission block configured by the network device The maximum value of the number is 4, and N is the number 6 of the multi-slot PDSCH indicated in the TDRA table. Then, for the cells belonging to the transmission scenario group, it is determined that the number of bits of HARQ-ACK information corresponding to each DCI is 24.
  • the transmission scenarios included in the transmission scenario group are a transmission scenario in which multi-slot PDSCH transmission is configured through PDCCH and CBG transmission is not configured, and a transmission scenario in which multi-slot PDSCH transmission is configured through PDCCH and CBG transmission is configured.
  • the number of HARQ-ACK information bits corresponding to each DCI is the number of multi-slot PDSCH indicated in the TDRA table, for example, 6.
  • the number of HARQ-ACK information bits corresponding to each DCI is the maximum value between M and N, for example, 6; where M is a transmission configured by the network device The maximum number of CBGs included in the block is 4, and N is the number of multi-slot PDSCHs indicated in the TDRA table 6. Then, for the cells belonging to the transmission scenario group, it is determined that the number of bits of HARQ-ACK information corresponding to each DCI is 6.
  • the user equipment generates the HARQ-ACK codebook for feeding back the PDSCH based on the configuration method of scheduling multi-slot PDSCH transmission through the PDCCH and the configuration method of CBG transmission, so that it can be suitable for the above two configuration methods. to generate a HARQ-ACK codebook.
  • generating the HARQ-ACK codebook based on the transmission scenario group can reduce the number of HARQ-ACK information bits and improve the efficiency of feeding back the HARQ-ACK codebook.
  • the transmission scenarios include: a first transmission scenario, a second transmission scenario, a third transmission scenario, and a fourth transmission scenario, wherein the first transmission scenario is that the PDCCH is not configured to schedule multi-slot PDSCH transmission and the CBG is not configured A transmission scenario for transmission, the second transmission scenario is a transmission scenario in which multi-slot PDSCH transmission is not configured through PDCCH and CBG transmission is configured, and the third transmission scenario is configured for multi-slot PDSCH transmission through PDCCH scheduling and CBG transmission is not configured In a transmission scenario, the fourth transmission scenario is a transmission scenario in which multi-slot PDSCH transmission is configured through PDCCH scheduling and CBG transmission is configured;
  • the number of bits of HARQ-ACK information corresponding to each DCI in the first transmission scenario is 1;
  • the number of HARQ-ACK information bits corresponding to each DCI in the second transmission scenario is M;
  • the number of HARQ-ACK information bits corresponding to each DCI in the third transmission scenario is N;
  • the number of HARQ-ACK information bits corresponding to each DCI in the fourth transmission scenario is the maximum value of M*N or M and N;
  • the M is the maximum number of CBGs included in a transport block configured by the network device
  • the N is the maximum number of PDSCHs corresponding to PDSCH transmission through PDCCH scheduling multi-slots
  • the maximum number of PDSCHs is based on The maximum number of PDSCHs scheduled by a DCI determined by network device configuration, or the maximum number of PDSCHs scheduled by a DCI determined by the protocol
  • M and N are both positive integers greater than zero.
  • FIG. 6 is a flowchart of a method for generating a HARQ-ACK codebook according to an exemplary embodiment. As shown in FIG. 6, the method includes:
  • Step 601 receiving first configuration information and second configuration information
  • Step 602 in response to a physical uplink control channel PUCCH group including a plurality of cells belonging to different transmission scenarios, by concatenating the codebooks corresponding to the cells belonging to different transmission scenarios to obtain the HARQ-ACK code corresponding to the PUCCH group or in response to a PUCCH group including a plurality of cells belonging to different transmission scenario groups, by concatenating the codebooks corresponding to the cells belonging to different transmission scenario groups to obtain the HARQ-ACK codebook corresponding to the PUCCH group;
  • Step 603 sending the HARQ-ACK codebook to the network device
  • the first configuration information indicates whether to configure multi-slot PDSCH transmission through the physical uplink control channel PDCCH
  • the second configuration information indicates whether to configure code block group CBG transmission.
  • the user equipment receives the first configuration information and the second configuration information, and one PUCCH group includes multiple cells belonging to different transmission scenarios, then for cells belonging to the same transmission scenario, determine the HARQ-ACK corresponding to each DCI information bits, and based on the HARQ-ACK information bits, determine codebooks corresponding to cells belonging to the same transmission scenario. Then, concatenate the codebooks corresponding to the cells belonging to different transmission scenarios determined according to the above method to obtain the HARQ-ACK codebook corresponding to the PUCCH group, and send the HARQ-ACK codebook.
  • the user equipment receives the first configuration information and the second configuration information, and one PUCCH group includes multiple cells belonging to different transmission scenario groups, and for the cells belonging to the same transmission scenario group, the HARQ corresponding to each DCI is determined.
  • - ACK information bits and based on the HARQ-ACK information bits, determine codebooks corresponding to cells belonging to the same transmission scenario group. Then concatenate the codebooks corresponding to cells belonging to different transmission scenario groups determined according to the above method to obtain the HARQ-ACK codebook corresponding to the PUCCH group, and send the HARQ-ACK codebook.
  • the user equipment generates the HARQ-ACK codebook for feeding back the PDSCH based on the configuration method of scheduling multi-slot PDSCH transmission through the PDCCH and the configuration method of CBG transmission, so that it can be suitable for the above two configuration methods. to generate a HARQ-ACK codebook.
  • generating the HARQ-ACK codebook based on the transmission scenario group can reduce the number of HARQ-ACK information bits and improve the efficiency of feeding back the HARQ-ACK codebook.
  • FIG. 7 is a flowchart of a method for receiving a HARQ-ACK codebook according to an exemplary embodiment. As shown in FIG. 7, the method includes:
  • Step 701 sending the first configuration information and the second configuration information to the user equipment
  • Step 702 receiving and feeding back the HARQ-ACK codebook of the physical downlink shared channel PDSCH from the user equipment;
  • the first configuration information indicates whether to configure multi-slot PDSCH transmission through the physical uplink control channel PDCCH
  • the second configuration information indicates whether to configure code block group CBG transmission.
  • the network device sends the first configuration information and the second configuration information to the user equipment, so that the user equipment generates a HARQ-ACK codebook for feeding back the PDSCH based on the received first configuration information and the second configuration information, where the first The configuration information indicates whether to configure multi-slot PDSCH transmission through PDCCH scheduling, and the second configuration information indicates whether to configure CBG transmission. Then, the network device receives the HARQ-ACK codebook from the user equipment, so as to perform accurate data retransmission.
  • the network device sends the first configuration information and the second configuration information to the user equipment, so that the user equipment can generate a HARQ-ACK codebook for feeding back the PDSCH based on the first configuration information and the second configuration information.
  • the HARQ-ACK codebook generated in this manner is suitable for fully considering the above two configuration manners, thereby ensuring accurate and efficient data retransmission.
  • An embodiment of the present disclosure provides an apparatus for generating a HARQ-ACK codebook, which is applied to a user equipment.
  • the apparatus includes:
  • the processing module 802 is configured to generate a HARQ-ACK codebook for feeding back a physical downlink shared channel PDSCH based on the first configuration information and the second configuration information;
  • the first configuration information indicates whether to configure multi-slot PDSCH transmission through the physical uplink control channel PDCCH
  • the second configuration information indicates whether to configure code block group CBG transmission.
  • An embodiment of the present disclosure provides a HARQ-ACK codebook receiving device, which is applied to a network device.
  • the device includes:
  • the sending module 901 is configured to send the first configuration information and the second configuration information to the user equipment;
  • the receiving module 902 is configured to receive a HARQ-ACK codebook for feeding back a physical downlink shared channel PDSCH from the user equipment;
  • the first configuration information indicates whether to configure multi-slot PDSCH transmission through the physical uplink control channel PDCCH
  • the second configuration information indicates whether to configure code block group CBG transmission.
  • An embodiment of the present disclosure provides a mobile terminal, including:
  • memory for storing processor-executable instructions
  • the processor is configured to execute the executable instructions in the memory to implement the steps of the above HARQ-ACK codebook generation method.
  • An embodiment of the present disclosure provides a network side device, including:
  • memory for storing processor-executable instructions
  • the processor is configured to execute the executable instructions in the memory to implement the steps of the above HARQ-ACK codebook receiving method.
  • An embodiment of the present disclosure provides a non-transitory computer-readable storage medium on which executable instructions are stored.
  • the executable instructions are executed by a processor, the above-mentioned HARQ-ACK codebook generation method or the above-mentioned HARQ-ACK codebook is implemented. The steps of the receive method.
  • Fig. 10 is a block diagram of an apparatus 1000 for determining a tracking area code according to an exemplary embodiment.
  • the apparatus 1000 may be a mobile phone, a computer, a digital broadcast terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, and the like.
  • device 1000 may include one or more of the following components: processing component 1002, memory 1004, power supply component 1006, multimedia component 1008, audio component 1010, input/output (I/O) interface 1012, sensor component 1014, and communication component 1016.
  • the processing component 1002 generally controls the overall operations of the device 1000, such as those associated with display, telephone calls, data communications, camera operations, and recording operations.
  • the processing component 1002 may include one or more processors 1020 to execute instructions to complete all or part of the steps of the above method. Additionally, processing component 1002 may include one or more modules that facilitate interaction between processing component 1002 and other components. For example, processing component 1002 may include a multimedia module to facilitate interaction between multimedia component 1008 and processing component 1002 .
  • the memory 1004 is configured to store various types of data to support operations at the device 1000 . Examples of such data include instructions for any application or method operating on device 1000, contact data, phonebook data, messages, pictures, videos, and the like.
  • the memory 1004 can be realized by any type of volatile or non-volatile storage device or their combination, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic or Optical Disk Magnetic Disk
  • the power supply component 1006 provides power to various components of the device 1000 .
  • Power components 1006 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power for device 1000 .
  • the multimedia component 1008 includes a screen that provides an output interface between the device 1000 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from a user.
  • the touch panel includes one or more touch sensors to sense touches, swipes, and gestures on the touch panel. The touch sensor may not only sense a boundary of a touch or swipe action, but also detect duration and pressure associated with the touch or swipe action.
  • the multimedia component 1008 includes a front camera and/or a rear camera. When the device 1000 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capability.
  • the audio component 1010 is configured to output and/or input audio signals.
  • the audio component 1010 includes a microphone (MIC), which is configured to receive external audio signals when the device 1000 is in operation modes, such as call mode, recording mode and voice recognition mode. Received audio signals may be further stored in memory 1004 or sent via communication component 1016 .
  • the audio component 1010 also includes a speaker for outputting audio signals.
  • the I/O interface 1012 provides an interface between the processing component 1002 and a peripheral interface module, which may be a keyboard, a click wheel, a button, and the like. These buttons may include, but are not limited to: a home button, volume buttons, start button, and lock button.
  • Sensor assembly 1014 includes one or more sensors for providing status assessments of various aspects of device 1000 .
  • the sensor component 1014 can detect the open/closed state of the device 1000, the relative positioning of components, such as the display and keypad of the device 1000, and the sensor component 1014 can also detect a change in the position of the device 1000 or a component of the device 1000 , the presence or absence of user contact with the device 1000 , the device 1000 orientation or acceleration/deceleration and the temperature change of the device 1000 .
  • the sensor assembly 1014 may include a proximity sensor configured to detect the presence of nearby objects in the absence of any physical contact.
  • the sensor assembly 1014 may also include an optical sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 1014 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor or a temperature sensor.
  • the communication component 1016 is configured to facilitate wired or wireless communication between the apparatus 1000 and other devices.
  • the device 1000 can access wireless networks based on communication standards, such as WiFi, 2G or 3G, or a combination thereof.
  • the communication component 1016 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 1016 also includes a near field communication (NFC) module to facilitate short-range communication.
  • NFC near field communication
  • the NFC module may be implemented based on Radio Frequency Identification (RFID) technology, Infrared Data Association (IrDA) technology, Ultra Wide Band (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID Radio Frequency Identification
  • IrDA Infrared Data Association
  • UWB Ultra Wide Band
  • Bluetooth Bluetooth
  • apparatus 1000 may be programmed by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A gate array (FPGA), controller, microcontroller, microprocessor or other electronic component implementation for performing the methods described above.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor or other electronic component implementation for performing the methods described above.
  • non-transitory computer-readable storage medium including instructions, such as the memory 1004 including instructions, which can be executed by the processor 1020 of the device 1000 to implement the above method.
  • the non-transitory computer readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.
  • Fig. 11 is a block diagram of an apparatus 1100 for sending a tracking area code according to an exemplary embodiment.
  • apparatus 1100 may be provided as a base station.
  • apparatus 1100 includes processing component 1122 , which further includes one or more processors, and a memory resource represented by memory 1132 for storing instructions executable by processing component 1122 , such as application programs.
  • the application program stored in memory 1132 may include one or more modules each corresponding to a set of instructions.
  • the processing component 1122 is configured to execute instructions to perform the above method for accessing an unlicensed channel.
  • the device 1100 may also include a power component 1126 configured to perform power management of the device 1100, a wired or wireless network interface 1150 configured to connect the device 1100 to a network, and an input output (I/O) interface 1159.
  • the device 1100 can operate based on an operating system stored in the memory 1132, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM or the like.
  • the user equipment Based on the configuration method of scheduling multi-slot PDSCH transmission through PDCCH and the configuration method of CBG transmission, the user equipment generates the HARQ-ACK codebook for feedback PDSCH, so that it can generate HARQ-ACK code when it is suitable for the above two configuration methods Book.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种HARQ-ACK码本生成和接收方法、装置、设备及存储介质。该HARQ-ACK码本生成方法包括:接收第一配置信息和第二配置信息;基于所述第一配置信息和所述第二配置信息,生成反馈物理下行共享信道PDSCH的HARQ-ACK码本;发送所述HARQ-ACK码本至网络设备。该方法能够在适合两种配置方式的情况下,生成HARQ-ACK码本。

Description

一种HARQ-ACK码本生成和接收方法、装置、设备及存储介质 技术领域
本公开涉及无线通信技术领域,尤其涉及一种HARQ-ACK码本生成和接收方法、装置、设备及存储介质。
背景技术
在新空口(New Radio,NR)52.6-71GHz项目中引入了多时隙物理下行共享信道(Physical Downlink Shared channel,PDSCH)调度,也即一个下行控制信息(Downlink Control Information,DCI)调度多个时隙的PDSCH。
针对每个码块组(Code Block Group,CBG)反馈1个混合自动重传请求应答(Hybrid Automatic Repeat Request Acknowledgement,HARQ-ACK)信息的方式即为基于CBG的HARQ-ACK反馈。
Type2 HARQ-ACK码本具有动态码本大小,在使用DCI调度PDSCH时,可以使用DCI中的下行分配索引(Downlink Assignment Index,DAI)域来计数。因此,需要一个PUCCH组中的多个小区分别配置多时隙PDSCH传输和/或CBG传输时构造Type2 HARQ-ACK码本的方法。
发明内容
有鉴于此,本公开提供了一种HARQ-ACK码本生成和接收方法、装置、设备及存储介质。
根据本公开实施例的第一个方面,提供一种HARQ-ACK码本生成方法,被用户设备执行,包括:
接收第一配置信息和第二配置信息;
基于所述第一配置信息和所述第二配置信息,生成反馈物理下行共享信道PDSCH的HARQ-ACK码本;
发送所述HARQ-ACK码本至网络设备;
其中,所述第一配置信息指示是否配置通过物理上行控制信道PDCCH调度多时隙PDSCH传输,所述第二配置信息指示是否配置码块组CBG传输。
在一实施方式中,所述基于所述第一配置信息和所述第二配置信息,生成反馈PDSCH的HARQ-ACK码本,包括:
响应于所述第一配置信息指示配置通过PDCCH调度多时隙PDSCH传输,所述第二配置信息指示配置CBG传输,确定每个下行控制信息DCI对应的HARQ-ACK信息位数为M和N中的最大值;
其中,所述M是网络设备配置的一个传输块包括的CBG个数的最大值,所述N是通过PDCCH调度多时隙PDSCH传输对应的PDSCH个数的最大值,所述PDSCH个数的最大值为根据网络设备配置确定的一个DCI调度的PDSCH个数的最大值,或协议确定的一个DCI调度的PDSCH个数的最大值。
其中,M和N均为大于零的正整数。
在一实施方式中,确定每个下行控制信息DCI对应的HARQ-ACK信息位数为M和N中的最大值,包括:
响应于一个DCI调度L个PDSCH且L=1,M≥N,所述DCI对应的HARQ-ACK信息包括对应于该PDSCH对应的M个CBG的M个信息位;
响应于一个DCI调度L个PDSCH且L=1,M<N,所述DCI对应的HARQ-ACK信息包括对应于该PDSCH对应的M个CBG的M个信息位和(N-M)个填充位,所述(N-M)个填充位的值均相同;
响应于一个DCI调度L个PDSCH且1<L≤N,M≥N,所述DCI对应的HARQ-ACK信息包括对应于L个PDSCH的L个信息位和(M-L)个填充位,所述(M-L)个填充位的值均相同;
响应于一个DCI调度L个PDSCH且1<L≤N,M<N,所述DCI对应的HARQ-ACK信息包括对应于L个PDSCH的L个信息位和(N-L)个填充位,所述(N-L)个填充位的值均相同;
其中,L为大于零的正整数。
在一实施方式中,所述基于所述第一配置信息和所述第二配置信息,生成反馈PDSCH的HARQ-ACK码本,包括:
基于所述第一配置信息和所述第二配置信息,确定传输场景组,每个传输场景组包括至少一个传输场景;
基于所述传输场景组,生成所述HARQ-ACK码本。
在一实施方式中,所述基于所述传输场景组,生成所述HARQ-ACK码本,包括:
针对属于相同传输场景组的小区,确定每个DCI对应的HARQ-ACK信息位数为所述传输场景组中各所述传输场景中每个DCI所对应的HARQ-ACK信息位数的最大值。
在一实施方式中,所述传输场景包括:未配置通过PDCCH调度多时隙PDSCH传输且未配置CBG传输的传输场景、未配置通过PDCCH调度多时隙PDSCH传输且配置CBG传输的传输场景、配置通过PDCCH调度多时隙PDSCH传输且未配置CBG传输的传输场景、配置通过PDCCH调度多时隙PDSCH传输且配置CBG传输的传输场景。
在一实施方式中,所述基于所述第一配置信息和所述第二配置信息,生成反馈PDSCH的HARQ-ACK码本,包括:
响应于一物理上行控制信道PUCCH组包括多个属于不同传输场景的小区,通过将所述属于不同传输场景的小区对应的码本串接来获取所述PUCCH组对应的HARQ-ACK码本;或者
响应于一PUCCH组包括多个属于不同传输场景组的小区,通过将所述属于不同传输场景组的小区对应的码本串接来获取所述PUCCH组对应的HARQ-ACK码本。
根据本公开实施例的第二个方面,提供混合自动重传请求应答HARQ-ACK码本接收方法,被网络设备执行,包括:
发送第一配置信息和第二配置信息至用户设备;
从所述用户设备接收反馈物理下行共享信道PDSCH的HARQ-ACK码本;
其中,所述第一配置信息指示是否配置通过物理上行控制信道PDCCH调度多时隙PDSCH传输,所述第二配置信息指示是否配置码块组CBG传输。
根据本公开实施例的第三个方面,提供混合自动重传请求应答HARQ-ACK码本生成装置,应用于用户设备,包括:
接收模块,被配置为接收第一配置信息和第二配置信息;
处理模块,被配置为基于所述第一配置信息和所述第二配置信息,生成反馈物理下行共享信道PDSCH的HARQ-ACK码本;
发送模块,被配置为发送所述HARQ-ACK码本至网络设备;
其中,所述第一配置信息指示是否配置通过物理上行控制信道PDCCH调度多时隙 PDSCH传输,所述第二配置信息指示是否配置码块组CBG传输。
根据本公开实施例的第四个方面,提供混合自动重传请求应答HARQ-ACK码本接收装置,应用于网络设备,包括:
发送模块,被配置为发送第一配置信息和第二配置信息至用户设备;
接收模块,被配置为从所述用户设备接收反馈物理下行共享信道PDSCH的HARQ-ACK码本;
其中,所述第一配置信息指示是否配置通过物理上行控制信道PDCCH调度多时隙PDSCH传输,所述第二配置信息指示是否配置码块组CBG传输。
根据本公开实施例的第五个方面,提供移动终端,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为执行所述存储器中的可执行指令以实现权利要求1至7中任一项的混合自动重传请求应答HARQ-ACK码本生成方法的步骤。
根据本公开实施例的第六个方面,提供网络侧设备,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为执行所述存储器中的可执行指令以实现权利要求8中的混合自动重传请求应答HARQ-ACK码本接收方法的步骤。
根据本公开实施例的第七个方面,提供一种非临时性计算机可读存储介质,其上存储有可执行指令,该可执行指令被处理器执行时实现权利要求1至7中任一项的混合自动重传请求应答HARQ-ACK码本生成方法或者权利要求8中的HARQ-ACK码本接收方法的步骤。
本公开的实施例提供的技术方案可以包括以下有益效果:用户设备基于通过PDCCH调度多时隙PDSCH传输的配置方式和CBG传输的配置方式,来生成反馈PDSCH的HARQ-ACK码本,从而能够在适合于上述两种配置方式的情况下,生成HARQ-ACK码本。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处所说明的附图用来提供对本公开实施例的进一步理解,构成本申请的一部分,本公开实施例的示意性实施例及其说明用于解释本公开实施例,并不构成对本公开实施例的不当限定。在附图中:
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开实施例的实施例,并与说明书一起用于解释本公开实施例的原理。
图1是根据一示例性实施例示出的一种HARQ-ACK码本生成方法的流程图;
图2是根据一示例性实施例示出的一种HARQ-ACK码本生成方法的流程图;
图3是根据一示例性实施例示出的一种HARQ-ACK码本生成方法的流程图;
图4是根据一示例性实施例示出的一种HARQ-ACK码本生成方法的流程图;
图5是根据一示例性实施例示出的一种HARQ-ACK码本生成方法的流程图;
图6是根据一示例性实施例示出的一种HARQ-ACK码本生成方法的流程图;
图7是根据一示例性实施例示出的一种HARQ-ACK码本接收方法的流程图;
图8是根据一示例性实施例示出的一种HARQ-ACK码本生成装置的框图;
图9是根据一示例性实施例示出的一种HARQ-ACK码本接收装置的框图;
图10是根据一示例性实施例示出的一种HARQ-ACK码本生成装置的结构图;
图11是根据一示例性实施例示出的一种HARQ-ACK码本接收装置的结构图。
具体实施方式
现结合附图和具体实施方式对本公开实施例进一步说明。
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
需要说明的是,本公开的一个实施例中可以包括多个步骤;为了便于描述,这些个步骤被进行了编号;但是这些编号并非是对步骤之间执行时隙、执行顺序的限定;这些步骤 可以以任意的顺序被实施,本公开实施例并不对此作出限定。
一个DCI调度的多个PDSCH的HARQ-ACK在同一个PUCCH中反馈。根据调度DCI中的k1,以及最后一个PDSCH的时隙位置确定针对该多个PDSCH进行HARQ-ACK反馈的PUCCH的时隙。
一个传输块(Transport Block,TB)可以分成1个或者多个CB,多个CB可以划分成若干CBG。例如,1个TB分成8个CB,该8个CB划分成4个CBG,每个CBG包含2个CB。因此,若针对每个CBG反馈1bit HARQ-ACK信息,则一共要反馈4bit HARQ-ACK信息。采用CBG反馈的方式可以提升HARQ重传的效率,即,只需要重传出错的CBG,而不需要重传整个TB;但相应地加了HARQ-ACK开销。
在使用DCI调度PDSCH时,可以使用DCI中的DAI域来计数。DAI包括Counter DAI(C-DAI)和Total-DAI(T-DAI)。当用户设备(User Equipment,UE)只配置单载波时,只需要对C-DAI计数,当UE配置有多载波时,需要对C-DAI、T-DAI均进行计数。在已经通过的结论中DAI按照调度DCI的个数来计数,即,网络设备每调度一个DCI(该DCI可以调度一个或者多个PDSCH),C-DAI就会加1;并且当配置有多载波时,T-DAI也加1。
本公开实施例提供了一种HARQ-ACK码本生成方法,被用户设备执行。该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。图1是根据一示例性实施例示出的一种HARQ-ACK码本生成方法的流程图,如图1所示,该方法包括:
步骤101,接收第一配置信息和第二配置信息;
步骤102,基于所述第一配置信息和所述第二配置信息,生成反馈物理下行共享信道PDSCH的HARQ-ACK码本;
步骤103,发送所述HARQ-ACK码本至网络设备;
其中,所述第一配置信息指示是否配置通过物理上行控制信道PDCCH调度多时隙PDSCH传输,所述第二配置信息指示是否配置码块组CBG传输。
在一个实施方式中,用户设备接收第一配置信息和第二配置信息,其中第一配置信息指示是否配置通过PDCCH调度多时隙PDSCH传输,第二配置信息指示是否配置CBG传输。用户设备基于第一配置信息和第二配置信息,生成反馈PDSCH的HARQ-ACK码本,并将HARQ-ACK码本发送至网络设备。
在一个实施方式中,用户设备基于第一配置信息和第二配置信息,生成反馈PDSCH的Type2 HARQ-ACK码本。
在一个实施方式中,用户设备从网络设备接收第一配置信息和第二配置信息,并基于第一配置信息和第二配置信息,确定当前的传输场景或传输场景组,并基于当前的传输场景或传输场景组,确定每个DCI对应的HARQ-ACK信息位数,相应地生成HARQ-ACK码本,并将该HARQ-ACK码本发送至网络设备。
在上述实施方式中,用户设备基于通过PDCCH调度多时隙PDSCH传输的配置方式和CBG传输的配置方式,来生成反馈PDSCH的HARQ-ACK码本,从而能够在适合于上述两种配置方式的情况下,生成HARQ-ACK码本。
本公开实施例提供了一种HARQ-ACK码本生成方法,被用户设备执行。该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。图2是根据一示例性实施例示出的一种HARQ-ACK码本生成方法的流程图,如图2所示,该方法包括:
步骤201,接收第一配置信息和第二配置信息;
步骤202,响应于所述第一配置信息指示配置通过PDCCH调度多时隙PDSCH传输,所述第二配置信息指示配置CBG传输,确定每个下行控制信息DCI对应的HARQ-ACK信息位数为M和N中的最大值,基于所述HARQ-ACK信息位数生成所述HARQ-ACK码本;
步骤203,发送所述HARQ-ACK码本至网络设备;
其中,所述第一配置信息指示是否配置通过物理上行控制信道PDCCH调度多时隙PDSCH传输,所述第二配置信息指示是否配置码块组CBG传输;
其中,所述M是网络设备配置的一个传输块包括的CBG个数的最大值,所述N是通过PDCCH调度多时隙PDSCH传输对应的PDSCH个数的最大值,所述PDSCH个数的最大值为根据网络设备配置确定的一个DCI调度的PDSCH个数的最大值,或协议确定的一个DCI调度的PDSCH个数的最大值,M和N均为大于零的正整数。
在一个实施方式中,用户设备接收第一配置信息和第二配置信息,其中第一配置信息指示配置通过PDCCH调度多时隙PDSCH传输,第二配置信息指示配置CBG传输;用户设备响应于接收的第一配置信息和第二配置信息,确定每个DCI对应的HARQ-ACK信息位数为M和N中的最大值,并基于确定的HARQ-ACK信息位数生成HARQ-ACK码本; 然后发送该生成的HARQ-ACK码本。其中,M是网络设备配置的一个传输块包括的CBG个数的最大值,N是协议确定的一个DCI调度的PDSCH个数的最大值。
在一个实施方式中,用户设备接收第一配置信息和第二配置信息,其中第一配置信息指示配置通过PDCCH调度多时隙PDSCH传输,第二配置信息指示配置CBG传输;用户设备响应于接收的第一配置信息和第二配置信息,确定每个DCI对应的HARQ-ACK信息位数为M和N中的最大值,并基于确定的HARQ-ACK信息位数生成HARQ-ACK码本;然后发送该生成的HARQ-ACK码本。其中,M是网络设备配置的一个传输块包括的CBG个数的最大值,N是根据网络设备配置确定的一个DCI调度的PDSCH个数的最大值。
在一个实施方式中,用户设备接收第一配置信息和第二配置信息,其中第一配置信息指示配置通过PDCCH调度多时隙PDSCH传输,第二配置信息指示配置CBG传输;用户设备响应于接收的第一配置信息和第二配置信息,确定每个DCI对应的HARQ-ACK信息位数为M和N中的最大值,并基于确定的HARQ-ACK信息位数生成HARQ-ACK码本;然后发送该生成的HARQ-ACK码本。其中,M是网络设备配置的一个传输块包括的CBG个数的最大值,N是网络设备通过RRC信令发送的时域资源分配(Time Domain Resource Allocation,TDRA)表中指示的一个DCI调度的PDSCH个数的最大值。
在一个实施方式中,用户设备从网络设备接收调度DCI,该DCI中的TDRA字段指向TDRA表中的某一行,即某个TDRA element。若该TDRA element包含了N个{k0,mapping type,SLIV},则该DCI调度了N个PDSCH。
在上述实施方式中,用户设备基于通过PDCCH调度多时隙PDSCH传输的配置方式和CBG传输的配置方式,来生成反馈PDSCH的HARQ-ACK码本,从而能够在适合于上述两种配置方式的情况下,生成HARQ-ACK码本。
对于配置多时隙PDSCH传输,也配置CBG传输的小区,也可能有下述限定:只有当DCI调度单时隙PDSCH时,才会有CBGTI域;DCI调度多时隙PDSCH时,就不会有CBGTI域。也即,对于DCI调度的多时隙PDSCH不会按照CBG来传输/重传。在这种限定下,采用M和N中的最大值作为DCI对应的HARQ-ACK信息位数,可以降低配置多时隙PDSCH传输并配置CBG传输场景下的HARQ-ACK信息位数,提高反馈HARQ-ACK码本的效率。
本公开实施例提供了一种HARQ-ACK码本生成方法,被用户设备执行。该方法可以 独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。图3是根据一示例性实施例示出的一种HARQ-ACK码本生成方法的流程图,如图3所示,该方法包括:
步骤301,接收第一配置信息和第二配置信息;
步骤302,响应于所述第一配置信息指示配置通过PDCCH调度多时隙PDSCH传输,所述第二配置信息指示配置CBG传输,且响应于一个DCI调度L个PDSCH且L=1,M≥N,确定所述DCI对应的HARQ-ACK信息位包括对应于该PDSCH对应的M个CBG的M个信息位,并基于所述HARQ-ACK信息位数生成所述HARQ-ACK码本;
步骤303,发送所述HARQ-ACK码本至网络设备;
其中,所述第一配置信息指示是否配置通过物理上行控制信道PDCCH调度多时隙PDSCH传输,所述第二配置信息指示是否配置码块组CBG传输;
并且其中,所述M是网络设备配置的一个传输块包括的CBG个数的最大值,所述N是通过PDCCH调度多时隙PDSCH传输对应的PDSCH个数的最大值,所述PDSCH个数的最大值为根据网络设备配置确定的一个DCI调度的PDSCH个数的最大值,或协议确定的一个DCI调度的PDSCH个数的最大值,M和N均为大于零的正整数,L为大于零的正整数。
在一个实施方式中,用户设备接收第一配置信息和第二配置信息,其中第一配置信息指示配置通过PDCCH调度多时隙PDSCH传输,第二配置信息指示配置CBG传输;用户设备响应于接收的第一配置信息和第二配置信息,并响应于一个DCI调度L个PDSCH且L=1,M≥N,所述DCI对应的HARQ-ACK信息包括对应于该PDSCH对应的M个CBG的M个信息位,并基于该M个信息位生成HARQ-ACK码本;然后发送该生成的HARQ-ACK码本。
在上述实施方式中,用户设备基于通过PDCCH调度多时隙PDSCH传输的配置方式和CBG传输的配置方式,来生成反馈PDSCH的HARQ-ACK码本,从而能够在适合于上述两种配置方式的情况下,生成HARQ-ACK码本。
并且,对于配置多时隙PDSCH传输,也配置CBG传输的小区,也可能有下述限定:只有当DCI调度单时隙PDSCH时,才会有CBGTI域;DCI调度多时隙PDSCH时,就不会有CBGTI域。也即,对于DCI调度的多时隙PDSCH不会按照CBG来传输/重传。在这种限定下,采用M和N中的最大值作为DCI对应的HARQ-ACK信息位数,可以降低配置多时隙PDSCH传输并配置CBG传输场景下的HARQ-ACK信息位数,提高反馈 HARQ-ACK码本的效率。
本公开实施例提供了一种HARQ-ACK码本生成方法,被用户设备执行。该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。该方法包括:
接收第一配置信息和第二配置信息;
响应于所述第一配置信息指示配置通过PDCCH调度多时隙PDSCH传输,所述第二配置信息指示配置CBG传输,且响应于一个DCI调度L个PDSCH且L=1,M<N,确定所述DCI对应的HARQ-ACK信息位包括对应于该PDSCH对应的M个CBG的M个信息位和(N-M)个填充位,所述(N-M)个填充位的值均相同,并基于所述HARQ-ACK信息位数生成所述HARQ-ACK码本;
发送所述HARQ-ACK码本至网络设备;
其中,所述第一配置信息指示是否配置通过物理上行控制信道PDCCH调度多时隙PDSCH传输,所述第二配置信息指示是否配置码块组CBG传输;
并且其中,所述M是网络设备配置的一个传输块包括的CBG个数的最大值,所述N是通过PDCCH调度多时隙PDSCH传输对应的PDSCH个数的最大值,所述PDSCH个数的最大值为根据网络设备配置确定的一个DCI调度的PDSCH个数的最大值,或协议确定的一个DCI调度的PDSCH个数的最大值,M和N均为大于零的正整数,L为大于零的正整数。
在一个实施方式中,用户设备接收第一配置信息和第二配置信息,其中第一配置信息指示配置通过PDCCH调度多时隙PDSCH传输,第二配置信息指示配置CBG传输;用户设备响应于接收的第一配置信息和第二配置信息,并响应于一个DCI调度L个PDSCH且L=1,M<N,所述DCI对应的HARQ-ACK信息包括对应于该PDSCH对应的M个CBG的M个信息位和(N-M)个填充位,填充位为全0或全1,并基于该N个信息位生成HARQ-ACK码本;然后发送该生成的HARQ-ACK码本。
在一个实施方式中,例如对应于某个小区,配置M=4,N=6,确定DCI对应的HARQ-ACK信息位数为M和N中的最大值,即6。若一个DCI调度单时隙PDSCH,则针对该单时隙PDSCH的HARQ-ACK信息按照CBG方式反馈,为4bit。在该PDSCH中所有的CBG都解码正确时,则反馈1 1 1 1,另外还剩下2bit为填充位,则补上默认值0 0。
在上述实施方式中,用户设备基于通过PDCCH调度多时隙PDSCH传输的配置方式和CBG传输的配置方式,来生成反馈PDSCH的HARQ-ACK码本,从而能够在适合于上述两种配置方式的情况下,生成HARQ-ACK码本。
并且,对于配置多时隙PDSCH传输,也配置CBG传输的小区,也可能有下述限定:只有当DCI调度单时隙PDSCH时,才会有CBGTI域;DCI调度多时隙PDSCH时,就不会有CBGTI域。也即,对于DCI调度的多时隙PDSCH不会按照CBG来传输/重传。在这种限定下,采用M和N中的最大值作为DCI对应的HARQ-ACK信息位数,可以降低配置多时隙PDSCH传输并配置CBG传输场景下的HARQ-ACK信息位数,提高反馈HARQ-ACK码本的效率。
本公开实施例提供了一种HARQ-ACK码本生成方法,被用户设备执行。该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。该方法包括:
接收第一配置信息和第二配置信息;
响应于所述第一配置信息指示配置通过PDCCH调度多时隙PDSCH传输,所述第二配置信息指示配置CBG传输,且响应于一个DCI调度L个PDSCH且1<L≤N,M≥N,确定所述DCI对应的HARQ-ACK信息位包括对应于L个PDSCH的L个信息位和(M-L)个填充位,所述(M-L)个填充位的值均相同,并基于所述HARQ-ACK信息位数生成所述HARQ-ACK码本;
发送所述HARQ-ACK码本至网络设备;
其中,所述第一配置信息指示是否配置通过物理上行控制信道PDCCH调度多时隙PDSCH传输,所述第二配置信息指示是否配置码块组CBG传输;
并且其中,所述M是网络设备配置的一个传输块包括的CBG个数的最大值,所述N是通过PDCCH调度多时隙PDSCH传输对应的PDSCH个数的最大值,所述PDSCH个数的最大值为根据网络设备配置确定的一个DCI调度的PDSCH个数的最大值,或协议确定的一个DCI调度的PDSCH个数的最大值,M和N均为大于零的正整数,L为大于零的正整数。
在一个实施方式中,用户设备接收第一配置信息和第二配置信息,其中第一配置信息指示配置通过PDCCH调度多时隙PDSCH传输,第二配置信息指示配置CBG传输;用户设备响应于接收的第一配置信息和第二配置信息,并响应于一个DCI调度L个PDSCH且 1<L≤N,M≥N,所述DCI对应的HARQ-ACK信息包括对应于L个PDSCH的L个信息位和(M-L)个填充位,填充位为全0或全1,并基于该N个信息位生成HARQ-ACK码本;然后发送该生成的HARQ-ACK码本。
在上述实施方式中,用户设备基于通过PDCCH调度多时隙PDSCH传输的配置方式和CBG传输的配置方式,来生成反馈PDSCH的HARQ-ACK码本,从而能够在适合于上述两种配置方式的情况下,生成HARQ-ACK码本。
并且,对于配置多时隙PDSCH传输,也配置CBG传输的小区,也可能有下述限定:只有当DCI调度单时隙PDSCH时,才会有CBGTI域;DCI调度多时隙PDSCH时,就不会有CBGTI域。也即,对于DCI调度的多时隙PDSCH不会按照CBG来传输/重传。在这种限定下,采用M和N中的最大值作为DCI对应的HARQ-ACK信息位数,可以降低配置多时隙PDSCH传输并配置CBG传输场景下的HARQ-ACK信息位数,提高反馈HARQ-ACK码本的效率。
本公开实施例提供了一种HARQ-ACK码本生成方法,被用户设备执行。该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。该方法包括:
接收第一配置信息和第二配置信息;
响应于所述第一配置信息指示配置通过PDCCH调度多时隙PDSCH传输,所述第二配置信息指示配置CBG传输,并响应于一个DCI调度L个PDSCH且1<L≤N,M<N,确定所述DCI对应的HARQ-ACK信息位包括对应于L个PDSCH的L个信息位和(N-L)个填充位,所述(N-L)个填充位的值均相同,并基于所述HARQ-ACK信息位数生成所述HARQ-ACK码本;
发送所述HARQ-ACK码本至网络设备;
其中,所述第一配置信息指示是否配置通过物理上行控制信道PDCCH调度多时隙PDSCH传输,所述第二配置信息指示是否配置码块组CBG传输;
并且其中,所述M是网络设备配置的一个传输块包括的CBG个数的最大值,所述N是通过PDCCH调度多时隙PDSCH传输对应的PDSCH个数的最大值,所述PDSCH个数的最大值为根据网络设备配置确定的一个DCI调度的PDSCH个数的最大值,或协议确定的一个DCI调度的PDSCH个数的最大值,M和N均为大于零的正整数,L为大于零的正整数。
在一个实施方式中,用户设备接收第一配置信息和第二配置信息,其中第一配置信息指示配置通过PDCCH调度多时隙PDSCH传输,第二配置信息指示配置CBG传输;用户设备响应于接收的第一配置信息和第二配置信息,并响应于一个DCI调度L个PDSCH且1<L≤N,M<N,所述DCI对应的HARQ-ACK信息包括对应于L个PDSCH的L个信息位和(N-L)个填充位,填充位为全0或全1,并基于该N个信息位生成HARQ-ACK码本;然后发送该生成的HARQ-ACK码本。
在一个实施方式中,例如对应于某个小区,配置M=4,N=6,确定DCI对应的HARQ-ACK信息位数为M和N中的最大值,即6。若一个DCI调度5个PDSCH,则针对该多时隙PDSCH的HARQ-ACK信息不按照CBG方式反馈,直接采用TB级反馈,一个PDSCH对应1bit,则5个PDSCH对应5bit。在5个PDSCH都解码正确时,则反馈1 1 1 1 1,另外还剩下1bit为填充位,则补上默认值0。
在上述实施方式中,用户设备基于通过PDCCH调度多时隙PDSCH传输的配置方式和CBG传输的配置方式,来生成反馈PDSCH的HARQ-ACK码本,从而能够在适合于上述两种配置方式的情况下,生成HARQ-ACK码本。
并且,对于配置多时隙PDSCH传输,也配置CBG传输的小区,也可能有下述限定:只有当DCI调度单时隙PDSCH时,才会有CBGTI域;DCI调度多时隙PDSCH时,就不会有CBGTI域。也即,对于DCI调度的多时隙PDSCH不会按照CBG来传输/重传。在这种限定下,采用M和N中的最大值作为DCI对应的HARQ-ACK信息位数,可以降低配置多时隙PDSCH传输并配置CBG传输场景下的HARQ-ACK信息位数,提高反馈HARQ-ACK码本的效率。
本公开实施例提供了一种HARQ-ACK码本生成方法,被用户设备执行。该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。图4是根据一示例性实施例示出的一种HARQ-ACK码本生成方法的流程图,如图4所示,该方法包括:
步骤401,接收第一配置信息和第二配置信息;
步骤402,基于所述第一配置信息和所述第二配置信息,确定传输场景组,每个传输场景组包括至少一个传输场景;
步骤403,基于所述传输场景组,生成所述HARQ-ACK码本。
步骤404,发送所述HARQ-ACK码本至网络设备;
其中,所述第一配置信息指示是否配置通过物理上行控制信道PDCCH调度多时隙PDSCH传输,所述第二配置信息指示是否配置码块组CBG传输。
在一个实施方式中,用户设备接收第一配置信息和第二配置信息,基于第一配置信息和第二配置信息确定传输场景组,然后基于传输场景组,生成HARQ-ACK码本并发送至网络设备。
是否配置通过PDCCH调度多时隙PDSCH传输以及是否配置码块组CBG传输可以组成四种传输场景:未配置通过PDCCH调度多时隙PDSCH传输且未配置CBG传输的传输场景、未配置通过PDCCH调度多时隙PDSCH传输且配置CBG传输的传输场景、配置通过PDCCH调度多时隙PDSCH传输且未配置CBG传输的传输场景、配置通过PDCCH调度多时隙PDSCH传输且配置CBG传输的传输场景。
一个传输场景组包括至少一个传输场景。例如,根据一种传输场景分组方式,传输场景组包括:第一传输场景和第二传输场景组成的传输场景组,以及第三传输场景和第四传输场景组成的传输场景组。例如,根据另一种传输场景分组方式,传输场景组包括:第一传输场景和第三传输场景组成的传输场景组,以及第二传输场景和第四传输场景组成的传输场景组。
其中,第一传输场景是未配置通过PDCCH调度多时隙PDSCH传输且未配置CBG传输的传输场景,第二传输场景是未配置通过PDCCH调度多时隙PDSCH传输且配置CBG传输的传输场景,第三传输场景是配置通过PDCCH调度多时隙PDSCH传输且未配置CBG传输的传输场景,第四传输场景是配置通过PDCCH调度多时隙PDSCH传输且配置CBG传输的传输场景。
在一个实施方式中,用户设备接收第一配置信息和第二配置信息,基于第一配置信息和第二配置信息确定传输场景组,针对归属于同一个传输场景组的小区,确定每个DCI对应的HARQ-ACK信息位数,基于所述HARQ-ACK信息位数生成所述HARQ-ACK码本,本并发送至网络设备。
在上述实施方式中,用户设备基于通过PDCCH调度多时隙PDSCH传输的配置方式和CBG传输的配置方式,来生成反馈PDSCH的HARQ-ACK码本,从而能够在适合于上述两种配置方式的情况下,生成HARQ-ACK码本。
并且,基于传输场景组生成HARQ-ACK码本,能够降低HARQ-ACK信息位数,提高反馈HARQ-ACK码本的效率。
本公开实施例提供了一种HARQ-ACK码本生成方法,被用户设备执行。该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。图5是根据一示例性实施例示出的一种HARQ-ACK码本生成方法的流程图,如图5所示,该方法包括:
步骤501,接收第一配置信息和第二配置信息;
步骤502,基于所述第一配置信息和所述第二配置信息,确定传输场景组,每个传输场景组包括至少一个传输场景;
步骤503,针对属于相同传输场景组的小区,确定每个DCI对应的HARQ-ACK信息位数为所述传输场景组中各所述传输场景中每个DCI所对应的HARQ-ACK信息位数的最大值。
步骤504,发送所述HARQ-ACK码本至网络设备;
其中,所述第一配置信息指示是否配置通过物理上行控制信道PDCCH调度多时隙PDSCH传输,所述第二配置信息指示是否配置码块组CBG传输。
在一个实施方式中,用户设备接收第一配置信息和第二配置信息,基于第一配置信息和第二配置信息确定传输场景组,针对属于相同传输场景组的小区,确定每个DCI对应的HARQ-ACK信息位数为传输场景组中各所述传输场景中每个DCI所对应的HARQ-ACK信息位数的最大值,生成HARQ-ACK码本并发送至网络设备。
在一个实施方式中,传输场景组包括的传输场景为未配置通过PDCCH调度多时隙PDSCH传输且未配置CBG传输的传输场景,以及未配置通过PDCCH调度多时隙PDSCH传输且配置CBG传输的传输场景。未配置通过PDCCH调度多时隙PDSCH传输且未配置CBG传输的传输场景中,每个DCI对应的HARQ-ACK信息位数为1。未配置通过PDCCH调度多时隙PDSCH传输且配置CBG传输的传输场景中,每个DCI对应的HARQ-ACK信息位数为网络设备配置的一个传输块包括的CBG个数的最大值,例如4。则针对属于该传输场景组的小区,确定每个DCI对应的HARQ-ACK信息位数为4。
在一个实施方式中,传输场景组包括的传输场景为配置通过PDCCH调度多时隙PDSCH传输且未配置CBG传输的传输场景,以及配置通过PDCCH调度多时隙PDSCH传输且配置CBG传输的传输场景。配置通过PDCCH调度多时隙PDSCH传输且未配置CBG传输的传输场景中,每个DCI对应的HARQ-ACK信息位数为TDRA表中指示的多时隙PDSCH个数,例如6。配置通过PDCCH调度多时隙PDSCH传输且配置CBG传输 的传输场景中,每个DCI对应的HARQ-ACK信息位数为M*N,例如24;其中,M为网络设备配置的一个传输块包括的CBG个数的最大值4,N为TDRA表中指示的多时隙PDSCH个数6。则针对属于该传输场景组的小区,确定每个DCI对应的HARQ-ACK信息位数为24。
在一个实施方式中,传输场景组包括的传输场景为配置通过PDCCH调度多时隙PDSCH传输且未配置CBG传输的传输场景,以及配置通过PDCCH调度多时隙PDSCH传输且配置CBG传输的传输场景。配置通过PDCCH调度多时隙PDSCH传输且未配置CBG传输的传输场景中,每个DCI对应的HARQ-ACK信息位数为TDRA表中指示的多时隙PDSCH个数,例如6。配置通过PDCCH调度多时隙PDSCH传输且配置CBG传输的传输场景中,每个DCI对应的HARQ-ACK信息位数为M和N中的最大值,例如6;其中,M为网络设备配置的一个传输块包括的CBG个数的最大值4,N为TDRA表中指示的多时隙PDSCH个数6。则针对属于该传输场景组的小区,确定每个DCI对应的HARQ-ACK信息位数为6。
在上述实施方式中,用户设备基于通过PDCCH调度多时隙PDSCH传输的配置方式和CBG传输的配置方式,来生成反馈PDSCH的HARQ-ACK码本,从而能够在适合于上述两种配置方式的情况下,生成HARQ-ACK码本。
并且,基于传输场景组生成HARQ-ACK码本,能够降低HARQ-ACK信息位数,提高反馈HARQ-ACK码本的效率。
本公开实施例提供了一种HARQ-ACK码本生成方法,被用户设备执行。该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。其中,所述传输场景包括:第一传输场景、第二传输场景、第三传输场景、第四传输场景,其中,所述第一传输场景是未配置通过PDCCH调度多时隙PDSCH传输且未配置CBG传输的传输场景,所述第二传输场景是未配置通过PDCCH调度多时隙PDSCH传输且配置CBG传输的传输场景,所述第三传输场景是配置通过PDCCH调度多时隙PDSCH传输且未配置CBG传输的传输场景,所述第四传输场景是配置通过PDCCH调度多时隙PDSCH传输且配置CBG传输的传输场景;
所述第一传输场景中每个DCI所对应的HARQ-ACK信息位数为1;
所述第二传输场景中每个DCI所对应的HARQ-ACK信息位数为M;
所述第三传输场景中每个DCI所对应的HARQ-ACK信息位数为N;
所述第四传输场景中每个DCI所对应的HARQ-ACK信息位数为M*N或M和N中的最大值;
所述M是网络设备配置的一个传输块包括的CBG个数的最大值,所述N是通过PDCCH调度多时隙PDSCH传输对应的PDSCH个数的最大值,所述PDSCH个数的最大值为根据网络设备配置确定的一个DCI调度的PDSCH个数的最大值,或协议确定的一个DCI调度的PDSCH个数的最大值,M和N均为大于零的正整数。
本公开实施例提供了一种HARQ-ACK码本生成方法,被用户设备执行。该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。图6是根据一示例性实施例示出的一种HARQ-ACK码本生成方法的流程图,如图6所示,该方法包括:
步骤601,接收第一配置信息和第二配置信息;
步骤602,响应于一物理上行控制信道PUCCH组包括多个属于不同传输场景的小区,通过将所述属于不同传输场景的小区对应的码本串接来获取所述PUCCH组对应的HARQ-ACK码本;或者响应于一PUCCH组包括多个属于不同传输场景组的小区,通过将所述属于不同传输场景组的小区对应的码本串接来获取所述PUCCH组对应的HARQ-ACK码本;
步骤603,发送所述HARQ-ACK码本至网络设备;
其中,所述第一配置信息指示是否配置通过物理上行控制信道PDCCH调度多时隙PDSCH传输,所述第二配置信息指示是否配置码块组CBG传输。
在一个实施方式中,用户设备接收第一配置信息和第二配置信息,一个PUCCH组包括多个属于不同传输场景的小区,则针对属于同一传输场景的小区,确定每个DCI对应的HARQ-ACK信息位数,并基于该HARQ-ACK信息位数来确定属于同一传输场景的小区对应的码本。然后将依据上述方式确定的属于不同传输场景的小区对应的码本串接来获取该PUCCH组对应的HARQ-ACK码本,并发送该HARQ-ACK码本。
在一个实施方式中,用户设备接收第一配置信息和第二配置信息,一个PUCCH组包括多个属于不同传输场景组的小区,则针对属于同一传输场景组的小区,确定每个DCI对应的HARQ-ACK信息位数,并基于该HARQ-ACK信息位数来确定属于同一传输场景组的小区对应的码本。然后将依据上述方式确定的属于不同传输场景组的小区对应的码本串 接来获取该PUCCH组对应的HARQ-ACK码本,并发送该HARQ-ACK码本。
在上述实施方式中,用户设备基于通过PDCCH调度多时隙PDSCH传输的配置方式和CBG传输的配置方式,来生成反馈PDSCH的HARQ-ACK码本,从而能够在适合于上述两种配置方式的情况下,生成HARQ-ACK码本。
并且,基于传输场景组生成HARQ-ACK码本,能够降低HARQ-ACK信息位数,提高反馈HARQ-ACK码本的效率。
本公开实施例提供了一种HARQ-ACK码本接收方法,被网络设备执行。该方法可以独立被执行,也可以结合本公开实施例的任意一个其他实施例一起被执行。图7是根据一示例性实施例示出的一种HARQ-ACK码本接收方法的流程图,如图7所示,该方法包括:
步骤701,发送第一配置信息和第二配置信息至用户设备;
步骤702,从所述用户设备接收反馈物理下行共享信道PDSCH的HARQ-ACK码本;
其中,所述第一配置信息指示是否配置通过物理上行控制信道PDCCH调度多时隙PDSCH传输,所述第二配置信息指示是否配置码块组CBG传输。
在一个实施方式中,网络设备发送第一配置信息和第二配置信息至用户设备,以便用户设备基于接收的第一配置信息和第二配置信息生成反馈PDSCH的HARQ-ACK码本,其中第一配置信息指示是否配置通过PDCCH调度多时隙PDSCH传输,第二配置信息指示是否配置CBG传输。然后,网络设备从用户设备接收该HARQ-ACK码本,以便进行准确的数据重传。
在上述实施方式中,网络设备向用户设备发送第一配置信息和第二配置信息,使得用户设备能够基于第一配置信息和第二配置信息生成反馈PDSCH的HARQ-ACK码本。以该方式生成的HARQ-ACK码本适合于充分考虑了上述两种配置方式,从而保证了准确、高效的数据重传。
本公开实施例提供了一种HARQ-ACK码本生成装置,应用于用户设备,参照图8所示,该装置包括:
接收模块801,被配置为接收第一配置信息和第二配置信息;
处理模块802,被配置为基于所述第一配置信息和所述第二配置信息,生成反馈物理 下行共享信道PDSCH的HARQ-ACK码本;
发送模块803,被配置为发送所述HARQ-ACK码本至网络设备;
其中,所述第一配置信息指示是否配置通过物理上行控制信道PDCCH调度多时隙PDSCH传输,所述第二配置信息指示是否配置码块组CBG传输。
本公开实施例提供了一种HARQ-ACK码本接收装置,应用于网络设备,参照图9所示,该装置包括:
发送模块901,被配置为发送第一配置信息和第二配置信息至用户设备;
接收模块902,被配置为从所述用户设备接收反馈物理下行共享信道PDSCH的HARQ-ACK码本;
其中,所述第一配置信息指示是否配置通过物理上行控制信道PDCCH调度多时隙PDSCH传输,所述第二配置信息指示是否配置码块组CBG传输。
本公开实施例提供了一种移动终端,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为执行所述存储器中的可执行指令以实现上述HARQ-ACK码本生成方法的步骤。
本公开实施例提供了一种网络侧设备,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为执行所述存储器中的可执行指令以实现上述HARQ-ACK码本接收方法的步骤。
本公开实施例提供了一种非临时性计算机可读存储介质,其上存储有可执行指令,该可执行指令被处理器执行时实现上述HARQ-ACK码本生成方法或者上述HARQ-ACK码本接收方法的步骤。
图10是根据一示例性实施例示出的一种用于确定跟踪区域码的装置1000的框图。例如,装置1000可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图10,装置1000可以包括以下一个或多个组件:处理组件1002,存储器1004,电源组件1006,多媒体组件1008,音频组件1010,输入/输出(I/O)的接口1012,传感器组件1014,以及通信组件1016。
处理组件1002通常控制装置1000的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件1002可以包括一个或多个处理器1020来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件1002可以包括一个或多个模块,便于处理组件1002和其他组件之间的交互。例如,处理组件1002可以包括多媒体模块,以方便多媒体组件1008和处理组件1002之间的交互。
存储器1004被配置为存储各种类型的数据以支持在设备1000的操作。这些数据的示例包括用于在装置1000上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器1004可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件1006为装置1000的各种组件提供电力。电源组件1006可以包括电源管理系统,一个或多个电源,及其他与为装置1000生成、管理和分配电力相关联的组件。
多媒体组件1008包括在所述装置1000和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件1008包括一个前置摄像头和/或后置摄像头。当设备1000处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件1010被配置为输出和/或输入音频信号。例如,音频组件1010包括一个麦克风(MIC),当装置1000处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克 风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器1004或经由通信组件1016发送。在一些实施例中,音频组件1010还包括一个扬声器,用于输出音频信号。
I/O接口1012为处理组件1002和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件1014包括一个或多个传感器,用于为装置1000提供各个方面的状态评估。例如,传感器组件1014可以检测到设备1000的打开/关闭状态,组件的相对定位,例如所述组件为装置1000的显示器和小键盘,传感器组件1014还可以检测装置1000或装置1000一个组件的位置改变,用户与装置1000接触的存在或不存在,装置1000方位或加速/减速和装置1000的温度变化。传感器组件1014可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件1014还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件1014还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件1016被配置为便于装置1000和其他设备之间有线或无线方式的通信。装置1000可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件1016经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件1016还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置1000可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器1004,上述指令可由装置1000的处理器1020执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
图11是根据一示例性实施例示出的一种发送跟踪区域码的装置1100的框图。例如, 装置1100可以被提供为一基站。参照图11,装置1100包括处理组件1122,其进一步包括一个或多个处理器,以及由存储器1132所代表的存储器资源,用于存储可由处理组件1122的执行的指令,例如应用程序。存储器1132中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件1122被配置为执行指令,以执行上述非授权信道的接入方法。
装置1100还可以包括一个电源组件1126被配置为执行装置1100的电源管理,一个有线或无线网络接口1150被配置为将装置1100连接到网络,和一个输入输出(I/O)接口1159。装置1100可以操作基于存储在存储器1132的操作系统,例如Windows ServerTM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM或类似。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开实施例的其它实施方案。本申请旨在涵盖本公开实施例的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开实施例的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开实施例的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开实施例并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开实施例的范围仅由所附的权利要求来限制。
工业实用性
用户设备基于通过PDCCH调度多时隙PDSCH传输的配置方式和CBG传输的配置方式,来生成反馈PDSCH的HARQ-ACK码本,从而能够在适合于上述两种配置方式的情况下,生成HARQ-ACK码本。

Claims (13)

  1. 一种混合自动重传请求应答HARQ-ACK码本生成方法,被用户设备执行,包括:
    接收第一配置信息和第二配置信息;
    基于所述第一配置信息和所述第二配置信息,生成反馈物理下行共享信道PDSCH的HARQ-ACK码本;
    发送所述HARQ-ACK码本至网络设备;
    其中,所述第一配置信息指示是否配置通过物理上行控制信道PDCCH调度多时隙PDSCH传输,所述第二配置信息指示是否配置码块组CBG传输。
  2. 如权利要求1所述的方法,其中,所述基于所述第一配置信息和所述第二配置信息,生成反馈PDSCH的HARQ-ACK码本,包括:
    响应于所述第一配置信息指示配置通过PDCCH调度多时隙PDSCH传输,所述第二配置信息指示配置CBG传输,确定每个下行控制信息DCI对应的HARQ-ACK信息位数为M和N中的最大值;
    其中,所述M是网络设备配置的一个传输块包括的CBG个数的最大值,所述N是通过PDCCH调度多时隙PDSCH传输对应的PDSCH个数的最大值,所述PDSCH个数的最大值为根据网络设备配置确定的一个DCI调度的PDSCH个数的最大值,或协议确定的一个DCI调度的PDSCH个数的最大值。
    其中,M和N均为大于零的正整数。
  3. 如权利要求2所述的方法,其中,确定每个下行控制信息DCI对应的HARQ-ACK信息位数为M和N中的最大值,包括:
    响应于一个DCI调度L个PDSCH且L=1,M≥N,所述DCI对应的HARQ-ACK信息包括对应于该PDSCH对应的M个CBG的M个信息位;
    响应于一个DCI调度L个PDSCH且L=1,M<N,所述DCI对应的HARQ-ACK信息包括对应于该PDSCH对应的M个CBG的M个信息位和(N-M)个填充位,所述(N-M)个填充位的值均相同;
    响应于一个DCI调度L个PDSCH且1<L≤N,M≥N,所述DCI对应的HARQ-ACK信息包括对应于L个PDSCH的L个信息位和(M-L)个填充位,所述(M-L)个填充位的值均 相同;
    响应于一个DCI调度L个PDSCH且1<L≤N,M<N,所述DCI对应的HARQ-ACK信息包括对应于L个PDSCH的L个信息位和(N-L)个填充位,所述(N-L)个填充位的值均相同;
    其中,L为大于零的正整数。
  4. 如权利要求1所述的方法,其中,所述基于所述第一配置信息和所述第二配置信息,生成反馈PDSCH的HARQ-ACK码本,包括:
    基于所述第一配置信息和所述第二配置信息,确定传输场景组,每个传输场景组包括至少一个传输场景;
    基于所述传输场景组,生成所述HARQ-ACK码本。
  5. 如权利要求4所述的方法,其中,所述基于所述传输场景组,生成所述HARQ-ACK码本,包括:
    针对属于相同传输场景组的小区,确定每个DCI对应的HARQ-ACK信息位数为所述传输场景组中各所述传输场景中每个DCI所对应的HARQ-ACK信息位数的最大值。
  6. 如权利要求5所述的方法,其中,所述传输场景包括:第一传输场景、第二传输场景、第三传输场景、第四传输场景,其中,所述第一传输场景是未配置通过PDCCH调度多时隙PDSCH传输且未配置CBG传输的传输场景,所述第二传输场景是未配置通过PDCCH调度多时隙PDSCH传输且配置CBG传输的传输场景,所述第三传输场景是配置通过PDCCH调度多时隙PDSCH传输且未配置CBG传输的传输场景,所述第四传输场景是配置通过PDCCH调度多时隙PDSCH传输且配置CBG传输的传输场景;
    所述第一传输场景中每个DCI所对应的HARQ-ACK信息位数为1;
    所述第二传输场景中每个DCI所对应的HARQ-ACK信息位数为M;
    所述第三传输场景中每个DCI所对应的HARQ-ACK信息位数为N;
    所述第四传输场景中每个DCI所对应的HARQ-ACK信息位数为M*N或M和N中的最大值;
    所述M是网络设备配置的一个传输块包括的CBG个数的最大值,所述N是通过PDCCH调度多时隙PDSCH传输对应的PDSCH个数的最大值,所述PDSCH个数的最大值为根据网络设备配置确定的一个DCI调度的PDSCH个数的最大值,或协议确定的一个 DCI调度的PDSCH个数的最大值,M和N均为大于零的正整数。
  7. 如权利要求1所述的方法,其中,所述基于所述第一配置信息和所述第二配置信息,生成反馈PDSCH的HARQ-ACK码本,包括:
    响应于一物理上行控制信道PUCCH组包括多个属于不同传输场景的小区,通过将所述属于不同传输场景的小区对应的码本串接来获取所述PUCCH组对应的HARQ-ACK码本;或者
    响应于一PUCCH组包括多个属于不同传输场景组的小区,通过将所述属于不同传输场景组的小区对应的码本串接来获取所述PUCCH组对应的HARQ-ACK码本。
  8. 一种混合自动重传请求应答HARQ-ACK码本接收方法,被网络设备执行,包括:
    发送第一配置信息和第二配置信息至用户设备;
    从所述用户设备接收反馈物理下行共享信道PDSCH的HARQ-ACK码本;
    其中,所述第一配置信息指示是否配置通过物理上行控制信道PDCCH调度多时隙PDSCH传输,所述第二配置信息指示是否配置码块组CBG传输。
  9. 一种混合自动重传请求应答HARQ-ACK码本生成装置,应用于用户设备,包括:
    接收模块,被配置为接收第一配置信息和第二配置信息;
    处理模块,被配置为基于所述第一配置信息和所述第二配置信息,生成反馈物理下行共享信道PDSCH的HARQ-ACK码本;
    发送模块,被配置为发送所述HARQ-ACK码本至网络设备;
    其中,所述第一配置信息指示是否配置通过物理上行控制信道PDCCH调度多时隙PDSCH传输,所述第二配置信息指示是否配置码块组CBG传输。
  10. 一种混合自动重传请求应答HARQ-ACK码本接收装置,应用于网络设备,包括:
    发送模块,被配置为发送第一配置信息和第二配置信息至用户设备;
    接收模块,被配置为从所述用户设备接收反馈物理下行共享信道PDSCH的HARQ-ACK码本;
    其中,所述第一配置信息指示是否配置通过物理上行控制信道PDCCH调度多时隙PDSCH传输,所述第二配置信息指示是否配置码块组CBG传输。
  11. 一种移动终端,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为执行所述存储器中的可执行指令以实现权利要求1至7中任一项的混合自动重传请求应答HARQ-ACK码本生成方法的步骤。
  12. 一种网络侧设备,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为执行所述存储器中的可执行指令以实现权利要求8中的混合自动重传请求应答HARQ-ACK码本接收方法的步骤。
  13. 一种非临时性计算机可读存储介质,其上存储有可执行指令,该可执行指令被处理器执行时实现权利要求1至7中任一项的混合自动重传请求应答HARQ-ACK码本生成方法或者权利要求8中的HARQ-ACK码本接收方法的步骤。
PCT/CN2021/121963 2021-09-29 2021-09-29 一种harq-ack码本生成和接收方法、装置、设备及存储介质 WO2023050237A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180002989.8A CN116210186A (zh) 2021-09-29 2021-09-29 一种harq-ack码本生成和接收方法、装置、设备及存储介质
PCT/CN2021/121963 WO2023050237A1 (zh) 2021-09-29 2021-09-29 一种harq-ack码本生成和接收方法、装置、设备及存储介质
EP21958822.5A EP4412121A1 (en) 2021-09-29 2021-09-29 Harq-ack codebook generating method, harq-ack codebook receiving method, apparatus, device, and storage medium
KR1020247014218A KR20240073934A (ko) 2021-09-29 2021-09-29 Harq-ack 코드북 생성 방법, harq-ack 코드북 수신 방법, 장치, 디바이스 및 저장 매체(harq-ack codebook generating method, harq-ack codebook receiving method, apparatus, device, and storage medium)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/121963 WO2023050237A1 (zh) 2021-09-29 2021-09-29 一种harq-ack码本生成和接收方法、装置、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2023050237A1 true WO2023050237A1 (zh) 2023-04-06

Family

ID=85781129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/121963 WO2023050237A1 (zh) 2021-09-29 2021-09-29 一种harq-ack码本生成和接收方法、装置、设备及存储介质

Country Status (4)

Country Link
EP (1) EP4412121A1 (zh)
KR (1) KR20240073934A (zh)
CN (1) CN116210186A (zh)
WO (1) WO2023050237A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200106586A1 (en) * 2018-09-27 2020-04-02 Mediatek Singapore Pte. Ltd. Mechanisms For Feedback Of Multiple HARQ Procedures In A Slot In Mobile Communications
CN111865512A (zh) * 2019-04-30 2020-10-30 大唐移动通信设备有限公司 一种混合自动重传请求反馈处理方法、装置及设备
CN111954307A (zh) * 2019-05-17 2020-11-17 北京三星通信技术研究有限公司 无线通信网络中的通信方法和设备
CN112398607A (zh) * 2019-08-14 2021-02-23 大唐移动通信设备有限公司 混合自动重传请求应答的传输指示方法及设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200106586A1 (en) * 2018-09-27 2020-04-02 Mediatek Singapore Pte. Ltd. Mechanisms For Feedback Of Multiple HARQ Procedures In A Slot In Mobile Communications
CN111865512A (zh) * 2019-04-30 2020-10-30 大唐移动通信设备有限公司 一种混合自动重传请求反馈处理方法、装置及设备
CN111954307A (zh) * 2019-05-17 2020-11-17 北京三星通信技术研究有限公司 无线通信网络中的通信方法和设备
CN112398607A (zh) * 2019-08-14 2021-02-23 大唐移动通信设备有限公司 混合自动重传请求应答的传输指示方法及设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HTC: "Discussion on CBG-based HARQ feedback multiplexing", 3GPP TSG RAN WG1 NR AD-HOC#2, R1- 1711259, 26 June 2017 (2017-06-26), XP051300454 *

Also Published As

Publication number Publication date
EP4412121A1 (en) 2024-08-07
CN116210186A (zh) 2023-06-02
KR20240073934A (ko) 2024-05-27

Similar Documents

Publication Publication Date Title
EP3739790B1 (en) Information feedback method and apparatus
WO2019134098A1 (zh) 数据传输方法、装置及用户设备
WO2019191948A1 (zh) 下行控制信息格式大小的确定方法及装置
WO2020029035A1 (zh) 上行消息传输方法、装置及存储介质
US11510230B2 (en) Method of indicating uplink feedback information and method of transmitting uplink feedback information
KR102697389B1 (ko) 전송 블록 처리 방법 및 장치, 전자 소자 및 컴퓨터 판독 가능한 저장 매체
US11336397B2 (en) HARQ feedback method and apparatus, device, and computer readable storage medium
US11973601B2 (en) Method and device for transmitting HARQ codebook
WO2019237360A1 (zh) 确定上下行切换点的方法及装置
WO2023240647A1 (zh) 调度确定、下行控制信息发送方法和装置
US12095568B2 (en) Hybrid automatic repeat request method and device
US20220272712A1 (en) Method for transmitting feedback information, user equipment
US20240205907A1 (en) Method and apparatus for transmitting hybrid automatic repeat request (harq), and communication device
WO2019205022A1 (zh) 信息指示、解读方法及装置、基站和用户设备
EP3735022A1 (en) Hybrid automatic repeat request (harq) feedback method and device and data receiving apparatus
US12034670B2 (en) Method for feeding back data, method for transmitting data and user equipment
WO2021016888A1 (zh) 物理上行控制信道资源确定方法、装置及存储介质
WO2023050237A1 (zh) 一种harq-ack码本生成和接收方法、装置、设备及存储介质
WO2022110028A1 (zh) 上行控制信息传输方法、装置及存储介质
CN115176430B (zh) 一种发送混合自动重传请求反馈的方法、装置、设备及介质
US20240178941A1 (en) Method and apparatus for sending harq-ack, method and apparatus for receiving harq-ack, device, and storage medium
WO2023044923A1 (zh) 一种harq-ack码本配置和解码方法、装置、设备及存储介质
JP2024538597A (ja) Harq-ackコードブック生成方法、harq-ackコードブック受信方法、装置、デバイス及び記憶媒体
US20240305432A1 (en) Method for determining transmission parameter, method for sending harq-ack, apparatus, device, and medium
WO2019047097A1 (zh) 信令检测的实现方法、装置、用户设备及基站

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21958822

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18694852

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2024519125

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112024006083

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 202447032198

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20247014218

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021958822

Country of ref document: EP

Effective date: 20240429

WWE Wipo information: entry into national phase

Ref document number: 11202402027W

Country of ref document: SG

ENP Entry into the national phase

Ref document number: 112024006083

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20240327