WO2020218873A1 - 이종금속 원자가 도핑된 금 나노클러스터 자성체 및 이의 제조 방법 - Google Patents

이종금속 원자가 도핑된 금 나노클러스터 자성체 및 이의 제조 방법 Download PDF

Info

Publication number
WO2020218873A1
WO2020218873A1 PCT/KR2020/005436 KR2020005436W WO2020218873A1 WO 2020218873 A1 WO2020218873 A1 WO 2020218873A1 KR 2020005436 W KR2020005436 W KR 2020005436W WO 2020218873 A1 WO2020218873 A1 WO 2020218873A1
Authority
WO
WIPO (PCT)
Prior art keywords
dissimilar metal
gold
nanocluster
formula
doped
Prior art date
Application number
PCT/KR2020/005436
Other languages
English (en)
French (fr)
Inventor
이동일
곽규주
Original Assignee
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200049647A external-priority patent/KR102266919B1/ko
Application filed by 연세대학교 산학협력단 filed Critical 연세대학교 산학협력단
Publication of WO2020218873A1 publication Critical patent/WO2020218873A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties

Definitions

  • the present invention relates to a gold nanocluster magnetic material doped with dissimilar metal atoms, a method of manufacturing the same, and a magnetic resonance imaging contrast agent including the same.
  • a nanocluster or superatom composed of a certain number of metal atoms and ligands follows the macroatomic orbital theory, in which the valence electrons of the particles are newly defined, and this is considered to be one giant atom. It is a theory.
  • Nanoclusters are stable compared to one atom or nanoparticles, and have strong molecular properties than metallic properties, and thus have optical and electrochemical properties that are completely different from nanoparticles.
  • optical, electrical and catalytic properties of nanoclusters are sensitively changed depending on the number of metal atoms, types of metal atoms, and ligands, research on nanoclusters is actively in progress in a wide variety of fields.
  • magnetic nanoparticles have a very diverse range of applications, and interest in magnetic nanoparticles is further amplified as various application fields using magnetism are developed, especially in the biomedical industry.
  • Such applications include magnetic resonance imaging (MRI) contrast agents, material separation using magnetism, drug delivery using magnetism, material sensor using magnetism, and high-frequency magnetic field heat treatment.
  • MRI magnetic resonance imaging
  • magnetic nanoparticles have a disadvantage in that the size and shape of the particles are non-uniform, and it is difficult to control the surface properties equally, so that the form of spin clustering is not clear and non-uniform.
  • nanocluster magnetic material has a very clear spin shape due to its completely uniform size and structure, and has excellent dispersibility in solution, so it can be used in various applications using magnetism. It can be possible.
  • the nanocluster magnetic material has a disadvantage in that magnets are smaller than that of magnetic nanoparticles, there is a need to develop a nanocluster magnetic material having a greater magnetic property.
  • Korean Patent Publication No. 10-1178512 is proposed as a prior document similar to this.
  • an object of the present invention is to provide a gold nanocluster magnetic material doped with dissimilar metal atoms, which has excellent magnetic properties, has a completely uniform size and structure, and has a very clear spin shape, and a method of manufacturing the same.
  • the present invention provides a magnetic resonance imaging contrast medium comprising the magnetic material of the gold nanocluster doped with dissimilar metal atoms of the present invention.
  • One aspect of the present invention relates to a gold nanocluster magnetic material doped with dissimilar metal atoms satisfying the following formula (1).
  • SR is an organic thiol-based ligand
  • M is ruthenium (Ru) or osmium (Os).
  • the organothiol-based ligand in Formula 1 of the present invention may be (C1-C10)alkanthiol.
  • another aspect of the present invention is a) preparing a semi-solution by reacting a gold precursor, a dissimilar metal precursor, and a catalyst; And b) adding an organic thiol-based ligand compound and a reducing agent to the reaction solution to prepare a nanocluster magnetic material that satisfies the following formula (1);
  • the method (I) of producing a gold nanocluster magnetic material doped with a dissimilar metal atom comprising: About.
  • SR is an organic thiol-based ligand
  • M is ruthenium (Ru) or osmium (Os).
  • the molar ratio of the dissimilar metal precursor: the gold precursor may be 1:3 to 5.
  • another aspect of the present invention is a step of preparing a magnetic nanocluster that satisfies Formula 1 by performing a galvanic substitution reaction of a gold nanocluster satisfying the following Formula 2 and a heterometallic nanocluster satisfying the following Formula 3; It relates to a method (II) of manufacturing a magnetic nanocluster doped with dissimilar metal atoms.
  • SR is an organic thiol-based ligand
  • M is ruthenium (Ru) or osmium (Os).
  • the molar ratio of the gold nanoclusters of Chemical Formula 2 to the heterometallic nanoclusters of Chemical Formula 3 may be 1:2 to 5.
  • the organothiol-based ligand according to an embodiment of the method of manufacturing a gold nanocluster magnetic body doped with dissimilar metal atoms of the present invention may be (C1-C10)alcanthiol.
  • the present invention provides a magnetic resonance imaging contrast medium comprising the magnetic material of the gold nanocluster doped with dissimilar metal atoms of the present invention.
  • the gold nanocluster magnetic body doped with dissimilar metal atoms according to the present invention may maintain the intrinsic characteristics of the doped atom as it is by doping one ruthenium atom or osmium atom into the gold nanocluster, thereby having excellent magnetic properties.
  • the size and structure may be completely uniform, and accordingly, the spin shape may be very clear.
  • MRI magnetic resonance imaging
  • Figure 1a is RuAu 24 (SC 6 H 13 ) 18
  • Figure 1 b is OsAu 24 (SC 6 H 13 ) 18 electrospray ionization mass spectrometry (ESI-MS) results.
  • FIG. 2 is an electron paramagnetic resonance (EPR) spectrum measured in a parallel or perpendicular mode
  • FIG. 2a is [RuAu 24 (SC 6 H 13 ) 18 ] -1
  • FIG. 2b is the result of [OsAu 24 (SC 6 H 13 ) 18 ] 0 .
  • FIG 3 is a schematic diagram of a predicted electronic structure of RuAu 24 (SC 6 H 13 ) 18 .
  • Figure 4 is a schematic diagram of the electronic structure of OsAu 24 (SC 6 H 13 ) 18 .
  • FIG. 5 is a voltage-current diagram (left) and a UV-Vis-IR absorption spectrum (right) measured through a square wave voltammetry (SWV, Square Wave Voltammetry) of [RuAu 24 (SC 6 H 13 ) 18 ] 1- to be.
  • FIG. 7 is a schematic diagram of predicted electronic structures of RuAu 24 (SC 6 H 13 ) 18 and OsAu 24 (SC 6 H 13 ) 18 according to oxidation and reduction.
  • first, second, A, B, (a) and (b) may be used. These terms are only used to distinguish the component from other components, and the nature, order, or order of the component is not limited by the term.
  • Existing magnetic nanoparticles have very good magnetic properties, but the size and shape of the particles are non-uniform, and it is difficult to control the same surface properties, and thus, there is a disadvantage in that the spin dense form is not clear and non-uniform.
  • nanocluster magnetic bodies unlike magnetic nanoparticles of non-uniform size and shape, nanocluster magnetic bodies have a very clear spin shape as they are completely uniform in size and structure, but have a disadvantage in that magnets are smaller than magnetic nanoparticles.
  • the present inventors found that the nanoclusters in which 24 gold atoms and 1 dissimilar metal atom are bonded in a specific structure have the same configuration, so that the size and structure are completely uniform, and the intrinsic characteristics of the doped atoms are The present invention was completed by discovering that it can be maintained as it is and has excellent magnetic properties.
  • one aspect of the present invention relates to a gold nanocluster magnetic material doped with dissimilar metal atoms satisfying the following Formula 1.
  • SR is an organic thiol-based ligand
  • M is ruthenium (Ru) or osmium (Os).
  • the nanocluster magnetic material according to the present invention may maintain the inherent characteristics of the doped atom by doping one ruthenium atom or osmium atom into the gold nanocluster, thereby having excellent magnetic properties.
  • the size and structure may be completely uniform, and accordingly, the spin shape may be very clear.
  • MRI magnetic resonance imaging
  • the organic thiol-based ligand SR is a C1-C30 alkanthiol, a C6-C30 arylthiol, a C3-C30 cycloalcanthiol, a C5-C30 hetero It may be any one or two or more selected from the group consisting of arylthiol, heterocycloalkanethiol having 3 to 30 carbon atoms, and arylalkanethiol having 6 to 30 carbon atoms, and the organothiol-based ligand is one or more hydrogens in the functional group as a substituent.
  • the substituent is an alkyl group having 1 to 10 carbon atoms, a halogen group (-F, -Br, -Cl, -I), a nitro group, a cyano group, a hydroxy group, an amino group, and 6 to 20 carbon atoms.
  • an aryl group an alkenyl group having 2 to 7 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, a heterocycloalkyl group having 3 to 20 carbon atoms, or a heteroaryl group having 4 to 20 carbon atoms, provided that the number of carbon atoms of the organic thiol-based ligand described above is It does not include the number of carbon atoms of the substituent.
  • the alkyl group may be linear or branched.
  • the organothiol-based ligand is pentanethiol, hexanethiol, heptanethiol, 2,4-dimethylbenzenethiol, 2-phenylethanethiol, glutathione, thiopronin, thiolated poly(ethylene glycol), It may be any one or two or more selected from the group consisting of p-mercaptophenol and (r-mercaptopropyl)-trimethoxysilane), but is not limited thereto.
  • the organic thiol-based ligand of the present invention may be (C1-C10)alkylthiol, more preferably (C3-C10)alkylthiol, and as a specific example, propylthiol, 2-propyl Thiol, n-butylthiol, iso-butylthiol, neo-butylthiol, n-pentylthiol, n-hexylthiol or n-heptylthiol may be, but is not limited thereto.
  • another aspect of the present invention relates to a method of manufacturing a gold nanocluster magnetic material doped with the dissimilar metal atom, wherein the gold nanocluster magnetic material doped with the dissimilar metal atom is a synchro synthesis method or a galvanic replacement reaction. reaction) can be prepared through two methods.
  • the gold nanoclusters are doped with one ruthenium atom or osmium atom, so that the intrinsic properties of the doped atoms are maintained as they are, so that a gold nanocluster magnetic body doped with a dissimilar metal atom having excellent magnetic properties can be effectively manufactured.
  • nanocluster magnetic body having the same configuration with 24 gold atoms, 1 heterometallic atom, and 18 organothiol-based ligands, and the nanocluster magnetic body prepared accordingly can be completely uniform in size and structure.
  • the spin shape can be very obvious.
  • a method (I) of manufacturing a gold nanocluster magnetic material doped with dissimilar metal atoms includes: a) preparing a semi-solution by reacting a gold precursor, a dissimilar metal precursor, and a catalyst; And b) adding an organic thiol-based ligand compound and a reducing agent to the reaction solution to prepare a magnetic nanocluster that satisfies Formula 1 below.
  • SR is an organic thiol-based ligand
  • M is ruthenium (Ru) or osmium (Os)
  • SR in Chemical Formula 1 is the same as described above, and redundant descriptions are omitted.
  • the mixing ratio between each metal precursor, the mixing ratio between the metal precursor and the ligand compound, the addition amount of the reducing agent, and the selection of the solvent may be important. This will be described in detail below.
  • a step of preparing a semi-solution by reacting a gold precursor, a dissimilar metal precursor, and a catalyst may be performed.
  • step a) it is good to properly control the mixing ratio between each metal precursor to improve the synthesis efficiency of the gold nanocluster magnetic material doped with dissimilar metal atoms.
  • the molar ratio of the dissimilar metal precursor: the gold precursor may be 1: 1 to 5, more preferably 1: 1.5 to 3.5, and most preferably 1: 1.8 to 3.2. In this range, a gold nanocluster magnetic material doped with a dissimilar metal atom satisfying Formula 1 can be effectively synthesized.
  • the gold precursor may be used without any particular limitation as long as it is commonly used in the art, and as a specific example, triphenylphosphine gold (I) chloride (AuPPh 3 Cl), HAuCl 4 , It may be any one or two or more selected from the group consisting of AuCl 3 , KAuCl 4 and Au(OH) 3 , and the like, preferably HAuCl 4 is better in improving the synthesis efficiency.
  • Ru ruthenium
  • the catalyst may be used without particular limitation as long as it is commonly used in the art, and the group consisting of tetraoctyl ammonium bromide (TOAB) and tetraphenylphosphine bromide (PPh 4 Br), etc. It may be any one or two or more selected from, preferably using tetraoctyl ammonium bromide (TOAB) is good in improving the reaction efficiency.
  • TOAB tetraoctyl ammonium bromide
  • Ph 4 Br tetraphenylphosphine bromide
  • the amount of the catalyst to be added is not particularly limited, but as an example, the molar ratio of the gold precursor: the catalyst may be 1: 0.5 to 10, more preferably 1: 1 to 5, and even more preferably 1: 1.5 to 3.
  • the reaction solution of step a) may further contain a solvent to improve the dissolution and reaction ease of the gold precursor and the dissimilar metal precursor, and the solvent is commonly used in the art. If it does, it can be used without particular limitation.
  • the solvent is dichloromethane, water, alcohol having 1 to 5 carbon atoms, acetonitrile, dimethyl sulfoxide (DMSO), dimethylformamide (DMF), acetone, tetrahydrofuran (THF), and 1,4- It may be any one or a mixed solvent of two or more selected from the group consisting of dioxane and the like, and preferably methanol is used. In this case, 50 to 100 ml of the solvent may be added based on 1 mmol of the gold precursor, but is not limited thereto.
  • b) adding an organic thiol-based ligand compound and a reducing agent to the reaction solution may be performed to prepare a nanocluster magnetic material satisfying Formula 1.
  • the organothiol-based ligand compound may be RSH, which is a compound before hydrogen falls compared to the SR, and as a specific example, an alkanethiol having 1 to 30 carbon atoms, an arylthiol having 6 to 30 carbon atoms , C3-C30 cycloalkanethiol, C5-C30 heteroarylthiol, C3-C30 heterocycloalkanethiol, C6-C30 arylalkanethiol, etc.
  • RSH is a compound before hydrogen falls compared to the SR
  • an alkanethiol having 1 to 30 carbon atoms an arylthiol having 6 to 30 carbon atoms
  • C3-C30 cycloalkanethiol C5-C30 heteroarylthiol
  • C3-C30 heterocycloalkanethiol C6-C30 arylalkanethiol
  • one or more hydrogens in the functional group may be further substituted or unsubstituted with a substituent, wherein the substituent is an alkyl group having 1 to 10 carbon atoms, a halogen group (-F, -Br, -Cl, -I ), nitro group, cyano group, hydroxy group, amino group, aryl group having 6 to 20 carbon atoms, alkenyl group having 2 to 7 carbon atoms, cycloalkyl group having 3 to 20 carbon atoms, heterocycloalkyl group having 3 to 20 carbon atoms or 4 to 20 carbon atoms It is a heteroaryl group, provided that the carbon number of the organic thiol-based ligand described above does not include the carbon number of the substituent.
  • the alkyl group may be linear or branched.
  • the organothiol-based ligand is pentanethiol, hexanethiol, heptanethiol, 2,4-dimethylbenzenethiol, 2-phenylethanethiol, glutathione, thiopronin, thiolated poly(ethylene glycol), It may be any one or two or more selected from the group consisting of p-mercaptophenol and (r-mercaptopropyl)-trimethoxysilane), but is not limited thereto.
  • the mixing ratio of the gold precursor and the organic thiol-based ligand compound may be a ratio commonly mixed in the art, and as a specific example, the molar ratio of the gold precursor: the organic thiol-based ligand compound is 1: It may be 1 to 15, more preferably 1:1 to 3 to 10, even more preferably 1:1 to 4 to 8. In such a range, the synthesis efficiency is excellent and reaction impurities can be reduced.
  • the reducing agent may be used without particular limitation as long as it is commonly used in the art, and as a specific example, the reducing agent may be NaBH 4 , but is not limited thereto. In this case, the reducing agent may be added 5 to 30 mmol based on 1 mmol of the gold precursor, but this is only an example and the present invention is not limited thereto.
  • the reaction time of step b) is not particularly limited, but may be 12 hours or more, preferably 24 to 30 hours.
  • an additional purification process may be further performed to obtain a high-purity nanocluster magnetic material, and the additional purification process may be performed through a conventional method.
  • the method (II) of manufacturing a magnetic substance of a gold nanocluster doped with a dissimilar metal atom includes a galvanic substitution reaction of a gold nanocluster satisfying the following Formula 2 and a heterometallic nanocluster satisfying the following Formula 3 It may include; manufacturing a nanocluster magnetic material satisfying 1.
  • SR is an organothiol-based ligand
  • M is ruthenium (Ru) or osmium (Os)
  • SRs in Formulas 1 to 3 are the same as described above, and overlapping descriptions will be omitted.
  • a mixing ratio of the gold nanocluster and the dissimilar metal nanocluster may be important.
  • the molar ratio of the gold nanoclusters of Chemical Formula 2: the heterometallic nanoclusters of Chemical Formula 3 may be 1: 2 to 5, more preferably 1: 2.5 to 3, and even more preferably 1: 2.8. . In this range, a nanocluster magnetic material satisfying Formula 1 can be effectively synthesized.
  • a solvent may be further included to improve dissolution and reaction ease of the gold nanoclusters of Formula 2 and the dissimilar metal nanoclusters of Formula 3, and the solvent is commonly used in the art. If it is used, it can be used without particular limitation.
  • the solvent is dichloromethane, water, alcohol having 1 to 5 carbon atoms, acetonitrile, dimethyl sulfoxide (DMSO), dimethylformamide (DMF), acetone, tetrahydrofuran (THF), and 1,4- It may be any one or a mixed solvent of two or more selected from the group consisting of dioxane and the like, and preferably dichloromethane is used.
  • the solvent may be 5 l to 7 l based on 1 mmol of the gold nanocluster of Formula 2 and the heterometallic nanocluster of Formula 3, but is not limited thereto.
  • the reaction time of the step is not particularly limited, but may be 12 hours or more, preferably 24 to 36 hours.
  • an additional purification process may be further performed to obtain a high-purity nanocluster magnetic material, as well as an additional purification process may be performed through a conventional method.
  • the organic thiol-based of the organic thiol-based ligand may be (C1-C10) alkylthiol, and more preferably (C3- C10) It may be an alkylthiol, and as a specific example, propylthiol, 2-propylthiol, n-butylthiol, iso-butylthiol, neo-butylthiol, n-pentylthiol, n-hexylthiol or n-heptylthiolyl However, it is not limited thereto.
  • the supernatant and the precipitate were separated by centrifugation to dry the precipitate, followed by washing with 5 ml of water, 15 ml of methanol, and 15 ml of ethanol to remove impurities.
  • the obtained mixed cluster was added to 250 ml of a mixed solvent of acetonitrile:dichloromethane (2:1 volume ratio) and extracted for 12 hours to obtain high purity RuAu 24 (SC 6 H 13 ) 18 .
  • the supernatant and the precipitate were separated by centrifugation to dry the precipitate, followed by washing with 5 ml of water, 15 ml of methanol, and 15 ml of ethanol to remove impurities.
  • the obtained mixed cluster was added to 250 ml of a mixed solvent of acetonitrile:dichloromethane (2:1 volume ratio) and extracted for 12 hours to obtain high purity RuAu 24 (SC 6 H 13 ) 18 .
  • Figure 1a is RuAu 24 (SC 6 H 13 ) 18
  • Figure 1 b is OsAu 24 (SC 6 H 13 ) 18 electrospray ionization mass spectrometry (ESI-MS) results
  • RuAu 24 (SC 6 H 13 ) 18 and OsAu 24 (SC 6 H 13 ) 18 were well synthesized as a single substance, respectively.
  • FIG. 2 is an electron paramagnetic resonance (EPR) spectrum measured in a parallel or perpendicular mode
  • FIG. 2a is [RuAu 24 (SC 6 H 13 ) 18 ] 1-
  • FIG. 2b is the result of [OsAu 24 (SC 6 H 13 ) 18 ] 0 .
  • Figure 3 is a schematic diagram of the electronic structure of RuAu 24 (SC 6 H 13 ) 18 , and RuAu 24 (SC 6 H 13 ) 18 has three spins (unless electrons) and a maximum of 3 bore magnetons ( ⁇ B ). Magnetic moment can be expected.
  • FIG 4 is a schematic diagram of the electronic structure of OsAu 24 (SC 6 H 13 ) 18 , OsAu 24 (SC 6 H 13 ) 18 has two spins (unless electrons) and a maximum of 2 bore magnetons ( ⁇ B ) Magnetic moment can be expected.
  • FIG. 5 is a voltage-current diagram (left) and a UV-Vis-IR absorption spectrum (right) measured through a square wave voltammetry (SWV, Square Wave Voltammetry) of [RuAu 24 (SC 6 H 13 ) 18 ] 1-
  • SWV Square Wave Voltammetry
  • Figure 7 is a schematic diagram of the electronic structure of RuAu 24 (SC 6 H 13 ) 18 and OsAu 24 (SC 6 H 13 ) 18 , by oxidizing [RuAu 24 (SC 6 H 13 ) 18 ] 1- to lose one electron [RuAu 24 (SC 6 H 13 ) 18] can be produced nanoclusters of zero and, [OsAu 24 (SC 6 H 13) 18] was reduced to 0 by receive one e [OsAu 24 (SC 6 H 13 ) 18 ] A nanocluster of 1- can be prepared. That is, the number of spins can be controlled through oxidation-reduction, and thus, the degeneration of the structure can be minimized, thereby selective control of magnetism without physical degeneration can be possible.

Abstract

본 발명은 이종금속 원자가 도핑된 금 나노클러스터 자성체, 이의 제조방법 및 이를 채용한 자기공명영상 조영제에 관한 것으로, 구체적으로 본 발명은 우수한 자성 특성을 가지며, 크기와 구조가 완전히 균일하여 스핀 형태가 매우 분명하고, 용액에서의 분산성이 우수한 이종금속 원자가 도핑된 금 나노클러스터 자성체, 이의 제조방법 및 이를 채용한 자기공명영상 조영제에 관한 것이다.

Description

이종금속 원자가 도핑된 금 나노클러스터 자성체 및 이의 제조 방법
본 발명은 이종금속 원자가 도핑된 금 나노클러스터 자성체, 이의 제조 방법 및 이를 포함하는 자기공명영상 조영제에 관한 것이다.
특정 개수의 금속 원자와 리간드로 구성되는 나노클러스터(nanocluster) 또는 거대원자(superatom)는 입자가 가지는 정전위상 전자(valence electron)가 새롭게 정의되는 거대원자 오비탈 이론을 따르며, 이를 하나의 거대한 원자로 보겠다는 이론이다.
나노클러스터는 원자 하나 또는 나노입자(nanoparticle) 대비 안정적이며, 금속적인 성질보다 분자적인 성질이 강해 나노입자와는 전혀 다른 광학적 및 전기화학적 성질을 가진다. 특히, 나노클러스터는 금속 원자의 개수, 금속 원자의 종류 및 리간드 등에 따라 광학적, 전기적 및 촉매적 성질이 민감하게 달라짐에 따라, 매우 다양한 분야에서 나노클러스터에 관한 연구가 활발하게 진행 중이다.
한편, 자성 나노입자는 매우 다양한 응용 범위를 가지고 있으며, 특히 바이오 의료 산업에 있어 자성을 이용한 다양한 응용 분야가 개발됨에 따라 자성 나노입자에 대한 관심이 더욱 증폭되고 있다. 이러한 응용 범위는 자기공명영상(MRI) 조영제, 자성을 이용한 물질 분리, 자성을 이용한 약물 전달, 자성을 이용한 물질 센서 및 고주파 자기장 열 치료 등이 있다.
그러나, 자성 나노입자는 입자의 크기 및 모양이 불균일하고, 그 표면 특성을 동일하게 제어하는 것이 어려움에 따라, 스핀 밀집 형태가 분명하지 않고 불균일하다는 단점이 있다.
반면, 나노클러스터 자성체는 크기 및 모양이 불균일한 자성 나노입자와는 달리 크기와 구조가 완전히 균일함에 따라 스핀 형태가 매우 분명하고, 용액에서의 분산성이 우수하여 자성을 이용한 다양한 응용 분야에 활용이 가능할 수 있다.
다만, 상기 나노클러스터 자성체는 자성 나노입자 대비 자성(magnets)이 작다는 단점이 있음에 따라, 보다 큰 자성을 가진 나노클러스터 자성체에 대한 개발이 요구되고 있다.
이와 유사한 선행문헌으로는 대한민국 등록특허공보 제10-1178512호가 제시되어 있다
상기와 같은 문제점을 해결하기 위하여 본 발명은 우수한 자성 특성을 가지며, 크기와 구조가 완전히 균일하여 스핀 형태가 매우 분명한 이종금속 원자가 도핑된 금 나노클러스터 자성체 및 이의 제조 방법을 제공하는 것을 목적으로 한다.
또한 본 발명은 본 발명의 이종금속 원자가 도핑된 금 나노클러스터 자성체를 포함하는 자기공명영상 조영제를 제공한다.
본 발명의 일 양태는 하기 화학식 1을 만족하는 이종금속 원자가 도핑된 금 나노클러스터 자성체에 관한 것이다.
[화학식 1]
MAu 24(SR) 18
(상기 화학식 1에서 SR은 유기티올계 리간드이며, M은 루테늄(Ru) 또는 오스뮴(Os)이다.)
바람직하게 본 발명의 화학식 1에서 유기티올계 리간드는 (C1-C10)알칸티올일 수 있다.
또한, 본 발명의 다른 일 양태는 a) 금 전구체, 이종금속 전구체 및 촉매를 반응시켜 반용용액을 제조하는 단계; 및 b) 상기 반응용액에 유기티올계 리간드 화합물 및 환원제를 첨가하여 하기 화학식 1을 만족하는 나노클러스터 자성체를 제조하는 단계;를 포함하는 이종금속 원자가 도핑된 금 나노클러스터 자성체의 제조방법(Ⅰ)에 관한 것이다.
[화학식 1]
MAu 24(SR) 18
(상기 화학식 1에서 SR은 유기티올계 리간드이며, M은 루테늄(Ru) 또는 오스뮴(Os)이다.)
상기 다른 일 양태에 있어, 상기 이종금속 전구체 : 금 전구체의 몰비는 1 : 3 내지 5일 수 있다.
또한, 본 발명의 또 다른 일 양태는 하기 화학식 2를 만족하는 금 나노클러스터 및 하기 화학식 3을 만족하는 이종금속 나노클러스터를 갈바닉 치환 반응시켜 하기 화학식 1을 만족하는 나노클러스터 자성체를 제조하는 단계;를 포함하는 이종금속 원자가 도핑된 나노클러스터 자성체의 제조방법(Ⅱ)에 관한 것이다.
[화학식 1]
MAu 24(SR) 18
[화학식 2]
Au 25(SR) 18
[화학식 3]
M 9(SR) 6
(상기 화학식 1 내지 3에서 SR은 유기티올계 리간드이며, M은 루테늄(Ru) 또는 오스뮴(Os)이다.)
상기 또 다른 일 양태에 있어, 상기 화학식 2의 금 나노클러스터 : 화학식 3의 이종금속 나노클러스터의 몰비는 1 : 2 내지 5일 수 있다.
바람직하게 본 발명의 이종금속 원자가 도핑된 금 나노클러스터 자성체의 제조방법의 일 실시예에 따른 유기티올계 리간드는 (C1-C10)알칸티올일 수 있다.
또한 본 발명은 본 발명의 이종금속 원자가 도핑된 금 나노클러스터 자성체를 포함하는 자기공명영상 조영제를 제공한다.
본 발명에 따른 이종금속 원자가 도핑된 금 나노클러스터 자성체는 금 나노클러스터에 루테늄 원자 또는 오스뮴 원자가 하나 도핑됨으로써 도핑된 원자의 고유 특성이 그대로 유지될 수 있으며, 이에 따라 우수한 자성 특성을 가질 수 있다.
아울러, 금 원자 24개, 이종금속 원자 1개 및 유기티올계 리간드 18개로 동일한 구성을 가짐에 따라 그 크기와 구조가 완전히 균일할 수 있으며, 이에 따라 스핀 형태가 매우 분명할 수 있다.
또한, 우수한 자성 특성을 가짐과 동시에 용매에 대한 분산성이 우수하여 자기공명영상(MRI) 조영제로써의 응용성이 높다.
도 1의 a는 RuAu 24(SC 6H 13) 18, 도 1의 b는 OsAu 24(SC 6H 13) 18의 전기분무 이온화 질량 분석(ESI-MS) 결과이다.
도 2는 평행(parallel) 또는 수직(perpendicular) 모드에서 측정한 전자스핀공명 분광도(EPR, electron paramagnetic resonance)로, 도 2의 a는 [RuAu 24(SC 6H 13) 18] -1, 도 2의 b는 [OsAu 24(SC 6H 13) 18] 0의 결과이다.
도 3은 RuAu 24(SC 6H 13) 18의 전자구조 예상 모식도이다.
도 4는 OsAu 24(SC 6H 13) 18의 전자구조 예상 모식도이다.
도 5는 [RuAu 24(SC 6H 13) 18] 1-의 구형파 전압전류법(SWV, Square Wave Voltammetry)을 통해 측정된 전압-전류도(왼쪽)와 UV-Vis-IR 흡광 스펙트럼(오른쪽)이다.
도 6은 [OsAu 24(SC 6H 13) 18] 1- 및 [OsAu 24(SC 6H 13) 18] 0의 구형파 전압전류법(SWV, Square Wave Voltammetry)을 통해 측정된 전압-전류도(왼쪽)와 UV-Vis-IR 흡광 스펙트럼(오른쪽)이다.
도 7은 산화 및 환원에 따른 RuAu 24(SC 6H 13) 18 및 OsAu 24(SC 6H 13) 18의 전자구조 예상 모식도이다.
이하 첨부한 도면들을 참조하여 본 발명에 따른 이종금속 원자가 도핑된 금 나노클러스터 자성체 및 이의 제조 방법에 대하여 상세히 설명한다. 다음에 소개되는 도면들은 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 예로서 제공되는 것이다. 따라서, 본 발명은 이하 제시되는 도면들에 한정되지 않고 다른 형태로 구체화될 수도 있으며, 이하 제시되는 도면들은 본 발명의 사상을 명확히 하기 위해 과장되어 도시될 수 있다. 또한 명세서 전체에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다.
이때, 사용되는 기술 용어 및 과학 용어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가지며, 하기의 설명 및 첨부 도면에서 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 설명은 생략한다.
또한, 본 발명의 구성 요소를 설명하는 데 있어서, 제1, 제2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다.
기존 자성 나노입자는 매우 우수한 자성 특성을 가지나, 입자의 크기 및 모양이 불균일하고, 그 표면 특성을 동일하게 제어하는 것이 어려움에 따라, 스핀 밀집 형태가 분명하지 않고 불균일하다는 단점이 있었다. 반면, 나노클러스터 자성체는 크기 및 모양이 불균일한 자성 나노입자와는 달리 크기와 구조가 완전히 균일함에 따라 스핀 형태가 매우 분명하나, 자성 나노입자 대비 자성(magnets)이 작다는 단점이 있었다.
이에 본 발명자들은 연구를 심화한 결과, 금 원자 24개 및 이종금속 원자 1개가 특정 구조로 결합된 나노클러스터가 동일한 구성을 가짐에 따라 그 크기와 구조가 완전히 균일하면서도, 도핑된 원자의 고유 특성이 그대로 유지되어 우수한 자성 특성을 가질 수 있음을 발견하여 본 발명을 완성하기에 이르렀다.
상세하게, 본 발명의 일 양태는 하기 화학식 1을 만족하는 이종금속 원자가 도핑된 금 나노클러스터 자성체에 관한 것이다.
[화학식 1]
MAu 24(SR) 18
(상기 화학식 1에서 SR은 유기티올계 리간드이며, M은 루테늄(Ru) 또는 오스뮴(Os)이다.)
이처럼, 본 발명에 따른 나노클러스터 자성체는 금 나노클러스터에 루테늄 원자 또는 오스뮴 원자가 하나 도핑됨으로써 도핑된 원자의 고유 특성이 그대로 유지될 수 있으며, 이에 따라 우수한 자성 특성을 가질 수 있다.
아울러, 금 원자 24개, 이종금속 원자 1개 및 유기티올계 리간드 18개로 동일한 구성을 가짐에 따라 그 크기와 구조가 완전히 균일할 수 있으며, 이에 따라 스핀 형태가 매우 분명할 수 있다.
또한, 우수한 자성 특성을 가짐과 동시에 용매에 대한 분산성이 우수하여 자기공명영상(MRI) 조영제로써의 응용성이 높을 수 있다.
보다 구체적으로, 본 발명의 일 예에 따른 상기 유기티올계 리간드인 SR은 탄소수 1 내지 30의 알칸티올, 탄소수 6 내지 30의 아릴티올, 탄소수 3 내지 30의 사이클로알칸티올, 탄소수 5 내지 30의 헤테로아릴티올, 탄소수 3 내지 30의 헤테로사이클로알칸티올 및 탄소수 6 내지 30의 아릴알칸티올 등으로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상일 수 있으며, 상기 유기티올계 리간드는 작용기 내 하나 이상의 수소가 치환기로 더 치환되거나 치환되지 않을 수 있으며, 이때, 치환기는 탄소수 1 내지 10의 알킬기, 할로겐기(-F, -Br, -Cl, -I), 니트로기, 시아노기, 히드록시기, 아미노기, 탄소수 6 내지 20의 아릴기, 탄소수 2 내지 7의 알케닐기, 탄소수 3 내지 20의 사이클로알킬기, 탄소수 3 내지 20의 헤테로사이클로알킬기 또는 탄소수 4 내지 20의 헤테로아릴기이되, 단, 상기 기재된 유기티올계 리간드의 탄소수는 치환기의 탄소수를 포함하지는 않는다. 또한, 상기 알킬기를 포함하는 모든 작용기에 있어 알킬기는 선형 또는 분지형일 수 있다.
더욱 구체적인 일 예시로, 상기 유기티올계 리간드는 펜탄티올, 헥산티올, 헵탄티올, 2,4-디메틸벤젠티올, 2-페닐에탄티올, 글루타티온, 티오프로닌, 티올레이티드 폴리(에틸렌글리콜), p-머캅토페놀 및 (r-머캅토프로필)-트리메톡시실란) 등으로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상일 수 있으나, 이에 한정되는 것은 아니다.
바람직하게 본 발명의 유기티올계 리간드의 유기티올계는 (C1-C10)알킬티올일 수 있으며, 보다 바람직하게는 (C3-C10)알킬티올일 수 있으며, 구체적인 일례로, 프로필티올, 2-프로필티올, n-부틸티올, iso-부틸티올, neo-부틸티올, n-펜틸티올, n-헥실티올 또는 n-헵틸티올일 수 있으나, 이에 한정이 있는 것은 아니다.
또한, 본 발명의 다른 일 양태는 상기 이종금속 원자가 도핑된 금 나노클러스터 자성체의 제조방법에 관한 것으로, 상기 이종금속 원자가 도핑된 금 나노클러스터 자성체는 싱크로 합성법(synchro synthesis) 또는 갈바닉 치환 반응(galvanic replacement reaction)의 두 가지 방법을 통해 제조될 수 있다.
이와 같은 방법을 통해 금 나노클러스터에 루테늄 원자 또는 오스뮴 원자가 하나 도핑됨으로써 도핑된 원자의 고유 특성이 그대로 유지되어, 우수한 자성 특성을 가진 이종금속 원자가 도핑된 금 나노클러스터 자성체를 효과적으로 제조할 수 있다.
아울러, 금 원자 24개, 이종금속 원자 1개 및 유기티올계 리간드 18개로 동일한 구성을 가진 나노클러스터 자성체를 제조할 수 있으며, 이에 따라 제조된 나노클러스터 자성체는 그 크기와 구조가 완전히 균일할 수 있으며, 스핀 형태가 매우 분명할 수 있다.
이하, 싱크로 합성법(synchro synthesis) 또는 갈바닉 치환 반응(galvanic replacement reaction)을 이용한 이종금속 원자가 도핑된 금 나노클러스터 자성체의 제조방법에 대하여 보다 상세하게 설명한다.
우선, 싱크로 합성법을 이용한 제조방법에 대하여 설명한다.
본 발명의 일 양태에 따른 이종금속 원자가 도핑된 금 나노클러스터 자성체의 제조방법(Ⅰ)은 a) 금 전구체, 이종금속 전구체 및 촉매를 반응시켜 반용용액을 제조하는 단계; 및 b) 상기 반응용액에 유기티올계 리간드 화합물 및 환원제를 첨가하여 하기 화학식 1을 만족하는 나노클러스터 자성체를 제조하는 단계;를 포함할 수 있다.
[화학식 1]
MAu 24(SR) 18
상기 화학식 1에서 SR은 유기티올계 리간드이며, M은 루테늄(Ru) 또는 오스뮴(Os)으로, 화학식 1의 SR은 상기에 기재된 바와 동일한 바, 중복설명은 생략한다.
이때, 화학식 1을 만족하는 이종금속 원자가 도핑된 금 나노클러스터 자성체를 효과적으로 합성하기 위해서는 각 금속 전구체 간의 혼합 비율, 금속 전구체와 리간드 화합물 간의 혼합 비율, 환원제의 첨가량 및 용매의 선정이 중요할 수 있으며, 이에 대하여는 하기에 상세하게 설명한다.
먼저, a) 금 전구체, 이종금속 전구체 및 촉매를 반응시켜 반용용액을 제조하는 단계를 수행할 수 있다.
언급한 바와 같이, a)단계에서는 각 금속 전구체 간의 혼합 비율을 적절하게 조절하여 주는 것이 이종금속 원자가 도핑된 금 나노클러스터 자성체의 합성 효율을 향상시킴에 있어 좋다. 구체적인 일 예시로, 상기 이종금속 전구체 : 금 전구체의 몰비는 1 : 1 내지 5일 수 있으며, 보다 좋게는 1 : 1.5 내지 3.5, 가장 좋게는 1 : 1.8 내지 3.2일 수 있다. 이와 같은 범위에서 화학식 1을 만족하는 이종금속 원자가 도핑된 금 나노클러스터 자성체가 효과적으로 합성될 수 있다.
본 발명의 일 예에 있어, 상기 금 전구체는 당업계에서 통상적으로 사용하는 것이라면 특별히 한정하지 않고 사용할 수 있으며, 구체적인 일 예시로, 트리페닐포스핀금(Ⅰ)클로라이드(AuPPh 3Cl), HAuCl 4, AuCl 3, KAuCl 4 및 Au(OH) 3 등으로 이루어지는 군으로부터 선택되는 어느 하나 또는 둘 이상일 수 있으며, 바람직하게는 HAuCl 4를 사용하는 것이 합성 효율을 향상시킴에 있어 보다 좋다.
본 발명의 일 예에 있어, 상기 이종금속 전구체는 당업계에서 통상적으로 사용하는 것이라면 특별히 한정하지 않고 사용할 수 있으며, 구체적인 일 예시로, 이종금속이 루테늄(Ru)인 경우, 루테늄 전구체는 RuCl 3, Ru(NO)Cl 3 및 Ru(NO)(NO 3) a(OH) b(여기서, a 및 b는 각각 0 내지 3에서 선택되는 정수로, a+b=3이다.) 등으로 이루어지는 군으로부터 선택되는 어느 하나 또는 둘 이상일 수 있으며, 바람직하게는 RuCl 3를 사용하는 것이 합성 효율을 향상시킴에 있어 보다 좋다. 이종금속이 오스뮴(Os)인 경우, 오스뮴 전구체는 OsCl 3, Os(NO)Cl 3 및 Os(NO)(NO 3) a(OH) b(여기서, a 및 b는 각각 0 내지 3에서 선택되는 정수로, a+b=3이다.) 등으로 이루어지는 군으로부터 선택되는 어느 하나 또는 둘 이상일 수 있으며, 바람직하게는 OsCl 3를 사용하는 것이 합성 효율을 향상시킴에 있어 보다 좋다.
본 발명의 일 예에 있어, 상기 촉매는 당업계에서 통상적으로 사용되는 것이 라면 특별히 한정하지 않고 사용할 수 있으며, 테트라옥틸 암모늄 브로마이드(TOAB) 및 테트라페닐포스핀 브로마이드(PPh 4Br) 등으로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상일 수 있으며, 바람직하게는 테트라옥틸 암모늄 브로마이드(TOAB)를 사용하는 것이 반응 효율을 향상시킴에 있어 좋다.
이때, 촉매의 첨가량은 특별히 한정하진 않으나, 일 구체예로 금 전구체 : 촉매의 몰비는 1 : 0.5 내지 10, 보다 좋게는 1 : 1 내지 5, 더욱 좋게는 1 : 1.5 내지 3일 수 있다.
아울러, 본 발명의 일 예에 있어, 상기 a)단계의 반응용액은 금 전구체와 이종금속 전구체의 용해 및 반응 용이성의 향상을 위해 용매를 더 포함할 수 있으며, 상기 용매는 당업계에서 통상적으로 사용하는 것이라면 특별히 한정하지 않고 사용할 수 있다. 구체적인 일 예시로, 상기 용매는 디클로로메탄, 물, 탄소수 1~5의 알코올, 아세토니트릴, 디메틸설폭사이드(DMSO), 디메틸포름아미드(DMF), 아세톤, 테트라히드로푸란(THF) 및 1,4-디옥산 등으로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 혼합용매일 수 있으며, 바람직하게는 메탄올을 사용하는 것이 좋다. 이때, 상기 용매는 금 전구체 1 mmol을 기준으로 50 내지 100 ㎖가 첨가될 수 있으나, 이에 한정되는 것은 아니다.
다음으로, b) 상기 반응용액에 유기티올계 리간드 화합물 및 환원제를 첨가하여 화학식 1을 만족하는 나노클러스터 자성체를 제조하는 단계를 수행할 수 있다.
본 발명의 일 예에 있어, 상기 유기티올계 리간드 화합물은 상기 SR 대비 수소가 떨어지기 전의 화합물인 RSH일 수 있으며, 구체적인 일 예시로, 탄소수 1 내지 30의 알칸티올, 탄소수 6 내지 30의 아릴티올, 탄소수 3 내지 30의 사이클로알칸티올, 탄소수 5 내지 30의 헤테로아릴티올, 탄소수 3 내지 30의 헤테로사이클로알칸티올 및 탄소수 6 내지 30의 아릴알칸티올 등으로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상일 수 있으며, 상기 유기티올계 리간드는 작용기 내 하나 이상의 수소가 치환기로 더 치환되거나 치환되지 않을 수 있으며, 이때, 치환기는 탄소수 1 내지 10의 알킬기, 할로겐기(-F, -Br, -Cl, -I), 니트로기, 시아노기, 히드록시기, 아미노기, 탄소수 6 내지 20의 아릴기, 탄소수 2 내지 7의 알케닐기, 탄소수 3 내지 20의 사이클로알킬기, 탄소수 3 내지 20의 헤테로사이클로알킬기 또는 탄소수 4 내지 20의 헤테로아릴기이되, 단, 상기 기재된 유기티올계 리간드의 탄소수는 치환기의 탄소수를 포함하지는 않는다. 또한, 상기 알킬기를 포함하는 모든 작용기에 있어 알킬기는 선형 또는 분지형일 수 있다.
보다 구체적인 일 예시로, 상기 유기티올계 리간드는 펜탄티올, 헥산티올, 헵탄티올, 2,4-디메틸벤젠티올, 2-페닐에탄티올, 글루타티온, 티오프로닌, 티올레이티드 폴리(에틸렌글리콜), p-머캅토페놀 및 (r-머캅토프로필)-트리메톡시실란) 등으로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상일 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 일 예에 있어, 금 전구체 및 유기티올계 리간드 화합물의 혼합 비율은 당업계에서 통상적으로 혼합하는 비율일 수 있으며, 구체적인 일 예시로, 금 전구체 : 유기티올계 리간드 화합물의 몰비는 1 : 1 내지 15, 보다 좋게는 1 : 3 내지 10, 더욱 좋게는 1 : 4 내지 8일 수 있다. 이와 같은 범위에서 합성 효율이 우수하면서도 반응 불순물을 줄일 수 있어 좋다.
본 발명의 일 예에 있어, 상기 환원제는 당업계에서 통상적으로 사용하는 것이라면 특별히 한정하지 않고 사용할 있으며, 구체적인 일 예로, 환원제는 NaBH 4 등일 수 있으나, 이에 한정되는 것은 아니다. 이때, 상기 환원제는 금 전구체 1 mmol을 기준으로 5 내지 30 mmol이 첨가될 수 있으나, 이는 일 예시일 뿐 본 발명이 이에 제한되는 것은 아니다.
아울러, 본 발명의 일 예에 있어, 상기 b)단계의 반응 시간은 특별히 제한되지 않으나, 12시간 이상, 바람직하게는 24 내지 30시간일 수 있다. 이와 같은 범위에서 Au 25(SR) 18과 M 9(SR) 6(M= Ru 또는 Os)이 각각 제조된 후 MAu 24(SR) 18로 수렴하여 합성됨으로써 반응 부산물을 줄일 수 있으며, 합성 효율이 보다 증가할 수 있다.
또한, b)단계의 반응 완료 후 고순도의 나노클러스터 자성체를 수득하기 위하여 추가적인 정제 과정이 더 수행될 수 있음은 물론이며, 추가적인 정제 과정은 통상적인 방법을 통해 수행될 수 있다.
다음으로, 갈바닉 치환 반응을을 이용한 제조방법에 대하여 설명한다.
본 발명의 일 양태에 따른 이종금속 원자가 도핑된 금 나노클러스터 자성체의 제조방법(Ⅱ)은 하기 화학식 2를 만족하는 금 나노클러스터 및 하기 화학식 3을 만족하는 이종금속 나노클러스터를 갈바닉 치환 반응시켜 하기 화학식 1을 만족하는 나노클러스터 자성체를 제조하는 단계;를 포함할 수 있다.
[화학식 1]
MAu 24(SR) 18
[화학식 2]
Au 25(SR) 18
[화학식 3]
M 9(SR) 6
상기 화학식 1 내지 3에서 SR은 유기티올계 리간드이며, M은 루테늄(Ru) 또는 오스뮴(Os)으로, 화학식 1 내지 3의 SR은 상기에 기재된 바와 동일한 바, 중복설명은 생략한다.
이때, 화학식 1을 만족하는 나노클러스터 자성체를 효과적으로 합성하기 위해서는 금 나노클러스터와 이종금속 나노클러스터의 혼합 비율이 중요할 수 있다.
구체적인 일 예시로, 상기 화학식 2의 금 나노클러스터 : 화학식 3의 이종금속 나노클러스터의 몰비는 1 : 2 내지 5일 수 있으며, 보다 좋게는 1 : 2.5 내지 3, 더욱 좋게는 1 : 2.8일 수 있다. 이와 같은 범위에서 화학식 1을 만족하는 나노클러스터 자성체가 효과적으로 합성될 수 있다.
아울러, 본 발명의 일 예에 있어, 상기 화학식 2의 금 나노클러스터 및 화학식 3의 이종금속 나노클러스터의 용해 및 반응 용이성의 향상을 위해 용매를 더 포함할 수 있으며, 상기 용매는 당업계에서 통상적으로 사용하는 것이라면 특별히 한정하지 않고 사용할 수 있다. 구체적인 일 예시로, 상기 용매는 디클로로메탄, 물, 탄소수 1~5의 알코올, 아세토니트릴, 디메틸설폭사이드(DMSO), 디메틸포름아미드(DMF), 아세톤, 테트라히드로푸란(THF) 및 1,4-디옥산 등으로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 혼합용매일 수 있으며, 바람직하게는 디클로로메탄을 사용하는 것이 좋다. 이때, 상기 용매는 화학식 2의 금 나노클러스터 및 화학식 3의 이종금속 나노클러스터 1 mmol을 기준으로 5 ℓ 내지 7 ℓ가 첨가될 수 있으나, 이에 한정되는 것은 아니다.
또한, 본 발명의 일 예에 있어, 상기 단계의 반응 시간은 특별히 제한되지 않으나, 12시간 이상, 바람직하게는 24 내지 36시간일 수 있다. 이와 같은 범위에서 Au 25(SR) 18과 M 9(SR) 6(M= Ru 또는 Os)이 갈바닉 치환 반응을 통해 MAu 24(SR) 18로 수렴하여 합성됨으로써 반응 부산물을 줄일 수 있으며, 합성 효율이 보다 증가할 수 있다.
또한, 본 단계의 반응 완료 후 고순도의 나노클러스터 자성체를 수득하기 위하여 추가적인 정제 과정이 더 수행될 수 있음은 물론이며, 추가적인 정제 과정은 통상적인 방법을 통해 수행될 수 있다.
바람직하게 본 발명의 이종금속 원자가 도핑된 금 나노클러스터 자성체의 제조방법의 일 실시예에 따른 유기티올계 리간드의 유기티올계는 (C1-C10)알킬티올일 수 있으며, 보다 바람직하게는 (C3-C10)알킬티올일 수 있으며, 구체적인 일례로, 프로필티올, 2-프로필티올, n-부틸티올, iso-부틸티올, neo-부틸티올, n-펜틸티올, n-헥실티올 또는 n-헵틸티올일 수 있으나, 이에 한정이 있는 것은 아니다.
이하, 실시예를 통해 본 발명에 따른 이종금속 원자가 도핑된 금 나노클러스터 자성체 및 이의 제조 방법에 대하여 더욱 상세히 설명한다. 다만 하기 실시예는 본 발명을 상세히 설명하기 위한 하나의 참조일 뿐 본 발명이 이에 한정되는 것은 아니며, 여러 형태로 구현될 수 있다.
또한 달리 정의되지 않은 한, 모든 기술적 용어 및 과학적 용어는 본 발명이 속하는 당업자 중 하나에 의해 일반적으로 이해되는 의미와 동일한 의미를 갖는다. 본원에서 설명에 사용되는 용어는 단지 특정 실시예를 효과적으로 기술하기 위함이고 본 발명을 제한하는 것으로 의도되지 않는다. 또한 명세서에서 특별히 기재하지 않은 첨가물의 단위는 중량%일 수 있다.
[실시예 1] 싱크로 합성법을 이용한 RuAu 24(SC 6H 13) 18의 합성
먼저, 0.4 mmol의 HAuCl 4, 0.1 mmol의 RuCl 3 및 0.696 mmol의 테트라옥틸암모늄 브로마이드(TOAB)를 30 ㎖의 메탄올에 녹였다. 15분 간 교반한 후 2.5 mmol의 n-헥산티올(C 6H 13SH)을 2분에 걸쳐 적가하였다. 3분간 추가 교반 한 후 5 mmol의 NaBH 4(in 5 ㎖ H 2O)을 신속하게 한 번에 첨가하였다. 이후, 24시간 동안 추가 교반하여 RuAu 24(SC 6H 13) 18가 다수 포함된 혼합 클러스터를 합성하였다.
반응이 완료되면, 원심 분리를 통해 상청액과 침전물을 분리하여 침전물을 건조시킨 후, 물 5 ㎖, 메탄올 15 ㎖, 에탄올 15㎖로 각각 씻어 불순물을 제거하였다.
이후, 획득한 혼합 클러스터를 아세토니트릴:디클로로메탄(2:1 부피비)의 혼합용매 250 ㎖에 넣어 12시간 동안 추출하여 고순도의 RuAu 24(SC 6H 13) 18을 수득하였다.
[실시예 2] 싱크로 합성법을 이용한 OsAu 24(SC 6H 13) 18의 합성
RuCl 3 대신 OsCl 3를 사용한 것 외 모든 과정을 실시예 1과 동일하게 진행하여 OsAu 24(SC 6H 13) 18을 수득하였다.
[실시예 3] 갈바닉 치환 반응을 이용한 RuAu 24(SC 6H 13) 18의 합성
2 μmol의 Au 25(SC 6H 13) 18(in 10 ㎖ 디클로로메탄)과 5.6 μmol의 Ru 9(SC 6H 13) 6(in 4 ㎖ 디클로로메탄)을 혼합한 후 24시간 동안 격렬하게 교반하였다.
반응이 완료되면, 원심 분리를 통해 상청액과 침전물을 분리하여 침전물을 건조시킨 후, 물 5 ㎖, 메탄올 15 ㎖, 에탄올 15㎖로 각각 씻어 불순물을 제거하였다.
이후, 획득한 혼합 클러스터를 아세토니트릴:디클로로메탄(2:1 부피비)의 혼합용매 250 ㎖에 넣어 12시간 동안 추출하여 고순도의 RuAu 24(SC 6H 13) 18을 수득하였다.
[실시예 4] 갈바닉 치환 반응을 이용한 OsAu 24(SC 6H 13) 18의 합성
Ru 9(SC 6H 13) 6 대신 Os 9(SC 6H 13) 6를 사용한 것 외 모든 과정을 실시예 3과 동일하게 진행하여 OsAu 24(SC 6H 13) 18을 수득하였다.
[결과 분석]
1) 합성 확인
도 1의 a는 RuAu 24(SC 6H 13) 18, 도 1의 b는 OsAu 24(SC 6H 13) 18의 전기분무 이온화 질량 분석(ESI-MS) 결과로, RuAu 24(SC 6H 13) 18 및 OsAu 24(SC 6H 13) 18가 단일물질로 각각 잘 합성된 것을 확인하였다.
2) 자성 확인
도 2는 평행(parallel) 또는 수직(perpendicular) 모드에서 측정한 전자스핀공명 분광도(EPR, electron paramagnetic resonance)로, 도 2의 a는 [RuAu 24(SC 6H 13) 18] 1-, 도 2의 b는 [OsAu 24(SC 6H 13) 18] 0의 결과이다.
[RuAu 24(SC 6H 13) 18] 1- 는 평행모드에서는 피크가 관찰되지 않았으나 수직모드에서 피크가 관찰되었으며, 피크의 위치는 g average=1.46 및 2.00에서 관찰되었다. 이는 홀전자가 3개 존재함을 의미하며, 이로부터 RuAu 24(SC 6H 13) 18 나노클러스터가 자성 특성을 가진 것을 확인할 수 있었다.
[OsAu 24(SC 6H 13) 18] 0는 수직모드에서는 피크가 관찰되지 않았으나 평행모드에서 피크가 관찰되었으며, 피크의 위치는 g average=4.02에서 관찰되었다. 이는 홀전자가 2개 존재함을 의미하며, 이로부터 OsAu 24(SC 6H 13) 18 나노클러스터가 자성 특성을 가진 것을 확인할 수 있었다.
아울러, 분광도의 좁은 밴드 넓이를 기반으로 강한 스핀-궤도 중첩을 기대할 수 있으며, 이로부터 결정장(crystal field)의 영향을 배제할 수 있음에 대한 가능성을 확인할 수 있었다.
도 3은 RuAu 24(SC 6H 13) 18의 전자구조 예상 모식도로, RuAu 24(SC 6H 13) 18는 스핀(홀전자)의 개수가 3개로 최대 3 보어마그네톤(μ B)의 스핀 자기모멘트를 기대할 수 있다.
도 4는 OsAu 24(SC 6H 13) 18의 전자구조 예상 모식도로, OsAu 24(SC 6H 13) 18는 스핀(홀전자)의 개수가 2개로 최대 2 보어마그네톤(μ B)의 스핀 자기모멘트를 기대할 수 있다.
도 5는 [RuAu 24(SC 6H 13) 18] 1-의 구형파 전압전류법(SWV, Square Wave Voltammetry)을 통해 측정된 전압-전류도(왼쪽)와 UV-Vis-IR 흡광 스펙트럼(오른쪽)으로, 루테늄이 하나 도핑되어 전자구조가 달라짐에 따라 구형파 전압전류 그래프 상에서 피크 간 간격이 1.31 V로 좁아진 것을 확인할 수 있었으며, UV-Vis-IR 흡광 스펙트럼 역시 특징적인 피크의 위치가 1.5 eV로 쉬프트된 것을 확인할 수 있었다.
도 6은 [OsAu 24(SC 6H 13) 18] 1- 및 [OsAu 24(SC 6H 13) 18] 0의 구형파 전압전류법(SWV, Square Wave Voltammetry)을 통해 측정된 전압-전류도(왼쪽)와 UV-Vis-IR 흡광 스펙트럼(오른쪽)으로, 구형파 전압전류 그래프 상에서 각각 피크 간 간격이 1.20 V와 1.19 V로 좁아진 것을 확인할 수 있었으며, UV-Vis-IR 흡광 스펙트럼 역시 특징적인 피크의 위치가 [OsAu 24(SC 6H 13) 18] 1-는 1.2 및 1.5 eV, [OsAu 24(SC 6H 13) 18] 0는 1.3 eV로 쉬프트된 것을 확인할 수 있었다.
3) 자성 제어 실험
[실험예 1] [RuAu 24(SC 6H 13) 18] 1-의 산화
2 μmol의 [RuAu 24(SC 6H 13) 18] 1-를 디클로로메탄 14 ㎖에 녹인 후 반대이온 제거제(removing counter ion)인 실리카겔(200-425 mesh particle size, Supelco)을 10 ㎖ 첨가하고 5분간 섞어준 후, 침전물을 여과하여 분리하였다.
이를 다시 디클로로메탄에 녹인 후 50℃에서 1 시간동안 교반한 후 다시 침전물을 여과하여 분리하였다.
이를 1 L 이상의 메탄올로 씻어준 후 건조하여 [RuAu 24(SC 6H 13) 18] 0를 수득하였다.
[실험예 2] [OsAu 24(SC 6H 13) 18] 0의 환원
5 μmol의 [OsAu 24(SC 6H 13) 18] 0를 디클로로메탄 10 ㎖에 녹인 후 반대이온(counter ion)인 테트라옥틸암모늄 브로마이드(TOAB) 5 μmol과 환원제인 NaBH 4 5 μmol을 순차적으로 첨가하고, 실온에서 3시간 동안 교반하였다.
과량의 물을 넣어 유기층을 분리한 후 건조하고, 다시 메탄올로 씻어 불순물을 제거하였다.
끝으로, 아세토니트릴:디클로로메탄(2:1 부피비)의 혼합용매에 넣어 12시간 동안 추출하여 [OsAu 24(SC 6H 13) 18] 1-을 수득하였다.
도 7은 RuAu 24(SC 6H 13) 18와 OsAu 24(SC 6H 13) 18의 전자구조 예상 모식도로, [RuAu 24(SC 6H 13) 18] 1-을 산화시켜 전자를 하나 잃게 함으로써 [RuAu 24(SC 6H 13) 18] 0의 나노클러스터를 제조할 수 있으며, [OsAu 24(SC 6H 13) 18] 0을 환원시켜 전자를 하나 받게 함으로써 [OsAu 24(SC 6H 13) 18] 1-의 나노클러스터를 제조할 수 있다. 즉 산화-환원을 통해 스핀의 개수를 조절할 수 있으며, 이를 통해 구조의 변성을 최소화하여 물리적 변성이 없는 자성의 선택적 제어가 가능할 수 있다.
이상과 같이 특정된 사항들과 한정된 실시예를 통해 본 발명이 설명되었으나, 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다.
따라서, 본 발명의 사상은 설명된 실시예에 국한되어 정해져서는 아니되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등하거나 등가적 변형이 있는 모든 것들은 본 발명 사상의 범주에 속한다고 할 것이다.

Claims (8)

  1. 하기 화학식 1을 만족하는, 이종금속 원자가 도핑된 금 나노클러스터 자성체.
    [화학식 1]
    MAu 24(SR) 18
    (상기 화학식 1에서 SR은 유기티올계 리간드이며, M은 루테늄(Ru) 또는 오스뮴(Os)이다.)
  2. 제 1항에 있어서,
    상기 화학식 1에서 유기티올계 리간드는 (C1-C10)알칸티올계인, 이종금속 원자가 도핑된 금 나노클러스터 자성체.
  3. a) 금 전구체, 이종금속 전구체 및 촉매를 반응시켜 반용용액을 제조하는 단계; 및
    b) 상기 반응용액에 유기티올계 리간드 화합물 및 환원제를 첨가하여 하기 화학식 1을 만족하는 나노클러스터 자성체를 제조하는 단계;
    를 포함하는 이종금속 원자가 도핑된 금 나노클러스터 자성체의 제조방법.
    [화학식 1]
    MAu 24(SR) 18
    (상기 화학식 1에서 SR은 유기티올계 리간드이며, M은 루테늄(Ru) 또는 오스뮴(Os)이다.)
  4. 제 3항에 있어서,
    상기 금 전구체 : 이종금속 전구체의 몰비는 1 : 3 내지 5인, 이종금속 원자가 도핑된 금 나노클러스터 자성체의 제조방법.
  5. 하기 화학식 2를 만족하는 금 나노클러스터 및 하기 화학식 3을 만족하는 이종금속 나노클러스터를 갈바닉 치환 반응시켜 하기 화학식 1을 만족하는 나노클러스터 자성체를 제조하는 단계;를 포함하는 이종금속 원자가 도핑된 금 나노클러스터 자성체의 제조방법.
    [화학식 1]
    MAu 24(SR) 18
    [화학식 2]
    Au 25(SR) 18
    [화학식 3]
    M 9(SR) 6
    (상기 화학식 1 내지 3에서 SR은 유기티올계 리간드이며, M은 루테늄(Ru) 또는 오스뮴(Os)이다.)
  6. 제 5항에 있어서,
    상기 화학식 2의 금 나노클러스터 : 화학식 3의 이종금속 나노클러스터의 몰비는 1 : 2 내지 5인, 이종금속 원자가 도핑된 금 나노클러스터 자성체의 제조방법.
  7. 제 3항 또는 제 5항에 있어서,
    상기 유기티올계 리간드는 (C1-C10)알칸티올계인, 이종금속 원자가 도핑된 금 나노클러스터 자성체의 제조방법.
  8. 제 1항 또는 제 2항의 이종금속 원자가 도핑된 금 나노클러스터 자성체를 포함하는 자기공명영상 조영제.
PCT/KR2020/005436 2019-04-26 2020-04-24 이종금속 원자가 도핑된 금 나노클러스터 자성체 및 이의 제조 방법 WO2020218873A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20190049183 2019-04-26
KR10-2019-0049183 2019-04-26
KR10-2020-0049647 2020-04-23
KR1020200049647A KR102266919B1 (ko) 2019-04-26 2020-04-23 이종금속 원자가 도핑된 금 나노클러스터 자성체 및 이의 제조 방법

Publications (1)

Publication Number Publication Date
WO2020218873A1 true WO2020218873A1 (ko) 2020-10-29

Family

ID=72941119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/005436 WO2020218873A1 (ko) 2019-04-26 2020-04-24 이종금속 원자가 도핑된 금 나노클러스터 자성체 및 이의 제조 방법

Country Status (1)

Country Link
WO (1) WO2020218873A1 (ko)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120107303A (ko) * 2011-03-21 2012-10-02 연세대학교 산학협력단 산화환원 활성을 갖는 금 나노입자를 포함하는 전기화학 센서 및 이의 제조 방법
JP2013254737A (ja) * 2005-12-20 2013-12-19 Pchem Associates Inc 金属ナノ粒子分散物の合成
KR101759433B1 (ko) * 2016-04-06 2017-07-18 연세대학교 산학협력단 수소 기체 발생용 나노 클러스터 촉매 및 이의 제조방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013254737A (ja) * 2005-12-20 2013-12-19 Pchem Associates Inc 金属ナノ粒子分散物の合成
KR20120107303A (ko) * 2011-03-21 2012-10-02 연세대학교 산학협력단 산화환원 활성을 갖는 금 나노입자를 포함하는 전기화학 센서 및 이의 제조 방법
KR101759433B1 (ko) * 2016-04-06 2017-07-18 연세대학교 산학협력단 수소 기체 발생용 나노 클러스터 촉매 및 이의 제조방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HOSSAIN, DELWAR, PITTMAN CHARLES U., GWALTNEY STEVEN R.: "Structures and Stabilities of the Metal Doped Gold Nano-Clusters: M@AulO (M= W, Mo, Ru, Co", JOURNAL OF INORGANIC AND ORGANOMETALLIC POLYMERS AND MATERIALS, vol. 24, no. 1, January 2014 (2014-01-01), pages 241 - 249, XP055758457, DOI: 10.1007/s10904-013-9995-6 *
SHON, YOUNG-SEOK, DAWSON G. BRENT, PORTER MARC, MURRAY ROYCE W.: "Monolayer-protected bimetal cluster synthesis by core metal galvanic exchange reaction", LANGMUIR, vol. 18, no. 10, 2002, pages 3880 - 3885, XP055758459, DOI: 10.1021/la025586c *

Similar Documents

Publication Publication Date Title
EP2595997B1 (de) Kupfer(i)-komplexe für opto-elektronische vorrichtungen
JP2010518640A (ja) 有機トランジスタおよびその製造方法
US5869626A (en) Metal-encapsulated fullerene compound and a method of synthesizing such compound
KR101375288B1 (ko) 분산성이 뛰어난 그래핀 화합물 제조방법 및 이로부터 제조된 그래핀 화합물
JP6145660B2 (ja) 有機透明電極、有機透明電極の製造方法、タッチパネル、ディスプレイ、及び電子デバイス
WO2020218873A1 (ko) 이종금속 원자가 도핑된 금 나노클러스터 자성체 및 이의 제조 방법
EP3428989B1 (en) Light-emitting element
KR20190116331A (ko) 세포독성 벤조디아제핀 유도체를 제조하는 방법
Wolmershäuser et al. The benzobisdithiazole system in its various oxidation states: a new building block for organic conductors
WO2020218871A1 (ko) 이종금속 원자가 도핑된 은 나노클러스터 자성체 및 이의 제조 방법
WO2019093660A2 (ko) 마그헤마이트의 제조방법
CN113214217A (zh) 一类近红外呫吨类荧光化合物及制备方法
KR102266919B1 (ko) 이종금속 원자가 도핑된 금 나노클러스터 자성체 및 이의 제조 방법
WO2022010306A1 (ko) 금이 도핑된 니켈 나노클러스터, 이의 제조방법 및 이의 용도
WO2020218875A1 (ko) 산소 및 수소 발생 반응용 니켈 나노클러스터 이중기능성 촉매, 및 이의 제조방법
EP3101704B1 (en) Organic transistor, compound, organic semiconductor material for non-light-emitting organic semiconductor devices, material for organic transistors, coating solution for non-light-emitting organic semiconductor devices, and organic semiconductor film for non-light-emitting organic semiconductor devices
WO2020218869A1 (ko) 금 나노클러스터와 이의 제조방법 및 이를 포함하는 광학 센서
KR102266900B1 (ko) 이종금속 원자가 도핑된 은 나노클러스터 자성체 및 이의 제조 방법
WO2016186264A1 (ko) 발광 특성이 뛰어난 금 클러스터 및 이의 제조방법
JP5167533B2 (ja) 超分子構造を有する超極細ホースの合成
WO2023132607A1 (ko) 비납계 페로브스카이트 입자의 제조방법
KR101390666B1 (ko) 디케토피롤로피롤계와 텔루로펜을 함유하는 고분자 유도체, 이를 포함하는 유기 반도체 박막 및 유기박막 트랜지스터
KR20200107660A (ko) 2차원 나노물질 박리상태유지용 조성물, 상기 조성물을 이용한 2차원나노물질적층형구조체 및 그 제조방법
EP3842476B1 (en) Polymer, composition, electrochromic element, dimming device, and display device
Wang et al. Study on the synthesis of 2, 6-di (pyridin-2-yl) pyridin-4 (1H)-one

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20795201

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20795201

Country of ref document: EP

Kind code of ref document: A1