WO2022010306A1 - 금이 도핑된 니켈 나노클러스터, 이의 제조방법 및 이의 용도 - Google Patents

금이 도핑된 니켈 나노클러스터, 이의 제조방법 및 이의 용도 Download PDF

Info

Publication number
WO2022010306A1
WO2022010306A1 PCT/KR2021/008792 KR2021008792W WO2022010306A1 WO 2022010306 A1 WO2022010306 A1 WO 2022010306A1 KR 2021008792 W KR2021008792 W KR 2021008792W WO 2022010306 A1 WO2022010306 A1 WO 2022010306A1
Authority
WO
WIPO (PCT)
Prior art keywords
gold
carbon dioxide
nanoclusters
pet
nickel
Prior art date
Application number
PCT/KR2021/008792
Other languages
English (en)
French (fr)
Inventor
이동일
최우준
조용성
Original Assignee
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210087056A external-priority patent/KR102572198B1/ko
Application filed by 연세대학교 산학협력단 filed Critical 연세대학교 산학협력단
Publication of WO2022010306A1 publication Critical patent/WO2022010306A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/52Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/25Reduction

Definitions

  • the present invention relates to gold-doped nickel nanoclusters, a method for preparing the same, and a use thereof, and more particularly, to a gold-doped nickel nanoclusters very useful as a catalyst for carbon dioxide conversion reaction, a method for preparing the same, and carbon dioxide conversion including the same It relates to an electrode and a method for converting carbon dioxide using the same.
  • Nanoclusters or superatoms composed of a certain number of metal atoms and ligands follow the macroatomic orbital theory, in which the valence electrons of particles are newly defined, It's a theory.
  • Nanoclusters have optical and electrochemical properties completely different from nanoparticles because they are more stable than single atoms or nanoparticles, and have stronger molecular properties than metallic properties.
  • optical, electrical and catalytic properties of nanoclusters are sensitively changed according to the number of metal atoms, types of metal atoms, ligands, etc., research on nanoclusters is being actively conducted in a wide variety of fields.
  • Carbon dioxide conversion technology through double electrochemical reduction is a technology that reduces carbon dioxide into useful carbon compounds through electron movement by generating a potential difference between electrodes by inputting electrical energy.
  • chemicals are not discharged by recycling the electrolyte, and furthermore, the process has the advantage of being simple.
  • the present invention provides a gold-doped nickel nanocluster having excellent stability and low price, and remarkably improved carbon dioxide conversion reaction selectivity, and a method for manufacturing the same.
  • the present invention also provides an electrode for carbon dioxide conversion comprising the gold-doped nickel nanoclusters of the present invention and a carbon dioxide conversion method using the same.
  • the present invention provides gold-doped nickel nanoclusters that can be used as catalysts having excellent selectivity for carbon dioxide conversion, and the gold-doped nickel nanoclusters of the present invention satisfy Formula 1 below.
  • gold-doped nickel nanoclusters are Au 2 Ni 3 (SR) 8 , Au 4 Ni 2 (SR) 8 or Au 2 Ni 4 (SR) 10 may be, and in Formula 1, the organothiol-based ligand is (C1-C30) alkanethiol, (C6-C30)arylthiol, (C3-C30)cycloalkanethiol, (C5-C30) ) may be any one or two or more selected from heteroarylthiol, (C3-C30)heterocycloalkanethiol, and (C1-C30)aryl(C1-C30)alkanethiol.
  • the organothiol-based ligand is (C1-C30) alkanethiol, (C6-C30)arylthiol, (C3-C30)cycloalkanethiol, (C5-C30) ) may be any one or two or more selected from heteroarylthiol, (C
  • the gold-doped nickel nanoclusters of the present invention may be a catalyst for carbon dioxide conversion.
  • the present invention provides a method for manufacturing a gold-doped nickel nanoclusters of the present invention, wherein the method for manufacturing a gold-doped nickel nanoclusters of the present invention comprises:
  • the nickel precursor according to an embodiment of the present invention may be used in an amount of 1.5 to 2.5 moles based on 1 mole of the gold precursor.
  • the nickel precursor according to an embodiment of the present invention may be one or two or more selected from Ni(NO 3 ) 2 , NiCl 2 , NiSO 4 and Ni(C 5 H 7 O 2 ) 2
  • the gold precursor is HAuCl 4 , triphenylphosphine gold (I) chloride (AuPPh 3 Cl), AuCl 3 , KAuCl 4 , Au(OH) 3 and one or two selected from hydrates thereof, and the reducing agent is triethylamine, oleylamine, It may be one or two or more selected from carbon monoxide and sodium borohydride.
  • the present invention provides an electrode for carbon dioxide conversion reaction comprising the gold-doped nickel nanoclusters of the present invention.
  • the present invention provides a carbon dioxide conversion method comprising the step of reducing carbon dioxide in an aqueous solution containing carbon dioxide using the electrode for carbon dioxide conversion reaction of the present invention.
  • the gold-doped nickel nanoclusters of the present invention have a specific number of atoms and organothiol-based ligands, specifically 2 gold atoms, 4 nickel atoms and 8 organothiol-based ligands, 4 gold atoms, 4 nickel atoms, and Since 8 organothiol-based ligands or 2 gold atoms, 3 nickel atoms and 10 organothiol-based ligands are combined in a specific structure, the activity for the conversion reaction of carbon dioxide is excellent in solutions of all acidities, and the conventional gold ( It has superior stability compared to Au)-based catalysts, and is very useful as a catalyst for alkaline water electrolysis because of its low price and excellent uniformity.
  • the method for manufacturing gold-doped nickel nanoclusters according to the present invention is doped with gold in which a specific number of gold atoms, nickel atoms, and organothiol-based ligands are bonded in a specific structure by controlling the molar concentrations of the nickel precursor and the gold precursor. It is possible to effectively synthesize nickel nanoclusters.
  • the present invention has the advantage of being able to provide nickel nanoclusters doped with gold as a catalyst for carbon dioxide conversion reaction having the above effect.
  • the electrode for carbon dioxide conversion reaction including the gold-doped nickel nanoclusters of the present invention can convert carbon dioxide into carbon monoxide with high selectivity in an aqueous solution containing carbon dioxide.
  • carbon dioxide can be effectively converted with high selectivity and conversion rate in an aqueous solution containing carbon dioxide as the electrode for carbon dioxide conversion of the present invention.
  • FIG. 2 is a graph showing the result of analyzing the components through X-ray photoelectron spectroscopy (XPS) of the Au 4 Ni 2 (PET) 8 nanoclusters prepared in the Example of the present invention.
  • XPS X-ray photoelectron spectroscopy
  • FIG. 5 is a linear scanning potential analysis data for the catalytic activity of Au 4 Ni 2 (PET) 8 and Ni 4 (PET) 8 nanocluster electrode.
  • Au 4 Ni 2 (PET) 8 (represented as Au 4 Ni 2 )
  • Au 2 Ni 4 (PET) 10 represented as Au 2 Ni 4
  • Au 2 Ni 3 (PET) 8 represented as Au 2 Ni 3
  • FIG. 9 is a graph showing the Faraday efficiency of Au 4 Ni 2 (PET) 8 and Ni 4 (PET) 8 nanocluster electrodes.
  • Carbon dioxide conversion technology through electrochemical reduction proceeds as in the following reaction formula, and carbon dioxide reduction reaction is performed in an aqueous electrolyte solution. As the reduction potential regions of hydrogen and carbon dioxide generated from the aqueous solution are similar, selectivity for carbon dioxide reduction is low.
  • a gold catalyst is mainly used as an electrode catalyst, a catalyst capable of replacing it is needed due to its high price and limited reserves.
  • the present inventors have completed the present invention by discovering that gold-doped nickel nanoclusters are inexpensive, have excellent uniformity, and have excellent selectivity for carbon dioxide reduction.
  • the present invention provides a gold-doped nickel nanoclusters satisfying the following formula (1).
  • the gold-doped nickel nanoclusters of the present invention have a specific number of gold atoms, nickel atoms, and organothiol-based ligands satisfying Chemical Formula 1, and have excellent stability and uniformity compared to conventional metal catalysts by bonding in a specific structure, , very economical.
  • the gold-doped nickel nanoclusters of the present invention have surprisingly excellent selectivity in the carbon dioxide conversion reaction, so they are very useful as a catalyst for the carbon dioxide conversion reaction.
  • the gold-doped nickel nanoclusters of the present invention are Au 2 Ni 3 (SR) 8 , Au 4 Ni 2 (SR) 8 or Au 2 Ni 4 (SR) 10 may be.
  • 2 gold atoms, 3 nickel atoms, or 4 gold atoms and 2 nickel atoms are bonded to 8 organothiol-based ligands in a specific structure, 2 gold atoms and 4 nickel atoms combine with 10 organothiol-based ligands in a specific structure, thereby having surprisingly improved selectivity in the carbon dioxide conversion reaction.
  • SR which is an organothiol-based ligand according to an embodiment of the present invention, is an alkanethiol having 1 to 30 carbon atoms, an arylthiol having 6 to 30 carbon atoms, a cycloalkanethiol having 3 to 30 carbon atoms, a heteroarylthiol having 5 to 30 carbon atoms, and a carbon number It may be any one or two or more selected from heterocycloalkanethiol having 3 to 30 or arylalkanethiol having 6 to 30 carbon atoms, and in the organothiol-based ligand, one or more hydrogens in the functional group may be further substituted with a substituent or may not be substituted,
  • the substituent is an alkyl group having 1 to 10 carbon atoms, a halogen group (-F, -Br, -Cl, -I), a nitro group, a cyano group, a hydroxy group, an amino group, an arylthi
  • the organothiol-based ligand is pentanethiol, hexanethiol, heptanethiol, 2,4-dimethylbenzenethiol, 2-phenylethanethiol, glutathione, thiopronine, thiolated poly(ethylene glycol), It may be any one or two or more selected from the group consisting of p-mercaptophenol and (r-mercaptopropyl)-trimethoxysilane), but is not limited thereto.
  • the organothiol ligand of the present invention may be (C6-C12)aryl(C1-C10)alkylthiol, more preferably phenyl(C1-C6)alkylthiol, for example, phenylmethylthiol, phenyl It may be ethylthiol, 2-phenylethylthiol, 1-phenylpropylthiol, 2-phenylpropylthiol or 3-phenylpropylthiol, but is not limited thereto.
  • the present invention relates to an electrode for carbon dioxide conversion reaction comprising, as a catalyst, gold-doped nickel nanoclusters satisfying Chemical Formula 1 according to an embodiment of the present invention, wherein the electrode for carbon dioxide conversion reaction performs a carbon dioxide reduction reaction It can be used as an electrode for More specifically, the electrode for carbon dioxide conversion reaction may include gold-doped nickel nanoclusters satisfying Chemical Formula 1 as a catalyst, a conductive material, and a polymer binder.
  • the conductive material may be a carbon material, but as long as it is commonly used in the art, it may be used without particular limitation.
  • Specific examples of the carbon body may be any one or two or more selected from the group consisting of carbon black, super-p, activated carbon, hard carbon, soft carbon, and the like, but is not limited thereto.
  • the polymer binder is used for firmly fixing the gold-doped nickel nanoclusters and the conductive material, which are catalysts for carbon dioxide conversion, and is not particularly limited as long as it is commonly used in the art. and may be specifically, for example, polytetrafluoroethylene (PTFE) or the like.
  • the amount of the polymer binder to be added is not particularly limited as long as the gold-doped nickel nanoclusters for carbon dioxide conversion reaction and the conductive material are firmly fixed.
  • the present invention provides a carbon dioxide conversion method comprising the step of reducing carbon dioxide in an aqueous solution containing carbon dioxide using the electrode for carbon dioxide conversion reaction of the present invention.
  • the electrode for carbon dioxide conversion reaction of the present invention can effectively convert carbon dioxide, which affects the greenhouse effect, into carbon monoxide, which is a useful gas.
  • another aspect of the present invention comprises the steps of: a) preparing a reaction solution by mixing a nickel precursor and a gold precursor in the presence of a solvent; and b) adding an organothiol-based ligand compound and a reducing agent to the reaction solution to synthesize gold-doped nickel nanoclusters satisfying the following Chemical Formula 1; it's about
  • the activity for carbon dioxide conversion reaction is excellent in a solution of any acidity, and is inexpensive and uniform compared to conventional catalysts Because of its excellent performance, it can be usefully used as a catalyst for carbon dioxide conversion reaction.
  • a specific number of nickel and gold precursors are controlled by controlling the molar concentrations of the nickel precursor and the gold precursor, the addition time of the reducing agent to be added, and the use of a specific solvent. It is possible to effectively synthesize gold-doped nickel nanoclusters in which gold atoms, nickel atoms, and organothiol-based ligands are bonded in a specific structure, and through this, gold-doped nickel nanoclusters for carbon dioxide conversion reaction having the above effect are provided. There are advantages to being able to
  • a) preparing a reaction solution by reacting a nickel precursor and a gold precursor in the presence of a solvent may be performed.
  • the molar concentration ratio of the nickel precursor and the gold precursor may be 1.5 to 2.5 moles of the nickel precursor based on 1 mole of the gold precursor, more preferably 1.8 to 2.3, and even more preferably 1.9 to 2.2 moles. can Within this range, it may be possible to synthesize gold-doped nickel nanoclusters satisfying Chemical Formula 1.
  • the nickel precursor may be used without particular limitation as long as it is commonly used in the art, and as a specific example, NiCl 2 , Ni(NO 3 ) 2 , NiSO 4 and Ni(C 5 H 7 O 2 ) 2 It may be any one or two or more selected from, preferably Ni(NO 3 ) 2 It is better in improving the synthesis efficiency to use.
  • the gold precursor is also not particularly limited as long as it is commonly used in the art, and as a specific example, HAuCl 4 , triphenylphosphine gold (I) chloride (AuPPh 3 Cl), AuCl 3 , KAuCl 4 , Au(OH) 3 and It may be any one or two or more selected from these hydrates, and preferably HAuCl 4 may be used.
  • the solvent used may be a polar aprotic solvent, and as a more specific example, any one or two selected from the group consisting of dimethylformamide (DMF), acetonitrile and dimethyl sulfoxide (DMSO) may be more than
  • the organothiol-based ligand compound it is preferable to quickly add the reducing agent after adding the organothiol-based ligand compound. That is, it is preferable to add the reducing agent at once after the organothiol-based ligand compound is constantly added to the reaction solution. Specifically, the organothiol-based ligand compound is constantly added for 2 to 5 minutes, stirred for 10 to 20 minutes, and then a reducing agent is rapidly added. This can increase the reaction efficiency by reducing side reactions.
  • the organothiol-based ligand compound may be RSH, which is a compound before hydrogen is decreased compared to SR, and as a specific example, alkanethiol having 1 to 30 carbon atoms, aryl having 6 to 30 carbon atoms Any one or two or more selected from the group consisting of thiol, cycloalkanethiol having 3 to 30 carbon atoms, heteroarylthiol having 5 to 30 carbon atoms, heterocycloalkanethiol having 3 to 30 carbon atoms and arylalkanethiol having 6 to 30 carbon atoms, etc.
  • one or more hydrogens in the functional group may be further substituted or unsubstituted with a substituent, and in this case, the substituent is an alkyl group having 1 to 10 carbon atoms, a halogen group (-F, -Br, -Cl, - I), a nitro group, a cyano group, a hydroxy group, an amino group, an aryl group having 6 to 20 carbon atoms, an alkenyl group having 2 to 7 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, a heterocycloalkyl group having 3 to 20 carbon atoms, or a heterocycloalkyl group having 4 to 20 carbon atoms of the heteroaryl group, provided that the number of carbon atoms of the organothiol-based ligand described above does not include the number of carbon atoms of the substituent.
  • the alkyl group the alkyl group having 1 to 10 carbon atoms, a halogen group (-
  • the organothiol-based ligand is pentathiol, hexanethiol, heptathiol, 2,4-dimethylbenzenethiol, 2-phenylethanethiol, glutathione, thiopronine, thiolated poly(ethylene glycol) , p-mercaptophenol and (r-mercaptopropyl)-trimethoxysilane) may be any one or two or more selected from the group consisting of, but is not limited thereto.
  • the organothiol ligand of the present invention may be (C6-C12)aryl(C1-C10)alkylthiol, more preferably phenyl((C1-C6)alkylthiol, for example, phenylmethylthiol; It may be phenylethylthiol, 2-phenylethylthiol, 1-phenylpropylthiol, 2-phenylpropylthiol, 3-phenylpropylthiol, pentylthiol or hexylthiol, but is not limited thereto.
  • the mixing ratio of the nickel precursor and the organothiol-based ligand compound may be a mixing ratio conventionally in the art, and as a specific example, the molar ratio of the nickel precursor: the organothiol-based ligand compound is 1: 1 to 15, more preferably 1: 1.5 to 10, even more preferably 1: 2 to 5. In such a range, the synthesis efficiency is excellent and the reaction impurities can be reduced.
  • the reducing agent may be used without particular limitation as long as it is commonly used in the art, and as a specific example, one or two or more selected from triethylamine, oleylamine, carbon monoxide and sodium borohydride. and preferably one or two or more selected from triethylamine and sodium borohydride.
  • 5 to 30 mmol of the reducing agent may be added based on 1 mmol of the nickel precursor, but this is only an example and the present invention is not limited thereto.
  • an additional purification process may be further performed in order to obtain high-purity gold-doped nickel nanoclusters, and the additional purification process may be performed through a conventional method.
  • the gold-doped nickel nanoclusters for the carbon dioxide conversion reaction of the present invention have very high selectivity for the conversion reaction of carbon dioxide.
  • gold-doped nickel nanoclusters which are very useful as catalysts for carbon dioxide conversion reaction according to the present invention, and a manufacturing method thereof will be described in more detail through Examples.
  • the following examples are only a reference for describing the present invention in detail, and the present invention is not limited thereto, and may be implemented in various forms.
  • Ni(NO 3 ) 2 0.42 mmol and HAuCl 4 0.21 mmol were dissolved in 6 mL of acetonitrile (MeCN) and stirred for 20 minutes.
  • PET 2-phenylethanethiol
  • Example 2 In 40 ⁇ l of acetone , 23 ⁇ g of each of the Au 2 Ni 4 (PET) 10 , Au 4 Ni 2 (PET) 8 and Au 2 Ni 3 (PET) 8 nanoclusters prepared in Example 1 were dissolved in dichloromethane (DCM). After the addition, ultrasonic dispersion was performed for about 1 minute to prepare a nanocluster composite dispersion.
  • DCM dichloromethane
  • the nanocluster composite dispersion prepared above is solution-deposited on a gas diffusion type microporous carbon electrode (Effects of gas diffusion layer (GDL) and micro porous layer (MPL); GDE) having an area of 1 cm 2 to form a nanocluster composite film.
  • Au 2 Ni 4 (PET) 10 denoted as Au 2 Ni 4
  • Au 4 Ni 2 (PET) 8 denoted as Au 4 Ni 2
  • Au 2 Ni 3 (PET) 8 dedenoted as Au 4 Ni 2
  • Example 2 it was prepared in the same manner as in Example 2, except that Ni 4 (PET) 8 prepared in Comparative Example 1 was used instead of the gold-doped nickel nanoclusters prepared in Example 1.
  • Figure 1 shows the electrospray ionization mass spectrometry data of Au 4 Ni 2 (PET) 8, Au 2 Ni 4 (PET) 10 , Au 2 Ni 3 (PET) 8 , and Ni 4 (PET) 8
  • Example 1 And each prepared in Comparative Example 1 Au 4 Ni 2 (PET) 8, Au 2 Ni 4 (PET) 10 , Au 2 Ni 3 (PET) 8 , and Ni 4 (PET) 8 nanoclusters with a single composition and high purity It was confirmed that it was well synthesized.
  • Figure 2 shows the results of analyzing the components of Au 4 Ni 2 (PET) 8 prepared in Example of the present invention through X-ray photoelectron spectroscopy (XPS).
  • XPS X-ray photoelectron spectroscopy
  • FIG. 5 is a linear scanning potential analysis data for the catalytic activity of Ni 4 (PET) 8 nanocluster electrode.
  • the Au 4 Ni 2 (PET) 8 nanocluster electrode prepared in the example of the present invention has an earlier voltage as compared to the Ni 4 (PET) 8 prepared in Comparative Example 1, and the carbon dioxide conversion reaction is You will find that you wake up sooner.
  • Au 4 Ni 2 (PET) 8 (represented as Au 4 Ni 2 )
  • Au 2 Ni 4 (PET) 10 represented as Au 2 Ni 4
  • Au 2 Ni 3 (PET) 8 represented as Au 2 Ni 3
  • FIG. 6 it can be seen that Au 4 Ni 2 (PET) 8 has the largest current value and thus carbon dioxide is converted the most.
  • Au 4 Ni 2 (PET) 8 exhibits the highest reaction selectivity among gold-doped nickel nanoclusters at ⁇ 0.74V based on Reversible Hydrogen Electrode (RHE).
  • Fig. 8 shows the selectivity of the Au 4 Ni 2 (PET) 8 and Ni 4 (PET) 8 nanocluster electrodes as a graph
  • Fig. 9 shows a graph of the Faraday efficiency. From the graphs of FIGS. 8 and 9 , in the case of Ni 4 (PET) 8 , almost no carbon monoxide and most of the hydrogen is generated, whereas in the case of the Au 4 Ni 2 (PET) 8 cluster of the present invention, 90% or more of carbon monoxide is generated It can be seen that the embodiment of the present invention Au 4 Ni 2 (PET) 8 cluster has high selectivity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Catalysts (AREA)

Abstract

본 발명은 특정한 개수의 금 원자, 니켈 원자 및 유기티올계 리간드를 가지며, 상기 금 원자, 니켈 원자 및 유기티올계 리간드가 특정한 구조로 결합된 금이 도핑된 니켈 나노클러스터, 이의 제조방법, 이를 포함하는 이산화탄소 전환용 전극 및 이를 이용하는 이산화탄소의 전환방법을 제공한다.

Description

금이 도핑된 니켈 나노클러스터, 이의 제조방법 및 이의 용도
본 발명은 금이 도핑된 니켈 나노클러스터, 이의 제조방법 및 이의 용도에 관한 것으로, 상세하게는 이산화탄소 전환반응용 촉매로 매우 유용한 금이 도핑된 니켈 나노클러스터, 이의 제조방법, 이를 포함하는 이산화탄소 전환용 전극 및 이를 이용하는 이산화탄소의 전환방법에 관한 것이다.
특정 개수의 금속 원자와 리간드로 구성되는 나노클러스터(nanocluster) 또는 거대원자(superatom)는 입자가 가지는 정전위상 전자(valence electron)가 새롭게 정의되는 거대원자 오비탈 이론을 따르며, 이를 하나의 거대한 원자로 보겠다는 이론이다.
나노클러스터는 원자 하나 또는 나노입자(nanoparticle) 대비 안정적이며, 금속적인 성질보다 분자적인 성질이 강해 나노입자와는 전혀 다른 광학적 및 전기화학적 성질을 가진다. 특히, 나노클러스터는 금속 원자의 개수, 금속 원자의 종류 및 리간드 등에 따라 광학적, 전기적 및 촉매적 성질이 민감하게 달라짐에 따라, 매우 다양한 분야에서 나노클러스터에 관한 연구가 활발하게 진행 중이다.
한편, 산업혁명 이후 인구 증가 및 산업화에 따라 화석 연료의 사용이 늘어나 온실가스 배출량이 증가하고 대기중의 온실가스 농도가 높아지면서 지구의 평균기온이 상승하는 지구 온난화 현상이 나타나고 있다. 그 결과 2015년 파리 기후변화협약으로 이산화탄소 방출량을 감소시키고자 하는 노력이 진행되고 있다.
이중 전기화학적 환원을 통한 이산화탄소 전환 기술은 전기 에너지를 투입하여 전극 사이에 전위차를 발생시켜 전자의 이동을 통해 이산화탄소를 유용한 탄소화합물로 환원시키는 기술로서, 상온 및 상압 조건에서도 이산화탄소 환원 반응을 수행할 수 있고, 반응에 필요한 원료는 물과 이산화탄소뿐이므로 전해질을 재활용함으로서 화학물질을 배출시키지 않으며, 더욱이 공정이 간단한 장점을 가지고 있다.
그러나 상기 전기화학적 기술의 경우, 전극 촉매의 종류, 전해질의 성질, pH, 온도, 압력 등의 반응 조건에 영향을 많이 받음에 따라, 이산화탄소를 환원하여 유용한 탄소화합물로 전환하기 위해서는 특히 전극 촉매의 종류와 사용되는 전해질에 대한 연구가 필요하다.
현재 전극 촉매로 금 촉매가 주로 사용되고 있으나, 가격이 높고 매장량이 한정되어 있어 이를 대체할 수 있는 촉매가 필요한 실정이다.
또한, 종래 이산화탄소 전기화학적 환원 기술의 경우, 수용성 전해액에서 이산화탄소 환원 반응이 이루어짐에 따라, 이산화탄소의 용해도가 낮고 상기 수용액으로부터 발생되는 수소와 이산화탄소의 환원 전위 영역이 비슷함에 따라 이산화탄소 환원에 대한 선택성이 낮은 문제점을 가진다.
따라서 경쟁 반응인 수소발생반응을 억제하고 이산화탄소의 환원반응에 대한 선택성이 우수한 촉매의 개발이 요구된다.
상기와 같은 문제점을 해결하기 위하여 본 발명은 안정성이 우수하며 가격이 저렴한 동시에 이산화탄소 전환반응 선택성이 놀랍도록 향상된 금이 도핑된 니켈 나노클러스터 및 이의 제조방법을 제공한다.
또한 본 발명은 본 발명의 금이 도핑된 니켈 나노클러스터를 포함하는 이산화탄소 전환용 전극 및 이를 이용하는 이산화탄소의 전환방법을 제공한다.
본 발명은 이산화탄소 전환반응에 우수한 선택성을 가지는 촉매로 사용될 수 있는 금이 도핑된 니켈 나노클러스터를 제공하는 것으로, 본 발명의 금이 도핑된 니켈 나노클러스터는 하기 화학식 1을 만족한다.
[화학식 1]
AuxNiy(SR)z
(상기 화학식 1에서 SR은 유기티올계 리간드이며; x는 2 또는 4이며, y는 2 내지 4이며, z는 8 또는 10이며, x+y=5 또는 6을 만족한다.)
바람직하게 본 발명의 일 실시예에 따른 금이 도핑된 니켈 나노클러스터는 Au2Ni3(SR)8, Au4Ni2(SR)8 또는 Au2Ni4(SR)10일 수 있으며, 상기 화학식 1에서 유기티올계 리간드는 (C1-C30)알칸티올, (C6-C30)아릴티올, (C3-C30)사이클로알칸티올, (C5-C30)헤테로아릴티올, (C3-C30)헤테로사이클로알칸티올 또는 (C1-C30)아릴(C1-C30)알칸티올에서 선택되는 어느 하나 또는 둘 이상일 수 있다.
본 발명의 금이 도핑된 니켈 나노클러스터는 이산화탄소 전환반응용 촉매일 수 있다.
또한 본 발명은 본 발명의 금이 도핑된 니켈 나노클러스터의 제조방법을 제공하는 것으로, 본 발명의 금이 도핑된 니켈 나노클러스터의 제조방법은,
a) 용매 존재 하, 니켈 전구체 및 금 전구체를 혼합하여 반응 용액을 제조하는 단계; 및
b) 상기 반응 용액에 유기티올계 리간드 화합물 및 환원제를 첨가하여 하기 화학식 1을 만족하는 금이 도핑된 니켈 나노클러스터를 합성하는 단계;를 포함한다.
[화학식 1]
AuxNiy(SR)z
(상기 화학식 1에서 SR은 유기티올계 리간드이며; x는 2 또는 4이며, y는 2 내지 4이며, z는 8 또는 10이며, x+y=5 또는 6을 만족한다.)
바람직하게 본 발명의 일 실시예에 따른 니켈 전구체는 금 전구체 1몰에 대하여 1.5 내지 2.5몰로 사용될 수 있다.
바람직하게 본 발명의 일 실시예에 따른 니켈 전구체는 Ni(NO3)2, NiCl2, NiSO4 및 Ni(C5H7O2)2에서 선택되는 하나 또는 둘 이상일 수 있으며, 금 전구체는 HAuCl4, 트리페닐포스핀금(Ⅰ)클로라이드(AuPPh3Cl), AuCl3, KAuCl4, Au(OH)3 및 이들의 수화물에서 선택되는 하나 또는 둘일 수 있으며, 환원제는 트리에틸아민, 올레일아민, 일산화탄소 및 소듐 보로하이드라이드에서 선택되는 하나 또는 둘 이상일 수 있다.
또한 본 발명은 본 발명의 금이 도핑된 니켈 나노클러스터를 포함하는 이산화탄소 전환반응용 전극을 제공한다.
또한 본 발명은 본 발명의 이산화탄소 전환반응용 전극을 이용하여 이산화탄소를 포함하는 수용액에서 이산화탄소를 환원시키는 단계를 포함하는 이산화탄소의 전환방법을 제공한다.
본 발명의 금이 도핑된 니켈 나노클러스터는 특정한 개수의 원자 및 유기티올계 리간드, 구체적으로 금 원자 2개, 니켈 원자 4개 및 유기티올계 리간드 8개, 금 원자 4개, 니켈 원자 4개 및 유기티올계 리간드 8개 또는 금 원자 2개, 니켈 원자 3개 및 유기티올계 리간드 10개가 특정 구조로 결합됨으로써 이산화탄소의 전환 반응에 대한 활성이 모든 산도의 용액에서 우수할 뿐만 아니라, 종래의 금(Au)계열 촉매 대비 우수한 안정성을 가지며, 가격이 저렴하면서도 균일성이 우수하여 알칼리 수전해용 촉매로 매우 유용하다.
또한, 본 발명에 따른 금이 도핑된 니켈 나노클러스터의 제조방법은 니켈 전구체 및 금 전구체의 몰농도를 조절하여 특정한 갯수의 금 원자, 니켈 원자 및 유기티올계 리간드가 특정 구조로 결합된 금이 도핑된 니켈 나노클러스터를 효과적으로 합성할 수 있다.
본 발명은 이를 통해 상기의 효과를 가진 이산화탄소 전환반응용 촉매로 금이 도핑된 니켈 나노클러스터를 제공할 수 있다는 장점이 있다.
또한 본 발명의 금이 도핑된 니켈 나노클러스터를 포함하는 이산화탄소 전환반응용 전극은 이산화탄소를 포함하는 수용액에서 높은 선택성으로 이산화탄소를 일산화탄소로 전환시킬 수 있다.
따라서 본 발명의 이산화탄소 전환반응용 전극 이산화탄소를 포함하는 수용액에서 높은 선택성 및 전환율로 이산화탄소를 효과적으로 전환시킬 수 있다.
도 1은 본 발명의 실시예 및 비교예에서 제조된 Au4Ni2(PET)8, Au2Ni3(PET)8, 및 Ni4(PET)8 나노클러스터의 전기분무 이온화 질량 분석 자료이다.
도 2는 본 발명의 실시예에서 제조된 Au4Ni2(PET)8 나노클러스터의 X-ray photoelectron spectroscopy(XPS)를 통해 성분을 분석한 결과를 나타낸 그래프이다.
도 3 및 4는 본 발명의 실시예 및 비교예에서 제조된 Au4Ni2(PET)8, Au2Ni4(PET)10, Au2Ni3(PET)8, Ni4(PET)8 및 Ni5(PET)10 나노클러스터의 자외선-가시광선-근적외선 흡수 스펙트럼이다.
도 5는 Au4Ni2(PET)8 및 Ni4(PET)8 나노클러스터 전극의 촉매 활성에 대한 선형 주사 전위법 분석 자료이다.
도 6은 Au4Ni2(PET)8(Au4Ni2로 표시), Au2Ni4(PET)10(Au2Ni4로 표시) 및 Au2Ni3(PET)8(Au2Ni3로 표시) 나노클러스터 전극의 촉매 활성에 대한 선형 주사 전위법 분석 자료이다.
도 7은 Au4Ni2(PET)8(Au4Ni2로 표시), Au2Ni4(PET)10(Au2Ni4로 표시) 및 Au2Ni3(PET)8(Au2Ni3로 표시) 나노클러스터 전극의 이산화탄소 선택성을 나타낸 그래프이다.
도 8은 Au4Ni2(PET)10 및 Ni4(PET)8 나노클러스터 전극의 이산화탄소 선택성을 그래프이다.
도 9는 Au4Ni2(PET)8 및 Ni4(PET)8 나노클러스터 전극의 패러데이 효율성을 나타낸 그래프이다.
도 10은 용액의 산도에 따른 Au4Ni2(PET)8 나노클러스터 전극의 용액의 산도에 따른 촉매 활성에 대한 정전압 실험 분석 자료이다.
이하 첨부한 도면들을 참조하여 본 발명의 금이 도핑된 니켈 나노클러스터의 제조방법, 이의 제조방법, 이를 포함하는 이산화탄소 전환반응용 전극 및 이을 이용하는 이산화탄소의 전환방법에 대하여 상세히 설명한다. 다음에 소개되는 도면들은 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 예로서 제공되는 것이다. 따라서, 본 발명은 이하 제시되는 도면들에 한정되지 않고 다른 형태로 구체화될 수도 있으며, 이하 제시되는 도면들은 본 발명의 사상을 명확히 하기위해 과장되어 도시될 수 있다.
이때, 사용되는 기술 용어 및 과학 용어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가지며, 하기의 설명 및 첨부 도면에서 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 설명은 생략한다.
또한, 본 발명의 구성 요소를 설명하는 데 있어서, 제1, 제2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다.
전기화학적 환원을 통한 이산화탄소 전환 기술은 하기 반응식에서와 같이 진행되며, 수용성 전해액에서 이산화탄소 환원 반응이 이루어진다. 상기 수용액으로부터 발생되는 수소와 이산화탄소의 환원 전위 영역이 비슷함에 따라 이산화탄소 환원에 대한 선택성이 낮은 문제점을 가진다.
[반응식]
Figure PCTKR2021008792-appb-img-000001
뿐만 아니라 전극 촉매로 금 촉매가 주로 사용되고 있으나, 가격이 높고 매장량이 한정되어 있어 이를 대체할 수 있는 촉매가 필요한 실정이다.
이에 따라 본 발명자들은 연구를 심화한 결과, 금이 도핑된 니켈 나노클러스터가 가격이 저렴하면서도 균일성이 우수하며, 이산화탄소 환원에 대한 선택성이 매우 우수한 것을 발견하여 본 발명을 완성하기에 이르렀다.
상세하게, 본 발명은 하기 화학식 1을 만족하는 금이 도핑된 니켈 나노클러스터를 제공한다.
[화학식 1]
AuxNiy(SR)z
(상기 화학식 1에서 SR은 유기티올계 리간드이며; x는 2 또는 4이며, y는 2 내지 4이며, z는 8 또는 10이며, x+y=5 또는 6을 만족한다.)
본 발명의 금이 도핑된 니켈 나노클러스터는 상기 화학식 1을 만족하는 특정한 개수의 금 원자, 니켈 원자 및 유기티올계 리간드를 가지며, 특정 구조로 결합됨으로써 종래의 금속 촉매 대비 안정성 및 균일성이 우수하고, 매우 경제적이다.
나아가 본 발명의 금이 도핑된 니켈 나노클러스터는 이산화탄소 전환반응에 있어서 선택성이 놀랍도록 우수하여 이산화탄소 전환반응용 촉매로 매우 유용하다.
바람직하게 본 발명의 금이 도핑된 니켈 나노클러스터는 Au2Ni3(SR)8, Au4Ni2(SR)8 또는 Au2Ni4(SR)10일 수 있다.
즉, 바람직하게 본 발명의 일 실시예에 따른 금이 도핑된 니켈 나노클러스터는 금 원자 2개, 니켈원자 3개 또는 금 원자 4개 니켈원자 2개가 유기티올계 리간드 8개와 특정한 구조로 결합하거나, 금 원자 2개와 니켈원자 4개가 유기티올계 리간드 10개와 특정한 구조로 결합함으로써 이산화탄소 전환반응에 있어서 놀랍도록 향상된 선택성을 가진다.
본 발명의 일 실시예에 따른 유기티올계 리간드인 SR은 탄소수 1 내지 30의 알칸티올, 탄소수 6 내지 30의 아릴티올, 탄소수 3 내지 30의 사이클로알칸티올, 탄소수 5 내지 30의 헤테로아릴티올, 탄소수 3 내지 30의 헤테로사이클로알칸티올 또는 탄소수 6 내지 30아릴알칸티올에서 선택되는 어느 하나 또는 둘 이상일 수 있으며, 상기 유기티올계 리간드는 작용기 내 하나 이상의 수소가 치환기로 더 치환되거나 치환되지 않을 수 있으며, 이때, 치환기는 탄소수 1 내지 10의 알킬기, 할로겐기(-F, -Br, -Cl, -I), 니트로기, 시아노기, 히드록시기, 아미노기, 탄소수 6 내지 20의 아릴기, 탄소수 2 내지 7의 알케닐기, 탄소수 3 내지 20의 사이클로알킬기, 탄소수 3 내지 20의 헤테로사이클로알킬기 또는 탄소수 4 내지 20의 헤테로아릴기이되, 단, 상기 기재된 유기티올계 리간드의 탄소수는 치환기의 탄소수를 포함하지는 않는다. 또한, 상기 알킬기를 포함하는 모든 작용기에 있어 알킬기는 선형 또는 분지형일 수 있다.
더욱 구체적인 일 예시로, 상기 유기티올계 리간드는 펜탄티올, 헥산티올, 헵탄티올, 2,4-디메틸벤젠티올, 2-페닐에탄티올, 글루타티온, 티오프로닌, 티올레이티드 폴리(에틸렌글리콜), p-머캅토페놀 및 (r-머캅토프로필)-트리메톡시실란) 등으로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상일 수 있으나, 이에 한정되는 것은 아니다.
바람직하게 본 발명의 유기티올계 리간드는 (C6-C12)아릴(C1-C10)알킬티올일 수 있으며, 보다 바람직하게는 페닐(C1-C6)알킬티올일 수 있으며, 일례로 페닐메틸티올, 페닐에틸티올, 2-페닐에틸티올, 1-페닐프로필티올, 2-페닐프로필티올 또는 3-페닐프로필티올일 수 있으나, 이에 한정이 있는 것은 아니다.
또한, 본 발명은 본 발명의 일 실시예에 따른 화학식 1을 만족하는 금이 도핑된 니켈 나노클러스터를 촉매로 포함하는 이산화탄소 전환반응용 전극에 관한 것으로, 상기 이산화탄소 전환반응용 전극은 이산화탄소 환원반응을 위한 전극으로 활용될 수 있다. 보다 구체적으로, 상기 이산화탄소 전환반응용 전극은 촉매로 상기 화학식 1을 만족하는 금이 도핑된 니켈 나노클러스터, 도전재 및 고분자 바인더 등을 포함할 수 있다.
본 발명의 일실시예에 있어서, 상기 도전재는 탄소체일 수 있으나 당업계에서 통상적으로 사용하는 것이라면 특별히 한정하지 않고 사용할 수 있다. 탄소체의 구체적인 예로, 카본블랙, 슈퍼피(super-p), 활성탄소, 하드카본 및 소프트카본 등으로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상일 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 일실시예에 있어서, 상기 고분자 바인더는 이산화탄소 전환반응용 촉매인 금이 도핑된 니켈 나노클러스터와 도전재의 견고한 고정을 위해 사용되는 것으로, 당업계에서 통상적으로 사용되는 것이라면 특별히 한정하지 않고 사용할 수 있으며, 구체적으로 예를 들면, 폴리테트라플루오로에틸렌 (PTFE) 등일 수 있다. 고분자 바인더의 첨가량은 이산화탄소 전환반응용 금이 도핑된 니켈 나노클러스터와 도전재가 견고하게 고정될 정도라면 특별히 그 함량을 한정하지 않는다.
또한 본 발명은 본 발명의 이산화탄소 전환반응용 전극을 이용하여 이산화탄소를 포함하는 수용액에서 이산화탄소를 환원시키는 단계를 포함하는 이산화탄소의 전환방법을 제공한다.
본 발명의 일 실시예에 따른 이산화탄소의 전환방법은 이산화탄소의 전환반응에 높은 활성을 가지는 본 발명의 이산화탄소 전환반응용 전극을 사용함으로써 이산화탄소는 환원되어 우수한 선택성으로 일산화탄소가 발생된다.
따라서 본 발명의 이산화탄소 전화반응용 전극은 온실효과에 영향을 미치는 이산화탄소를 유용한 가스인 일산화탄소로 효과적으로 전환시킬 수 있다.
또한, 본 발명의 다른 일 양태는 a) 용매존재 하, 니켈 전구체 및 금 전구체를 혼합하여 반응 용액을 제조하는 단계; 및 b) 상기 반응 용액에 유기티올계 리간드 화합물 및 환원제를 첨가하여 하기 화학식 1을 만족하는 금이 도핑된 니켈 나노클러스터를 합성하는 단계;를 포함하는, 금이 도핑된 니켈 나노클러스터의 제조방법에 관한 것이다.
[화학식 1]
AuxNiy(SR)z
(상기 화학식 1에서 SR은 유기티올계 리간드이며; x는 2 또는 4이며, y는 2 내지 4이며, z는 8 또는 10이며, x+y=5 또는 6을 만족한다.)
이와 같은 방법을 통해 화학식 1을 만족하는 이산화탄소 전환반응용 금이 도핑된 니켈 나노클러스터를 제조함으로써 이산화탄소 전환반응에 대한 활성이 모든 산도의 용액에서 우수할 뿐만 아니라, 종래의 촉매 대비 가격이 저렴하면서도 균일성이 우수하여 이산화탄소 전환반응용 촉매로 유용하게 사용될 수 있다.
보다 바람직하게, 본 발명의 일 실시예에 따른 금이 도핑된 니켈 나노클러스터의 제조방법은 니켈 전구체 및 금 전구체의 몰농도 조절, 첨가되는 환원제의 첨가 시간 조절 및 특정 용매의 사용을 통해 특정한 개수의 금 원자, 니켈 원자 및 유기티올계 리간드가 특정 구조로 결합된 금이 도핑된 니켈 나노클러스터를 효과적으로 합성할 수 있으며, 이를 통해 상기의 효과를 가진 이산화탄소 전환반응용 금이 도핑된 니켈 나노클러스터를 제공할 수 있다는 장점이 있다.
이하, 화학식 1을 만족하는 이산화탄소 전환반응용 금이 도핑된 니켈 나노클러스터 촉매의 제조방법의 각 단계에 대하여 보다 상세히 설명한다.
먼저, a) 용매 존재 하, 니켈 전구체 및 금 전구체를 반응시켜 반응 용액을 제조하는 단계를 수행할 수 있다.
전술한 바와 같이, 이때 니켈 전구체와 금 전구체의 몰 농도 비를 적절하게 조절하여 주는 것이 매우 중요하다. 바람직할 일례로, 상기 니켈 전구체와 금 전구체의 몰 농도비는 금 전구체 1몰에 대하여 니켈 전구체는 1.5 내지 2.5몰로 사용될 수 있으며, 보다 좋게는 1.8 내지 2.3일 수 있으며, 더욱 좋기로는 1.9 내지 2.2 몰일 수 있다. 이와 같은 범위에서 화학식 1을 만족하는 금이 도핑된 니켈 나노클러스터의 합성이 가능할 수 있다.
한편, 본 발명의 일례에 있어, 상기 니켈 전구체는 당업계에서 통상적으로 사용하는 것이라면 특별히 한정하지 않고 사용할 수 있으며, 구체적인 일 예시로, NiCl2, Ni(NO3)2, NiSO4 및 Ni(C5H7O2)2에서 선택되는 어느 하나 또는 둘 이상일 수 있으며, 바람직하게는 Ni(NO3)2를 사용하는 것이 합성 효율을 향상시킴에 있어 보다 좋다.
금 전구체 또한 당업계에서 통상적으로 사용하는 것이라면 특별히 한정되지 않으며, 구체적인 일 예시로, HAuCl4, 트리페닐포스핀금(Ⅰ)클로라이드(AuPPh3Cl), AuCl3, KAuCl4, Au(OH)3 및 이들의 수화물에서 선택되는 어느 하나 또는 둘 이상일 수 있으며, 바람직하게는 HAuCl4이 사용될 수 있다.
아울러, 전술한 바와 같이, 사용되는 용매를 적절하게 선택하는 것 역시 매우 중요할 수 있다. 바람직한 일례로, 극성 비양자성 용매(polar aprotic solvent)일 수 있으며, 보다 구체적인 일 예시로, 디메틸포름아미드(DMF), 아세토니트틸 및 디메틸설폭사이드(DMSO)로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상일 수 있다.
다음으로, b) 상기 반응 용액에 유기티올계 리간드 화합물 및 환원제를 첨가하여 화학식 1을 만족하는 금이 도핑된 니켈 나노클러스터를 합성하는 단계를 수행할 수 있다.
이때, 유기티올계 리간드 화합물을 첨가한 후 환원제를 신속하게 첨가하는 것이 좋다. 즉 유기티올계 리간드 화합물을 상기 반응용액에 일정하게 첨가한 후 환원제는 한번에 첨가하는 것이 좋다. 구체적으로 유기티올계 리간드 화합물은 2분 내지 5분동안 일정하게 첨가한 후 10 내지 20분동안 교반시킨 후 환원제를 신속하게 첨가한다. 이는 부반응을 줄여 반응효율을 높일 수 있다.
본 발명의 일실시예에 따른, 상기 유기티올계 리간드 화합물은 상기 SR 대비 수소가 떨어지기 전의 화합물인 RSH일 수 있으며, 구체적인 일 예시로, 탄소수 1 내지 30의 알칸티올, 탄소수 6 내지 30의 아릴티올, 탄소수 3 내지 30의 사이클로알칸티올, 탄소수 5 내지 30의 헤테로아릴티올, 탄소수 3 내지 30의 헤테로사이클로알칸티올 및 탄소수 6 내지 30의 아릴알칸티올 등으로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상일 수 있으며, 상기 유기티올계 리간드는 작용기 내 하나 이상의 수소가 치환기로 더 치환되거나 치환되지 않을 수 있으며, 이때, 치환기는 탄소수 1 내지 10의 알킬기, 할로겐기(-F, -Br, -Cl, -I), 니트로기, 시아노기, 히드록시기, 아미노기, 탄소수 6 내지 20의 아릴기, 탄소수 2 내지 7의 알케닐기, 탄소수 3 내지 20의 사이클로알킬기, 탄소수 3 내지 20의 헤테로사이클로알킬기 또는 탄소수 4 내지 20의 헤테로아릴기이되, 단, 상기 기재된 유기티올계 리간드의 탄소수는 치환기의 탄소수를 포함하지는 않는다. 또한, 상기 알킬기를 포함하는 모든 작용기에 있어 알킬기는 선형 또는 분지형일 수 있다.
보다 구체적인 일 예시로, 상기 유기티올계 리간드는 펜탄티올, 헥산티올, 헵타티올, 2,4-디메틸벤젠티올, 2-페닐에탄티올, 글루타티온, 티오프로닌, 티올레이티드 폴리(에틸렌글리콜), p-머캅토페놀 및 (r-머캅토프로필)-트리메톡시실란) 등으로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상일 수 있으나, 이에 한정되는 것은 아니다.
바람직하게 본 발명의 유기티올계 리간드는 (C6-C12)아릴(C1-C10)알킬티올일 수 있으며, 보다 바람직하게는 페닐((C1-C6)알킬티올일 수 있으며, 일례로 페닐메틸티올, 페닐에틸티올, 2-페닐에틸티올, 1-페닐프로필티올, 2-페닐프로필티올, 3-페닐프로필티올, 펜틸티올 또는 헥실티올일 수 있으나, 이에 한정이 있는 것은 아니다.
본 발명의 일 예에 있어, 니켈 전구체 및 유기티올계 리간드 화합물의 혼합 비율은 당업계에서 통상적으로 혼합하는 비율일 수 있으며, 구체적인 일 예시로, 니켈 전구체 : 유기티올계 리간드 화합물의 몰비는 1 : 1 내지 15, 보다 좋게는 1 : 1.5 내지 10, 더욱 좋게는 1 : 2 내지 5일 수 있다. 이와 같은 범위에서 합성 효율이 우수하면서도 반응 불순물을 줄일 수 있어 좋다.
본 발명의 일 예에 있어, 상기 환원제는 당업계에서 통상적으로 사용하는 것이라면 특별히 한정하지 않고 사용할 있으며, 구체적인 일례로 트리에틸아민, 올레일아민, 일산화탄소 및 소듐 보로하이드라이드에서 선택되는 하나 또는 둘 이상일 수 있으며, 바람직하게 트리에틸아민 및 소듐보로하이드라이드에서 선택되는 하나 또는 둘 이상일 수 있다.
아울러, 상기 환원제는 니켈 전구체 1 mmol을 기준으로 5 내지 30 mmol이 첨가될 수 있으나, 이는 일 예시일 뿐 본 발명이 이에 제한되는 것은 아니다.
또한, b)단계의 반응 완료 후 고순도의 금이 도핑된 니켈 나노클러스터를 수득하기 위하여 추가적인 정제 과정이 더 수행될 수 있음은 물론이며, 추가적인 정제 과정은 통상적인 방법을 통해 수행될 수 있다.
또한 본 발명의 이산환탄소 전환반응용 금이 도핑된 니켈 나노클러스터는 이산화탄소의 전환 반응에 매우 높은 선택성을 가진다.
이하, 실시예를 통해 본 발명에 따른 이산화탄소 전환반응용 촉매로 매우 유용한 금이 도핑된 니켈 나노클러스터, 및 이의 제조방법에 대하여 더욱 상세히 설명한다. 다만 하기 실시예는 본 발명을 상세히 설명하기 위한 하나의 참조일 뿐 본 발명이 이에 한정되는 것은 아니며, 여러 형태로 구현될 수 있다.
또한 달리 정의되지 않은 한, 모든 기술적 용어 및 과학적 용어는 본 발명이 속하는 당업자 중 하나에 의해 일반적으로 이해되는 의미와 동일한 의미를 갖는다. 본원에서 설명에 사용되는 용어는 단지 특정 실시예를 효과적으로 기술하기 위함이고 본 발명을 제한하는 것으로 의도되지 않는다. 또한 명세서에서 특별히 기재하지 않은 첨가물의 단위는 중량%일 수 있다.
[실시예 1] 금이 도핑된 니켈 나노클러스터의 합성
Ni(NO3)2 0.42 mmol 및 HAuCl4 0.21 mmol을 6mL의 아세토나이트릴(MeCN)에 녹인 후 20분 간 교반시켰다.
이후, 1.40 mmol의 2-페닐에탄티올(PhC2H4SH)을 2분동안 첨가한 후 15분동안 교반시키고 여기에 3.6 mmol의 트리에틸아민(NEt3)을 첨가하였다. 3시간 동안 추가 교반시켜 반응을 완료하였다.
반응이 완료되면, 순수 및 메탄올로 반응혼합물을 세척하여 불순물을 제거한 후, 여과하고 plate TLC(다이클로로메탄:n-헥산)로 분리한 후 다이클로메탄 및 메탄올로 재결정하여 고순도의 금이 도핑된 니켈 나노클러스터인 Au2Ni4(PET=2-페닐에탄티올)10, Au4Ni2(PET)8 및 Au2Ni3(PET)8을 각각 수득하였다.
[비교예 1] Ni4(PET)8의 합성
실시예 1에서 금 전구체를 사용하지 않은 것을 제외하고는 실시예 1과 동일하게 실시하여 고순도의 Ni4(PET)8을 수득하였다.
[실시예 2]
아세톤 40 ㎕에 실시예 1에서 제조된 Au2Ni4(PET)10, Au4Ni2(PET)8 및 Au2Ni3(PET)8 나노클러스터 각각 23 ㎍을 다이클로로메탄(DCM)에 녹여 첨가 후 1분 정도 초음파 분산을 진행하여 나노클러스터 복합 분산액을 제조하였다.
다음으로, 상기 제조한 나노클러스터 복합 분산액을 1 ㎠ 면적의 기체 확산형 미세 공극 탄소전극 (Effects of gas diffusion layer (GDL) and micro porous layer (MPL); GDE)에 용액 증착하여 나노클러스터 복합 필름인 Au2Ni4(PET)10(Au2Ni4로 표시), Au4Ni2(PET)8(Au4Ni2로 표시) 및 Au2Ni3(PET)8(Au4Ni2로 표시)을 제조하였다.
[비교예 2]
실시예 2에서 실시예 1에서 제조된 금이 도핑된 니켈 나노클러스터 대신에 비교예 1에서 제조된 Ni4(PET)8을 사용한 것을 제외하고는 실시예 2와 동일하게 진행하여 제조하였다.
[결과 분석]
1) 합성 확인
도 1은 Au4Ni2(PET)8, Au2Ni4(PET)10, Au2Ni3(PET)8, 및 Ni4(PET)8의 전기분무 이온화 질량 분석 자료를 나타낸 것으로 실시예 1 및 비교예 1에서 각각 제조된 Au4Ni2(PET)8, Au2Ni4(PET)10, Au2Ni3(PET)8, 및 Ni4(PET)8 나노클러스터가 단일 조성 및 고순도로 잘 합성되었음을 확인할 수 있었다.
도 2에 본 발명의 실시예에서 제조된 Au4Ni2(PET)8의 X-ray photoelectron spectroscopy(XPS)를 통해 성분을 분석한 결과를 나타내었다.
도 2에서 시사하는 바와 같이 Au4Ni2(PET)8의 Ni은 Ni2+상태로, Au는 Au+상태로 존재하는 것을 확인하였고, 각각 원소들의 조성이 Ni : Au : S = 2 : 4.4 : 8.2로 Au4Ni2(PET)8의 조성과 일치하는 것을 확인하였다.
2) UV-IR 흡수 스펙트럼
도 3 및 도 4는 Au4Ni2(PET)8, Au2Ni4(PET)10, Au2Ni3(PET)8, 및 Ni4(PET)8 나노클러스터의 자외선-가시광선-근적외선 흡수 스펙트럼 측정 결과를 나타내었다. 도 2의 UV-Vis 흡수 그래프에서, Ni4(PET)8과는 다른 Au4Ni2(PET)8와 Au2Ni3(PET)8의 새로운 피크를 관찰할 수 있었으며, 도 3의 UV-Vis 흡수 그래프에서 Ni5(PET)10에 비해 Au2Ni4(PET)10가 낮은 에너지 쪽으로 움직인 것을 확인할 수 있었다.
3) 금이 도핑된 니켈 나노클러스터 촉매 활성 확인
도 5는 Ni4(PET)8 나노클러스터 전극의 촉매 활성에 대한 선형 주사 전위법 분석 자료이다.
도 5에서 시사하는 바와 같이 본 발명의 실시예에서 제조된 Au4Ni2(PET)8 나노클러스터 전극이 비교예 1에서 제조된 Ni4(PET)8와 대비하여 전압이 앞당겨진 것으로 이산화탄소 전환반응이 보다 빨리 일어남을 알 수 있다.
도 6은 Au4Ni2(PET)8(Au4Ni2로 표시), Au2Ni4(PET)10(Au2Ni4로 표시) 및 Au2Ni3(PET)8(Au2Ni3로 표시) 나노클러스터 전극의 촉매 활성에 대한 선형 주사 전위법 분석 자료이다. 도 6에서 보이는 바와 같이 Au4Ni2(PET)8가 가장 큰 전류값을 가져 이산화탄소가 가장 많이 전환되었음을 알 수 있다.
도 7에 Au4Ni2(PET)8(Au4Ni2로 표시), Au2Ni4(PET)10(Au2Ni4로 표시) 및 Au2Ni3(PET)8(Au2Ni3로 표시) 나노클러스터 전극의 선택성을 그래프로 나타내었다.
도 7의 그래프를 살펴보면 Reversible Hydrogen Electrode(RHE) 기준으로 -0.74V에서 금이 도핑된 니켈 나노클러스터 중 Au4Ni2(PET)8가 가장 높은 반응 선택성을 보여줌을 알 수 있다.
도 8에 Au4Ni2(PET)8 및 Ni4(PET)8 나노클러스터 전극의 선택성을 그래프로 나타내었으며, 도 9에 패러데이 효율성 그래프를 나타내었다. 도 8 및 도 9의 그래프로부터 Ni4(PET)8의 경우 일산화탄소가 거의 나오지 않고 대부분이 수소 발생인 반면에 본 발명의 실시예 Au4Ni2(PET)8 클러스터 경우는 일산화탄소가 90% 이상 발생되어 본 발명의 실시예 Au4Ni2(PET)8 클러스터가 높은 선택성을 갖는 것을 알 수 있다.
도 10은 용액의 산도에 따른 Au4Ni2(PET)8 나노클러스터의 촉매 활성을 분석한 자료로, 도 10에 도시된 바와 같이, Au4Ni2(PET)8 나노클러스터가 모든 산도의 용액에서 일정한 전류값을 갖는 것을 확인할 수 있었다.
또한 Au4Ni2(PET)8의 안정성을 확인하기위해 정전압 전기분해를 진행하였고, 25시간 동안 전류가 유지되고 일산화탄소의 선택성이 90% 이상으로 유지되는 것을 확인하였다. 즉, 투과전자현미경으로 정전압 전기분해 전 후의 Au4Ni2(PET)8 촉매의 변화를 확인했을 때, 변화없이 잘 유지되고 있음을 확인하였으며, 이로써 본 발명의 Au4Ni2(PET)8 나노클러스터가 이산화탄소 전화반응 촉매로 매우 유용함을 알 수 있다.
이상과 같이 특정된 사항들과 한정된 실시예를 통해 본 발명이 설명되었으나, 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다.
따라서, 본 발명의 사상은 설명된 실시예에 국한되어 정해져서는 아니되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등하거나 등가적 변형이 있는 모든 것들은 본 발명 사상의 범주에 속한다고 할 것이다.

Claims (10)

  1. 하기 화학식 1을 만족하는, 금이 도핑된 니켈 나노클러스터.
    [화학식 1]
    AuxNiy(SR)z
    (상기 화학식 1에서 SR은 유기티올계 리간드이며; x는 2 또는 4이며, y는 2 내지 4이며, z는 8 또는 10이며, x+y=5 또는 6을 만족한다.)
  2. 제 1항에 있어서,
    상기 금이 도핑된 니켈 나노클러스터는 Au2Ni3(SR)8, Au4Ni2(SR)8 또는 Au2Ni4(SR)10인, 금이 도핑된 니켈 나노클러스터.
  3. 제 1항에 있어서,
    상기 화학식 1에서 유기티올계 리간드는 (C1-C30)알칸티올, (C6-C30)아릴티올, (C3-C30)사이클로알칸티올, (C5-C30)헤테로아릴티올, (C3-C30)헤테로사이클로알칸티올 또는 (C1-C30)아릴(C1-C30)알칸티올에서 선택되는 어느 하나 또는 둘 이상인 금이 도핑된 니켈 나노클러스터.
  4. 제 1항에 있어서,
    상기 금이 도핑된 니켈 나노클러스는 이산화탄소 전환반응용 촉매인 금이 도핑된 니켈 나노클러스터.
  5. a) 용매 존재 하, 니켈 전구체 및 금 전구체를 혼합하여 반응 용액을 제조하는 단계; 및
    b) 상기 반응 용액에 유기티올계 리간드 화합물 및 환원제를 첨가하여 하기 화학식 1을 만족하는 금이 도핑된 니켈 나노클러스터를 합성하는 단계;를 포함하는, 금이 도핑된 니켈 나노클러스터의 제조방법.
    [화학식 1]
    AuxNiy(SR)z
    (상기 화학식 1에서 SR은 유기티올계 리간드이며; x는 2 또는 4이며, y는 2 내지 4이며, z는 8 또는 10이며, x+y=5 또는 6을 만족한다.)
  6. 제 5항에 있어서,
    상기 니켈 전구체는 금 전구체 1몰에 대하여 1.5 내지 2.5몰로 사용되는 금이 도핑된 니켈 나노클러스터의 제조방법.
  7. 제 5항에 있어서,
    상기 니켈 전구체는 Ni(NO3)2, NiCl2, NiSO4 및 Ni(C5H7O2)2에서 선택되는 하나 또는 둘 이상이며,
    금 전구체는 HAuCl4, 트리페닐포스핀금(Ⅰ)클로라이드(AuPPh3Cl), AuCl3, KAuCl4 및 Au(OH)3 또는 이들의 수화물인 금이 도핑된 니켈 나노클러스터의 제조방법.
  8. 제 5항에 있어서,
    상기 환원제는 트리에틸아민, 올레일아민, 일산화탄소 및 소듐 보로하이드라이드에서 선택되는 하나 또는 둘 이상인 금이 도핑된 니켈 나노클러스터의 제조방법.
  9. 제 1항 내지 제4항의 어느 한항에 따른 금이 도핑된 니켈 나노클러스터를 포함하는 이산화탄소 전환반응용 전극.
  10. 제 9항의 이산화탄소 전환반응용 전극을 이용하여 이산화탄소를 포함하는 수용액으로부터 이산화탄소를 환원시키는 단계를 포함하는 이산화탄소의 전환방법.
PCT/KR2021/008792 2020-07-09 2021-07-09 금이 도핑된 니켈 나노클러스터, 이의 제조방법 및 이의 용도 WO2022010306A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20200084523 2020-07-09
KR10-2020-0084523 2020-07-09
KR1020210087056A KR102572198B1 (ko) 2020-07-09 2021-07-02 금이 도핑된 니켈 나노클러스터, 이의 제조방법 및 이의 용도
KR10-2021-0087056 2021-07-02

Publications (1)

Publication Number Publication Date
WO2022010306A1 true WO2022010306A1 (ko) 2022-01-13

Family

ID=79553422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/008792 WO2022010306A1 (ko) 2020-07-09 2021-07-09 금이 도핑된 니켈 나노클러스터, 이의 제조방법 및 이의 용도

Country Status (1)

Country Link
WO (1) WO2022010306A1 (ko)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09225317A (ja) * 1996-02-26 1997-09-02 Kemipuro Kasei Kk ニッケル/貴金属二元金属クラスター、それよりなる触媒およびその製法
US20150125891A1 (en) * 2012-05-15 2015-05-07 Georgia State University Research Foundation, Inc. Monolayer Protected Nanoclusters and Methods of Making and Using Thereof
CN106571474A (zh) * 2016-10-28 2017-04-19 华南师范大学 铂镍合金纳米团簇的制备方法及采用其的燃料电池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09225317A (ja) * 1996-02-26 1997-09-02 Kemipuro Kasei Kk ニッケル/貴金属二元金属クラスター、それよりなる触媒およびその製法
US20150125891A1 (en) * 2012-05-15 2015-05-07 Georgia State University Research Foundation, Inc. Monolayer Protected Nanoclusters and Methods of Making and Using Thereof
CN106571474A (zh) * 2016-10-28 2017-04-19 华南师范大学 铂镍合金纳米团簇的制备方法及采用其的燃料电池

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KAUFFMAN DOUGLAS R., ALFONSO DOMINIC R., TAFEN DE NYAGO, WANG CONGJUN, ZHOU YUNYUN, YU YANG, LEKSE JONATHAN W., DENG XINGYI, ESPIN: "Selective Electrocatalytic Reduction of CO 2 into CO at Small, Thiol-Capped Au/Cu Nanoparticles", THE JOURNAL OF PHYSICAL CHEMISTRY C, AMERICAN CHEMICAL SOCIETY, US, vol. 122, no. 49, 13 December 2018 (2018-12-13), US , pages 27991 - 28000, XP055885243, ISSN: 1932-7447, DOI: 10.1021/acs.jpcc.8b06234 *
PAN YANZE, CHEN JISHI, GONG SHIDA, WANG ZONGHUA: "Co-synthesis of atomically precise nickel nanoclusters and the pseudo-optical gap of Ni 4 (SR) 8", DALTON TRANSACTIONS, RSC - ROYAL SOCIETY OF CHEMISTRY, CAMBRIDGE, vol. 47, no. 32, 28 August 2018 (2018-08-28), Cambridge , pages 11097 - 11103, XP055885246, ISSN: 1477-9226, DOI: 10.1039/C8DT02059K *

Similar Documents

Publication Publication Date Title
EA009587B1 (ru) Протонопроводящий углеродный материал
WO2018194263A1 (ko) 연료전지 촉매용 인화철 나노입자 제조방법 및 이에 의해 제조된 인화철 나노입자
WO2018056774A2 (ko) 카본닷-백금-팔라듐 복합체의 제조방법, 이에 따라 제조된 카본닷-백금-팔라듐 촉매 및 이를 이용하는 연료전지
CN113698325B (zh) 一种制备烷基磺酰氟的方法
US20230307662A1 (en) Aqueous primary battery for carbon dioxide conversion containing metal nanocluster catalyst and carbon dioxide conversion method using same
WO2022010306A1 (ko) 금이 도핑된 니켈 나노클러스터, 이의 제조방법 및 이의 용도
JP7220143B2 (ja) 燃料電池
WO2023136396A1 (ko) 루테늄 산화물 기반 산소 발생 반응용 촉매, 이의 제조방법 및 이를 포함하는 수전해 전지
WO2017052222A1 (ko) 담체-나노입자 복합체, 이의 제조방법, 및 이를 포함하는 막전극 접합체
KR102572198B1 (ko) 금이 도핑된 니켈 나노클러스터, 이의 제조방법 및 이의 용도
KR102374679B1 (ko) 산소 및 수소 발생 반응용 니켈 나노클러스터 이중기능성 촉매, 및 이의 제조방법
WO2020218875A1 (ko) 산소 및 수소 발생 반응용 니켈 나노클러스터 이중기능성 촉매, 및 이의 제조방법
WO2020218873A1 (ko) 이종금속 원자가 도핑된 금 나노클러스터 자성체 및 이의 제조 방법
WO2020218871A1 (ko) 이종금속 원자가 도핑된 은 나노클러스터 자성체 및 이의 제조 방법
KR102385419B1 (ko) 백금 원자가 다중 도핑된 금 나노클러스터와 이의 제조방법, 및 산소 환원 반응용 촉매
KR102533960B1 (ko) 로듐 하이드라이드가 도핑된 은 나노클러스터, 이의 제조방법 및 수소 기체 발생용 전기화학적 촉매
WO2017073978A1 (ko) 촉매 및 촉매 제조 방법
KR102385415B1 (ko) 백금 원자가 다중 도핑된 은 나노클러스터와 이의 제조방법 및 산소 환원 반응용 나노클러스터 촉매
KR20170107634A (ko) 프로톤 주게와 프로톤 받게를 갖는 다면체 올리고머형 실세스퀴옥산을 포함하는 불소계 나노 복합막 및 이의 제조방법
US20230132777A1 (en) High Luminous Silver Nanoclusters Doped with Metal Hydride, Manufacturing Method Thereof, and Electrochemical Catalyst for Hydrogen Gas Generation
KR102296595B1 (ko) 이미다졸륨계 전도기, 이의 제조방법 및 이를 포함하는 음이온 교환막 연료전지
WO2020091151A1 (ko) 전기화학기법을 적용한 고체산화물연료전지 공기극 및 이의 제조방법
Lin et al. Electrocatalytic properties of carbon nanotubes decorated with copper and bimetallic CuPd nanoparticles
JP2021130062A (ja) ポリアジン担持カーボン触媒、及びそれを用いた触媒電極
WO2019146913A1 (ko) 구리 프로모터를 포함하는 수소발생 반응용 촉매

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21837633

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21837633

Country of ref document: EP

Kind code of ref document: A1