WO2016186264A1 - 발광 특성이 뛰어난 금 클러스터 및 이의 제조방법 - Google Patents

발광 특성이 뛰어난 금 클러스터 및 이의 제조방법 Download PDF

Info

Publication number
WO2016186264A1
WO2016186264A1 PCT/KR2015/010363 KR2015010363W WO2016186264A1 WO 2016186264 A1 WO2016186264 A1 WO 2016186264A1 KR 2015010363 W KR2015010363 W KR 2015010363W WO 2016186264 A1 WO2016186264 A1 WO 2016186264A1
Authority
WO
WIPO (PCT)
Prior art keywords
gold
cluster
gold cluster
ligand
formula
Prior art date
Application number
PCT/KR2015/010363
Other languages
English (en)
French (fr)
Inventor
이동일
표경림
Original Assignee
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 연세대학교 산학협력단 filed Critical 연세대학교 산학협력단
Publication of WO2016186264A1 publication Critical patent/WO2016186264A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic Table
    • C07F1/12Gold compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials

Definitions

  • the present invention relates to a gold cluster having excellent luminescence properties and a method for producing the same.
  • metal clusters are metal atoms that are formed in a number of nanometers together and can be used for optical, catalytic and magnetic measurement methods depending on the size of the cluster.
  • Metal cluster formation methods include reverse micelle synthesis, formation of ligand stabilized clusters using reduction of metal salts in polar organic solvents, decomposition of thermally unstable metal organic precursors, and synthesis in non-aqueous solutions.
  • Luminescent nanomaterials have long attracted scientists and are likely to find applications in organic and inorganic light emitting displays, optoelectronic devices, optical sensors, medical imaging and diagnostics. Research in this area has been fueled by the discovery of high-luminance clusters. Gold clusters of quantum size are expected to be useful for the development of materials with high photoluminescence efficiencies due to the discrete electron transition state and the unique crystal structure. Ultra-high brightness luminescent nanomaterials have received great attention in the field of light emitting diode displays, light emitting sensors and bioimaging. Good photostability, low toxicity and high photoluminescence (PL) efficiency are essential factors for the successful application of these nanomaterials.
  • PL photoluminescence
  • quantum dots have been a major focus of research in this area and significant progress has been made.
  • semiconductor quantum dots are relatively large in size and toxic in many cases, resulting in application limitations.
  • quantum dots and organic dye molecules in many technical applications, luminescent metal clusters of very small size, excellent stability and low toxicity have recently received a lot of attention.
  • QY luminescence quantum yield
  • gold clusters have attracted interest in bio-imaging and biolabeling in recent years due to their low toxicity and small size compared to similar semiconductor quantum dot materials. Therefore, sulfur clusters, peptides, dendrimers, Various materials such as proteins have been used, but they have shown limitations in not being able to secure solid fluorescence applicable to various bio-imaging techniques.
  • the problem to be solved by the present invention is to provide a gold cluster having excellent luminescence properties and to provide a gold cluster having excellent luminescence properties so that it can be applied to various fields, such as a light emitting diode display, a light emitting sensor, and bioimaging. .
  • the gold cluster comprising a gold-ligand complex represented by the following formula (1),
  • M is gold
  • L is a ligand containing a thiol group
  • R is represented by the following formula (2), or any one cation selected from imidazolium having an alkyl group having 10 or more carbon atoms and a metal ion having a 2+ charge It relates to a gold cluster characterized in that.
  • an in vivo luminescent imaging probe comprising a gold cluster or a gold cluster solution according to various embodiments of the present invention.
  • a display device including a gold cluster according to various embodiments of the present invention.
  • Eggplant relates to a method for producing a gold cluster comprising the step of adding and reacting any one cation selected from metal ions having an imidazolium and a 2+ charge.
  • the gold cluster of the present invention and a method of manufacturing the same are effective for providing a gold cluster having excellent luminescence properties.
  • the gold cluster can be applied to various fields such as light emitting diode display, light emitting sensor and bio-imaging field, thereby exhibiting an excellent market competitiveness through technical advantages.
  • FIG. 1 is a model showing the structure of Au 22 GS 18 cluster of Preparation Example 1.
  • FIG. 2 is a model illustrating the structure of an Au 25 GS 18 cluster of Preparation Example 2.
  • 3 (a) to 3 (c) are graphs showing ESI mass spectra, UV-vis absorption spectra, and fluorescence spectra of the Au 22 GS 18 clusters of Preparation Example 1, respectively.
  • Figure 4 (a) is a graph showing the ESI mass spectrum measurement results for the TOA-Au 22 cluster of Example 1, (b) is in [Au 22 (SG) 22 0 -16H + + 11TOA + ] 5- It is a graph showing the results of allotropy spectrum measurement.
  • Example 9 is a graph showing the results of measuring UV-vis absorption spectra of the gold cluster aqueous solution of Example 6-10.
  • Example 10 is a graph showing the results of measuring fluorescence spectra of the aqueous gold cluster solution of Example 6-10.
  • the gold cluster comprising a gold-ligand complex represented by the following formula (1),
  • M is gold and L is a ligand containing a thiol group.
  • R is a cation
  • a gold cluster is characterized in that any one cation represented by the formula (2) or selected from an imidazolium ion having 10 or more alkyl groups or a metal ion having a 2+ charge.
  • MxLy and Rz are bonded to each other by an ionic bond.
  • the element ratio of the gold and the ligand is preferably 1: 0.5 to 2, more preferably 1: 0.5 to 1.
  • the ratio is less than 1: 0.5, the amount of gold is relatively increased, so that the size of the core is increased in order to have a stable structure, and the length of the gold-ligand complex is shortened so that the luminous effect is significantly lowered.
  • 1: 2 is not preferred because the length of the ligand is too long to form a metal core consisting of 8 to 20 gold elements in the center.
  • the gold element is preferably formed of 8-20 elements in the core, and if it is out of the above range, the length of the gold-ligand complex becomes too short or the size of the central metal element constituting the core becomes smaller. It is not preferable because the ligand complex has a problem that is difficult to bind.
  • the gold-ligand complex is preferably gold and ligand is bonded in the form of dimer, trimer or tetramer, specifically, the gold-ligand complex is Au 22 L 18 Rn or Au 25 L 18 Rn It is preferable that n is an integer of 3-18. 1 to 2 illustrate the structure of the Au 22 L 18 Rn or Au 25 L 18 Rn cluster, which is not limited thereto.
  • the Au 22 L 18 Rn cluster is a structure in which Au 22 L 18 and Rn are ionically bonded to each other, and Au 25 L 18 Rn is a structure in which Au 25 L 18 and Rn are ionically bonded to each other.
  • a 22 L 18 has eight long gold elements centered on a core (nucleus), and a long complex of [GS-Au-GS-Au-GS-Au-GS] is repeatedly complex.
  • Two long chains, which are repeatedly complexed with two chains and [GS-Au-GS-Au-GS-Au-GS-Au-GS] form a cluster in a ring structure surrounding the nucleus.
  • a cluster is formed in a structure in which six chains composed of dimers (GS-Au-GS-Au-GS) having 13 gold elements in the core are attached to the core in a ring form. Forming.
  • the luminescence properties do not appear when the cation is bound one-to-one or many to the gold nanoparticles, whereas, as in the present invention, 8-20 gold elements are first in the core and ligand-gold-ligand around the core. Is a complex consisting of a ring is bound to the stomach core and the cation is bonded to the luminescence properties only appear. That is, the structure has a large number of gold elements to form a core and the shell ring surrounding the core is formed long, the cation should be bonded to such a structure, the structure will not only tend to become rigid, but also clusters It was confirmed that the luminescence property of?
  • the above cation is used not only as rigidity enough that the gold-cluster according to Chemical Formula 1 can be used for in vivo luminescence imaging probe or display device, but also as a luminescence imaging probe or display device in vivo. This is very important in that it is possible to impart sufficient luminescence properties of the gold-cluster to.
  • the ligand preferably comprises a thiol group, more preferably glutathione.
  • the thiol group of the ligand serves to bind a metal to provide a carboxyl group (negative charge), so that cations having luminescent properties can be bonded.
  • the cation is preferably represented by Formula 2 or any one cation selected from an imidazolium having an alkyl group having 10 or more carbon atoms and a metal ion having a 2+ charge.
  • the cation represented by Chemical Formula 2 shows a bulky structure by having a tetra-chain alkyl group in the form of a tetra structure, which plays an effective role in increasing luminescence in combination with a gold-ligand complex.
  • FIG. 6 which is a result of measuring emission spectra of a gold cluster according to an embodiment of the present invention, the cation-coupled TOA-Au 22 exhibits about 9 times or more luminous effect than Au 22 GS 18 . have.
  • TOA means tetraoctylammonium here.
  • the cation having an alkyl group having the tetra structure is preferably 8 or more in length, more preferably 8 to 16. If the length of the alkyl group is less than eight, the light emitting effect is insignificant and undesirable. If the length of the alkyl group exceeds 16, the alkyl group may be excessively long, causing reactions in the cation itself to entangle each other. It is undesirable because it inhibits binding. Specifically, tetraoctylammonium (Tetraoctylammonium) or tetradecyl ammonium (Tetradecylammonium) is preferable.
  • the imidazolium ion may be bonded to an alkyl group at positions 1 and 3 N, the alkyl group is preferably 10 to 16 carbon atoms, more preferably 1-decyl-3- represented by the formula (3) Methylimidazolium (1-decyl-3-methylimidazolium) ion. Since 1-decyl-3-methylimidazolium has 10 alkyl groups, the 1-decyl-3-methylimidazolium has an effective role in increasing luminescence by binding to a gold-ligand complex.
  • the metal ion having the 2+ charge is preferably cadmium or zinc, and light emission can be controlled by adding the metal cation to the negative charge of the ligand.
  • the luminous effect of the cluster to which the metal cation is added can be confirmed.
  • the gold-ligand complex may be dissolved in ethanol or methanol solvent, the gold cluster solution dissolved in the solvent exhibits luminescent properties.
  • the ethanol or methanol is mixed with water and used.
  • the weight ratio of water and ethanol or methanol is preferably 1: 1 to 10, more preferably 1: 1 to 8. If the weight ratio is less than 1: 1, the ratio of the organic solvent is too small, so that aggregation does not occur well, so that the effect of increasing fluorescence is insignificant. It does not melt.
  • the light emission increases as the content of the non-solvent ethanol in the weight ratio is increased, which can be confirmed through FIGS. It can be seen that is improved.
  • an in vivo luminescent imaging probe comprising a gold cluster according to various embodiments of the present invention is disclosed.
  • a display device including a gold cluster according to various embodiments of the present invention is disclosed.
  • a) forming a gold-ligand complex represented by the following formula (1) and b) the gold-ligand complex represented by the following formula (2), or already having an alkyl group having 10 or more carbon atoms Disclosed is a method of preparing a gold cluster comprising the step of adding and reacting a cation selected from a metal ion having a dazolium and a 2+ charge.
  • M is gold
  • L is a ligand containing a thiol group
  • R is represented by the following formula (2), or any one selected from metal ions having an imidazolium and 2+ charge having an alkyl group having 10 or more carbon atoms Cation.
  • the step a) is a step of forming a gold-ligand complex
  • the ligand is added to the gold hydrate and mixed
  • the pH is adjusted by crystallization and the precipitate and crystals are separated by a centrifuge to separate the gold- Preference is given to forming ligand complexes.
  • the step b) is a step of reacting by adding a cation to the gold-ligand complex, specifically, after adding a cation to the gold-ligand complex to react by adjusting the pH to 8-10, using a toluene solvent Preference is given to adding the cation to the gold-ligand complex and reacting by shifting the phases.
  • a gold cluster having luminescent properties can be manufactured through a relatively simple process. It also has an excellent effect on market competitiveness.
  • the gold-ligand complex is preferably Au 22 L 18 Rn or Au 25 L 18 Rn, more preferably Au 22 L 18 Rn (where n is an integer of 3-18). .
  • the ligand is a glutathione, and the cation is represented by Formula 2 or preferably any one cation selected from imidazolium having an alkyl group having 10 or more carbon atoms and a metal ion having a 2+ charge.
  • the gold and the ligand is preferably mixed in an element ratio of 1: 0.5 to 2, more preferably 1: 0.5 to 1. Detailed description of the composition is the same as described above, so it will be omitted.
  • the method for producing the gold cluster preferably further comprises the step of dissolving the reaction product according to step b) in ethanol or methanol solvent, more preferably used by mixing with water It is. Similarly, the detailed description thereof will be omitted since it is the same as described above.
  • Gold tetrachloride trihydrate (HAuCl 4 ⁇ 3H 2 O, reagent grade), glutathione (GSH, ⁇ 98%), sodium borohydride (NaBH 4 , 99%), tetraoctylammonium bromide (TOABr, 98%) , Hexadecyltrimethylammonium bromide (CTABr, ⁇ 98%), tetramethylammonium bromide (TMABr, 98%), trismabase ( ⁇ 99%), glycine (electrophoresis, ⁇ 99%), acrylamide (bio reagent, And rhodamine B was purchased from Sigma-Aldrich.
  • Tetradecylammonium bromide (TDABr, ⁇ 98%) was purchased from Tokyo Chemical Industry Co. Sodium hydroxide (NaOH, 98%), hydrochloric acid (HCl, 35-37%), isopropyl alcohol (IPA, 99%), and ACS grade toluene, acetonitrile, ethanol and methanol were purchased from Burdick and Jackson. Water was purified using Millipore Milli-Q system (18.2 M ⁇ cm). All chemicals were used as purchased without further purification.
  • Au 22 nanoparticles were separated through recrystallization process by rotating evaporation to completely remove the solvent, dissolving in 10 mL of water, and adding 12 mL of IPA to precipitate the solid produced by centrifugation. An additional 2 mL of IPA was added to the unsettled solution, and the resulting solid was separated through a centrifuge, until the unsettled solution became clear. The separated solid was washed with excess IPA and methanol to remove impurities remaining without reaction to obtain Au 22 GS 18 , an Au 22 cluster protected with GS.
  • Au 25 GS 18 protected with L-Glutathione developed and used the well-known House synthesis method.
  • )-Forms a GS polymer Quickly add 10 mmol of NaBH 4 (10 mmol) in 10 mL of cold water as a reducing agent to the suspension and turn the solution brownish immediately.
  • the recrystallization process of removing all the solvents by using rotary evaporation in a short time and separating them by size is the same as in Preparation Example 1 above, but the ratio of solvents is different.
  • the resultant was dissolved in 10 mL of water, and 4 mL of methanol was added to separate the gold nanoparticles of various sizes synthesized by recrystallization. The precipitate is separated from the supernatant by centrifugation, and 2 mL of methanol is added to the supernatant to separate nanoparticles of different sizes.
  • TDA-Au 22 clusters were prepared using tetradecylammonium bromide (TDABr) instead of TOA.
  • TDABr tetradecylammonium bromide
  • a TDA-Au 25 cluster was prepared in the same manner as in Example 1, but using Preparation Example 2 (Au 25 GS 18 ) instead of Preparation Example 1 (Au 22 (GS) 18 ).
  • TOA-Au 22 prepared in Example 1 was dissolved in a solvent in which water and ethanol were mixed in weight ratios of 1: 0, 1: 1, 1: 2, 1: 5, and 1: 8, respectively, to TDA-Au 22.
  • An aqueous cluster solution was prepared.
  • TMABr tetramethylammonium bromide
  • a CTA-Au 22 cluster was prepared in the same manner as in Example 1, using hexadecyltrimethylammonium bromide (CTABr) instead of TOA.
  • CTA-Au 22 cluster was prepared in the same manner as in Example 1, using hexadecyltrimethylammonium bromide (CTABr) instead of TOA.
  • CTABr hexadecyltrimethylammonium bromide
  • the nanoparticles synthesized through the negative-mode electrospray ionization (ESI) mass spectrum have a molecular composition of Au 22 GS 18 and are separated into uniform sizes.
  • the mass-to-charge ratio (m / z) between 1960-1990 Da represents Au 22 GS 18 with different numbers of Na + as counterion.
  • the value located at m / z 1968 Da represents the configuration of [Au 22 (GS) 18 -5H] 5- and can be confirmed to be exactly matched with the theoretical allotrope pattern.
  • Au 22 has a maximum emission wavelength at 665 nm and an excitation wavelength at 470 and 520 nm, which excitation wavelengths are different from the absorption spectrum of (b). It can be seen that the position is similar.
  • the quantum yield (QY) of Au 22 which exhibits this luminescent property, is calculated by using Rhodamine B as reference material in water, about 7%.
  • the luminescence properties of TOA-Au 22 were also measured to compare with Au 22 without TOA. As a result, the As shown in FIG. 4, Au 22 Au 22 light emission was able to confirm that a significant increase, which when calculated for QY to a reference material with a rhodamine B attached to the TOA than Au 22 TOA did not stick of In the case of luminescence was found to have a 9-fold increase of about 62% QY. In addition, the maximum emission wavelength shifted from 665 nm to 630 nm, which is higher in energy.
  • Test Example 2 Analysis of luminescence properties according to a cation having a tetraalkyl structure
  • Example 2 exhibited greater luminescence than Example 1, and 66% of QD was calculated based on Rhodamine B.
  • Test Example 3 Analysis of luminescence properties according to metal cations
  • the fluorescence increases in the same way as aggregation occurs.
  • the added 2+ charge metal ions interact with two negatively charged carboxyl groups, which occur between two different long gold-thiol complexes rather than the same gold-thiol complex.
  • the distance between the complexes is closer, thereby increasing the aurophilic interaction between the gold atoms present in each complex, thereby increasing the luminescence.
  • Test Example 4 Analysis of the emission characteristics of TOA-Au 22 depending on the solvent
  • UV-vis absorption spectra and fluorescence spectra of the TDA-Au 22 cluster aqueous solutions of Examples 6 to 10 were measured, and the results are shown in FIGS. 8-9.
  • Example 7 which has a ratio of 1: 8 to Example 3 having a ratio of water and an ethanol solvent of 1: 0, light emission is increased by about four times. That is, as the ratio of ethanol increases, it can be seen that both absorption and emission increase.
  • Test Example 5 Analysis of Luminescence Characteristics by 1-decyl-3-methylimidazolium (DMIm) Cation
  • Example 11 As shown in FIG. 11, in Example 11, it can be seen that light emission characteristics are exhibited at a wavelength of 600 to 700 nm.
  • the gold cluster of the present invention and its manufacturing method are effective to provide a gold cluster having excellent luminescence properties.
  • the gold cluster can be applied to various fields such as light emitting diode display, light emitting sensor and bio-imaging field, thereby exhibiting an excellent market competitiveness through technical advantages.
  • the phosphorescent properties are greatly increased, fluorescence control is easy, and the market competitiveness according to the technological advantage will be excellent. Judging.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)

Abstract

본 발명은 발광 특성이 뛰어난 금 클러스터 및 이의 제조방법에 관한 것으로, 본 발명의 여러 구현예에 따르면, 본 발명의 금 클러스터 및 이의 제조방법은 발광 특성이 뛰어난 금 클러스터를 제공하는데 효과적이다. 또한, 상기 금 클러스터는 발광 다이오드 디스플레이, 발광센서 및 생체 영상화 분야 등의 다양한 분야에 적용할 수 있어, 기술적 우위를 통한 시장 경쟁력이 우수한 효과를 나타낸다.

Description

발광 특성이 뛰어난 금 클러스터 및 이의 제조방법
본 발명은 발광 특성이 뛰어난 금 클러스터 및 이의 제조방법에 관한 것이다.
일반적으로 금속 클러스터는 금속 원자들이 수 나노미터의 크기를 형성하며 뭉쳐있는 것으로, 클러스터의 크기에 따라 광학적, 촉매적, 자기적 측정 방법을 이용할 수 있다. 금속 클러스터 형성하는 방법에는 역미셀 합성 방법, 극성 유기 용매에서 금속염의 환원을 이용하여 리간드로 안정화된 클러스터를 형성 방법, 열적으로 불안정한 금속 유기 선구물질을 분해하여 비수용액에서 합성하는 방법 등이 있다.
발광성 나노물질은 오랫동안 과학자들을 매료시켜 왔으며, 유기/무기 발광 디스플레이, 광전자 기기, 광학센서, 의료영상 및 진단 분야에서 응용 가능성이 높다. 이 분야의 연구는 고발광 클러스터의 발견에 의해 탄력을 받았다. 양자 크기의 금 클러스터는 이산적 전자 전이상태와 특유의 결정구조로 인해 광발광 효율이 우수한 물질의 개발에 유용할 것으로 기대된다. 초고휘도 발광성 나노물질은 발광 다이오드 디스플레이, 발광센서 및 생체 영상화 분야에서 큰 관심을 받고 있다. 이러한 나노물질의 성공적인 응용을 위해서는 우수한 광안정성과 낮은 독성, 그리고 높은 광발광(PL) 효율이 필수적인 요인이다. 최근까지는 반도체 양자점이 이 분야의 연구에서 주요 초점이었으며 상당한 진전이 이루어졌다. 그러나, 반도체 양자점은 비교적 크기가 크고 독성이 있는 경우가 많아 응용 면에서 제약이 따른다. 한편, 다수의 기술적 응용분야에서 양자점 및 유기염료 분자에 대한 대안으로서, 크기가 매우 작고 안정성이 탁월하며 독성이 낮은 발광성 금속 클러스터가 최근 많은 관심을 받고 있다. 그러나, 금속 클러스터가 실용화되기에는 아직 발광 양자수율(QY)이 낮다.
특히, 금 클러스터는 유사한 반도체 양자점 물질에 비해 낮은 독성과 작은 크기로 인해 최근 수년간 바이오 이미징 및 바이오 라벨링에서 관심을 모아 왔으며, 이에, 상기와 같은 금 클러스터의 제조를 위해 황화합물, 펩티드, 덴드라이머, 단백질 등과 같은 다양한 물질이 사용되었으나, 다양한 바이오 이미징 기법에 적용할만한 고형광성을 확보하지 못하는 한계점을 나타내었다.
본 발명이 해결하고자 하는 과제는 발광 특성이 뛰어난 금 클러스터를 제조하여 발광 다이오드 디스플레이, 발광센서 및 생체 영상화 분야 등의 다양한 분야에 적용할 수 있도록 발광 특성이 뛰어난 금 클러스터 및 이의 제조방법을 제공하는 것이다.
본 발명의 대표적인 일 측면에 따르면, 하기 화학식 1로 표시되는 금-리간드 착물을 포함하는 금 클러스터에 있어서,
[화학식1]
MxLy-Rz
(단, x=22-25, y=15-20, z=3-20의 정수이다)
상기 M은 금이며, L은 티올기를 포함하는 리간드이고, R은 하기 화학식 2로 표시되거나, 탄소수가 10개 이상인 알킬기를 가지는 이미다졸리움 및 2+전하를 가지는 금속이온 중에서 선택된 어느 하나의 양이온인 것을 특징으로 하는 금 클러스터에 관한 것이다.
[화학식2]
Figure PCTKR2015010363-appb-I000001
(단, l≥8의 정수이다)
본 발명의 다른 대표적인 일 측면에 따르면, 본 발명의 여러 구현예에 따른 금 클러스터 또는 금 클러스터 용액을 포함하는 체내 발광 이미징 프로브에 관한 것이다.
본 발명의 또 다른 대표적인 일 측면에 따르면, 본 발명의 여러 구현예에 따른 금 클러스터를 포함하는 디스플레이 소자에 관한 것이다.
본 발명의 또 다른 대표적인 일 측면에 따르면, a) 상기 화학식 1로 표시되는 금-리간드 착물을 형성하는 단계 및 b) 상기 금-리간드 착물에 상기 화학식 2로 표시되거나, 탄소수가 10개 이상인 알킬기를 가지는 이미다졸리움 및 2+ 전하를 가지는 금속이온 중에서 선택된 어느 하나의 양이온을 첨가하여 반응시키는 단계를 포함하는 금 클러스터의 제조방법에 관한 것이다.
[발명의 효과]
본 발명의 여러 구현예에 따르면, 본 발명의 금 클러스터 및 이의 제조방법은 발광 특성이 뛰어난 금 클러스터를 제공하는데 효과적이다.
또한, 상기 금 클러스터는 발광 다이오드 디스플레이, 발광센서 및 생체 영상화 분야 등의 다양한 분야에 적용할 수 있어, 기술적 우위를 통한 시장 경쟁력이 우수한 효과를 나타낸다.
도 1은 제조예 1의 Au22GS18 클러스터의 구조를 도시화한 모델이다.
도 2는 제조예 2의 Au25GS18 클러스터의 구조를 도시화한 모델이다.
도 3의 (a) 내지 (c)는 각각 제조예 1의 Au22GS18 클러스터에 대한 ESI mass 스펙트럼, UV-vis 흡수 스펙트럼 및 형광 스펙트럼 측정 결과를 나타낸 그래프이다.
도 4의 (a)는 실시예 1의 TOA-Au22클러스터에 대한 ESI mass 스펙트럼 측정 결과를 나타낸 그래프이며, (b)는 [Au22(SG)22 0-16H++11TOA+]5-에 대한 동소체 스펙트럼 측정 결과를 나타낸 그래프이다.
도 5의 (a)는 TOA와 Au22가 ion-pairing 반응을 도식화한 그림이며, (b)는 실시예 1의 TOA-Au22을 물 또는 톨루엔에 용해시킨 후 UV램프(365nm) 아래에서의 측정된 사진이고, (c)는 실시예 1의 TOA-Au22을 같은 농도의 물 또는 톨루엔에 용해시킨 후 발광 스펙트럼을 측정한 결과를 나타낸 그래프이다.(단, Rhodamine B(RhB): 파란색 선이며, Q.Y. = 31 %이다)
도 6의 (a)는 제조예 1의 Au22GS18 및 실시예 1의 TOA-Au22클러스터에 대한 발광 스펙트럼을 나타낸 그래프이고, (b)는 제조예 2의 Au25GS18 및 실시예 3의 TOA-Au25클러스터에 대한 발광 스펙트럼을 나타낸 그래프이다.(단, O.D.514nm = 0.025 abs, WLEx = 514nm)
도 7은 제조예 1, 실시예 1-2 및 비교예 1-2의 금 클러스터에 대한 발광 스펙트럼을 측정한 결과를 나타낸 그래프이다.(단, O.D.514nm = 0.025 abs, WLEx = 514nm)
도 8은 제조예1, 실시예 4-5 및 비교예 3-5의 금 클러스터에 대한 UV-vis 흡광스펙트럼 및 형광 스펙트럼을 측정한 결과를 나타낸 그래프이다.
도 9는 실시예 6-10의 금 클러스터 수용액의 UV-vis 흡광 스펙트럼을 측정한 결과를 나타낸 그래프이다.
도 10은 실시예 6-10의 금 클러스터 수용액의 형광 스펙트럼을 측정한 결과를 나타낸 그래프이다.
도 11은 제조예 1, 실시예 1 및 실시예 11의 클러스터에 대한 발광 스펙트럼을 측정한 결과를 나타낸 그래프이다.(단, O.D.514nm = 0.025 abs, WLEx = 514nm)
이하에서, 본 발명의 여러 측면 및 다양한 구현예에 대해 더욱 구체적으로 살펴보도록 한다.
본 발명의 일 측면에 따르면, 하기 화학식 1로 표시되는 금-리간드 착물을 포함하는 금 클러스터에 있어서,
[화학식1]
MxLy-Rz
(단, x=22-25, y=15-20, z=3-20의 정수이다)
상기 M은 금이며, L은 티올기를 포함하는 리간드이다. 또한, R은 양이온으로서, 하기 화학식 2로 표시되거나, 10개 이상의 알킬기를 가지는 이미다졸리움 이온 또는 2+ 전하를 가지는 금속이온 중에서 선택되는 어느 하나의 양이온인 것을 특징으로 하는 금 클러스터가 개시된다. 이때 MxLy와 Rz는 서로 이온결합으로 결합되어 있다.
일 구현예에 따르면, 상기 금과 리간드의 원소비율은 1: 0.5 내지 2인 것이 바람직한데, 더욱 바람직하게는 1: 0.5 내지 1이다. 상기 비율이 1: 0.5 미만인 경우에는 상대적으로 금의 양이 많아지게 되어 안정적인 구조를 가지기 위해서는 코어의 크기가 커지게 되고 그만큼 금-리간드 착물의 길이가 짧아지게 되어 발광 효과가 현저히 낮아지는 문제점을 가지며, 1 : 2를 초과하는 경우에는 리간드의 길이가 너무 길어져 중심에 금 원소 8 내지 20개로 이루어진 금속 코어를 형성하지 못하는 문제점이 발생할 수 있어 바람직하지 않다.
구체적으로, 상기 금 원소는 코어에 8-20개의 원소로 형성되는 것이 바람직하며, 상기 범위를 벗어나는 경우에는 금-리간드 착물의 길이가 지나치게 짧아지거나 코어를 이루는 중심금속원소의 크기가 작아져 금-리간드 착물이 결합되기 어려운 문제점을 가지므로 바람직하지 않다.
다른 구현예에 따르면, 상기 금-리간드 착물은 금과 리간드가 dimer, trimer 또는 tetramer의 형태로 결합되는 것이 바람직하며, 구체적으로 상기 금-리간드 착물은 Au22L18Rn 또는 Au25L18Rn인 것이 바람직하다(단, n은 3-18의 정수이다). 이와 관련하여 도 1 내지 2는 상기 Au22L18Rn 또는 Au25L18Rn 클러스터의 구조를 도시화한 것이며, 이는 본 발명의 일 구현예에 따른 것이므로 이에 한정되지는 않는다.
상기 Au22L18Rn 클러스터는 Au22L18와 Rn이 서로 이온결합되어 있는 구조이고, Au25L18Rn는 Au25L18와 Rn가 이온결합되어 있는 구조이다.
이중에서 A22L18은 도 1에서 보는 바와 같이 금 원소 8개가 코어(핵)로 중심에 있고, 주위에는 [GS-Au-GS-Au-GS-Au-GS]로 반복적으로 complex를 이루는 긴 chain 2개와 [GS-Au-GS-Au-GS-Au-GS-Au-GS]로 반복적으로 complex를 이루는 긴 chain 2개가 서로 고리형태로 핵을 감싸는 구조로 클러스터를 형성하고 있다.
또한, 도 2를 살펴보면, Au25L18의 경우에는 코어에 13개의 금 원소를 가지고 dimer (GS-Au-GS-Au-GS)로 이루어진 chain 6개가 고리 형태로 코어에 붙어있는 구조로 클러스터를 형성하고 있다.
여기서, 단순히 금 나노 파티클에 상기 양이온이 일대일 또는 다수가 결합할 경우에는 발광 특성이 나타나지 않는 반면, 본 발명에서와 같이 금 원소 8-20개가 먼저 코어에 있고 그 코어를 중심으로 리간드-금-리간드가 반복적으로 이루어진 착물이 고리형태를 이루며 위 코어에 결합되고, 여기에 위 양이온이 결합되어야만 발광 특성이 나타난다. 즉, 상기 구조는 금 원소 다수가 코어를 이루고 상기 코어를 둘러싸는 shell 고리가 길게 형성되어야 하고, 이러한 구조에 상기 양이온이 결합되어야만, 그 구조가 rigid해지는 경향이 크게 나타날 수 있을 뿐만 아니라, 비로소 클러스터의 발광 특성을 나타낼 수 있다는 점을 확인하였다.
즉, 위 화학식 1에 따른 금-클러스터에서 양이온이 없는 경우에는 체내 발광 이미징 프로브나 디스플레이 소자 용도로 사용되기에는 너무 낮은 rigidity를 보일 뿐만 아니라 발광 특성도 전혀 발현되지 않거나 또는 발현되더라도 체내 발광 이미징 프로브나 디스플레이 소자로 사용되기에 매우 부족한 정도의 발광 효율을 보일뿐임을 확인하였다.
따라서, 화학식 1에 따른 금-클러스터에 있어서 위 양이온은 화학식 1에 따른 금-클러스터가 체내 발광 이미징 프로브나 디스플레이 소자 용도로 사용될 수 있을 정도의 rigidity뿐만 아니라, 체내 발광 이미징 프로브나 디스플레이 소자로 사용되기에 충분한 금-클러스터의 발광 특성을 비로소 부여할 수 있다는 점에서 매우 중요하다.
또 다른 구현예에 따르면, 상기 리간드는 티올기를 포함하는 것이 바람직하며, 더욱 바람직하게는 글루타싸이온(Glutathione)이다. 상기 리간드의 티올기는 금속과 결합하여 카르복실기(음전하)를 제공함으로써, 발광특성을 가지는 양이온이 결합될 수 있도록 하는 역할을 한다.
상기 양이온은 하기 화학식 2로 표시되거나 탄소수가 10개 이상인 알킬기를 가지는 이미다졸리움 및 2+ 전하를 가지는 금속이온 중에서 선택된 어느 하나의 양이온인 것이 바람직하다.
[화학식2]
Figure PCTKR2015010363-appb-I000002
(단, l≥8의 정수이다)
더욱 상세하게는, 상기 화학식 2로 표시되는 양이온은 비교적 긴 사슬의 알킬기가 테트라 구조의 형태를 가짐으로써 벌키한 구조를 나타내며, 이는 금-리간드 착물과 결합하여 발광을 증가시키는데 효과적인 역할을 한다. 본 발명의 일 구현예에 따른 금 클러스터의 발광 스펙트럼 측정 결과인 도 6에서 보는 바와 같이, 상기 양이온이 결합된 TOA-Au22는 Au22GS18에 비하여 약 9배 이상의 발광 효과를 나타냄을 확인할 수 있다. 여기서 TOA는 테트라옥틸암모늄을 의미한다.
상기 테트라 구조의 알킬기를 가지는 양이온은 상기 알킬기의 길이가 8개 이상인 것이 바람직한데, 더욱 바람직하게는 8 내지 16개이다. 상기 알킬기의 길이가 8개 미만일 경우에는 발광효과가 미미하여 바람직하지 않고, 16개를 초과하는 경우에는 알킬기가 지나치게 길어져 양이온 자체에서 반응이 일어나 서로 엉키는 현상을 일으킬 수 있으며, 이러한 현상은 결국 상기 리간드에 결합되는 것을 저해하여 바람직하지 않다. 구체적으로는 테트라옥틸암모늄(Tetraoctylammonium) 또는 테트라데실암모늄(Tetradecylammonium)인 것이 바람직하다.
상기 이미다졸리움 이온은 1번과 3번 위치 N에 알킬기가 결합될 수 있고, 상기 알킬기는 탄소수 10 내지 16개 인 것이 바람직한데, 더욱 바람직하게는 하기 화학식 3으로 표시되는 1-데실-3-메틸이미다졸리움(1-decyl-3-methylimidazolium) 이온이다. 상기 1-데실-3-메틸이미다졸리움은 10개의 알킬기를 가지므로 금-리간드 착물과 결합하여 발광을 증가시키는데 효과적인 역할을 한다.
[화학식3]
Figure PCTKR2015010363-appb-I000003
상기 2+ 전하를 가지는 금속 이온은 카드뮴 또는 아연인 것이 바람직하며, 상기 리간드의 음전하에 상기 금속 양이온을 첨가함으로써 발광을 조절할 수 있다. 마찬가지로 본 발명의 일 구현예에 따른 도 8에서 보는 바와 같이, 상기 금속 양이온이 첨가된 클러스터의 발광효과를 확인할 수 있다.
본 발명의 다른 측면에 따르면, 상기 금-리간드 착물은 에탄올 또는 메탄올 용매에 용해될 수 있으며, 상기 용매에 용해된 금 클러스터 용액은 발광 특성을 나타낸다. 바람직하게는 상기 에탄올 또는 메탄올을 물과 혼합하여 사용하는 것이다. 구체적으로, 상기 물과 에탄올 또는 메탄올의 중량비율은 1:1 내지 10 인 것이 바람직한데, 더욱 바람직하게는 1: 1 내지 8이다. 상기 중량비율이 1:1 미만이면 유기용매의 비율이 너무 작아서 aggregation이 잘 일어나지 않아서 형광증가의 효과가 미미한 문제점을 가지며, 1:10을 초과하는 경우에는 유기용매의 비율이 너무 높아서 오히려 금 클러스터가 녹지 않는 문제점을 가진다. 특히, 상기 중량 비율에서 비용매인 에탄올의 함량이 증가할수록 발광이 증가하는데, 이는 도 8 및 9를 통해서 확인할 수 있으며, 물과 에탄올의 비율이 1:8로 비용매인 에탄올의 함량이 높을수록 발광 효과가 향상되는 것을 알 수 있다.
본 발명의 또 다른 측면에 따르면, 본 발명의 여러 구현예에 따른 금 클러스터를 포함하는 체내 발광 이미징 프로브가 개시된다.
본 발명의 또 다른 측면에 따르면, 본 발명의 여러 구현예에 따른 금 클러스터를 포함하는 디스플레이 소자가 개시된다.
본 발명의 또 다른 측면에 따르면, a) 하기 화학식 1로 표시되는 금-리간드 착물을 형성하는 단계 및 b) 상기 금-리간드 착물에 하기 화학식 2로 표시되거나, 탄소수가 10개 이상인 알킬기를 가지는 이미다졸리움 및 2+ 전하를 가지는 금속이온 중에서 선택된 어느 하나의 양이온을 첨가하여 반응시키는 단계를 포함하는 금 클러스터의 제조방법이 개시된다.
[화학식1]
MxLy-Rz
(단, x=22-25, y=15-20, z=3-20의 정수이다.)
구체적으로, 상기 M은 금이고, L은 티올기를 포함하는 리간드이며, R은 하기 화학식 2로 표시되거나, 탄소수가 10개 이상인 알킬기를 가지는 이미다졸리움 및 2+ 전하를 가지는 금속이온 중에서 선택된 어느 하나의 양이온이다.
[화학식2]
Figure PCTKR2015010363-appb-I000004
(단, l≥8의 정수이다)
일 구현예에 따르면, 상기 a) 단계는 금-리간드 착물을 형성하는 단계로, 금 수화물에 리간드를 투입하고 혼합한 후, pH를 조절하여 결정화하고 원심분리기를 통해 침전물과 결정을 분리하여 금-리간드 착물을 형성하는 것이 바람직하다.
상기 b) 단계는 상기 금-리간드 착물에 양이온을 첨가하여 반응시키는 단계로, 구체적으로 상기 금-리간드 착물에 양이온을 첨가한 후 pH를 8-10으로 조절하여 반응시킨 후, 톨루엔 용매를 이용하여 상기 양이온을 금-리간드 착물에 첨가하고 상을 이동시킴으로써 반응시키는 것이 바람직하다.
즉, 본 발명에 따른 금 클러스터의 제조방법은 금과 리간드로 이루어진 클러스터에 상기 양이온을 ion-pair로 결합시킴으로써, 비교적 단순한 공정을 통해 발광 특성을 가지는 금 클러스터를 제조할 수 있으므로, 기술적 우위에 따른 시장경쟁력에 있어서도 우수한 효과를 나타낸다.
다른 구현예에 따르면, 상기 금-리간드 착물은 Au22L18Rn 또는 Au25L18Rn인 것이 바람직하며, 더욱 바람직하게는 Au22L18Rn이다(단, n은 3-18의 정수이다).
상기 리간드는 글루타싸이온인 것이 바람직하며, 상기 양이온은 상기 화학식 2로 표시되거나, 탄소수가 10개 이상인 알킬기를 가지는 이미다졸리움 및 2+ 전하를 가지는 금속이온 중에서 선택된 어느 하나의 양이온인 것이 바람직하다. 또한, 상기 금과 리간드는 1: 0.5 내지 2의 원소비율로 혼합되는 것이 바람직하며, 더욱 바람직하게는 1: 0.5 내지 1이다. 상기 조성에 대한 구체적인 설명은 앞서 설명한 내용과 동일하므로 생략하기로 한다.
또 다른 구현예에 따르면, 상기 금 클러스터의 제조방법은 c) 에탄올 또는 메탄올 용매에 상기 b)단계에 따른 반응 생성물을 용해시키는 단계를 더 포함하는 것이 바람직하며, 더욱 바람직하게는 물과 혼합하여 사용하는 것이다. 마찬가지로 이와 관련하여 구체적인 설명은 앞서 설명한 내용과 동일하므로 생략하기로 한다.
이하에서 실시예 등을 통해 본 발명을 더욱 상세히 설명하고자 하며, 다만 이하에 실시예 등에 의해 본 발명의 범위와 내용이 축소되거나 제한되어 해석될 수 없다. 또한, 이하의 실시예를 포함한 본 발명의 개시 내용에 기초한다면, 구체적으로 실험 결과가 제시되지 않은 본 발명을 통상의 기술자가 용이하게 실시할 수 있음은 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연하다.
또한 이하에서 제시되는 실험 결과는 상기 실시예 및 비교예의 대표적인 실험 결과만을 기재한 것이며, 아래에서 명시적으로 제시하지 않은 본 발명의 여러 구현예의 각각의 효과는 해당 부분에서 구체적으로 기재하도록 한다.
이하 실시예 시험예에서 사용된 재료 및 기구는 다음과 같다.
재료 및 기구
4염화금산 3수화물(HAuCl4·3H2O, 시약등급), 글루타싸이온 (GSH, ≥98%), 수소화붕소나트륨 (NaBH4, 99%), 테트라옥틸암모늄 브로마이드 (TOABr, 98%), 헥사데실트리메틸암모늄브로마이드 (CTABr, ≥98%) , 테트라메틸암모늄브로마이드 (TMABr, 98%), 트리즈마베이스 (≥99%), 글리신 (전기영동, ≥99%), 아크릴아미드 (bio reagent, 40%) 그리고 로다민 B 는 Sigma-Aldrich에서 구입하였다. 테트라데실암모늄브로마이드 (TDABr , ≥98%)는 Tokyo Chemical Industry Co에서 구매하였다. 수산화나트륨 (NaOH, 98%), 염산 (HCl, 35-37%), 이소 프로필 알코올 (IPA, 99%), 그리고 ACS등급 톨루엔, 아세토니트릴, 에탄올, 메탄올은 Burdick and Jackson에서 구입하였다. 물은 Millipore Milli-Q 시스템(18.2 MΩcm)으로 정제하여 사용하였다. 모든 화학물질은 더 이상의 정제 없이 구입한 그대로 사용하였다.
제조예 1
[Au22GS18 클러스터의 합성]
12.50 mL의 물에 용해 되어있는 0.25 mmol의 HAuCl4·3H2O 와 7.50 mL의 물에 용해된 0.37 mmol의 GSH를 230 mL의 물에 동시에 넣고, 2 분 동안 격렬하게 교반 시킨 후, 용액의 색상이 탁한 노란색으로 변하면 1 M의 NaOH를 넣어주어 pH를 12로 높여준다. 상기 용액에 3.5 mM 농도의 NaBH4 0.1 mL를 용액에 한 방울씩 천천히 넣어 준 후 30 분 동안 교반 시킨 후, 1 M의 HCl을 이용하여 용액의 pH를 2.5으로 낮춘 후, 상온에서 6 시간 동안 더 교반 하였다. 반응이 완결되면 회전 증발하여 용매를 완전히 제거한 후 10 mL의 물에 녹이고 12 mL의 IPA를 넣어 생기는 고체를 원심분리기를 이용하여 침전시키는 재결정과정 통해 Au22 나노입자를 분리해냈다. 가라앉지 않은 용액에 추가로 2 mL의 IPA를 넣어 생기는 고체를 원심분리기를 통해 분리하였고, 이 과정은 가라앉지 않은 용액이 투명해 질 때까지 진행되었다. 이렇게 분리된 고체를 과량의 IPA와 메탄올로 씻어 반응하지 않고 남아있는 불순물을 제거하여 GS으로 보호된 Au22 클러스터인 Au22GS18를 얻었다.
제조예 2
[Au25GS18 클러스터의 합성]
L-Glutathione 으로 보호된 Au25GS18는 잘 알려진 Brust 합성법을 발전시켜 사용하였다. 먼저 4 mmol의 L-glutathione을 40 mL에 물에 녹여 강하게 교반하면서 80 mL의 메탄올에 녹은 1 mmol의 HAuCl4·3H2O을 천천히 넣어주면, 용액은 노란색 현탁액에서 하얀색 현탁액으로 천천히 바뀌며 Au(I)-GS polymer를 형성한다. 이 현탁액에 환원제로서 10 mL의 차가운 물에 녹인 10 mmol의 NaBH4 (10 mmol)를 빠르게 넣어주면 용액은 즉시 흑갈색으로 바뀐다. 90 분 동안 더 교반 시킨 후에 가능한 짧은 시간 내에 회전증발을 이용하여 모든 용매를 제거하고, 크기별로 분리하는 재결정 과정은 위 제조예 1과 동일하지만 용매의 비율이 다르다. 용매가 모두 제거된 결과물을 10 mL의 물에 녹이고 4 mL의 메탄올을 넣어 생기는 고체를 원심 분리기를 이용하여 침전시키는 재결정 과정을 통하여 합성된 다양한 크기의 금 나노입자를 크기별로 분리하였다. 침전물은 원심 분리기를 통하여 상층액으로부터 분리하고, 상층액에 추가로 2 mL의 메탄올을 넣어 다른 크기의 나노입자를 분리한다. 이 과정은 AuNCs가 상층액에 남아있지 않을 때까지 반복하고 모든 침전물들은 각각 메탄올로 3회 이상 씻어 생성물과 함께 엉겨있는 불순물을 제거하여 GS으로 보호된 Au25 클러스터인 Au25GS18를 얻었다.
실시예 1
10 mL의 물에 10 mg의 제조예 1의 Au22(GS)18를 녹인 후, 1 mL의 톨루엔에 10 mg의 TOABr을 용해시킨 용액을 더해준 후, 1 M NaOH를 이용하여 pH를 9로 높여주고 전체 용액을 교반하고, 상온에 보관하여 물 층과 톨루엔 층으로 분리함으로써, 물에 녹아 있던 Au22(GS)18은 TOA와 강하게 이온 결합하여 모두 톨루엔 층으로 상 이동을 한다. 이 후 톨루엔층을 바이알에 분리하고 깨끗한 물 15 mL를 첨가하여 Au22(GS)18반응하지 않은 과량의 TOABr와 다른 불순물들을 제거하여, TOA-Au22 클러스터를 제조하였다.
실시예 2
실시예 1과 동일하게 실시하되, TOA 대신 테트라데실암모늄브로마이드(TDABr)를 사용하여, TDA-Au22 클러스터를 제조하였다.
실시예 3
실시예 1과 동일하게 실시하되, 제조예 1(Au22(GS)18) 대신 제조예 2(Au25GS18)를 사용하여 TDA-Au25 클러스터를 제조하였다.
실시예 4
10 mL의 물에 10 mg의 Au22(GS)18를 녹인 후, 같은 몰수의 카드뮴 이온이 용해된 1mL의 물을 첨가하고 2분 동안 반응시켜 Cd-Au22 클러스터를 제조하였다.
실시예 5
실시예 4와 동일하게 실시하되, 카드뮴 대신 아연 이온을 사용하여 Zn-Au22 클러스터를 제조하였다.
실시예 6-10
실시예 1을 통해 제조된 TOA-Au22를 물과 에탄올이 각각 1:0, 1:1, 1:2, 1:5 및 1:8의 중량비율로 혼합된 용매에 용해시켜 TDA-Au22 클러스터 수용액을 제조하였다.
실시예 11
10 mL의 물에 10 mg의 제조예 1의 Au22(GS)18를 녹인 후, 1 mL의 아세토나이트릴에 10 mg의 1-데실-3-메틸이미다졸리움(DMIm)을 용해시킨 용액을 더해준 후, 30분간 교반하고 용매를 회전증발로 증발시켜 DMIm-Au22 클러스터를 제조하였다.
비교예 1
실시예 1과 동일하게 실시하되, TOA 대신 테트라메틸암모늄브로마이드(TMABr)를 사용하였으며, TMABr의 경우에는 알킬기의 길이가 짧아서 상 이동방법으로는 Au22에 결합되지 않으므로 이온교환방법을 이용하여, TMA-Au22 클러스터를 제조하였다.
비교예 2
실시예 1과 동일하게 실시하되, TOA 대신 헥사데실트리메틸암모늄브로마이드(CTABr)를 사용하여, CTA-Au22 클러스터를 제조하였다.
비교예 3-5
실시예 4와 동일하게 실시하되, 카드뮴 대신 각각 수은, 칼슘 및 마그네슘 이온을 사용하였다.
시험예 1: TOA-Au22의 발광 특성 분석
제조예 1의 Au22GS18 나노입자와 실시예 1의 TOA-Au22클러스터에 대한 ESI mass 스펙트럼, UV-vis 흡수 스펙트럼 및 형광 스펙트럼을 측정하였으며, 그 결과를 도 3 내지 5에 나타내었다.
도 3의 (a)에서 보는 바와 같이, negative-mode electrospray ionization(ESI) mass spectrum을 통하여 합성된 나노입자가 Au22GS18의 분자 구성을 가지며, 균일한 크기로 분리가 되어있다는 것을 알 수 있다. 질량 대 전하 비(m/z) 1960-1990 Da 사이에 존재하는 값들은 counterion으로 서로 다른 개수의 Na+를 가지는 Au22GS18을 나타낸다. 또한, m/z 1968 Da에 위치한 값은 [Au22(GS)18-5H]5-의 구성을 나타내며, 이론적인 동소체 패턴과도 정확하게 맞음을 확인할 수 있다. (c)에서 도시된 바와 같이, Au22는 665 nm에서 최대 발광 파장이(emission wavelength) 나오고 470, 520 nm에서 흡광 파장이 (excitation wavelength) 관찰되는데, 이 excitation wavelength는 (b)의 흡광 스펙트럼과 유사한 위치임을 알 수 있다. 이러한 발광 성질을 나타내는 Au22의 양자수득률(Quantum yield, Q.Y.)은 물에서 기준 물질을 로다민B (Rhodamine B)로 하여 계산을 하면 약 7%가 나온다.
도 4의 (a)를 살펴보면, TOA가 ion-pair된 후에도 Au22(GS)18의 구성이 바뀌지 않았으며, 유기용매에서도 안정하게 존재하는 것을 알 수 있다. 또한, 나노입자의 charge는 TOA가 떨어져 나가면서 생기는 것을 알 수 있으며, 떨어져 나간 TOA 양이온과 실제로 측정된 TOA 양이온의 개수를 합쳐서 고려하면 Au22(GS)18에는 16-18개의 TOA 양이온이 붙는 것을 확인하였다.
TOA-Au22의 발광 특성도 TOA가 붙어있지 않은 Au22와 비교하기 위하여 측정하였다. 그 결과, 도 4에서 보는 바와 같이, Au22의 발광이 현저히 증가하는 것을 확인 할 수 있었으며, 이는 기준물질을 로다민 B로 하여 Q.Y.를 계산하면 TOA가 붙지 않았던 Au22보다 TOA가 붙은 Au22의 경우 발광이 9배 증가하여 약 62 %의 Q.Y.를 가지는 것을 발견하였다. 또한 최대발광파장이 665 nm에서 더 에너지가 높은 630 nm으로 이동하였다.
시험예 2: 테트라 알킬구조를 가지는 양이온에 따른 발광 특성 분석
제조예 1-2, 실시예 1-3 및 비교예 1-2의 클러스터에 대한 형광 스펙트럼을 측정한 결과를 도 6-7에 나타내었다.
도 6에서 보는 바와 같이, 실시예 1, 2의 클러스터는 테트라옥틸암모늄이 결합되어 그렇지 않은 제조예 1-2에 비하여 약 9배 이상의 발광 특성을 나타내는 것을 확인할 수 있다.
또한, 도 7을 살펴보면, 실시예 2의 TDA-Au22 경우에는 실시예 1보다 더 큰 발광의 증가현상을 나타내었으며, 로다민 B(Rhodamine B)를 기준으로 Q.Y.를 계산 하면 66 %가 나왔다. 이 결과를 통하여, Au22의 발광을 증가시키는 것은 벌키하고 알킬기의 길이가 긴 양이온에서만 일어남을 확인할 수 있다.
반대로 길이가 짧은 테트라 구조의 양이온인 TMABr이 결합된 비교예 2의 경우에는 Au22에 비해 아주 적게 증가함을 확인할 수 있었다. 즉, Au22의 발광을 증가 시키는 요인은 벌키하고 알킬기의 길이가 긴 양이온이 Au22의 구조를 단단하게 잡아주어 발광을 증가시킴을 확인할 수 있다.
시험예 3: 금속 양이온에 따른 발광 특성 분석
제조예 1, 실시예 4-5 및 비교예 3-5의 클러스터에 대한 UV-vis 흡광스펙트럼 및 형광 스펙트럼을 측정하였으며, 그 결과를 도 8에 나타내었다.
도 8에서 보는 바와 같이, 514 nm에서 excitation을 시켜 emission을 확인한 결과 카드뮴 (II), 아연 (II)에서만 흡광과 형광이 증가하였고 다른 2+ 전하 금속이온에서는 형광의 증가가 보이지 않았다. 다만 수은 (II)의 경우 Au22자체의 색이 사라지면서 형광이 사라지는 것을 확인할 수 있었다. 카드뮴 (II)과 아연 (II)의 경우 Au22의 형광보다 약 6 배 이상 증가하였다. 육안으로 확인하였을 때에는 도 8의 c)와 같이 전체적으로 수용액이 뿌옇게 탁해 지는 것을 알 수 있다. 또한 흡광 스펙트럼의 경우, 전체적으로 baseline이 뜨는 것으로 보아 금-싸이올 복합체의 Aggregation에 의하여 일어나는 것으로 보인다. 또한 형광도 이와 마찬가지로 Aggregation이 일어나면서 형광도 함께 증가한다. 하지만 이 경우 첨가된 2+ 전하 금속 이온이 음전하를 나타내는 카르복실기 2 개와 interaction이 일어나게 되는데, 이 카르복실기는 같은 금-싸이올 복합체에서가 아닌 서로 다른 2 개의 긴 금-싸이올 복합체 사이에서 일어나게 된다. 이러한 ineraction이 일어나게 되면 복합체 간의 거리가 가까워지게 되고 그로 인하여 각각의 복합체에 존재하는 금 원자 사이에 aurophilic interaction이 증가하여 발광이 증가하게 되는 것이다.
특히 본 시험에서 특징적으로 카드뮴(II), 아연(II), 수은(II) 이온에서만 광학적인 특징이 나타나는 원인에 대하여 더 보자면, 금, 수은, 카드뮴, 아연 이온의 경우 모두 d 오비탈에 전자가 전부 채워져 있는 d10의 특징을 가지고 있기 때문이다. 이렇게 전자가 채워진 d10간의 이온 사이에는 강한 metallophilic한 bond가 형성이 되게 된다. 이러한 영향으로 인하여 특징적으로 카드뮴, 아연, 수은에서만 Au22에 영향을 크게 주는 것이다. 이러한 설명은 수은의 결과를 보면 더욱 확실하게 입증된다. 수은의 경우 d 오비탈 (4f14 5d10)의 전자가 채워진 상태에서 Au22와 강한 bond를 형성하게 되고, 이러한 bond로 인하여 Au22 자체의 발광은 quenching이 일어나 발광 특성이 오히려 없어지는 현상이 나타나게 된다. 이러한 결과는 Au22 발광의 증감만으로도 환경오염의 주된 요인인 카드뮴 (II), 아연 (II), 수은 (II) 등의 중금속 검출 센서에 이용될 수 있는 유용한 물질임을 보여준다.
시험예 4: 용매에 따른 TOA-Au22 발광 특성 분석
실시예 6 내지 10의 TDA-Au22 클러스터 수용액에 대한 UV-vis 흡광 스펙트럼 및 형광 스펙트럼을 측정하였으며, 그 결과를 도 8-9에 나타내었다.
도 8 내지 9에서 보는 바와 같이, 물과 에탄올 용매의 비율이 1:0인 실시예 3보다 1:8의 비율을 가지는 실시예 7의 경우에 발광이 약 4배 정도 증가함을 알 수 있다. 즉, 에탄올의 비율이 증가할수록 흡광 및 발광이 모두 증가함을 확인할 수 있다.
시험예 5: 1-데실-3-메틸이미다졸리움(DMIm) 양이온에 따른 발광 특성 분석
제조예 1 및 실시예 1, 11의 클러스터에 대한 발광 스펙트럼을 측정한 결과를 도 11에 나타내었다.
도 11에서 보는 바와 같이, 실시예 11에서도 600 내지 700nm의 파장에서 발광특성이 나타남을 확인할 수 있다.
따라서, 본 발명의 여러 구현예에 따르면, 본 발명의 금 클러스터 및 이의 제조방법은 발광 특성이 뛰어난 금 클러스터를 제공하는데 효과적이다.
또한, 상기 금 클러스터는 발광 다이오드 디스플레이, 발광센서 및 생체 영상화 분야 등의 다양한 분야에 적용할 수 있어, 기술적 우위를 통한 시장 경쟁력이 우수한 효과를 나타낸다.
종래의 금속 나노 클러스터가 가지는 안정성 등의 문제를 해결하고, 금 나노 클러스터에 벌키한 테트라 알킬 양이온을 붙임으로써, 인광성질을 크게 증시키고, 형광조절이 용이해져 기술적 우위에 따른 시장 경쟁력이 우수할 것으로 판단된다.

Claims (18)

  1. 하기 화학식 1로 표시되는 금-리간드 착물을 포함하는 금 클러스터에 있어서,
    [화학식1]
    MxLy-Rz
    (단, x=22-25, y=15-20, z=3-20의 정수이다)
    상기 M은 금이며, L은 티올기를 포함하는 리간드이고, R은 하기 화학식 2로 표시되거나, 탄소수가 10개 이상인 알킬기를 가지는 이미다졸리움 및 2+전하를 가지는 금속이온 중에서 선택된 어느 하나의 양이온인 것을 특징으로 하는 금 클러스터.
    [화학식2]
    Figure PCTKR2015010363-appb-I000005
    (단, l≥8의 정수이다)
  2. 제1항에 있어서,
    상기 금과 리간드의 원소비율은 1: 0.5 내지 1인 것을 특징으로 하는 금 클러스터.
  3. 제1항에 있어서,
    상기 금 클러스터는 Au22L18Rn(단, n=3-18의 정수)인 것을 특징으로 하는 금 클러스터.
  4. 제1항에 있어서,
    상기 금 클러스터는 Au25L18Rn(단, n=3-18의 정수)인 것을 특징으로 하는 금 클러스터.
  5. 제1항에 있어서,
    상기 리간드는 글루타싸이온인 것을 특징으로 하는 금 클러스터.
  6. 제1항에 있어서,
    상기 양이온은 테트라옥틸암모늄, 테트라데실암모늄, 1-데실-3-메틸이미다졸리움, 카드뮴 이온, 아연 이온 중에서 선택되는 어느 하나인 것을 특징으로 하는 금 클러스터.
  7. 제1항에 따른 상기 금-리간드 착물이 에탄올 또는 메탄올 용매에 용해되어 있는 것을 특징으로 하는 금 클러스터 용액.
  8. 제1항 내지 제6항 중 어느 한 항의 금 클러스터 또는 제7항에 따른 금 클러스터 용액을 포함하는 체내 발광 이미징 프로브.
  9. 제1항 내지 제6항 중 어느 한 항의 금 클러스터 또는 제7항에 따른 금 클러스터 용액을 포함하는 디스플레이 소자.
  10. a) 하기 화학식 1로 표시되는 금-리간드 착물을 형성하는 단계; 및
    b) 상기 금-리간드 착물에 하기 화학식 2로 표시되거나, 탄소수가 10개 이상인 알킬기를 가지는 이미다졸리움 및 2+ 전하를 가지는 금속이온 중에서 선택된 어느 하나의 양이온을 첨가하여 반응시키는 단계;를 포함하는 금 클러스터의 제조방법에 있어서,
    [화학식1]
    MxLy-Rz
    (단, x=22-25, y=15-20, z=3-20의 정수이다)
    상기 M은 금이고, L은 티올기를 포함하는 리간드이며, R은 하기 화학식 2로 표시되거나, 탄소수가 10개 이상인 알킬기를 가지는 이미다졸리움 및 2+ 전하를 가지는 금속이온 중에서 선택된 어느 하나의 양이온인 것을 특징으로 하는 금 클러스터의 제조방법.
    [화학식2]
    Figure PCTKR2015010363-appb-I000006
    (단, l≥8의 정수이다)
  11. 제10항에 있어서,
    상기 금과 리간드는 1: 0.5 내지 1의 원소비율로 혼합되는 것을 특징으로 하는 금 클러스터의 제조방법.
  12. 제10항에 있어서,
    상기 금 클러스터는 Au22L18Rn(단, n=3-18의 정수)인 것을 특징으로 하는 금 클러스터의 제조방법.
  13. 제10항에 있어서,
    상기 금 클러스터는 Au25L18Rn(단, n=3-18의 정수)인 것을 특징으로 하는 금 클러스터의 제조방법.
  14. 제10항에 있어서,
    상기 리간드는 글루타싸이온인 것을 특징으로 하는 금 클러스터의 제조방법.
  15. 제10항에 있어서,
    상기 양이온은 테트라옥틸암모늄, 테트라데실암모늄, 1-데실-3-메틸이미다졸리움, 카드뮴 이온, 아연 이온 중에서 선택된 어느 하나인 것을 특징으로 하는 금 클러스터의 제조방법.
  16. 제10항에 있어서,
    c) 에탄올 또는 메탄올 용매에 상기 b)단계에 따른 반응 생성물을 용해시키는 단계를 더 포함하는 것을 특징으로 하는 금 클러스터의 제조방법.
  17. 제10항 내지 제16항 중 어느 한 항의 제조방법에 따른 금 클러스터를 포함하는 체내 발광 이미징 프로브.
  18. 제10항 내지 제16항 중 어느 한 항의 제조방법에 따른 금 클러스터를 포함하는 디스플레이 소자.
PCT/KR2015/010363 2015-05-15 2015-10-01 발광 특성이 뛰어난 금 클러스터 및 이의 제조방법 WO2016186264A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150068012A KR101790295B1 (ko) 2015-05-15 2015-05-15 발광 특성이 뛰어난 금 클러스터 및 이의 제조방법
KR10-2015-0068012 2015-05-15

Publications (1)

Publication Number Publication Date
WO2016186264A1 true WO2016186264A1 (ko) 2016-11-24

Family

ID=57320546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/010363 WO2016186264A1 (ko) 2015-05-15 2015-10-01 발광 특성이 뛰어난 금 클러스터 및 이의 제조방법

Country Status (2)

Country Link
KR (1) KR101790295B1 (ko)
WO (1) WO2016186264A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102091221B1 (ko) * 2018-06-19 2020-03-19 경희대학교 산학협력단 전기화학발광 금 나노클러스터 수용액 및 그 제조방법
WO2020218869A1 (ko) * 2019-04-26 2020-10-29 연세대학교 산학협력단 금 나노클러스터와 이의 제조방법 및 이를 포함하는 광학 센서

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120052513A1 (en) * 2010-08-24 2012-03-01 Pradeep Thalappil Gold sub-nanoclusters and uses thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120052513A1 (en) * 2010-08-24 2012-03-01 Pradeep Thalappil Gold sub-nanoclusters and uses thereof

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
KWAK, K. ET AL.: "Electrochemical Characterization of Water-Soluble Au25 Nanoclusters enabled by Phase-Transfer Reaction", J. PHYS. CHEM. LETT., vol. 3, no. 17, 2012, pages 2476 - 2481, XP055331311 *
NEGISHI, Y. ET AL.: "Glutathione-Protected Gold Clusters Revisited: Bridging the Gap between Gold(I)-Thiolate Complexes and Thiolate-Protected Gold Nanocrystals", J. AM. CHEM. SOC., vol. 127, no. 14, 2005, pages 5261 - 5270, XP055000542 *
PYO, K. ET AL.: "Ultrabright Luminescence from Gold Nanoclusters: Rigidifying the Au(I)-Thiolate Shell", J. AM. CHEM. SOC., vol. 137, no. 25, 10 June 2015 (2015-06-10), pages 8244 - 8250, XP055331314 *
WU, Z. ET AL.: "Probing the Structure and Charge State of Glutathione-Capped Au25 (SG) 18 Clusters by NMR and Mass Spectrometry", J. AM. CHEM. SOC., vol. 131, no. 18, 2009, pages 6535 - 6542, XP055331310 *
YU , Y. ET AL.: "Identification of A Highly Luminescent Au22 (SG) 18 Nanocluster", J. AM. CHEM. SOC., vol. 136, no. 4, 2014, pages 1246 - 1249, XP055331308 *
ZHANG, C. ET AL.: "Glutathione-capped Fluorescent Gold Nanoclusters for Dual-Modal Fluorescence/X-ray Computed Tomography Imaging", J. MATER. CHEM. B, vol. 1, 2013, pages 5 045 - 5053, XP055331312 *

Also Published As

Publication number Publication date
KR101790295B1 (ko) 2017-11-20
KR20160134257A (ko) 2016-11-23

Similar Documents

Publication Publication Date Title
Li et al. Perovskite quantum dots for light-emitting devices
Zhang et al. Silica coating enhances the stability of inorganic perovskite nanocrystals for efficient and stable down-conversion in white light-emitting devices
Mei et al. Modular poly (ethylene glycol) ligands for biocompatible semiconductor and gold nanocrystals with extended pH and ionic stability
Vassilakopoulou et al. Mixtures of quasi-two and three dimensional hybrid organic-inorganic semiconducting perovskites for single layer LED
Yang et al. In situ silica coating-directed synthesis of orthorhombic methylammonium lead bromide perovskite quantum dots with high stability
US7273904B2 (en) Nanocrystals in ligand boxes exhibiting enhanced chemical, photochemical, and thermal stability, and methods of making the same
EP3110906B1 (en) Luminescent hybrid nanomaterials with aggregation induced emission
WO2023087449A1 (zh) 锰掺杂有机钙钛矿团簇材料及其制备方法
WO2016186264A1 (ko) 발광 특성이 뛰어난 금 클러스터 및 이의 제조방법
Chen et al. Dimethylamine substituted bisbenzocoumarins: solvatochromic, mechanochromic and acidochromic properties
KR101845153B1 (ko) 고발광 금 나노 클러스터 및 그의 제조방법
CN106590626A (zh) 一种阳离子掺杂的钙钛矿型量子点及其制备方法
Su et al. Organic polymorph-based alloys for continuous regulation of emission colors
CN113072928B (zh) 一种零维锰基金属卤化物超快自组装的制备方法
TW201437215A (zh) 用於光電子應用之雙核金屬(i)錯合物
Zhan et al. Facile synthesis of a terephthalic acid-based organic fluorophore with strong and color-tunable emission in both solution and solid states for LED applications
Tanwar et al. White light emission from a mixture of silicon quantum dots and gold nanoclusters and its utilities in sensing of mercury (II) ions and thiol containing amino acid
Liu et al. Carbon nanodots: A metal-free, easy-to-synthesize, and benign emitter for light-emitting electrochemical cells
Xia et al. High binding ability ligand controlled formation of CsPbX 3 (X= Cl/Br, Br, I) perovskite nanocrystals with high quantum yields and enhanced stability
WO2021010545A1 (ko) 금 나노입자-형광체 하이브리드 물질과 그 제조방법
Wu et al. Conformational isomeric thermally activated delayed fluorescence (TADF) emitters: mechanism, applications, and perspectives
Liu et al. Glutathione as both ligand and sulfur source for the synthesis of full-color luminescent water-soluble CdS nanocrystals
WO2020218869A1 (ko) 금 나노클러스터와 이의 제조방법 및 이를 포함하는 광학 센서
WO2021054650A2 (ko) 양자점의 제조방법, 및 이에 의해 제조된 양자점
WO2023132607A1 (ko) 비납계 페로브스카이트 입자의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15892675

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15892675

Country of ref document: EP

Kind code of ref document: A1