WO2020218624A1 - L体環状アミノ酸の製造方法 - Google Patents
L体環状アミノ酸の製造方法 Download PDFInfo
- Publication number
- WO2020218624A1 WO2020218624A1 PCT/JP2020/019517 JP2020019517W WO2020218624A1 WO 2020218624 A1 WO2020218624 A1 WO 2020218624A1 JP 2020019517 W JP2020019517 W JP 2020019517W WO 2020218624 A1 WO2020218624 A1 WO 2020218624A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- amino acid
- polypeptide
- cyclic amino
- formula
- seq
- Prior art date
Links
- 0 N*CC(C(O)=O)N Chemical compound N*CC(C(O)=O)N 0.000 description 2
- ONIBWKKTOPOVIA-BYPYZUCNSA-N OC([C@H]1NCCC1)=O Chemical compound OC([C@H]1NCCC1)=O ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 1
- HXEACLLIILLPRG-YFKPBYRVSA-N OC([C@H]1NCCCC1)=O Chemical compound OC([C@H]1NCCCC1)=O HXEACLLIILLPRG-YFKPBYRVSA-N 0.000 description 1
- OPFURXRZISKMJV-LURJTMIESA-N OC([C@H]1NCCCCC1)=O Chemical compound OC([C@H]1NCCCCC1)=O OPFURXRZISKMJV-LURJTMIESA-N 0.000 description 1
- JUNOWSHJELIDQP-BYPYZUCNSA-N OC([C@H]1NCCOC1)=O Chemical compound OC([C@H]1NCCOC1)=O JUNOWSHJELIDQP-BYPYZUCNSA-N 0.000 description 1
- JOKIQGQOKXGHDV-BYPYZUCNSA-N OC([C@H]1NCCSC1)=O Chemical compound OC([C@H]1NCCSC1)=O JOKIQGQOKXGHDV-BYPYZUCNSA-N 0.000 description 1
- DZLNHFMRPBPULJ-VKHMYHEASA-N OC([C@H]1NCSC1)=O Chemical compound OC([C@H]1NCSC1)=O DZLNHFMRPBPULJ-VKHMYHEASA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P13/00—Preparation of nitrogen-containing organic compounds
- C12P13/04—Alpha- or beta- amino acids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/70—Vectors or expression systems specially adapted for E. coli
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0012—Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7)
- C12N9/0026—Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on CH-NH groups of donors (1.5)
- C12N9/0028—Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on CH-NH groups of donors (1.5) with NAD or NADP as acceptor (1.5.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/1096—Transferases (2.) transferring nitrogenous groups (2.6)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P13/00—Preparation of nitrogen-containing organic compounds
- C12P13/04—Alpha- or beta- amino acids
- C12P13/24—Proline; Hydroxyproline; Histidine
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P17/00—Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
- C12P17/10—Nitrogen as only ring hetero atom
- C12P17/12—Nitrogen as only ring hetero atom containing a six-membered hetero ring
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P17/00—Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
- C12P17/14—Nitrogen or oxygen as hetero atom and at least one other diverse hetero ring atom in the same ring
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P41/00—Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture
- C12P41/002—Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture by oxidation/reduction reactions
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P41/00—Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture
- C12P41/006—Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture by reactions involving C-N bonds, e.g. nitriles, amides, hydantoins, carbamates, lactames, transamination reactions, or keto group formation from racemic mixtures
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y105/00—Oxidoreductases acting on the CH-NH group of donors (1.5)
- C12Y105/01—Oxidoreductases acting on the CH-NH group of donors (1.5) with NAD+ or NADP+ as acceptor (1.5.1)
- C12Y105/01001—Pyrroline-2-carboxylate reductase (1.5.1.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y105/00—Oxidoreductases acting on the CH-NH group of donors (1.5)
- C12Y105/01—Oxidoreductases acting on the CH-NH group of donors (1.5) with NAD+ or NADP+ as acceptor (1.5.1)
- C12Y105/01021—DELTA1-piperideine-2-carboxylate reductase (1.5.1.21)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y206/00—Transferases transferring nitrogenous groups (2.6)
- C12Y206/01—Transaminases (2.6.1)
-
- C—CHEMISTRY; METALLURGY
- C40—COMBINATORIAL TECHNOLOGY
- C40B—COMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
- C40B40/00—Libraries per se, e.g. arrays, mixtures
- C40B40/04—Libraries containing only organic compounds
- C40B40/06—Libraries containing nucleotides or polynucleotides, or derivatives thereof
- C40B40/08—Libraries containing RNA or DNA which encodes proteins, e.g. gene libraries
Definitions
- the present invention relates to a method for producing an L-form cyclic amino acid, which is industrially useful.
- the L-form cyclic amino acid is a useful substance as a pharmaceutical intermediate raw material such as a thrombin inhibitor, an HIV protease inhibitor, an NMDA receptor antagonist, a TNF- ⁇ converting enzyme inhibitor, angiotensin converting enzyme inhibitor, and an anti-inflammatory agent.
- L-form cyclic amino acid examples include 5-membered ring amino acids such as L-proline and L-hydroxyproline as shown in the following chemical formula, and L-Pipecolic acid.
- Amino acids such as 6-membered ring amino acids and 4-membered ring amino acids such as azetidine-2-carboxylic acid are known.
- heterocyclic L-thioproline (L-Thioproline), L-morpholine carboxylic acid (L-3-Morpholine carboxylic acid), L-thiomorpholine carboxylic acid (L-3-Thiomor pholine carboxylic acid), etc. are also available. It is known as a useful substance as a pharmaceutical intermediate raw material.
- Non-Patent Document 1 As a method for organically producing L-form cyclic amino acids, a method for producing pipecolic acid by Garcia et al. (Non-Patent Document 1) is known. However, it cannot be said that these methods are industrially practical in terms of both optical purity and yield.
- Non-Patent Document 2 L-pipecolic acid (L-pipecolic acid) from L-lysine using pyrroline-5-carboxylic acid reductase (EC 1.5.1.2) is used.
- Non-Patent Document 3 a method for producing L-proline from L-ornithine using ornithine cyclodeaminase
- Patent Document 1 a method for producing various cyclic amino acids from various diamino acids using ornithine cyclodeaminase.
- Non-Patent Document 2 Methods reported by Fujii et al. (Non-Patent Document 2), using the L-lysine 6-aminotransferase in L- lysine, to produce a ⁇ 1 -piperidine-6-carboxylic acid as an intermediate, a further reductase thereto Although it is contacted to obtain L-pipecolic acid, this method can be applied only when the raw material is L-lysine, and cannot be applied to the production of other L-form cyclic amino acids.
- Patent Document 1 described L-pipecolic acid, L-Thiomorpholine-2-carboxylic acid, and 5-hydroxy-L using Ornithine Cyclase. -Although a method for obtaining pipecolic acid (5-hydroxy-L-pipecolic acid) has been reported, there is no description about yield or optical purity.
- the optical purity of the L-form cyclic amino acid as a product depends on the optical purity of the raw material amino acid, and it is considered difficult to obtain the L-form cyclic amino acid from the racemic raw material with high efficiency. Is done.
- the method of passing through a cyclic amino acid having a double bond at the 1-position as an intermediate is industrially advantageous because a racemic cyclic amino acid or a diamino acid can be used as a raw material.
- an enzyme that reduces a cyclic amino acid having a double bond at the 1-position for example, an animal-derived or mold-derived pyrrolin-2-carboxylate reductase (EC 1.5.1.1) is used.
- delta 1 - pyrroline-2-carboxylic acid ⁇ 1 -pyrroline-2-carboxylic acid
- proline is reduced to produce a and delta 1 - piperidine-2-carboxylic acid ( ⁇ 1 -piperidine-2-carboxylic acid)
- pipecolic acid is produced by reducing the above (Non-Patent Document 4).
- Patent Document 2 a cyclic amino acid having a double bond at the 1-position as an intermediate is obtained from a diamino acid or a racemic cyclic amino acid, and this is used as an N-methyl-L-amino acid dehydrogenase derived from Pseudomonas spp. It is described that it is reduced to produce an L-form cyclic amino acid.
- This method is intended to provide a method for producing an inexpensive and high-purity L-form cyclic amino acid, but in order to put it into practical use industrially, it is possible to produce an L-form cyclic amino acid with higher efficiency. It has been demanded.
- An object of the present invention is to provide a method for industrially producing a high-purity L-form cyclic amino acid from a cyclic amino acid having a double bond at the 1-position at a lower cost and with high efficiency. Furthermore, the present invention obtains a cyclic amino acid having a double bond at the 1-position as an intermediate from an inexpensive diamino acid, and reduces this by a biochemical method to obtain a high-purity L-form cyclic amino acid. An object of the present invention is to provide a method for industrially manufacturing at low cost and with high efficiency.
- an enzyme that is enzymatically stable and has high catalytic performance it is an imino acid reductase having catalytic performance of reducing a cyclic amino acid having a double bond at the 1-position to produce an L-form cyclic amino acid. It is considered that the above problems can be solved and a high-purity L-form cyclic amino acid can be industrially produced at a lower cost and with high efficiency.
- the imino acid reductase derived from white-spotted josuna, hama pea or quail has a cyclic amino acid having a double bond at the 1-position with higher catalytic efficiency than known enzymes. I found that I would give back.
- the cyclic amino acid having a double bond at the 1-position can be efficiently produced from an inexpensive diamino acid using a known enzyme. Therefore, by combining a method for producing a cyclic amino acid having a double bond at the 1-position from a diamino acid and a method for reducing a cyclic amino acid having a double bond at the 1-position with high catalytic efficiency, an inexpensive diamino acid can be used as a pharmaceutical. It has been found that a high-purity L-form cyclic amino acid useful as an intermediate raw material can be industrially produced at a lower cost and with high efficiency.
- the present invention has been accomplished based on these findings. That is, the present invention is as follows.
- A has a chain length of 1 to 4 atoms, and may contain at least one heteroatom selected from the group consisting of sulfur atoms, oxygen atoms, and nitrogen atoms in the chain or at the end. Indicates an alkylene chain that may have a substituent.
- a cell, a processed product of the microorganism or cell, and / or a culture solution containing the polypeptide obtained by culturing the microorganism or cell are brought into contact with each other, and the following general formula (II):
- a method for producing an L-form cyclic amino acid which comprises producing an L-form cyclic amino acid represented by.
- B An amino acid sequence in which one or more amino acids are deleted, substituted and / or added in the amino acid sequence shown in SEQ ID NO: 2, 4, 6, 8, 10 or 12, and the following formula (1)
- A has a chain length of 1 to 4 atoms, and may contain at least one heteroatom selected from the group consisting of sulfur atoms, oxygen atoms, and nitrogen atoms in the chain or at the end. Indicates an alkylene chain that may have a substituent.
- the chain ⁇ , ⁇ -diamino acid represented by is reacted with an enzyme capable of converting the ⁇ -position amino group of the diamino acid into a keto group to produce ⁇ -keto acid, and the following general formula (I):
- a method for producing an L-form cyclic amino acid which comprises producing an L-form cyclic amino acid represented by.
- Enzymes capable of converting the ⁇ -position amino group of a diamino acid into a keto group to produce ⁇ -ketoic acid are D-amino acid oxidase, L-amino acid oxidase, D-amino acid dehydrogenase, L-amino acid dehydrogenase, and D.
- the general formula cyclic amino acid having a double bond in the 1-position of the formula (I) is delta 1 - piperidin-2-carboxylic acid, L body cyclic amino acid represented by the general formula (II)
- A has a chain length of 1 to 4 atoms, and may contain at least one heteroatom selected from the group consisting of sulfur atoms, oxygen atoms, and nitrogen atoms in the chain or at the end.
- An alkylene chain which may have a substituent is shown.
- nucleic acid encoding the polypeptide according to [6].
- nucleic acid is derived from a plant.
- nucleic acid according to [8] wherein the plant is mulberry or pea.
- nucleic acid according to any one of [7] to [9], wherein the nucleic acid is one shown in (d), (e) or (f) below:
- D Nucleic acid containing the base sequence represented by SEQ ID NO: 3, 5, 7, 9 or 11;
- E In the base sequence represented by SEQ ID NO: 1, 3, 5, 7, 9 or 11, one or more bases are substituted, deleted and / or added, and the above formula Nucleic acid encoding a polypeptide capable of producing an L-form cyclic amino acid that catalyzes the reaction shown in (1); or (f) a complementary strand of the base sequence represented by SEQ ID NO: 1, 3, 5, 7, 9 or 11.
- A has a chain length of 1 to 4 atoms, and may contain at least one heteroatom selected from the group consisting of sulfur atoms, oxygen atoms, and nitrogen atoms in the chain or at the end. Indicates an alkylene chain that may have a substituent.
- Enzyme composition having the ability to produce L-form cyclic amino acids represented by: (A) A polypeptide having the amino acid sequence shown in SEQ ID NO: 2, 4, 6, 8, 10 or 12; (B) An amino acid sequence in which one or more amino acids are deleted, substituted and / or added in the amino acid sequence shown in SEQ ID NO: 2, 4, 6, 8, 10 or 12, and the following formula (1) A polypeptide capable of producing L-form cyclic amino acids that catalyzes the reaction shown in
- Or (C) has an amino acid sequence having 90% or more sequence identity with the amino acid sequence shown in SEQ ID NO: 2, 4, 6, 8, 10 or 12.
- an enzyme having catalytic performance for reducing a cyclic amino acid having a double bond at the 1-position to produce an L-form cyclic amino acid, which is enzymatically stable and has high catalytic performance is used.
- high-purity L-form cyclic amino acids can be industrially produced at low cost and with high efficiency.
- a method of producing a cyclic amino acid having a double bond at the 1-position from a diamino acid and a method of reducing a cyclic amino acid having a double bond at the 1-position with high catalytic efficiency a drug can be obtained from an inexpensive diamino acid.
- High-purity L-form cyclic amino acids useful as intermediate raw materials can be industrially produced at low cost and with high efficiency.
- A has a chain length of 1 to 4 atoms and is at least one hetero selected from the group consisting of sulfur atoms, oxygen atoms and nitrogen atoms. Indicates an alkylene chain which may contain an atom in the chain or at the end and may have a substituent.
- alkylene chain for example, -CH 2 -, - C 2 H 4 -, - C 3 H 6 -, - C 2 H 3 CH 3 -, - C 4 H 8 -, - C 3 H 5 CH 3 - , -CH 2 CHCH 3 CH 2- and the like
- linear or branched alkylene chains having 1 to 4 carbon atoms can be mentioned.
- a linear alkylene chain having 2 to 4 carbon atoms capable of forming a 5-membered ring, a 6-membered ring, or a 7-membered ring L-form cyclic amino acid is preferable.
- A when A has 2 carbon atoms, it is a 5-membered ring amino acid such as L-proline, when it has 3 carbon atoms, it is a 6-membered ring amino acid such as L-pipecolic acid, and when it has 4 carbon atoms. Seven-membered ring amino acids such as azepane-2-carboxylic acid are formed. The chemical formulas of these compounds are shown below.
- the alkylene chain may contain heteroatoms such as sulfur atom, oxygen atom and nitrogen atom in the chain or at the end.
- a heterocycle is formed by the alkylene chain containing these hetero atoms.
- the alkylene chain may contain one or more heteroatoms such as sulfur atoms, oxygen atoms, and nitrogen atoms, or one or more heteroatoms.
- the number of heteroatoms contained is preferably 1 to 3.
- the alkylene chain containing hetero atoms for example, -CHOHCH 2 -, - CH 2 CHOHCH 2 -, - SCH 2 -, - SC 2 H 4 -, - SC 3 H 6 -, - OCH 2 -, - OC 2 H 4 -, - OC 3 H 6 -, - NHCH 2 -, - NHC 2 H 4 -, - NHC 3 H 6 -, - NHCH 2 CHCOOH -, - C 2 H 4 NHCO -, - C 2 H 4 NHCO -, - C 2 H 4 NHCN -, - C 2 H 4 CHCOOH -, - SCH 2 CHCOOH -, - SC 2 H 4 CHCOOH -, - NHCHCOOHCH 2 - and the like.
- the L-form cyclic amino acids include thioproline, 3-thiomorpholincarboxylic acid, and [1,4] thiazepan-3-carboxylic acid ([1,4] thiazepane-3-). Carboxylic acid) and the like.
- examples of the L-form cyclic amino acid include 4-oxazolidinecarboxylic acid and 3-morpholincarboxylic acid.
- examples of the L-form cyclic amino acid include piperazine-2-carboxylic acid. The chemical formulas of these compounds are shown below.
- the alkylene chain or the alkylene chain containing a hetero atom may have a substituent.
- the substituent is not particularly limited as long as it does not adversely affect the reaction. Specifically, but not limited to, an alkyl group having 1 to 4 carbon atoms, an aryl group having 6 to 12 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a carboxyl group, a halogen group, a cyano group, an amino group, and a nitro group. , A hydroxyl group and the like, preferably a hydroxyl group.
- Examples of the L-form cyclic amino acid containing a substituent include hydroxyproline and hydroxypipechoric acid. These chemical formulas are shown below.
- a linear alkylene chain having 2 to 4 carbon atoms is preferable, and a linear alkylene chain having 3 carbon atoms is particularly preferable.
- the imino acid reductase used in the present invention is an enzyme that catalyzes the reaction represented by the following formula (1).
- the enzyme that catalyzes the reaction represented by the general formula (I) is a cyclic amino acid having a double bond at the 1-position represented by the general formula (I), and an imino acid reductase (polypeptide).
- a microorganism or cell having the ability to produce a polypeptide or containing the polypeptide, a processed product of the microorganism or cell, and / or a culture solution containing the polypeptide obtained by culturing the microorganism or cell are brought into contact with each other. It means an enzyme having the ability to produce an L-form cyclic amino acid represented by the above general formula (II).
- Whether or not it has "the ability to generate an L-form cyclic amino acid represented by the general formula (II) from a cyclic amino acid having a double bond at the 1-position represented by the general formula (I)" is determined, for example, ⁇ . 1 - piperidine-2-carboxylic acid containing as a substrate, in yet NAD (P) + or NAD (P) reaction system containing H as a coenzyme, delta 1 - piperidine-2-carboxylic acid, subject to the measurement and enzyme is allowed to act for, delta 1 - the amount of piperidine-2-carboxylic acid the reduced generated L- pipecolic acid can be confirmed by directly measuring.
- the contact method is not particularly limited, and for example, a cyclic amino acid having a double bond at the 1-position represented by the above general formula (I) is added to a liquid containing iminoic acid reductase, and an appropriate temperature (for example, 10 ° C.) is added.
- the reaction may be carried out at ⁇ 45 ° C.) or pressure (for example, about atmospheric pressure).
- the reaction time is also within a range that can be appropriately set according to the enzyme type, target product, and the like.
- reaction (delta 1 represented by the following formula (2) - to produce a reduction to L- pipecolic acid piperidine-2-carboxylic acid ( ⁇ 1 -piperidine-2-carboxylic acid) reaction ) Is preferred.
- the iminoic acid reductase is, for example, reduced nicotinamide adenine nucleotide (NADH) or reduced nicotinamide adenine dinucleotide phosphate (NADPH) (hereinafter, both are collectively abbreviated as "NAD (P) H").
- NADH reduced nicotinamide adenine nucleotide
- NADPH reduced nicotinamide adenine dinucleotide phosphate
- P nicotinamide adenine dinucleotide phosphate
- Such iminoic acid reductase is, for example, a plant of the genus Rockcress (genus Arabidopsis) such as rockcress (Arabidopsis thaliana), Miyamahatazao, Hakusanhatazao, quail, Karayamagwa (Morusalba), genus Morus such as logwa. It can be obtained by extracting and purifying from a plant or a plant of the genus Lathyrus such as rockcress (Lathyrus japonicus), lathyrus, and sweet pea by a known method.
- an imino acid reductase derived from Arabidopsis thaliana, Karayamagwa or beach pea is particularly preferable.
- an imino acid reductase obtained by extracting and purifying from Arabidopsis thaliana, Karayamagwa or beach pea is preferable.
- the sequence of the imino acid reductase derived from Arabidopsis thaliana, Karayamagwa or beach pea has been clarified by the present invention, the imino acid reductase synthesized by a known method using the same sequence is also preferably used.
- Extraction of enzymes from plants is a general method for extracting plant enzymes (for example, Ikuzo Uritani, Kenji Shimura, Michinori Nakamura, Katsutoshi Funatsu, Biochemical Experimental Method 14) Secondary Metabolism Research Method for Higher Plants (1981) Society Publishing Center; Takeichi Horio, Nihei Yamashita, ed., Basic Experimental Method for Proteins and Enzymes (1981) Nanedo).
- a solid-liquid separation means such as filtration or centrifugation is applied to obtain a crude enzyme extract.
- a known separation / purification method can be applied to the purification of the target enzyme from the crude enzyme extract.
- a crude enzyme protein can be obtained from a crude enzyme extract by a sulfur salting out method, an organic solvent precipitation method, or the like, and further, a purified enzyme can be obtained by appropriately combining various chromatographys such as ion exchange, gel filtration, and affinity. it can.
- the imino acid reductase used in the present invention contains a polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 2, 4, 6, 8, 10 or 12, or has high identity with the amino acid sequence. It consists of an amino acid sequence having an amino acid sequence (hereinafter, may be referred to as "homolog of amino acid sequence") and contains a polypeptide having an ability to produce an L-form cyclic amino acid that catalyzes the reaction represented by the above formula (1) (hereinafter,). , "Homolog of imino acid reductase").
- polypeptides shown in (A), (B) or (C) below contains the polypeptides shown in (A), (B) or (C) below.
- B An amino acid sequence in which one or more amino acids are deleted, substituted and / or added in the amino acid sequence shown in SEQ ID NO: 2, 4, 6, 8, 10 or 12, and the following formula (1)
- the homologue of the imino acid reductase having the amino acid sequence shown in SEQ ID NO: 2, 4, 6, 8, 10 or 12 includes the polypeptide shown in the above-mentioned polypeptide (B) or (C).
- the polypeptide shown in (B) is an amino acid sequence in which one or more amino acids are deleted, substituted and / or added in the amino acid sequence shown in SEQ ID NO: 2, 4, 6, 8, 10 or 12. Moreover, it is a polypeptide having an ability to produce an L-form cyclic amino acid that catalyzes the reaction represented by the above formula (1).
- amino acid is conservatively substituted means substitution of amino acids having similar chemical properties, for example, substitution of a basic amino acid with a basic amino acid, or an acidic amino acid. Substitution with an acidic amino acid may be mentioned.
- the "1 to a plurality of amino acids” are usually 1 to 100, preferably 1 to 50, more preferably 1 to 20, still more preferably 1 to 10, and particularly preferably 1 to 1. It is 5, most preferably 1 to 3 amino acids.
- the polypeptide shown in (C) has an amino acid sequence having 90% or more sequence identity with the amino acid sequence shown in SEQ ID NO: 2, 4, 6, 8, 10 or 12, and is represented by the above formula (1). It is a polypeptide having the ability to produce L-form cyclic amino acids that catalyze the reaction.
- the amino acid sequence shown in SEQ ID NO: 2, 4, 6, 8, 10 or 12 and the total length are 80% or more, more preferably 90% or more, still more preferably 95% or more, particularly preferably 98% or more, most preferably.
- Is a polypeptide having an amino acid sequence having 99% or more sequence identity and having an activity of catalyzing the reaction represented by the above formula (1).
- NCBI BLAST National Center for Biotechnology Information Basic Local Alignment Search Tool
- Other algorithms for determining the homology of amino acid sequences include, for example, the algorithm described in Karlin et al., Proc. Natl. Acad. Sci. USA, 90: 5873-5877 (1993) [The algorithms are NBLAST and XBLAST.
- the imino acid reductase of the present invention can also be produced by culturing a transformant containing a nucleic acid encoding the imino acid reductase and separating and purifying the imino acid reductase from the obtained culture.
- the nucleic acid encoding the imino acid reductase of the present invention may be DNA, RNA, or a DNA / RNA chimera. DNA is preferably mentioned.
- the nucleic acid may be double-stranded or single-stranded. In the case of double strand, it may be double-stranded DNA, double-stranded RNA or a hybrid of DNA: RNA. In the case of a single strand, it may be either a sense strand (ie, coding strand) or an antisense strand (ie, non-coding strand).
- Examples of the DNA encoding the imino acid reductase of the present invention include synthetic DNA.
- a known kit for example, a full-length imino acid reductase cDNA directly amplified by Reverse Transcriptase-PCR using a total RNA or mRNA fraction prepared from cells or tissues derived from white mulberry, mulberry (Morus australis) or Hama pea as a template.
- MutanTM-super Express Km (TAKARA BIO INC.), MutanTM-K (TAKARA BIO INC.), Etc., according to known methods such as ODA-LA PCR method, Gapped duplex method, Kunkel method, or similar methods. It can be obtained by converting.
- the cloned cDNA is converted according to the above-mentioned method by colony or plaque hybridization method, PCR method, or the like. It can also be obtained by.
- the vector used for the library may be bacteriophage, plasmid, cosmid, phagemid or the like.
- the imino acid reductase of the present invention may be a fusion protein with an affinity polypeptide for the purpose of facilitating purification and maintaining the properties in a more preferable state.
- fusion proteins include fusions with known affinity polypeptides such as glutathione-S-transferase (GST), histidine tag, maltose binding protein (MBP), HA tag, FLAG tag, biotinylated peptide, and green fluorescent protein. Examples include proteins.
- GST glutathione-S-transferase
- MBP maltose binding protein
- HA tag HA tag
- FLAG tag FLAG tag
- biotinylated peptide and green fluorescent protein.
- proteins include proteins.
- Such a fusion protein can be obtained by affinity purification or the like.
- a fusion protein with GST is preferable.
- the polypeptide having the amino acid sequence shown in SEQ ID NO: 8, 10 or 12 is a fusion protein in which the polypeptide represented by the amino acid sequence shown in SEQ ID NO: 2, 4 or 6 and GST are fused, respectively.
- nucleic acid encoding the polypeptide having the amino acid sequence shown in SEQ ID NO: 2, 4, 6, 8, 10 or 12 the base sequence represented by SEQ ID NO: 1, 3, 5, 7, 9 or 11, respectively.
- Nucleic acids contained include. As long as it encodes a polypeptide having an activity of catalyzing the reaction represented by the formula (1), a nucleic acid containing a base sequence having high identity with the base sequence represented by SEQ ID NO: 1, 3, 5, 7, 9 or 11. (Hereinafter, it may be referred to as "nucleic acid homologue"). That is, examples of the nucleic acid encoding the polypeptide include those having the base sequence shown in the following (D), (E) or (F).
- one to a plurality of bases are deleted, substituted, inserted and / or added in the base sequence represented by SEQ ID NO: 1, 3, 5, 7, 9 or 11.
- Examples thereof include nucleic acids encoding a polypeptide having the above-mentioned base sequence and having an activity of catalyzing the reaction represented by the above formula (1).
- substitution, insertion or addition one in which one or more bases are substituted, inserted or added is preferable.
- the "1 to a plurality of bases” are, for example, 1 to 300, preferably 1 to 150, more preferably 1 to 60, still more preferably 1 to 30, particularly preferably. Is 1 to 15, most preferably 1 to 5 bases.
- the nucleotide sequences represented by SEQ ID NOs: 1, 3 and 5 are the nucleotide sequences of the imino acid reductase genes derived from white sardine, mulberry (Yamagwa), and beach pea, respectively, whose codons are optimized for Escherichia coli expression.
- the codon-optimized DNA according to the host to be transformed is also naturally included in the nucleic acid encoding the polypeptide having the activity of catalyzing the reaction represented by the above formula (1), which can be used in the present invention. Will be done.
- the homologue of the nucleic acid shown in (F) is a base sequence that hybridizes with the complementary strand of the base sequence represented by SEQ ID NO: 1, 3, 5, 7, 9 or 11 under stringent conditions.
- Examples thereof include nucleic acids encoding polypeptides having the ability to produce L-form cyclic amino acids that catalyze the reaction represented by the above formula (1).
- it is 80% or more, more preferably 90% or more, still more preferably 95% or more, still more preferably 98% or more, most preferably the base sequence represented by SEQ ID NO: 1, 3, 5, 7, 9 or 11.
- It is preferably a nucleic acid encoding a polypeptide having a base sequence having 99% or more homology (also referred to as identity) and having an activity of catalyzing the reaction represented by the above formula (1).
- the homology calculation algorithm NCBI BLAST National Center for Biotechnology Information Basic Local Alignment Search Tool
- the above-mentioned amino acid sequence homology calculation algorithm is similarly preferably exemplified.
- the nucleic acid homologue shown in (F) is represented by SEQ ID NO: 1, 3, 5, 7, 9 or 11 as long as it encodes a polypeptide having an activity of catalyzing the reaction represented by the above formula (1). It may be a nucleic acid that hybridizes with the complementary strand of the base sequence under stringent conditions.
- stringent condition can be appropriately set with reference to the previously reported conditions (example: Current Protocols in Molecular Biology, John Wiley & Sons, 6.3.16.3.6, 1999).
- Is for example, 60 ° C., 1xSSC, 0.1% SDS, preferably 0.1xSSC, 0.1% SDS, and more preferably 65 ° C., 0.1xSSC, 0.1% SDS, which are the usual washing conditions for Southern hybridization. At a salt concentration and temperature corresponding to 68 ° C., 0.1 x SSC, 0.1% SDS, etc. (high stringent conditions), washing once, more preferably 2-3 times, etc. can be mentioned.
- nucleic acids represented by SEQ ID NOs: 1, 3, 5, 7, 9 or 11 (Nucleic Acids Res.10, pp.6487 (1982), Methods in Enzymol.100. , pp.448 (1983), Molecular Cloning, PCR A Practical Approach IRL Press pp.200 (1991)), etc., and appropriately replace, delete, insert and / or add to introduce the desired mutation. This makes it possible to obtain a homologue of nucleic acid as described above.
- the nucleic acid of the present invention can encode a polypeptide having an activity of catalyzing the reaction represented by the above formula (1).
- the nucleic acid of the present invention has a base sequence having high identity with the base sequence shown in SEQ ID NO: 1, 3, 5, 7, 9 or 11 or the base sequence shown in SEQ ID NO: 1, 3, 5, 7, 9 or 11.
- the degree of L-form cyclic amino acid-producing ability of the iminoic acid reductase containing the polypeptide encoded by the nucleic acid is the polypeptide having the amino acid sequence shown in SEQ ID NO: 2, 4, 6, 8, 10 or 12.
- Amino acids shown in SEQ ID NO: 2, 4, 6, 8, 10 or 12 which may be quantitatively equivalent to those containing, or those containing a polypeptide having a homolog of the amino acid sequence, but within an acceptable range (eg, SEQ ID NO: 2, 4, 6, 8, 10 or 12).
- an acceptable range eg, SEQ ID NO: 2, 4, 6, 8, 10 or 12.
- amino acid sequence shown in SEQ ID NO: 2, 4, 6, 8, 10 or 12 or a part thereof, or the base sequence represented by SEQ ID NO: 1, 3, 5, 7, 9 or 11 or a part thereof may also be used.
- a homology search is performed on a database such as DNA Databank of JAPAN (DDBJ), and the amino acid sequence information of the polypeptide having the activity of catalyzing the reaction shown in the formula (1) or the base of the DNA encoding the same is performed. It is also possible to obtain sequence information.
- DDBJ DNA Databank of JAPAN
- the imino acid reductase may be directly used in the reaction represented by the above formula (1), but a microorganism or cell capable of producing the enzyme, the microorganism or cell. It is preferable to use the processed product of the above and / or a culture solution containing the enzyme obtained by culturing the microorganism or cell.
- the microorganism or cell having the ability to produce the imino acid reductase of the present invention the microorganism or cell originally having the ability to produce the imino acid reductase may be used, or the microorganism imparted with the production ability by breeding. Alternatively, it may be a cell. As the microorganism or cell, regardless of whether it is alive or dead, for example, a resting cell or the like can be preferably used. Examples of the type of microorganism or cell capable of producing the imino acid reductase of the present invention include those described later as "host microorganism" or "host cell".
- transformation As a means for imparting the production capacity by breeding, a known method such as gene recombination treatment (transformation) or mutation treatment can be adopted.
- the transformation method include a method of introducing a target DNA, a method of modifying an expression regulatory sequence such as a promoter on a chromosome, and a method of enhancing the expression of the target DNA.
- nucleic acid (DNA) encoding the polypeptide (imino acid reductase) of the present invention for example, chromosomal DNA derived from Shiroinu-nazuna, Karayamagwa or Hamaendo is used as a template, and PCR is performed using an appropriate primer. Can be cloned with.
- nucleic acid (DNA) encoding the polypeptide (iminoic acid reductase) of the present invention for example, total RNA or mRNA derived from Shiroinu clawa, Kuwa (Yamaguwa) or Hamaendo is used as a template, and RT-PCR is used. After preparing the full-length iminoic acid reductase cDNA directly amplified by the method, it can be cloned by performing PCR using an appropriate primer.
- the polypeptide gene expression vector of the present invention is provided by inserting the DNA encoding the polypeptide of the present invention obtained as described above into a known expression vector in an expressible arrangement. Then, by transforming a host microorganism or a cell with the expression vector, a transformant into which the DNA encoding the polypeptide of the present invention has been introduced can be obtained.
- the transformant can also be obtained by expressively incorporating the DNA encoding the polypeptide of the present invention into the chromosomal DNA of the host by a method such as homologous recombination.
- the term "expression vector” refers to the replication and expression of a protein having a desired function in the host microorganism or cell by introducing a polynucleotide encoding a protein having the desired function into the host microorganism or cell. It is a genetic factor used to make it. Examples include, but are not limited to, plasmids, viruses, phages, cosmids and the like. Preferably, the expression vector is a plasmid.
- the term "transformant” refers to a microorganism or a microorganism into which a gene of interest has been introduced using the expression vector or the like so that a desired trait related to a protein having a desired function can be expressed.
- the method for producing the transformant is not specifically limited, but the DNA encoding the polypeptide of the present invention is introduced into a plasmid vector, a phage vector, or a virus vector that is stably present in the host microorganism or host cell.
- Examples thereof include a method of introducing the constructed expression vector into the host microorganism or host cell, and a method of introducing the DNA directly into the host genome and transcribing / translating the genetic information thereof.
- promoters and terminators are not particularly limited as long as they are promoters and terminators known to function in cells used as hosts. For example, in "Basic Microbiology Course 8 Genetic Engineering / Kyoritsu Shuppan”. Vectors, promoters and terminators described in detail can be used.
- the host microorganism to be transformed for expressing the imino acid reductase of the present invention is not particularly limited as long as the host itself does not adversely affect the raw materials and intermediate products, and is shown below, for example. Such microorganisms can be mentioned.
- Escherichia Bacillus, Pseudomonas, Serratia, Brevibacterium, Corynebacterium, Streptococcus, Lactobacillus ) Bacteria with an established host vector system belonging to the genus.
- the procedure for preparing a transformant, the construction of a recombinant vector suitable for the host, and the method for culturing the host can be performed according to the techniques commonly used in the fields of molecular biology, biological engineering, and genetic engineering (). For example, the method described in Molecular Cloning).
- examples of the plasmid vector include pBR and pUC plasmids, which are lac ( ⁇ -galactosidase), trp (tryptophan operon), tac, trc (lac, trp). Fusion), promoters derived from ⁇ phage PL, PR and the like can be mentioned.
- examples of the terminator include terminators derived from trpA, phages, and rrnB ribosomal RNA.
- examples of the vector include a pUB110-based plasmid, a pC194-based plasmid, and the like, and can also be integrated into a chromosome.
- promoter and terminator promoters and terminators of enzyme genes such as alkaline protease, neutral protease and ⁇ -amylase can be used.
- Pseudomonas in the genus Pseudomonas, as vectors, general host vector systems established by Pseudomonas putida, Pseudomonas cepacia, etc., plasmids involved in the degradation of toluene compounds, and TOR plasmids are used. Examples include the basic broad host range vector (containing genes required for autonomous replication derived from RSF1010 and the like) pKT240 (Gene, 26, 273-82 (1983)).
- examples of the vector include plasmid vectors such as pAJ43 (Gene 39,281 (1985)).
- plasmid vectors such as pAJ43 (Gene 39,281 (1985)
- promoter and terminator various promoters and terminators used in Escherichia coli can be used.
- plasmids such as pCS11 (Japanese Patent Laid-Open No. 57-183779) and pCB101 (Mol.Gen.Genet.196,175 (1984)) Vectors can be mentioned.
- examples of the vector include YRp-based, YEp-based, YCp-based, and YIp-based plasmids.
- promoters and terminators of various enzyme genes such as alcohol dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase, acidic phosphatase, ⁇ -galactosidase, phosphoglycerate kinase, and enolase can be used.
- examples of the vector include the plasmid vector derived from Schizosaccharomyces pombe described in Mol.Cell.Biol.6,80 (1986).
- pAUR224 is commercially available from Takara Bio Inc. and can be easily used.
- Aspergillus In the genus Aspergillus, Aspergillusniger, Aspergillus oryzae, etc. are the most well-studied molds, and integration into plasmids and chromosomes is available, and extracellular. Promoters derived from proteases and amylase are available (Trendsin Biotechnology 7,283-287 (1989)).
- host vector systems corresponding to various microorganisms have been established, and they can be used as appropriate.
- various host-vector systems have been established in plants and animals, especially in animals such as insects (for example, silkworms) (Nature 315,592-594 (1985)), rapeseed, corn, potatoes, etc.
- insects for example, silkworms
- rapeseed rapeseed
- corn potatoes
- etc. A system that expresses a large amount of heterologous protein in the plant and a system that uses a cell-free protein synthesis system such as Escherichia coli cell-free extract and wheat germ have been established and can be preferably used.
- the processed product of the microorganism or cell having the ability to produce the imino acid reductase of the present invention is, for example, a product obtained by treating the microorganism or cell with an organic solvent such as acetone, dimethyl sulfoxide (DMSO) or toluene, or a surfactant. , Cryo-dried, physically or enzymatically crushed cell preparations, microbial or intracellular enzyme fractions taken out as crude or purified products, and these are polyacrylamide gels, Examples thereof include those immobilized on a carrier typified by carrageenan gel.
- Examples of the culture solution containing the microorganism obtained by culturing the microorganism or cell capable of producing the iminoic acid reducing enzyme of the present invention include the microorganism or cell and a suspension of a liquid medium, or the cell.
- a supernatant obtained by removing the cells by centrifugation or the like and a concentrate thereof can be mentioned.
- Imino acid reductase of the present invention delta 1 - to a method of manufacturing by reducing the piperidine-2-carboxylic acid L- pipecolic acid, can be particularly preferably used.
- the medium for culturing these microorganisms contains a carbon source, a nitrogen source, inorganic salts and the like that can be assimilated by the microorganism.
- a natural medium or a synthetic medium may be used as long as the medium can efficiently culture the transformant.
- the culture is preferably carried out under aerobic conditions such as shaking culture or deep aeration stirring culture, the culture temperature is usually 15 to 40 ° C., and the culture time is usually 16 hours to 7 days.
- the pH during culturing is maintained at 3.0 to 9.0.
- the pH is adjusted using an inorganic or organic acid, an alkaline solution, urea, calcium carbonate, ammonia or the like.
- antibiotics such as ampicillin and tetracycline may be added to the medium as needed during culturing.
- the above-mentioned imino acid reductase when expressed in a lysed state in cells, after the culture is completed, the cells are collected by centrifugation, suspended in an aqueous buffer solution, and then an ultrasonic crusher, a French press, or a manton. Crush the cells with a gaulin homogenizer, dynomil, etc. to obtain a cell-free extract. From the supernatant obtained by centrifuging the cell-free extract, a conventional method for isolating and purifying a protein, that is, a solvent extraction method, a salt analysis method using ammonium sulfate, a desalting method, a precipitation method using an organic solvent, etc.
- Anion exchange chromatography method using a resin such as diethylaminoethyl (DEAE) Sepharose, DIAION HPA-75 (manufactured by Mitsubishi Chemical Corporation), cation exchange chromatography method using a resin such as S-Sepharose FF (manufactured by Pharmacia) , Hydrophobic chromatography method using resin such as butyl Sepharose, phenyl Sepharose, Gel filtration method using molecular sieve, Affinity chromatography method, Chromatofocusing method, etc.
- Electrophoresis method such as electrophoresis alone Alternatively, they can be used in combination to obtain a purified preparation.
- the cells are similarly recovered, crushed, and centrifuged to obtain a precipitate fraction obtained by a usual method.
- the insoluble solution of the N-methyl-L-amino acid dehydrogenase is solubilized with a protein denaturing agent.
- the solubilized solution is diluted or dialyzed against a solution that does not contain a protein denaturant or is diluted so that the concentration of the protein denaturant does not denature the N-methyl-L-amino acid dehydrogenase, or the imino acid reductase is normalized.
- a purified preparation can be obtained by the same isolation and purification method as described above.
- the composition of the present invention is the iminoic acid reductase of the present invention, a microorganism or cell capable of producing the enzyme, a processed product of the microorganism or cell, and / or the microorganism or It contains a culture solution containing the enzyme obtained by culturing cells and has the above-mentioned L-form cyclic amino acid production performance.
- the composition of the present invention is useful because it can be used as a catalyst to industrially produce a high-purity L-form cyclic amino acid at a lower cost and with high efficiency.
- composition of the present invention may contain excipients, buffers, suspending agents, stabilizers, preservatives, preservatives, physiological saline, etc., in addition to active ingredients (enzymes, etc.).
- excipient lactose, sorbitol, D-mannitol, sucrose and the like can be used.
- buffer phosphate, citrate, acetate and the like can be used.
- Propylene glycol, ascorbic acid and the like can be used as the stabilizer.
- phenol, benzalkonium chloride, benzyl alcohol, chlorobutanol, methylparaben and the like can be used.
- benzalkonium chloride, paraoxybenzoic acid, chlorobutanol and the like can be used.
- the purified or crudely purified imino acid reductase of the present invention Culturing a microorganism or cell capable of producing an amino acid reductase (eg, a transformant having a DNA encoding the polypeptide of the invention), a processed product of the microorganism or cell, and / or the microorganism or cell.
- a microorganism or cell capable of producing an amino acid reductase eg, a transformant having a DNA encoding the polypeptide of the invention
- the iminoic acid reductase of the present invention may be used in a direct reaction, but a microorganism or cell capable of producing the enzyme, a processed product of the microorganism or cell, and / or the microorganism or cell is cultured. It is preferable to use the obtained culture solution containing the enzyme, and among these, it is preferable to use a transformant having a DNA encoding the polypeptide of the present invention.
- the amount of the microorganism or cell added to the reaction solution, the processed product of the microorganism or cell, and / or the culture solution containing the enzyme obtained by culturing the microorganism or cell is determined when the microorganism or cell is added.
- Add to the reaction solution so that the concentration of the microorganism or cell is usually about 0.1 w / v% to 50 w / v%, preferably 0.1 w / v% to 10 w / v% based on the body weight of the wet bacteria.
- w / v% represents weight / volume%.
- the contact method is not particularly limited, and an appropriate cyclic amino acid having a double bond at the 1-position represented by the general formula (I) as a substrate is added to the liquid containing the imino acid reductase of the present invention. It is possible to react at various temperatures and pressures (for example, about atmospheric pressure). The reaction time can also be appropriately set according to the enzyme type, target product, and the like.
- the cyclic amino acid having a double bond at the 1-position represented by the general formula (I) serving as the reaction substrate usually has a substrate concentration of 0.0001 w / v% to 90 w / v% in the reaction solution, preferably 0. It is used in the range of 01 w / v% to 30 w / v%.
- the reaction substrate may be added all at once at the start of the reaction, but continuously or intermittently from the viewpoint of reducing the influence of the enzyme substrate inhibition and improving the accumulated concentration of the product. It is desirable to add.
- the above reaction is preferably carried out in the presence of a coenzyme.
- a coenzyme As the coenzyme, NAD (P) + or NAD (P) H is preferable.
- NAD (P) + means oxidized nicotinamide adenine nucleotide (NAD + ) or oxidized nicotinamide adenine dinucleotide phosphate (NADP + ).
- the coenzyme is usually added so that the concentration in the reaction solution is 0.001 mmol / L to 100 mmol / L, preferably 0.01 mmol / L to 10 mmol / L.
- NAD (P) + generated from NAD (P) H into NAD (P) H it is preferable to regenerate NAD (P) + generated from NAD (P) H into NAD (P) H in order to improve production efficiency.
- the regeneration method include ⁇ 1> a method of utilizing the NAD (P) + reducing ability of the host microorganism itself, ⁇ 2> a microorganism having the ability to generate NAD (P) H from NAD (P) +, and a processed product thereof.
- enzymes that can be used to regenerate NAD (P) H such as glucose dehydrogenase, formate dehydrogenase, alcohol dehydrogenase, amino acid dehydrogenase, and organic acid dehydrogenase (such as malic acid dehydrogenase).
- Method of adding (regenerating enzyme) into the reaction system ⁇ 3>
- the gene of the above-mentioned regenerating enzyme which is an enzyme that can be used for regeneration of NAD (P) H, is used as the DNA of the present invention.
- a method of introducing into the host can be mentioned.
- a treated cell product such as an enzymatically crushed product, a product obtained by extracting the enzyme fraction as a crude product or a purified product, and further, these are immobilized on a carrier typified by a polyacrylamide gel, a carrageenan gel, or the like. Those may be used, or commercially available enzymes may be used.
- the amount of the regenerating enzyme used is, specifically, 0.01 to 100 times, preferably 0.01 to 10 times, the enzyme activity, as compared with the imino acid reductase. Add so.
- a compound serving as a substrate for the regenerative enzyme for example, glucose when glucose dehydrogenase is used, formic acid when formic acid dehydrogenase is used, ethanol or isopropanol when alcohol dehydrogenase is used, etc.
- Addition is also required, but the amount to be added is usually 1 to 10 mol times, preferably 1.0 to 1.5 mol times, the amount of the dicarbonyl group-containing compound which is the reaction raw material.
- a method of incorporating the DNA of iminoic acid reductase and the DNA of the regenerative enzymes into the chromosome a method of introducing both DNAs into a single vector to transform the host, and both.
- a method of transforming the host after introducing the DNAs into the vectors separately can be used, but in the case of the method of transforming the host after introducing the two DNAs into the vectors separately, the incompatibility between the two vectors. It is necessary to select the vector in consideration of.
- regions related to expression control such as promoters and terminators can be linked to each gene, or expressed as an operon containing multiple cistrons such as lac operon. It is possible.
- reaction may be carried out in an aqueous medium containing a reaction substrate and a transformant, various coenzymes added as necessary, and a regeneration system thereof, or in a mixture of an aqueous medium and an organic solvent. preferable.
- Examples of the aqueous medium include water or a buffer solution.
- Examples of the organic solvent include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, tert-butanol, tetrahydrofuran, acetone, dimethyl sulfoxide and the like, which are reaction substrates such as methanol, ethanol, 1-propanol, 2-propanol, and the first position represented by the general formula (I).
- a water-soluble organic solvent having a high solubility of a cyclic amino acid having a double bond can be used.
- a water-insoluble organic solvent effective for removing reaction by-products such as ethyl acetate, butyl acetate, toluene, chloroform and n-hexane can be used.
- the above reaction can be appropriately adjusted according to the enzyme used, the target product, etc., but is usually at a reaction temperature of 4 to 60 ° C., preferably 10 to 50 ° C., and usually pH 4 to 11, preferably pH 4 to 11. It is carried out at pH 5-10.
- the reaction time is usually about 1 hour to 72 hours.
- reaction can also be carried out using a membrane reactor or the like.
- the L-form cyclic amino acid represented by the general formula (II) produced by the above reaction is separated or separated by those known to those skilled in the art such as centrifugation, membrane treatment, etc. of bacterial cells and proteins in the reaction solution after the reaction is completed.
- separation by a purification method extraction with an organic solvent such as ethyl acetate or toluene, distillation, crystallization at an electric point such as column chromatography using an ion exchange resin or silica gel, monohydrochloride, dihydrochloride, calcium salt, etc. Purification can be performed by appropriately combining crystallization by the above.
- the cyclic amino acid having a double bond at the 1-position represented by the general formula (I), which is a substrate can be organically synthesized from a diamino acid or a racemic cyclic amino acid by a known method or biochemically. It can be manufactured by the method. From the viewpoint of cost and handleability, it is industrially preferable to produce from diamino acid.
- diamino acid chain ⁇ and ⁇ -diamino acids are preferable.
- the cyclic amino acid having a double bond in the 1-position, delta 1 - piperidine-2-carboxylic acid, alpha, an amino group of alpha-position of ⁇ - diamino acid oxidation A cyclic amino acid having a double bond at the 1-position with the ⁇ -ketoic acid obtained, or an ⁇ -ketoic acid obtained by oxidizing the ⁇ -position amino group of the ⁇ , ⁇ -diamino acid can be added or contained. Aspects are also included in the present invention.
- a cyclic amino acid having a double bond at the 1-position is biochemically produced from an ⁇ , ⁇ -diamino acid
- the ⁇ -position amino group of the ⁇ , ⁇ -diamino acid is converted into a keto group to generate ⁇ -ketoic acid.
- Any enzyme that can be used is not particularly limited, but for example, amino acid oxidases such as D-amino acid oxidase and L-aminoacid oxidase, and D-aminoacid dehydrogenase.
- Amino acid dehydrogenase such as L-aminoacid dehydrogenase
- enzymes such as amino acid transferase such as D-amino acid aminotransferase and L-aminoacid aminotransferase.
- amino acid transferase such as D-amino acid aminotransferase and L-aminoacid aminotransferase.
- enzymes with wide substrate specificity are preferred.
- L-amino acid oxidase described in Enzyme and Microbial Technology vol. 31 (2002) p77-87, D-amino acid oxidase manufactured by Sigma-Aldrich, and the like are preferable.
- NAD (P) H When the above amino acid oxidase, amino acid dehydrogenase or amino acid transferase reacts only with diamino acid and corresponds to a coenzyme that can be used in the reduction reaction of the present invention, an alternative system for the coenzyme regeneration system. It is preferable because it can be. That is, when NAD (P) H is used as a coenzyme in the reduction reaction of the present invention, NAD (P) H becomes NAD (P) + with the reduction of this reaction, but on the other hand, from diamino acids. When producing a cyclic amino acid having a double bond at the 1-position, this NAD (P) + can be used to convert to NAD (P) H, which is preferable.
- the enzyme that removes hydrogen peroxide is not particularly limited as long as it is an enzyme that reacts with hydrogen peroxide, but specifically, catalase or peroxidase is preferable.
- the amount of the enzyme that reacts with hydrogen peroxide is not particularly limited as long as the generated hydrogen peroxide is efficiently removed, but specifically, it is usually 0.01 times more active than amino acid oxidase to 1,000,000. It is used in the range of fold activity, preferably 0.1 times activity to 100,000 times activity.
- the activity can be enhanced by using the coenzyme flavin adenine dinucretide (FAD).
- FAD coenzyme flavin adenine dinucretide
- concentration in the reaction solution is usually in the range of 0.00001 mmol concentration to 100 mmol concentration, preferably 0.001 mmol concentration to 10 mmol concentration.
- the substrate concentration is usually in the range of 0.01 to 90% w / v, preferably 0.1 to 30% w / v.
- the method for producing a cyclic amino acid having a double bond at the 1-position biochemically from the diamino acid is not particularly limited, and the cyclic amino acid can be produced by a known method.
- a diamino acid as a reaction substrate can be added to a liquid containing the above enzyme and reacted at an appropriate temperature and pressure (for example, about atmospheric pressure).
- the diamino acid as the reaction substrate is usually used in a substrate concentration of 0.01 w / v% to 90 w / v%, preferably 0.1 w / v% to 30% w / v% in the reaction solution.
- the reaction substrate may be added all at once at the start of the reaction, but continuously or intermittently from the viewpoint of reducing the influence of the enzyme substrate inhibition and improving the accumulated concentration of the product. It is desirable to add.
- the above reaction is usually carried out at a reaction temperature of 4 to 60 ° C., preferably 10 to 50 ° C., usually at pH 4 to 11, preferably pH 5 to 10.
- the reaction time is usually about 1 hour to 72 hours.
- the reaction is carried out under conditions where it is sufficiently mixed with oxygen gas or air in order to supply the oxygen required for the reaction.
- oxygen gas or air may be aerated in the liquid.
- the ventilation rate is 0.1 vvm to 5.0 vvm, but it is preferably used in the range of 0.1 vvm to 1.0 vvm.
- the above reaction can also be performed using a membrane reactor or the like.
- the cyclic amino acid having a double bond at the 1-position represented by the general formula (I) produced by the above reaction is known to those skilled in the art such as centrifugation and membrane treatment of cells and proteins in the reaction solution after completion of the reaction.
- extraction with an organic solvent such as ethyl acetate or toluene, distillation, crystallization at an electric point such as column chromatography using an ion exchange resin or silica gel, monohydrochloride, dihydrochloride, etc.
- Purification can be performed by appropriately combining crystallization with a calcium salt or the like.
- a cyclic amino acid having a double bond at the 1-position after obtaining a cyclic amino acid having a double bond at the 1-position, it can be subjected to a step of separating and purifying to obtain the next L-form cyclic amino acid, or the next L-form without separation and purification. It can also be used in the step of obtaining a cyclic amino acid. Further, the step of obtaining a cyclic amino acid having a double bond at the 1-position and the step of obtaining an L-form cyclic amino acid can be performed in separate reactors, or both steps can be performed in the same reactor.
- M is mol / L
- w / v is weight / volume
- DMSO dimethyl sulfoxide
- ETDA is ethylenediaminetetraacetic acid
- IPTG is isopropyl- ⁇ -thiogalactopyrano.
- SYD, PipC2 the delta 1 - piperidine-2-carboxylic acid
- PIPA means pipecolic acid, respectively.
- a PCR reaction was performed using the obtained cDNA as a template.
- Primers for PCR were prepared as shown in the table below. Restriction enzymes were added to the N-terminal and C-terminal of the primer as restriction enzyme recognition sites for insertion into the E. coli expression vector.
- PCR was performed based on the TaKaRa Ex Taq® Hot Start Version (TaKaRa) protocol.
- the composition is Ex Taq HS 0.1 ⁇ L, 10 ⁇ Ex Taq Buffer 2 ⁇ L, dNTP mixture (2.5 mM each) 1.6 ⁇ L, cDNA 2 ⁇ L, 10 ⁇ M forward primer 1 ⁇ L, 10 ⁇ M reverse primer 1 ⁇ L, Milli-Q (registered trademark) 12.3 ⁇ L, total volume 20 ⁇ L And said.
- the sequence set forth in SEQ ID NO: 13 was used as a forward primer
- the sequence set forth in SEQ ID NO: 14 was used as a reverse primer.
- the sequence set forth in SEQ ID NO: 15 was used as a forward primer and the sequence set forth in SEQ ID NO: 16 was used as a reverse primer.
- the sequence set forth in SEQ ID NO: 17 was used as a forward primer and the sequence set forth in SEQ ID NO: 18 was used as a reverse primer.
- the reaction conditions are as follows: initial denaturation at 95 ° C for 2 minutes, followed by denaturation at 95 ° C for 30 seconds, annealing at 60 ° C for 30 seconds, extension reaction at 72 ° C for 1 minute and 10 seconds, repeated for 30 cycles, and finally.
- the elongation reaction was carried out at 72 ° C. for 5 minutes.
- a 2% (w / v) agarose gel prepared with a 1 ⁇ TAE buffer (Tris-acetic acid-EDTA buffer) in which the reaction product was stained with a GelRed TM nucleic acid gel stain ( ⁇ 10000) DMSO solution was used. It was subjected to electrophoresis. After electrophoresis, a single band near 1100 bp of interest was cut out from the agarose gel with a scalpel, and Wizard (registered trademark) CDNA was extracted using the SV Gel and PCR Clean-UP System (manufactured by Promega). The operation followed the protocol attached to the system.
- BigDye® was used to obtain the nucleotide sequence of the inserted DNA fragment using approximately 100 ng of the resulting plasmid.
- a sequence reaction was performed using the Terminator v3.1 / 1 Cycle Sequencing Kit (manufactured by Applied Biosystems). Each gene sequence was confirmed by subjecting the obtained sample to an ABI PRISM TM genetic analyzer.
- AtP2CR was the sequence shown in SEQ ID NO: 1 and the encoded amino acid sequence was the sequence shown in SEQ ID NO: 2.
- the MaP2CR gene sequence is the sequence shown in SEQ ID NO: 3, the encoded amino acid sequence is SEQ ID NO: 4, the LjP2CR gene sequence is the sequence shown in SEQ ID NO: 5, and the encoded amino acid sequence is the sequence. It was confirmed that the number was 6.
- the constructed expression vectors were named pGEX-AtP2CR, pGEX-MaP2CR, and pGEX-LjP2CR, respectively.
- the enzymes expressed by each vector were all GST fusion proteins.
- the gene sequence of GST fusion type AtP2CR is the sequence shown in SEQ ID NO: 7, the encoded amino acid sequence is SEQ ID NO: 8, and the gene sequence of GST fusion type MaP2CR is the sequence shown in SEQ ID NO: 9, which is encoded. It was confirmed that the amino acid sequence is SEQ ID NO: 10, the gene sequence of GST fusion type LjP2CR is the sequence shown in SEQ ID NO: 11, and the encoded amino acid sequence is SEQ ID NO: 12.
- the enzyme solution (soluble protein) obtained by GST-tag purification was subjected to SDS-PAGE, and the expression of the target protein was confirmed. As a result, it was confirmed that the molecular weight of each recombinant enzyme was about 60 kDa with a tag of about 25 kDa.
- Example 2 (Confirmation of activity of plant-derived imine reductase) (1) Enzyme reaction An enzyme reaction was carried out using each enzyme solution (P2CR purified recombinant enzyme solution) obtained in Example 1. A 1.5 mL Eppendorf tube was used as the reaction vessel, and the volume of the enzyme reaction solution was 100 ⁇ L. Since PipC2 as a substrate is not commercially available, the one enzymatically synthesized from L-lysine using the transaminase MaALD1 obtained in Reference Example 1 described later was used. Table 2 shows the composition of the PipC2 enzyme reaction.
- the enzyme reaction was carried out by shaking at a reaction temperature of 30 ° C. and 1,000 rpm using a shaking incubator (manufactured by AS ONE Corporation). The reaction time was 120 minutes. The reaction was stopped by inactivating the enzyme by heating at a reaction temperature of 98 ° C. for 5 minutes. Then, the mixture was centrifuged at 15,000 rpm for 10 minutes at room temperature, and the obtained supernatant was used as a PipC2 enzyme synthesis solution.
- the derivatized product was diluted 2-fold with pure water to prepare a sample for LCMS analysis.
- Table 4 shows the analysis conditions for HPLC-MS.
- a PipC2 enzyme reaction solution was prepared with the same composition as in Example 2 (1). * NADPH was added to the PipC2 enzyme reaction solution so that the final concentrations were 500 ⁇ M, 300 ⁇ M, 150 ⁇ M, 80 ⁇ M, 40 ⁇ M, 20 ⁇ M and 10 ⁇ M in 1 mL, which is the total volume after the enzyme solution was added, and finally 50 mM Tris- HCl (pH 7.2) was added to each enzyme reaction solution so that the total volume was 900 ⁇ L. This was used as a reaction solution.
- the reaction was started by adding 100 ⁇ L of the purified recombinant enzyme solution of AtP2CR obtained in Example 1 to each of these reaction solutions.
- the absorbance at 340 nm was measured from the start of the reaction, and the measurement was carried out for 10 minutes.
- the same experiment was carried out three times and the average value was calculated.
- reaction rate was calculated from the obtained measured values.
- Each kinetic parameter (Michaelis constant Km and maximum reaction rate Vmax) was calculated by Hanes-Woolf plot (Hanes CS., (1932), vol.26, 5, 1406, Biochemical Journal) using the calculated reaction rate.
- the measured change in absorbance was converted to a change in concentration of * NADPH using the molar extinction coefficient of * NADPH of 6.3 ⁇ 10 (1 / mmol ⁇ cm). From this value, the reaction rate ( ⁇ M / s) in the decrease of * NADPH was calculated. As the decrease value of the absorbance used, the value during the linear decrease from the start of the measurement was used.
- the linear approximation line of Hanes-Woolf plot was obtained by plotting the substrate concentration / reaction rate values at each * NADPH concentration. The results are shown in FIG. In FIG. 2, (1) is AtP2CR, (2) is MaP2CR, and (3) is LjP2CR. Since R2 was 0.99 in all three P2CR results, it is considered that highly reliable results were obtained.
- the slope is 1 / Vmax and the intersection with the x-axis is -Km. Then, the maximum reaction rates Vmax and Km were calculated from the Hanes-Woolf equation.
- AtP2CR has a Vmax of 208.73 nmol / min / mg and Km of 33.42 ⁇ M
- MaP2CR has a Vmax of 24.00 nmol / min / mg and Km of 6.16 ⁇ M
- LjP2CR has a Vmax of 199.55 nmol / min / mg and Km of 170.24. It was ⁇ M.
- FIG. 3 shows the Michaelis-Menten model by ANEMONA.
- (1) is AtP2CR
- (2) is MaP2CR
- (3) is LjP2CR.
- AtP2CR has Vmax of 215.5 nmol / min / mg and Km of 34.29 ⁇ M
- MaP2CR has Vmax of 21.2 nmol / min / mg and Km of 3.57 ⁇ M
- LjP2CR has Vmax of 187.3 nmol / min / mg and Km of 155.03. It was ⁇ M.
- Vmax of the PipC2 reductase dpkA derived from the microorganism Pseudomonus putida used as an industrial enzyme catalyst for PipA production is 220 nmol / min / mg and the Km is 140 ⁇ M (Muramatsu et al., (2005), vol. 280, 7, 5329 THE JOURNAL OF BIOLOGICAL CHEMISTRY).
- the index Kcat / km value of the catalytic activity calculated from the document is 56, but the Kcat / km value of the enzyme of the present invention is higher than this. Therefore, it was found that AtP2CR, MaP2CR and LjP2CR all have an excellent ability to reduce PipC2 and convert it to PipA, and are enzymatically stable and excellent enzyme catalysts.
- a PCR reaction was carried out using the obtained cDNA as a template.
- MaALD1-FW GGATCCATGACGCATAATTATTCTCAG
- MaALD1-RV GTCGACTCATTTGTAAAGAGATTTTAGTC
- TaKaRa Ex Taq® This was done based on the hot start version (TaKaRa) protocol.
- the purified DNA was cloned into T-Vector pMD19 (manufactured by TaKaRa Bio). As a result of sequence analysis, it was confirmed that this is a gene encoding the transaminase MaALD1 (SEQ ID NO: 19).
- the gene region of MaALD1 subcloned into pMD19 was treated with restriction enzymes BamHI and SalI and cleaved from the multicloning site. After confirming digestion by electrophoresis, the target DNA fragment was cut out, purified, and then treated with a restriction enzyme in the same manner.
- the purified DNA fragment was ligated into a pColdProS2 vector (manufactured by TaKaRaBio), which is a vector for expressing Escherichia coli.
- the desired plasmid was constructed by transforming Escherichia coli DH5 ⁇ with the solution.
- the resulting plasmid was named pCold-MaALD1.
- the pCold-MaALD1 transformant was allowed to stand on ice for 30 minutes, and IPTG was added to a final concentration of 0.1 mM. This was cultured at a culture temperature of 15 ° C. and 150 rpm for about 18 hours.
- Sonication buffer ⁇ 50 mM Tris-HCl (pH 7.5), 150 mM NaCl, 10% (v / v) Glycerol, 5 mM dithiothreitol (DTT) ⁇ 4 mL was added to the recovered cells, and sonication (50% duty, 50% duty, The cells were crushed by output (2, 30 seconds x 2 times). Centrifugation was performed at 15,000 rpm at 4 ° C. for 10 minutes to obtain a supernatant as a soluble protein fraction and a precipitate as an insoluble protein fraction.
- Tris-HCl pH 7.5
- DTT dithiothreitol
- MaALD1 was obtained by purifying the obtained soluble protein fraction using His-Tagged Purification Miniprep Kit (manufactured by Clontech Laboratories).
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Medicinal Chemistry (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Enzymes And Modification Thereof (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
本発明は1位に二重結合を有する環状アミノ酸から高純度のL体環状アミノ酸を、より安価に高効率で工業的に製造する方法を提供することを課題とし、1位に二重結合を有する環状アミノ酸に、1位に二重結合を有する環状アミノ酸を還元してL体環状アミノ酸を生成する触媒性能を有する特定の酵素を作用させ、L体環状アミノ酸を製造することで課題解決した。
Description
本発明は、産業的に有用であるL体環状アミノ酸の製造方法に関するものである。
L体環状アミノ酸は、トロンビン阻害剤、HIVプロテアーゼ阻害剤、NMDA受容体拮抗剤、TNF-α変換酵素阻害剤、アンジオテンシン変換酵素阻害剤、抗炎症剤などの医薬中間原料として有用な物質である。
L体環状アミノ酸としては、下記の化学式に示すようなL-プロリン(L-Proline)、L-ヒドロキシプロリン(L-hydroxyproline)などの5員環アミノ酸、L-ピペコリン酸(L-Pipecolic acid)などの6員環アミノ酸、アゼチジン-2-カルボン酸(Azetidine-2-carboxylic acid)などの4員環アミノ酸などのアミノ酸が知られている。
また、複素環であるL-チオプロリン(L-Thioproline)、L-モルフォリンカルボン酸(L-3-Morpholine carboxylic acid)、L-チオモルフォリンカルボン酸(L-3-Thiomor pholine carboxylic acid)なども医薬中間原料として有用な物質として知られている。
L体環状アミノ酸の製造方法としては、有機合成的な方法や生物化学的な方法が知られている。
有機合成的にL体環状アミノ酸を製造する方法としては、Garciaらによるピペコリン酸(pipecolic acid)の製法(非特許文献1)などが知られている。しかしながら、これらの方法は、光学純度や収率が共に工業的に実用化可能な方法とは言い難い。
生物化学的にL体環状アミノ酸を製造する方法としては、ピロリン-5-カルボン酸レダクターゼ(EC 1.5.1.2)を利用したL-リジン(L-lysine)からのL-ピペコリン酸(L-pipecolic acid)の製造方法(非特許文献2)、オルニチンシクロデアミナーゼによるL-オルニチンからのL-プロリンの製法(非特許文献3)、オルニチンシクロデアミナーゼによる各種ジアミノ酸(diamino acid)からの各種環状アミノ酸の製法(特許文献1)などが知られている。
Fujiiら(非特許文献2)により報告されている方法は、L-リジンにL-lysine 6-aminotransferaseを用い、中間体としてΔ1-piperidine-6-carboxylic acidを生成させ、さらにそれに還元酵素を接触させてL-ピペコリン酸(L-pipecolic acid)を得るものであるが、この方法は原料がL-リジンの場合しか対応できず、他のL体環状アミノ酸の製造には適応できない。
Costilowら(非特許文献3:Journal of Biological Chemistry (1971))により報告されている方法は、L-オルニチン(L-ornithine)にOrnithine Cyclaseを用いL-プロリン(L-Proline)を得るものであるが、プロリン以外の生成物に関しては記載がない。
Denisら(特許文献1)は、Ornithine Cyclaseを用いL-ピペコリン酸(L-pipecolic acid)、L-チオモルフォリン-2-カルボン酸(L-Thiomorpholine-2-carboxylic acid)、5-ヒドロキシ-L-ピペコリン酸(5-hydroxy-L-pipecolic acid)などを得る方法を報告しているが、収率や光学純度などについての記載はない。
また、上記いずれの方法も、生成物であるL体環状アミノ酸の光学純度は原料のアミノ酸の光学純度によるものであり、ラセミ体の原料から高効率でL体環状アミノ酸を得ることは難しいと思われる。
一方、中間体として1位に二重結合を有する環状アミノ酸を経る方法は、原料にラセミ体の環状アミノ酸や、ジアミノ酸を用いることができるため工業的に有利である。
例えば、1位に二重結合を有する環状アミノ酸を還元する酵素としては、例えば、動物由来又はカビ由来のピロリン-2-カルボン酸還元酵素(pyrroline-2-carboxylate reductase : EC 1.5.1.1)が、Δ1-ピロリン-2-カルボン酸(Δ1-pyrroline-2-carboxylic acid)を還元してプロリンが生成すること及びΔ1-ピペリジン-2-カルボン酸(Δ1-piperidine-2-carboxylic acid)を還元してピペコリン酸が生成することが報告されている(非特許文献4)。
また、D-リジンからΔ1-ピペリジン-2-カルボン酸(Δ1-piperidine-2-carboxylic acid)を中間体としてL-ピペコリン酸を生成するというシュードモナス(Pseudomonas)属細菌の代謝の報告があり、その中でピペリジン-2-カルボン酸還元酵素(piperideine-2-carboxylate reductase : EC 1.5.1.21)が還元反応を行っているとの報告もある(非特許文献5)。
しかしながら、これらの報告は、酵素反応が生化学的に確認されているのみであり、工業的な生産の例ではない。
また、動物由来の酵素は非常に不安定であるとの記載もあり、これらの酵素を用いての工業的な生産の実用化は困難であった。
特許文献2には、ジアミノ酸やラセミ体の環状アミノ酸から中間体として1位に二重結合を有する環状アミノ酸を得て、これをシュードモナス属細菌由来のN-メチル-L-アミノ酸デヒドロゲナーゼを用いて還元し、L体環状アミノ酸を製造することが記載されている。この方法は、安価で高純度なL体環状アミノ酸を生産する方法を提供しようとするものであるが、工業的に実用化するためには、より高効率でL体環状アミノ酸を生成することが求められている。
Concepcion F Garcia et al., Tetrahydron Asymmetry (1995) vol.6, pp.2905-2906
Tadashi Fujii et al., Bioscience Biotechnology Biochem (2002) vol.66, pp.1981-1984
Ralph N Costilow et al., Journal of Biological Chemistry (1971) vol.246, pp.6655-6660
Alton Meister et al., Journal of Biological Chemistry (1957) vol.229, pp.789-800
Cecil W Payton et al., Journal of Bacteriology (1982) vol.149, pp.864-871
本発明は、1位に二重結合を有する環状アミノ酸から高純度のL体環状アミノ酸を、より安価に高効率で工業的に製造する方法を提供することを課題とするものである。さらに、本発明は、安価なジアミノ酸から中間体として1位に二重結合を有する環状アミノ酸を得て、これを生物化学的な方法で還元することにより、高純度のL体環状アミノ酸をより安価に高効率で工業的に製造する方法を提供することを課題とするものである。
1位に二重結合を有する環状アミノ酸を還元してL体環状アミノ酸を生成する触媒性能を有するイミノ酸還元酵素であって、酵素学的に安定で前記触媒性能が高い酵素を用いることにより、上記課題が解決され、高純度のL体環状アミノ酸をより安価に高効率で工業的に製造することができると考えられる。
本発明者らは、上記課題を解決するために鋭意検討した結果、シロイヌナズナ、ハマエンドウ又はクワ由来のイミノ酸還元酵素が、公知の酵素より高い触媒効率で1位に二重結合を有する環状アミノ酸を還元することを見出した。
また、1位に二重結合を有する環状アミノ酸は、安価なジアミノ酸から公知の酵素を用いて効率的に製造することができる。したがって、ジアミノ酸から1位に二重結合を有する環状アミノ酸を製造する方法と、高い触媒効率で1位に二重結合を有する環状アミノ酸を還元する方法を組み合わせることにより、安価なジアミノ酸から医薬中間原料として有用な高純度のL体環状アミノ酸をより安価に高効率で工業的に製造することができることを見出した。
本発明は、これらの知見に基づいて成し遂げられたものである。
すなわち、本発明は以下のとおりである。
すなわち、本発明は以下のとおりである。
[1] 下記一般式(I):
(式中、Aは、鎖長が1~4原子であり、硫黄原子、酸素原子及び窒素原子よりなる群から選ばれる少なくとも1種のヘテロ原子を鎖中又は末端に含んでいてもよく、かつ置換基を有していてもよいアルキレン鎖を示す。)
で表される1位に二重結合を有する環状アミノ酸に、以下の(A)、(B)又は(C)に示すポリペプチド、前記ポリペプチドを生産する能力を有する若しくは前記ポリペプチドを含む微生物若しくは細胞、前記微生物若しくは細胞の処理物、及び/又は前記微生物若しくは細胞を培養して得られた前記ポリペプチドを含む培養液を接触させて、下記一般式(II):
で表される1位に二重結合を有する環状アミノ酸に、以下の(A)、(B)又は(C)に示すポリペプチド、前記ポリペプチドを生産する能力を有する若しくは前記ポリペプチドを含む微生物若しくは細胞、前記微生物若しくは細胞の処理物、及び/又は前記微生物若しくは細胞を培養して得られた前記ポリペプチドを含む培養液を接触させて、下記一般式(II):
(式中、Aは前記と同義である。)
で表されるL体環状アミノ酸を生成させることを特徴とする、L体環状アミノ酸の製造方法:
(A)配列番号2、4、6、8、10又は12に示すアミノ酸配列を有するポリペプチド;
(B)配列番号2、4、6、8、10又は12に示すアミノ酸配列において1~複数個のアミノ酸が欠失、置換及び/又は付加されたアミノ酸配列であって、かつ下記式(1)に示す反応を触媒するL体環状アミノ酸生成能を有するポリペプチド:
で表されるL体環状アミノ酸を生成させることを特徴とする、L体環状アミノ酸の製造方法:
(A)配列番号2、4、6、8、10又は12に示すアミノ酸配列を有するポリペプチド;
(B)配列番号2、4、6、8、10又は12に示すアミノ酸配列において1~複数個のアミノ酸が欠失、置換及び/又は付加されたアミノ酸配列であって、かつ下記式(1)に示す反応を触媒するL体環状アミノ酸生成能を有するポリペプチド:
(式中、Aは前記と同義である。);又は
(C)配列番号2、4、6、8、10又は12に示すアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を有し、かつ前記式(1)に示す反応を触媒するL体環状アミノ酸生成能を有するポリペプチド。
[2] 前記ポリペプチドは、以下の(D)、(E)又は(F)に示す核酸にコードされるものである、[1]に記載の製造方法:
(D)配列番号1、3、5、7、9又は11で表される塩基配列を含む核酸;
(E)配列番号1、3、5、7、9又は11で表される塩基配列において、1又は複数個の塩基が置換、欠失及び/又は付加された塩基配列であって、かつ上記式(1)に示す反応を触媒するL体環状アミノ酸生成能を有するポリペプチドをコードする核酸;又は
(F)配列番号1、3、5、7、9又は11で表される塩基配列の相補鎖とストリンジェントな条件下でハイブリダイズする塩基配列であって、且つ上記式(1)に示す反応を触媒するL体環状アミノ酸生成能を有するポリペプチドをコードする核酸。
[3] 下記一般式(III):
(C)配列番号2、4、6、8、10又は12に示すアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を有し、かつ前記式(1)に示す反応を触媒するL体環状アミノ酸生成能を有するポリペプチド。
[2] 前記ポリペプチドは、以下の(D)、(E)又は(F)に示す核酸にコードされるものである、[1]に記載の製造方法:
(D)配列番号1、3、5、7、9又は11で表される塩基配列を含む核酸;
(E)配列番号1、3、5、7、9又は11で表される塩基配列において、1又は複数個の塩基が置換、欠失及び/又は付加された塩基配列であって、かつ上記式(1)に示す反応を触媒するL体環状アミノ酸生成能を有するポリペプチドをコードする核酸;又は
(F)配列番号1、3、5、7、9又は11で表される塩基配列の相補鎖とストリンジェントな条件下でハイブリダイズする塩基配列であって、且つ上記式(1)に示す反応を触媒するL体環状アミノ酸生成能を有するポリペプチドをコードする核酸。
[3] 下記一般式(III):
(式中、Aは、鎖長が1~4原子であり、硫黄原子、酸素原子及び窒素原子よりなる群から選ばれる少なくとも1種のヘテロ原子を鎖中又は末端に含んでいてもよく、かつ置換基を有していてもよいアルキレン鎖を示す。)
で表される鎖状のα,ω-ジアミノ酸に、ジアミノ酸のα位のアミノ基をケト基に変換しαケト酸を生成することのできる酵素を反応させ、下記一般式(I):
で表される鎖状のα,ω-ジアミノ酸に、ジアミノ酸のα位のアミノ基をケト基に変換しαケト酸を生成することのできる酵素を反応させ、下記一般式(I):
(式中、Aは前記と同義である。)
で表される1位に二重結合を有する環状アミノ酸を生成させた後、
得られた1位に二重結合を有する環状アミノ酸を、[1]又は[2]に記載の方法により、下記一般式(II):
で表される1位に二重結合を有する環状アミノ酸を生成させた後、
得られた1位に二重結合を有する環状アミノ酸を、[1]又は[2]に記載の方法により、下記一般式(II):
(式中、Aは前記と同義である。)
で表されるL体環状アミノ酸を生成させることを特徴とする、L体環状アミノ酸の製造方法。
[4] ジアミノ酸のα位のアミノ基をケト基に変換しαケト酸を生成することのできる酵素が、D-アミノ酸オキシダーゼ、L-アミノ酸オキシダーゼ、D-アミノ酸デヒドロゲナーゼ、L-アミノ酸デヒドロゲナーゼ、D-アミノ酸トランスフェラーゼ及びL-アミノ酸トランスフェラーゼよりなる群から選ばれる一種以上の酵素である、[3]に記載のL体環状アミノ酸の製造方法。
[4] 前記一般式(I)で表される1位に二重結合を有する環状アミノ酸がΔ1-ピペリジン-2-カルボン酸であり、前記一般式(II)で表されるL体環状アミノ酸がL-ピペコリン酸である、[1]~[4]のいずれかに記載のL体環状アミノ酸の製造方法。
で表されるL体環状アミノ酸を生成させることを特徴とする、L体環状アミノ酸の製造方法。
[4] ジアミノ酸のα位のアミノ基をケト基に変換しαケト酸を生成することのできる酵素が、D-アミノ酸オキシダーゼ、L-アミノ酸オキシダーゼ、D-アミノ酸デヒドロゲナーゼ、L-アミノ酸デヒドロゲナーゼ、D-アミノ酸トランスフェラーゼ及びL-アミノ酸トランスフェラーゼよりなる群から選ばれる一種以上の酵素である、[3]に記載のL体環状アミノ酸の製造方法。
[4] 前記一般式(I)で表される1位に二重結合を有する環状アミノ酸がΔ1-ピペリジン-2-カルボン酸であり、前記一般式(II)で表されるL体環状アミノ酸がL-ピペコリン酸である、[1]~[4]のいずれかに記載のL体環状アミノ酸の製造方法。
[6](a)配列番号4、6、8、10又は12に示すアミノ酸配列を有するポリペプチド;
(b)配列番号2、4、6、8、10又は12に示すアミノ酸配列において1~複数個のアミノ酸が欠失、置換及び/又は付加されたアミノ酸配列であって、かつ下記式(1)に示す反応を触媒するL体環状アミノ酸生成能を有するポリペプチド:
(b)配列番号2、4、6、8、10又は12に示すアミノ酸配列において1~複数個のアミノ酸が欠失、置換及び/又は付加されたアミノ酸配列であって、かつ下記式(1)に示す反応を触媒するL体環状アミノ酸生成能を有するポリペプチド:
(式中、Aは、鎖長が1~4原子であり、硫黄原子、酸素原子及び窒素原子よりなる群から選ばれる少なくとも1種のヘテロ原子を鎖中又は末端に含んでいてもよく、かつ置換基を有していてもよいアルキレン鎖を示す。);又は
(c)配列番号2、4、6、8、10又は12に示すアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を有し、かつ前記式(1)に示す反応を触媒するL体環状アミノ酸生成能を有するポリペプチド。
(c)配列番号2、4、6、8、10又は12に示すアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を有し、かつ前記式(1)に示す反応を触媒するL体環状アミノ酸生成能を有するポリペプチド。
[7] [6]に記載のポリペプチドをコードする核酸。
[8] 核酸が植物由来である、[7]に記載の核酸。
[9] 植物がクワ又はハマエンドウである、[8]に記載の核酸。
[10] 前記核酸が、以下の(d)、(e)又は(f)に示すものである、[7]~[9]のいずれかに記載の核酸:
(d)配列番号3、5、7、9又は11で表される塩基配列を含む核酸;
(e)配列番号1、3、5、7、9又は11で表される塩基配列において、1又は複数個の塩基が置換、欠失及び/又は付加された塩基配列であって、かつ上記式(1)に示す反応を触媒するL体環状アミノ酸生成能を有するポリペプチドをコードする核酸;又は
(f)配列番号1、3、5、7、9又は11で表される塩基配列の相補鎖とストリンジェントな条件下でハイブリダイズする塩基配列であって、且つ上記式(1)に示す反応を触媒するL体環状アミノ酸生成能を有するポリペプチドをコードする核酸。
[8] 核酸が植物由来である、[7]に記載の核酸。
[9] 植物がクワ又はハマエンドウである、[8]に記載の核酸。
[10] 前記核酸が、以下の(d)、(e)又は(f)に示すものである、[7]~[9]のいずれかに記載の核酸:
(d)配列番号3、5、7、9又は11で表される塩基配列を含む核酸;
(e)配列番号1、3、5、7、9又は11で表される塩基配列において、1又は複数個の塩基が置換、欠失及び/又は付加された塩基配列であって、かつ上記式(1)に示す反応を触媒するL体環状アミノ酸生成能を有するポリペプチドをコードする核酸;又は
(f)配列番号1、3、5、7、9又は11で表される塩基配列の相補鎖とストリンジェントな条件下でハイブリダイズする塩基配列であって、且つ上記式(1)に示す反応を触媒するL体環状アミノ酸生成能を有するポリペプチドをコードする核酸。
[11] [7]~[10]のいずれかに記載の核酸を含む組換えベクター。
[12] [11]に記載の組換えベクターを含む形質変換体。
[13] 以下の(A)、(B)又は(C)に示すポリペプチド、前記ポリペプチドを生産する能力を有する若しくは前記ポリペプチドを含む微生物若しくは細胞、前記微生物若しくは細胞の処理物、及び/又は前記微生物若しくは細胞を培養して得られた前記ポリペプチドを含む培養液を含み、下記一般式(I):
[12] [11]に記載の組換えベクターを含む形質変換体。
[13] 以下の(A)、(B)又は(C)に示すポリペプチド、前記ポリペプチドを生産する能力を有する若しくは前記ポリペプチドを含む微生物若しくは細胞、前記微生物若しくは細胞の処理物、及び/又は前記微生物若しくは細胞を培養して得られた前記ポリペプチドを含む培養液を含み、下記一般式(I):
(式中、Aは、鎖長が1~4原子であり、硫黄原子、酸素原子及び窒素原子よりなる群から選ばれる少なくとも1種のヘテロ原子を鎖中又は末端に含んでいてもよく、かつ置換基を有していてもよいアルキレン鎖を示す。)
で表される1位に二重結合を有する環状アミノ酸から、下記一般式(II):
で表される1位に二重結合を有する環状アミノ酸から、下記一般式(II):
(式中、Aは前記と同義である。)
で表されるL体環状アミノ酸を生成させる能力を有する酵素剤組成物:
(A)配列番号2、4、6、8、10又は12に示すアミノ酸配列を有するポリペプチド;
(B)配列番号2、4、6、8、10又は12に示すアミノ酸配列において1~複数個のアミノ酸が欠失、置換及び/又は付加されたアミノ酸配列であって、かつ下記式(1)に示す反応を触媒するL体環状アミノ酸生成能を有するポリペプチド;
で表されるL体環状アミノ酸を生成させる能力を有する酵素剤組成物:
(A)配列番号2、4、6、8、10又は12に示すアミノ酸配列を有するポリペプチド;
(B)配列番号2、4、6、8、10又は12に示すアミノ酸配列において1~複数個のアミノ酸が欠失、置換及び/又は付加されたアミノ酸配列であって、かつ下記式(1)に示す反応を触媒するL体環状アミノ酸生成能を有するポリペプチド;
(式中、Aは前記と同義である。);又は
(C)配列番号2、4、6、8、10又は12に示すアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を有し、かつ前記式(1)に示す反応を触媒するL体環状アミノ酸生成能を有するポリペプチド。
(C)配列番号2、4、6、8、10又は12に示すアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を有し、かつ前記式(1)に示す反応を触媒するL体環状アミノ酸生成能を有するポリペプチド。
本発明によれば、1位に二重結合を有する環状アミノ酸を還元してL体環状アミノ酸を生成する触媒性能を有する酵素であって、酵素学的に安定で前記触媒性能が高い酵素を用いることにより、高純度のL体環状アミノ酸をより安価に高効率で工業的に製造することができる。また、ジアミノ酸から1位に二重結合を有する環状アミノ酸を製造する方法と、高い触媒効率で1位に二重結合を有する環状アミノ酸を還元する方法を組み合わせることにより、安価なジアミノ酸から医薬中間原料として有用な高純度のL体環状アミノ酸をより安価に高効率で工業的に製造することができる。
以下、本発明を詳細に説明する。
本発明の一般式(I)、(II)及び(III)において、Aは、鎖長が1~4原子であり、硫黄原子、酸素原子及び窒素原子よりなる群から選ばれる少なくとも1種のヘテロ原子を鎖中又は末端に含んでいてもよく、かつ置換基を有していてもよいアルキレン鎖を示す。
本発明の一般式(I)、(II)及び(III)において、Aは、鎖長が1~4原子であり、硫黄原子、酸素原子及び窒素原子よりなる群から選ばれる少なくとも1種のヘテロ原子を鎖中又は末端に含んでいてもよく、かつ置換基を有していてもよいアルキレン鎖を示す。
アルキレン鎖としては、例えば、-CH2-、-C2H4-、-C3H6-、-C2H3CH3-、-C4H8-、-C3H5CH3-、-CH2CHCH3CH2-などの炭素数1~4の直鎖状又は分岐アルキレン鎖が挙げられる。これらの中で、5員環、6員環又は7員環のL体環状アミノ酸を形成することができる炭素数2~4の直鎖状アルキレン鎖が好ましい。例えば、Aが炭素数2の場合はL-プロリン(Proline)などの5員環アミノ酸、炭素数3の場合はL-ピペコリン酸(pipecolic acid)などの6員環アミノ酸、炭素数4の場合はアゼパン-2-カルボン酸(azepane-2-carboxylic acid)などの7員環アミノ酸が形成される。これら化合物の化学式を次に示す。
また、アルキレン鎖中には硫黄原子、酸素原子、窒素原子などのヘテロ原子を鎖中又は末端に含んでいてもよい。これらへテロ原子を含むアルキレン鎖により複素環が形成される。アルキレン鎖中には、硫黄原子、酸素原子、窒素原子などのヘテロ原子が1種又は複数種もしくは1個又は複数個含まれていてもよい。含まれるヘテロ原子の数としては、1~3個が好ましい。ヘテロ原子を含むアルキレン鎖としては、例えば、-CHOHCH2-、-CH2CHOHCH2-、-SCH2-、-SC2H4-、-SC3H6-、-OCH2-、-OC2H4-、-OC3H6-、-NHCH2-、-NHC2H4-、-NHC3H6-、-NHCH2CHCOOH-、-C2H4NHCO-、-C2H4NHCN-、-C2H4CHCOOH-、-SCH2CHCOOH-、-SC2H4CHCOOH-、-NHCHCOOHCH2-などが挙げられる。
Aが、硫黄原子を含むアルキレン鎖の場合、L体環状アミノ酸としては、チオプロリン、3-チオモルフォリンカルボン酸、[1,4]チアゼパン-3-カルボン酸([1,4]thiazepane-3-carboxylic acid)などが挙げられる。Aが、酸素原子を含むアルキレン鎖の場合、L体環状アミノ酸としては、4-オキザゾリジンカルボン酸、3-モルフォリンカルボン酸などが挙げられる。Aが、窒素原子を複数含むアルキレン鎖の場合、L体環状アミノ酸としては、ピペラジン-2-カルボン酸などが挙げられる。これら化合物の化学式を次に示す。
また、上記アルキレン鎖又はヘテロ原子を含むアルキレン鎖は置換基を有していてもよい。置換基としては、反応に悪影響を与えない基であれば特に限定されない。具体的には、限定されないが、炭素数1~4のアルキル基、炭素数6~12のアリール基、炭素数1~4のアルコキシ基、カルボキシル基、ハロゲン基、シアノ基、アミノ基、ニトロ基、ヒドロキシル基などが挙げられ、好ましくはヒドロキシル基である。置換基を含むL体環状アミノ酸としては、例えばヒドロキシプロリン(hydroxyproline)、ヒドロキシピペコリン酸などが挙げられる。これらの化学式を次に示す。
これらのうち、Aとしては炭素数2~4の直鎖状のアルキレン鎖が好ましく、特に炭素数3の直鎖状のアルキレン鎖が好ましい。
1.イミノ酸還元酵素
本発明で使用するイミノ酸還元酵素は、下記式(1)で表される反応を触媒する酵素である。
本発明で使用するイミノ酸還元酵素は、下記式(1)で表される反応を触媒する酵素である。
上記一般式(I)で表される反応を触媒する酵素とは、上記一般式(I)で表される1位に二重結合を有する環状アミノ酸に、イミノ酸還元酵素(ポリペプチド)、前記ポリペプチドを生産する能力を有する若しくは前記ポリペプチドを含む微生物若しくは細胞、前記微生物若しくは細胞の処理物、及び/又は前記微生物若しくは細胞を培養して得られた前記ポリペプチドを含む培養液を接触させて、上記一般式(II)で表されるL体環状アミノ酸を生成する性能を有する酵素を意味する。
「一般式(I)で表される1位に二重結合を有する環状アミノ酸から、一般式(II)で表されるL体環状アミノ酸を生成する性能」を有するか否かは、例えば、Δ1-ピペリジン-2-カルボン酸を基質として含有し、さらにNAD(P)+又はNAD(P)Hを補酵素として含有する反応系において、Δ1-ピペリジン-2-カルボン酸に、測定の対象とする酵素を作用させ、Δ1-ピペリジン-2-カルボン酸を還元し生成されたL-ピペコリン酸の量を直接的に測定することにより確認することができる。
「一般式(I)で表される1位に二重結合を有する環状アミノ酸から、一般式(II)で表されるL体環状アミノ酸を生成する性能」を有するか否かは、例えば、Δ1-ピペリジン-2-カルボン酸を基質として含有し、さらにNAD(P)+又はNAD(P)Hを補酵素として含有する反応系において、Δ1-ピペリジン-2-カルボン酸に、測定の対象とする酵素を作用させ、Δ1-ピペリジン-2-カルボン酸を還元し生成されたL-ピペコリン酸の量を直接的に測定することにより確認することができる。
接触方法は特に限定されず、例えば、イミノ酸還元酵素を含む液体に、上記一般式(I)で表される1位に二重結合を有する環状アミノ酸を加え、適当な温度(例えば、10℃~45℃程度)や圧力(例えば大気圧程度)で反応させることなどが挙げられる。反応時間についても、酵素種、目的産物などに応じて適宜設定可能な範囲である。
本発明においては、特に、下記式(2)で表される反応(Δ1-ピペリジン-2-カルボン酸(Δ1-piperidine-2-carboxylic acid)を還元してL-ピペコリン酸を生成する反応)を触媒する酵素が好ましい。
また、当該イミノ酸還元酵素は、例えば、還元型ニコチンアミドアデニンヌクレオチド(NADH)又は還元型ニコチンアミドアデニンジヌクレオチドリン酸(NADPH)(以下、両者をまとめて「NAD(P)H」と略記することがある)を補酵素として、一般式(I)で表される1位に二重結合を有する環状アミノ酸を還元して一般式(II)で表されるL体環状アミノ酸を生成する酵素であることが好ましい。
このようなイミノ酸還元酵素は、例えば、シロイヌナズナ(Arabidopsis thaliana)、ミヤマハタザオ、ハクサンハタザオなどのシロイヌナズナ属(genus Arabidopsis)の植物、クワ、カラヤマグワ(Morus alba)、ログワなどのクワ属(genus Morus)の植物又はハマエンドウ(Lathyrus japonicus)、レンリソウ、スイートピーなどのレンリソウ属(genus Lathyrus)などの植物から、公知の方法により抽出、精製して得ることができる。
イミノ酸還元酵素は、特に、シロイヌナズナ、カラヤマグワ又はハマエンドウ由来のイミノ酸還元酵素が好ましい。例えば、シロイヌナズナ、カラヤマグワ又はハマエンドウから抽出、精製して得られるイミノ酸還元酵素が好ましい。また、本発明によりシロイヌナズナ、カラヤマグワ又はハマエンドウ由来のイミノ酸還元酵素の配列が明らかにされたため、同配列を用いて公知の方法により合成されるイミノ酸還元酵素も好ましく用いられる。
植物からの酵素の抽出は、一般的な植物酵素の抽出方法(例えば、瓜谷郁三,志村憲助,中村道徳,船津 勝編、生物化学実験法14 高等植物の二次代謝研究法(1981)学会出版センター;堀尾武一,山下仁平編、蛋白質・酵素の基礎実験法(1981)南江堂)に準じて行うことができる。
得られた抽出物から残渣を除くために、濾過、遠心分離などの固液分離手段を適用して粗酵素抽出液とする。粗酵素抽出液からの目的とする酵素の精製は、公知の分離・精製方法が適用できる。例えば、粗酵素抽出液から硫安塩析法、有機溶媒沈殿法などにより粗酵素蛋白質を得、さらにこれをイオン交換、ゲル濾過、アフィニティなどの各種クロマトグラフィーを適宜組み合わせることによって精製酵素を得ることができる。
本発明で使用するイミノ酸還元酵素は、具体的には、配列番号2、4、6、8、10又は12に示すアミノ酸配列からなるポリペプチドを含むもの、又は当該アミノ酸配列と高い同一性を有するアミノ酸配列(以下、「アミノ酸配列のホモログ」という場合がある。)からなり、上記式(1)で表される反応を触媒する、L体環状アミノ酸生成能を有するポリペプチドを含むもの(以下、「イミノ酸還元酵素のホモログ」という場合がある。)である。
さらに具体的には、以下の(A)、(B)又は(C)に示すポリペプチドを含むものである。
(A)配列番号2、4、6、8、10又は12に示すアミノ酸配列を有するポリペプチド;
(B)配列番号2、4、6、8、10又は12に示すアミノ酸配列において1~複数個のアミノ酸が欠失、置換及び/又は付加されたアミノ酸配列であって、かつ下記式(1)に示す反応を触媒するL体環状アミノ酸生成能を有するポリペプチド;又は
(A)配列番号2、4、6、8、10又は12に示すアミノ酸配列を有するポリペプチド;
(B)配列番号2、4、6、8、10又は12に示すアミノ酸配列において1~複数個のアミノ酸が欠失、置換及び/又は付加されたアミノ酸配列であって、かつ下記式(1)に示す反応を触媒するL体環状アミノ酸生成能を有するポリペプチド;又は
(式中、Aは前記と同義である。)
(C)配列番号2、4、6、8、10又は12に示すアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を有し、かつ前記式(1)に示す反応を触媒するL体環状アミノ酸生成能を有するポリペプチド。
(C)配列番号2、4、6、8、10又は12に示すアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を有し、かつ前記式(1)に示す反応を触媒するL体環状アミノ酸生成能を有するポリペプチド。
本発明において、配列番号2、4、6、8、10又は12に示すアミノ酸配列を有するイミノ酸還元酵素のホモログは、上記ポリペプチド(B)又は(C)に示すポリペプチドを含むものである。
(B)に示すポリペプチドは、配列番号2、4、6、8、10又は12に示すアミノ酸配列において1~複数個のアミノ酸が欠失、置換及び/又は付加されたアミノ酸配列であって、かつ前記式(1)に示す反応を触媒するL体環状アミノ酸生成能を有するポリペプチドである。
置換の場合は、1~複数個のアミノ酸が保守的に置換されたものが好ましい。本明細書において、「アミノ酸が保守的に置換された」とは、化学的性質などが類似するアミノ酸同士の置換を意味し、例えば、塩基性アミノ酸を塩基性アミノ酸で置換すること、酸性アミノ酸を酸性アミノ酸で置換することなどが挙げられる。
「1~複数個のアミノ酸」とは、通常1個~100個、好ましくは1個~50個、より好ましくは1個~20個、さらに好ましくは1個~10個、特に好ましくは1個~5個、最も好ましくは1個~3個のアミノ酸である。
(C)に示すポリペプチドは、配列番号2、4、6、8、10又は12に示すアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を有し、かつ前記式(1)に示す反応を触媒するL体環状アミノ酸生成能を有するポリペプチドである。好ましくは、配列番号2、4、6、8、10又は12に示すアミノ酸配列と全長と80%以上、より好ましくは90%以上、さらに好ましくは95%以上、特に好ましくは98%以上、最も好ましくは99%以上の配列同一性を有するアミノ酸配列有し、かつ前記式(1)に示す反応を触媒する活性を有するポリペプチドである。
本明細書におけるアミノ酸配列の相同性(同一性又は類似性ともいう)は、相同性計算アルゴリズムNCBI BLAST (National Center for Biotechnology Information Basic Local Alignment Search Tool)を用い、例えば、以下の条件(期待値=10;ギャップを許す;マトリクス=BLOSUM62;フィルタリング=OFF)にて計算することができる。アミノ酸配列の相同性を決定するための他のアルゴリズムとしては、例えば、Karlinら, Proc. Natl. Acad. Sci. USA, 90: 5873-5877 (1993)に記載のアルゴリズム[該アルゴリズムはNBLAST及びXBLASTプログラム(version 2.0)に組み込まれている(Altschulら, Nucleic Acids Res., 25: 3389-3402 (1997))]、Needlemanら,J. Mol. Biol., 48: 444-453 (1970)に記載のアルゴリズム[該アルゴリズムはGCGソフトウェアパッケージ中のGAPプログラムに組み込まれている]、Myers及びMiller, CABIOS, 4: 11-17 (1988)に記載のアルゴリズム[該アルゴリズムはCGC配列アラインメントソフトウェアパッケージの一部であるALIGNプログラム(version2.0)に組み込まれている]、Pearsonら,Proc. Natl. Acad. Sci. USA, 85: 2444-2448 (1988)に記載のアルゴリズム[該アルゴリズムはGCGソフトウェアパッケージ中のFASTAプログラムに組み込まれている]などが挙げられ、それらも同様に好ましく用いられ得る。
また、本発明のイミノ酸還元酵素は、それをコードする核酸を含有する形質転換体を培養し、得られる培養物から該イミノ酸還元酵素を分離精製することによって製造することもできる。本発明のイミノ酸還元酵素をコードする核酸はDNAであってもRNAであってもよく、あるいはDNA/RNAキメラであってもよい。好ましくはDNAが挙げられる。また、該核酸は二本鎖であっても、一本鎖であってもよい。二本鎖の場合は、二本鎖DNA、二本鎖RNA又はDNA:RNAのハイブリッドでもよい。一本鎖の場合は、センス鎖(すなわち、コード鎖)であっても、アンチセンス鎖(すなわち、非コード鎖)であってもよい。
本発明のイミノ酸還元酵素をコードするDNAとしては、合成DNAなどが挙げられる。例えば、シロイヌナズナ、クワ(ヤマグワ)又はハマエンドウ由来の細胞若しくは組織より調製した全RNA若しくはmRNA画分を鋳型として用い、Reverse Transcriptase-PCRによって直接増幅した全長イミノ酸還元酵素 cDNAを、公知のキット、例えば、MutanTM-super Express Km(TAKARA BIO INC.)、MutanTM-K(TAKARA BIO INC.)などを用いて、ODA-LA PCR法、Gapped duplex法、Kunkel法などの公知の方法あるいはそれらに準じる方法に従って変換することによって取得することができる。あるいは、上記した全RNAもしくはmRNAの断片を適当なベクター中に挿入して調製されるcDNAライブラリーから、コロニーもしくはプラークハイブリダイゼーション法又はPCR法などにより、クローニングしたcDNAを、上記の方法に従って変換することによっても取得することができる。ライブラリーに使用するベクターは、バクテリオファージ、プラスミド、コスミド、ファージミドなどいずれであってもよい。
また、本発明のイミノ酸還元酵素は、精製を容易にすることや性質をより好ましい状態に維持することを目的として、親和性ポリペプチドとの融合タンパク質であってもよい。このような融合タンパク質としては、グルタチオン-S-トランスフェラーゼ(GST)、ヒスチジンタグ、マルトース結合タンパク質(MBP)、HAタグ、FLAGタグ、ビオチン化ペプチド、緑色蛍光タンパク質など公知の親和性ポリペプチドとの融合タンパク質が挙げられる。このような融合タンパク質は、アフィニティ精製などにより得ることができる。
本発明においては、GSTとの融合タンパク質が好ましい。配列番号8、10又は12に示すアミノ酸配列を有するポリペプチドは、配列番号2、4又は6に記載のアミノ酸配列で表されるポリペプチドとGSTをそれぞれ融合させた融合タンパク質である。
配列番号2、4、6、8、10又は12に示すアミノ酸配列を有するポリペプチドをコードする核酸としては、それぞれ、配列番号1、3、5、7、9又は11で表される塩基配列を含む核酸が挙げられる。式(1)に示す反応を触媒する活性を有するポリペプチドをコードする限り、配列番号1、3、5、7、9又は11で表される塩基配列と高い同一性を有する塩基配列を含む核酸(以下、「核酸のホモログ」という場合がある)でもよい。即ち、該ポリペプチドをコードする核酸としては、以下の(D)、(E)又は(F)に示す塩基配列を有するものが挙げられる。
(D)配列番号1、3、5、7、9又は11で表される塩基配列を含む核酸;
(E)配列番号1、3、5、7、9又は11で表される塩基配列において、1又は複数個の塩基が置換、欠失及び/又は付加された塩基配列であって、かつ上記式(1)に示す反応を触媒するL体環状アミノ酸生成能を有するポリペプチドをコードする核酸;又は
(F)配列番号1、3、5、7、9又は11で表される塩基配列の相補鎖とストリンジェントな条件下でハイブリダイズする塩基配列であって、且つ上記式(1)に示す反応を触媒するL体環状アミノ酸生成能を有するポリペプチドをコードする核酸。
(E)配列番号1、3、5、7、9又は11で表される塩基配列において、1又は複数個の塩基が置換、欠失及び/又は付加された塩基配列であって、かつ上記式(1)に示す反応を触媒するL体環状アミノ酸生成能を有するポリペプチドをコードする核酸;又は
(F)配列番号1、3、5、7、9又は11で表される塩基配列の相補鎖とストリンジェントな条件下でハイブリダイズする塩基配列であって、且つ上記式(1)に示す反応を触媒するL体環状アミノ酸生成能を有するポリペプチドをコードする核酸。
前記(E)に示す核酸のホモログとしては、配列番号1、3、5、7、9又は11で表される塩基配列において、1~複数個の塩基が欠失、置換、挿入及び/又は付加された塩基配列を含み、かつ上記式(1)に示す反応を触媒する活性を有するポリペプチドをコードする核酸が挙げられる。置換、挿入又は付加の場合は、1~複数個の塩基が置換、挿入又は付加されたものが好ましい。ここで、「1~複数個の塩基」とは、例えば、1個~300個、好ましくは1個~150個、より好ましくは1個~60個、さらに好ましくは1個~30個、特に好ましくは1個~15個、最も好ましくは1個~5個の塩基である。
なお、配列番号1、3、5で表される塩基配列は、それぞれシロイヌナズナ、クワ(ヤマグワ)、ハマエンドウ由来のイミノ酸還元酵素の遺伝子を大腸菌発現用にコドンを最適化した塩基配列である。このように形質転換対象の宿主に応じてコドンが最適化されたDNAも、当然に本発明に使用し得る上記式(1)に示す反応を触媒する活性を有するポリペプチドをコードする核酸に包含される。
前記(F)に示す核酸のホモログとしては、(F)配列番号1、3、5、7、9又は11で表される塩基配列の相補鎖とストリンジェントな条件下でハイブリダイズする塩基配列であって、且つ上記式(1)に示す反応を触媒するL体環状アミノ酸生成能を有するポリペプチドをコードする核酸が挙げられる。好ましくは、配列番号1、3、5、7、9又は11で表される塩基配列と80%以上、より好ましくは90%以上、さらに好ましくは95%以上、なお一層好ましくは98%以上、最も好ましくは99%以上の相同性(同一性ともいう)を有する塩基配列を有し、かつ上記式(1)に示す反応を触媒する活性を有するポリペプチドをコードする核酸である。
本明細書における塩基配列の相同性(同一性ともいう)は、相同性計算アルゴリズムNCBI BLAST(National Center for Biotechnology Information Basic Local Alignment Search Tool)を用い、例えば、以下の条件(期待値=10;ギャップを許す;フィルタリング=ON;マッチスコア=1;ミスマッチスコア=-3)にて計算することができる。塩基配列の相同性を決定するための他のアルゴリズムとしては、上記したアミノ酸配列の相同性計算アルゴリズムが同様に好ましく例示される。
前記(F)に示す核酸のホモログとしては、上記式(1)に示す反応を触媒する活性を有するポリペプチドをコードする限り、配列番号1、3、5、7、9又は11で表される塩基配列の相補鎖とストリンジェントな条件下でハイブリダイズする核酸であってもよい。ここで、「ストリンジェントな条件」としては、既報の条件(例:Current Protocols in Molecular Biology, John Wiley & Sons, 6.3.16.3.6, 1999)を参考に適宜設定することができ、具体的には、例えば、通常のサザンハイブリダイゼーションの洗浄条件である60℃、1 x SSC、0.1% SDS、好ましくは、0.1 x SSC、0.1% SDS、さらに好ましくは、65℃、0.1 x SSC、0.1% SDSや68℃、0.1 x SSC、0.1% SDSなど(高ストリンジェントな条件)に相当する塩濃度及び温度で、1回、より好ましくは2~3回洗浄する条件などが挙げられる。
当業者であれば、配列番号1、3、5、7、9又は11で表される核酸に部位特異的変異導入法(Nucleic Acids Res.10,pp.6487(1982)、Methods in Enzymol.100,pp.448(1983)、Molecular Cloning、PCR A Practical Approach IRL Press pp.200(1991))などを用いて、適宜、置換、欠失、挿入及び/又は付加を行い、所望の変異を導入することにより、上記のような核酸のホモログを得ることが可能である。
本発明の核酸は、上記式(1)に示す反応を触媒する活性を有するポリぺプチドをコードし得る。本発明の核酸が、配列番号1、3、5、7、9若しくは11に示す塩基配列、又は配列番号1、3、5、7、9若しくは11に示す塩基配列と高い同一性を有する塩基配列を有する場合、該核酸によりコードされるポリペプチドを含むイミノ酸還元酵素のL体環状アミノ酸生成能の程度は、配列番号2、4、6、8、10又は12に示すアミノ酸配列を有するポリペプチドを含むもの、又は該アミノ酸配列のホモログを有するポリペプチドを含むものと定量的に同等であり得るが、許容し得る範囲(例えば、配列番号2、4、6、8、10又は12に示すアミノ酸配列を有するポリペプチドを含むイミノ酸還元酵素、又は該アミノ酸配列のホモログを有するポリペプチドを含むイミノ酸還元酵素のアミノ酸生成能の約0.1~約5倍、好ましくは約0.3~約3倍)で異なってもよい。
また、配列番号2、4、6、8、10又は12に示すアミノ酸配列又はその一部や、配列番号1、3、5、7、9又は11で表される塩基配又はその一部をもとに、例えばDNA Databank of JAPAN(DDBJ)などのデータベースに対してホモロジー検索を行って、式(1)に示す反応を触媒する活性を有するポリペプチドのアミノ酸配列情報又はそれをコードするDNAの塩基配列情報を手に入れることも可能である。
後述する本発明の製造方法においては、イミノ酸還元酵素を上記式(1)で表される反応に直接使用してもよいが、該酵素を生産する能力を有する微生物若しくは細胞、該微生物若しくは細胞の処理物、及び/又は該微生物若しくは細胞を培養して得られた該酵素を含む培養液を用いることが好ましい。
本発明のイミノ酸還元酵素を生産する能力を有する微生物若しくは細胞としては、もともと当該イミノ酸還元酵素を生産する能力を有する微生物若しくは細胞を用いてもよいし、育種により前記生産能力を付与した微生物若しくは細胞であってもよい。微生物若しくは細胞としては、その生死は問わず、例えば、休止菌体などを好適に用いることができる。本発明のイミノ酸還元酵素を生産する能力を有する微生物若しくは細胞の種類としては、「宿主微生物」又は「宿主細胞」として後述するものが挙げられる。
育種により前記生産能力を付与する手段としては、遺伝子組換え処理(形質転換)や変異処理など、公知の方法を採用することができる。形質転換の方法としては、目的とするDNAを導入する方法、染色体上でプロモーターなどの発現調節配列を改変して目的とするDNAの発現を強化する方法などが挙げられる。
これらのうち、前記の本発明のポリペプチドをコードするDNAで形質転換された微生物若しくは細胞を用いることが好ましい。
本発明のポリペプチド(イミノ酸還元酵素)をコードする核酸(DNA)は、前記の通り、例えば、シロイヌナズナ、カラヤマグワ又はハマエンドウ由来の染色体DNAを鋳型として用い、適切なプライマーを用いてPCRを行うことでクローニングできる。
また、本発明のポリペプチド(イミノ酸還元酵素)をコードする核酸(DNA)は、前記の通り、例えば、シロイヌナズナ、クワ(ヤマグワ)又はハマエンドウ由来の全RNA若しくはmRNAを鋳型として用い、RT-PCR法によって直接増幅した全長イミノ酸還元酵素cDNAを調製した後、適切なプライマーを用いてPCRを行うことによりクローニングできる。
例えば、上記のようにして得た本発明のポリペプチドをコードするDNAを公知の発現ベクターに発現可能な配置で挿入することにより、本発明のポリペプチド遺伝子発現ベクターが提供される。そして、該発現ベクターで宿主微生物若しくは細胞を形質転換することにより、本発明のポリペプチドをコードするDNAが導入された形質転換体を得ることができる。形質転換体は、宿主の染色体DNAに本発明のポリペプチドをコードするDNAを相同組み換えなどの手法によって発現可能に組み込むことによっても得ることができる。
本明細書において「発現ベクター」とは、所望の機能を有するタンパク質をエンコードするポリヌクレオチドを組み込み宿主微生物若しくは細胞へ導入することにより、所望の機能を有するタンパク質を前記宿主微生物若しくは細胞において複製及び発現させるために用いられる遺伝因子である。例えば、プラスミド、ウイルス、ファージ、コスミドなどが挙げられるがこれらに限定されない。好ましくは、発現ベクターはプラスミドである。
本明細書において、「形質転換体」とは、前記発現ベクターなどを用いて目的の遺伝子が導入され、所望の機能を有するタンパク質に関連する所望の形質を表すことができるようになった微生物又は細胞を意味する。
形質転換体の作製方法としては、具体的には、限定されないが、宿主微生物又は宿主細胞において安定に存在するプラスミドベクターやファージベクターやウイルスベクター中に、本発明のポリペプチドをコードするDNAを導入し、構築された発現ベクターを該宿主微生物又は宿主細胞中に導入する方法や直接宿主ゲノム中に該DNAを導入し、その遺伝情報を転写・翻訳させる方法が例示される。この場合、宿主において適当なプロモーターをDNAの5'-側上流に連結させることが好ましく、さらに、ターミネーターを3'-側下流に連結させることがより好ましい。このようなプロモーター及びターミネーターとしては、宿主として利用する細胞中において機能することが知られているプロモーター及びターミネーターであれば特に限定されず、例えば、「微生物学基礎講座8遺伝子工学・共立出版」に詳述されているベクター、プロモーター及びターミネーターを使用することができる。
本発明のイミノ酸還元酵素を発現させるための形質転換の対象となる宿主微生物としては、宿主自体が原料や中間生成物に悪影響を与えない限り特に限定されることはなく、例えば、以下に示すような微生物を挙げることができる。
エシェリヒア(Escherichia)属、バチルス(Bacillus)属、シュードモナス(Pseudomonas)属、セラチア(Serratia)属、ブレビバクテリウム(Brevibacterium)属、コリネバクテリウム(Corynebacterium)属、ストレプトコッカス(Streptococcus)属、ラクトバチルス(Lactobacillus)属などに属する宿主ベクター系の確立されている細菌。
ロドコッカス(Rhodococcus)属、ストレプトマイセス(Streptomyces)属などに属する宿主ベクター系の確立されている放線菌。
サッカロマイセス(Saccharomyces)属、クルイベロマイセス(Kluyveromyces)属、シゾサッカロマイセス(Schizosaccharomyces)属、チゴサッカロマイセス(Zygosaccharomyces)属、ヤロウイア(Yarrowia)属、トリコスポロン(Trichosporon)属、ロドスポリジウム(Rhodosporidium)属、ハンゼヌラ(Hansenula)属、ピキア(Pichia)属、キャンディダ(Candida)属などに属する宿主ベクター系の確立されている酵母。
ノイロスポラ(Neurospora)属、アスペルギルス(Aspergillus)属、セファロスポリウム(Cephalosporium)属、トリコデルマ(Trichoderma)属などに属する宿主ベクター系の確立されているカビ。
形質転換体作製のための手順、宿主に適合した組換えベクターの構築及び宿主の培養方法は、分子生物学、生物工学、遺伝子工学の分野において慣用されている技術に準じて行うことができる(例えば、Molecular Cloningに記載の方法)。
以下、具体的に、好ましい宿主微生物、各微生物における好ましい形質転換の手法、ベクター、プロモーター、ターミネーターなどの例を挙げるが、本発明はこれらの例に限定されない。
エシェリヒア属、特にエシェリヒア・コリ(Escherichia coli)においては、プラスミドベクターとしては、pBR、pUC系プラスミドなどが挙げられ、lac(β-ガラクトシダーゼ)、trp(トリプトファンオペロン)、tac、trc(lac、trpの融合)、λファージPL、PRなどに由来するプロモーターなどが挙げられる。また、ターミネーターとしては、trpA由来、ファージ由来、rrnBリボソーマルRNA由来のターミネーターなどが挙げられる。
バチルス属においては、ベクターとしては、pUB110系プラスミド、pC194系プラスミドなどを挙げることができ、また、染色体にインテグレートすることもできる。プロモーター及びターミネーターとしては、アルカリプロテアーゼ、中性プロテアーゼ、α-アミラーゼなどの酵素遺伝子のプロモーターやターミネーターなどが利用できる。
シュードモナス属においては、ベクターとしては、シュードモナス・プチダ(Pseudomonas putida)、シュードモナス・セパシア(Pseudomonas cepacia)などで確立されている一般的な宿主ベクター系や、トルエン化合物の分解に関与するプラスミド、TOLプラスミドを基本にした広宿主域ベクター(RSF1010などに由来する自律的複製に必要な遺伝子を含む)pKT240(Gene,26,273-82(1983))などを挙げることができる。
ブレビバクテリウム属、特にブレビバクテリウム・ラクトファーメンタム(Brevibacterium lactofermentum)においては、ベクターとしては、pAJ43(Gene 39,281(1985))などのプラスミドベクターを挙げることができる。プロモーター及びターミネーターとしては、大腸菌で使用されている各種プロモーター及びターミネーターが利用可能である。
コリネバクテリウム属、特にコリネバクテリウム・グルタミカム(Corynebacterium glutamicum)においては、ベクターとしては、pCS11(特開昭57-183799号公報)、pCB101(Mol.Gen.Genet.196,175(1984))などのプラスミドベクターが挙げられる。
サッカロマイセス(Saccharomyces)属、特にサッカロマイセス・セレビジエ(Saccharomyces cerevisiae)においては、ベクターとしては、YRp系、YEp系、YCp系、YIp系プラスミドなどが挙げられる。また、アルコール脱水素酵素、グリセルアルデヒド-3-リン酸脱水素酵素、酸性フォスファターゼ、β-ガラクトシダーゼ、ホスホグリセレートキナーゼ、エノラーゼといった各種酵素遺伝子のプロモーター、ターミネーターが利用可能である。
シゾサッカロマイセス(Schizosaccharomyces)属においては、ベクターとしては、Mol.Cell.Biol.6,80 (1986)に記載のシゾサッカロマイセス・ポンベ由来のプラスミドベクターなどを挙げることができる。特に、pAUR224は、タカラバイオ株式会社から市販されており容易に利用できる。
アスペルギルス(Aspergillus)属においては、アスペルギルス・ニガー(Aspergillusniger)、アスペルギルス・オリジー(Aspergillus oryzae)などがカビの中で最もよく研究されており、プラスミドや染色体へのインテグレーションが利用可能であり、菌体外プロテアーゼやアミラーゼ由来のプロモーターが利用可能である(Trendsin Biotechnology 7,283-287(1989))。
また、上記以外でも、各種微生物に応じた宿主ベクター系が確立されており、それらを適宜使用することができる。
また、微生物以外でも、植物、動物において様々な宿主・ベクター系が確立されており、特に昆虫(例えば、蚕)などの動物中(Nature 315,592-594(1985))や、菜種、トウモロコシ、ジャガイモなどの植物中に大量に異種タンパク質を発現させる系、及び大腸菌無細胞抽出液や小麦胚芽などの無細胞タンパク質合成系を用いた系が確立されており、好適に利用できる。
本発明のイミノ酸還元酵素を生産する能力を有する微生物若しくは細胞の処理物としては、例えば、該微生物若しくは細胞をアセトン、ジメチルスルホキシド(DMSO)、トルエンなどの有機溶媒や界面活性剤により処理したもの、凍結乾燥処理したもの、物理的又は酵素的に破砕したものなどの細胞調製物、微生物若しくは細胞中の酵素画分を粗製物あるいは精製物として取り出したもの、さらには、これらをポリアクリルアミドゲル、カラギーナンゲルなどに代表される担体に固定化したものなどを挙げることができる。
本発明のイミノ酸還元酵素を生産する能力を有する微生物若しくは細胞を培養して得られた該酵素を含む培養液としては、例えば、該微生物若しくは細胞と液体培地の懸濁液や、該細胞が分泌発現型細胞である場合は該細胞を遠心分離などで除去した上清やその濃縮物を挙げることができる。
本発明のイミノ酸還元酵素は、Δ1-ピペリジン-2-カルボン酸を還元してL-ピペコリン酸を製造する方法に、特に好適に用いることができる。
本発明で用いる形質転換体が大腸菌などの原核生物、酵母菌などの真核生物である場合、これら微生物を培養する培地は、該微生物が資化し得る炭素源、窒素源、無機塩類などを含有し、形質転換体の培養を効率的に行える培地であれば天然培地、合成培地のいずれでもよい。培養は、振盪培養又は深部通気撹拌培養などの好気的条件下で行うことが好ましく、培養温度は通常15~40℃であり、培養時間は、通常16時間~7日間である。培養中pHは、3.0~9.0に保持する。pHの調整は、無機あるいは有機の酸、アルカリ溶液、尿素、炭酸カルシウム、アンモニアなどを用いて行う。また培養中必要に応じて、アンピシリンやテトラサイクリンなどの抗生物質を培地に添加してもよい。
形質転換体の培養物から、上記のイミノ酸還元酵素を単離精製するには、通常のタンパク質の単離、精製法を用いればよい。
例えば、上記のイミノ酸還元酵素が、細胞内に溶解状態で発現した場合には、培養終了後、細胞を遠心分離により回収し水系緩衝液に懸濁後、超音波破砕機、フレンチプレス、マントンガウリンホモゲナイザー、ダイノミルなどにより細胞を破砕し、無細胞抽出液を得る。該無細胞抽出液を遠心分離することにより得られた上清から、通常のタンパク質の単離精製法、即ち、溶媒抽出法、硫安などによる塩析法、脱塩法、有機溶媒による沈殿法、ジエチルアミノエチル(DEAE)セファロース、DIAION HPA-75(三菱化学社製)などレジンを用いた陰イオン交換クロマトグラフィー法、S-Sepharose FF(ファルマシア社製)などのレジンを用いた陽イオン交換クロマトグラフィー法、ブチルセファロース、フェニルセファロースなどのレジンを用いた疎水性クロマトグラフィー法、分子篩を用いたゲルろ過法、アフィニティークロマトグラフィ一法、クロマトフォーカシング法、など電点電気泳動などの電気泳動法などの手法を単独あるいは組み合わせて用い、精製標品を得ることができる。
また、上記のイミノ酸還元酵素が細胞内に不溶体を形成して発現した場合は、同様に細胞を回収後破砕し、遠心分離を行うことにより得られた沈殿画分より、通常の方法により該イミノ酸還元酵素を回収後、該N-メチル-L-アミノ酸デヒドロゲナーゼの不溶体をタンパク質変性剤で可溶化する。該可溶化液を、タンパク質変性剤を含まないあるいはタンパク質変性剤の濃度がN-メチル-L-アミノ酸デヒドロゲナーゼが変性しない程度に希薄な溶液に希釈、あるいは透析し、該イミノ酸還元酵素を正常な立体構造に構成させた後、上記と同様の単離精製法により精製標品を得ることができる。
2.本発明の組成物
本発明の組成物(酵素剤)は、本発明のイミノ酸還元酵素、該酵素を生産する能力を有する微生物若しくは細胞、該微生物若しくは細胞の処理物、及び/又は該微生物若しくは細胞を培養して得られた前記酵素を含む培養液を含み、上記L体環状アミノ酸生成性能を有するものである。本発明の組成物は、触媒として使用することで、高純度のL体環状アミノ酸をより安価に高効率で工業的に製造することができるため、有用である。
本発明の組成物(酵素剤)は、本発明のイミノ酸還元酵素、該酵素を生産する能力を有する微生物若しくは細胞、該微生物若しくは細胞の処理物、及び/又は該微生物若しくは細胞を培養して得られた前記酵素を含む培養液を含み、上記L体環状アミノ酸生成性能を有するものである。本発明の組成物は、触媒として使用することで、高純度のL体環状アミノ酸をより安価に高効率で工業的に製造することができるため、有用である。
本発明の組成物は、有効成分(酵素など)の他、賦形剤、緩衝剤、懸濁剤、安定剤、保存剤、防腐剤、生理食塩水などを含有していてもよい。賦形剤としては乳糖、ソルビトール、D-マンニトール、白糖などを用いることができる。緩衝剤としてはリン酸塩、クエン酸塩、酢酸塩などを用いることができる。安定剤としてはプロピレングリコール、アスコルビン酸などを用いることができる。保存剤としてはフェノール、塩化ベンザルコニウム、ベンジルアルコール、クロロブタノール、メチルパラベンなどを用いることができる。防腐剤としては塩化ベンザルコニウム、パラオキシ安息香酸、クロロブタノールなどと用いることができる。
3.L体環状アミノ酸の製造方法
本発明によれば、下記一般式(I):
本発明によれば、下記一般式(I):
(式中、Aは前記と同義である。)
で表される1位に二重結合を有する環状アミノ酸に、本発明のイミノ酸還元酵素を接触させて、下記一般式(II):
で表される1位に二重結合を有する環状アミノ酸に、本発明のイミノ酸還元酵素を接触させて、下記一般式(II):
(式中、Aは前記と同義である。)
で表されるL体環状アミノ酸の製造方法が提供される。
で表されるL体環状アミノ酸の製造方法が提供される。
本発明のイミノ酸還元酵素を一般式(I)で表される1位に二重結合を有する環状アミノ酸に接触させる際には、精製又は粗精製した本発明のイミノ酸還元酵素、本発明のイミノ酸還元酵素を生産する能力を有する微生物若しくは細胞(例えば、本発明のポリペプチドをコードするDNAを有する形質転換体など)、該微生物若しくは細胞の処理物、及び/又は該微生物若しくは細胞を培養して得られた該酵素を含む培養液を、一般式(I)で表される1位に二重結合を有する環状アミノ酸に接触させることによって、当該環状アミノ酸を還元し、一般式(II)で表されるL体環状アミノ酸を製造することができる。
本発明のイミノ酸還元酵素は、直接反応に使用してもよいが、該酵素を生産する能力を有する微生物若しくは細胞、該微生物若しくは細胞の処理物、及び/又は該微生物若しくは細胞を培養して得られた該酵素を含む培養液を用いることが好ましく、これらの中でも、本発明のポリペプチドをコードするDNAを有する形質転換体を用いることが好ましい。
反応液に添加する微生物若しくは細胞、該微生物若しくは細胞の処理物、及び/又は該微生物若しくは細胞を培養して得られた該酵素を含む培養液の量は、微生物若しくは細胞を添加する場合は、反応液にその微生物若しくは細胞の濃度が、通常、湿菌体重で0.1w/v%~50w/v%程度、好ましくは0.1w/v%~10w/v%となるように添加し、処理物や培養液を用いる場合には、酵素の比活性を求め、添加したときに上記微生物若しくは細胞濃度になるような量を添加する。ここで、w/v%は、重量(weight)/体積(volume)%を表す。
接触方法(反応方法)は特に限定されず、本発明のイミノ酸還元酵素を含む液体に、基質となる一般式(I)で表される1位に二重結合を有する環状アミノ酸を加え、適当な温度や圧力(例えば大気圧程度)で反応させることができる。反応時間についても、酵素種、目的産物などに応じて適宜設定可能である。
反応基質となる一般式(I)で表される1位に二重結合を有する環状アミノ酸は、通常、反応液中の基質濃度が0.0001w/v%~90w/v%、好ましくは0.01w/v%~30w/v%の範囲で用いられる。反応基質は、反応開始時に一括して添加してもよいが、酵素の基質阻害があった場合の影響を減らすという点や生成物の蓄積濃度を向上させるという観点から、連続的又は間欠的に添加することが望ましい。
また、上記反応(還元反応)は、補酵素の存在下に行うことが好ましい。補酵素としては、NAD(P)+又はNAD(P)Hが好ましい。ここで、NAD(P)+は、酸化型ニコチンアミドアデニンヌクレオチド(NAD+)又は酸化型ニコチンアミドアデニンジヌクレオチドリン酸(NADP+)を意味する。
補酵素は、反応液中の濃度が、通常、0.001mmol/L~100mmol/L、好ましくは0.01mmol/L~10mmol/Lとなるように添加する。
補酵素は、反応液中の濃度が、通常、0.001mmol/L~100mmol/L、好ましくは0.01mmol/L~10mmol/Lとなるように添加する。
補酵素を添加する場合には、NAD(P)Hから生成するNAD(P)+をNAD(P)Hへの再生させることが生産効率向上のため好ましい。再生方法としては、<1>宿主微生物自体のNAD(P)+還元能を利用する方法、<2>NAD(P)+からNAD(P)Hを生成する能力を有する微生物やその処理物、あるいは、グルコース脱水素酵素、ギ酸脱水素酵素、アルコール脱水素酵素、アミノ酸脱水素酵素、有機酸脱水素酵素(リンゴ酸脱水素酵素など)などのNAD(P)Hの再生に利用可能な酵素(再生酵素)を反応系内に添加する方法、<3>形質転換体を製造する際に、NAD(P)Hの再生に利用可能な酵素である上記再生酵素類の遺伝子を本発明のDNAと同時に宿主に導入する方法などが挙げられる。
このうち、上記<1>の方法においては、反応系にグルコースやエタノール、ギ酸などを添加するのが好ましい。上記<2>の方法においては、上記再生酵素類を含む微生物、上記再生酵素類をコードするDNAで形質転換された微生物、該微生物菌体をアセトン処理したもの、凍結乾燥処理したもの、物理的又は酵素的に破砕したものなどの菌体処理物、該酵素画分を粗製物あるいは精製物として取り出したもの、さらには、これらをポリアクリルアミドゲル、カラギーナンゲルなどに代表される担体に固定化したものなどを用いてもよく、また市販の酵素を用いてもよい。
この場合、上記再生酵素の使用量としては、具体的には、イミノ酸還元酵素に比較して、酵素活性で通常0.01倍~100倍、好ましくは0.01倍~10倍程度となるよう添加する。
また、上記再生酵素の基質となる化合物、例えば、グルコース脱水素酵素を利用する場合のグルコース、ギ酸脱水素酵素を利用する場合のギ酸、アルコール脱水素酵素を利用する場合のエタノールもしくはイソプロパノールなど、の添加も必要となるが、その添加量としては、反応原料であるジカルボニル基含有化合物に対して、通常1~10モル倍量、好ましくは1.0~1.5モル倍量添加する。
また、上記<3>の方法においては、イミノ酸還元酵素のDNAと上記再生酵素類のDNAを染色体に組み込む方法、単一のベクター中に両DNAを導入し、宿主を形質転換する方法及び両DNAをそれぞれ別個にベクターに導入した後に宿主を形質転換する方法を用いることができるが、両DNAをそれぞれ別個にベクターに導入した後に宿主を形質転換する方法の場合、両ベクター同士の不和合性を考慮してベクターを選択する必要がある。
単一のベクター中に複数の遺伝子を導入する場合には、プロモーター及びターミネーターなど発現制御に関わる領域をそれぞれの遺伝子に連結する方法やラクトースオペロンのような複数のシストロンを含むオペロンとして発現させることも可能である。
上記反応(還元反応)は、反応基質及び形質転換体並びに必要に応じて添加された各種補酵素及びその再生システムを含有する水性媒体中、又は水性媒体と有機溶媒との混合物中で行うことが好ましい。
水性媒体としては、水又は緩衝液が挙げられる。有機溶媒としては、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、tert-ブタノール、テトラヒドロフラン、アセトン、ジメチルスルホキシドなどの反応基質である一般式(I)で表される1位に二重結合を有する環状アミノ酸の溶解度が高い水溶性有機溶媒を使用することができる。また、酢酸エチル、酢酸ブチル、トルエン、クロロホルム、n-ヘキサンなどの反応副産物の除去などに効果のある非水溶性有機溶媒などを使用することができる。
上記反応(還元反応)は、使用する酵素、目的産物などに応じて適宜調整可能であるが、通常、4~60℃、好ましくは10~50℃の反応温度で、通常pH4~11、好ましくはpH5~10で行われる。反応時間は、通常、1時間~72時間程度である。
上記反応(還元反応)は、膜リアクターなどを利用して行うことも可能である。
上記反応(還元反応)により生成する一般式(II)で表されるL体環状アミノ酸は、反応終了後、反応液中の菌体やタンパク質を遠心分離、膜処理など当業者に公知の分離又は精製方法により分離した後に、酢酸エチル、トルエンなどの有機溶媒による抽出、蒸留、イオン交換樹脂やシリカゲルなどを用いたカラムクロマトグラフィーなど電点における晶析や、一塩酸塩、二塩酸塩、カルシウム塩などによる晶析を適宜組み合わせることにより精製を行うことができる。
また、基質である一般式(I)で表される1位に二重結合を有する環状アミノ酸は、公知の方法により、ジアミノ酸やラセミ体の環状アミノ酸から有機合成的な方法や生物化学的な方法により製造することができる。コストや取り扱い性から、工業的には、ジアミノ酸から製造することが好ましい。ジアミノ酸としては、鎖状のα,ω-ジアミノ酸が好ましい。
鎖状のα,ω-ジアミノ酸から製造する場合、下記反応式のように、α,ω-ジアミノ酸のα位のアミノ基をケト基に変換してαケト酸を生成すれば、該αケト酸は非酵素的脱水閉環が起こり1位に二重結合を有する環状アミノ酸となる。
(式中、Aは前記と同義である。)
ここで、α,ω-ジアミノ酸のα位のアミノ基が酸化されたαケト酸と1位に二重結合を有する環状アミノ酸は、通常、水性媒体中で平衡混合物として存在するので、これらは等価のものと見なされる。したがって、本発明の反応(還元反応)系中には、1位に二重結合を有する環状アミノ酸、Δ1-ピペリジン-2-カルボン酸、α,ω-ジアミノ酸のα位のアミノ基が酸化されたαケト酸と1位に二重結合を有する環状アミノ酸、又はα,ω-ジアミノ酸のα位のアミノ基が酸化されたαケト酸を添加又は含有することができ、これらのいずれの態様も本発明に包含される。
ここで、α,ω-ジアミノ酸のα位のアミノ基が酸化されたαケト酸と1位に二重結合を有する環状アミノ酸は、通常、水性媒体中で平衡混合物として存在するので、これらは等価のものと見なされる。したがって、本発明の反応(還元反応)系中には、1位に二重結合を有する環状アミノ酸、Δ1-ピペリジン-2-カルボン酸、α,ω-ジアミノ酸のα位のアミノ基が酸化されたαケト酸と1位に二重結合を有する環状アミノ酸、又はα,ω-ジアミノ酸のα位のアミノ基が酸化されたαケト酸を添加又は含有することができ、これらのいずれの態様も本発明に包含される。
α,ω-ジアミノ酸から生物化学的に1位に二重結合を有する環状アミノ酸を製造する場合、α,ω-ジアミノ酸のα位のアミノ基をケト基に変換しαケト酸を生成することができる酵素であればよく特に限定されないが、例えば、D-アミノ酸オキシダーゼ(D-aminoacid oxidase)、L-アミノ酸オキシダーゼ(L-aminoacid oxidase)などのアミノ酸オキシダーゼ、D-アミノ酸デヒドロゲナーゼ(D-aminoacid dehydrogenase)、L-アミノ酸デヒドロゲナーゼ(L-aminoacid dehydrogenase)などのアミノ酸デヒドロゲナーゼ、D-アミノ酸トランスフェラーゼ(D-aminoacid aminotransferase)、L-アミノ酸トランスフェラーゼ(L-aminoacid aminotransferase)などアミノ酸トランスフェラーゼなどの酵素が挙げられる。
これらの中では、基質特異性の広い酵素が好ましい。具体的には、Enzyme and Microbial Technology vol. 31(2002) p77-87に記載されているL-アミノ酸オキシダーゼ、シグマ・アルドリッチ社製のD-アミノ酸オキシダーゼなどが好ましい。
これらの中では、基質特異性の広い酵素が好ましい。具体的には、Enzyme and Microbial Technology vol. 31(2002) p77-87に記載されているL-アミノ酸オキシダーゼ、シグマ・アルドリッチ社製のD-アミノ酸オキシダーゼなどが好ましい。
上記アミノ酸オキシダーゼ、アミノ酸デヒドロゲナーゼ又はアミノ酸トランスフェラーゼが、ジアミノ酸にのみ反応するものであって、本発明の還元反応で用いることのできる補酵素に対応するものである場合、補酵素の再生システムの代替システムとなることができるため好ましい。すなわち、本発明の還元反応において、補酵素としてNAD(P)Hを用いた場合、NAD(P)Hは本反応の還元化に伴いNAD(P)+となるが、一方で、ジアミノ酸から1位に二重結合をもつ環状アミノ酸を製造する際に、このNAD(P)+を利用してNAD(P)Hへ変換することができるため好ましい。
また、ジアミノ酸から1位に二重結合をもつ環状アミノ酸を製造する際に各種アミノ酸オキシダーゼを用いる場合、反応に伴い過酸化水素が生成され、それが酵素活性の低下など反応に悪影響を及ぼすことが考えられるので、過酸化水素を除去するために別の酵素を組み合わせることも好ましい。過酸化水素を除去する酵素としては、過酸化水素に反応する酵素であれば特に限定はされないが、具体的にはカタラーゼやパーオキシダーゼが好ましい。過酸化水素に反応する酵素の使用量は、生成する過酸化水素が効率よく除去される範囲であれば特に限定されないが、具体的にはアミノ酸オキシダーゼに対し、通常0.01倍活性~100万倍活性、好ましくは0.1倍活性~10万倍活性の範囲で用いられる。
また、アミノ酸オキシダーゼを用いる場合、補酵素のフラビンアデニンジヌクレチド(FAD)を使用することにより活性を高めることができる。FADは、反応液中の濃度が通常0.00001ミリモル濃度~100ミリモル濃度、好ましくは0.001ミリモル濃度~10ミリモル濃度の範囲になるように使用する。
反応基質をジアミノ酸とする場合は、通常、基質濃度が0.01~90%w/v、好ましくは0.1~30%w/vの範囲である。
ジアミノ酸から生物化学的に1位に二重結合を有する環状アミノ酸を製造する方法は特に限定されず、公知の方法により製造することができる。
例えば、上記酵素を含む液体に、反応基質であるジアミノ酸を加え、適当な温度や圧力(例えば大気圧程度)で反応させることができる。
反応基質であるジアミノ酸は、通常、反応液中の基質濃度が0.01w/v%~90w/v%、好ましくは0.1w/v%~30%w/v%の範囲で用いられる。反応基質は、反応開始時に一括して添加してもよいが、酵素の基質阻害があった場合の影響を減らすという点や生成物の蓄積濃度を向上させるという観点から、連続的又は間欠的に添加することが望ましい。
例えば、上記酵素を含む液体に、反応基質であるジアミノ酸を加え、適当な温度や圧力(例えば大気圧程度)で反応させることができる。
反応基質であるジアミノ酸は、通常、反応液中の基質濃度が0.01w/v%~90w/v%、好ましくは0.1w/v%~30%w/v%の範囲で用いられる。反応基質は、反応開始時に一括して添加してもよいが、酵素の基質阻害があった場合の影響を減らすという点や生成物の蓄積濃度を向上させるという観点から、連続的又は間欠的に添加することが望ましい。
上記反応は、通常、4~60℃、好ましくは10~50℃の反応温度で、通常pH4~11、好ましくはpH5~10で行われる。反応時間は、通常、1時間~72時間程度である。
アミノ酸オキシダーゼを用いる場合、反応に必要な酸素を供給するため、酸素ガス、もしくは空気と十分に混合させる条件で反応させる。例えば反応容器の振とうもしくは回転速度を高めてもよいし、液中に酸素ガスや空気を液に通気させても良い。通常、通気速度は0.1vvm~5.0vvmであるが、好ましくは0.1vvm~1.0vvmの範囲で用いられる。
上記反応は、膜リアクターなどを利用して行うことも可能である。
上記反応により生成する一般式(I)で表される1位に二重結合を有する環状アミノ酸は、反応終了後、反応液中の菌体やタンパク質を遠心分離、膜処理など当業者に公知の分離又は精製方法により分離した後に、酢酸エチル、トルエンなどの有機溶媒による抽出、蒸留、イオン交換樹脂やシリカゲルなどを用いたカラムクロマトグラフィーなど電点における晶析や、一塩酸塩、二塩酸塩、カルシウム塩などによる晶析を適宜組み合わせることにより精製を行うことができる。
本発明においては、1位に二重結合を有する環状アミノ酸を得た後、分離精製して次のL体環状アミノ酸を得る工程に供することもできるし、分離精製することなく、次のL体環状アミノ酸を得る工程に供することもできる。また、1位に二重結合を有する環状アミノ酸を得る工程とL体環状アミノ酸を得る工程を別個の反応器で行うこともできるし、両工程を同一の反応器で行うこともできる。
以下、実施例により本発明を更に詳しく説明するが、本発明はこれに限定されるものではない。
なお、以下の実施例及び参考例において、Mはmol/Lを、w/v は重量/容量を、DMSOはジメチルスルホキシドを、ETDAはエチレンジアミン四酢酸を、IPTGはイソプロピル-β-チオガラクトピラノシドを、PipC2はΔ1-ピペリジン-2-カルボン酸、PipAはピペコリン酸をそれぞれ意味する。
<実施例1>(植物由来イミン還元酵素遺伝子のクローニング)
(1)植物体からの目的遺伝子増幅
発芽から約1ヵ月生育したシロイヌナズナ、ハマエンドウからそれぞれ全RNAを抽出した。発芽から約1ヵ月生育したカラヤマグワは葉から全RNAを抽出した。抽出にはRNeasy Plant Mini Kit(QIAGEN社製)を用いた。操作は当該キット記載のプロトコールを参考に、室温で行った。得られた全RNAから、ReverTra Ace(登録商標) qPCR RT Master Mix with gDNA Remover(TOYOBO社製)を用いて、cDNAを合成した。得られたcDNAライブラリーを元に各植物体で発現されている遺伝子のデータベースを構築した。
(1)植物体からの目的遺伝子増幅
発芽から約1ヵ月生育したシロイヌナズナ、ハマエンドウからそれぞれ全RNAを抽出した。発芽から約1ヵ月生育したカラヤマグワは葉から全RNAを抽出した。抽出にはRNeasy Plant Mini Kit(QIAGEN社製)を用いた。操作は当該キット記載のプロトコールを参考に、室温で行った。得られた全RNAから、ReverTra Ace(登録商標) qPCR RT Master Mix with gDNA Remover(TOYOBO社製)を用いて、cDNAを合成した。得られたcDNAライブラリーを元に各植物体で発現されている遺伝子のデータベースを構築した。
得られたcDNAを鋳型にしてPCR反応を行った。PCR用のプライマーは下記表に記載の通りに作製した。大腸菌発現用ベクターに挿入するための制限酵素認識部位としてプライマーのN末端、C末端に制限酵素を付加した。
PCRは、TaKaRa Ex Taq(登録商標) Hot Start Version(TaKaRa社製)のプロトコールに基づいて行った。組成はEx Taq HS 0.1μL、10×Ex Taq Buffer 2μL、dNTP mixture(各2.5 mM)1.6μL、cDNA 2μL、10μM フォワードプライマー1μL、10μM リバースプライマー1μL、Milli-Q(登録商標) 12.3μLの総量20μLとした。イミン還元酵素遺伝子AtP2CR増幅用のプライマーとして、配列番号13に記載の配列をフォワードプライマーとして、配列番号14に記載の配列をリバースプライマーとして用いた。MaP2CR遺伝子については、配列番号15に記載の配列をフォワードプライマー及び配列番号16に記載の配列をリバースプライマーとして用いた。LjP2CR遺伝子については、配列番号17に記載の配列をフォワードプライマー及び配列番号18に記載の配列をリバースプライマーとして用いた。反応条件は、95℃で2分間初期変性を行い、続いて95℃で30秒間の変性、60℃で30秒間のアニーリング、72℃で1分10秒の伸長反応を30サイクル繰り返して、最後に72℃で5分間伸長反応を行った。反応生成物を、GelRed(商標) 核酸ゲル染色液(×10000) DMSO溶液で染色した1×TAE buffer(トリス-酢酸-EDTA緩衝液)で作製した2%(w/v)アガロースゲルを用いた電気泳動に供した。電気泳動後、目的の1100bp付近の単一なバンドをアガロースゲル上からメスで切り出し、Wizard(登録商標) SV Gel and PCR Clean-UP System(Promega社製)を用いてcDNAを抽出した。操作は、当該システムに添付されているプロトコールに従った。
得られた各精製済みDNA断片4μL、T-Vector pMD19(TaKaRa Bio社製)1μL、及びDNA ligation Kit Mighty Mix(TaKaRa社製)5μLを混合し、反応温度16℃で30分間のライゲーション反応を行った。このライゲーション溶液を用いてEscherichia coli DH5αを形質転換した。
挿入されたDNA 断片の塩基配列を取得するために、得られたプラスミド約100ng を用いてBigDye(登録商標) Terminator v3.1/1 Cycle Sequencing Kit(Applied Biosystems社製)によるシークエンス反応を行った。得られた試料をABI PRISM(商標)genetic analyzerに供することにより各遺伝子配列を確認した。
挿入された遺伝子配列を確認したところ、AtP2CRの遺伝子配列は配列番号1に示す配列であり、コードされるアミノ酸配列は配列番号2で示される配列であることが確認された。また、MaP2CRの遺伝子配列は配列番号3に示す配列であり、コードされるアミノ酸配列は配列番号4であること、LjP2CRの遺伝子配列は配列番号5に示す配列であり、コードされるアミノ酸配列は配列番号6であることが確認された。
(2)発現ベクターの調製
上記(1)でpMD19にサブクローニングした候補遺伝子AtP2CR、MaP2CR及びLjP2CRを各制限酵素で処理し、マルチクローニングサイトから切断した。電気泳動により消化確認後、目的とするDNA断片を切り出し、精製した後、同様に制限酵素処理を行った大腸菌発現用ベクターであるpGEX 4T-1ベクター(TaKaRa社製)に精製したクローンのDNA断片を上記(1)と同様にライゲーション及び形質転換を行った。約18時間後、形成されたコロニーをLB液体培地(100μg/mL アンピシリン)2mLで生育させ、上記(1)と同様にプラスミド抽出、制限酵素処理を行って挿入配列を確認した。構築された発現ベクターをそれぞれpGEX-AtP2CR、pGEX-MaP2CR、pGEX-LjP2CRと名付けた。各ベクターによって発現される酵素はいずれもGST融合型タンパク質であった。GST融合型AtP2CRの遺伝子配列は配列番号7に示す配列であり、コードされるアミノ酸配列は配列番号8であること、GST融合型MaP2CRの遺伝子配列は配列番号9に示す配列であり、コードされるアミノ酸配列は配列番号10であること、GST融合型LjP2CRの遺伝子配列は配列番号11に示す配列であり、コードされるアミノ酸配列は配列番号12であることが確認された。
上記(1)でpMD19にサブクローニングした候補遺伝子AtP2CR、MaP2CR及びLjP2CRを各制限酵素で処理し、マルチクローニングサイトから切断した。電気泳動により消化確認後、目的とするDNA断片を切り出し、精製した後、同様に制限酵素処理を行った大腸菌発現用ベクターであるpGEX 4T-1ベクター(TaKaRa社製)に精製したクローンのDNA断片を上記(1)と同様にライゲーション及び形質転換を行った。約18時間後、形成されたコロニーをLB液体培地(100μg/mL アンピシリン)2mLで生育させ、上記(1)と同様にプラスミド抽出、制限酵素処理を行って挿入配列を確認した。構築された発現ベクターをそれぞれpGEX-AtP2CR、pGEX-MaP2CR、pGEX-LjP2CRと名付けた。各ベクターによって発現される酵素はいずれもGST融合型タンパク質であった。GST融合型AtP2CRの遺伝子配列は配列番号7に示す配列であり、コードされるアミノ酸配列は配列番号8であること、GST融合型MaP2CRの遺伝子配列は配列番号9に示す配列であり、コードされるアミノ酸配列は配列番号10であること、GST融合型LjP2CRの遺伝子配列は配列番号11に示す配列であり、コードされるアミノ酸配列は配列番号12であることが確認された。
(3)組換え菌の培養
上記(2)で作製した発現ベクターを用いてEscherichia coli BL21(DE3)を形質転換した。約18時間後、形成されたコロニーを爪楊枝で突き、LB液体培地(100μL/mL アンピシリン)2mLに入れ、一晩培養して前培養液とした。前培養液500μLをLB液体培地(100μg/mL アンピシリン)50mLに加え、培養温度37℃、225rpmで濁度(OD600)が0.5前後になるまで培養した後、終濃度0.1mMになるようにIPTGを加えた。これを培養温度18℃、150rpmで約18時間培養した。ネガティブコントロールとして外来遺伝子が挿入されていないベクターを用いて、同様の発現操作を行った。
上記(2)で作製した発現ベクターを用いてEscherichia coli BL21(DE3)を形質転換した。約18時間後、形成されたコロニーを爪楊枝で突き、LB液体培地(100μL/mL アンピシリン)2mLに入れ、一晩培養して前培養液とした。前培養液500μLをLB液体培地(100μg/mL アンピシリン)50mLに加え、培養温度37℃、225rpmで濁度(OD600)が0.5前後になるまで培養した後、終濃度0.1mMになるようにIPTGを加えた。これを培養温度18℃、150rpmで約18時間培養した。ネガティブコントロールとして外来遺伝子が挿入されていないベクターを用いて、同様の発現操作を行った。
(4)遺伝子発現の確認
上記(3)で得られた各可溶性タンパク質画分をGST-Tagged Protein Purification Kit(Clontech Laboratories社製)を用いて精製(GST-tag精製)して酵素液を得た。操作は、当該キット付属のプロトコールに従った。
上記(3)で得られた各可溶性タンパク質画分をGST-Tagged Protein Purification Kit(Clontech Laboratories社製)を用いて精製(GST-tag精製)して酵素液を得た。操作は、当該キット付属のプロトコールに従った。
GST-tag精製して得られた酵素液(可溶性タンパク質)をSDS-PAGEに供し、目的タンパク質の発現を確認した。その結果、各組換え酵素の分子量は、それぞれ約25kDaのタグが付加された約60kDaであることが確認された。
<実施例2>(植物由来イミン還元酵素の活性確認)
(1)酵素反応
実施例1で得られた各酵素液(P2CR精製組換え酵素液)を用いて、酵素反応を行った。反応容器として1.5mLエッペンドルフチューブを用い、酵素反応溶液の体積は100μLで行った。基質となるPipC2は市販されていないため、後述の参考例1で得られたアミノ基転移酵素MaALD1を用いてL-リジンから酵素合成したものを用いた。表2にPipC2酵素反応の組成を示す。
(1)酵素反応
実施例1で得られた各酵素液(P2CR精製組換え酵素液)を用いて、酵素反応を行った。反応容器として1.5mLエッペンドルフチューブを用い、酵素反応溶液の体積は100μLで行った。基質となるPipC2は市販されていないため、後述の参考例1で得られたアミノ基転移酵素MaALD1を用いてL-リジンから酵素合成したものを用いた。表2にPipC2酵素反応の組成を示す。
酵素反応は、振とう恒温器(アズワン社製)を用いて、反応温度30℃、1,000rpmで振とうさせて行った。反応時間は120分とした。反応温度98℃で5分間加熱することにより酵素を失活させて反応を停止した。その後、室温で15,000rpmで、10分間遠心分離し、得られた上清をPipC2酵素合成溶液とした。
このPipC2酵素合成溶液に、終濃度10mMとなるように*NADPHを加え、実施例1で得られた各P2CR精製組換え酵素を20μL加え、上記酵素MaALD1を用いた反応と同様の条件で反応を行い、酵素反応物を得た。
(2)酵素反応物の解析
液体クロマトグラフィー-質量分析法(LCMS)によって酵素反応物の分析を行った。まず、各サンプル(酵素反応物)の誘導体化処理を行った。AccQ・Tag Ultra Derivatization Kit(Waters社製)を用い、表3に示す配合で混合した。なお、Derivatizating reagent solutionは最後に加えた。混合後、55℃で10分間インキュベートした。
液体クロマトグラフィー-質量分析法(LCMS)によって酵素反応物の分析を行った。まず、各サンプル(酵素反応物)の誘導体化処理を行った。AccQ・Tag Ultra Derivatization Kit(Waters社製)を用い、表3に示す配合で混合した。なお、Derivatizating reagent solutionは最後に加えた。混合後、55℃で10分間インキュベートした。
誘導体化処理を行ったものを純水で2倍に希釈し、LCMS解析用サンプルとした。HPLC-MSの分析条件を表4に示す。
酵素反応物をLCMS分析に供して活性を確認したところ、標品のL-PipAと同じリテンションタイムかつMSパターンの新規ピークを確認した。また、コントロールではPipAを検出することはできなかった。
この結果から、AtP2CR、MaP2CR及びLjP2CRはPipC2を還元しPipAへと変換する能力を有することが明らかとなった。
この結果から、AtP2CR、MaP2CR及びLjP2CRはPipC2を還元しPipAへと変換する能力を有することが明らかとなった。
生成したPipAがD体かL体かを決定するため、キラルカラムAstec CLC-D 4.6×150mm(5μm)(Sigma-Aldrich社製)を用いてHPLC分析に供した。その結果を図1に示す。シロイヌナズナ、ハマエンドウ及びカラヤマグワの3種の植物から取得したP2CRの酵素反応物はすべて、L-ピペコリン酸であることが明らかとなった。
(3)酵素触媒活性の解析
実施例2(1)と同じ組成でPipC2酵素反応溶液を作製した。*NADPHは、酵素溶液を加えた後のTotal Volumeである1mLにおいて終濃度が500μM、300μM、150μM、80μM、40μM、20μM及び10μMとなるようにPipC2酵素反応溶液にそれぞれ加え、最後に50mM Tris-HCl(pH7.2)をTotal Volumeが900μLとなるようにそれぞれの酵素反応溶液に加えた。これを反応溶液とした。
実施例2(1)と同じ組成でPipC2酵素反応溶液を作製した。*NADPHは、酵素溶液を加えた後のTotal Volumeである1mLにおいて終濃度が500μM、300μM、150μM、80μM、40μM、20μM及び10μMとなるようにPipC2酵素反応溶液にそれぞれ加え、最後に50mM Tris-HCl(pH7.2)をTotal Volumeが900μLとなるようにそれぞれの酵素反応溶液に加えた。これを反応溶液とした。
これらの反応溶液それぞれに、実施例1で得られたAtP2CRの精製組換え酵素液を100μL加え反応を開始した。反応開始時点から340nmの吸光度を測定し、10分間測定を行った。同じ実験を3回実施し、平均値を算出した。
得られた測定値から反応速度を算出した。算出した反応速度を用いてHanes-Woolf plot(Hanes CS., (1932),vol.26, 5, 1406, Biochemical Journal)により各速度論パラメーター(ミカエリス定数Km及び最大反応速度Vmax)を算出した。
LjP2CRについても、AtP2CRと同様にして、反応、測定及び算出を行った。
MaP2CRについては、上記*NADPH濃度が、80μM、40μM、20μM、10μM、2μM、1μΜ及び0.5μMの条件で反応を行ったこと以外は、AtP2CRと同様にして、測定及び算出を行った。
MaP2CRについては、上記*NADPH濃度が、80μM、40μM、20μM、10μM、2μM、1μΜ及び0.5μMの条件で反応を行ったこと以外は、AtP2CRと同様にして、測定及び算出を行った。
測定した吸光度変化を*NADPHのモル吸光係数 6.3×10(1/mmol・cm)を用いて、*NADPHの濃度変化に変換した。この値より*NADPHの減少における反応速度(μM/s)を計算した。なお、用いた吸光度の減少値は測定開始から直線性を持って減少する間の値を用いた。
各*NADPH濃度において、基質濃度/反応速度の値をプロットすることにより、Hanes-Woolf plotの線形近似線を求めた。結果を図2に示す。図2中、(1)はAtP2CR、(2)はMaP2CR、(3)はLjP2CRである。3つのP2CRの結果すべてでR2が0.99であったことから信頼性の高い結果が得られたと考えられる。Hanes-Woolf plotのグラフは、傾きが1/Vmax、x軸との交点が-Kmである。そして、Hanes-Woolfの式より最大反応速度Vmax及びKmを計算した。AtP2CRはVmaxが208.73nmol/min/mg、Kmが33.42μMであり、MaP2CRはVmaxが24.00nmol/min/mg、Kmが6.16μMであり、LjP2CRはVmaxが199.55nmol/min/mg、Kmが170.24μMであった。
またANEMONA(Hernandez and Ruiz, (1998) 14, 2, 227, Bioinformatics)により非線形回帰分析を行い、同様にVmax及びKmを計算した。ANEMONAによるMichaelis-Menten modelを図3に示す。図3中、(1)はAtP2CR、(2)はMaP2CR、(3)はLjP2CRである。AtP2CRはVmaxが215.5nmol/min/mg、Kmが34.29μMであり、MaP2CRはVmaxが21.2 nmol/min/mg、Kmが3.57μMであり、LjP2CRはVmaxが187.3nmol/min/mg、Kmが155.03μMであった。
Hanes-Woolf plotとANEMONAの2つの方法で求めたVmax及びKmの値は類似した値を取ったため、非線形回帰で求めた値の方が真のVmax及びKmに近い値であると考え、ANEMONAで求めたVmax及びKmを採用することとした。
PipA生産の産業用の酵素触媒として利用されている微生物Pseudomonus putida由来PipC2還元酵素 dpkAのVmaxは220 nmol/min/mg、Kmは140 μMであることが文献(Muramatsuら, (2005), vol. 280, 7, 5329 THE JOURNAL OF BIOLOGICAL CHEMISTRY)に記載されている。
表5に示すように、当該文献から算出される触媒活性の指標Kcat/km値は56であるが、本発明の酵素のKcat/km値はいずれもこれを上回る値だった。したがって、AtP2CR、MaP2CR及びLjP2CRはいずれもPipC2を還元しPipAへと変換する優れた能力を有しており、また酵素学的に安定で、優れた酵素触媒であることが分かった。
<参考例1>(植物由来リジンアミノ基転移酵素MaALD1の調製)
(a)植物由来リジンアミノ基転移酵素遺伝子MaALD1のクローニング
発芽から約1ヵ月生育したカラヤマグワの葉からRNeasy Plant Mini Kit(QIAGEN社製)を用いてRNA抽出を行った。得られた全RNAから、ReverTra Ace(登録商標) qPCR RT Master Mix with gDNA Remover(TOYOBO社製)を用いて、cDNAを合成した。
(a)植物由来リジンアミノ基転移酵素遺伝子MaALD1のクローニング
発芽から約1ヵ月生育したカラヤマグワの葉からRNeasy Plant Mini Kit(QIAGEN社製)を用いてRNA抽出を行った。得られた全RNAから、ReverTra Ace(登録商標) qPCR RT Master Mix with gDNA Remover(TOYOBO社製)を用いて、cDNAを合成した。
得られたcDNAを鋳型にしてPCR反応を行った。プライマーはMaALD1-FW(GGATCCATGACGCATAATTATTCTCAG)(配列番号20)とMaALD1-RV(GTCGACTCATTTGTAAAGAGATTTTAGTC)(配列番号21)を用いて行った。反応はTaKaRa Ex Taq(登録商標) Hot Start Version(TaKaRa社製)のプロトコールに基づいて行った。
精製されたDNAをT-Vector pMD19(TaKaRa Bio社製)にクローニングした。配列解析の結果、これがアミノ基転移酵素MaALD1(配列番号19)をコードする遺伝子であることを確認した。pMD19にサブクローニングしたMaALD1の遺伝子領域を制限酵素BamHIとSalIで処理し、マルチクローニングサイトから切断した。電気泳動により消化確認後、目的とするDNA断片を切り出し、精製した後同様に制限酵素処理を行った大腸菌発現用ベクターであるpCold ProS2ベクター(TaKaRa Bio社製)に精製したDNA断片をライゲーションした。その溶液を用いて大腸菌DH5αを形質転換することにより目的のプラスミドを構築した。得られたプラスミドをpCold-MaALD1と名付けた。
(b)組換え酵素の発現
上記(a)で作製した発現ベクターpCold-MaALD1を用いてEscherichia. coli(BL21株)を形質転換した。約18時間後、形成されたコロニーを爪楊枝で突き、LB液体培地(100μL/mL アンピシリン)2mLに入れ、一晩培養して前培養液とした。前培養液500μLをLB液体培地(100μg/mL アンピシリン)50 mLに加え、培養温度37℃、225rpmで濁度(OD600)が0.5前後になるまで培養した。次に、pCold-MaALD1形質転換体を30分間氷上で静置し、終濃度0.1 mMになるようにIPTGを加えた。これを培養温度15℃、150rpmで約18時間培養した。
上記(a)で作製した発現ベクターpCold-MaALD1を用いてEscherichia. coli(BL21株)を形質転換した。約18時間後、形成されたコロニーを爪楊枝で突き、LB液体培地(100μL/mL アンピシリン)2mLに入れ、一晩培養して前培養液とした。前培養液500μLをLB液体培地(100μg/mL アンピシリン)50 mLに加え、培養温度37℃、225rpmで濁度(OD600)が0.5前後になるまで培養した。次に、pCold-MaALD1形質転換体を30分間氷上で静置し、終濃度0.1 mMになるようにIPTGを加えた。これを培養温度15℃、150rpmで約18時間培養した。
(c)組換え酵素の精製
上記(b)で得られた培養液を50mL容量のファルコン(登録商標)チューブに移し、2, 330×g、4℃で10分間遠心分離した。
上記(b)で得られた培養液を50mL容量のファルコン(登録商標)チューブに移し、2, 330×g、4℃で10分間遠心分離した。
上清を捨て、菌体に1×PBS(phosphate-buffered saline)5mLを加え、ボルテックスにより再懸濁し、次いで、先の遠心分離と同条件で遠心分離することにより菌体を洗浄した。この操作を2回繰り返した。
回収した菌体に、Sonication buffer {50 mM Tris-HCl(pH 7.5)、150 mM NaCl、10%(v/v)Glycerol、5mM dithiothreitol(DTT)}4mLを加え、超音波破砕(50% duty、output 2、30秒間×2回)により菌体を破砕した。15,000rpm、4℃で、10分間遠心分離し、上清を可溶性タンパク質画分、沈殿を不溶性タンパク質画分として得た。
得られた可溶性タンパク質画分をHis-Tagged Purification Miniprep Kit(Clontech Laboratories社製)を用いて精製することによりMaALD1を得た。
Claims (13)
- 下記一般式(I):
で表される1位に二重結合を有する環状アミノ酸に、以下の(A)、(B)又は(C)に示すポリペプチド、前記ポリペプチドを生産する能力を有する若しくは前記ポリペプチドを含む微生物若しくは細胞、前記微生物若しくは細胞の処理物、及び/又は前記微生物若しくは細胞を培養して得られた前記ポリペプチドを含む培養液を接触させて、下記一般式(II):
で表されるL体環状アミノ酸を生成させることを特徴とする、L体環状アミノ酸の製造方法:
(A)配列番号2、4、6、8、10又は12に示すアミノ酸配列を有するポリペプチド;
(B)配列番号2、4、6、8、10又は12に示すアミノ酸配列において1~複数個のアミノ酸が欠失、置換及び/又は付加されたアミノ酸配列であって、かつ下記式(1)に示す反応を触媒するL体環状アミノ酸生成能を有するポリペプチド:
(C)配列番号2、4、6、8、10又は12に示すアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を有し、かつ前記式(1)に示す反応を触媒するL体環状アミノ酸生成能を有するポリペプチド。 - 前記ポリペプチドは、以下の(D)、(E)又は(F)に示す核酸にコードされるものである、請求項1に記載の製造方法:
(D)配列番号1、3、5、7、9又は11で表される塩基配列を含む核酸;
(E)配列番号1、3、5、7、9又は11で表される塩基配列において、1又は複数個の塩基が置換、欠失及び/又は付加された塩基配列であって、かつ上記式(1)に示す反応を触媒するL体環状アミノ酸生成能を有するポリペプチドをコードする核酸;又は
(F)配列番号1、3、5、7、9又は11で表される塩基配列の相補鎖とストリンジェントな条件下でハイブリダイズする塩基配列であって、且つ上記式(1)に示す反応を触媒するL体環状アミノ酸生成能を有するポリペプチドをコードする核酸。 - 下記一般式(III):
で表される鎖状のα,ω-ジアミノ酸に、ジアミノ酸のα位のアミノ基をケト基に変換しαケト酸を生成することのできる酵素を反応させ、下記一般式(I):
で表される1位に二重結合を有する環状アミノ酸を生成させた後、
得られた1位に二重結合を有する環状アミノ酸を、請求項1又は2に記載の方法により、下記一般式(II):
で表されるL体環状アミノ酸を生成させることを特徴とする、L体環状アミノ酸の製造方法。 - ジアミノ酸のα位のアミノ基をケト基に変換しαケト酸を生成することのできる酵素が、D-アミノ酸オキシダーゼ、L-アミノ酸オキシダーゼ、D-アミノ酸デヒドロゲナーゼ、L-アミノ酸デヒドロゲナーゼ、D-アミノ酸トランスフェラーゼ及びL-アミノ酸トランスフェラーゼよりなる群から選ばれる一種以上の酵素である、請求項3に記載のL体環状アミノ酸の製造方法。
- 前記一般式(I)で表される1位に二重結合を有する環状アミノ酸がΔ1-ピペリジン-2-カルボン酸であり、前記一般式(II)で表されるL体環状アミノ酸がL-ピペコリン酸である、請求項1~4のいずれか一項に記載のL体環状アミノ酸の製造方法。
- (a)配列番号4、6、8、10又は12に示すアミノ酸配列を有するポリペプチド;
(b)配列番号2、4、6、8、10又は12に示すアミノ酸配列において1~複数個のアミノ酸が欠失、置換及び/又は付加されたアミノ酸配列であって、かつ下記式(1)に示す反応を触媒するL体環状アミノ酸生成能を有するポリペプチド:
(c)配列番号2、4、6、8、10又は12に示すアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を有し、かつ前記式(1)に示す反応を触媒するL体環状アミノ酸生成能を有するポリペプチド。 - 請求項6に記載のポリペプチドをコードする核酸。
- 核酸が植物由来である、請求項7に記載の核酸。
- 植物がクワ又はハマエンドウである、請求項8に記載の核酸。
- 前記核酸が、以下の(d)、(e)又は(f)に示すものである、請求項7~9のいずれか一項に記載の核酸:
(d)配列番号3、5、7、9又は11で表される塩基配列を含む核酸;
(e)配列番号1、3、5、7、9又は11で表される塩基配列において、1又は複数個の塩基が置換、欠失及び/又は付加された塩基配列であって、かつ上記式(1)に示す反応を触媒するL体環状アミノ酸生成能を有するポリペプチドをコードする核酸;又は
(f)配列番号1、3、5、7、9又は11で表される塩基配列の相補鎖とストリンジェントな条件下でハイブリダイズする塩基配列であって、且つ上記式(1)に示す反応を触媒するL体環状アミノ酸生成能を有するポリペプチドをコードする核酸。 - 請求項7~10のいずれか一項に記載の核酸を含む組換えベクター。
- 請求項11に記載の組換えベクターを含む形質変換体。
- 以下の(A)、(B)又は(C)に示すポリペプチド、前記ポリペプチドを生産する能力を有する若しくは前記ポリペプチドを含む微生物若しくは細胞、前記微生物若しくは細胞の処理物、及び/又は前記微生物若しくは細胞を培養して得られた前記ポリペプチドを含む培養液を含み、下記一般式(I):
で表される1位に二重結合を有する環状アミノ酸から、下記一般式(II):
で表されるL体環状アミノ酸を生成させる能力を有する酵素剤組成物:
(A)配列番号2、4、6、8、10又は12に示すアミノ酸配列を有するポリペプチド;
(B)配列番号2、4、6、8、10又は12に示すアミノ酸配列において1~複数個のアミノ酸が欠失、置換及び/又は付加されたアミノ酸配列であって、かつ下記式(1)に示す反応を触媒するL体環状アミノ酸生成能を有するポリペプチド:
(C)配列番号2、4、6、8、10又は12に示すアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を有し、かつ前記式(1)に示す反応を触媒するL体環状アミノ酸生成能を有するポリペプチド。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20795814.1A EP3960869A4 (en) | 2019-04-25 | 2020-05-15 | PROCESS FOR THE PRODUCTION OF L-CYCLIC AMINO ACIDS |
CN202080031314.1A CN113950534A (zh) | 2019-04-25 | 2020-05-15 | L型环状氨基酸的制造方法 |
US17/606,123 US20220275410A1 (en) | 2019-04-25 | 2020-05-15 | Production method for l-cyclic amino acids |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019084234A JP7386616B2 (ja) | 2019-04-25 | 2019-04-25 | L体環状アミノ酸の製造方法 |
JP2019-084234 | 2019-04-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020218624A1 true WO2020218624A1 (ja) | 2020-10-29 |
Family
ID=72942642
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/019517 WO2020218624A1 (ja) | 2019-04-25 | 2020-05-15 | L体環状アミノ酸の製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20220275410A1 (ja) |
EP (1) | EP3960869A4 (ja) |
JP (1) | JP7386616B2 (ja) |
CN (1) | CN113950534A (ja) |
WO (1) | WO2020218624A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57183799A (en) | 1981-04-17 | 1982-11-12 | Kyowa Hakko Kogyo Co Ltd | Novel plasmid |
EP1033405A2 (en) * | 1999-02-25 | 2000-09-06 | Ceres Incorporated | Sequence-determined DNA fragments and corresponding polypeptides encoded thereby |
WO2002101003A2 (fr) | 2001-06-08 | 2002-12-19 | Rhodia Chimie | Preparation stereoselective de l-acides amines cycliques |
JP4590981B2 (ja) | 2003-08-26 | 2010-12-01 | 三菱化学株式会社 | 光学活性環状アミノ酸の製造方法 |
WO2015033636A1 (ja) * | 2013-09-09 | 2015-03-12 | 国立大学法人愛媛大学 | 3-ヒドロキシプロリンの分析方法、コラーゲンの測定方法、およびそれに用いる新規δ1-ピロリン-2-カルボン酸還元酵素 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104685061B (zh) * | 2013-02-19 | 2018-05-01 | 株式会社Api | L-赖氨酸羟化酶和利用了该l-赖氨酸羟化酶的羟基-l-赖氨酸的制造法及羟基-l-2-哌啶酸的制造法 |
EP3219805B1 (en) * | 2014-11-12 | 2024-01-17 | API Corporation | Method for manufacturing cis-5-hydroxy-l-pipecolic acid |
-
2019
- 2019-04-25 JP JP2019084234A patent/JP7386616B2/ja active Active
-
2020
- 2020-05-15 WO PCT/JP2020/019517 patent/WO2020218624A1/ja unknown
- 2020-05-15 EP EP20795814.1A patent/EP3960869A4/en active Pending
- 2020-05-15 US US17/606,123 patent/US20220275410A1/en active Pending
- 2020-05-15 CN CN202080031314.1A patent/CN113950534A/zh active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57183799A (en) | 1981-04-17 | 1982-11-12 | Kyowa Hakko Kogyo Co Ltd | Novel plasmid |
EP1033405A2 (en) * | 1999-02-25 | 2000-09-06 | Ceres Incorporated | Sequence-determined DNA fragments and corresponding polypeptides encoded thereby |
WO2002101003A2 (fr) | 2001-06-08 | 2002-12-19 | Rhodia Chimie | Preparation stereoselective de l-acides amines cycliques |
JP4590981B2 (ja) | 2003-08-26 | 2010-12-01 | 三菱化学株式会社 | 光学活性環状アミノ酸の製造方法 |
WO2015033636A1 (ja) * | 2013-09-09 | 2015-03-12 | 国立大学法人愛媛大学 | 3-ヒドロキシプロリンの分析方法、コラーゲンの測定方法、およびそれに用いる新規δ1-ピロリン-2-カルボン酸還元酵素 |
Non-Patent Citations (24)
Title |
---|
"Current Protocols in Molecular Biology", vol. 16, 1999, JOHN WILEY & SONS |
"Molecular Cloning, PCR A Practical Approach", 1991, IRL PRESS, pages: 200 |
"Nucleic Acids Res.", vol. 10, 1982, pages: 6487 |
ALTON MEISTER ET AL., JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 229, 1957, pages 789 - 800 |
ALTSCHUL ET AL., NUCLEIC ACIDS RES., vol. 25, 1997, pages 3389 - 3402 |
CECIL W PAYTON ET AL., JOURNAL OF BACTERIOLOGY, vol. 149, 1982, pages 864 - 871 |
DATABASE UniProtRB 14 May 2014 (2014-05-14), ANONYMOUS: "SubName: Full=Uncharacterized protein {ECO:0000313|EMBL:EXC05955.1; LOC21397372 protein SAR DEFICIENT 4 [ Morus notabilis ]", XP009524608, retrieved from Gene Database accession no. W9SGT1 * |
ENZYME AND MICROBIAL TECHNOLOGY, vol. 31, 2002, pages 77 - 87 |
F GARCIA ET AL., TETRAHYDRON ASYMMETRY, vol. 6, 1995, pages 2905 - 2906 |
GENE, vol. 26, 1983, pages 273 - 82 |
GENE, vol. 39, 1985, pages 281 |
HANES CS, BIOCHEMICAL JOURNAL, vol. 26, no. 5, 1932, pages 1406 |
KARLIN ET AL., PROC. NATL. ACAD. SCI. USA, vol. 90, 1993, pages 5873 - 5877 |
METHODS IN ENZYMOL., vol. 100, 1983, pages 448 |
MOL. GEN. GENET., vol. 196, 1984, pages 175 |
MURAMATSU ET AL., JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 280, no. 7, 2005, pages 5329 |
MYERSMILLER, CABIOS, vol. 4, 1988, pages 11 - 17 |
NATURE, vol. 315, 1985, pages 592 - 594 |
NEEDLEMAN ET AL., J. MOL. BIOL., vol. 48, 1970, pages 444 - 453 |
PEARSON ET AL., PROC. NATL. ACAD. SCI. USA, vol. 85, 1988, pages 2444 - 2448 |
RALPH N COSTILOW ET AL., JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 246, 1971, pages 6655 - 6660 |
See also references of EP3960869A4 |
TADASHI FUJII ET AL., BIOSCIENCE BIOTECHNOLOGY BIOCHEM, vol. 66, 2002, pages 1981 - 1984 |
TRENDSIN BIOTECHNOLOGY, vol. 7, 1989, pages 283 - 287 |
Also Published As
Publication number | Publication date |
---|---|
JP7386616B2 (ja) | 2023-11-27 |
CN113950534A (zh) | 2022-01-18 |
US20220275410A1 (en) | 2022-09-01 |
JP2020178627A (ja) | 2020-11-05 |
EP3960869A1 (en) | 2022-03-02 |
EP3960869A4 (en) | 2023-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8518665B2 (en) | Methods for making 3-indole-pyruvic acid from tryptophan using a tryptophan deaminase | |
JP4651896B2 (ja) | (r)−2−オクタノール脱水素酵素、該酵素の製造方法、該酵素をコードするdnaおよびこれを利用したアルコールの製造方法 | |
JP7221350B2 (ja) | ヒドロキシ-l-ピペコリン酸の製造方法 | |
US7452704B2 (en) | Dehydrogenase and a gene encoding the same | |
EP1900821A1 (en) | Process for production of l-amino acid | |
US7582454B2 (en) | 5-substituted hydantoin racemase, DNA coding for the racemase, and processes for producing optically active amino acids | |
WO2007015511A1 (ja) | D-アミノ酸オキシダーゼ、およびl-アミノ酸、2-オキソ酸、又は環状イミンの製造方法。 | |
JP4590981B2 (ja) | 光学活性環状アミノ酸の製造方法 | |
JP6724285B2 (ja) | シス−5−ヒドロキシ−l−ピペコリン酸の製造方法 | |
Greschner et al. | Artificial cofactor regeneration with an iron (III) porphyrin as NADH-oxidase mimic in the enzymatic oxidation of l-glutamate to α-ketoglutarate | |
WO2020218624A1 (ja) | L体環状アミノ酸の製造方法 | |
JPWO2016076159A6 (ja) | シス−5−ヒドロキシ−l−ピペコリン酸の製造方法 | |
JPWO2019189724A1 (ja) | 新規加水分解酵素及びそれを利用した(1s,2s)−1−アルコキシカルボニル−2−ビニルシクロプロパンカルボン酸の製造方法 | |
KR20190095429A (ko) | 글루타티온 환원 효소 | |
JP4880859B2 (ja) | 新規カルボニル還元酵素、その遺伝子、およびその利用法 | |
JP5115708B2 (ja) | 新規過酸化水素生成型nadhオキシダーゼ及びそれをコードするdna | |
JPWO2005123921A1 (ja) | 新規グリセロール脱水素酵素、その遺伝子、及びその利用法 | |
JP4587348B2 (ja) | 新規な(r)−2,3−ブタンジオール脱水素酵素 | |
WO2022138969A1 (ja) | 変異型L-ピペコリン酸水酸化酵素及びそれを利用したcis-5-ヒドロキシ-L-ピペコリン酸の製造方法 | |
WO2015064517A1 (ja) | ギ酸脱水素酵素とその利用 | |
WO2021100848A1 (ja) | カルボニル還元酵素、これをコードする核酸、及びこれらを利用した光学活性化合物の製造方法 | |
JP4231709B2 (ja) | 新規デヒドロゲナーゼ及びそれをコードする遺伝子 | |
JP4561021B2 (ja) | 5置換ヒダントインラセマーゼ、これをコードするdna、組み換えdna、形質転換された細胞および光学活性アミノ酸の製造方法 | |
JP2011205921A (ja) | ロドコッカス(Rhodococcus)属細菌組換体及びそれを用いた光学活性(R)−3−キヌクリジノールの製造方法 | |
US20130122556A1 (en) | PROCESS FOR PRODUCING SULFUR-CONTAINING alpha- AMINO ACID COMPOUND |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20795814 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020795814 Country of ref document: EP Effective date: 20211125 |