WO2020217718A1 - スチレン系樹脂組成物、成形品及び導光板 - Google Patents

スチレン系樹脂組成物、成形品及び導光板 Download PDF

Info

Publication number
WO2020217718A1
WO2020217718A1 PCT/JP2020/008979 JP2020008979W WO2020217718A1 WO 2020217718 A1 WO2020217718 A1 WO 2020217718A1 JP 2020008979 W JP2020008979 W JP 2020008979W WO 2020217718 A1 WO2020217718 A1 WO 2020217718A1
Authority
WO
WIPO (PCT)
Prior art keywords
styrene
resin composition
tert
based resin
composition according
Prior art date
Application number
PCT/JP2020/008979
Other languages
English (en)
French (fr)
Inventor
広平 西野
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to KR1020217038057A priority Critical patent/KR20220005032A/ko
Priority to JP2021515848A priority patent/JPWO2020217718A1/ja
Priority to SG11202111611YA priority patent/SG11202111611YA/en
Priority to CN202080027564.8A priority patent/CN113661207A/zh
Publication of WO2020217718A1 publication Critical patent/WO2020217718A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/005Stabilisers against oxidation, heat, light, ozone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • C08K5/134Phenols containing ester groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/524Esters of phosphorous acids, e.g. of H3PO3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form

Definitions

  • the present invention relates to a styrene resin composition, a molded product thereof, and a light guide plate.
  • the backlight of the liquid crystal display device includes a direct type in which the light source is arranged in front of the display device and an edge light type in which the light source is arranged on the side surface.
  • the edge light type backlight uses a component called a light guide plate that guides the light of a light source arranged on the side surface to the front of the display device.
  • a light guide plate that guides the light of a light source arranged on the side surface to the front of the display device.
  • an acrylic resin typified by polymethyl methacrylate (PMMA) is used.
  • PMMA polymethyl methacrylate
  • the light guide plate may warp or change in size due to water absorption.
  • it is easily thermally decomposed during molding, there is a problem that the molded product tends to have a poor appearance when molded at a high temperature.
  • a styrene-methyl acrylate copolymer as a material for a light guide plate (see, for example, Patent Document 1).
  • An object of the present invention is to provide a styrene-based resin composition having excellent moisture and heat resistance, a molded product thereof, and a light guide plate.
  • the present invention is as follows.
  • (1) The oxidation induction time measured in an oxygen atmosphere of 200 ° C. is t1
  • the oxidation induction time measured in an oxygen atmosphere of 200 ° C. after moist heat treatment in an air atmosphere of 80 ° C. and 90% humidity is t2.
  • the styrene resin according to any one of (1) to (3) which contains a styrene resin (A) having a styrene-based monomer unit and a (meth) acrylic acid ester-based monomer unit. Composition.
  • the styrene-based resin composition according to any one of (1) to (4) which contains a phosphorus-based antioxidant (C1) having a phenol-based hydroxyl group.
  • the hindered phenolic antioxidant (B) is octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, ethylenebis (oxyethylene) bis [3- (5).
  • the styrene-based resin composition according to 3 The styrene-based resin composition according to 3).
  • the phosphorus-based antioxidant (C2) is 2,2'-methylenebis (4,6-di-tert-butylphenyl) 2-ethylhexylphosphite, tris (2,4-di-tert-butylphenyl).
  • the styrene-based resin composition according to (3) which is at least one compound selected from phosphite.
  • the phosphorus-based antioxidant (C1) is 6- [3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propoxy] -2,4,8,10-tetra-tert-.
  • the styrene-based resin composition according to (5) which is butyldibenzo [d, f] [1,3,2] dioxaphosfepine.
  • (11) A light guide plate using the molded product according to (10).
  • a styrene resin composition having excellent moisture and heat resistance, a molded product thereof, and a light guide plate can be obtained.
  • ABS means that it is A or more and B or less.
  • the styrene-based resin composition of the present invention measures the oxidation induction time measured in an oxygen atmosphere of 200 ° C. under an oxygen atmosphere of 200 ° C. after moist heat treatment for 500 hours in an air atmosphere of t1, 80 ° C. and 90% humidity.
  • t1-t2 is 20 minutes or less, preferably 15 minutes or less, and more preferably 10 minutes or less.
  • t1-t2 is in such a range, deterioration of hue when stored in a high temperature and high humidity environment can be suppressed.
  • an increase in the amount of the antioxidant added contributes to the maintenance of the oxidation induction time, but on the other hand, it may adversely affect the hue.
  • t1-t2 is preferably 1 minute or more. It is more preferably 2 minutes or more, and further preferably 4 minutes or more. Specifically, t1-t2 is, for example, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 , 20 minutes, and may be within the range between any two of the numerical values exemplified here.
  • T1 is preferably 50 minutes or longer, more preferably 70 minutes or longer, and even more preferably 90 minutes or longer.
  • t1 is in such a range, yellowing in a high temperature environment can be suppressed.
  • an increase in the amount of the antioxidant added contributes to prolonging the oxidation induction time, but on the other hand, it may adversely affect the hue. Therefore, when considering the balance, t1 is preferably 500 minutes or less. It is more preferably 200 minutes or less.
  • the oxidation induction time is a value measured by the chemiluminescence method (chemiluminescence method).
  • the time course of the luminescence amount of the styrene resin composition was measured under the following conditions, and from the relationship between the obtained measurement time and the luminescence amount, the straight line before the luminescence amount changed and the luminescence amount increased as shown in FIG. The time of the intersection with the straight line was calculated.
  • the styrene resin composition is gradually oxidized when heated in the presence of oxygen. When an antioxidant is present in the sample, the antioxidant is gradually consumed by oxidation, but exhibits a constant amount of light emission during the presence of the antioxidant. When the antioxidant is exhausted, the resin itself is oxidized, and the luminescence increases at once.
  • the oxidation induction time represents the time during which the antioxidant is consumed and the resin composition is rapidly oxidized.
  • Chemyl luminescence measuring instrument CLA-FS4 (manufactured by Tohoku Electronics Industry Co., Ltd.) Measurement temperature: 200 ° C Oxygen flow rate: 100 mL / min
  • the styrene-based resin composition of the present invention preferably contains a styrene-based resin (A) which is a copolymer of a styrene-based monomer and a (meth) acrylic acid ester-based monomer.
  • A styrene-based resin
  • the styrene-based monomer is an aromatic vinyl-based monomer, and may be used alone or in combination of two or more, such as styrene, ⁇ -methylstyrene, o-methylstyrene, m-methylstyrene, ethylstyrene, and p-tert-butylstyrene. There is a mixture.
  • styrene is preferably used from the viewpoint of good hue.
  • the (meth) acrylic acid ester-based monomer is methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate methacrylic acid ester, methyl acrylate, ethyl acrylate, n.
  • methyl (meth) acrylate 2-methylhexyl acrylate, 2-ethylhexyl acrylate, decyl acrylate alone or a mixture of two or more. From the viewpoint of excellent hue and heat resistance, it is preferable to use methyl (meth) acrylate.
  • the styrene-based resin (A) preferably has a styrene-based monomer unit content of 20 to 80% by mass and a (meth) acrylic acid ester-based monomer unit content of 80 to 20% by mass.
  • the content of the styrene-based monomer unit is 30 to 60% by mass
  • the content of the (meth) acrylic acid ester-based monomer unit is 70 to 40% by mass.
  • the styrene resin (A) may be copolymerized with a monomer other than the (meth) acrylic acid ester-based monomer in a range of 5% by mass or less.
  • the monomer to be copolymerized include a styrene-based monomer and a vinyl monomer copolymerizable with a (meth) acrylic acid ester-based monomer, such as acrylonitrile, methacrylic acid, acrylic acid, and maleine anhydride. ..
  • the contents of the styrene-based monomer unit and the (meth) acrylic acid ester-based monomer unit of the styrene-based resin can be measured by pyrolysis gas chromatography under the following conditions.
  • Pyrolysis furnace PYR-2A (manufactured by Shimadzu Corporation) Pyrolysis furnace temperature setting: 525 ° C
  • Carrier gas Nitrogen
  • a method for producing a styrene resin it can be produced by known bulk polymerization, solution polymerization, suspension polymerization, emulsion polymerization or the like.
  • any of continuous type, batch type (batch type) and semi-batch type can be applied. From the viewpoint of quality such as transparency and productivity, bulk polymerization or solution polymerization is preferable, and continuous type is preferable.
  • Examples of the solvent for bulk polymerization or solution polymerization include alkylbenzenes such as benzene, toluene, ethylbenzene and xylene, ketones such as acetone and methyl ethyl ketone, and aliphatic hydrocarbons such as hexane and cyclohexane.
  • alkylbenzenes such as benzene, toluene, ethylbenzene and xylene
  • ketones such as acetone and methyl ethyl ketone
  • aliphatic hydrocarbons such as hexane and cyclohexane.
  • a known method can be adopted as the polymerization method of the styrene resin.
  • the radical polymerization method is preferable because it is a simple process and has excellent productivity.
  • a polymerization initiator and a chain transfer agent can be used, and the polymerization temperature is preferably in the range of 110 to 170 ° C.
  • the conversion rate of the styrene-based monomer and the (meth) acrylic acid ester-based monomer is 60% or more at the exit of the polymerization step from the viewpoint of productivity. It is preferable to carry out the polymerization.
  • the polymerization initiators are benzoyl peroxide, tert-butylperoxybenzoate, 1,1-di (t-butylveroxy) cyclohexane, and 1,1-bis (t-butylperoxy) -3,3,5-trimethyl.
  • Cyclohexane 1,1-bis (t-butylperoxy) -3,3,5-trimethylcyclohexane, 2,2-bis (4,5-di-tert-butylperoxycyclohexyl) propane, tert-butylperoxy Isopropyl carbonate, dicumyl peroxide, tert-butyl cumyl peroxide, tert-butyl peroxyacetate, tert-butyl peroxy-2-ethylhexanoate, polyether tetrakis (tert-butyl peroxy carbonate), ethyl-3 , 3-Di (tert-butylperoxy) butyrate, tert-butylperoxyisobutyrate and other organic peroxides.
  • the amount of the polymerization initiator added is preferably 0.001 to 0.2% by mass, more preferably 0.001 to 0.05% by mass, based on 100% by mass of the total amount of the monomers. If the amount of the polymerization initiator added is too large, the hue may deteriorate.
  • Chain transfer agents include aliphatic mercaptans, aromatic mercaptans, pentaphenylethanes, ⁇ -methylstyrene dimers and terpinolene.
  • the amount of the chain transfer agent added is preferably 0.001 to 0.5% by mass, more preferably 0.005 to 0.2% by mass, based on 100% by mass of the total amount of the monomers.
  • the thermal stability is good.
  • a devolatilization method for removing volatile components such as unreacted monomers and the solvent used for solution polymerization from the solution after the completion of polymerization of the styrene resin a known method can be adopted, for example, vacuum degassing with a preheater. A volatilization tank or a devolatilization extruder with a vent can be used.
  • the temperature of the styrene resin in the devolatile step is preferably 200 ° C. to 300 ° C., more preferably 220 ° C. to 260 ° C. If the temperature of the styrene resin in the devolatile step is too high, the hue may deteriorate.
  • the volatile styrene-based resin in the molten state is transferred to the granulation process, extruded into a strand shape from a porous die, and processed into a pellet shape by a cold cut method, an aerial hot cut method, or an underwater hot cut method. ..
  • the unreacted monomer removed in the devolatile step and the solvent used for solution polymerization are recovered, purified to remove impurities such as polymerization inhibitors, and then mixed with a fresh raw material as a recovery raw material. Is preferable.
  • a fresh raw material that does not contain a polymerization inhibitor
  • the content of the polymerization inhibitor in the raw material supplied to the polymerization step is preferably less than 12 ppm, more preferably less than 9 ppm, further preferably less than 6 ppm, and most preferably less than 4 ppm.
  • the fresh raw material is a raw material newly supplied to the manufacturing process of the styrene- (meth) acrylic acid ester-based copolymer, and is referred to as such in order to distinguish it from the recovered raw material.
  • a known method can be adopted. There is a method of condensing the solvent gas with a condenser, liquefying it, and purifying it with a flash distillation column to separate and remove high boiling point components. In addition, from the unreacted monomer and solvent gas removed in the volatilization step, only the high boiling point components are first condensed and separated using a condenser or spray tower, and the remaining gas is completely separated by the condenser. There is a way to condense.
  • the polymerization inhibitor 4-tert-butylcatechol has a boiling point of 285 ° C.
  • 6-tert-butyl-2,4-xylenol has a boiling point of 249 ° C., and can be separated and removed from the monomer and solvent as high boiling point components.
  • Styrene boiling point 145 ° C. methyl (meth) acrylate boiling point 101 ° C., ethylbenzene boiling point 136 ° C.
  • the weight average molecular weight (Mw) of the styrene resin is preferably 50,000 to 450,000, more preferably 70,000 to 300,000, and even more preferably 70,000 to 200,000.
  • the weight average molecular weight (Mw) can be controlled by the reaction temperature of the polymerization step, the residence time, the type and addition amount of the polymerization initiator, the type and addition amount of the chain transfer agent, the type and amount of the solvent used at the time of polymerization, and the like. it can.
  • the weight average molecular weight (Mw) can be measured by gel permeation chromatography (GPC) under the following conditions.
  • GPC model Showa Denko Corporation Shodex GPC-101 Column: Polymer Laboratories PLgel 10 ⁇ m MIXED-B Mobile phase: tetrahydrofuran Sample concentration: 0.2% by mass Temperature: Oven 40 ° C, inlet 35 ° C, detector 35 ° C Detector: Differential refractometer
  • the molecular weight of the present invention is calculated by calculating the molecular weight at each elution time from the elution curve of monodisperse polystyrene and calculating the molecular weight in terms of polystyrene.
  • the total amount of the residual monomer and the polymerization solvent of the styrene resin is preferably 0.5% by mass or less, more preferably 0.2% by mass. If the total amount of the residual monomer and the polymerization solvent exceeds 0.5% by mass, the heat resistance may be insufficient.
  • the residual monomer and the polymerization solvent are the amounts of the monomer and the polymerization solvent remaining in the styrene resin, and include styrene, methyl (meth) acrylate, and ethylbenzene.
  • the amount of the residual monomer and the polymerization solvent can be adjusted according to the composition of the devolatile step and the conditions of the devolatile step.
  • the amount of the residual monomer and the polymerization solvent was measured by precisely weighing 0.2 g of the styrene resin, dissolving it in 10 mL of tetrahydrofuran containing p-diethylbenzene as an internal standard substance, and using a capillary gas chromatograph under the following conditions.
  • Capillary gas chromatograph GC-4000 (manufactured by GL Sciences Co., Ltd.) Column: GL Sciences Co., Ltd.
  • InertCap WAX inner diameter 0.25 mm, length 30 m, film thickness 50 ⁇ m
  • Injection temperature 180 ° C
  • Detector temperature 210 ° C Split ratio: 5/1
  • the total amount of the dimer or trimer (hereinafter referred to as oligomer) of the styrene-based monomer of the styrene-based resin and the (meth) acrylic acid ester-based monomer is preferably 2% by mass or less. More preferably, it is 1% by mass or less. If the total amount of oligomers exceeds 1% by mass, the heat resistance of the light guide plate may be insufficient.
  • styrene resin 200 mg is dissolved in 2 mL of 1,2- dichloromethane, 2 mL of methanol is added to precipitate the polymer, and the polymer is allowed to stand. Then, the supernatant is subjected to the following conditions using a gas chromatograph. Measured in. Gas chromatograph: HP-5890 (manufactured by Hewlett-Packard) Column: DB-1 (ht) 0.25 mm x 30 m Film thickness 0.1 ⁇ m Injection temperature: 250 ° C Column temperature: 100-300 ° C Detector temperature: 300 ° C Split ratio: 50/1 Internal standard substance: n-icosane Carrier gas: Nitrogen
  • the styrene-based resin composition of the present invention preferably contains a hindered phenol-based antioxidant (B).
  • the hindered phenolic antioxidant (B) contained in the styrene resin composition is an antioxidant having a phenolic hydroxyl group in the basic skeleton.
  • Hindered phenolic antioxidants include octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate and ethylenebis (oxyethylene) bis [3- (5-tert-butyl-4-hydroxyphenyl).
  • the content of the hindered phenolic antioxidant (B) is preferably 0.001 to 0.3 parts by mass, and 0.03 to 0.09 parts by mass with respect to 100 parts by mass of the styrene resin (A). Phenol is more preferred. By adjusting the content of the hindered phenol-based antioxidant (B) within this range, a styrene-based resin composition having an excellent hue can be obtained.
  • the styrene-based resin composition of the present invention preferably contains a phosphorus-based antioxidant (C1) having a phenol-based hydroxyl group.
  • the phosphorus-based antioxidant (C1) contained in the styrene-based resin composition is a trivalent phosphorus compound having a phenol-based hydroxyl group in the basic skeleton.
  • the phosphorus-based antioxidant (C1) has a characteristic of being easily hydrolyzed as compared with other phosphorus-based antioxidants, and the obtained styrene-based resin composition has a high effect of improving the hue.
  • the phosphorus-based antioxidant (C1) is 6- [3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propoxy] -2,4,8,10-tetra-tert-butyldibenzo [d]. , F] [1,3,2] Dioxaphosfepine and the like.
  • the content of the phosphorus-based antioxidant (C1) is preferably 0.001 to 0.3 parts by mass, more preferably 0.03 to 0.09, based on 100 parts by mass of the styrene-based resin (A). It is by mass, more preferably 0.05 to 0.08 parts by mass. By adjusting the content of the phosphorus-based antioxidant (C1) within this range, a styrene-based resin composition having an excellent hue can be obtained.
  • the styrene-based resin composition of the present invention preferably contains a phosphorus-based antioxidant (C2) other than the phosphorus-based antioxidant (C1) having a phenol-based hydroxyl group.
  • the phosphorus-based antioxidant (C2) contained in the styrene-based resin composition is a trivalent phosphorus compound having no phenol-based hydroxyl group in the basic skeleton.
  • the phosphorus-based antioxidant (C2) is less likely to be hydrolyzed than the phosphorus-based antioxidant (C1), but the hue improving effect of the styrene-based resin composition is sustained for a long period of time. That is, it can particularly contribute to moisture and heat resistance.
  • the phosphorus-based antioxidant (C2) is 3,9-bis (2,6-di-tert-butyl-4-methylphenoxy) -2,4,8,10-tetraoxa-3,9-diphosphaspiro [5. 5]
  • Undecane bis (2,4-dicumylphenyl) pentaerythritol diphosphite, 2,2'-methylenebis (4,6-di-tert-butylphenyl) 2-ethylhexylphosphite, tris (2,4- Di-tert-butylphenyl) phosphite, bis [2,4-bis (1,1-dimethylethyl) -6-methylphenyl] ethyl ester phosphite, bis (2,4-di-tert-butylphenyl) Pentaerythritol diphosphite, cyclic neopentanetetraylbis (octadec
  • 2,2'-methylenebis (4,6-di-tert-butylphenyl) 2-ethylhexylphosphite or tris (2,4-di-tert) is preferable.
  • -Butylphenyl) Phosphite should be used.
  • the phosphorus-based antioxidant (C2) may be used alone or in combination of two or more.
  • the content of the phosphorus-based antioxidant (C2) is preferably 0.001 to 0.3 parts by mass, more preferably 0.03 to 0.09, based on 100 parts by mass of the styrene-based resin (A). It is by mass, more preferably 0.05 to 0.08 parts by mass.
  • the blending ratio of the phosphorus-based antioxidant (C1) and the phosphorus-based antioxidant (C2) is preferably in the range of 3: 1 to 1: 3 in terms of mass ratio, and more preferably 2: 1 to 1: 2. By adjusting to this range, the balance between the hue of the obtained styrene resin composition and its durability is improved.
  • Hindered phenol-based antioxidant (B), phosphorus-based antioxidant (C1), and phosphorus-based antioxidant (C2) are added in manufacturing processes such as styrene resin polymerization process, volatilization process, and granulation process. It is preferable to add the unreacted monomer and the solvent after the unreacted monomer and the solvent are removed in the devolatile step.
  • a molten hindered phenol-based antioxidant (B), a phosphorus-based antioxidant (C1) and a phosphorus-based antioxidant (C2) are added to the styrene resin extracted from the volatilization tank.
  • hindered phenol-based antioxidant (B), phosphorus-based antioxidant (C1) and phosphorus-based oxidation are used after the vent zone.
  • the inhibitor (C2) can be added and mixed.
  • Mineral oil may be added to the styrene resin composition as long as the transparency is not impaired.
  • internal lubricants such as stearic acid and ethylene bisstearyl amide
  • external lubricants such as sulfur-based antioxidants, lactone-based antioxidants, ultraviolet absorbers, hindered amine-based stabilizers, antistatic agents, and ethylene bisstearyl amides. May be added.
  • the ultraviolet absorber has a function of suppressing deterioration and coloring due to ultraviolet rays, and is benzophenone-based, benzotriazole-based, triazine-based, benzoate-based, salicylate-based, cyanoacrylate-based, malonic acid ester-based, formamidine-based, etc.
  • UV absorbers There are UV absorbers. These can be used alone or in combination of two or more, and a light stabilizer such as hindered amine may be used in combination.
  • the Vicat softening point of the styrene resin is preferably 95 ° C. or higher, more preferably 98 ° C. or higher. If the Vicat softening point is less than 95 ° C., the heat resistance is insufficient, and the molded product may be deformed depending on the usage environment. (The Vicat softening temperature was based on JIS K7206, and the test was conducted at a heating rate of 50 ° C./hr and a test load of 50N.)
  • the styrene resin composition can be used by producing a plate-shaped molded product by a known method such as extrusion molding, injection molding, compression molding, blow molding, etc., and processing it into a light guide plate or the like.
  • the styrene-based resin composition of the present invention has excellent thermal stability, non-commercialized parts such as sheet scraps during extrusion molding and spools and runners during injection molding are recovered and crushed and mixed with a virgin raw material. Can be used.
  • the light guide plate is a member having a function of guiding the light incident from the end surface of the plate-shaped molded product to the surface side of the plate-shaped molded product and emitting light by a reflection pattern formed on one surface of the plate-shaped molded product.
  • the reflection pattern can be formed by a method such as a screen printing method, a laser processing method, or an inkjet method. Further, a prism pattern or the like can be provided on the opposite surface (light emitting surface) of the surface on which the reflection pattern is formed.
  • the reflection pattern or prism pattern of the plate-shaped molded product can be formed at the time of molding the plate-shaped molded product, and can be formed by a mold shape in injection molding, roll transfer in extrusion molding, or the like.
  • the YI value measured at the initial optical path length of 115 mm of the styrene resin composition is preferably 2.5 or less, more preferably 2.0 or less.
  • “initial” means before the wet heat treatment for 500 hours in an air atmosphere of 80 ° C. and 90% humidity.
  • the measurement is a value calculated by measuring the spectral transmittance at a wavelength of 350 nm to 800 nm at an optical path length of 115 mm and calculating the YI value at a field of view of 2 ° in a C light source according to JIS K7105.
  • the average value of the spectral transmittance at a wavelength of 350 nm to 800 nm measured at an optical path length of 115 mm is preferably 87% or more, more preferably 88% or more, and further preferably 89% or more.
  • styrene resin A-1 The styrene resin was produced by continuous solution polymerization by a radical polymerization method. A complete mixing tank type stirring tank was used as the first reactor, and a plug flow type reactor with a static mixer was used as the second reactor, which were connected in series to form a polymerization process. The capacity of the first reactor was 30 L, and the capacity of the second reactor was 12 L.
  • fresh Sty industrially used styrene
  • TBC 4-tert-butylcatechol
  • fresh MMA 6-tert-butyl-2,4-xylenol
  • fresh MMA 6-tert-butyl-2,4-xylenol
  • the concentration of (referred to as TBX) was 4.9 ppm.
  • Ethylbenzene (hereinafter referred to as fresh EB) used industrially was prepared as a polymerization solvent. Further, the gas such as the monomer and the polymerization solvent separated from the vacuum devolatilization tank described later was condensed by a condenser and purified by a flash distillation column, which was used as a recovery raw material.
  • the concentrations of TBX and TBC in the recovered raw material were below the lower limit of detection.
  • a raw material solution was prepared with a composition of Sty: 49% by mass, MMA: 41% by mass, and EB: 10% by mass, and the polymerization step was continued at a flow rate of 8.0 kg / h. Supplied to.
  • the ratio of the recovered raw material used in the raw material solution was 33% by mass.
  • t-butylperoxyisopropylmonocarbonate was continuously added to the raw material solution supply line so as to have a concentration of 150 ppm as a polymerization initiator and n-dodecyl mercaptan as a chain transfer agent at a concentration of 500 ppm with respect to the raw material solution. ..
  • the temperature of the first reactor was adjusted to 135 ° C., and in the second reactor, a temperature gradient was applied along the flow direction, and the temperature was adjusted to 130 ° C. at the intermediate portion and 145 ° C. at the outlet portion.
  • the polymer concentration at the exit of the polymerization step was 65%, and the conversion rate of styrene and methyl (meth) acrylate was 72%.
  • the polymer solution continuously taken out from the reactor was supplied to a vacuum devolatilization tank equipped with a preheater to separate unreacted styrene, methyl (meth) acrylate, ethylbenzene and the like.
  • the temperature of the preheater was adjusted so that the polymer temperature in the devolatilization tank was 240 ° C., and the pressure in the devolatilization tank was 1 kPa.
  • the polymer was extracted from the vacuum devolatilization tank by a gear pump, extruded into a strand, cooled with cooling water, and then cut to obtain a pellet-shaped styrene resin A-1.
  • the composition of A-1 was Sty: 50% by mass and MMA: 50% by mass.
  • the weight average molecular weight of A-1 was 145,000, the total amount of the residual monomer and the polymerization solvent was 0.07% by mass, and the total amount of the residual oligomer was 0.35% by mass.
  • styrene resin A-3 The raw material composition was changed to Sty: 8% by mass, MMA: 79% by mass, EB: 13% by mass, the feed flow rate was 5.7 kg / h, the concentration of tert-butylperoxyisopropyl monocarbonate was 100 ppm, and n-dodecyl. Same as A-1 except that the concentration of mercaptan was 3000 ppm, the temperature of the first reactor was 122 ° C, the temperature of the middle part of the second reactor was 140 ° C, and the temperature of the outlet part was 150 ° C. did. The ratio of the recovered raw material used in the raw material solution was 34% by mass.
  • composition of A-3 was Sty: 10% by mass and MMA: 90% by mass.
  • the weight average molecular weight of A-3 was 80,000, the total amount of the residual monomer and the polymerization solvent was 0.06% by mass, and the total amount of the residual oligomer was 0.34% by mass.
  • Examples 1 to 10 Comparative Example 1, Reference Examples 1 to 2>
  • the following hindered phenol-based antioxidants (B), phosphorus-based antioxidants (C1) and phosphorus-based antioxidants (C2-1) are added to the styrene resins A-1 to A-3 obtained in the production examples.
  • And (C2-2) were mixed at the contents shown in Table 1, and a sheet molded product having a size of 450 mm ⁇ 500 mm ⁇ 2 mm was obtained while melt-kneading the antioxidant using a sheet extruder manufactured by LEADER.
  • the sheet extruder was composed of a 50 mm ⁇ single-screw extruder, a T-die, and three mirror rolls, and the sheet was extruded at a cylinder temperature of 225 ° C. and a screw rotation speed of 120 rpm of the single-screw extruder.
  • the width of the T-die was 450 mm and the opening was 3 mm.
  • Table 1 shows the measurement results of the oxidation induction time (t1) of the sheet molded product immediately after extrusion and the oxidation induction time (t2) of the sheet molded product subjected to a wet heat treatment for 500 hours in an air atmosphere at 80 ° C. and 90% humidity.
  • the amount of light emitted continued to increase immediately after the start of measurement, and the oxidation induction time could not be measured.
  • the transmittance shown in Table 1 indicates an average transmittance having a wavelength of 380 nm to 780 nm.
  • Table 1 shows the measurement results of the sheet molded product immediately after extrusion (initial), the sheet molded product that was heat-treated for 500 hours in an air atmosphere at 80 ° C. and 90% humidity, and the sheet molded product that was stored for 1000 hours in an environment of 80 ° C. Shown in.
  • the styrene-based resin composition of the present invention and its molded product are excellent in moisture and heat resistance, the hue and transparency are not easily deteriorated, and TVs, desktop personal computers, notebook personal computers, mobile phones, car navigation systems, and interior lighting It can be suitably used for light guide plate applications such as.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

耐湿熱性に優れたスチレン系樹脂組成物及びその成形品並びに導光板を提供する。 本発明によれば、200℃の酸素雰囲気下で測定した酸化誘導時間をt1、80℃且つ90%湿度の空気雰囲気下で500時間湿熱処理した後に200℃の酸素雰囲気下で測定した酸化誘導時間をt2としたときに、t1-t2が20分以下である、スチレン系樹脂組成物が提供される。

Description

スチレン系樹脂組成物、成形品及び導光板
 本発明は、スチレン系樹脂組成物及びその成形品、導光板に関するものである。
 液晶表示装置のバックライトには、光源を表示装置の正面に配置する直下型と側面に配置するエッジライト型がある。エッジライト型バックライトには、側面に配置された光源の光を表示装置の正面に導く導光板と呼ばれる部品が使用されている。
 導光板の材料は、ポリメチルメタクリレート(PMMA)に代表されるアクリル系樹脂が使用されている。しかしながら、PMMAは吸水性が高いため、吸水により導光板の反りや寸法変化が生じる場合がある。また、成形時に熱分解しやすいため、高温で成形すると成形体に外観不良が生じやすいという問題がある。
 これらの問題を改善するため、スチレン-(メタ)アクリル酸メチル共重合体を導光板の材料として用いることが提案されている(例えば、特許文献1参照)。
特開2003-075648号公報
 本発明は、耐湿熱性に優れたスチレン系樹脂組成物及びその成形品並びに導光板を提供することを課題とする。
 即ち、本発明は以下の通りである。
(1)200℃の酸素雰囲気下で測定した酸化誘導時間をt1、80℃且つ90%湿度の空気雰囲気下で500時間湿熱処理した後に200℃の酸素雰囲気下で測定した酸化誘導時間をt2としたときに、t1-t2が20分以下である、スチレン系樹脂組成物。
(2)前記t1は、50分以上である、(1)に記載のスチレン系樹脂組成物。
(3)ヒンダードフェノール系酸化防止剤(B)と、フェノール系水酸基を有しないリン系酸化防止剤(C2)と、を含有する(1)又は(2)に記載のスチレン系樹脂組成物。
(4)スチレン系単量体単位及び(メタ)アクリル酸エステル系単量体単位を有するスチレン系樹脂(A)を含有する(1)~(3)のいずれか一つに記載のスチレン系樹脂組成物。
(5)フェノール系水酸基を有するリン系酸化防止剤(C1)を含有する(1)~(4)のいずれか一つに記載のスチレン系樹脂組成物。
(6)前記ヒンダードフェノール系酸化防止剤(B)が、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、エチレンビス(オキシエチレン)ビス〔3-(5-tert-ブチル-4-ヒドロキシ-m-トリル)プロピオネート〕、ペンタエリスリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]から選ばれる少なくとも一種の化合物である(3)に記載のスチレン系樹脂組成物。
(7)前記リン系酸化防止剤(C2)が、2,2'-メチレンビス(4,6-ジ-tert-ブチルフェニル)2-エチルヘキシルホスファイト、トリス(2,4-ジ-tert-ブチルフェニル)フォスファイトから選ばれる少なくとも一種の化合物である(3)に記載のスチレン系樹脂組成物。
(8)前記リン系酸化防止剤(C1)が、6-[3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロポキシ]-2,4,8,10-テトラ-tert-ブチルジベンゾ[d,f][1,3,2]ジオキサホスフェピンである(5)に記載のスチレン系樹脂組成物。
(9)初期の光路長115mmでのYI値が2.5以下である、(1)~(8)のいずれか一つに記載のスチレン系樹脂組成物。
(10)(1)~(9)のいずれか一つに記載のスチレン系樹脂組成物を用いた成形品。
(11)(10)に記載の成形品を用いた導光板。
 本発明により、耐湿熱性に優れたスチレン系樹脂組成物及びその成形品並びに導光板が得られる。
ケミルミネッセンス法(化学発光法)による酸化誘導時間の測定方法の概念図である。
 本願明細書において、「A~B」なる記載は、A以上でありB以下であることを意味する。
 本発明のスチレン系樹脂組成物は、200℃の酸素雰囲気下で測定した酸化誘導時間をt1、80℃且つ90%湿度の空気雰囲気下で500時間湿熱処理した後に200℃の酸素雰囲気下で測定した酸化誘導時間をt2としたときに、t1-t2が20分以下であり、好ましくは15分以下であり、より好ましくは10分以下である。t1-t2がこのような範囲であれば、高温高湿環境下に保管された場合の色相の悪化を抑制することができる。また、酸化防止剤の添加量の増加は酸化誘導時間の維持に寄与するが、一方で色相への悪影響を生じる場合があるため、バランスを考慮した場合、t1-t2は、好ましくは1分以上であり、より好ましくは2分以上であり、さらに好ましくは4分以上である。t1-t2は、具体的には例えば、0、1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20分であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
 t1は、好ましくは50分以上であり、より好ましくは70分以上であり、さらに好ましくは90分以上である。t1がこのような範囲であれば、高温環境下における黄変を抑制することができる。また、酸化防止剤の添加量の増加は酸化誘導時間を長くすることに寄与するが、一方で色相への悪影響を生じる場合があるため、バランスを考慮した場合、t1は、好ましくは500分以下であり、より好ましくは200分以下である。
 酸化誘導時間は、ケミルミネッセンス法(化学発光法)により測定した値である。以下の条件でスチレン系樹脂組成物の発光量の経時変化を測定し、得られた測定時間と発光量の関係より、図1に示すように発光量が変化する前の直線と発光量が増大した後の直線との交点の時間を算出した。スチレン系樹脂組成物は、酸素存在下で加熱すると徐々に酸化される。試料中に酸化防止剤が存在する場合、酸化によって徐々に酸化防止剤は消費されるが、酸化防止剤の存在する間は一定の発光量を示す。酸化防止剤が無くなると樹脂自身が酸化され、一気に発光の増加が見られる。すなわち、酸化誘導時間は酸化防止剤が消費され、樹脂組成物の酸化が急激に進行する時間を表す。
 ケミルミネッセンス測定器:CLA-FS4(東北電子産業社製)
 測定温度:200℃
 酸素流量:100mL/分
 本発明のスチレン系樹脂組成物は、好ましくは、スチレン系単量体と(メタ)アクリル酸エステル系単量体の共重合体であるスチレン系樹脂(A)を含有する。
 スチレン系単量体とは、芳香族ビニル系モノマーであり、スチレン、α-メチルスチレン、o-メチルスチレン、m-メチルスチレン、エチルスチレン、p-tert-ブチルスチレンなどの単独又は2種以上の混合物がある。これらの単量体の中でも、色相がよいという観点から、スチレンを用いることが好ましい。
 (メタ)アクリル酸エステル系単量体とは、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレートのメタクリル酸エステル、メチルアクリレート、エチルアクリレート、n-ブチルアクリレート、2-メチルへキシルアクリレート、2-エチルヘキシルアクリレート、デシルアクリレートの単独又は2種以上の混合物がある。色相や耐熱性に優れるという観点から、メチル(メタ)アクリレートを用いることが好ましい。
 スチレン系樹脂(A)は、好ましくは、スチレン系単量体単位の含有量が20~80質量%及び(メタ)アクリル酸エステル系単量体単位の含有量が80~20質量%であり、好ましくはスチレン系単量体単位の含有量が30~60質量%、(メタ)アクリル酸エステル系単量体単位の含有量が70~40質量%である。単量体単位の含有量がこのような範囲であると、吸水率及び変形率(吸水性)が低く、吸湿により反り及び寸法変化が大きくなることを抑制でき、色相の悪化や表面硬度低下による傷付きを抑制できる。
 スチレン系樹脂(A)には、(メタ)アクリル酸エステル系単量体以外の単量体を5質量%以下の範囲で共重合させてもよい。共重合させる単量体としては、スチレン系単量体及び(メタ)アクリル酸エステル系単量体に共重合可能なビニル単量体があり、アクリロニトリル、メタクリル酸、アクリル酸、無水マレインなどがある。
 スチレン系樹脂のスチレン系単量体単位及び(メタ)アクリル酸エステル系単量体単位の含有量は熱分解ガスクロマトグラフィーで以下の条件で測定することができる。
 熱分解炉:PYR-2A(株式会社島津製作所製)
 熱分解炉温度設定:525℃
 ガスクロマトグラフ:GC-14A(株式会社島津製作所製)
 カラム:ガラス製3mm径×3m
 充填剤:FFAP Chromsorb WAW
 カラム温度:120℃
 キャリアーガス:窒素
 スチレン系樹脂の製造方法としては、公知の塊状重合、溶液重合、懸濁重合、乳化重合などにより製造することができる。反応装置の操作法としては、連続式、バッチ式(回分式)、半回分式のいずれも適用できる。透明性などの品質面や生産性の面から、塊状重合或いは溶液重合が好ましく、連続式であることが好ましい。塊状重合或いは溶液重合の溶媒としては、ベンゼン、トルエン、エチルベンゼン及びキシレンなどのアルキルベンゼン類やアセトンやメチルエチルケトンなどのケトン類、ヘキサンやシクロヘキサンなどの脂肪族炭化水素などがある。
 スチレン系樹脂の重合方法は、公知の方法が採用できる。簡潔なプロセスで生産性に優れることから、ラジカル重合法が好ましい。
 スチレン系樹脂の塊状重合或いは溶液重合では、重合開始剤、連鎖移動剤を用いることができ、重合温度は110~170℃の範囲であることが好ましい。連続式で塊状重合或いは溶液重合を行う場合、生産性の観点から、スチレン系単量体及び(メタ)アクリル酸エステル系単量体の転化率は、重合工程の出口において、60%以上になるよう重合を行うことが好ましい。
 重合開始剤は、過酸化ベンゾイル、tert-ブチルパーオキシベンゾエート、1,1-ジ(t-ブチルバーオキシ)シクロヘキサン、1,1-ビス(t-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、2,2-ビス(4,4-ジ-tert-ブチルパーオキシシクロヘキシル)プロパン、tert-ブチルパーオキシイソプロピルカーボネート、ジクミルパーオキサイド、tert-ブチルクミルパーオキサイド、tert-ブチルパーオキシアセテート、tert-ブチルパーオキシ-2-エチルヘキサノエート、ポリエーテルテトラキス(tert-ブチルパーオキシカーボネート)、エチル-3,3-ジ(tert-ブチルパーオキシ)ブチレート、tert-ブチルパーオキシイソブチレートなどの有機過酸化物がある。
 重合開始剤の添加量は、単量体の合計100質量%に対して、0.001~0.2質量%であることが好ましく、0.001~0.05質量%がより好ましい。重合開始剤の添加量が多すぎると色相が悪化することがある。
 連鎖移動剤は、脂肪族メルカプタン、芳香族メルカプタン、ペンタフェニルエタン、α-メチルスチレンダイマー及びテルピノーレンなどがある。
 連鎖移動剤の添加量は、好ましくは単量体の合計100質量%に対して、0.001~0.5質量%が好ましく、0.005~0.2質量%がより好ましい。連鎖移動剤の添加量が0.001~0.5質量%であると、熱安定性が良好なものとなる。
 スチレン系樹脂の重合終了後の溶液から、未反応の単量体や溶液重合に用いた溶媒などの揮発成分を取り除く脱揮方法は、公知の手法が採用でき、例えば、予熱器付きの真空脱揮槽やベント付き脱揮押出機を用いることができる。脱揮工程におけるスチレン系樹脂の温度は200℃~300℃であることが好ましく、220℃~260℃であることがより好ましい。脱揮工程でのスチレン系樹脂の温度が高すぎると、色相が悪化する場合がある。脱揮された溶融状態のスチレン系樹脂は、造粒工程に移送され、多孔ダイよりストランド状に押出し、コールドカット方式や空中ホットカット方式、水中ホットカット方式にてペレット状に加工することができる。
 脱揮工程で除去された未反応の単量体及び溶液重合に用いた溶媒は回収し、精製して重合禁止剤などの不純物を除去した後に、回収原料としてフレッシュな原料と混合して使用することが好ましい。回収原料は、重合禁止剤を含有しないフレッシュな原料と混合して使用することで、重合工程に供給する原料中の重合禁止剤の含有量を低減することが可能となる。重合工程に供給する原料中の重合禁止剤の含有量は、12ppm未満であることが好ましく、より好ましくは9ppm未満であり、さらに好ましくは6ppm未満であり、最も好ましくは4ppm未満である。重合工程に供給する原料中の重合禁止剤の含有量が12ppm未満であると、透過率と透明性が良好なものとなる。なお、重合禁止剤を全て取り除くことは難しく、0.01ppm以上含む場合が多い。ここでフレッシュな原料とは、スチレン-(メタ)アクリル酸エステル系共重合体の製造工程に新たに供給される原料で、回収原料と区別するため、そのように称する。
 脱揮工程で除去された未反応の単量体及び溶液重合に用いた溶媒の回収及び精製方法は、公知の方法が採用でき、例えば、脱揮工程で除去された未反応の単量体及び溶媒のガスをコンデンサーで凝縮して液化し、フラッシュ蒸留塔で精製して高沸点成分を分離除去する方法がある。また、脱揮工程で除去された未反応の単量体及び溶媒のガスから、先に高沸点成分のみをコンデンサーやスプレー塔などを用いて凝縮させて分離し、残りのガスをコンデンサーにて全量凝縮する方法がある。重合禁止剤の4-tert-ブチルカテコールの沸点は285℃、6-tert-ブチル-2,4-キシレノールの沸点は249℃であり、高沸点成分として単量体及び溶媒から分離除去することができる(スチレンの沸点145℃、メチル(メタ)アクリレートの沸点101℃、エチルベンゼンの沸点136℃)。
 スチレン系樹脂の重量平均分子量(Mw)は、5万~45万が好ましく、7万~30万がより好ましく、7万~20万がさらに好ましい。重量平均分子量(Mw)が5万未満になると、導光板の強度が低下する場合がある。重量平均分子量(Mw)が20万を超えると、流動性が低下し、成形加工性が悪化することがある。重量平均分子量(Mw)は、重合工程の反応温度、滞留時間、重合開始剤の種類及び添加量、連鎖移動剤の種類及び添加量、重合時に使用する溶媒の種類及び量などによって制御することができる。
 重量平均分子量(Mw)は、ゲルパーミエイションクロマトグラフィー(GPC)を用いて以下の条件で測定することができる。
 GPC機種:昭和電工株式会社製Shodex GPC-101
 カラム:ポリマーラボラトリーズ社製 PLgel 10μm MIXED-B
 移動相:テトラヒドロフラン
 試料濃度:0.2質量%
 温度:オーブン40℃、注入口35℃、検出器35℃
 検出器:示差屈折計
本発明の分子量は単分散ポリスチレンの溶出曲線より各溶出時間における分子量を算出し、ポリスチレン換算の分子量として算出したものである。
 スチレン系樹脂の残存単量体及び重合溶媒の合計量は、0.5質量%以下が好ましく、0.2質量%がより好ましい。残存単量体及び重合溶媒の合計量が0.5質量%を超えると、耐熱性が不十分となることがある。
 残存単量体及び重合溶媒は、スチレン系樹脂に残存する単量体と重合溶媒の量であり、スチレン、メチル(メタ)アクリレート、エチルベンゼンなどがある。残存単量体及び重合溶媒の量は脱揮工程の構成や脱揮工程の条件で調整することができる。
 残存単量体及び重合溶媒の量は、スチレン系樹脂0.2gを精秤し、内部標準物質としてp-ジエチルベンゼンを含むテトラヒドロフラン10mLに溶解し、キャピラリーガスクロマトグラフを用いて以下の条件で測定した。
 キャピラリーガスクロマトグラフ:GC-4000(ジーエルサイエンス株式会社製)
 カラム:ジーエルサイエンス株式会社製 InertCap WAX、内径 0.25mm、長さ 30m、膜厚 50μm
 インジェクション温度:180℃
 カラム温度:60℃~170℃
 ディテクター温度:210℃
 スプリット比:5/1
 スチレン系樹脂のスチレン系単量体及び(メタ)アクリル酸エステル系単量体の2量体又は3量体(以下オリゴマー)の合計量は、2質量%以下であることが好ましい。より好ましくは1質量%以下である。オリゴマーの合計量が1質量%を超えると、導光板としての耐熱性が不十分となることがある。
 オリゴマーの測定は、スチレン系樹脂200mgを2mLの1,2-ジクロロメタンに溶解し、メタノールを2mL添加して重合体を析出させ、静置させた後、上澄み液についてガスクロマトグラフを用いて以下の条件で測定した。
 ガスクロマトグラフ:HP-5890(ヒューレットパッカード社製)
 カラム:DB-1(ht) 0.25mm×30m 膜厚0.1μm
 インジェクション温度:250℃
 カラム温度:100-300℃
 検出器温度:300℃
 スプリット比:50/1
 内部標準物質:n-エイコサン
 キャリアーガス:窒素
 本発明のスチレン系樹脂組成物は、好ましくは、ヒンダードフェノール系酸化防止剤(B)を含有する。スチレン系樹脂組成物に含まれるヒンダードフェノール系酸化防止剤(B)は、基本骨格にフェノール性水酸基を持つ酸化防止剤である。ヒンダードフェノール系酸化防止剤は、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、エチレンビス(オキシエチレン)ビス〔3-(5-tert-ブチル-4-ヒドロキシ-m-トリル)プロピオネート〕、3,9-ビス[2-〔3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ〕-1,1-ジメチルエチル]-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、ペンタエリスリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、4,6-ビス(オクチルチオメチル)-o-クレゾール、4,6-ビス〔(ドデシルチオ)メチル〕-o-クレゾール、2,4-ジメチル-6-(1-メチルペンタデシル)フェノール、テトラキス〔メチレン-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート〕メタン、4,4'-チオビス(6-tert-ブチル-3-メチルフェノール)、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-tert-ブチルフェニル)ブタン、4,4'-ブチリデンビス(3-メチル-6-tert-ブチルフェノール)、ビス-[3,3-ビス-(4'-ヒドロキシ-3'-tert―ブチルフェニル)-ブタン酸]-グリコールエステル、2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート、2-〔1-(2-ヒドロキシ-3,5-ジ-tert-ペンチルフェニル)エチル〕-4,6-ジ-tert-ペンチルフェニルアクリレートなどがある。ヒンダードフェノール系酸化防止剤は、単独でもよいが2種以上を組み合わせて使用してもよい。
 ヒンダードフェノール系酸化防止剤(B)の含有量は、スチレン系樹脂(A)100質量部に対して0.001~0.3質量部であることが好ましく、0.03~0.09質量部がより好ましい。ヒンダードフェノール系酸化防止剤(B)の含有量をこの範囲に調整することで、色相に優れたスチレン系樹脂組成物が得られる。
 本発明のスチレン系樹脂組成物は、好ましくは、フェノール系水酸基を有するリン系酸化防止剤(C1)を含有する。スチレン系樹脂組成物に含まれるリン系酸化防止剤(C1)は、基本骨格にフェノール系水酸基を有する三価のリン化合物である。リン系酸化防止剤(C1)は、他のリン系酸化防止剤に比べて加水分解しやすいという特性があり、得られるスチレン系樹脂組成物の色相改善効果が高いものである。リン系酸化防止剤(C1)は、6-[3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロポキシ]-2,4,8,10-テトラ-tert-ブチルジベンゾ[d,f][1,3,2]ジオキサホスフェピンなどがある。
 リン系酸化防止剤(C1)の含有量は、スチレン系樹脂(A)100質量部に対して0.001~0.3質量部であることが好ましく、より好ましくは0.03~0.09質量部であり、さらに好ましくは0.05~0.08質量部である。リン系酸化防止剤(C1)の含有量をこの範囲に調整することで、色相に優れたスチレン系樹脂組成物が得られる。
 本発明のスチレン系樹脂組成物は、好ましくは、フェノール系水酸基を有するリン系酸化防止剤(C1)以外のリン系酸化防止剤(C2)を含有する。スチレン系樹脂組成物に含まれるリン系酸化防止剤(C2)は、基本骨格にフェノール系水酸基を有さない三価のリン化合物である。リン系酸化防止剤(C2)は、リン系酸化防止剤(C1)に比べて加水分解をしにくいが、スチレン系樹脂組成物の色相改善効果が長期にわたって持続するものである。すなわち、耐湿熱性に特に寄与しうる。リン系酸化防止剤(C2)は、3,9-ビス(2,6-ジ-tert-ブチル-4-メチルフェノキシ)-2,4,8,10-テトラオキサ-3,9-ジホスファスピロ〔5.5〕ウンデカン、ビス(2,4-ジクミルフェニル)ペンタエリスリトールジホスファイト、2,2'-メチレンビス(4,6-ジ-tert-ブチルフェニル)2-エチルヘキシルホスファイト、トリス(2,4-ジ-tert-ブチルフェニル)フォスファイト、ビス〔2,4-ビス(1,1-ジメチルエチル)-6-メチルフェニル〕エチルエステル亜リン酸、ビス(2,4-ジ-tert-ブチルフェニル)ペンタエリスリトールジホスファイト、サイクリックネオペンタンテトライルビス(オクタデシルホスファイト)、ビス(ノニルフェニル)ペンタエリスリトールジホスファイト、4,4'-ビフェニレンジホスフィン酸テトラキス(2,4-ジ-tert-ブチルフェニル)、9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド、テトラキス(2,4-ジ-tert-ブチル-5-メチルフェニル)-4,4'-ビフェニレンジホスホナイトなどがあり、色相改善の効果が持続するという観点から、好ましくは、2,2'-メチレンビス(4,6-ジ-tert-ブチルフェニル)2-エチルヘキシルホスファイトやトリス(2,4-ジ-tert-ブチルフェニル)フォスファイトを用いると良い。リン系酸化防止剤(C2)は、単独でもよいが2種以上を組み合わせて使用しても良い。
 リン系酸化防止剤(C2)の含有量は、スチレン系樹脂(A)100質量部に対して0.001~0.3質量部であることが好ましく、より好ましくは0.03~0.09質量部であり、さらに好ましくは0.05~0.08質量部である。リン系酸化防止剤(C2)の含有量をこの範囲に調整することで、初期及び長期に色相が長期にわたって優れたスチレン系樹脂組成物が得られる。
 リン系酸化防止剤(C1)とリン系酸化防止剤(C2)の配合割合は、質量比で3:1~1:3の範囲が好ましく、より好ましくは2:1~1:2である。この範囲に調整することで、得られるスチレン系樹脂組成物の色相とその耐久性のバランスが良くなる。
 スチレン系樹脂組成物を製造する方法は、公知の方法が採用できる。スチレン系樹脂の重合工程、脱揮工程、造粒工程などの製造工程で、ヒンダードフェノール系酸化防止剤(B)とリン系酸化防止剤(C1)及びリン系酸化防止剤(C2)を添加する方法があり、脱揮工程で未反応の単量体及び溶媒が除去された後に添加することが好ましい。真空脱揮槽を用いる場合、脱揮槽から抜き出したスチレン系樹脂に溶融状態のヒンダードフェノール系酸化防止剤(B)、リン系酸化防止剤(C1)及びリン系酸化防止剤(C2)を添加し、スタティックミキサーで混合する方法や、ベント付き脱揮押出機を用いる場合には、ベントゾーン以降にヒンダードフェノール系酸化防止剤(B)、リン系酸化防止剤(C1)及びリン系酸化防止剤(C2)を添加、混合することができる。押出機を用いて、造粒後のスチレン系樹脂(A)にヒンダードフェノール系酸化防止剤(B)、リン系酸化防止剤(C)及びリン系酸化防止剤(C2)を溶融混練することもできる。
 スチレン系樹脂組成物は、透明性を損なわない範囲でミネラルオイルを添加してもよい。また、ステアリン酸、エチレンビスステアリルアミドなどの内部潤滑剤や、イオウ系酸化防止剤、ラクトン系酸化防止剤、紫外線吸収剤、ヒンダードアミン系安定剤、帯電防止剤、エチレンビスステアリルアミドなどの外部潤滑剤を添加しても良い。
 紫外線吸収剤は、紫外線による劣化や着色を抑制する機能を有するものであって、ベンゾフェノン系、ベンゾトリアゾール系、トリアジン系、ベンゾエート系、サリシレート系、シアノアクリレート系、マロン酸エステル系、ホルムアミジン系などの紫外線吸収剤がある。これらは、単独又は2種以上組み合わせて用いることができ、ヒンダードアミンなどの光安定剤を併用してもよい。
 スチレン系樹脂のビカット軟化点は95℃以上であることが好ましく、98℃以上であることがより好ましい。ビカット軟化点が95℃未満では耐熱性が不足し、使用環境によっては成形品が変形する可能性がある。(ビカット軟化温度は、JIS K 7206に準拠し、昇温速度50℃/hr、試験荷重50Nで試験を行った。)
 スチレン系樹脂組成物は、押出成形、射出成形、圧縮成形、ブロー成形などの公知の方法で板状の成形品を作製し、導光板などに加工して使用することができる。
 本発明のスチレン系樹脂組成物は熱安定性に優れることから、押出成形時のシート端材や射出成形時のスプールやランナーなどの製品化されない部分を回収及び粉砕して、バージン原料に混合して使用することができる。
 導光板は、板状成形品の一方の面に形成された反射パターンにより、板状成形品の端面から入射した光を板状成形品の面側に導き、発光させる機能を持つ部材である。反射パターンはスクリーン印刷法やレーザー加工法、インクジェット法などの方法により形成することができる。また、反射パターンが形成された面の反対面(発光面)にプリズムパターンなどを設けることが出来る。板状成形品の反射パターンやプリズムパターンは、板状成形品の成形時に形成することができ、射出成形では金型形状、押出成形ではロール転写などにより、形成することができる。
 スチレン系樹脂組成物の初期の光路長115mmで測定したYI値は、好ましくは2.5以下であり、より好ましくは2.0以下である。ここで、「初期の」とは、80℃、90%湿度の空気雰囲気下で500時間湿熱処理する前という意味である。測定は、光路長115mmでの波長350nm~800nmの分光透過率を測定し、C光源における視野2°でのYI値をJIS K7105に倣い算出した値である。光路長115mmで測定したYI値は2.5より高いと、光路長と共に色が変化するため、バックライトとして使用した場合、液晶表示装置の面において色むらを生じる可能性がある。また、光路長115mmで測定した波長350nm~800nmの分光透過率の平均値が87%以上であることが好ましく、より好ましくは88%以上であり、さらに好ましくは89%以上である。
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれら実施例に限定されるものではない。
<スチレン系樹脂A-1の製造例>
 スチレン系樹脂は、ラジカル重合法にて、連続式の溶液重合で製造した。第1反応器として完全混合槽型撹拌槽を使用し、第2反応器として静的混合器付プラグフロー型反応器を使用し、直列に接続して重合工程を構成した。第1反応器の容量は30L、第2反応器の容量は12Lとした。スチレン系単量体として、工業的に使用されるスチレン(以下、フレッシュStyと称する)を準備したところ、4-tert-ブチルカテコール(以下、TBCと称する)の濃度は10.2ppmであった。(メタ)アクリル酸エステル系単量体として、工業的に使用されるメチル(メタ)アクリレート(以下、フレッシュMMAと称する)を準備したところ、6-tert-ブチル-2,4-キシレノール(以下、TBXと称する)の濃度は4.9ppmであった。重合溶媒として、工業的に使用されるエチルベンゼン(以下、フレッシュEBと称する)を準備した。また、後述する真空脱揮槽より分離した単量体及び重合溶媒などのガスはコンデンサーで凝縮し、フラッシュ蒸留塔で精製したものを回収原料として使用した。回収原料中のTBX及びTBCは検出下限以下の濃度であった。フレッシュSty、フレッシュMMA及び回収原料を用い、Sty:49質量%、MMA:41質量%、EB:10質量%の組成で原料溶液を作製し、重合工程に8.0kg/hの流量で連続的に供給した。原料溶液に占める回収原料の使用割合は33質量%であった。また、原料溶液に対して、重合開始剤としてt-ブチルパーオキシイソプロピルモノカーボネートを150ppm、連鎖移動剤としてn-ドデシルメルカプタンを500ppmの濃度となるよう、原料溶液の供給ラインに連続的に添加した。第1反応器の温度は135℃となるよう調整し、第2反応器では流れの方向に沿って温度勾配をつけ、中間部分で130℃、出口部分で145℃となるよう調整した。重合工程出口でのポリマー濃度は65%で、スチレンとメチル(メタ)アクリレートの転化率は72%であった。反応器から連続的に取り出されたポリマー溶液は、予熱器付き真空脱揮槽に供給され、未反応のスチレン及びメチル(メタ)アクリレート、エチルベンゼンなどを分離した。脱揮槽内のポリマー温度が240℃となるように予熱器の温度を調整し、脱揮槽内の圧力は1kPaとした。ギヤーポンプにより真空脱揮槽からポリマーを抜出し、ストランド状に押出して冷却水にて冷却後、切断してペレット状のスチレン系樹脂A-1を得た。A-1の組成は、Sty:50質量%、MMA:50質量%であった。また、A-1の重量平均分子量は14.5万で、残存単量体及び重合溶媒の合計量は0.07質量%、残存オリゴマーの合計量は0.35質量%であった。
<スチレン系樹脂A-2の製造例>
 原料組成をSty:77質量%、MMA:13質量%、EB:10質量%に変更し、n-ドデシルメルカプタンの添加を停止し、第1反応器の温度を140℃とし、第2反応器の中間部分の温度を140℃、出口部分の温度を160℃とした以外は、A-1と同様に実施した。原料溶液に占める回収原料の使用割合は33質量%であった。A-2の組成は、Sty:82質量%、MMA:18質量%であった。また、A-2の重量平均分子量は24万で、残存単量体及び重合溶媒の合計量は0.06質量%、残存オリゴマーの合計量は0.33質量%であった。
<スチレン系樹脂A-3の製造例>
 原料組成をSty:8質量%、MMA:79質量%、EB:13質量%に変更し、フィード流量を5.7kg/hとし、tert-ブチルパーオキシイソプロピルモノカーボネートの濃度を100ppm、n-ドデシルメルカプタンの濃度を3000ppmとし、第1反応器の温度を122℃とし、第2反応器の中間部分の温度を140℃、出口部分の温度を150℃とした以外は、A-1と同様に実施した。原料溶液に占める回収原料の使用割合は34質量%であった。A-3の組成は、Sty:10質量%、MMA:90質量%であった。また、A-3の重量平均分子量は8万で、残存単量体及び重合溶媒の合計量は0.06質量%、残存オリゴマーの合計量は0.34質量%であった。
<実施例1~10・比較例1・参考例1~2>
 製造例で得られたスチレン系樹脂A-1~A-3に、以下に示すヒンダードフェノール系酸化防止剤(B)、リン系酸化防止剤(C1)及びリン系酸化防止剤(C2-1)、(C2-2)を表1に示す含有量にて混合し、LEADER社製シート押出機を用いて酸化防止剤を溶融混練しつつ、450mm×500mm×2mmのシート成形品を得た。シート押出機は、50mmφ単軸押出機とTダイ、鏡面ロール3本より構成され、単軸押出機のシリンダー温度225℃、スクリュー回転数120rpmでシート押出を行った。Tダイの幅は450mm、開度は3mmとした。
(B)オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート (BASFジャパン株式会社製 Irganox 1076)
(C1)6-[3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロポキシ]-2,4,8,10-テトラ-tert-ブチルジベンゾ[d,f][1,3,2]ジオキサホスフェピン (住友化学株式会社製 Sumilizer GP)
(C2-1)2,2'-メチレンビス(4,6-ジ-tert-ブチルフェニル)2-エチルヘキシルホスファイト (株式会社ADEKA製 アデカスタブ HP-10)
(C2-2)トリス(2,4-ジ-tert-ブチルフェニル)フォスファイト (BASFジャパン株式会社製 Irgafos 168)
(酸化誘導時間)
 得られたシート成形品より30mm×30mm×2mm厚みの試験片を切り出し、東北電子産業社製のケミルミネッセンスアナライザーCLA-FS4を用いて、200℃、酸素流量100mL/分の条件にて発光量を測定し、測定時間と発光量の関係より、図1に示す方法で酸化誘導時間を求めた。押出直後のシート成形品の酸化誘導時間(t1)と、80℃、90%湿度の空気雰囲気下で500時間湿熱処理したシート成形品の酸化誘導時間(t2)の測定結果を表1に示す。なお、参考例1と参考例2は測定開始後、直ぐに発光量が増加し続け、酸化誘導時間を測定できなかった。
(光路長115mmでの光学特性)
 得られたシート成形品より115mm×85mm×2mm厚みの試験片を切り出し、端面を研磨し、端面に鏡面を有する板状成形品を作成した。研磨後の板状成形品について、日本分光株式会社製の紫外線可視分光光度計V-670を用いて、大きさ20×1.6mm、広がり角度0°の入射光において、光路長115mmでの波長350nm~800nmの分光透過率を測定し、C光源における視野2°でのYI値をJIS K7373に倣い算出した。表1に示す透過率とは波長380nm~780nmの平均透過率を示す。押出直後のシート成形品(初期)と80℃、90%湿度の空気雰囲気下で500時間湿熱処理したシート成形品、80℃の環境下で1000時間保管したシート成形品について測定した結果を表1に示す。
(吸水性)
 得られたシート成形品を切削し、200mm×300mmサイズの成形品を得た。この成形品を温度60℃、湿度90%の条件で500時間保管し、保管前後での質量及び長辺の寸法変化を測定し、吸水性の指標として、下記式により吸水率及び変形率を計算した。
(吸水率)=((保管後の質量)-(保管前の質量))÷(保管前の質量)×100(%)
(変形率)=((保管後の長辺長さ)-(保管前の長辺長さ))÷(保管前の長辺長さ)×100(%)
 表1に評価結果を示した。吸水率が1.0以下の場合を良好であると判断し、変形率が0.30以下の場合を良好であると判断した。
Figure JPOXMLDOC01-appb-T000001
 本発明のスチレン系樹脂組成物及びその成形品は、耐湿熱性に優れることから、色相や透明性が劣化しにくく、テレビ、デスクトップ型パーソナルコンピューター、ノート型パーソナルコンピューター、携帯電話機、カーナビゲーション、室内照明などの導光板用途などに好適に用いることができる。

Claims (11)

  1.  200℃の酸素雰囲気下で測定した酸化誘導時間をt1、
     80℃且つ90%湿度の空気雰囲気下で500時間湿熱処理した後に200℃の酸素雰囲気下で測定した酸化誘導時間をt2としたときに、
     t1-t2が20分以下である、
     スチレン系樹脂組成物。
  2.  前記t1は、50分以上である、請求項1に記載のスチレン系樹脂組成物。
  3.  ヒンダードフェノール系酸化防止剤(B)と、フェノール系水酸基を有しないリン系酸化防止剤(C2)と、を含有する請求項1又は請求項2に記載のスチレン系樹脂組成物。
  4.  スチレン系単量体単位及び(メタ)アクリル酸エステル系単量体単位を有するスチレン系樹脂(A)を含有する請求項1~請求項3のいずれか一項に記載のスチレン系樹脂組成物。
  5.  フェノール系水酸基を有するリン系酸化防止剤(C1)を含有する請求項1~請求項4のいずれか一項に記載のスチレン系樹脂組成物。
  6.  前記ヒンダードフェノール系酸化防止剤(B)が、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、エチレンビス(オキシエチレン)ビス〔3-(5-tert-ブチル-4-ヒドロキシ-m-トリル)プロピオネート〕、ペンタエリスリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]から選ばれる少なくとも一種の化合物である請求項3に記載のスチレン系樹脂組成物。
  7.  前記リン系酸化防止剤(C2)が、2,2'-メチレンビス(4,6-ジ-tert-ブチルフェニル)2-エチルヘキシルホスファイト、トリス(2,4-ジ-tert-ブチルフェニル)フォスファイトから選ばれる少なくとも一種の化合物である請求項3に記載のスチレン系樹脂組成物。
  8.  前記リン系酸化防止剤(C1)が、6-[3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロポキシ]-2,4,8,10-テトラ-tert-ブチルジベンゾ[d,f][1,3,2]ジオキサホスフェピンである請求項5に記載のスチレン系樹脂組成物。
  9.  初期の光路長115mmでのYI値が2.5以下である、
     請求項1~請求項8のいずれか一項に記載のスチレン系樹脂組成物。
  10.  請求項1~請求項9のいずれか一項に記載のスチレン系樹脂組成物を用いた成形品。
  11.  請求項10に記載の成形品を用いた導光板。
PCT/JP2020/008979 2019-04-23 2020-03-03 スチレン系樹脂組成物、成形品及び導光板 WO2020217718A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020217038057A KR20220005032A (ko) 2019-04-23 2020-03-03 스티렌계 수지 조성물, 성형품 그리고 도광판
JP2021515848A JPWO2020217718A1 (ja) 2019-04-23 2020-03-03
SG11202111611YA SG11202111611YA (en) 2019-04-23 2020-03-03 Styrene resin composition, molded article, and light guide plate
CN202080027564.8A CN113661207A (zh) 2019-04-23 2020-03-03 苯乙烯系树脂组合物、成型品以及导光板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019081859 2019-04-23
JP2019-081859 2019-04-23

Publications (1)

Publication Number Publication Date
WO2020217718A1 true WO2020217718A1 (ja) 2020-10-29

Family

ID=72942455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/008979 WO2020217718A1 (ja) 2019-04-23 2020-03-03 スチレン系樹脂組成物、成形品及び導光板

Country Status (6)

Country Link
JP (1) JPWO2020217718A1 (ja)
KR (1) KR20220005032A (ja)
CN (1) CN113661207A (ja)
SG (1) SG11202111611YA (ja)
TW (1) TW202041548A (ja)
WO (1) WO2020217718A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024099783A1 (de) * 2022-11-10 2024-05-16 Fischerwerke Gmbh & Co. Kg Hochleistungsmörtel mit tbx und analogen

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60978B2 (ja) * 1977-02-07 1985-01-11 豊和工業株式会社 海苔簀把持装置
JP2008189902A (ja) * 2007-01-10 2008-08-21 Asahi Kasei Chemicals Corp 光学材料用樹脂組成物
JP2014001295A (ja) * 2012-06-18 2014-01-09 Ps Japan Corp ポリスチレン系樹脂組成物及び導光板
JP2015067650A (ja) * 2013-09-27 2015-04-13 東洋スチレン株式会社 光学用スチレン系樹脂組成物
WO2016129675A1 (ja) * 2015-02-12 2016-08-18 デンカ株式会社 光学用スチレン系樹脂組成物
JP2018145309A (ja) * 2017-03-06 2018-09-20 東洋スチレン株式会社 光学用スチレン系樹脂組成物、成形品および導光体
WO2019138997A1 (ja) * 2018-01-09 2019-07-18 デンカ株式会社 スチレン系樹脂組成物、成形品及び導光板

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003075648A (ja) 2001-09-07 2003-03-12 Denki Kagaku Kogyo Kk 導光板
JP6035249B2 (ja) * 2011-12-20 2016-11-30 東洋スチレン株式会社 光学用スチレン系樹脂組成物

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60978B2 (ja) * 1977-02-07 1985-01-11 豊和工業株式会社 海苔簀把持装置
JP2008189902A (ja) * 2007-01-10 2008-08-21 Asahi Kasei Chemicals Corp 光学材料用樹脂組成物
JP2014001295A (ja) * 2012-06-18 2014-01-09 Ps Japan Corp ポリスチレン系樹脂組成物及び導光板
JP2015067650A (ja) * 2013-09-27 2015-04-13 東洋スチレン株式会社 光学用スチレン系樹脂組成物
WO2016129675A1 (ja) * 2015-02-12 2016-08-18 デンカ株式会社 光学用スチレン系樹脂組成物
JP2018145309A (ja) * 2017-03-06 2018-09-20 東洋スチレン株式会社 光学用スチレン系樹脂組成物、成形品および導光体
WO2019138997A1 (ja) * 2018-01-09 2019-07-18 デンカ株式会社 スチレン系樹脂組成物、成形品及び導光板

Also Published As

Publication number Publication date
SG11202111611YA (en) 2021-11-29
JPWO2020217718A1 (ja) 2020-10-29
KR20220005032A (ko) 2022-01-12
CN113661207A (zh) 2021-11-16
TW202041548A (zh) 2020-11-16

Similar Documents

Publication Publication Date Title
JP6725431B2 (ja) 光学用スチレン系樹脂組成物
TWI585142B (zh) A styrene resin composition for optics, a molded article, and a light guide plate
JP6247373B1 (ja) メタクリル系樹脂組成物、光学フィルム、光学部品
JP2022090115A (ja) 光学用スチレン系樹脂組成物、成形品および導光体
JP7129430B2 (ja) スチレン系樹脂組成物、成形品及び導光板
WO2020217718A1 (ja) スチレン系樹脂組成物、成形品及び導光板
JP5715830B2 (ja) 導光板用スチレン系樹脂組成物および導光板
JPWO2017094748A1 (ja) 透明な高耐熱性スチレン系共重合体
JP5715829B2 (ja) 導光板用スチレン系樹脂組成物および導光板
WO2011162306A1 (ja) スチレン系導光板
KR102669507B1 (ko) 스티렌계 수지 조성물, 성형품 및 도광판
JP2014173034A (ja) 導光板用ポリスチレン系樹脂組成物及び導光板
JP7229226B2 (ja) 光学用スチレン系樹脂組成物及び光学部品
JP7010642B2 (ja) メタクリル系樹脂組成物、光学フィルム、光学部品
JP2021147561A (ja) スチレン系樹脂組成物及びその製造方法、成形品および導光板
CN114730022A (zh) 光扩散板以及直下式面光源单元
WO2022065222A1 (ja) 樹脂組成物
JP2019059883A (ja) メタクリル系樹脂組成物
JP2016190425A (ja) 光学用スチレン系多層成形品および導光板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20795769

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021515848

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217038057

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20795769

Country of ref document: EP

Kind code of ref document: A1