WO2020218740A1 - 태양전지 및 그 제조 방법 - Google Patents

태양전지 및 그 제조 방법 Download PDF

Info

Publication number
WO2020218740A1
WO2020218740A1 PCT/KR2020/003648 KR2020003648W WO2020218740A1 WO 2020218740 A1 WO2020218740 A1 WO 2020218740A1 KR 2020003648 W KR2020003648 W KR 2020003648W WO 2020218740 A1 WO2020218740 A1 WO 2020218740A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
film
semiconductor substrate
solar cell
density
Prior art date
Application number
PCT/KR2020/003648
Other languages
English (en)
French (fr)
Inventor
최재우
유한종
공형균
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2020218740A1 publication Critical patent/WO2020218740A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02162Coatings for devices characterised by at least one potential jump barrier or surface barrier for filtering or shielding light, e.g. multicolour filters for photodetectors
    • H01L31/02164Coatings for devices characterised by at least one potential jump barrier or surface barrier for filtering or shielding light, e.g. multicolour filters for photodetectors for shielding light, e.g. light blocking layers, cold shields for infrared detectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell and a method of manufacturing the same, and more specifically, to a solar cell having an improved structure of an insulating layer positioned on a surface receiving light in the solar cell, and a method of manufacturing the same.
  • Solar cells receive sunlight from the outside and generate power by generating carriers in the semiconductor area.
  • Such a solar cell is a conventional type in which electrodes with different polarities are provided on the front and back surfaces of a semiconductor substrate, respectively, and electrodes with different polarities are used on the side of the light incident side. There is a back contact type provided on the opposite side.
  • Such a solar cell has a structure that generates power by receiving light from the outside, the transmittance of the incident light directly affects the efficiency of the solar cell, and the efficiency of the solar cell is directly related to the amount of power produced.
  • a prior patent discloses a solar cell having an insulating layer formed of a double layer of a passivation layer and an antireflection layer (SiNx).
  • acetic acid (Acetic acid)
  • the acetic acid produced can adversely affect solar cells.
  • the antireflection layer made of SiNx material provided in the insulating layer disclosed in the prior patent may be etched by acetic acid generated from a sealing material such as EVA, and due to damp heat A problem may occur in the reliability of the battery module.
  • the transmittance of the anti-reflection layer decreases, causing light loss, and thus, there is a problem in that the efficiency of the solar cell module is lowered.
  • An object of the present invention is to provide a solar cell and a method for manufacturing the same.
  • the present invention improves the material of the outermost layer in contact with a sealing material such as EVA from among the insulating layer located on the side where light is incident, to block ultraviolet rays (UV) and at the same time, acetic acid. It is an object of the present invention to provide a solar cell and a method of manufacturing the same, which prevents the etching of the insulating layer due to and prevents lowering of the open-circuit voltage (Voc) and short-circuit current (Isc) of the solar cell by ultraviolet (UV) light.
  • a sealing material such as EVA from among the insulating layer located on the side where light is incident
  • a solar cell includes a semiconductor substrate; A conductive type region located on or on the semiconductor substrate and including impurities; An electrode electrically connected to the conductive region; And an insulating layer disposed on at least one of one or opposite surfaces of the semiconductor substrate, wherein the insulating layer is disposed on the semiconductor substrate, and the first film includes an oxygen (O)-based material; A second film positioned over the first film; An antireflection layer positioned on the second film; And a third layer positioned on the anti-reflection layer and including a silicon (Si)-based material and a carbon (C)-based material, and the band gap of the first layer is a band gap of each of the second layer, the anti-reflection layer, and the third layer. Is formed higher.
  • the conductivity type region may be positioned on at least one of one surface and the opposite surface of the semiconductor substrate, and the first layer may be positioned on the conductivity type region.
  • the band gap of the first layer may be 8 eV to 10 eV within a range higher than the band gap of each of the second layer, the anti-reflection layer, and the third layer.
  • the first layer may include at least one of SiOx, SiO2, SiOxNy, AlxOy, TixOy, or HfOx.
  • the second film contains hydrogen, and the hydrogen content of the second film may be higher than the hydrogen content of each of the first film, the antireflection layer, and the third film.
  • the second layer may include a silicon (Si)-based material, and may further include a nitrogen (N)-based material or an oxygen (O)-based material.
  • the second layer may include SiNx or AlxOy.
  • the anti-reflection layer includes a silicon (Si)-based material, and may further include an oxygen (O)-based or nitrogen (N)-based material.
  • the anti-reflection layer is at least one of SiOx, SiOxNy, or SixNy It may include.
  • the transmittance of the antireflection layer for the wavelength band of 400 nm to 1100 nm may be higher than the transmittance of the second film for the wavelength band and lower than the transmittance of the first film for the wavelength band.
  • the third film may include at least one of SixOyCz, SixCy, and SixCyNz.
  • the refractive index of the third layer may be higher than that of the second layer and the refractive index of the first layer.
  • the refractive index of the third film may be 2.2 or higher.
  • the refractive index of the second layer may be higher than that of the antireflection layer and the first layer.
  • the refractive index of the second layer may be 1.9 to 2.2.
  • the refractive index of the antireflection layer may be 1.9 or less.
  • the thickness of the second layer may be greater than the thickness of each of the first layer, the antireflection layer, and the third layer.
  • the thickness of the second layer may be 50 nm or less.
  • the thickness of the third layer may be smaller than the thickness of the first layer and the antireflection layer.
  • the thickness of the third layer may be 20 nm or less in a range smaller than the thickness of the first layer and the antireflection layer, and the thickness of the first layer is the third layer. It may be 8 nm to 25 nm in a range greater than the thickness of the film.
  • the first film may include a high density layer positioned adjacent to the substrate and having a first density, and a low density layer positioned on the high density layer and having a second density lower than the first density.
  • the high-density layer may include SiO2
  • the low-density layer may include SiOxNy
  • the thickness of the high-density layer may be 5 nm to 10 nm
  • the thickness of the low-density layer may be 2 nm to 15 nm.
  • the first layer is located closest to the semiconductor substrate among the insulating layers, and the third layer may constitute the outermost layer of the insulating layers.
  • the conductivity type region may be located on the rear side of the semiconductor substrate and include first and second conductivity type regions having different conductivity types, and an insulating layer may be located on the front surface of the semiconductor substrate.
  • a solar cell manufacturing method includes forming a first film including an oxygen (O)-based material on a semiconductor substrate; Forming a second film over the first film; Forming an antireflection layer on the second film; And forming a third film including a silicon (Si)-based material and a carbon (C)-based material on the antireflection layer.
  • O oxygen
  • Si silicon
  • C carbon
  • the forming of the first film may include forming a high-density layer on a semiconductor substrate by using an oxidation method; And forming a low density layer having a lower density than the high density layer on the high density layer by using a plasma-enhanced chemical vapor deposition (PECVD) method.
  • PECVD plasma-enhanced chemical vapor deposition
  • Each of the third film, the antireflection layer, and the second film may be formed by plasma chemical vapor deposition (PECVD).
  • PECVD plasma chemical vapor deposition
  • the insulating layer includes a first film, a second film, an antireflection layer, and a third film, and a third film is used to block ultraviolet rays (UV) and at the same time, an insulating layer by acetic acid. It is possible to further improve the efficiency of the solar cell by preventing the etching of and preventing the carrier generated on the substrate from being dissipated by ultraviolet rays (UV) using the first film.
  • FIG. 1 is a view for explaining an example of a back contact solar cell provided with an insulating layer according to a first embodiment of the present invention.
  • FIG. 2 is a diagram illustrating an example of a conventional solar cell including an insulating layer according to the first embodiment of the present invention.
  • FIG 3 is a view for explaining in more detail the structure of the insulating layer according to the first embodiment of the present invention.
  • FIG. 4 is a diagram for describing a structure of an insulating layer according to a second exemplary embodiment of the present invention.
  • FIG. 5 is a view for explaining a comparison between the passivation effect of the insulating layer according to the first embodiment of the present invention and the passivation effect of the insulating layer according to the second embodiment.
  • FIG. 6 is a view for explaining the reflectance of the insulating layer according to the second embodiment of the present invention.
  • FIG. 7 is a diagram for explaining the output and efficiency of a solar cell having an insulating layer according to a second embodiment of the present invention.
  • FIG. 8 is a view for explaining a solar cell manufacturing method according to an example of the present invention.
  • the meaning that the thickness, width, or length of a particular component is the same as the thickness, width, or length of another particular component means that the thickness, width, or length of another particular component is equal to the thickness, width, or length of a particular component. It means the same in the process error range.
  • the meaning of the same thickness means the same within 10% range.
  • the process error range is 10%.
  • one surface or the opposite surface of the semiconductor substrate means a surface opposite to each other among the planes of the semiconductor substrate. Accordingly, as an example, when one surface of the semiconductor substrate is the front surface of the semiconductor substrate to which light is incident, the opposite surface of the semiconductor substrate means the rear surface of the semiconductor substrate. Alternatively, on the contrary, when one surface of the semiconductor substrate is the rear surface of the semiconductor substrate, the opposite surface of the semiconductor substrate may mean the front surface of the semiconductor substrate.
  • one surface of the semiconductor substrate is the front surface of the semiconductor substrate and the opposite surface of the semiconductor substrate is the rear surface of the semiconductor substrate.
  • FIG. 1 is a diagram for describing an example of a back contact solar cell provided with an insulating layer 130 according to a first embodiment of the present invention.
  • an example of a solar cell according to the present invention is a semiconductor substrate 110, a control passivation layer 160, a first conductivity type region 170, a second conductivity type region 120, and intrinsic A semiconductor unit 190, an insulating layer 130, a rear passivation layer 180, a plurality of first electrodes 140, and a plurality of second electrodes 150 may be provided.
  • the semiconductor substrate 110 may be formed of either single crystal silicon or polycrystalline silicon including a dopant of a first conductivity type or a second conductivity type.
  • the semiconductor substrate 110 may be formed by doping a single crystal silicon wafer with a dopant of a first conductivity type or a second conductivity type at a low concentration.
  • the first conductivity type dopant may be any one of p-type or n-type dopant
  • the second conductivity type dopant may be any one of n-type or p-type dopant.
  • the first conductivity type dopant and the second conductivity type dopant have opposite conductivity types.
  • the first conductivity-type dopant is a p-type one of Group III elements such as boron (B), aluminum (Al), gallium (Ga), and indium (In)
  • the second conductivity-type dopant is phosphorus (P) and arsenic. It may be n-type, which is any one of Group 5 elements such as (As), bismuth (Bi), and antimony (Sb).
  • one of the first and second conductivity type dopants may be boron (B), and the other, that is, one of the second and first conductivity type dopants may be phosphorus (P).
  • the control passivation layer 160 is disposed in direct contact with the entire rear surface of the semiconductor substrate 110 and may include a dielectric material.
  • the control passivation layer 160 may pass carriers generated in the semiconductor substrate 110 and may perform a passivation function for the rear surface of the semiconductor substrate 110. To this end, the thickness of the control passivation layer 160 may be formed between 0.5 nm and 2 nm.
  • control passivation layer 160 may be formed of a dielectric material including SiCx or SiOx having strong durability even in a heat treatment process of 600°C to 700°C.
  • the first conductivity type region 170 may be provided on a front surface or a back surface of the semiconductor substrate 110, and may have the same conductivity type as the semiconductor substrate 110.
  • the first conductivity type region 170 refers to a region in which a dopant of the same conductivity type as that of the semiconductor substrate 110 is doped with a higher concentration than the doping concentration of the semiconductor substrate 110.
  • the first conductivity type region 170 may include a front electric field part 171 and a rear electric field part 172.
  • the front electric field part 171 is provided entirely on the front surface of the semiconductor substrate 110, and the front electric field part 171 contains a dopant of the same conductivity type as that of the semiconductor substrate 110. It may be doped with a higher concentration than the doping concentration.
  • the front electric field part 171 may be formed by diffusing a conductive type dopant into the front surface of the semiconductor substrate 110 by a thermal diffusion method. Accordingly, the front electric field part 171 may have the same crystal structure as the semiconductor substrate 110.
  • the front electric field part 171 may also be formed of a single crystal silicon material.
  • the rear electric field unit 172 is positioned on the rear surface of the semiconductor substrate 110 and is disposed to extend in a direction parallel to the second conductivity type region 120 positioned on the rear surface of the semiconductor substrate 110, and the rear electric field unit 172 A dopant of the same conductivity type as that of the semiconductor substrate 110 may be doped at a higher concentration than the doping concentration of the semiconductor substrate 110.
  • the rear electric field part 172 may be formed in direct contact with the rear surface of the control passivation layer 160 and may be spaced apart from the second conductivity type region 120.
  • the second conductivity type region 120 is located on the rear surface of the semiconductor substrate 110 and extends long in a direction parallel to the rear electric field part 172, and the second conductivity type region 120 includes the semiconductor substrate 110.
  • a dopant of a conductivity type opposite to the conductivity type is doped. Accordingly, by forming a p-n junction with the semiconductor substrate 110 with the control passivation layer 132 interposed therebetween, it can serve as an emitter part.
  • the intrinsic semiconductor unit 190 may be formed in a space between the rear electric field unit 172 of the first conductivity type region 170 and the second conductivity type region 120 among the regions above the rear surface of the control passivation layer 132. And does not include a first conductivity type dopant or a second conductivity type dopant.
  • the rear electric field part 172, the second conductivity type region 120, and the intrinsic semiconductor part 190 positioned on the control passivation layer 132 are formed of a silicon material having a crystal structure different from that of the semiconductor substrate 110 Can be.
  • the rear electric field portion 172, the second conductivity type region 120, and the intrinsic semiconductor portion 190 are formed of polycrystalline silicon, or polycrystalline silicon and amorphous silicon. It may be formed of this mixed material.
  • the insulating layer 130 may be positioned on at least one of one surface or the opposite surface of the semiconductor substrate 110.
  • the insulating layer 130 may be positioned on the front surface of the semiconductor substrate 110.
  • it is not necessarily limited to FIG. 1, and in the case of a double-sided light-receiving solar cell, it may be further positioned on a rear surface opposite to the semiconductor substrate 110.
  • the insulating layer 130 may be positioned on the front electric field part 171. I can. However, unlike FIG. 1, if the front electric field part 171 is not provided, the insulating layer 130 may be positioned in direct contact with the front surface of the semiconductor substrate 110.
  • one surface of the semiconductor substrate 110 may be a front surface of a solar cell through which light is directly incident from the semiconductor substrate 110, and the opposite surface of the semiconductor substrate 110 is a surface located on the opposite side of the one surface. As a result, it may be the rear surface of the solar cell to which the reflected light is incident.
  • the insulating layer 130 may include a first layer 131, a second layer 132, an antireflection layer 133, and a third layer 134. A detailed description of each layer of the insulating layer 130 will be described below in FIG. 3.
  • the insulating layer 130 minimizes the reflectivity of light incident on the semiconductor substrate 110 from the outside, blocks ultraviolet rays (UV) incident on the semiconductor substrate 110 from the outside, and at the same time, the solar cell module due to moisture penetration. It suppresses etching by acetic acid generated in a sealing material such as EVA, which is one of the constituents of the solar cell module, and prevents the phenomenon that carriers generated on the substrate are lost by ultraviolet rays (UV). It is configured to improve the overall efficiency of the solar cell module by further improving the open-circuit voltage (Voc) and short-circuit current (Isc) of.
  • Voc open-circuit voltage
  • Isc short-circuit current
  • the plurality of first electrodes 140 are connected to the second conductivity type region 120 and may be formed to extend long.
  • the first electrode 140 may collect carriers that have moved toward the second conductivity type region 120.
  • the plurality of second electrodes 150 may be connected to the rear electric field 172 of the first conductivity type region 170 and may be formed to extend in a direction parallel to the first electrode 140.
  • the second electrode 150 may collect carriers that have moved toward the first conductivity type region 170.
  • the rear passivation layer 180 includes the remaining areas except for the areas in which the first and second electrodes 140 and 150 are formed among the rear electric field unit 172, the second conductivity type area 120, and the entire rear area of the intrinsic semiconductor unit 190. It can be formed in the area.
  • the rear passivation layer 180 is formed by a dangling bond formed on the rear surface of the second conductivity type region 120, the first conductivity type region 170, and the intrinsic semiconductor unit 190 each formed of a polysilicon material. By removing the defect, it is possible to prevent the carriers generated from the semiconductor substrate 110 from being recombined by dangling bonds and disappearing.
  • the solar cell applied to the solar cell module according to the present invention is not necessarily limited to FIG. 1, except that the first and second electrodes 140 and 150 provided in the solar cell are formed only on the rear surface of the semiconductor substrate 110. Other components can be changed anytime.
  • the front electric field part 171 of the first conductivity type region 170 may be omitted.
  • the insulating layer 130 may be positioned in direct contact with the front surface of the semiconductor substrate 110.
  • FIG. 2 is a diagram for describing an example of a conventional solar cell including the insulating layer 130 according to the first embodiment of the present invention.
  • an example of a conventional solar cell including an insulating layer 130 according to the first embodiment of the present invention is a semiconductor substrate 110, a control passivation layer 160, and a first conductivity type.
  • a region 170, a second conductivity type region 120, an insulating layer 130, a rear passivation layer 180, a first electrode 140 and a second electrode 150 may be provided.
  • the second conductivity type region 120 may be entirely located on the entire surface of the semiconductor substrate 110, and may be formed by diffusion of the first conductivity type dopant into the entire surface of the semiconductor substrate 110. Accordingly, the second conductivity type region 120 may have the same crystal structure as the semiconductor substrate 110 and may be formed of the same silicon material as the silicon material of the semiconductor substrate 110. For example, when the semiconductor substrate 110 is formed of a single crystal silicon material, the second conductivity type region 120 may also be formed of a single crystal silicon material.
  • the first conductivity type region 170 may be entirely located on the control passivation layer 132 formed on the rear surface of the semiconductor substrate 110.
  • the first conductivity type region 170 may have a crystal structure different from that of the semiconductor substrate 110, and may be formed of a silicon material different from that of the semiconductor substrate 110.
  • the semiconductor substrate 110 is formed of a single crystal silicon material
  • the first conductivity type region 170 may be formed of polycrystalline silicon or may be formed of a mixture of polycrystalline silicon and amorphous silicon.
  • the first electrode 140 may include a plurality of first finger electrodes 141 extending in a first direction (x) and a plurality of first connecting electrodes 142 extending in a second direction (y).
  • the second electrode 150 includes a plurality of second finger electrodes 151 extending in a first direction (x) and a plurality of second connecting electrodes 152 extending in a second direction (y). can do.
  • the insulating layer 130 may be positioned on the second conductivity type region 120 formed inside the front surface of the semiconductor substrate 110, and as shown in FIG. 1, the first layer 131 and the second layer 132 ), an antireflection layer 133 and a third layer 134 may be included.
  • the insulating layer 130 may be positioned on the rear surface of the semiconductor substrate 110.
  • the insulating layer 130 may be provided instead of the rear passivation layer 180 on the first conductivity type region 170 located on the rear surface of the semiconductor substrate 110.
  • FIG. 2 a case where the second conductivity type region 120 is located on the front surface of the semiconductor substrate 110 and the first conductivity type region 170 is located on the rear surface of the semiconductor substrate 110 has been described as an example. Is not limited thereto, and the first conductivity type region 170 may be located on the front surface of the semiconductor substrate 110 and the second conductivity type region 120 may be located on the rear surface of the semiconductor substrate 110.
  • FIG 3 is a view for explaining in more detail the structure of the insulating layer 130 according to the first embodiment of the present invention.
  • the insulating layer 130 according to the first exemplary embodiment of the present invention is positioned on at least one of one or the opposite surface of the semiconductor substrate 110, but as shown in FIG. 3, a conductive region in the semiconductor substrate 110, That is, when the front electric field unit 171 is located, it may be positioned above the front electric field unit 171.
  • the insulating layer 130 minimizes the reflectivity of light incident on the semiconductor substrate 110 from the outside, blocks ultraviolet rays (UV) incident on the semiconductor substrate 110 from the outside, and at the same time Solar cells by preventing etching by acetic acid generated from sealing materials such as EVA, which is one of the components of the battery module, and preventing the carrier generated on the substrate from being lost by ultraviolet rays (UV).
  • EVA ultraviolet rays
  • UV ultraviolet rays
  • the insulating layer 130 includes a first layer 131, a second layer 132, and an antireflection layer sequentially stacked on the semiconductor substrate 110. 133) and a third layer 134 may be included.
  • the first layer 131 is located closest to the semiconductor substrate 110 among the plurality of layers forming the insulating layer 130, and the third layer 134 is a plurality of layers forming the insulating layer 130. Among them, the outermost layer can be formed.
  • the first layer 131 is positioned closest to the semiconductor substrate 110 and is formed to have a high band gap. Accordingly, even if the carrier generated in the semiconductor substrate 110 is excited by ultraviolet rays (UV) incident from the outside, the excited carrier moves to the second layer 132 and is trapped in the second layer 132. It can prevent the phenomenon. Accordingly, the open-circuit voltage (Voc) and the short-circuit current (Isc) of the solar cell can be further improved.
  • UV ultraviolet rays
  • the semiconductor substrate Even if the carrier generated at 110 is excited by ultraviolet (UV) light, blocking may be performed so that the excited carrier does not move to the second film 132 or the antireflection layer 133. Accordingly, it is possible to stabilize the solar cell by preventing the solar cell from deteriorating due to ultraviolet (UV) rays and lowering the efficiency.
  • UV ultraviolet
  • the band gap of the first layer 131 may be higher than that of the second layer 132, the antireflection layer 133, and the third layer 134.
  • the band gap order of the insulating layer 130 may be a first layer 131> an anti-reflection layer 133> a second layer 132> a third layer 134.
  • the band gap of the first layer 131 is 8 eV to 10 eV, more preferably 8.6 eV, in a range higher than the band gaps of the second layer 132, the anti-reflection layer 133, and the third layer 134. It can be formed to ⁇ 9.1 eV.
  • the first layer 131 of the present invention is a second layer having a relatively small band gap compared to the outer surface of the semiconductor substrate 110 (or the outer surface of the conductive region) and the first layer 131 ( Since it is located between the 132 or the antireflection layer 133, even if the carrier generated in the semiconductor substrate 110 is excited by ultraviolet rays (UV) incident from the outside, the excited carrier is the band gap of the first layer 131 Because this is high, it cannot move to the second film 132 or the antireflection layer 133. Accordingly, a phenomenon in which the excited carriers are trapped in the second layer 132 or the antireflection layer 133 is prevented.
  • UV ultraviolet rays
  • the first layer 131 may include an oxygen (O)-based material, for example, SiOx, SiO2, SiOxNy, AlxOy, TixOy, or HfOx. It may be formed by including at least one material.
  • O oxygen
  • the film includes at least one material of SiOx, SiO2, SiOxNy, AlxOy, TixOy, or HfOx, it does not have a high band gap just by including at least one of the materials.
  • the band gap of the film depends on the temperature for forming this film, the composition of the process gas, the thickness of the layer, and the method of forming the layer. This can be different.
  • the first film 131 of the present invention is (1) formed by a thermal oxidation method in a furnace, (2) a plasma enhanced chemical vapor deposition (PECVD) method, or (3) It can be formed by mixing the two methods of.
  • PECVD plasma enhanced chemical vapor deposition
  • any arbitrary film contains at least one of SiOx, SiO2, SiOxNy, AlxOy, TixOy, or HfOx, it may have a band gap completely different from the band gap of the first film 131 of the present invention, and the position And it can perform completely different functions depending on the thickness.
  • the first layer 131 of the present invention may include some of the same material as the second layer 132 described above, but even if it includes some of the same material as the second layer 132, it is different from the second layer 132. Since the positions are different and the thickness and the band gap are completely different, a completely different function from the second layer 132 may be performed.
  • the second film 132 is formed in a heat treatment process of 600° C. to 700° C., and is formed as a low quality film having a relatively low density compared to the first film 131,
  • the first layer 131 may be formed in a heat treatment process of 850° C. or higher, and thus may be formed as a high quality layer that is relatively dense and harder than the second layer 132.
  • the first layer 131 has a relatively high band gap compared to the second layer 132, so that the carriers generated from the semiconductor substrate 110 are disposed on the outer side of the semiconductor substrate 110. Jumping to the film 132 or the antireflection layer 133 may prevent movement.
  • the first layer 131 may be formed of the same material as the second layer 132, but the position, thickness, and material characteristics of the second layer 132 are completely different from each other, so that it can perform completely different functions. have.
  • the second layer 132 may be positioned on the outer surface of the first layer 131, and the hydrogen content of the second layer 132 is the first layer 131, the anti-reflection layer 133, and the third layer 134. ) May be higher than the respective hydrogen content.
  • hydrogen contained in the second film 132 during the manufacturing process of the insulating layer 130 may pass through the first film 131 and move toward the semiconductor substrate 110, and the transferred hydrogen may be transferred to the semiconductor substrate 110. Dangling bonding of can be removed. Accordingly, the second layer 132 may perform a passivation function for the semiconductor substrate 110. This can increase the short-circuit current (Isc) of the solar cell.
  • Isc short-circuit current
  • the second layer 132 may include a nitrogen (N)-based material or an oxygen (O)-based material in a silicon (Si) material.
  • the second layer 132 is a silicon nitride layer (SiNx) or aluminum It may be formed of an oxide film (Al2O3).
  • the antireflection layer 133 is positioned on the outer surface of the second layer 132 to improve transmittance of light incident from the outside, and hydrogen of the second layer 132 during the manufacturing process of the insulating layer 130 ) To the outside of the out-diffusion phenomenon can be prevented.
  • the transmittance of the antireflection layer 133 with respect to visible light may be higher than that of the second layer 132 and lower than that of the first layer 131.
  • the refractive index of visible light may be lower than that of the third and second layers 134 and 132 except for the first layer 131 having a high band gap.
  • the anti-reflection layer 133 may include an oxygen (O)-based or nitrogen (N)-based material in a silicon (Si) material.
  • the anti-reflection layer 133 is at least one of SiOx, SiOxNy, or SixNy. It may be formed, including.
  • the third layer 134 is disposed on the outer surface of the anti-reflection layer 133 and may be formed of a silicon (Si)-based material and a carbon (C)-based material.
  • the silicon (Si)-based material included in the third layer 134 may absorb ultraviolet (UV) rays having a wavelength of 400 nm or less in the wavelength band of light. Accordingly, it is possible to block ultraviolet (UV) transmission from the outside of the insulating layer 130 to the inside where the semiconductor substrate 110 is located.
  • UV ultraviolet
  • the carbon (C)-based material included in the third film 134 is etched by the insulating layer 130, in particular, the third film 134 by acetic acid generated from a sealing material such as EVA. It can prevent the phenomenon.
  • the third layer 134 may be formed of a material containing both a silicon (Si)-based material and a carbon (C)-based material, for example, at least one of SixOyCz, SixCy, and SixCyNz.
  • the refractive indices of each layer of the insulating layer 130 are compared as follows.
  • the refractive index of the third layer 134 may be higher than that of the second layer 132 and the refractive index of the first layer 131.
  • the refractive index of the third layer 134 may be 2.2 or higher. More preferably, when the insulating layer 130 is applied to the rear contact solar cell as shown in FIG. 1, the refractive index of the third layer 134 may be formed to be 2.6 to 2.7.
  • the refractive index of the second layer 132 may be higher than that of the antireflection layer 133 and the first layer 131.
  • the second layer 132 may have a refractive index of 1.9 to 2.2. More preferably, when the insulating layer 130 is applied to the rear contact solar cell as shown in FIG. 1, the refractive index of the second layer 132 may be formed to be 2.0 to 2.1.
  • the refractive index of the antireflection layer 133 may be formed to be 1.9 or less.
  • the refractive index of the antireflection layer 133 may be formed to be 1.4 to 1.5.
  • the refractive index of the first layer 131 may be formed to be 1.4 to 1.5.
  • the refractive index in the insulating layer 130 is the third layer 134> the second layer 132> the antireflection layer 133> the first layer 131 It can be smaller in the order of ). Accordingly, the insulating layer 130 may minimize reflectance of light incident from the outside.
  • the refractive index of each layer in the insulating layer 130 may be related to the band gap of each layer, and due to this refractive index, the order of the band gaps in the insulating layer 130 is formed opposite to the refractive index, as described above. I can.
  • each layer of the insulating layer 130 is compared as follows.
  • the thickness T132 of the second layer 132 may be greater than the thickness of each of the first layer 131, the antireflection layer 133, and the third layer 134, and the thickness T134 of the third layer 134 May be smaller than the thickness of each of the first layer 131 and the antireflection layer 133.
  • the thickness T132 of the second layer 132 may be 50 nm or less in a range greater than the thickness of each of the first layer 131, the antireflection layer 133, and the third layer 134, and more specifically 2
  • the thickness T132 of the layer 132 may be 30 nm to 50 nm.
  • the thickness T134 of the third layer 134 may be, for example, 20 nm or less in a range smaller than the thickness of each of the first layer 131 and the antireflection layer 133, and more specifically, the thickness T134 of the third layer 134 The thickness T134 may be 5 nm to 12 nm.
  • the thickness T131 of the first layer 131 may be equal to the thickness T134 of the third layer 134 or greater than the thickness T134 of the third layer 134, for example, 40 nm or less. Specifically, the thickness T131 of the first layer 131 may be 8 nm to 25 nm.
  • the thickness T133 of the antireflection layer 133 is larger than the thickness T134 of the third layer 134 and smaller than the thickness T132 of the second layer 132, for example, may be 40 nm or less, and more specifically , In a range greater than the thickness T134 of the third layer 134 and smaller than the thickness T132 of the second layer 132, the range may be 20 nm to 40 nm.
  • each layer in the insulating layer 130 may be formed in a range different from that described above.
  • the first layer 131 is formed as a single layer is described as an example, but the first layer 131 may be formed of a plurality of layers having different densities. This will be described in more detail as follows.
  • FIG 4 is a view for explaining the structure of the insulating layer 130 according to the second embodiment of the present invention.
  • FIG. 4 a description of a portion overlapping with that of FIG. 3 is replaced with a description of FIG. 3, and other portions are mainly described.
  • the first layer 131 of the insulating layer 130 according to the second embodiment of the present invention may include a high density layer 131H and a low density layer 131L.
  • the high-density layer 131H is positioned adjacent to the semiconductor substrate 110 and has a first density
  • the low-density layer 131L is positioned on the high-density layer 131H and has a second density lower than the first density
  • the high density layer 131H may include SiO2 as an example, and the low density layer 131L may include SiOx as an example. However, it is not necessarily limited thereto. As another example, the high-density layer 131H may include SiO2, and the low-density layer 131L may include SiOxNy.
  • the thickness T131 of the first layer 131 can be made thicker than the insulating layer shown in FIG. 3. have. Therefore, compared to the insulating layer shown in FIG. 3, the band gap of the first film 131 can be further increased. Even if the carrier generated in the semiconductor substrate 110 is excited by ultraviolet rays (UV), the excited carrier is Jumping the band gap of the first layer 131 can be more reliably and effectively prevented from moving to the second layer 132 or the antireflection layer 133, and the open circuit voltage (Voc) of the solar cell can be further improved. have.
  • UV ultraviolet rays
  • the thickness T131 of the first layer 131 When the thickness T131 of the first layer 131 is thin, a desired level of band gap may not be secured. However, due to the characteristic of the first layer 131, the band gap increases as the thickness increases. Therefore, when the first layer 131 is formed of a high-density layer 131H and a low-density layer 131L to increase the thickness T131 of the first layer 131 compared to the embodiment of FIG. Even if the amount of excited carriers increases, it is possible to more reliably block the excited carriers from jumping the band gap of the first layer 131 and moving to the second layer 132 or the anti-reflection layer 133. have. Therefore, it is possible to prevent the insulation layer 130 from being degraded by ultraviolet (UV) rays.
  • UV ultraviolet
  • the passivation function for the semiconductor substrate 110 may be relatively deteriorated.
  • the first layer 131 has a high density.
  • the layer 131H and the low-density layer 131L are configured, it is possible to prevent deterioration due to ultraviolet (UV) rays as described above, and to have high-quality passivation performance.
  • the first layer 131 is formed of a plurality of layers, but is composed of a high density layer 131H and a low density layer 131L, the first layer 131 is relatively thicker than that of forming only one high density layer. As a result, the manufacturing time of the first layer 131 can be shortened, and the stability of the first layer 131 can be further improved.
  • the high-density layer 131H can be formed in a furnace by a thermal oxidation method, and the thermal oxidation method forms a layer in a relatively high temperature heat treatment state compared to the method of forming the low-density layer 131L.
  • the growth rate is relatively low compared to the method of forming the low density layer.
  • the stability of the layer may be high.
  • the low-density layer 131L may be formed by plasma chemical vapor deposition (PECVD), and the plasma chemical vapor deposition method forms a layer in a relatively low temperature heat treatment state compared to the method of forming the high-density layer 131H, so that the growth rate of the layer is increased. It is relatively fast compared to the method of forming a high-density layer.
  • the low density layer 131L may be formed with a second density relatively lower than the first density of the high density layer 131H.
  • the stability of the first layer 131 can be sufficiently secured while further enhancing the function of the first layer 131. It is possible to shorten the manufacturing time compared to the case where the first layer 131 is formed only as a high-density layer.
  • the first layer 131 is formed thick only with the high density layer 131H, the function or stability of the first layer 131 is sufficiently secured, but the process time for manufacturing the first layer 131 may be too long. have.
  • the process time for manufacturing the first layer 131 can be shortened, but the function of the first layer 131 is relatively deteriorated. , The efficiency of the solar cell may be reduced.
  • the first layer 131 is formed of a high-density layer 131H and a low-density layer 131L to further enhance the function of the first layer 131, while the first layer 131 ) Stability can be sufficiently secured, and the manufacturing time can be shortened compared to the case where the first film 131 is formed thickly only with a high density layer.
  • the reason that the high-density layer 131H is formed closer to the semiconductor substrate 110 than the low-density layer 131L is that the high-density layer 131H, which has a relatively high density compared to the low-density layer 131L, is the semiconductor substrate 110 If it is closer to, the function of the first film 131 can be more fully exhibited, the stability of the first film 131 can be improved, and the low-density layer 131L formed by plasma chemical vapor deposition (PECVD) By placing it on this high-density layer, a subsequent process for the second film 132 formed by plasma chemical vapor deposition (PECVD) can be easily performed, thereby making the manufacturing process of the insulating layer 130 easier. This is because the overall manufacturing time for the manufacturing process of the insulating layer 130 can be further shortened.
  • PECVD plasma chemical vapor deposition
  • a second film 132 having a large amount of hydrogen may be formed on the low-density layer 131L.
  • the second film During the process of forming 132, a part of hydrogen contained in a large amount in the second film 132 passes through the first film 131 and moves toward the semiconductor substrate 110, thereby causing a defect of the semiconductor substrate 110.
  • a silicon-hydrogen (Si-H) bond is formed in the formed portion, and thus defects of the semiconductor substrate 110 may be removed. Accordingly, the semiconductor substrate 110 can be effectively passivated.
  • An annealing process may be performed during the forming process of the second layer 132, and the silicon-hydrogen (Si-H) bond may be broken during the annealing process, and at this time, the broken hydrogen (H) is transferred in the opposite direction of the semiconductor substrate 110. Can be out-diffusion.
  • the low-density layer 131L formed by the plasma chemical vapor deposition method (PECVD) may prevent out-diffusion of hydrogen (H).
  • the first layer 131 is formed of the high-density layer 131H and the low-density layer 131L, thereby further improving the efficiency of the solar cell and simplifying the manufacturing method.
  • the thickness T131 of the first layer 131 in which the high-density layer 131H and the low-density layer 131L are combined is, for example, greater than the thickness T134 of the third layer 134 and of the second layer 132. In a range smaller than the thickness T132, it may be 40 nm or less, and more specifically, the thickness T131 of the first layer 131 obtained by combining the high-density layer 131H and the low-density layer 131L may be 8 nm to 25 nm.
  • the thickness T131H of the high density layer 131H may be 5 nm to 10 nm, for example, 5 nm to 7 nm, and the thickness T131L of the low density layer 131L may be 2 nm to 15 nm, for example, 5 nm to 13 nm.
  • FIG 5 is a view for explaining a comparison between the passivation effect of the insulating layer 130 according to the first embodiment of the present invention and the passivation effect of the insulating layer 130 according to the second embodiment of the present invention.
  • the graph shown in FIG. 5 is a comparison by simulating an estimated open voltage (implied-Voc, iVoc) of a solar cell in order to confirm the passivation effect of the insulating layer 130 according to an embodiment of the present invention.
  • Example 1-1 is a single layer using a thermal oxidation method in a furnace, like the insulating layer 130 according to the first embodiment of the present invention shown in FIG. 3. Denotes the estimated open-circuit voltage iVoc when formed by.
  • Example 1-2 shows the estimated open-circuit voltage iVoc when the first layer 131 is formed as a single layer using a plasma chemical vapor deposition (PECVD) method.
  • PECVD plasma chemical vapor deposition
  • the first film 131 is a high-density layer 131H using a thermal oxidation method and a plasma chemical vapor deposition method ( PECVD) is used for the estimated open circuit voltage iVoc when the low-density layer 131L is provided.
  • PECVD plasma chemical vapor deposition method
  • Example 2 the estimated open-circuit voltage is higher in Example 2 than in Example 1-1 and Example 1-2.
  • the first film 131 according to the second embodiment of the present invention has a better function than the first film 131 according to the first embodiment of the present invention.
  • the passivation function of the first film 131 according to the second embodiment of the present invention is better than the passivation function of the first film 131 according to the first embodiment of the present invention.
  • FIG. 6 is a view for explaining the reflectance of the insulating layer 130 according to the second embodiment of the present invention.
  • the comparative example is different from the first and second embodiments of the present invention, when the stacking order of the antireflection layer 133 and the second layer 132 in the insulating layer 130 is reversed (that is, the insulating layer 130 ) Is formed of the first layer 131, the antireflection layer 133, the second layer 132, and the third layer 134 from the semiconductor substrate 110].
  • Example 2-1 shows the reflectance when the high-density layer 131H of the first layer 131 is formed of 6 nm and the low-density layer 131L is formed of 5 nm in the second embodiment of the present invention.
  • Example 2-2 shows reflectance when the high density layer 131H of the first layer 131 is formed at 6 nm and the low density layer 131L is formed at 10 nm in the second embodiment of the present invention.
  • Example 2-1 it can be seen that the reflectance is formed better than that of the comparative example in the range of 400 nm to 600 nm among the wavelength band of visible light, and the reflectance is similar to that of the comparative example in the range of 600 nm to 1100 nm, which is the remaining wavelength band. .
  • Example 2-2 it can be seen that in the range of 400 nm to 600 nm, the reflectance is maintained at a level similar to that of the comparative example, and in the range of 600 nm to 1100 nm, it can be seen that it is formed better than the comparative example.
  • the insulating layer 130 according to the second exemplary embodiment of the present invention has a better reflectance than that of the comparative example.
  • FIG. 7 is a view for explaining the output and efficiency of the solar cell including the insulating layer 130 according to the second embodiment of the present invention.
  • FIG. 7 is a graph comparing the efficiency and output of the insulating layer 130 according to Examples 1 and 2 of the present invention.
  • Example 1 shows the efficiency and output power of a solar cell when the first film 131 of the insulating layer 130 shown in FIG. 3 is formed to a thickness of 6 nm by the thermal oxidation method
  • Example 2 1 shows the efficiency and output power of a solar cell when the high density layer 131H of the first film 131 of the insulating layer 130 shown in FIG. 4 is formed at 6 nm and the low density layer 131L is formed at 5 nm.
  • Example 2-2 the high density layer 131H of the first film 131 of the insulating layer 130 shown in FIG. 4 is formed with 6 nm and the low density layer 131L is formed of 10 nm. It shows the efficiency and output power.
  • Example 1 As shown in FIG. 7, in the case of Example 1, it can be confirmed that the efficiency and output power are relatively low compared to that of Example 2-1 and Example 2-2, and Examples 2-1 and 2 In the case of -2, it can be seen that the efficiency and output power are relatively higher than that of Example 1, and it can be seen that the numerical change between Example 2-1 and Example 2-2 is insignificant.
  • the first film 131 is provided by mixing the high-density layer 131H and the low-density layer 131L, the overall efficiency of the solar cell is reduced. You can see that it improves.
  • FIG. 8 is a diagram illustrating a method of manufacturing a solar cell according to an example of the present invention.
  • FIG. 8 a method of forming the insulating layer 130 in the solar cell manufacturing method according to an example of the present invention is mainly described, but a method of forming the insulating layer 130 according to the second embodiment of the present invention is described as an example. do.
  • a method of manufacturing a solar cell according to the present invention includes a conductive region forming step (S1) and an insulating layer forming step (S2+S3+S4+S5), and the insulating layer forming step (S2+S3+S4+S5) may include a first layer forming step (S2), a second layer forming step (S3), an antireflection layer forming step (S4), and a third layer forming step (S5).
  • the insulating layer 130 When the insulating layer 130 is formed on the semiconductor substrate 110, when a conductivity type region is located inside or on the surface of the semiconductor substrate 110, the insulating layer 130 may be formed on the conductivity type region.
  • a conductivity type region may be formed on at least one of one or the opposite surface of the semiconductor substrate 110.
  • Such a conductive region forming step (S1) is applicable only when a conductive region is formed in a portion of the surface of the semiconductor substrate 110 where the insulating layer 130 is to be formed, and the semiconductor substrate on which the insulating layer 130 is to be formed In the case where the conductive type region is not formed on the surface of (110), it may be omitted.
  • the insulating layer forming step (S2+S3+S4+S5) is conducted. It may be formed after the mold region is formed, and if the front electric field part 171 is omitted from the front surface of the semiconductor substrate 110 shown in FIG. 1, the insulating layer forming step (S2+S3+S4+S5) May be formed directly on the entire surface of the semiconductor substrate 110. In this case, the step S1 of forming the conductive region may be omitted.
  • the insulating layer forming step (S2+S3+S4+S5) includes a first film forming step (S2), a second film forming step (S3), an antireflection layer forming step (S4), and a third film forming step. It may include (S5).
  • a first film 131 including an oxygen (O)-based material may be formed on the semiconductor substrate 110.
  • the first film 131 may be formed on the conductivity type region, and the first film 131 may be formed on the region of the semiconductor substrate 110 where the first film 131 is to be formed.
  • the first layer 131 may be formed directly on the surface of the semiconductor substrate 110.
  • the first film forming step S2 may be performed at a heat treatment temperature of 850° C. or higher, and the first film may be formed to a thickness of 40 nm or less.
  • the first film forming step S2 may include a high density layer forming step S2a and a low density layer forming step S2b.
  • a high-density layer 131H having a first density may be formed on the semiconductor substrate 110 by a thermal oxidation method.
  • the high-density layer 131H may be formed on the conductivity-type region, and when the conductivity-type region is not provided, the high-density layer 131H is formed on the semiconductor substrate 110. It can be formed directly on the surface.
  • a low-density layer 131L having a second density lower than the first density of the high-density layer 131H may be formed on the high-density layer 131H by plasma chemical vapor deposition (PECVD).
  • PECVD plasma chemical vapor deposition
  • both the high-density layer forming step (S2a) and the low-density layer forming step (S2b) are provided, and even if only one of the high-density layer forming step (S2a) or the low-density layer forming step (S2b) is provided. It's okay.
  • both the high-density layer forming step (S2a) and the low-density layer forming step (S2b) are provided, the efficiency of the solar cell can be further improved, and thus a case where both are provided will be described as an example.
  • the second layer 132 may be formed on the low density layer 131L of the first layer 131.
  • the second layer 132 may be formed by plasma chemical vapor deposition (PECVD).
  • the antireflection layer 133 may be formed on the second layer 132.
  • the antireflection layer 133 may be formed by plasma chemical vapor deposition (PECVD).
  • a third film including a silicon (Si)-based material and a carbon (C)-based material may be formed on the antireflection layer 133.
  • the third layer 134 may be formed by plasma chemical vapor deposition (PECVD).
  • the third film 134, the antireflection layer 133, the second film 132, and the low-density layer 131L of the first film 131 are each formed by plasma chemical vapor deposition (PECVD).
  • PECVD plasma chemical vapor deposition
  • each of the third film 134, the antireflection layer 133, the second film 132, and the low-density layer 131L of the first film 131 is a different kind of chemistry except for the plasma chemical vapor deposition method (PECVD). It may be formed by vapor deposition (CVD).

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Photovoltaic Devices (AREA)

Abstract

본 발명은 태양 전지 및 그 제조 방법에 관한 것이다. 본 발명의 한 예에 따른 태양 전지는 반도체 기판; 반도체 기판에 또는 반도체 기판 위에 위치하고, 불순물을 포함하는 도전형 영역; 도전형 영역에 전기적으로 연결되는 전극; 및 반도체 기판의 일면 또는 반대면 중 적어도 하나 위에 위치하는 절연층을 포함하고, 절연층은 반도체 기판 위에 위치하고, 산소(O) 계열의 물질을 포함하는 제1 막; 제1 막 위에 위치하여 제2 막; 제2 막 위에 위치하는 반사 방지층; 및 반사 방지층 위에 위치하고, 실리콘(Si) 계열의 물질과 탄소(C) 계열의 물질을 포함하는 제3 막을 포함하고, 제1 막의 밴드갭은 제2 막, 반사 방지층 및 제3 막 각각의 밴드갭보다 높게 형성된다.

Description

태양전지 및 그 제조 방법
본 발명은 태양전지 및 그 제조 방법에 관한 것으로, 보다 구체적으로, 태양전지 중에서 광을 입사 받는 면에 위치하는 절연층의 구조를 개선한 태양전지 및 그 제조 방법에 관한 것이다.
태양전지는 외부로부터 태양광을 입사 받아, 반도체 영역 내에서 캐리어를 생성하여 전력을 생산한다.
이와 같은 태양전지는 극성이 서로 다른 전극을 반도체 기판의 전면(front surface)과 후면(back surface)에 각각 구비하는 컨벤셔널 타입(conventional type)과, 극성이 서로 다른 전극을 광이 입사되는 면의 반대면에 구비하는 후면 컨택 타입(back contact type)이 있다.
이와 같은 태양전지는 외부에서 빛을 입사 받아 전력을 생산하는 구조이므로, 입사 받는 빛의 투과율이 태양전지의 효율에 직접적인 영향을 미치며, 태양전지의 효율은 전력 생산량에 직결된다.
따라서, 태양전지의 입사 면에서 빛의 투과율을 낮추기 위한 많은 연구가 진행되고 있으며, 이와 더불어, 전력 생산에 영향을 미치는 다른 요소인 태양전지의 개방 전압(Voc)를 높이기 위한 많은 연구가 진행되고 있다.
한 예로, 선행 특허(US8198528)는 패시베이션층과 반사 방지층(SiNx)의 이중막으로 형성한 절연층을 구비한 태양전지를 개시하고 있다.
그런데, 복수의 태양전지를 구비한 태양전지 모듈에 있어서, 태양전지와 투명 기판 사이에 위치하는 밀봉재를 통해 모듈 내부로 수분이 침투될 수 있는데, 모듈 내부로 수분이 침투되면 밀봉재에서 아세트산(Acetic acid)이 생성되고, 생성된 아세트산은 태양전지에 악영향을 미칠 수 있다.
예를 들면, 상기 선행 특허에 개시된 절연층에 구비된 SiNx 재질의 반사 방지층은 에바(EVA)와 같은 밀봉재에서 생성되는 아세트산(Acetic acid)에 의해 에칭될 수 있으며, 습열(Damp heat)로 인해 태양전지 모듈의 신뢰성에 문제가 발생할 수 있다.
또한, 아세트산(Acetic acid)에 의해 반사 방지층의 표면이 에칭되면, 반사 방지층(SiNx)의 투과율이 저하되어 광 손실이 발생하게 되고, 이로 인해 태양전지 모듈의 효율이 저하되는 문제점이 있다.
본 발명은 태양전지 및 그 제조 방법을 제공하는데 그 목적이 있다.
보다 구체적으로, 본 발명은 광을 입사 받는 면에 위치하는 절연층 중에서 에바(EVA)와 같은 밀봉재에 접하는 최외곽층의 재질을 개선하여, 자외선(UV)을 차단함과 동시에 아세트산(Acetic acid)에 의한 절연층의 에칭을 방지하고, 자외선(UV)에 의한 태양전지의 개방 전압(Voc) 및 단락 전류(Isc)의 저하를 방지한 태양전지 및 그 제조 방법을 제공하는데 그 목적이 있다.
본 발명의 한 예에 따른 태양전지는 반도체 기판; 반도체 기판에 또는 반도체 기판 위에 위치하고, 불순물을 포함하는 도전형 영역; 도전형 영역에 전기적으로 연결되는 전극; 및 반도체 기판의 일면 또는 반대면 중 적어도 하나 위에 위치하는 절연층을 포함하고, 절연층은 반도체 기판 위에 위치하고, 산소(O) 계열의 물질을 포함하는 제1 막; 제1 막 위에 위치하여 제2 막; 제2 막 위에 위치하는 반사 방지층; 및 반사 방지층 위에 위치하고, 실리콘(Si) 계열의 물질과 탄소(C) 계열의 물질을 포함하는 제3 막을 포함하고, 제1 막의 밴드갭은 제2 막, 반사 방지층 및 제3 막 각각의 밴드갭보다 높게 형성된다.
도전형 영역은 반도체 기판의 일면 및 반대면 중 적어도 하나 위에 위치하고, 제1 막은 도전형 영역 위에 위치할 수 있다.
제1 막의 밴드갭은 제2 막, 반사 방지층 및 제3 막 각각의 밴드갭보다 높은 범위 내에서 8eV~10eV일 수 있다.
제1 막은 SiOx, SiO2, SiOxNy, AlxOy, TixOy 또는 HfOx 중 적어도 하나의 물질을 포함할 수 있다.
제2 막은 수소를 함유하며, 제2 막의 수소 함유량은 제1 막, 반사 방지층 및 제3 막 각각의 수소 함유량보다 높을 수 있다.
제2 막은 실리콘(Si) 계열의 물질을 포함하고, 질소(N) 계열의 물질 또는 산소(O) 계열 물질을 더 포함할 수 있다. 한 예로, 제2 막은 SiNx 또는 AlxOy을 포함할 수 있다.
반사 방지층은 실리콘(Si) 계열의 물질을 포함하고, 산소(O) 계열 또는 질소(N) 계열의 물질을 더 포함할 수 있으며, 한 예로, 반사 방지층은 SiOx, SiOxNy 또는 SixNy 중 적어도 하나의 물질을 포함할 수 있다.
400nm~1100nm의 파장 대역에 대한 반사 방지층의 투과율은 상기 파장 대역에 대한 제2 막의 투과율보다 높고 상기 파장 대역에 대한 제1 막의 투과율보다는 낮을 수 있다.
제3 막은 SixOyCz, SixCy 및 SixCyNz 중 적어도 하나의 물질을 포함할 수 있다.
제3 막의 굴절률은 제2 막의 굴절률 및 제1 막의 굴절률보다 높을 수 있다. 한 예로, 제3 막의 굴절률은 2.2 이상일 수 있다.
제2 막의 굴절률은 반사 방지층의 굴절률 및 제1 막보다 높을 수 있으며, 한 예로, 제2 막의 굴절률은 1.9~2.2일 수 있다.
반사 방지층의 굴절률은 1.9 이하일 수 있다.
제2 막의 두께는 제1 막, 반사 방지층 및 제3 막 각각의 두께보다 클 수 있다. 한 예로, 제2 막의 두께는 50nm 이하일 수 있다.
제3 막의 두께는 제1 막, 반사 방지층의 두께보다 작을 수 있으며, 한 예로, 제3 막의 두께는 제1 막, 반사 방지층의 두께보다 작은 범위에서 20nm 이하일 수 있고, 제1 막의 두께는 제3 막의 두께보다 큰 범위에서 8nm~25nm일 수 있다.
제1 막은 기판 위에 인접하여 위치하고 제1 밀도를 갖는 고밀도층과 고밀도층 위에 위치하고 제1 밀도보다 낮은 제2 밀도를 갖는 저밀도층을 구비할 수 있다.
고밀도층은 SiO2를 포함할 수 있고, 저밀도층은 SiOxNy를 포함할 수 있고, 고밀도층의 두께는 5nm~10nm이고, 저밀도층의 두께는 2nm~15nm일 수 있다.
제1 막은 절연층 중에서 반도체 기판에 가장 인접하여 위치하고, 제3 막은 절연층 중에서 최외곽층을 구성할 수 있다.
또한, 도전형 영역은 반도체 기판의 후면 쪽에 위치하며 서로 다른 도전형을 가지는 제1 및 제2 도전형 영역을 포함하고, 절연층이 반도체 기판의 전면 위에 위치할 수 있다.
본 발명의 한 예에 따른 태양전지 제조 방법은 산소(O) 계열의 물질을 포함하는 제1 막을 반도체 기판 위에 형성하는 단계; 제1 막 위에 제2 막을 형성하는 단계; 제2 막 위에 반사 방지층을 형성하는 단계; 및 실리콘(Si) 계열의 물질과 탄소(C) 계열의 물질을 포함하는 제3 막을 반사 방지층 위에 형성하는 단계를 포함할 수 있다.
제1 막을 형성하는 단계는 Oxidation 방법을 이용하여 반도체 기판 위에 고밀도층을 형성하는 고밀도층 형성 단계; 및 플라즈마 화학 기상 증착법(Plasma-enhanced chemical vapor deposition, PECVD)을 이용하여 고밀도층보다 낮은 밀도를 갖는 저밀도층을 고밀도층 위에 형성하는 단계를 포함할 수 있다.
제3 막, 반사 방지층, 및 제2 막 각각은 플라즈마 화학 기상 증착법(PECVD)으로 형성될 수 있다.
본 발명에 따른 태양전지는 절연층이 제1 막, 제2 막, 반사 방지층 및 제3 막을 구비하며, 제3 막을 이용하여 자외선(UV)을 차단함과 동시에 아세트산(Acetic acid)에 의한 절연층의 에칭을 방지하고, 제1 막을 이용하여 기판에서 생성된 캐리어가 자외선(UV)에 의해 소실되는 현상을 방지함으로써, 태양전지의 효율을 보다 향상시킬 수 있다.
도 1은 본 발명의 제1 실시 예에 따른 절연층이 구비된 후면 컨택 태양전지의 한 예에 대해 설명하기 위한 도면이다.
도 2는 본 발명의 제1 실시 예에 따른 절연층이 구비된 컨벤셔널 태양전지의 한 예에 대해 설명하기 위한 도면이다.
도 3은 본 발명의 제1 실시 예에 따른 절연층의 구조를 보다 상세하게 설명하기 위한 도면이다.
도 4는 본 발명의 제2 실시 예에 따른 절연층의 구조를 설명하기 위한 도면이다.
도 5는 본 발명의 제1 실시 예에 따른 절연층의 패시베이션 효과와 제2 실시 예에 따른 절연층의 패시베이션 효과를 비교 설명하기 위한 도면이다.
도 6은 본 발명의 제2 실시 예에 따른 절연층의 반사율을 설명하기 위한 도면이다.
도 7은 본 발명의 제2 실시 예에 따른 절연층을 구비한 태양전지의 출력 및 효율을 설명하기 위한 도면이다.
도 8은 본 발명의 한 예에 따른 태양전지 제조 방법을 설명하기 위한 도면이다.
아래에서는 첨부한 도면을 참고로 하여 본 발명의 실시 예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시 예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
이하에서는 첨부한 도면을 참조하여 본 발명의 실시 예를 상세하게 설명한다. 그러나 본 발명이 이러한 실시 예에 한정되는 것은 아니며 다양한 형태로 변형될 수 있음은 물론이다.
도면에서는 본 발명을 명확하고 간략하게 설명하기 위하여 설명과 관계 없는 부분의 도시를 생략하였으며, 명세서 전체를 통하여 동일 또는 극히 유사한 부분에 대해서는 동일한 도면 참조부호를 사용한다. 그리고 도면에서는 설명을 좀더 명확하게 하기 위하여 두께, 넓이 등을 확대 또는 축소하여 도시하였는바, 본 발명의 두께, 넓이 등은 도면에 도시된 바에 한정되지 않는다.
그리고 명세서 전체에서 어떠한 부분이 다른 부분을 "포함"한다고 할 때, 특별히 반대되는 기재가 없는 한 다른 부분을 배제하는 것이 아니며 다른 부분을 더 포함할 수 있다. 또한, 층, 막, 영역, 판 등의 부분이 다른 부분 "위에" 있다고 할 때, 이는 다른 부분 "바로 위에" 있는 경우뿐 아니라 그 중간에 다른 부분이 위치하는 경우도 포함한다. 층, 막, 영역, 판 등의 부분이 다른 부분 "바로 위에" 있다고 할 때에는 중간에 다른 부분이 위치하지 않는 것을 의미한다.
아울러, 어떤 특정 구성 요소의 두께, 폭 또는 길이가 다른 특정 구성 요소의 두께, 폭 또는 길이와 동일하다는 의미는 다른 특정 구성 요소의 두께, 폭 또는 길이가 어떤 특정 구성 요소의 두께, 폭 또는 길이의 공정 오차 범위에서 동일하다는 것을 의미한다.
따라서, 공정 오차 범위가 10%인 경우, 두께가 동일하다는 의미는 10% 범위 내에서 동일한 것을 의미한다. 이하에서는 공정 오차 범위가 10%인 경우를 전제로 설명한다.
또한, 반도체 기판의 일면 또는 반대면이란, 반도체 기판의 평면 중 서로 반대되는 면을 의미한다. 따라서, 한 예로, 반도체 기판의 일면이 빛이 입사되는 반도체 기판의 전면인 경우, 반도체 기판의 반대면이란 반도체 기판의 후면을 의미한다. 또는 이와 반대로 반도체 기판의 일면이 반도체 기판의 후면인 경우, 반도체 기판의 반대면이란 반도체 기판의 전면을 의미할 수 있다.
이하에서는 설명의 편의상 반도체 기판의 일면이 반도체 기판의 전면, 반도체 기판의 반대면이 반도체 기판의 후면인 경우를 전제로 설명한다.
도 1은 본 발명의 제1 실시 예에 따른 절연층(130)이 구비된 후면 컨택 태양전지의 한 예에 대해 설명하기 위한 도이다.
도 1에 도시된 바와 같이, 본 발명에 따른 태양전지의 한 예는 반도체 기판(110), 제어 패시베이션층(160), 제1 도전형 영역(170), 제2 도전형 영역(120), 진성 반도체부(190), 절연층(130), 후면 패시베이션층(180), 복수의 제1 전극(140) 및 복수의 제2 전극(150)을 구비할 수 있다.
반도체 기판(110)은 제 1 도전형 또는 제2 도전형의 도펀트를 포함하는 단결정 실리콘, 다결정 실리콘 중 어느 하나로 형성될 수 있다. 한 예로, 반도체 기판(110)은 단결정 실리콘 웨이퍼에 제 1 도전형 또는 제2 도전형의 도펀트가 낮은 농도로 도핑되어 형성될 수 있다.
여기서, 제1 도전형 도펀트는 p형 또는 n형 도펀트 중 어느 하나일 수 있으며, 제2 도전형 도펀트는 n형 또는 p형 도펀트 중 어느 하나일 수 있다. 제1 도전형 도펀트와 제2 도전형 도펀트는 서로 반대의 도전형을 갖는다.
제1 도전형 도펀트가 보론(B), 알루미늄(Al), 갈륨(Ga), 인듐(In) 등의 3족 원소 중 어느 하나인 p형인 경우, 제2 도전형 도펀트는 인(P), 비소(As), 비스무스(Bi), 안티몬(Sb) 등의 5족 원소 중 어느 하나인 n형일 수 있다.
따라서, 한 예로, 제1 및 제2 도전형 도펀트 중 하나가 보론(B)이고, 다른 하나, 즉 제2 및 제1 도전형 도펀트 중 하나가 인(P)일 수 있다.
제어 패시베이션층(160)은 반도체 기판(110)의 후면 전면(全面)에 직접 접촉하여 배치되며, 유전체 재질을 포함할 수 있다.
이와 같은 제어 패시베이션층(160)은 반도체 기판(110)에서 생성된 캐리어를 통과시키며, 반도체 기판(110)의 후면에 대한 패시베이션 기능을 수행할 수 있다. 이를 위해, 제어 패시베이션층(160)의 두께는 0.5nm ~ 2nm 사이로 형성될 수 있다.
이와 같은, 제어 패시베이션층(160)은 600℃~700℃의 열처리 공정에서도 강한 내구성을 갖는 SiCx 또는 SiOx를 포함하는 유전체 재질로 형성될 수 있다.
제1 도전형 영역(170)은 반도체 기판(110)의 전면(front surface) 또는 후면(back surface)에 구비될 수 있으며, 반도체 기판(110)과 동일한 도전형을 가질 수 있다.
한 예로, 제1 도전형 영역(170)은 반도체 기판(110)의 도전형과 동일한 도전형의 도펀트가 반도체 기판(110)의 도핑 농도보다 고농도로 도핑된 영역을 의미한다.
한 예로, 도 1에 도시된 바와 같이, 제1 도전형 영역(170)은 전면 전계부(171) 및 후면 전계부(172)를 구비할 수 있다.
전면 전계부(171)는 반도체 기판(110)의 전면(前面)에 전체적으로 구비되며, 전면 전계부(171)에는 반도체 기판(110)의 도전형과 동일한 도전형의 도펀트가 반도체 기판(110)의 도핑 농도보다 고농도로 도핑될 수 있다.
한 예로, 전면 전계부(171)는 반도체 기판(110)의 전면(front surface) 내부에 도전형 도펀트를 열확산 방법으로 확산하는 것에 의해 형성될 수 있다. 따라서, 전면 전계부(171)는 반도체 기판(110)과 동일한 결정 구조를 가질 수 있다.
한 예로, 반도체 기판(110)이 단결정 실리콘 재질로 형성된 경우, 전면 전계부(171)도 단결정 실리콘 재질로 형성될 수 있다.
후면 전계부(172)는 반도체 기판(110)의 후면 위에 위치하며, 반도체 기판(110)의 후면 위에 위치한 제2 도전형 영역(120)과 나란한 방향으로 길게 뻗어 배치되고, 후면 전계부(172)에는 반도체 기판(110)의 도전형과 동일한 도전형의 도펀트가 반도체 기판(110)의 도핑 농도보다 고농도로 도핑될 수 있다.
한 예로, 후면 전계부(172)는 제어 패시베이션층(160)의 후면 위에 직접 접촉하여 형성될 수 있고, 제2 도전형 영역(120)과 이격될 수 있다.
제2 도전형 영역(120)은 반도체 기판(110)의 후면 위에 위치하며, 후면 전계부(172)와 나란한 방향으로 길게 뻗어 배치되고, 제2 도전형 영격(120)에는 반도체 기판(110)의 도전형과 반대되는 도전형의 도펀트가 도핑된다. 따라서, 제어 패시베이션층(132)을 사이에 두고, 반도체 기판(110)과 p-n 접합을 형성하여 에미터부로서 역할을 수행할 수 있다.
진성 반도체부(190)는 제어 패시베이션층(132)의 후면 위의 영역 중에서 제1 도전형 영역(170)의 후면 전계부(172)와 제2 도전형 영역(120) 사이의 공간에 형성될 수 있고, 제1 도전형 도펀트 또는 제2 도전형 도펀트를 포함하지 않는다.
제어 패시베이션층(132) 위에 위치하는 후면 전계부(172), 제2 도전형 영역(120) 및 진성 반도체부(190)는 반도체 기판(110)의 실리콘 재질과 다른 결정 구조를 갖는 실리콘 재질로 형성될 수 있다.
한 예로, 반도체 기판(110)이 단결정 실리콘으로 형성되는 경우, 후면 전계부(172), 제2 도전형 영역(120) 및 진성 반도체부(190)는 다결정 실리콘으로 형성되거나, 다결정 실리콘과 비정질 실리콘이 혼합된 재질로 형성될 수 있다.
절연층(130)은 반도체 기판(110)의 일면 또는 반대면 중 적어도 하나 위에 위치할 수 있다. 한 예로, 도 1에 도시된 바와 같이, 절연층(130)은 반도체 기판(110)의 전면(front surface) 위에 위치할 수 있다. 그러나, 도 1에 반드시 한정되는 것은 아니고, 양면 수광형(bifacial) 태양전지의 경우, 반도체 기판(110)의 반대면인 후면 위에도 더 위치할 수 있다.
도 1에 도시한 바와 같이 전면 전계부(171)와 같은 도전형 영역이 반도체 기판(110)의 전면(front surface)에 구비된 경우, 절연층(130)은 전면 전계부(171) 위에 위치할 수 있다. 그러나, 만약 도 1과는 다르게, 전면 전계부(171)가 구비되지 않은 경우, 절연층(130)은 반도체 기판(110)의 전면(front surface)에 직접 접촉하여 위치할 수도 있다.
여기서, 반도체 기판(110)의 일면은 반도체 기판(110)에서 빛이 직접적으로 입사되는 태양전지의 전면(front surface)일 수 있으며, 반도체 기판(110)의 반대면은 일면의 반대측에 위치하는 면으로, 반사된 빛이 입사되는 태양전지의 후면일 수 있다.
절연층(130)은 도 1에 도시된 바와 같이, 제1 막(131), 제2 막(132), 반사 방지층(133) 및 제3 막(134)을 포함할 수 있다. 이와 같은 절연층(130)의 각층에 대한 구체적인 설명은 도 3 이하에서 설명한다.
절연층(130)은 외부로부터 반도체 기판(110)으로 입사되는 빛의 반사도를 최소화하며, 외부로부터 반도체 기판(110)으로 입사되는 자외선(UV)을 차단함과 동시에, 수분 침투로 인해 태양전지 모듈의 구성 요소 중 하나인 에바(EVA)와 같은 밀봉재에서 생성되는 아세트산(Acetic acid)에 의한 에칭을 억제하고, 기판에서 생성된 캐리어가 자외선(UV)에 의해 소실되는 현상을 방지하여, 태양전지 모듈의 개방 전압(Voc) 및 단락 전류(Isc)를 보다 향상시켜 태양전지 모듈의 효율을 전반적으로 향상시킬 수 있도록 구성된다.
복수의 제1 전극(140)은 제2 도전형 영역(120)에 접속되며, 길게 뻗어 형성될 수 있다. 제1 전극(140)은 제2 도전형 영역(120) 쪽으로 이동한 캐리어를 수집할 수 있다.
복수의 제2 전극(150)은 제1 도전형 영역(170)의 후면 전계부(172)에 접속되고, 제1 전극(140)과 나란한 방향으로 길게 뻗어 형성될 수 있다. 제2 전극(150)은 제1 도전형 영역(170) 쪽으로 이동한 캐리어를 수집할 수 있다.
후면 패시베이션층(180)은 후면 전계부(172), 제2 도전형 영역(120) 및 진성 반도체부(190)의 후면 전체 영역 중 제1, 2 전극(140, 150)이 형성된 영역을 제외한 나머지 영역에 형성될 수 있다.
후면 패시베이션층(180)은 각각 다결정 실리콘 재질로 형성된 제2 도전형 영역(120), 제1 도전형 영역(170) 및 진성 반도체부(190)의 후면에 형성된 댕글링 본드(dangling bond)에 의한 결함을 제거하여, 반도체 기판(110)으로부터 생성된 캐리어가 댕글링 본드(dangling bond)에 의해 재결합되어 소멸되는 것을 방지할 수 있다.
본 발명에 따른 태양전지 모듈에 적용된 태양전지는 반드시 도 1에만 한정하지 않으며, 태양전지에 구비되는 제1, 2 전극(140, 150)이 반도체 기판(110)의 후면에만 형성되는 점을 제외하고 다른 구성 요소는 얼마든지 변경이 가능하다.
예를 들어, 도 1에서 제1 도전형 영역(170)의 전면 전계부(171)는 생략될 수 있다. 이와 같은 경우, 절연층(130)이 반도체 기판(110)의 전면에 직접 접촉하여 위치할 수 있다.
도 2는 본 발명의 제1 실시 예에 따른 절연층(130)이 구비된 컨벤셔널 태양전지의 한 예에 대해 설명하기 위한 도이다.
도 2에서는, 도 1에서 중복되는 부분에 대한 설명은 도 1에 대한 설명으로 대체하고, 도 2에 대한 설명에서는 생략한다.
도 2에 도시된 바와 같이, 본 발명의 제1 실시 예에 따른 절연층(130)이 구비된 컨벤셔널 태양전지의 한 예는 반도체 기판(110), 제어 패시베이션층(160), 제1 도전형 영역(170), 제2 도전형 영역(120), 절연층(130), 후면 패시베이션층(180), 제1 전극(140) 및 제2 전극(150)을 구비할 수 있다.
제2 도전형 영역(120)은 반도체 기판(110)의 전면에 전체적으로 위치할 수 있으며, 제1 도전형 도펀트가 반도체 기판(110)의 전면 내부에 확산되어 형성될 수 있다. 따라서, 제2 도전형 영역(120)은 반도체 기판(110)과 동일한 결정 구조를 가질 수 있고, 반도체 기판(110)의 실리콘 재질과 동일한 실리콘 재질로 형성될 수 있다. 한 예로, 반도체 기판(110)이 단결정 실리콘 재질로 형성된 경우, 제2 도전형 영역(120)도 단결정 실리콘 재질로 형성될 수 있다.
제1 도전형 영역(170)은 반도체 기판(110)의 후면에 형성된 제어 패시베이션층(132) 위에 전체적으로 위치할 수 있다. 제1 도전형 영역(170)은 반도체 기판(110)과 다른 결정 구조를 가질 수 있고, 반도체 기판(110)의 실리콘 재질과 다른 실리콘 재질로 형성될 수 있다. 한 예로, 반도체 기판(110)이 단결정 실리콘 재질로 형성된 경우, 제1 도전형 영역(170)은 다결정 실리콘으로 형성되거나 다결정 실리콘과 비정질 실리콘이 혼합된 재질로 형성될 수 있다.
제1 전극(140)은 제1 방향(x)으로 길게 연장되는 복수의 제1 핑거 전극(141)과 제2 방향(y)으로 길게 연장되는 복수의 제1 연결 전극(142)를 구비할 수 있으며, 제2 전극(150)은 제1 방향(x)으로 길게 연장되는 복수의 제2 핑거 전극(151)과 제2 방향(y)으로 길게 연장되는 복수의 제2 연결 전극(152)를 구비할 수 있다.
절연층(130)은 반도체 기판(110)의 전면 내부에 형성된 제2 도전형 영역(120) 위에 위치할 수 있으며, 도 1에 도시한 바와 같이, 제1 막(131), 제2 막(132), 반사 방지층(133) 및 제3 막(134)을 포함할 수 있다.
더불어, 도 1에서는 도시되지 않았지만, 절연층(130)이 반도체 기판(110)의 후면에 위치하는 것도 가능하다.
예를 들어, 반도체 기판(110)의 후면에 위치한 제1 도전형 영역(170) 위에 후면 패시베이션층(180) 대신에 절연층(130)이 구비되는 것도 가능하다.
또한, 도 2에서는 제2 도전형 영역(120)이 반도체 기판(110)의 전면에, 제1 도전형 영역(170)이 반도체 기판(110)의 후면에 위치하는 경우를 예로 설명하였지만, 본 발명은 이에 반드시 한정되는 것은 아니고, 제1 도전형 영역(170)이 반도체 기판(110)의 전면에, 제2 도전형 영역(120)이 반도체 기판(110)의 후면에 위치하는 것도 가능하다.
이하에서는, 본 발명의 제1 실시 예에 따른 절연층(130)에 대해 설명한다.
도 3은 본 발명의 제1 실시 예에 따른 절연층(130)의 구조를 보다 상세하게 설명하기 위한 도이다.
본 발명의 제1 실시 예에 따른 절연층(130)은 반도체 기판(110)의 일면 또는 반대면 중 적어도 하나 위에 위치하되, 도 3에 도시된 바와 같이, 반도체 기판(110)에 도전형 영역, 즉 전면 전계부(171)가 위치한 경우, 전면 전계부(171) 위에 위치할 수 있다.
이와 같은 절연층(130)은 외부로부터 반도체 기판(110)으로 입사되는 빛의 반사도를 최소화하며, 외부로부터 반도체 기판(110)으로 입사되는 자외선(UV)을 차단함과 동시에, 수분 침투로 인해 태양전지 모듈의 구성 요소 중 하나인 에바(EVA)와 같은 밀봉재에서 생성되는 아세트산(Acetic acid)에 의한 에칭을 방지하고, 기판에서 생성된 캐리어가 자외선(UV)에 의해 소실되는 현상을 방지하여 태양전지 모듈의 개방 전압(Voc) 및 단락 전류(Isc)를 보다 향상시킴으로써, 태양전지 모듈의 효율을 전반적으로 향상시킬 수 있다.
이를 위해, 도 3에 도시된 바와 같이, 제1 실시 예에 따른 절연층(130)은 반도체 기판(110) 위에 순차적으로 적층된 제1 막(131), 제2 막(132), 반사 방지층(133) 및 제3 막(134)을 포함할 수 있다.
따라서, 제1 막(131)은 절연층(130)을 형성하는 복수의 층들 중에서 반도체 기판(110)에 가장 인접하여 위치하고, 제3 막(134)은 절연층(130)을 형성하는 복수의 층들 중에서 최외곽층을 구성할 수 있다.
제1 막(131)은 반도체 기판(110)에 가장 인접하여 위치하며, 높은 밴드갭을 가지도록 형성된다. 따라서, 반도체 기판(110)에서 생성된 캐리어가 외부로부터 입사된 자외선(UV)에 의해 여기되더라도 여기된 캐리어가 제2 막(132)으로 이동하여 제2 막(132) 내에서 트랩(trap)되는 현상을 방지할 수 있다. 이에 따라, 태양전지의 개방 전압(Voc) 및 단락 전류(Isc)를 보다 향상시킬 수 있다.
즉, 제1 막(131)은 절연층(130)의 다른 층, 즉 제2 막(132), 반사 방지층(133) 및 제3 막(134)보다 상대적으로 높은 밴드갭을 가지고 있으므로, 반도체 기판(110)에서 생성된 캐리어가 자외선(UV)에 의해 여기되더라도, 여기된 캐리어가 제2 막(132) 또는 반사 방지층(133)으로 이동하지 못하도록 블록킹(blocking)할 수 있다. 이에 따라, 태양전지가 자외선(UV)에 의해 열화되어 효율이 저하되는 것을 방지함으로써, 태양전지를 안정화(saturation)시킬 수 있다.
제1 막(131)의 밴드갭은 제2 막(132), 반사 방지층(133) 및 제3 막(134) 각각의 밴드갭보다 높을 수 있다. 한 예로, 절연층(130)의 밴드갭 순서는 제1 막(131) > 반사 방지층(133) > 제2 막(132) > 제3 막(134)일 수 있다.
한 예로, 제1 막(131)의 밴드갭은 제2 막(132), 반사 방지층(133) 및 제3 막(134) 각각의 밴드갭보다 높은 범위에서 8eV~10eV, 보다 바람직하게는 8.6eV~9.1eV로 형성될 수 있다.
이와 같이, 본 발명의 제1 막(131)은 반도체 기판(110)의 외측 표면[또는 도전형 영역의 외측 표면]과 상기 제1 막(131)에 비해 상대적으로 밴드갭이 작은 제2 막(132)이나 반사 방지층(133) 사이에 위치하므로, 반도체 기판(110)에서 생성된 캐리어가 외부로부터 입사된 자외선(UV)에 의해 여기되더라도, 상기 여기된 캐리어는 제1 막(131)의 밴드갭이 높기 때문에 제2 막(132)이나 반사 방지층(133)으로 이동하지 못한다. 따라서, 상기 여기된 캐리어가 제2 막(132)이나 반사 방지층(133)에서 트랩(trap)되는 현상이 방지된다.
제1 막(131)이 위에서 말한 작용을 하도록 하기 위해, 제1 막(131)은 산소(O) 계열의 물질을 포함할 수 있으며, 한 예로, SiOx, SiO2, SiOxNy, AlxOy, TixOy 또는 HfOx 중 적어도 하나의 물질을 포함하여 형성될 수 있다.
하지만, SiOx, SiO2, SiOxNy, AlxOy, TixOy 또는 HfOx 중 적어도 하나의 물질을 포함하는 막이라 하더라도, 상기 물질 중 적어도 하나의 물질을 포함하는 것만으로는 높은 밴드갭을 갖지 못한다.
즉, 임의의 막이 SiOx, SiO2, SiOxNy, AlxOy, TixOy 또는 HfOx 중 적어도 하나의 물질을 포함하더라도, 이 막을 형성하기 위한 온도, 공정 가스의 구성, 층의 두께, 층의 형성 방법에 따라 막의 밴드갭이 달라질 수 있다.
본 발명의 제1 막(131)은 (1) 퍼니스(furnace) 내에서 Thermal oxidation 방법으로 형성되거나 (2) 플라즈마 화학 기상 증착법(Plasma Enhanced Chemical Vapor Deposition, PECVD) 방법으로 형성되거나 또는 (3) 위의 두 가지 방법을 혼합하여 형성될 수 있다.
따라서, 어떤 임의의 막이 SiOx, SiO2, SiOxNy, AlxOy, TixOy 또는 HfOx 중 적어도 하나의 물질을 포함하더라도, 본 발명의 제1 막(131)의 밴드갭과는 전혀 다른 밴드갭을 가질 수 있으며, 위치 및 두께에 따라 전혀 다른 기능을 수행할 수 있다.
본 발명의 제1 막(131)은 앞서 설명한 제2 막(132)과 일부 동일한 물질을 포함할 수 있으나, 제2 막(132)과 일부 동일한 물질을 포함한다고 하더라도 제2 막(132)과는 위치가 상이하고, 두께와 밴드갭이 전혀 달라, 제2 막(132)과는 전혀 다른 기능을 수행할 수 있다.
구체적으로, 재질 특성 측면에서, 제2 막(132)은 600℃~700℃의 열처리 공정에서 형성되어, 제1 막(131)에 비해 상대적으로 밀도가 낮은 저품질(low quality) 막으로 형성되지만, 제1 막(131)은 850℃ 이상의 열처리 공정에서 형성되어, 제2 막(132)에 비해 상대적으로 밀도가 높고 단단한 고품질(high quality) 막으로 형성될 수 있다.
이에 따라, 제1 막(131)은 제2 막(132)에 비해 상대적으로 고밴드갭을 가지고 있어, 반도체 기판(110)에서 생성된 캐리어가 반도체 기판(110)의 외측 측면에 위치하는 제2 막(132)이나 반사 방지층(133)으로 점핑해서 이동되는 현상을 방지할 수 있다.
이와 같이, 제1 막(131)은 제2 막(132)과 동일한 재질을 포함하여 형성될 수 있지만, 제2 막(132)과 위치, 두께, 재질 특성이 전혀 달라 전혀 다른 기능을 수행할 수 있다.
제2 막(132)은 제1 막(131)의 외측 표면 위에 위치할 수 있고, 제2 막(132)의 수소 함유량은 제1 막(131), 반사 방지층(133) 및 제3 막(134) 각각의 수소 함유량보다 높을 수 있다.
이에 따라, 절연층(130) 제조 공정 중 제2 막(132) 내에 함유된 수소가 제1 막(131)을 통과하여 반도체 기판(110) 쪽으로 이동할 수 있고, 이동한 수소가 반도체 기판(110)의 댕글링 본딩(dangling bonding)를 제거할 수 있다. 따라서, 제2 막(132)은 반도체 기판(110)에 대한 패시베이션 기능을 수행할 수 있다. 이로 인하여 태양전지의 단락 전류(Isc)를 증가시킬 수 있다.
제2 막(132)은 실리콘(Si) 재질에 질소(N) 계열의 물질 또는 산소(O) 계열 물질을 포함할 수 있으며, 한 예로, 제2 막(132)은 실리콘 질화막(SiNx) 또는 알루미늄 산화막(Al2O3)으로 형성될 수 있다.
반사 방지층(133)은 제2 막(132) 외측 표면 위에 위치하여, 외부로부터 입사된 빛의 투과율을 향상시키고, 절연층(130) 제조 공정 중 제2 막(132)의 수소가 절연층(130)의 외부로 유출되는 탈수소화(Out-diffusion) 현상을 방지할 수 있다.
가시광선(400nm~1100nm의 파장 대역)에 대한 반사 방지층(133)의 투과율은 제2 막(132)보다 높고 제1 막(131)보다는 낮을 수 있다. 더불어, 가시광선에 대한 굴절률은 높은 밴드갭을 갖는 제1 막(131)을 제외한 나머지 제3 막(134) 및 제2 막(132)보다 낮을 수 있다.
반사 방지층(133)은 실리콘(Si) 재질에 산소(O) 계열 또는 질소(N) 계열의 물질을 포함할 수 있으며, 한 예로, 반사 방지층(133)은 SiOx, SiOxNy 또는 SixNy 중 적어도 하나의 물질을 포함하여 형성될 수 있다.
제3 막(134)은 반사 방지층(133) 외측 표면 위에 위치하고, 실리콘(Si) 계열의 물질과 탄소(C) 계열의 물질을 포함하여 형성될 수 있다.
제3 막(134)에 포함된 실리콘(Si) 계열의 물질은 빛의 파장 대역 중에서 400nm 이하의 파장을 갖는 자외선(UV)을 흡수할 수 있다. 따라서, 절연층(130)의 외측에서 반도체 기판(110)이 위치한 내측으로 자외선(UV)이 투과되는 것을 차단할 수 있다.
제3 막(134)에 포함된 탄소(C) 계열의 물질은 에바(EVA)와 같은 밀봉재에서 발생되는 아세트산(Acetic acid)에 의해 절연층(130), 특히, 제3 막(134)이 에칭되는 현상을 방지할 수 있다.
제3 막(134)은 실리콘(Si) 계열의 물질과 탄소(C) 계열의 물질을 함께 함유하는 물질, 한 예로, SixOyCz, SixCy 및 SixCyNz 중 적어도 하나의 물질을 포함하여 형성될 수 있다.
이와 같은 절연층(130)의 각 층에 대한 굴절률을 비교하면 다음과 같다.
제3 막(134)의 굴절률은 제2 막(132)의 굴절률 및 제1 막(131)의 굴절률보다 높을 수 있다. 한 예로, 제3 막(134)의 굴절률은 2.2 이상일 수 있다. 보다 바람직하게, 도 1과 같은 후면 컨택 태양전지에 절연층(130)이 적용되는 경우, 제3 막(134)의 굴절률은 2.6~2.7로 형성될 수 있다.
제2 막(132)의 굴절률은 반사 방지층(133)의 굴절률 및 제1 막(131)보다 높을 수 있다. 한 예로, 제2 막(132)의 굴절률은 1.9~2.2로 형성될 수 있다. 보다 바람직하게, 도 1과 같은 후면 컨택 태양전지에 절연층(130)이 적용되는 경우, 제2 막(132)의 굴절률은 2.0~2.1로 형성될 수 있다.
또한, 반사 방지층(133)의 굴절률은 1.9 이하로 형성될 수 있다. 한 예로, 도 1과 같은 후면 컨택 태양전지에 절연층(130)이 적용되는 경우, 반사 방지층(133)의 굴절률은 1.4~1.5로 형성될 수 있다.
그리고 제1 막(131)의 굴절률은 1.4~1.5로 형성될 수 있다.
따라서, 이와 같은 절연층(130)의 각층의 굴절률을 고려하여, 절연층(130) 내의 굴절률은 제3 막(134) > 제2 막(132) > 반사 방지층(133) > 제1 막(131)의 순서로 작아질 수 있다. 이에 따라, 절연층(130)은 외부에서 입사되는 빛에 대한 반사율을 최소화할 수 있다.
이와 같은 절연층(130) 내의 각 층의 굴절률은 각층의 밴드갭과 관련될 수 있고, 이와 같은 굴절률로 인하여, 절연층(130) 내의 밴드갭의 순서는 전술한 바와 같이, 굴절률과 반대로 형성될 수 있다.
절연층(130)의 각 층에 대한 두께를 비교하면 다음과 같다.
제2 막(132)의 두께(T132)는 제1 막(131), 반사 방지층(133) 및 제3 막(134) 각각의 두께보다 클 수 있고, 제3 막(134)의 두께(T134)는 제1 막(131), 반사 방지층(133) 각각의 두께보다 작을 수 있다.
한 예로, 제2 막(132)의 두께(T132)는 제1 막(131), 반사 방지층(133) 및 제3 막(134) 각각의 두께보다 큰 범위에서 50nm 이하일 수 있으며, 보다 구체적으로 제2 막(132)의 두께(T132)는 30nm~50nm일 수 있다.
이와 같이 제2 막(132)의 두께(T132)를 제1 막(131), 반사 방지층(133) 및 제3 막(134) 각각의 두께보다 크게 하는 것은 제2 막(132)에 함유되는 수소의 함유량을 충분히 확보하여 절연층(130)의 반도체 기판(110)에 대한 패시베이션 기능을 충분히 확보하기 위함이다.
제3 막(134)의 두께(T134)는 제1 막(131), 반사 방지층(133)의 각각의 두께보다 작은 범위에서 한 예로, 20nm 이하일 수 있으며, 보다 구체적으로 제3 막(134)의 두께(T134)는 5nm~12nm일 수 있다.
제1 막(131)의 두께(T131)는 제3 막(134)의 두께(T134)와 동일하거나 제3 막(134)의 두께(T134)보다 큰 범위에서 한 예로, 40nm 이하일 수 있으며, 보다 구체적으로 제1 막(131)의 두께(T131)는 8nm~25nm일 수 있다.
반사 방지층(133)의 두께(T133)는 제3 막(134)의 두께(T134)보다 크고 제2 막(132)의 두께(T132)보다 작은 범위에서, 한 예로 40nm 이하일 수 있으며, 보다 구체적으로, 제3 막(134)의 두께(T134)보다 크고 제2 막(132)의 두께(T132)보다 작은 범위에서 20nm~ 40nm일 수 있다.
이와 같은 절연층(130) 내의 각층의 두께는 위에서 설명한 것과는 다른 범위로 형성될 수도 있다.
도 1 내지 도 3에서는 제1 막(131)이 하나의 층으로 형성되는 경우를 예로 설명하였으나, 제1 막(131)은 밀도가 서로 다른 복수의 층으로 형성될 수도 있다. 이에 대해 보다 구체적으로 설명하면 다음과 같다.
도 4는 본 발명의 제2 실시 예에 따른 절연층(130)의 구조를 설명하기 위한 도이다.
도 4에서 도 3과 중복되는 부분에 대한 설명은 도 3에 대한 설명으로 대체하고, 다른 부분을 위주로 설명한다.
도 4에 도시된 바와 같이, 본 발명의 제2 실시 예에 따른 절연층(130)의 제1 막(131)은 고밀도층(131H)과 저밀도층(131L)을 구비할 수 있다.
고밀도층(131H)은 반도체 기판(110)에 인접하여 위치하고 제1 밀도를 가지며, 저밀도층(131L)은 고밀도층(131H) 위에 위치하고 제1 밀도보다 낮은 제2 밀도를 가질 수 있다.
여기서, 고밀도층(131H)은 한 예로 SiO2를 포함하고, 저밀도층(131L)은 한 예로 SiOx를 포함할 수 있다. 그러나 반드시 이에 한정되는 것은 아니다. 다른 예로, 고밀도층(131H)은 SiO2를 포함하고, 저밀도층(131L)은 SiOxNy를 포함할 수도 있다.
이와 같이, 고밀도층(131H)과 저밀도층(131L)로 제1 막(131)을 형성하면, 도 3에 도시한 절연층에 비해 제1 막(131)의 두께(T131)를 더 두껍게 할 수 있다. 따라서, 도 3에 도시한 절연층에 비해 제1 막(131)의 밴드갭을 더욱 증가시킬 수 있어, 반도체 기판(110)에서 생성된 캐리어가 자외선(UV)에 의해 여기되더라도, 여기된 캐리어가 제1 막(131)의 밴드갭을 점핑하여 제2 막(132)이나 반사 방지층(133)으로 이동하는 것을 보다 확실하게 효과적으로 방지할 수 있으며, 태양전지의 개방 전압(Voc)를 더 향상시킬 수 있다.
제1 막(131)의 두께(T131)가 얇은 경우, 원하는 수준의 밴드갭을 확보하지 못할 수 있다. 그러나, 제1 막(131)의 특성상 두께가 두꺼워질수록 밴드갭이 증가하는 특성을 갖는다. 따라서, 제1 막(131)을 고밀도층(131H)과 저밀도층(131L)으로 형성하여 제1 막(131)의 두께(T131)를 도 3의 실시예에 비해 증가시키면 자외선(UV)에 의해 여기되는 캐리어의 양이 증가하더라도, 여기된 캐리어가 제1 막(131)의 밴드갭을 점핑하여 제2 막(132)이나 반사 방지층(133)으로 이동하는 것을 보다 확실하게 블로킹(blocking)할 수 있다. 따라서, 자외선(UV)에 의해 절연층(130)이 열화(degradation)되는 것을 방지할 수 있다.
그리고, 제1 막(131)을 하나의 층으로만 형성하는 경우, 반도체 기판(110)에 대한 패시베이션 기능이 상대적으로 저하될 수 있으나, 제2 실시 예와 같이, 제1 막(131)을 고밀도층(131H)과 저밀도층(131L)으로 구성하면, 전술한 바와 같은 자외선(UV)에 의한 열화를 방지하면서도 고품질의 패시베이션 성능을 가지도록 할 수 있다.
그리고, 제1 막(131)을 복수의 층으로 형성하되, 고밀도층(131H)과 저밀도층(131L)으로 구성하면, 제1 막(131)을 하나의 고밀도층으로만 두껍게 형성하는 것보다 상대적으로 제1 막(131)의 제조 시간을 단축시킬 수 있고, 제1 막(131)의 안정성을 더욱 높일 수 있다.
즉, 고밀도층(131H)은 퍼니스(Furnace) 내에서 Thermal oxidation 방법으로 형성할 수 있는데, Thermal oxidation 방법은 저밀도층(131L)의 형성 방법에 비하여 상대적으로 고온 열처리 상태에서 층을 형성하기 때문에 층의 성장 속도가 저밀도층의 형성 방법에 비해 상대적으로 낮다. 하지만, 저밀도층에 비해 상대적으로 고밀도인 제1 밀도로 형성되어, 층의 안정성이 높을 수 있다.
저밀도층(131L)은 플라즈마 화학 기상 증착법(PECVD)으로 형성될 수 있는데, 플라즈마 화학 기상 증착법은 고밀도층(131H)의 형성 방법에 비해 상대적으로 저온 열처리 상태에서 층을 형성하기 때문에 층의 성장 속도가 고밀도층의 형성 방법에 비해 상대적으로 빠르다. 하지만, 저밀도층(131L)은 고밀도층(131H)의 제1 밀도보다 상대적으로 낮은 제2 밀도로 형성될 수 있다.
이와 같이, 제1 막(131)을 고밀도층(131H)과 저밀도층(131L)으로 형성하면, 제1 막(131)의 기능을 보다 강화시키면서, 제1 막(131)의 안정성을 충분히 확보할 수 있고, 제1 막(131)을 고밀도층으로만 형성하는 경우에 비해 제조 시간을 단축시킬 수 있다.
즉, 제1 막(131)을 고밀도층(131H)으로만 두껍게 형성하면, 제1 막(131)의 기능이나 안정성이 충분히 확보되지만, 제1 막(131)을 제조하는 공정 시간이 지나치게 길어질 수 있다.
또, 제1 막(131)을 저밀도층(131L)으로만 두껍게 형성하면, 제1 막(131)을 제조하는 공정 시간을 단축시킬 수 있지만, 제1 막(131)의 기능이 상대적으로 저하되어, 태양전지의 효율이 저하될 수 있다.
이와 같은 점을 고려하여, 본 발명은 제1 막(131)을 고밀도층(131H)과 저밀도층(131L)으로 형성하여, 제1 막(131)의 기능을 보다 강화시키면서, 제1 막(131)의 안정성을 충분히 확보할 수 있고, 제1 막(131)을 고밀도층으로만 두껍게 형성하는 경우에 비해 제조 시간을 단축시킬 수 있다.
더불어, 고밀도층(131H)을 저밀도층(131L)보다 반도체 기판(110)에 더 인접하여 형성하는 이유는 저밀도층(131L)에 비해 상대적으로 밀도가 높은 고밀도층(131H)이 반도체 기판(110)에 더 인접해야, 제1 막(131)의 기능이 보다 충분히 발휘될 수 있고, 제1 막(131)의 안정성을 보다 높일 수 있으며, 플라즈마 화학 기상 증착법(PECVD)으로 형성되는 저밀도층(131L)이 고밀도 층 위에 위치하도록 함으로써, 플라즈마 화학 기상 증착법(PECVD)으로 형성되는 제2 막(132)에 대한 후속 공정을 용이하게 수행할 수 있어, 절연층(130)의 제조 공정을 보다 용이하게 할 수 있고, 절연층(130) 제조 공정에 대한 전체적인 제조 시간을 보다 단축할 수 있기 때문이다.
더불어, 플라즈마 화학 기상 증착법(PECVD)으로 형성되는 저밀도층(131L)이 형성된 이후, 저밀도층(131L) 위에 수소의 함유량이 많은 제2 막(132)이 형성될 수 있는데, 이 경우, 제2 막(132)이 형성되는 공정 중에 제2 막(132)에 다량 함유된 수소의 일부가 제1 막(131)을 통과하여 반도체 기판(110) 쪽으로 이동함으로써, 반도체 기판(110)의 결함(defect)이 형성된 부분에 실리콘-수소(Si-H) 결합을 형성하고, 이에 따라 반도체 기판(110)의 결함을 제거할 수 있다. 따라서, 반도체 기판(110)을 효과적으로 패시베이션할 수 있다.
제2 막(132) 형성 공정 중 어닐링 공정이 수행될 수 있는데, 어닐링 공정 중 실리콘-수소(Si-H) 결합이 깨질 수 있고, 이때 깨진 수소(H)는 반도체 기판(110)의 반대 방향으로 out-diffusion 될 수 있다. 이때, 플라즈마 화학 기상 증착법(PECVD)으로 형성되는 저밀도층(131L)이 수소(H)의 out-diffusion을 방지할 수 있다.
이와 같이, 본 발명은 제1 막(131)을 고밀도층(131H)과 저밀도층(131L)으로 형성하여, 태양전지의 효율을 보다 향상시키면서 제조 방법을 보다 단순화시킬 수 있다.
여기서, 고밀도층(131H) 및 저밀도층(131L)을 합한 제1 막(131)의 두께(T131)는 한 예로, 제3 막(134)의 두께(T134)보다는 크고 제2 막(132)의 두께(T132)보다는 작은 범위에서 40nm 이하일 수 있으며, 보다 구체적으로, 고밀도층(131H) 및 저밀도층(131L)을 합한 제1 막(131)의 두께(T131)는 8nm~25nm일 수 있다.
고밀도층(131H)의 두께(T131H)는 5nm~10nm, 한 예로, 5nm~7nm일 수 있고, 저밀도층(131L)의 두께(T131L)는 2nm~15nm, 한 예로, 5nm~13nm일 수 있다.
도 5는 본 발명의 제1 실시 예에 따른 절연층(130)의 패시베이션 효과와 본 발명의 제2 실시 예에 따른 절연층(130)의 패시베이션 효과를 비교 설명하기 위한 도이다.
도 5에 도시된 그래프는 본 발명의 실시 예에 따른 절연층(130)의 패시베이션 효과를 확인하기 위해, 태양전지의 추정 개방 전압(implied-Voc, iVoc)을 시뮬레이션하여 비교한 것이다.
여기서, 실시 예 1-1은 도 3에 도시된 본 발명의 제1 실시 예에 따른 절연층(130)과 같이, 제1 막(131)을 퍼니스(furnace) 내에서 Thermal oxidation 방법을 이용하여 단층으로 형성한 경우의 추정 개방 전압(iVoc)을 나타낸다. 그리고 실시 예 1-2는 제1 막(131)을 플라즈마 화학 기상 증착법(PECVD) 방법을 이용하여 단층으로 형성한 경우의 추정 개방 전압(iVoc)을 나타낸다. 그리고 실시 예 2는 도 4에 도시된 본 발명의 제2 실시 예에 따른 절연층(130)과 같이, 제1 막(131)이 Thermal oxidation 방법을 이용한 고밀도층(131H)과 플라즈마 화학 기상 증착법(PECVD)을 이용한 저밀도층(131L)을 구비한 경우의 추정 개방 전압(iVoc)을 나타낸다.
도 5에 따르면, 실시 예 1-1 및 실시 예 1-2보다 실시 예 2의 경우가 추정 개방 전압이 더 높은 것을 확인할 수 있다.
이에 따르면, 본 발명의 실시 예 2에 따른 제1 막(131)이 본 발명의 실시 예 1에 따른 제1 막(131)보다 더 나은 기능을 가지는 것을 확인할 수 있다.
또한, 본 발명의 실시 예 2에 따른 제1 막(131)의 패시베이션 기능이 본 발명의 실시 예 1에 따른 제1 막(131)의 패시베이션 기능보다 나은 것을 확인할 수 있다.
도 6은 본 발명의 제2 실시 예에 따른 절연층(130)의 반사율을 설명하기 위한 도이다.
도 6에서 비교예는 본 발명의 제1, 2 실시 예와는 다르게, 절연층(130) 내에서 반사 방지층(133)과 제2 막(132)의 적층 순서가 뒤바뀐 경우[즉 절연층(130)이 반도체 기판(110)으로부터 제1 막(131), 반사 방지층(133), 제2 막(132), 제3 막(134)으로 형성된 경우]에 대한 반사율을 도시한 것이다. 그리고 실시 예 2-1은 본 발명의 제2 실시 예에서 제1 막(131)의 고밀도층(131H)이 6nm, 저밀도층(131L)이 5nm로 형성된 경우의 반사율을 도시한 것이다. 그리고 실시 예 2-2는 본 발명의 제2 실시 예에서 제1 막(131)의 고밀도층(131H)이 6nm, 저밀도층(131L)이 10nm로 형성된 경우에 대한 반사율을 도시한 것이다.
실시 예 2-1의 경우, 가시광선의 파장 대역 중에서 400nm~600nm의 범위에서는 반사율이 비교예보다 더 좋게 형성되며, 나머지 파장 대역인 600nm~1100nm의 범위에서는 비교예와 비슷한 반사율을 갖는 것을 확인할 수 있다.
실시 예 2-2의 경우, 400nm~600nm의 범위에서는 반사율이 비교예와 비슷한 수준을 유지하며, 600nm~1100nm의 범위에서는 비교예보다 더 좋게 형성되는 것을 확인할 수 있다.
이와 같이 본 발명의 제2 실시 예에 따른 절연층(130)의 경우, 전반적으로 비교예보다 더 좋은 반사율을 갖는 것을 확인할 수 있다.
도 7은 본 발명의 제2 실시 예에 따른 절연층(130)을 구비한 태양전지의 출력 및 효율을 설명하기 위한 도이다.
도 7은 본 발명의 절연층(130)에 대한 실시 예 1 및 실시 예 2에 따른 효율 및 출력을 비교한 그래프이다.
여기서, 실시 예 1은 도 3에 도시한 절연층(130)의 제1 막(131)이 Thermal oxidation 방법으로 6nm의 두께로 형성된 대한 태양전지의 효율 및 출력 전력을 도시한 것이고, 실시 예 2-1은 도 4에 도시한 절연층(130)의 제1 막(131)의 고밀도층(131H)이 6nm, 저밀도층(131L)이 5nm로 형성된 경우에 대한 태양전지의 효율 및 출력 전력을 도시한 것이고, 실시 예 2-2는 본도 4에 도시한 절연층(130)의 제1 막(131)의 고밀도층(131H)이 6nm, 저밀도층(131L)이 10nm로 형성된 경우에 대한 태양전지의 효율 및 출력 전력을 도시한 것이다.
도 7에 도시된 바와 같이, 실시 예 1의 경우, 실시 예 2-1 및 실시 예 2-2와 비교하여 상대적으로 효율과 출력 전력이 낮은 것을 확인할 수 있으며, 실시 예 2-1 및 실시 예 2-2의 경우, 실시 예 1보다는 상대적으로 효율과 출력 전력이 높은 것을 확인할 수 있으며, 실시 예 2-1 및 실시 예 2-2 사이의 수치 변화는 미미한 것을 확인할 수 있다.
이와 같이, 제1 막(131)을 하나의 층으로 형성하는 것보다는 제1 막(131)을 고밀도층(131H)과 저밀도층(131L)을 혼합하여 구비하는 경우, 전반적으로 태양전지의 효율이 향상되는 것을 확인할 수 있다.
지금까지는 본 발명의 제1, 2 실시 예에 따른 절연층(130)의 구조에 대해서만 설명하였으나, 이하에서는 이와 같은 절연층(130)의 형성 방법을 설명한다.
도 8은 본 발명의 한 예에 따른 태양전지 제조 방법을 설명하기 위한 도이다.
도 8에서는 본 발명의 한 예에 따른 태양전지 제조 방법 중 절연층(130)의 형성 방법을 위주로 설명하되, 본 발명의 제2 실시 예에 따른 절연층(130)을 형성하는 방법을 예로 들어 설명한다.
본 발명의 한 예에 따른 태양전지 제조 방법은 도 8에 도시된 바와 같이, 도전형 영역 형성 단계(S1) 및 절연층 형성 단계(S2+S3+S4+S5)를 포함하고, 절연층 형성 단계(S2+S3+S4+S5)는 제1 막 형성 단계(S2), 제2 막 형성 단계(S3), 반사 방지층 형성 단계(S4) 및 제3 막 형성 단계(S5)를 포함할 수 있다.
반도체 기판(110) 위에 절연층(130)이 형성될 때, 반도체 기판(110)의 내부 또는 표면 위에 도전형 영역이 위치하는 경우, 절연층(130)은 도전형 영역 위에 형성될 수 있다.
도전형 영역 형성 단계(S1)에서는 반도체 기판(110)의 일면 또는 반대면 중 적어도 하나 위에 도전형 영역을 형성할 수 있다.
이와 같은 도전형 영역 형성 단계(S1)는 반도체 기판(110)의 표면 중 절연층(130)이 형성될 부분에 도전형 영역이 형성되는 경우에만 해당되고, 절연층(130)이 형성될 반도체 기판(110)의 표면에 도전형 영역이 형성되지 않는 경우에는 생략될 수 있다.
한 예로, 도 1 및 도 2에서와 같이 절연층(130)이 형성되는 반도체 기판(110)의 표면에 도전형 영역이 형성되는 경우, 절연층 형성 단계(S2+S3+S4+S5)는 도전형 영역이 형성된 이후에 형성될 수 있고, 만약, 도 1에 도시된 반도체 기판(110)의 전면에서 전면 전계부(171)가 생략되는 경우, 절연층 형성 단계(S2+S3+S4+S5)는 반도체 기판(110)의 전면 위에 직접 형성될 수 있다. 이와 같은 경우, 도전형 영역 형성 단계(S1)는 생략될 수 있다.
절연층 형성 단계(S2+S3+S4+S5)는 전술한 바와 같이, 제1 막 형성 단계(S2), 제2 막 형성 단계(S3), 반사 방지층 형성 단계(S4) 및 제3 막 형성 단계(S5)를 포함할 수 있다.
제1 막 형성 단계(S2)에서는 산소(O) 계열의 물질을 포함하는 제1 막(131)이 반도체 기판(110) 위에 형성될 수 있다. 반도체 기판(110)에 도전형 영역이 이미 형성된 경우, 제1 막(131)은 도전형 영역 위에 형성될 수 있고, 제1 막(131)이 형성되어야 할 반도체 기판(110)의 영역에 도전형 영역이 구비될 필요가 없는 경우, 제1 막(131)은 반도체 기판(110)의 표면에 직접 형성될 수 있다.
제1 막 형성 단계(S2)는 850℃ 이상의 열처리 온도에서 수행될 수 있으며, 제1 막은 40nm 이하의 두께로 형성될 수 있다.
제1 막 형성 단계(S2)는 고밀도층 형성 단계(S2a) 및 저밀도층 형성 단계(S2b)를 포함할 수 있다.
고밀도층 형성 단계(S2a)에서는 thermal Oxidation 방법에 의해 제1 밀도를 갖는 고밀도층(131H)이 반도체 기판(110) 위에 형성될 수 있다.
반도체 기판(110) 위에 도전형 영역이 구비된 경우에는 고밀도층(131H)이 도전형 영역 위에 형성될 수 있으며, 도전형 영역이 구비되지 않은 경우에는 고밀도층(131H)이 반도체 기판(110)의 표면에 직접 형성될 수 있다.
저밀도층 형성 단계(S2b)에서는 고밀도층(131H)의 제1 밀도보다 낮은 제2 밀도를 갖는 저밀도층(131L)이 플라즈마 화학 기상 증착법(PECVD)에 의해 고밀도층(131H) 위에 형성될 수 있다.
여기서, 고밀도층 형성 단계(S2a)와 저밀도층 형성 단계(S2b)는 반드시 모두 구비되어야만 하는 필수적인 것은 아니며, 고밀도층 형성 단계(S2a) 또는 저밀도층 형성 단계(S2b) 중 어느 하나의 단계만 구비되어도 무방하다. 그러나 고밀도층 형성 단계(S2a)와 저밀도층 형성 단계(S2b)가 모두 구비된 경우, 태양전지의 효율을 더욱 향상시킬 수 있으므로, 모두 구비한 경우를 한 예로 설명한다.
이후, 제2 막 형성 단계(S3)에서는 제1 막(131)의 저밀도층(131L) 위에 제2 막(132)이 형성될 수 있다. 제2 막(132)은 플라즈마 화학 기상 증착법(PECVD)으로 형성될 수 있다.
이후, 반사 방지층 형성 단계(S4)에서는 제2 막(132) 위에 반사 방지층(133)이 형성될 수 있다. 반사 방지층(133)은 플라즈마 화학 기상 증착법(PECVD)으로 형성될 수 있다.
이후, 제3 막 형성 단계(S5)에서는 실리콘(Si) 계열의 물질과 탄소(C) 계열의 물질을 포함하는 제3 막이 반사 방지층(133) 위에 형성될 수 있다. 제3 막(134)은 플라즈마 화학 기상 증착법(PECVD)으로 형성될 수 있다.
위에서는 제3 막(134), 반사 방지층(133), 제2 막(132) 및 제1 막(131)의 저밀도층(131L) 각각이 플라즈마 화학 기상 증착법(PECVD)으로 형성되는 경우를 한 예로 설명하였지만, 제3 막(134), 반사 방지층(133), 제2 막(132) 및 제1 막(131)의 저밀도층(131L) 각각은 플라즈마 화학 기상 증착법(PECVD)을 제외한 다른 종류의 화학 기상 증착법(CVD)으로 형성될 수도 있다.
상술한 바에 따른 특징, 구조, 효과 등은 본 발명의 적어도 하나의 실시 예에 포함되며, 반드시 하나의 실시 예에만 한정되는 것은 아니다. 나아가, 각 실시 예에서 예시된 특징, 구조, 효과 등은 실시 예들이 속하는 분야의 통상의 지식을 가지는 자에 의하여 다른 실시 예들에 대해서도 조합 또는 변형되어 실시 가능하다. 따라서 이러한 조합과 변형에 관계된 내용들은 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (20)

  1. 반도체 기판;
    상기 반도체 기판에 또는 상기 반도체 기판 위에 위치하고, 불순물을 포함하는 도전형 영역;
    상기 도전형 영역에 전기적으로 연결되는 전극; 및
    상기 반도체 기판의 일면 또는 반대면 중 적어도 하나 위에 위치하는 절연층을 포함하고,
    상기 절연층은
    상기 반도체 기판 위에 위치하고, 산소(O) 계열의 물질을 포함하는 제1 막;
    상기 제1 막 위에 위치하는 제2 막;
    상기 제2 막 위에 위치하는 반사 방지층; 및
    상기 반사 방지층 위에 위치하고, 실리콘(Si) 계열의 물질과 탄소(C) 계열의 물질을 포함하는 제3 막
    을 포함하고,
    상기 제1 막의 밴드갭은 상기 제2 막, 상기 반사 방지층 및 상기 제3 막 각각의 밴드갭보다 높은 태양전지.
  2. 제1항에서,
    상기 도전형 영역은 상기 반도체 기판의 일면 및 반대면 중 적어도 하나 위에 위치하고,
    상기 제1 막은 상기 도전형 영역 위에 위치하는 태양전지.
  3. 제1항에서,
    상기 제1 막의 밴드갭은 상기 제2 막, 상기 반사 방지층 및 상기 제3 막 각각의 밴드갭보다 높은 범위 내에서 8eV~10eV인 태양전지.
  4. 제1항에서,
    상기 제1 막은 SiOx, SiO2, SiOxNy, AlxOy, TixOy 또는 HfOx 중 적어도 하나의 물질을 포함하는 태양전지.
  5. 제1항에서,
    상기 제2 막은 수소를 함유하며, 상기 제2 막의 수소 함유량은 상기 제1 막, 상기 반사 방지층 및 상기 제3 막 각각의 수소 함유량보다 높은 태양전지.
  6. 제1항에서,
    상기 제2 막은 실리콘(Si) 계열의 물질을 포함하고, 질소(N) 계열의 물질 또는 산소(O) 계열 물질을 더 포함하는 태양전지.
  7. 제6항에서,
    상기 제2 막은 SiNx 또는 AlxOy을 포함하는 태양전지.
  8. 제1항에서,
    상기 반사 방지층은 실리콘(Si) 계열의 물질을 포함하고, 산소(O) 계열 또는 질소(N) 계열의 물질을 더 포함하는 태양전지.
  9. 제8항에서,
    상기 반사 방지층은 SiOx, SiOxNy 또는 SixNy 중 적어도 하나의 물질을 포함하는 태양전지.
  10. 제1항에서,
    400nm~1100nm의 파장 대역에 대한 상기 반사 방지층의 투과율은 상기 파장 대역에 대한 상기 제2 막의 투과율보다 높고 상기 파장 대역에 대한 상기 제1 막의 투과율보다는 낮은 태양전지.
  11. 제1항에서,
    상기 제3 막은 SixOyCz, SixCy 및 SixCyNz 중 적어도 하나의 물질을 포함하는 태양전지.
  12. 제1항에서,
    상기 제3 막의 굴절률은 상기 제2 막의 굴절률 및 상기 제1 막의 굴절률보다 높고, 2.2 이상이며,
    상기 제2 막의 굴절률은 상기 반사 방지층의 굴절률 및 상기 제1 막의 굴절률보다 높고, 1.9~2.2이고,
    상기 반사 방지층의 굴절률은 1.9 이하인 태양전지.
  13. 제1항에서,
    상기 제2 막의 두께는 상기 제1 막, 상기 반사 방지층 및 상기 제3 막 각각의 두께보다 크고, 50nm 이하이며,
    상기 제3 막의 두께는 상기 제1 막, 상기 반사 방지층 각각의 두께보다 작고, 20nm 이하이며,
    상기 제1 막의 두께는 상기 제3 막의 두께보다 크고, 8nm~25nm인 태양전지.
  14. 제1항에서,
    상기 제1 막은,
    상기 기판 위에 인접하여 위치하고 제1 밀도를 갖는 고밀도층과,
    상기 고밀도층 위에 위치하고 상기 제1 밀도보다 낮은 제2 밀도를 갖는 저밀도층을 구비하고,
    상기 고밀도층은 SiO2를 포함하고, 상기 저밀도층은 SiOxNy를 포함하는 태양전지.
  15. 제14항에서,
    상기 고밀도층의 두께는 5nm~10nm이고, 상기 저밀도층의 두께는 2nm~15nm인 태양전지.
  16. 제1항에서,
    상기 제1 막은 상기 절연층 중에서 상기 반도체 기판에 가장 인접하여 위치하고,
    상기 제3 막은 상기 절연층 중에서 최외곽층을 구성하는 태양전지.
  17. 제1항에서,
    상기 도전형 영역은 상기 반도체 기판의 후면 쪽에 위치하며 서로 다른 도전형을 가지는 제1 및 제2 도전형 영역을 포함하고,
    상기 절연층이 상기 반도체 기판의 전면 위에 위치하는 태양전지.
  18. 산소(O) 계열의 물질을 포함하는 제1 막을 반도체 기판 위에 형성하는 단계;
    상기 제1 막 위에 제2 막을 형성하는 단계;
    상기 제2 막 위에 반사 방지층을 형성하는 단계; 및
    실리콘(Si) 계열의 물질과 탄소(C) 계열의 물질을 포함하는 제3 막을 상기 반사 방지층 위에 형성하는 단계
    를 포함하는 태양전지 제조 방법.
  19. 제18항에서,
    상기 제1 막을 형성하는 단계는
    Oxidation 방법을 이용하여 상기 반도체 기판 위에 고밀도층을 형성하는 단계; 및
    플라즈마 화학 기상 증착법(Plasma-enhanced chemical vapor deposition, PECVD)을 이용하여 상기 고밀도층보다 낮은 밀도를 갖는 저밀도층을 상기 고밀도층 위에 형성하는 단계
    를 포함하는 태양전지 제조 방법.
  20. 제19항에서,
    상기 제3 막, 상기 반사 방지층, 및 상기 제2 막 각각은 플라즈마 화학 기상 증착법(PECVD)에 의해 형성되는 태양전지 제조 방법.
PCT/KR2020/003648 2019-04-25 2020-03-17 태양전지 및 그 제조 방법 WO2020218740A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0048783 2019-04-25
KR1020190048783A KR20200125068A (ko) 2019-04-25 2019-04-25 태양 전지 및 그 제조 방법

Publications (1)

Publication Number Publication Date
WO2020218740A1 true WO2020218740A1 (ko) 2020-10-29

Family

ID=72917375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/003648 WO2020218740A1 (ko) 2019-04-25 2020-03-17 태양전지 및 그 제조 방법

Country Status (3)

Country Link
US (1) US20200343391A1 (ko)
KR (1) KR20200125068A (ko)
WO (1) WO2020218740A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117766595A (zh) 2021-08-20 2024-03-26 上海晶科绿能企业管理有限公司 太阳能电池及光伏组件
CN115188834B (zh) 2021-09-10 2023-09-22 上海晶科绿能企业管理有限公司 太阳能电池及其制备方法、光伏组件
AU2022241631B1 (en) * 2022-08-05 2024-01-04 Jinko Solar Co., Ltd. Solar cell and photovoltaic module

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100269896A1 (en) * 2008-09-11 2010-10-28 Applied Materials, Inc. Microcrystalline silicon alloys for thin film and wafer based solar applications
KR20160076813A (ko) * 2014-12-23 2016-07-01 엘지전자 주식회사 태양 전지 모듈
KR20160097922A (ko) * 2015-02-10 2016-08-18 엘지전자 주식회사 태양 전지
KR20160097919A (ko) * 2015-02-10 2016-08-18 엘지전자 주식회사 태양 전지
KR20180127160A (ko) * 2017-05-19 2018-11-28 엘지전자 주식회사 태양 전지 및 이의 제조 방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8198528B2 (en) 2007-12-14 2012-06-12 Sunpower Corporation Anti-reflective coating with high optical absorption layer for backside contact solar cells

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100269896A1 (en) * 2008-09-11 2010-10-28 Applied Materials, Inc. Microcrystalline silicon alloys for thin film and wafer based solar applications
KR20160076813A (ko) * 2014-12-23 2016-07-01 엘지전자 주식회사 태양 전지 모듈
KR20160097922A (ko) * 2015-02-10 2016-08-18 엘지전자 주식회사 태양 전지
KR20160097919A (ko) * 2015-02-10 2016-08-18 엘지전자 주식회사 태양 전지
KR20180127160A (ko) * 2017-05-19 2018-11-28 엘지전자 주식회사 태양 전지 및 이의 제조 방법

Also Published As

Publication number Publication date
US20200343391A1 (en) 2020-10-29
KR20200125068A (ko) 2020-11-04

Similar Documents

Publication Publication Date Title
WO2020218740A1 (ko) 태양전지 및 그 제조 방법
WO2011136488A2 (en) Solar cell
WO2011053006A2 (en) Thin film solar cell module
WO2011065648A1 (en) Solar cell
WO2019017522A1 (ko) 페로브스카이트 태양전지 및 이를 포함하는 탬덤 태양전지
WO2010114294A2 (ko) 태양광 발전장치 및 이의 제조방법
WO2011027951A1 (en) Solar cell
WO2010101387A2 (en) Solar cell and method for manufacturing the same, and solar cell module
WO2010114313A2 (ko) 태양전지 및 이의 제조방법
WO2012169845A2 (ko) 태양전지 기판과 그 제조방법 및 이를 이용한 태양전지
WO2014084549A1 (ko) 에피택셜 웨이퍼, 이를 이용한 스위치 소자 및 발광 소자
WO2019216545A1 (ko) 텐덤 태양전지 및 이의 제조방법
WO2021015395A2 (ko) 태양 전지 및 이의 제조 방법
WO2011002210A2 (ko) 태양광 발전장치
WO2019050185A1 (ko) 태양전지 및 그 제조 방법
WO2023127991A1 (ko) 태양 전지 및 이의 제조 방법
WO2022186534A1 (ko) 태양 전지 및 그를 포함하는 태양 전지 모듈
WO2021177552A1 (ko) 태양 전지 및 이의 제조 방법
WO2011081239A1 (ko) 이종 접합 태양전지 및 그 제조방법
WO2012173350A2 (ko) 태양전지 모듈
WO2021010736A1 (ko) 태양광변환 소재, 이를 포함하는 태양전지용 봉지재 및 이를 포함하는 태양전지
WO2020218841A1 (ko) 태양 전지
WO2022059834A1 (ko) 광안정성이 향상된 양자점 태양전지 및 이의 제조방법
WO2023054786A1 (ko) 태양 전지 및 이의 제조 방법
WO2012091252A1 (ko) 전후면전계 태양전지 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20796210

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20796210

Country of ref document: EP

Kind code of ref document: A1