WO2020217337A1 - 走行環境分析装置、走行環境分析システムおよび走行環境分析方法 - Google Patents

走行環境分析装置、走行環境分析システムおよび走行環境分析方法 Download PDF

Info

Publication number
WO2020217337A1
WO2020217337A1 PCT/JP2019/017393 JP2019017393W WO2020217337A1 WO 2020217337 A1 WO2020217337 A1 WO 2020217337A1 JP 2019017393 W JP2019017393 W JP 2019017393W WO 2020217337 A1 WO2020217337 A1 WO 2020217337A1
Authority
WO
WIPO (PCT)
Prior art keywords
event
viewpoint
concentration area
line
area
Prior art date
Application number
PCT/JP2019/017393
Other languages
English (en)
French (fr)
Inventor
下谷 光生
直志 宮原
義典 上野
友広 椎野
家田 邦代
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US17/431,558 priority Critical patent/US20220139093A1/en
Priority to PCT/JP2019/017393 priority patent/WO2020217337A1/ja
Priority to JP2021515372A priority patent/JP7042974B2/ja
Publication of WO2020217337A1 publication Critical patent/WO2020217337A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/588Recognition of the road, e.g. of lane markings; Recognition of the vehicle driving pattern in relation to the road
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/40Scenes; Scene-specific elements in video content
    • G06V20/44Event detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/59Context or environment of the image inside of a vehicle, e.g. relating to seat occupancy, driver state or inner lighting conditions
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/123Traffic control systems for road vehicles indicating the position of vehicles, e.g. scheduled vehicles; Managing passenger vehicles circulating according to a fixed timetable, e.g. buses, trains, trams
    • G08G1/127Traffic control systems for road vehicles indicating the position of vehicles, e.g. scheduled vehicles; Managing passenger vehicles circulating according to a fixed timetable, e.g. buses, trains, trams to a central station ; Indicators in a central station
    • G08G1/13Traffic control systems for road vehicles indicating the position of vehicles, e.g. scheduled vehicles; Managing passenger vehicles circulating according to a fixed timetable, e.g. buses, trains, trams to a central station ; Indicators in a central station the indicator being in the form of a map
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems

Definitions

  • the present invention relates to a driving environment analyzer, a driving environment analysis system, and a driving environment analysis method.
  • a system has been proposed that detects the driver's line of sight while driving and provides various assistance to the driver.
  • the driving control device disclosed in Patent Document 1 is data stored in advance, and the time-series data of the line of sight associated with a predetermined driving operation matches the line of sight of the actually detected driver. In that case, the predetermined operation operation is performed.
  • the information guidance device disclosed in Patent Document 2 detects the line-of-sight direction of the occupant within a predetermined period of time, and guides the facility corresponding to the selected genre among the facilities existing in the line-of-sight direction.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide a driving environment analyzer that accurately estimates an event occurring outside the vehicle.
  • the driving environment analyzer includes a viewpoint concentration area detection unit, a viewpoint concentration area event estimation unit, and an information output unit.
  • the viewpoint concentration area detection unit sequentially detects the viewpoint concentration area, which is an area outside the plurality of vehicles and is an area to be watched by the occupants of the plurality of vehicles, based on the line-of-sight information regarding the line of sight of the occupants.
  • the viewpoint concentration area event estimation unit estimates the event occurring in the new viewpoint concentration area when the new viewpoint concentration area, which is a newly generated viewpoint concentration area, is detected.
  • the information output unit outputs information on the new viewpoint concentration area and information on the event.
  • FIG. It is a block diagram which shows the structure of the driving environment analysis apparatus in Embodiment 1.
  • FIG. It is a figure which shows an example of the structure of a processing circuit. It is a figure which shows another example of the structure of a processing circuit.
  • FIG. 1 It is a figure which shows an example of the position of a vehicle and an individual gaze area. It is a figure which shows the time series data of the line-of-sight distribution data. It is a flowchart which shows the line-of-sight information collection method in Embodiment 2. It is a flowchart which shows the detection method of the new viewpoint concentration area and the estimation method of an event in Embodiment 2. FIG. It is a flowchart which shows the distribution method of the information of a new viewpoint concentration area and an event in Embodiment 2. It is a figure which shows an example of the warning displayed on the display device. It is a figure which shows another example of the warning displayed on the display device.
  • FIG. 1 is a block diagram showing the configuration of the traveling environment analyzer 100 according to the first embodiment.
  • the driving environment analysis device 100 includes a viewpoint concentration area detection unit 10, a viewpoint concentration area event estimation unit 20, and an information output unit 30.
  • the viewpoint concentration area detection unit 10 sequentially detects the viewpoint concentration area based on the line-of-sight information regarding the line-of-sight of the occupants of the plurality of vehicles 200.
  • the viewpoint concentration area is an area outside the plurality of vehicles 200, and is an area to be watched by the occupants.
  • the viewpoint concentration area event estimation unit 20 estimates an event occurring in the new viewpoint concentration area when a new viewpoint concentration area, which is a newly generated viewpoint concentration area, is detected.
  • the information output unit 30 outputs information on the new viewpoint concentration area and information on the event.
  • FIG. 2 is a diagram showing an example of the configuration of the processing circuit 95 included in the traveling environment analyzer 100.
  • Each function of the viewpoint concentration area detection unit 10, the viewpoint concentration area event estimation unit 20, and the information output unit 30 is realized by the processing circuit 95. That is, the processing circuit 95 includes a viewpoint concentration area detection unit 10, a viewpoint concentration area event estimation unit 20, and an information output unit 30.
  • the processing circuit 95 may be, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), or an FPGA (Field). -ProgrammableGateArray), or a circuit that combines these.
  • Each function of the viewpoint concentration area detection unit 10, the viewpoint concentration area event estimation unit 20, and the information output unit 30 may be realized individually by a plurality of processing circuits, or may be realized collectively by one processing circuit. ..
  • FIG. 3 is a diagram showing another example of the configuration of the processing circuit included in the traveling environment analyzer 100.
  • the processing circuit includes a processor 96 and a memory 97.
  • the functions of the viewpoint concentration area detection unit 10, the viewpoint concentration area event estimation unit 20, and the information output unit 30 are realized.
  • each function is realized by executing software or firmware described as a program by the processor 96.
  • the traveling environment analyzer 100 has a memory 97 for storing the program and a processor 96 for executing the program.
  • the traveling environment analyzer 100 sets a viewpoint concentration area, which is an area outside the plurality of vehicles 200 and is an area to be watched by the occupants of the plurality of vehicles 200, based on the line-of-sight information regarding the line-of-sight of the occupants.
  • a new viewpoint concentration area which is a newly generated viewpoint concentration area
  • the program causes the computer to execute the procedure or method of the viewpoint concentration area detection unit 10, the viewpoint concentration area event estimation unit 20, and the information output unit 30.
  • the processor 96 is, for example, a CPU (Central Processing Unit), an arithmetic unit, a microprocessor, a microcomputer, a DSP (Digital Signal Processor), or the like.
  • the memory 97 is, for example, non-volatile or volatile such as RAM (RandomAccessMemory), ROM (ReadOnlyMemory), flash memory, EPROM (ErasableProgrammableReadOnlyMemory), and EEPROM (ElectricallyErasableProgrammableReadOnlyMemory). It is a semiconductor memory.
  • the memory 97 may be any storage medium used in the future, such as a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, or a DVD.
  • the processing circuit realizes each of the above-mentioned functions by hardware, software, firmware, or a combination thereof.
  • FIG. 4 is a flowchart showing the driving environment analysis method according to the first embodiment.
  • step S1 the viewpoint concentration area detection unit 10 sequentially detects the viewpoint concentration area based on the line-of-sight information regarding the line of sight of the occupant.
  • step S2 the viewpoint concentration area event estimation unit 20 estimates the event occurring in the new viewpoint concentration area when the new viewpoint concentration area is detected.
  • step S3 the information output unit 30 outputs information on the new viewpoint concentration area and the event.
  • the driving environment analysis device 100 in the first embodiment includes the viewpoint concentration area detection unit 10, the viewpoint concentration area event estimation unit 20, and the information output unit 30.
  • the viewpoint concentration area detection unit 10 sequentially detects the viewpoint concentration area, which is an area outside the plurality of vehicles 200 and is an area where the occupants of the plurality of vehicles 200 gaze, based on the line-of-sight information regarding the line of sight of the occupants. To do.
  • the viewpoint concentration area event estimation unit 20 estimates an event occurring in the new viewpoint concentration area when a new viewpoint concentration area, which is a newly generated viewpoint concentration area, is detected.
  • the information output unit 30 outputs information on the new viewpoint concentration area and information on the event.
  • Such a traveling environment analyzer 100 accurately estimates an event occurring outside the vehicle 200.
  • the traveling environment analysis method in the first embodiment is based on the line-of-sight information regarding the line-of-sight of the occupants in the viewpoint concentration area, which is an area outside the plurality of vehicles 200 and is an area where the occupants of the plurality of vehicles 200 gaze. Then, when a new viewpoint concentration area, which is a newly generated viewpoint concentration area, is detected, the event occurring in the new viewpoint concentration area is estimated, and the information of the new viewpoint concentration area and the event And output the information of.
  • Such a driving environment analysis method accurately estimates an event occurring outside the vehicle 200.
  • the driving environment analysis device and the driving environment analysis method according to the second embodiment will be described.
  • the second embodiment is a subordinate concept of the first embodiment, and the traveling environment analysis device in the second embodiment includes each configuration of the traveling environment analysis device 100 in the first embodiment. The same configuration and operation as in the first embodiment will not be described.
  • FIG. 5 is a block diagram showing the configurations of the traveling environment analysis system 301 and the traveling environment analysis device 101 according to the second embodiment.
  • the driving environment analysis system 301 includes a plurality of vehicles 201 and a driving environment analysis device 101.
  • the vehicle 201 is a so-called probe car, and communicates with a traveling environment analyzer 101 provided on a server (not shown) via a communication network 170.
  • FIG. 5 shows the configuration of one of the plurality of vehicles 201 as a representative, but the same applies to the configurations of the other vehicles.
  • the traveling environment analysis system 301 recognizes the individual gaze areas that each occupant of the plurality of vehicles 201 gazes at in each vehicle 201.
  • the traveling environment analysis system 301 collects information on the individual gaze area from the plurality of vehicles 201 as gaze information, and detects a new viewpoint concentration area to be gazed by the occupants of the plurality of vehicles 201.
  • the driving environment analysis system 301 in the second embodiment is a so-called edge computing type system.
  • the vehicle 201 includes a line-of-sight detection device 110, a locator 120, a vehicle identification information storage device 130, an individual gaze area recognition unit 140, a line-of-sight information output unit 150, and a display device 160.
  • the vehicle identification information storage device 130 stores the ID associated with the vehicle 201, that is, the vehicle identification information.
  • the locator 120 detects the position of the vehicle 201.
  • the locator 120 detects the position of the vehicle 201 based on information acquired from, for example, a GNSS (Global Navigation Satellite System) or a sensor provided in the vehicle 201.
  • GNSS Global Navigation Satellite System
  • the line-of-sight detection device 110 sequentially detects the line-of-sight data of the occupants of the vehicle 201.
  • the occupant includes, for example, a driver and a passenger seated in the passenger seat.
  • the line-of-sight data includes the line-of-sight direction or the line-of-sight position.
  • the individual gaze area recognition unit 140 acquires the position data of the vehicle 201 detected by the locator 120 and the line of sight data of each occupant detected by the line of sight detection device 110.
  • the individual gaze area recognition unit 140 obtains the gaze distribution data by accumulating the gaze data at a predetermined cycle and for a predetermined analysis period. Further, the individual gaze area recognition unit 140 associates the position data of the vehicle 201 with the line-of-sight distribution data and acquires them over time. As a result, time-series data of the position data and the line-of-sight distribution data of the vehicle 201 can be obtained. Based on the time-series data, the individual gaze area recognition unit 140 recognizes the individual gaze area which is an area outside the vehicle 201 and which is an area where each occupant gazes.
  • the individual gaze area corresponds to an area caused by a sudden event such as an accident vehicle.
  • the individual gaze area corresponds to an area in which the occupant constantly gazes due to the road structure, road shape, facility, or the like.
  • the road structure is an intersection, a confluence, a pedestrian crossing, etc.
  • the road shape is a curve of the road, etc.
  • the facility is a school, etc.
  • the line-of-sight information output unit 150 outputs information on the individual gaze area as line-of-sight information regarding the line of sight of the occupant to the driving environment analyzer 101 via the communication network 170.
  • the line-of-sight information regarding the line-of-sight of the occupant may include position data, vehicle identification information, or time information of the vehicle 201.
  • the display device 160 displays a warning based on the information of the new viewpoint concentration area and the event output from the driving environment analysis device 101.
  • the display device 160 is, for example, a HUD (Head-Up Display), a monitor provided in a navigation device, or the like.
  • Vehicle 201 has the same processing circuit as in FIG. 2 or FIG.
  • the functions of the individual gaze area recognition unit 140 and the line-of-sight information output unit 150 are realized by the processing circuit.
  • the driving environment analyzer 101 is provided on the server.
  • the driving environment analyzer 101 includes a line-of-sight information collecting unit 40, an individual gaze area storage unit 50, a viewpoint concentration area detection unit 10, a stationary viewpoint concentration area storage unit 60, a new viewpoint concentration area storage unit 70, and a viewpoint concentration area event estimation unit 20. , Map database (map DB) storage unit 80, event information storage unit 90, and information output unit 30.
  • the line-of-sight information collecting unit 40 collects line-of-sight information from each vehicle 201.
  • the line-of-sight information in the second embodiment includes information on the individual gaze area recognized in each vehicle 201.
  • the individual gaze area storage unit 50 stores the information of the individual gaze area of each vehicle 201 collected by the line-of-sight information collecting unit 40.
  • the viewpoint concentration area detection unit 10 sequentially detects the viewpoint concentration area based on a plurality of individual gaze areas acquired from the plurality of vehicles 201. In other words, the viewpoint concentration area detection unit 10 extracts the viewpoint concentration area from a plurality of individual gaze areas collected by the line-of-sight information collection unit 40.
  • the viewpoint concentration area is an area outside the plurality of vehicles 201 and is an area to be watched by the occupants of the plurality of vehicles 201.
  • the viewpoint concentration area detection unit 10 detects the stationary viewpoint concentration area from the viewpoint concentration area based on a predetermined first logic.
  • the predetermined first logic includes setting an area in which the line of sight of the occupant is frequently concentrated as a stationary viewpoint concentration area by accumulating information on the viewpoint concentration area in the past predetermined period.
  • the predetermined first logic includes setting an area frequently detected as an individual concentration area as a stationary viewpoint concentration area by accumulating the individual concentration areas for a predetermined period in the past. Therefore, the stationary viewpoint concentration area corresponds to an area in which the occupant constantly gazes due to the road structure, road shape, facility, or the like. Then, when the viewpoint concentration area detection unit 10 detects the occurrence of the viewpoint concentration area in an area different from the stationary viewpoint concentration area before and after the specific time point, it determines that a new viewpoint concentration area has occurred.
  • the stationary viewpoint concentrated area storage unit 60 stores information on the stationary viewpoint concentrated area.
  • the new viewpoint concentration area storage unit 70 stores information on the new viewpoint concentration area.
  • the map DB storage unit 80 stores road map information.
  • the viewpoint concentration area event estimation unit 20 estimates the event occurring in the new viewpoint concentration area when the new viewpoint concentration area is detected. For example, the viewpoint concentration area event estimation unit 20 estimates an event based on the geographical attribute of the new viewpoint concentration area. At that time, the viewpoint concentration area event estimation unit 20 acquires the geographical attribute of the new viewpoint concentration area based on the position of the new viewpoint concentration area and the map information. The geographical attribute is, for example, on the lane, outside the lane, outside the traveling lane, a section farther than the traveling lane, and the like. Then, the viewpoint concentration area event estimation unit 20 estimates the event based on the geographical attribute.
  • the viewpoint concentration area event estimation unit 20 estimates an event based on a temporal attribute which is a change over time in the state of the new viewpoint concentration area.
  • the event includes, for example, an event requiring avoidance that the vehicle 201 needs to avoid, or an event requiring attention that the occupant of the vehicle 201 needs to pay attention to.
  • the event information storage unit 90 stores the event estimated by the viewpoint concentration area event estimation unit 20.
  • the information output unit 30 outputs information on the new viewpoint concentration area and event information.
  • the traveling environment analyzer 101 has a processing circuit similar to that shown in FIG. 2 or FIG. Line-of-sight information collection unit 40, individual gaze area storage unit 50, viewpoint concentration area detection unit 10, stationary viewpoint concentration area storage unit 60, new viewpoint concentration area storage unit 70, viewpoint concentration area event estimation unit 20, map DB storage unit 80, Each function of the event information storage unit 90 and the information output unit 30 is realized by the processing circuit.
  • FIG. 6 is a flowchart showing the recognition operation of the individual gaze area according to the second embodiment.
  • step S101 the individual gaze area recognition unit 140 acquires the position data of the vehicle 201 and the line-of-sight data of the occupant.
  • the individual gaze area recognition unit 140 accumulates the line-of-sight data of each occupant at a predetermined cycle for a predetermined period to obtain the line-of-sight distribution data.
  • the predetermined period is, for example, 30 times per second, and the predetermined analysis period is, for example, 2 seconds.
  • the individual gaze area recognition unit 140 acquires the position data of the vehicle 201 and the line-of-sight distribution data in association with each other over time, and acquires time-series data.
  • the position of the vehicle 201 is preferably the position of the driver's eyes.
  • step S102 the individual gaze area recognition unit 140 recognizes the individual gaze area based on the time series data. The details of the recognition method will be described later.
  • step S103 the individual gaze area recognition unit 140 determines whether or not the individual gaze area has been recognized. If the individual gaze area is recognized, step S104 is executed. If the individual gaze area is not recognized, step S101 is executed again.
  • step S104 the line-of-sight information output unit 150 transmits the information of the individual gaze area to the traveling environment analyzer 101 as the line-of-sight information regarding the line of sight of the occupant.
  • the information of the individual gaze area includes the position data of the individual gaze area.
  • the line-of-sight information includes position data of the vehicle 201, vehicle identification information, and time information in addition to the information of the individual gaze area.
  • the line-of-sight information output unit 150 does not necessarily have to upload the vehicle identification information to the traveling environment analysis device 101. However, by adding the vehicle identification information to the line-of-sight information, the processing in the traveling environment analyzer 101 is reduced.
  • each vehicle 201 of the driving environment analysis system 301 the above recognition process of the individual gaze area is repeatedly executed.
  • 7 and 8 are diagrams showing an example of a predetermined analysis period and output timing of the line-of-sight distribution data.
  • Each of the first to fourth analysis periods corresponds to the above-mentioned predetermined analysis period.
  • the analysis periods may overlap each other as shown in FIG. 8 or may be independent as shown in FIG.
  • the individual gaze area recognition unit 140 acquires time-series data which is time-dependent data of the position data and the line-of-sight distribution data of the vehicle 201.
  • FIG. 9 is a diagram showing an example of the position of the vehicle 201 and the individual gaze area 410.
  • the line of sight of the driver will be described as the line of sight of the occupant.
  • the accident vehicle 400 deviates from the lane of the road and stops on the shoulder.
  • Pb be the position where the accident vehicle 400 is stopped.
  • the vehicle 201 travels near the position Pb of the accident vehicle 400, the occupants of the vehicle 201 notice the accident vehicle 400 and sometimes turn their eyes to the accident vehicle 400.
  • the line-of-sight direction ⁇ corresponds to the angle formed by the front of the vehicle 201 and the direction in which the accident vehicle 400 exists from the vehicle 201.
  • FIG. 10 is a diagram showing time-series data of the line-of-sight distribution data.
  • the driver is usually facing forward when the vehicle 201 is traveling on a straight road.
  • the line-of-sight distribution data has a maximum value (peak) at a specific angle in the left direction, that is, in the direction in which the accident vehicle 400 exists.
  • the individual gaze area recognition unit 140 obtains the individual gaze area 410 based on the peaks at a specific angle included in the line-of-sight distribution data.
  • the individual gaze area recognition unit 140 obtains the position Pb by statistical processing such as the least squares method, and recognizes the position Pb as the individual gaze area 410.
  • the individual gaze area is not limited to one specific point such as the above position Pb, but may be an area including the specific point. For example, if the intersections of all the straight lines calculated based on the line-of-sight distribution data are within a predetermined range, the individual gaze area recognition unit 140 may recognize the range as the individual gaze area 410.
  • the individual gaze area recognition unit 140 may operate so as not to adopt the line-of-sight distribution data in which no peak is recognized in the time series data for recognizing the individual gaze area.
  • the absolute value of the line-of-sight direction ⁇ increases monotonically from the positional relationship between the vehicle 201 and the accident vehicle 400.
  • the individual gaze area recognition unit 140 does not have to adopt a peak that deviates from the monotonously increasing tendency for recognition of the individual gaze area.
  • the individual gaze area recognition unit 140 may recognize the individual gaze area based on the line-of-sight distribution data of the driver facing the rear-view mirror, the electronic mirror, or the like.
  • the method of detecting the individual gaze area in each vehicle 201 is not limited to the above method.
  • the individual gaze area recognition unit 140 recognizes the intersections as individual gaze areas when the clear intersections are concentrated in a range of 2 m and the peak of the remarkable line-of-sight distribution is detected for a predetermined time or longer. May be good.
  • the predetermined time is, for example, 4 seconds.
  • the individual gaze area recognition unit 140 may recognize that point as the individual gaze area. Alternatively, the individual gaze area recognition unit 140 may recognize the point that the occupant continuously gazes for 0.5 seconds or more as the individual gaze area when it is detected three times or more within 10 seconds. Alternatively, the individual gaze area recognition unit 140 may obtain the individual gaze area by the deep learning logic.
  • FIG. 11 is a flowchart showing the line-of-sight information collecting method according to the second embodiment.
  • FIG. 12 is a flowchart showing a method of detecting a new viewpoint concentration area and estimating an event in the second embodiment.
  • FIG. 13 is a flowchart showing a method of distributing information on a new viewpoint concentration area and an event in the second embodiment.
  • the operations shown in FIGS. 11 to 13 are independent of each other, and the traveling environment analyzer 101 executes these operations in parallel.
  • step S11 the line-of-sight information collecting unit 40 collects line-of-sight information from each vehicle 201.
  • the line-of-sight information in the second embodiment includes information on the individual gaze area recognized in each vehicle 201. Further, the individual gaze area storage unit 50 stores the information of the individual gaze area for each vehicle 201.
  • step S21 the viewpoint concentration area detection unit 10 detects the viewpoint concentration area to be gazed by a plurality of occupants based on the information of the plurality of individual gaze areas.
  • step S22 the viewpoint concentration area detection unit 10 detects a stationary viewpoint concentration area from the viewpoint concentration area based on a predetermined first logic.
  • the stationary viewpoint concentrated area storage unit 60 stores the stationary viewpoint concentrated area.
  • step S23 the driving environment analyzer 101 determines whether or not the formulation of the stationary viewpoint concentration area is completed. For example, when the stationary viewpoint concentrated area storage unit 60 stores information on the stationary viewpoint concentrated area for the most recent year, the traveling environment analyzer 101 determines that the learning step of the stationary viewpoint concentrated area has been completed once. When the formulation of the stationary viewpoint concentration area is completed, step S24 is executed. If the establishment of the stationary viewpoint concentration area is not completed, step S21 is executed again.
  • step S24 the viewpoint concentration area detection unit 10 determines whether or not a new viewpoint concentration area has been detected.
  • the viewpoint concentration area detection unit 10 detects the viewpoint concentration area as a new viewpoint concentration area. For example, the position Pb of the accident vehicle 400 shown in FIG. 9 is detected as a new viewpoint concentration area.
  • step S25 the new viewpoint concentration area storage unit 70 stores the new viewpoint concentration area.
  • the new viewpoint concentration area storage unit 70 deletes the record of the new viewpoint concentration area.
  • the viewpoint concentration area event estimation unit 20 estimates an event occurring in the new viewpoint concentration area.
  • the viewpoint concentration area event estimation unit 20 acquires the geographical attribute to which the new viewpoint concentration area belongs based on the position of the new viewpoint concentration area and the map information of the map database. Then, the viewpoint concentration area event estimation unit 20 estimates the event based on the geographical attribute. Alternatively, for example, the viewpoint concentration area event estimation unit 20 estimates an event based on a temporal attribute indicating a change over time in the state of the new viewpoint concentration area.
  • the event information storage unit 90 stores the event.
  • step S31 the information output unit 30 receives a request for distribution of information on the new viewpoint concentration area and the event.
  • the information output unit 30 receives the distribution request from outside the server, that is, outside the traveling environment analyzer 101.
  • the server automatically detects the vehicle 201 that is about to travel in the new viewpoint concentration area, and the information output unit 30 receives the distribution request from the server.
  • step S32 the information output unit 30 outputs information on the new viewpoint concentration area and the event.
  • the information output unit 30 distributes information on the new viewpoint concentration area and the event to the vehicle 201 scheduled to travel around the new viewpoint concentration area via the communication network 170.
  • the vehicle 201 approaching the new viewpoint concentration area receives information on the new viewpoint concentration area and event information from the traveling environment analyzer 101.
  • the display device 160 of the vehicle 201 displays a warning.
  • FIG. 14 is a diagram showing a warning displayed on the display screen of the navigation device as an example of the warning displayed on the display device 160.
  • FIG. 15 is a diagram showing a warning displayed on the HUD as another example of the warning displayed on the display device 160.
  • the alarm display includes information such as event attributes, position, caution, and necessity of avoidance.
  • the information output unit 30 may output information on the new viewpoint concentration area and the event to the server.
  • the server analyzes and processes the road traffic condition based on the information, and for example, the server administrator grasps the road traffic condition.
  • the viewpoint concentration area event estimation unit 20 estimates the event based on the geographical attribute or the temporal attribute of the new viewpoint concentration area.
  • FIG. 16 is a diagram showing the relationship between the geographical attribute and the temporal attribute of the new viewpoint concentration area and the presumed event.
  • the new viewpoint concentration area is classified into four geographical attributes and four temporal attributes.
  • the first geographical attribute corresponds to the lane in the traveling direction of one of the plurality of vehicles 201.
  • the viewpoint concentration area event estimation unit 20 estimates that an event included in the predetermined first event group has occurred in the lane. ..
  • the predetermined first event group is the event group described in the line corresponding to the first geographical attribute in FIG.
  • the predetermined first event group includes events requiring avoidance.
  • the avoidance-required event is, for example, a situation in which an accident vehicle, a falling object, a road damage, a road destruction, a dangerous driving vehicle, or the like exists.
  • the viewpoint concentration area event estimation unit 20 may determine the lane to be noted based on the lane in which the viewpoint concentration area exists. Further, the driving environment analyzer 101 detects the avoidance operation by the sensor provided in the vehicle 201, so that the event estimation accuracy is further improved.
  • the second geographical attribute corresponds to the vicinity of the lane in the traveling direction of one of the plurality of vehicles 201.
  • the vicinity of a lane refers to a part of the road structure excluding lanes such as a shoulder, a median strip, a sidewalk, and an evacuation space, and a feature adjacent to the road structure.
  • the feature adjacent to the road structure is, for example, a feature within 10 m from the road structure.
  • a cautionary event is a situation in which an accident vehicle, a falling object, a special vehicle, or the like exists in a roadside zone or a waiting area.
  • the event requiring attention is a situation in which a feature or a person to be careful when the vehicle 201 travels exists on the sidewalk.
  • an event requiring attention is a situation in which a newly established POI (Point Of Interest) or event exists.
  • POI Point Of Interest
  • the third geographical attribute corresponds to the upper part of the driving road of one of the plurality of vehicles 201.
  • the viewpoint concentration area event estimation unit 20 estimates that an event included in a predetermined third event group has occurred on the driving road. ..
  • the predetermined third event group is the event described in the line corresponding to the third geographical attribute in FIG.
  • the predetermined third event group includes events requiring attention.
  • a cautionary event is, for example, a situation in which a traveling obstruction act such as stone throwing occurs from a road crossing the upper part of the driving road or diagonally above the driving road.
  • a cautionary event is a situation in which a natural disaster such as a landslide diagonally above the road has occurred.
  • a cautionary event is a situation in which road damage or road equipment destruction has occurred.
  • the fourth geographical attribute corresponds to the opposite lane of the lane in the traveling direction of one of the plurality of vehicles 201 or a road different from that lane.
  • the viewpoint concentration area event estimation unit 20 has an event included in the predetermined fourth event group in the opposite lane or a different road.
  • the predetermined fourth event group is the event described in the line corresponding to the fourth geographical attribute in FIG.
  • the predetermined fourth event group includes events requiring avoidance.
  • the avoidance-required event is, for example, a situation in which an accident in the opposite lane, damage to road equipment in the opposite lane, a reverse-way vehicle, or a dangerous driving vehicle occurs.
  • the viewpoint concentration area event estimation unit 20 may determine the probability of event occurrence based on the degree of coincidence between the new viewpoint concentration area in the lane in the traveling direction of the vehicle 201 and the new viewpoint concentration area in the opposite lane. ..
  • the fifth geographical attribute corresponds to the outside of the facility of the driving road of one of the plurality of vehicles 201.
  • the term "outside the facility" includes, for example, a distant view different from the road. Areas other than the first to fourth geographical attributes correspond to the fifth geographical attribute.
  • the viewpoint-concentrated area event estimation unit 20 estimates that an event included in a predetermined fifth event group has occurred outside the facility of the driving road.
  • the predetermined fifth event group is the event described in the line corresponding to the fifth geographical attribute in FIG.
  • the predetermined fifth event group includes events requiring attention that do not directly affect the running of the vehicle. If the location of the new viewpoint concentration area is a mountain outside the road facility, a natural disaster has occurred as a cautionary event.
  • the viewpoint concentration area event estimation unit 20 has generated an event included in a predetermined sixth event group. Estimate that. For example, when the position of the new viewpoint concentration area does not change on the order of several hours, the viewpoint concentration area event estimation unit 20 estimates that an event included in a predetermined sixth event group has occurred.
  • the predetermined sixth event group is the event described in the column corresponding to the first temporal attribute in FIG.
  • the predetermined sixth event group includes events requiring attention.
  • An event requiring attention is a situation in which an accident, obstacle, temporary disaster, etc. has occurred.
  • a cautionary event is a situation in which a notable feature or moving object is occurring.
  • the driving environment analyzer 101 may determine that the caution event has been eliminated.
  • the viewpoint concentration area event estimation unit 20 determines that an event included in the predetermined 7th event group has occurred. For example, when the position of the new viewpoint concentration area does not change for several hours or more or several days or more, the viewpoint concentration area event estimation unit 20 indicates that an event included in the predetermined seventh event group has occurred.
  • the predetermined seventh event group is the event described in the column corresponding to the second temporal attribute in FIG.
  • the predetermined seventh event group includes events requiring attention.
  • a cautionary event is a situation in which a sudden road damage, a sudden damage to a road facility, or a sudden natural disaster has occurred and has not been repaired.
  • a new stationary viewpoint concentration area may occur due to new construction or closure of roads.
  • the driving environment analyzer 101 collates the position of the new stationary viewpoint concentrated area with the new road map and determines that it is the stationary viewpoint concentrated area, the event of the predetermined seventh event group is detected. It is not estimated that it has occurred.
  • the viewpoint concentration area event estimation unit 20 estimates that an event included in the predetermined eighth event group has occurred.
  • the predetermined eighth event group is the event described in the column corresponding to the third temporal attribute in FIG.
  • the predetermined eighth event group includes events requiring attention.
  • a cautionary event is a situation in which road damage is progressing, road facility damage is progressing, and destruction of nature is progressing.
  • the viewpoint concentration area event estimation unit 20 has generated an event included in a predetermined ninth event group.
  • the predetermined ninth event group is the event described in the column corresponding to the fourth temporal attribute in FIG.
  • the predetermined ninth event group includes events requiring attention in which a moving body moves near the new viewpoint concentration area.
  • a cautionary event is a situation in which a moving object such as a dangerous driving vehicle, a reverse-way driving vehicle, a suspicious vehicle, a dangerous person, or a suspicious person wanders exists.
  • the traveling environment analyzer 101 may estimate the current position of the moving body from the time series information of the moving body.
  • the line-of-sight information in the second embodiment includes information on the individual gaze area that each occupant on board each of the plurality of vehicles 201 gazes at.
  • the line-of-sight information is output from each of the plurality of vehicles 201.
  • the individual gaze area is recognized by each of the plurality of vehicles 201 based on the time series data which is the time-series data including the position data of each of the plurality of vehicles 201 and the line-of-sight data of each occupant. ..
  • Such a driving environment analysis device 101 accurately estimates an event occurring in a new viewpoint concentration area based on information on individual gaze areas of a plurality of occupants while simplifying the configuration of the driving environment analysis device 101. ..
  • the traveling environment analyzer 101 delivers the avoidance or cautionary events occurring in the area to the vehicle 201 scheduled to travel in the new viewpoint concentration area, and provides driving support for the vehicle 201.
  • the traveling environment analyzer 101 is different from the system that acquires only the line of sight of the occupants of one vehicle and executes the support, and is newly generated by using the lines of sight of the occupants of a plurality of vehicles 201. It makes it possible to estimate events of interest. Further, the traveling environment analyzer 101 makes it possible to notify the occupants of another vehicle of the event requiring attention when the occupant of one vehicle notices the event requiring attention.
  • the viewpoint concentration area event estimation unit 20 of the traveling environment analyzer 101 in the second embodiment estimates the event based on the geographical attribute to which the new viewpoint concentration area belongs.
  • Such a driving environment analyzer 101 accurately estimates the avoidance or cautionary events occurring in the vehicle 201 scheduled to travel in the new viewpoint concentration area.
  • the viewpoint concentration area event estimation unit 20 of the traveling environment analyzer 101 in the second embodiment estimates an event based on a temporal attribute indicating a change over time in the state of the new viewpoint concentration area.
  • Such a driving environment analyzer 101 accurately estimates the avoidance or cautionary events occurring in the vehicle 201 scheduled to travel in the new viewpoint concentration area.
  • the traveling environment analysis system 301 includes the above-mentioned traveling environment analysis device 101, an individual gaze area recognition unit 140, and a line-of-sight information output unit 150.
  • the individual gaze area recognition unit 140 is provided in each of the plurality of vehicles 201, and recognizes the individual gaze area to be gazed by each occupant based on the time series data.
  • the line-of-sight information output unit 150 is provided in each of the plurality of vehicles 201, and outputs information on the individual gaze area as line-of-sight information to the traveling environment analyzer 101.
  • Such a driving environment analysis system 301 accurately estimates an event occurring in a new viewpoint concentration area based on information of individual gaze areas of a plurality of occupants while simplifying the configuration of the driving environment analysis device 101. ..
  • the driving environment analysis system 301 delivers the avoidance or cautionary events occurring in the area to the vehicle 201 scheduled to travel in the new viewpoint concentration area, and provides driving support for the vehicle 201.
  • the viewpoint-concentrated area event estimation unit 20 may estimate an event in a new viewpoint-concentrated area based on a more subdivided geographical attribute, video information acquired by the vehicle 201, an image recognition result thereof, or the like.
  • the video information acquired by the vehicle 201 is output from the vehicle 201 to the traveling environment analyzer 101 together with the line-of-sight information.
  • the event estimation logic is advanced, so that the accuracy of event estimation is improved.
  • the viewpoint concentrated area event estimation unit 20 may estimate an event in a new viewpoint concentrated area from the vehicle 201 based on vehicle motion information such as avoidance behavior and deceleration behavior of the vehicle 201.
  • vehicle motion information is output from the vehicle 201 to the traveling environment analyzer 101 together with the line-of-sight information.
  • the event estimation logic is advanced, so the accuracy of event estimation is improved.
  • the viewpoint concentration area event estimation unit 20 can presume that the situation requires a high degree of attention.
  • the traveling environment analyzer 101 may inquire of the vehicle 201 about the content of the event.
  • the traveling environment analyzer 101 may request the vehicle 201 capable of transmitting video information and transmitting image recognition results to provide detailed information on the viewpoint concentration area.
  • the viewpoint concentration area detection unit 10 in the second embodiment calculates a stationary viewpoint concentration area based on a predetermined first logic, and detects a new viewpoint concentration area based on the stationary viewpoint concentration area. ..
  • the method for detecting the new viewpoint concentration area is not limited to that method.
  • the viewpoint concentration area detection unit 10 in the second modification of the second embodiment has a statistical line-of-sight distribution that is statistics of the occupant's line-of-sight for detecting the viewpoint-concentrated area based on the line-of-sight information and a predetermined second logic. Is calculated for each predetermined road section.
  • the predetermined second logic corresponds to obtaining the statistical line-of-sight distribution by statistically calculating the line-of-sight information.
  • the line-of-sight information includes, for example, the line-of-sight distribution data according to the second embodiment. Then, the viewpoint concentration area detection unit 10 determines that a new viewpoint concentration area has occurred when the statistical line-of-sight distribution is different before and after the specific time point.
  • the statistical line-of-sight distribution may be one average line-of-sight distribution curve or a curve expressed by a combination of a plurality of line-of-sight distributions.
  • the statistical line-of-sight distribution includes the line-of-sight distribution of the vehicle 201 making a right turn, the line-of-sight distribution of the vehicle 201 making a left turn, and the line-of-sight distribution of the vehicle 201 going straight.
  • the viewpoint concentration area is leveled and the features become smaller.
  • the viewpoint concentration area detection unit 10 may detect a new viewpoint concentration area by the method shown below.
  • the viewpoint concentration area detection unit 10 determines that a new viewpoint concentration area has occurred when the logical line-of-sight distribution and the statistical line-of-sight distribution are different before and after the specific time point.
  • the logical line-of-sight distribution is a distribution of the line-of-sight of an occupant estimated from a predetermined road structure for each section of the road.
  • the logical line-of-sight distribution is overwhelmingly forward.
  • the occupants check left and right, so the logical line-of-sight distribution often faces straight roads, right / left turn roads, and pedestrian crossings.
  • the road structure is a curve, the logical line-of-sight distribution tends to be biased in the direction of the curve.
  • first logic in the second embodiment and the second logic described above determine whether or not the viewpoint concentration area is a new viewpoint concentration area, and also determine the probability that the viewpoint concentration area is a new viewpoint concentration area. May be included.
  • the traveling environment analysis device 101 updates the line-of-sight information analysis program for causing the processing circuit shown in FIG. 2 or 3 to function as the individual line-of-sight area recognition unit 140 and the line-of-sight information output unit 150.
  • the traveling environment analyzer 101 distributes the updated program to each of the plurality of vehicles 201.
  • Each vehicle 201 is a program downloaded from the traveling environment analyzer 101, and updates an existing program.
  • the traveling environment analysis system 301 may execute the recognition process of the individual gaze area with different logics according to the function of the system possessed by each vehicle 201. Further, the traveling environment analysis system 301 may have different line-of-sight information output from the individual vehicles 201 to the traveling environment analysis device 101.
  • the driving environment analysis device and the driving environment analysis method according to the third embodiment will be described.
  • the third embodiment is a subordinate concept of the first embodiment, and the traveling environment analysis device according to the third embodiment includes each configuration of the traveling environment analysis device 100 according to the first embodiment.
  • the description of the configuration and operation similar to those of the first or second embodiment will be omitted.
  • the driving environment analysis system 301 in the second embodiment has a configuration in which the vehicle 201 recognizes the individual gaze area, but the driving environment analysis system in the third embodiment recognizes the individual gaze area by the driving environment analysis device. It has a structure to be used.
  • FIG. 17 is a block diagram showing the configurations of the traveling environment analysis system 302 and the traveling environment analysis device 102 according to the third embodiment.
  • the individual gaze area recognition unit 140 is provided not in the vehicle 202 but in the driving environment analysis device 102.
  • the line-of-sight information output unit 150 acquires the position data of the vehicle 202 detected by the locator 120 and the line-of-sight data of each occupant detected by the line-of-sight detection device 110. Then, the line-of-sight information output unit 150 outputs the position data and the line-of-sight data of the vehicle 202 to the traveling environment analysis device 102 as line-of-sight information regarding the line-of-sight of the occupant.
  • the line-of-sight information collecting unit 40 collects line-of-sight information from each vehicle 202.
  • the individual gaze area recognition unit 140 acquires the position data of the vehicle 202 included in the line-of-sight information and the line-of-sight data of each occupant. Similar to the second embodiment, the individual gaze area recognition unit 140 recognizes the individual gaze area for each vehicle 202 based on the time series data of the position data and the line-of-sight distribution data of the vehicle 202.
  • FIG. 18 is a flowchart showing the recognition operation of the individual gaze area in the third embodiment.
  • step S15 the line-of-sight information collecting unit 40 collects line-of-sight information from each vehicle 202.
  • the line-of-sight information in the third embodiment is information detected in each of the plurality of vehicles 202, and includes position data for each vehicle 202 and line-of-sight data for individual occupants.
  • step S16 the individual gaze area recognition unit 140 acquires time-series data of the position data and the line-of-sight distribution data of the vehicle 202 for each vehicle 202. This step is similar to step S101 shown in FIG.
  • step S17 the individual gaze area recognition unit 140 recognizes the individual gaze area for each vehicle 202 based on the time series data. This step is similar to step S102 shown in FIG.
  • step S18 the individual gaze area recognition unit 140 determines whether or not the individual gaze area has been recognized. If the individual gaze area is recognized, step S19 is executed. If the individual gaze area is not recognized, step S15 is executed again. This step is similar to step S103 shown in FIG.
  • step S19 the individual gaze area storage unit 50 stores the information of the individual gaze area for each vehicle 202.
  • the method of detecting the new viewpoint concentration area and the method of estimating the event are the same as the method shown in FIG.
  • the method of distributing information on the new viewpoint concentration area and the event is the same as the method shown in FIG.
  • the traveling environment analyzer 102 in the third embodiment includes the individual gaze area recognition unit 140.
  • the individual gaze area recognition unit 140 is based on time-series data, which is time-series data including position data of each of the plurality of vehicles 202 and line-of-sight data of individual occupants boarding each of the plurality of vehicles 202.
  • the individual gaze area that each occupant gazes at is recognized for each of the plurality of vehicles 202.
  • the line-of-sight information includes position data detected in each of the plurality of vehicles 202 and line-of-sight data of individual occupants.
  • the line-of-sight information is output from each of the plurality of vehicles 202.
  • Such a driving environment analysis device 102 enables various analyzes in the driving environment analysis device 102, although the load of the driving environment analysis device 102 is increased as compared with the driving environment analysis system 302 in the second embodiment. .. Further, when a new analysis logic is developed, the analysis logic is updated by changing the logic of the driving environment analysis device 102 without forcing the update of the analysis program of the individual gaze area recognition unit 140 provided in the vehicle 202. Is possible.
  • the driving environment analysis system may have a configuration in which the configurations of the second embodiment and the third embodiment are combined.
  • Such a driving environment analysis system corresponds to both the vehicle 201 that uploads the individual gaze area as line-of-sight information as in the second embodiment and the vehicle 202 that uploads the line-of-sight data of the third embodiment as line-of-sight information. it can.
  • each embodiment can be freely combined, and each embodiment can be appropriately modified or omitted.
  • viewpoint concentrated area detection unit 10 viewpoint concentrated area detection unit, 20 viewpoint concentrated area event estimation unit, 30 information output unit, 40 line of sight information collecting unit, 100 driving environment analyzer, 110 line of sight detection device, 120 locator, 140 individual gaze area recognition unit, 150 line of sight information Output unit, 170 communication network, 200 vehicles, 301 driving environment analysis system, 410 individual gaze area.

Abstract

車両の外部で発生している事象を正確に推定する走行環境分析装置の提供を目的とする。走行環境分析装置は、視点集中エリア検出部と、視点集中エリア事象推定部と、情報出力部と、を含む。視点集中エリア検出部は、複数の車両の外部のエリアであって、複数の車両の乗員が注視するエリアである視点集中エリアを、乗員の視線に関する視線情報に基づいて、逐次、検出する。視点集中エリア事象推定部は、新たに発生した視点集中エリアである新規視点集中エリアが検出された場合に、新規視点集中エリアで発生している事象を推定する。情報出力部は、新規視点集中エリアの情報と、事象の情報とを出力する。

Description

走行環境分析装置、走行環境分析システムおよび走行環境分析方法
 本発明は、走行環境分析装置、走行環境分析システムおよび走行環境分析方法に関する。
 走行中のドライバの視線を検出し、ドライバに対して種々の支援を行うシステムが提案されている。例えば特許文献1に開示された運転制御装置は、予め記憶されているデータであって、所定の運転動作に関連付けられた視線の時系列データと、実際に検知されたドライバの視線とが一致する場合に、その所定の運転動作を行う。特許文献2に開示された情報案内装置は、所定期間内の乗員の視線方向を検出し、その視線方向に存在する施設のうち選択されたジャンルに対応する施設を案内する。
 これらのシステムは、1台の車両に搭乗する乗員のみの視線を検出し、その1台の車両に対してのみ、またはその視線を検出した乗員に対してのみ直接的な支援を行う。
特開2017-100562号公報 特開2009-031065号公報
 車両外部に事象が発生している場合、一般的に、複数の車両の乗員がその事象に視線を向けることが多い。しかし、1台の車両の乗員の視線のみを取得して支援を実行する上記のシステムでは、車両外部の事象を正確に検知して、その事象の内容を正確に推定することができない。
 本発明は、以上のような課題を解決するためになされたものであり、車両の外部で発生している事象を正確に推定する走行環境分析装置の提供を目的とする。
 本発明に係る走行環境分析装置は、視点集中エリア検出部と、視点集中エリア事象推定部と、情報出力部と、を含む。視点集中エリア検出部は、複数の車両の外部のエリアであって、複数の車両の乗員が注視するエリアである視点集中エリアを、乗員の視線に関する視線情報に基づいて、逐次、検出する。視点集中エリア事象推定部は、新たに発生した視点集中エリアである新規視点集中エリアが検出された場合に、新規視点集中エリアで発生している事象を推定する。情報出力部は、新規視点集中エリアの情報と、事象の情報とを出力する。
 本発明によれば、車両の外部で発生している事象を正確に推定する走行環境分析装置の提供が可能である。
 本発明の目的、特徴、局面、および利点は、以下の詳細な説明と添付図面とによって、より明白になる。
実施の形態1における走行環境分析装置の構成を示すブロック図である。 処理回路の構成の一例を示す図である。 処理回路の構成の別の一例を示す図である。 実施の形態1における走行環境分析方法を示すフローチャートである。 実施の形態2における走行環境分析システムおよび走行環境分析装置の構成を示すブロック図である。 実施の形態2における個別注視エリアの認識動作を示すフローチャートである。 予め定められた分析期間および視線分布データの出力タイミングの一例を示す図である。 予め定められた分析期間および視線分布データの出力タイミングの別の一例を示す図である。 車両の位置および個別注視エリアの一例を示す図である。 視線分布データの時系列データを示す図である。 実施の形態2における視線情報収集方法を示すフローチャートである。 実施の形態2における新規視点集中エリアの検出方法および事象の推定方法を示すフローチャートである。 実施の形態2における新規視点集中エリアおよび事象の情報の配信方法を示すフローチャートである。 表示装置に表示される警告の一例を示す図である。 表示装置に表示される警告の別の一例を示す図である。 新規視点集中エリアの地理的属性および時間的属性と推定される事象との関係を示す図である。 実施の形態3における走行環境分析システムおよび走行環境分析装置の構成を示すブロック図である。 実施の形態3における個別注視エリアの認識動作を示すフローチャートである。
 <実施の形態1>
 図1は、実施の形態1における走行環境分析装置100の構成を示すブロック図である。
 走行環境分析装置100は、視点集中エリア検出部10と、視点集中エリア事象推定部20と、情報出力部30とを含む。
 視点集中エリア検出部10は、視点集中エリアを、複数の車両200の乗員の視線に関する視線情報に基づいて、逐次、検出する。視点集中エリアとは、複数の車両200の外部のエリアであって、乗員が注視するエリアである。
 視点集中エリア事象推定部20は、新たに発生した視点集中エリアである新規視点集中エリアが検出された場合に、新規視点集中エリアで発生している事象を推定する。
 情報出力部30は、新規視点集中エリアの情報と、事象の情報とを出力する。
 図2は、走行環境分析装置100が有する処理回路95の構成の一例を示す図である。視点集中エリア検出部10、視点集中エリア事象推定部20および情報出力部30の各機能は、処理回路95により実現される。すなわち、処理回路95は、視点集中エリア検出部10、視点集中エリア事象推定部20および情報出力部30を有する。
 処理回路95が専用のハードウェアである場合、処理回路95は、例えば、単一回路、複合回路、プログラム化されたプロセッサ、並列プログラム化されたプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、またはこれらを組み合わせた回路等である。視点集中エリア検出部10、視点集中エリア事象推定部20および情報出力部30の各機能は、複数の処理回路により個別に実現されてもよいし、1つの処理回路によりまとめて実現されてもよい。
 図3は、走行環境分析装置100が有する処理回路の構成の別の一例を示す図である。処理回路は、プロセッサ96とメモリ97とを有する。プロセッサ96がメモリ97に格納されるプログラムを実行することにより、視点集中エリア検出部10、視点集中エリア事象推定部20および情報出力部30の各機能が実現される。例えば、プログラムとして記述されたソフトウェアまたはファームウェアがプロセッサ96により実行されることにより各機能が実現される。このように、走行環境分析装置100は、プログラムを格納するメモリ97と、そのプログラムを実行するプロセッサ96とを有する。
 プログラムには、走行環境分析装置100が、複数の車両200の外部のエリアであって、複数の車両200の乗員が注視するエリアである視点集中エリアを、乗員の視線に関する視線情報に基づいて、逐次、検出し、新たに発生した視点集中エリアである新規視点集中エリアが検出された場合に、新規視点集中エリアで発生している事象を推定し、新規視点集中エリアの情報と、事象の情報とを出力する機能が記述されている。また、プログラムは、視点集中エリア検出部10、視点集中エリア事象推定部20および情報出力部30の手順または方法をコンピュータに実行させるものである。
 プロセッサ96は、例えば、CPU(Central Processing Unit)、演算装置、マイクロプロセッサ、マイクロコンピュータ、DSP(Digital Signal Processor)等である。メモリ97は、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read Only Memory)等の、不揮発性または揮発性の半導体メモリである。または、メモリ97は、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD等、今後使用されるあらゆる記憶媒体であってもよい。
 上述した視点集中エリア検出部10、視点集中エリア事象推定部20および情報出力部30の各機能は、一部が専用のハードウェアによって実現され、他の一部がソフトウェアまたはファームウェアにより実現されてもよい。このように、処理回路は、ハードウェア、ソフトウェア、ファームウェア、またはこれらの組み合わせによって、上述の各機能を実現する。
 図4は、実施の形態1における走行環境分析方法を示すフローチャートである。
 ステップS1にて、視点集中エリア検出部10は、視点集中エリアを、乗員の視線に関する視線情報に基づいて、逐次、検出する。
 ステップS2にて、視点集中エリア事象推定部20は、新規視点集中エリアが検出された場合に、新規視点集中エリアで発生している事象を推定する。
 ステップS3にて、情報出力部30は、新規視点集中エリアおよび事象の情報を出力する。
 以上をまとめると、実施の形態1における走行環境分析装置100は、視点集中エリア検出部10と、視点集中エリア事象推定部20と、情報出力部30と、を含む。視点集中エリア検出部10は、複数の車両200の外部のエリアであって、複数の車両200の乗員が注視するエリアである視点集中エリアを、乗員の視線に関する視線情報に基づいて、逐次、検出する。視点集中エリア事象推定部20は、新たに発生した視点集中エリアである新規視点集中エリアが検出された場合に、新規視点集中エリアで発生している事象を推定する。情報出力部30は、新規視点集中エリアの情報と、事象の情報とを出力する。
 このような走行環境分析装置100は、車両200の外部で発生している事象を正確に推定する。
 また、実施の形態1における走行環境分析方法は、複数の車両200の外部のエリアであって、複数の車両200の乗員が注視するエリアである視点集中エリアを、乗員の視線に関する視線情報に基づいて、逐次、検出し、新たに発生した視点集中エリアである新規視点集中エリアが検出された場合に、新規視点集中エリアで発生している事象を推定し、新規視点集中エリアの情報と、事象の情報とを出力する。
 このような走行環境分析方法は、車両200の外部で発生している事象を正確に推定する。
 <実施の形態2>
 実施の形態2における走行環境分析装置および走行環境分析方法を説明する。実施の形態2は実施の形態1の下位概念であり、実施の形態2における走行環境分析装置は、実施の形態1における走行環境分析装置100の各構成を含む。なお、実施の形態1と同様の構成および動作については説明を省略する。
 図5は、実施の形態2における走行環境分析システム301および走行環境分析装置101の構成を示すブロック図である。
 走行環境分析システム301は、複数の車両201および走行環境分析装置101を含む。車両201はいわゆるプローブカーであり、通信ネットワーク170を介して、サーバ(図示せず)に設けられた走行環境分析装置101と通信する。なお、図5には、複数の車両201のうち1台の車両の構成が代表されて示されているが、他の車両の構成も同様である。走行環境分析システム301は、複数の車両201の各々の乗員が注視する個別注視エリアを各車両201にて認識する。そして、走行環境分析システム301は、複数の車両201から、その個別注視エリアの情報を視線情報として収集し、複数の車両201の乗員が注視する新規視点集中エリアを検出する。実施の形態2における走行環境分析システム301は、いわゆるエッジコンピューティング型のシステムである。
 車両201は、視線検出装置110、ロケータ120、車両識別情報記憶装置130、個別注視エリア認識部140、視線情報出力部150および表示装置160を含む。
 車両識別情報記憶装置130は、車両201に関連付けられたIDを、つまり車両識別情報を記憶する。
 ロケータ120は、車両201の位置を検出する。ロケータ120は、例えば、GNSS(Global Navigation Satellite System)または車両201に設けられたセンサから取得する情報に基づいて車両201の位置を検出する。
 視線検出装置110は、逐次、車両201の乗員の視線データを検出する。乗員とは、例えば、ドライバ、助手席に着座する搭乗者を含む。視線データは、視線方向または視線位置を含む。
 個別注視エリア認識部140は、ロケータ120にて検出される車両201の位置データと、視線検出装置110にて検出される個々の乗員の視線データとを取得する。個別注視エリア認識部140は、視線データを、予め定められた周期で、かつ、予め定められた分析期間、蓄積することにより視線分布データを求める。また、個別注視エリア認識部140は、車両201の位置データと視線分布データとを対応づけて、経時的に取得する。それにより、車両201の位置データおよび視線分布データの時系列データが得られる。個別注視エリア認識部140は、その時系列データに基づいて、車両201の外部のエリアであり、かつ、個々の乗員が注視するエリアである個別注視エリアを認識する。個別注視エリアは、例えば、事故車両など突発的な事象によって生じるエリアに対応する。または、個別注視エリアは、乗員が道路構造、道路形状もしくは施設などに起因して定常的に注視するエリアに対応する。なお、道路構造とは、交差点、合流地点、横断歩道等であり、道路形状とは道路のカーブ等であり、施設とは学校等である。
 視線情報出力部150は、個別注視エリアの情報を、乗員の視線に関する視線情報として、走行環境分析装置101に、通信ネットワーク170を介して出力する。乗員の視線に関する視線情報は、車両201の位置データ、車両識別情報または時刻情報を含んでもよい。
 表示装置160は、走行環境分析装置101から出力される新規視点集中エリアおよび事象の情報に基づいた警告を表示する。表示装置160は、例えば、HUD(Head-Up Display)、ナビゲーション装置に設けられたモニタ等である。
 車両201は、図2または図3と同様の処理回路を有する。個別注視エリア認識部140および視線情報出力部150の機能は、その処理回路によって実現される。
 走行環境分析装置101は、サーバに設けられる。走行環境分析装置101は、視線情報収集部40、個別注視エリア記憶部50、視点集中エリア検出部10、定常視点集中エリア記憶部60、新規視点集中エリア記憶部70、視点集中エリア事象推定部20、地図データベース(地図DB)記憶部80、事象情報記憶部90および情報出力部30を含む。
 視線情報収集部40は、各車両201から視線情報を収集する。実施の形態2における視線情報は、各車両201において認識された個別注視エリアの情報を含む。
 個別注視エリア記憶部50は、視線情報収集部40で収集された各車両201の個別注視エリアの情報を記憶する。
 視点集中エリア検出部10は、複数の車両201から取得された複数の個別注視エリアに基づいて、視点集中エリアを、逐次、検出する。言い換えると、視点集中エリア検出部10は、視線情報収集部40にて収集された複数の個別注視エリアから視点集中エリアを抽出する。視点集中エリアとは、複数の車両201の外部のエリアあり、かつ、複数の車両201の乗員が注視するエリアである。
 また、視点集中エリア検出部10は、予め定められた第1ロジックに基づいて、視点集中エリアから定常視点集中エリアを検出する。予め定められた第1ロジックとは、過去の所定期間の視点集中エリアの情報を蓄積することにより、乗員の視線が集中する頻度が高いエリアを定常視点集中エリアに設定することを含む。または予め定められた第1ロジックとは、過去の所定期間、個別集中エリアを蓄積することにより、個別集中エリアとして検出される頻度が高いエリアを定常視点集中エリアに設定することを含む。したがって、定常視点集中エリアとは、道路構造、道路形状もしくは施設などに起因して乗員が定常的に注視するエリアに対応する。そして、視点集中エリア検出部10は、特定時点の前後で、定常視点集中エリアとは異なるエリアに視点集中エリアの発生を検出した場合に、新規視点集中エリアが発生したと判断する。
 定常視点集中エリア記憶部60は、定常視点集中エリアの情報を記憶する。
 新規視点集中エリア記憶部70は、新規視点集中エリアの情報を記憶する。
 地図DB記憶部80は、道路地図情報を記憶する。
 視点集中エリア事象推定部20は、新規視点集中エリアが検出された場合に、新規視点集中エリアで発生している事象を推定する。例えば、視点集中エリア事象推定部20は、新規視点集中エリアの地理的属性に基づいて、事象を推定する。その際、視点集中エリア事象推定部20は、新規視点集中エリアの位置と地図情報とに基づいて、新規視点集中エリアの地理的属性を取得する。地理的属性とは、例えば、車線上、車線外、走行車線外、走行車線よりも遠方区間等である。そして、視点集中エリア事象推定部20は、その地理的属性に基づいて、事象を推定する。または、例えば、視点集中エリア事象推定部20は、新規視点集中エリアの状態の経時的変化である時間的属性に基づいて、事象を推定する。事象とは、例えば、車両201が回避する必要のある要回避事象、または、車両201の乗員が注意する必要のある要注意事象を含む。
 事象情報記憶部90は、視点集中エリア事象推定部20によって推定された事象を記憶する。
 情報出力部30は、新規視点集中エリアの情報と事象の情報とを出力する。
 走行環境分析装置101は、図2または図3と同様の処理回路を有する。視線情報収集部40、個別注視エリア記憶部50、視点集中エリア検出部10、定常視点集中エリア記憶部60、新規視点集中エリア記憶部70、視点集中エリア事象推定部20、地図DB記憶部80、事象情報記憶部90および情報出力部30の各機能は、その処理回路によって実現される。
 次に、走行環境分析方法を説明する。まず、車両201における個別注視エリアの認識方法を説明する。図6は、実施の形態2における個別注視エリアの認識動作を示すフローチャートである。
 ステップS101にて、個別注視エリア認識部140は、車両201の位置データと、乗員の視線データとを取得する。個別注視エリア認識部140は、個々の乗員の視線データを、予め定められた周期で、予め定められた期間、蓄積して視線分布データを求める。予め定められた周期とは、例えば1秒間に30回であり、予め定められた分析期間とは、例えば2秒間である。個別注視エリア認識部140は、車両201の位置データと視線分布データとを対応づけて経時的に取得し、時系列データを取得する。なお、車両201の位置とは、好ましくはドライバの目の位置である。
 ステップS102にて、個別注視エリア認識部140は、時系列データに基づいて、個別注視エリアを認識する。認識方法の詳細は後述する。
 ステップS103にて、個別注視エリア認識部140は、個別注視エリアが認識されたか否かを判定する。個別注視エリアが認識されている場合、ステップS104が実行される。個別注視エリアが認識されていない場合、ステップS101が再び実行される。
 ステップS104にて、視線情報出力部150は、個別注視エリアの情報を、乗員の視線に関する視線情報として、走行環境分析装置101に送信する。個別注視エリアの情報には、個別注視エリアの位置データが含まれる。また、視線情報には、個別注視エリアの情報に加えて、車両201の位置データ、車両識別情報および時刻情報を含む。
 車両201の位置データの時系列情報に基づいて、車両201の識別は可能であるため、視線情報出力部150は、必ずしも車両識別情報を走行環境分析装置101にアップロードする必要はない。しかし、車両識別情報を視線情報に付加することで、走行環境分析装置101における処理が軽減される。
 走行環境分析システム301の各車両201においては、以上の個別注視エリアの認識処理が繰り返し実行される。
 次に、上記のステップS101における時系列データの取得方法の詳細を説明する。図7および図8は、予め定められた分析期間および視線分布データの出力タイミングの一例を示す図である。
 第1から第4分析期間までの各々が、上記の予め定められた分析期間に対応する。各分析期間は、図8に示されるように互いに重複していてもよいし、図7に示されるように独立していてもよい。予め定められた周期が1秒間に30回であり、予め定められた分析期間が2秒間である場合、個別注視エリア認識部140は、各分析期間から、60組の車両201の位置データおよび視線データを取得する。そして、個別注視エリア認識部140は、それらが蓄積された60組のデータに基づいて、視線分布データを求める。図7および図8に示されるように、視線分布データは、例えば、各分析期間の終了時(時刻t=T1からT4)に出力される。このような方法によって、個別注視エリア認識部140は、車両201の位置データと視線分布データの経時的なデータである時系列データを取得する。
 次に、上記のステップS102における、時系列データに基づく個別注視エリアの認識方法の詳細を説明する。図9は、車両201の位置および個別注視エリア410の一例を示す図である。なお、ここでは、乗員の視線としてドライバの視線について説明する。
 事故車両400が道路の車線から逸脱して路肩に停車している。事故車両400が停車している位置をPbとする。車両201が事故車両400の位置Pb付近を走行する際、車両201の乗員は、事故車両400に気づき、その事故車両400に時々視線を向ける。時刻tがt=T1からT4に経過するとともに、車両201の位置Paは、Pa=P1→P2→P3→P4に移動する。同様に、時刻tがt=T1からT4に経過するとともに、車両201から事故車両400の方向、つまりドライバの視線方向Θは、Θ=ΘP1→ΘP2→ΘP3→ΘP4に変化する。ここで、視線方向Θは、車両201の前方と、車両201から事故車両400が存在する方向とがなす角度に対応する。
 図10は、視線分布データの時系列データを示す図である。時系列データは、時刻t=T1からT4に対応する4つの視線分布データを含む。
 ドライバは、車両201が直線道路を走行している場合、通常、前方を向いている。その場合のドライバの視線分布データは、視線方向Θ=0°の視線頻度が最も高い分布を示す。
 図9に示されるように、事故車両400が存在する状況では、車両201のドライバは事故車両400に視線を向ける。そのため、視線分布データは、左方向の特定の角度、つまり事故車両400が存在する方向に極大値(ピーク)を有する。
 例えば、t=T1の視線分布データは、視線方向Θ=ΘP1に小さなピークを有する。同様に、時刻t=T2,T3,T4における視線分布データも、視線方向Θ=ΘP2,ΘP3,ΘP4にそれぞれ小さなピークを有する。
 個別注視エリア認識部140は、これら視線分布データに含まれる特定の角度のピークに基づいて、個別注視エリア410を求める。
 理想的には、4つの位置Pa(=P1~P4)から視線方向Θ(=ΘP1~ΘP4)に延在する4本の直線は、1点で交わるため、事故車両400の位置Pbが求められる。しかし、視線方向Θ等の検出誤差を考慮し、個別注視エリア認識部140は、最小二乗法などの統計処理によって位置Pbを求め、その位置Pbを個別注視エリア410として認識する。
 個別注視エリアは、上記の位置Pbのような1つ特定地点に限定されるものではなく、その特定地点を含むエリアであってもよい。例えば、個別注視エリア認識部140は、視線分布データに基づいて算出される全ての直線の交点が、予め定められた範囲に存在する場合、その範囲を個別注視エリア410として認識してもよい。
 車両201のドライバが事故車両400に視線を向けていない時間があれば、その時間における視線分布には、上記のピークは現われない。そのような視線分布は、個別注視エリアを検出するための有効なデータとはならない。したがって、個別注視エリア認識部140は、時系列データにおいてピークが認められない視線分布データを個別注視エリアの認識のために採用しないよう動作してもよい。
 車両201が事故車両400の位置Pbに近づくにつれて、車両201と事故車両400との位置関係から視線方向Θの絶対値は、単調増加する。個別注視エリア認識部140は、その単調増加の傾向からはずれたピークを、個別注視エリアの認識に採用しなくてもよい。
 車両201が事故車両400を追い越した後、ドライバは、バックミラー、電子ミラー等で事故車両400を視認する可能性がある。そこで、個別注視エリア認識部140は、バックミラー、電子ミラー等に向くドライバの視線分布データに基づいて、個別注視エリアを認識してもよい。
 各車両201における個別注視エリアの検出方法は、上記の方法に限定されるものではない。
 個別注視エリア認識部140は、明確な交点が2mの範囲に集約され、かつ、顕著な視線分布のピークが予め定められた時間以上検出された場合に、その交点を個別注視エリアとして認識してもよい。予め定められた時間とは、例えば4秒である。
 乗員が連続して1秒以上注視した点がある場合、個別注視エリア認識部140は、その点を個別注視エリアと認識してもよい。または、個別注視エリア認識部140は、乗員が連続して0.5秒以上注視した点が、10秒以内に3回以上検出された場合、その点を個別注視エリアと認識してもよい。または、個別注視エリア認識部140は、深層学習ロジックにより個別注視エリアを求めてもよい。
 次に、走行環境分析装置101の動作を説明する。図11は、実施の形態2における視線情報収集方法を示すフローチャートである。図12は、実施の形態2における新規視点集中エリアの検出および事象の推定方法を示すフローチャートである。図13は、実施の形態2における新規視点集中エリアおよび事象の情報の配信方法を示すフローチャートである。図11から図13に示される動作は、それぞれ独立しており、走行環境分析装置101はそれらの動作を並行に実行する。
 ステップS11にて、視線情報収集部40は、各車両201から視線情報を収集する。実施の形態2における視線情報は、各車両201において認識された個別注視エリアの情報を含む。また、個別注視エリア記憶部50は、車両201ごとの個別注視エリアの情報を記憶する。
 ステップS21にて、視点集中エリア検出部10は、複数の個別注視エリアの情報に基づいて、複数の乗員が注視する視点集中エリアを検出する。
 ステップS22にて、視点集中エリア検出部10は、予め定められた第1ロジックに基づいて、その視点集中エリアから定常視点集中エリアを検出する。定常視点集中エリア記憶部60は、定常視点集中エリアを記憶する。
 ステップS23にて、走行環境分析装置101は、定常視点集中エリアの策定が完了したか否かを判定する。例えば、定常視点集中エリア記憶部60に、直近の1年間の定常視点集中エリアの情報が蓄積された場合、走行環境分析装置101は、定常視点集中エリアの学習ステップが一旦完了したと判定する。定常視点集中エリアの策定が完了した場合、ステップS24が実行される。定常視点集中エリアの策定が完了していない場合、ステップS21が再び実行される。
 ステップS24にて、視点集中エリア検出部10は、新規視点集中エリアが検出されたか否かを判定する。ここでは、視点集中エリア検出部10は、特定時点の前後で、定常視点集中エリアとは異なるエリアに視点集中エリアが発生した場合に、その視点集中エリアを新規視点集中エリアとして検出する。例えば、図9に示される事故車両400の位置Pbは、新規視点集中エリアとして検出される。
 ステップS25にて、新規視点集中エリア記憶部70は、新規視点集中エリアを記憶する。なお、新規視点集中エリアが、ステップS21で視点集中エリアとして検出されなくなった場合、新規視点集中エリア記憶部70は、その新規視点集中エリアの記録を抹消する。
 ステップS26にて、視点集中エリア事象推定部20は、新規視点集中エリアで発生している事象を推定する。ここでは、視点集中エリア事象推定部20は、新規視点集中エリアの位置と地図データベースの地図情報とに基づいて、新規視点集中エリアが属する地理的属性を取得する。そして、視点集中エリア事象推定部20は、その地理的属性に基づいて、事象を推定する。または、例えば、視点集中エリア事象推定部20は、新規視点集中エリアの状態の経時的変化を示す時間的属性に基づいて、事象を推定する。事象情報記憶部90は、その事象を記憶する。
 ステップS31にて、情報出力部30は、新規視点集中エリアおよび事象の情報の配信要求を受け付ける。情報出力部30は、配信要求を、サーバ外つまり走行環境分析装置101外から受信する。または、サーバが自動的に新規視点集中エリアを走行しようとする車両201を検出し、情報出力部30は、そのサーバから配信要求を受信する。
 ステップS32にて、情報出力部30は、新規視点集中エリアおよび事象の情報を出力する。
 ここでは、情報出力部30は、通信ネットワーク170を介して、新規視点集中エリアの周辺を走行する予定の車両201に、新規視点集中エリアおよび事象の情報を配信する。新規視点集中エリアに近づく車両201は、走行環境分析装置101から新規視点集中エリアの情報および事象の情報を受信する。車両201の表示装置160は、警告を表示する。図14は、表示装置160に表示される警告の一例として、ナビゲーション装置の表示画面に表示される警告を示す図である。図15は、表示装置160に表示される警告の別の一例として、HUDに表示される警告を示す図である。警報表示は、事象の属性、位置、注意度、回避の要否などの情報を含む。
 または、情報出力部30は、新規視点集中エリアおよび事象の情報をサーバに出力してもよい。サーバは、その情報に基づいて、道路交通状況を分析処理し、例えば、サーバ管理者が道路交通状況を把握する。
 次に、上記のステップS26における、事象推定方法について説明する。上記のように、視点集中エリア事象推定部20は、新規視点集中エリアの地理的属性または時間的属性に基づいて、事象を推定する。図16は、新規視点集中エリアの地理的属性および時間的属性と推定される事象との関係を示す図である。図16においては、新規視点集中エリアは4つの地理的属性および4つの時間的属性に分類される。
 第1地理的属性は、複数の車両201のうち一の車両の進行方向の車線上に対応する。新規視点集中エリアの位置が、第1地理的属性に属する場合、視点集中エリア事象推定部20は、その車線に、予め定められた第1事象群に含まれる事象が発生していると推定する。予め定められた第1事象群とは、図16において、第1地理的属性に対応する行に記載された事象群である。予め定められた第1事象群は、要回避事象を含む。要回避事象とは、例えば、事故車両、落下物、道路の破損、道路の破壊、危険運転車両等が存在する状況である。
 また、視点集中エリア事象推定部20は、視点集中エリアが存在する車線に基づいて、注意すべき車線を判定してもよい。また、走行環境分析装置101が、車両201に設けられたセンサで回避動作を検出することにより、事象推定精度がさらに向上する。
 第2地理的属性は、複数の車両201のうち一の車両の進行方向の車線の近傍に対応する。車線の近傍とは、路肩、分離帯、歩道、退避スペースなどの道路構造内の車線を除く部分、および、道路構造に隣接する地物などを指す。道路構造に隣接する地物とは、例えば道路構造から10m以内の地物である。新規視点集中エリアの位置が第2地理的属性に属する場合、視点集中エリア事象推定部20は、その車線に、予め定められた第2事象群に含まれる事象が発生していると推定する。予め定められた第2事象群とは、図16において、第2地理的属性に対応する行に記載された事象群である。予め定められた第2事象群は、要注意事象を含む。要注意事象とは、路側帯または待機エリアに、事故車両、落下物、特殊車両等が存在する状況である。または、要注意事象とは、車両201が走行するうえで注意する地物または人物が、歩道上に存在する状況である。または、要注意事象とは、新設されたPOI(Point Of Interest)、催し物が存在する状況である。
 第3地理的属性は、複数の車両201のうち一の車両の走行道路の上方に対応する。新規視点集中エリアの位置が第3地理的属性に属する場合、視点集中エリア事象推定部20は、その走行道路に、予め定められた第3事象群に含まれる事象が発生していると推定する。予め定められた第3事象群とは、図16において、第3地理的属性に対応する行に記載された事象である。予め定められた第3事象群は、要注意事象を含む。要注意事象とは、例えば、走行道路の上部を交差する道路あるいは走行道路の斜め上方から、投石など走行妨害行為が発生している状況である。または、要注意事象とは、道路の斜め上方の土砂くずれなど自然災害が発生している状況である。または、要注意事象とは、道路の破損、道路設備の破壊が発生している状況である。
 第4地理的属性は、複数の車両201のうち一の車両の進行方向の車線の反対車線またはその車線とは異なる道路に対応する。新規視点集中エリアの位置が第4地理的属性に属する場合、視点集中エリア事象推定部20は、その反対車線または異なる道路に、予め定められた第4事象群に含まれる事象が発生していると推定する。予め定められた第4事象群とは、図16において、第4地理的属性に対応する行に記載された事象である。予め定められた第4事象群は、要回避事象を含む。要回避事象とは、例えば、反対車線における事故、反対車線の道路設備の破損、逆走車両、危険運転車両が発生している状況である。
 また、視点集中エリア事象推定部20は、車両201の進行方向の車線における新規視点集中エリアと、反対車線における新規視点集中エリアとの一致度に基づいて、事象発生の確度を判断してもよい。
 第5地理的属性は、複数の車両201のうち一の車両の走行道路の施設外に対応する。施設外とは、例えば、道路とは異なる遠景を含む。第1地理的属性から第4地理的属性以外のエリアが第5地理的属性に相当する。視点集中エリア事象推定部20は、その走行道路の施設外に、予め定められた第5事象群に含まれる事象が発生していると推定する。予め定められた第5事象群とは、図16において、第5地理的属性に対応する行に記載された事象である。予め定められた第5事象群は、車両の走行には直接影響がない要注意事象を含む。新規視点集中エリアの位置が、道路の施設外の山などの場合、要注意事象として自然災害が発生している状況である。または、要注意事象として季節、祭りなどの美しい風景が発生している状況である。新規視点集中エリアの位置が、道路の施設外の市街地の場合、要注意事象として火事または珍しい風景が発生している状況である。新規視点集中エリアの位置が、道路の施設外の上方の場合、花火が打ち上げられている状況である。
 第1時間的属性として、新規視点集中エリアの位置が、特定時点を境に変化しない場合、視点集中エリア事象推定部20は、予め定められた第6事象群に含まれる事象が発生していることを推定する。例えば、新規視点集中エリアの位置が、数時間オーダで変化しない場合、視点集中エリア事象推定部20は、予め定められた第6事象群に含まれる事象が発生していることを推定する。予め定められた第6事象群とは、図16において、第1時間的属性に対応する列に記載された事象である。予め定められた第6事象群は、要注意事象を含む。要注意事象とは、事故、障害物、一時的な災害などが発生している状況である。または、要注意事象とは、注目すべき地物または移動体が発生している状況である。
 第1特定時点より後の第2特定時点以降に、視点集中エリアが解消された場合、走行環境分析装置101は、要注意事象が解消されたと判断してもよい。
 第2時間的属性として、新規視点集中エリアの位置が、特定時点を境に変化せず、かつ、新規視点集中エリアが特定期間を経過しても解消されない場合、視点集中エリア事象推定部20は、予め定められた第7事象群に含まれる事象が発生していることを推定する。例えば、新規視点集中エリアの位置が、数時間以上、または数日以上変化しない場合、視点集中エリア事象推定部20は、予め定められた第7事象群に含まれる事象が発生していることを推定する。予め定められた第7事象群とは、図16において、第2時間的属性に対応する列に記載された事象である。予め定められた第7事象群は、要注意事象を含む。要注意事象とは、突発的な道路の破損、突発的な道路施設の破損、突発的な自然災害が発生し、修復されていない状況である。
 なお、道路の新設または閉鎖などにより、新たな定常視点集中エリアが発生する場合がある。その場合、走行環境分析装置101は、その新たな定常視点集中エリアの位置を、新しい道路地図と照合し、定常視点集中エリアと判断する場合には、予め定められた第7事象群の事象が発生しているとは推定しない。
 第3時間的属性として、新規視点集中エリアの位置が、変化せず、複数の車両201の各々に搭乗する個々の乗員が注視する個別注視エリアが新規視点集中エリアに一致する車両201の割合が増加傾向にあり、割合が予め定められた評価値以上である場合、視点集中エリア事象推定部20は、予め定められた第8事象群に含まれる事象が発生していることを推定する。予め定められた第8事象群とは、図16において、第3時間的属性に対応する列に記載された事象である。予め定められた第8事象群は、要注意事象を含む。要注意事象とは、道路の破損の進行、道路施設の破損の進行、自然破壊の進行が発生している状況である。
 第4時間的属性として、新規視点集中エリアの位置が、連続的に移動している場合、視点集中エリア事象推定部20は、予め定められた第9事象群に含まれる事象が発生していることを推定する。予め定められた第9事象群とは、図16において、第4時間的属性に対応する列に記載された事象である。予め定められた第9事象群は、新規視点集中エリア付近を移動する移動体が存在する要注意事象を含む。要注意事象とは、危険運転車両、逆走車両、不審車両、危険人物、不審者徘徊など注意すべき移動体が存在している状況である。走行環境分析装置101は、その移動体の時系列情報により、現在の移動体の位置を推定してもよい。
 以上をまとめると、実施の形態2における視線情報は、複数の車両201の各々に搭乗している個々の乗員が注視する個別注視エリアの情報を含む。その視線情報は、複数の車両201の各々から出力される。個別注視エリアは、複数の車両201の各々の位置データと、個々の乗員の視線データと、を含む経時的なデータである時系列データに基づいて、複数の車両201の各々にて認識される。
 このような走行環境分析装置101は、走行環境分析装置101の構成を簡単にしながらも、複数の乗員の個別注視エリアの情報に基づいて新規視点集中エリアで発生している事象を正確に推定する。走行環境分析装置101は、新規視点集中エリアを走行予定の車両201に対して、そのエリアで発生している要回避もしくは要注意事象を配信し、車両201の運転支援を行う。
 実施の形態2における走行環境分析装置101は、1台の車両の乗員の視線のみを取得して支援を実行するシステムとは異なり、複数の車両201の乗員の視線を利用して新規に発生した要注意な事象を推定することを可能にする。また、走行環境分析装置101は、一の車両の乗員が要注意事象に気づいた場合、他の車両の乗員にその要注意事象を通知することを可能にする。
 また、実施の形態2における走行環境分析装置101の視点集中エリア事象推定部20は、新規視点集中エリアが属する地理的属性に基づいて、事象を推定する。
 このような走行環境分析装置101は、新規視点集中エリアを走行予定の車両201に対して、そのエリアで発生している要回避もしくは要注意事象を正確に推定する。
 また、実施の形態2における走行環境分析装置101の視点集中エリア事象推定部20は、新規視点集中エリアの状態の経時的変化を示す時間的属性に基づいて、事象を推定する。
 このような走行環境分析装置101は、新規視点集中エリアを走行予定の車両201に対して、そのエリアで発生している要回避もしくは要注意事象を正確に推定する。
 また、実施の形態2における走行環境分析システム301は、上記の走行環境分析装置101と、個別注視エリア認識部140と、視線情報出力部150と、を含む。個別注視エリア認識部140は、複数の車両201の各々に設けられ、時系列データに基づいて、個々の乗員が注視する個別注視エリアを認識する。視線情報出力部150は、複数の車両201の各々に設けられ、走行環境分析装置101に、個別注視エリアの情報を視線情報として出力する。
 このような走行環境分析システム301は、走行環境分析装置101の構成を簡単にしながらも、複数の乗員の個別注視エリアの情報に基づいて新規視点集中エリアで発生している事象を正確に推定する。走行環境分析システム301は、新規視点集中エリアを走行予定の車両201に対して、そのエリアで発生している要回避もしくは要注意事象を配信し、車両201の運転支援を行う。
 (実施の形態2の変形例1)
 視点集中エリア事象推定部20は、より細分化された地理的属性、車両201で取得される映像情報、またはその画像認識結果などに基づいて、新規視点集中エリアの事象を推定してもよい。なお、車両201で取得される映像情報は、視線情報とともに、車両201から走行環境分析装置101に出力される。
 このような構成によれば、事象推定ロジックが高度化されるため、事象推定の精度が向上する。
 視点集中エリア事象推定部20は、車両201から、車両201の回避行動、減速行動などの車両運動情報に基づいて、新規視点集中エリアの事象を推定してもよい。なお、車両運動情報は、視線情報とともに、車両201から走行環境分析装置101に出力される。
 上記と同様に、事象推定ロジックが高度化されるため、事象推定の精度が向上する。車両201の回避行動に関する情報が入力された場合、視点集中エリア事象推定部20は、要注意度が高い状況であると推定できる。
 走行環境分析装置101は、視点集中エリア検出部10が新規視点集中エリアを検出した場合、車両201に事象の内容を問い合わせてもよい。
 走行環境分析装置101は、映像情報の送信や画像認識結果の送信能力のある車両201に対し、視点集中エリアの詳細情報を提供するよう要請してもよい。
 (実施の形態2の変形例2)
 上記の実施の形態2における視点集中エリア検出部10は、予め定められた第1ロジックに基づいて定常視点集中エリアを計算し、その定常視点集中エリアに基づいて新規視点集中エリアを検出していた。新規視点集中エリアの検出方法は、その方法に限定されるものではない。
 実施の形態2の変形例2における視点集中エリア検出部10は、視線情報と予め定められた第2ロジックとに基づいて、視点集中エリアを検出するための乗員の視線の統計である統計視線分布を、予め定められた道路の区間ごとに求める。その予め定められた第2ロジックとは、視線情報を統計的に計算することにより統計視線分布を求めることに対応する。視線情報とは、例えば実施の形態2における視線分布データを含む。そして、視点集中エリア検出部10は、特定時点の前後で、統計視線分布が異なる場合に、新規視点集中エリアが発生したと判断する。
 統計視線分布は、1つの平均の視線分布曲線であってもよいし、複数の視線分布の併用で表現される曲線であってもよい。予め定められた道路の区間が交差点である場合、統計視線分布は、右折を行う車両201の視線分布と、左折を行う車両201の視線分布と、直進の車両201の視線分布を含む。それらが平均された場合、視点集中エリアが平準化されて、特徴が小さくなる。
 または、視点集中エリア検出部10は、以下に示す方法で、新規視点集中エリアを検出してもよい。視点集中エリア検出部10は、特定時点の前後で、論理視線分布と統計視線分布とが異なる場合に、新規視点集中エリアが発生したと判断する。論理視線分布とは、予め定められた道路の区間ごとの道路構造から推定される乗員の視線の分布である。
 道路構造が直線道路である場合、論理視線分布は、前方の頻度が圧倒的に多い。道路構造が交差点近傍である場合、乗員は左右を確認するため、論理視線分布は、直進道路、右左折道路、横断歩道を向く頻度が多い。道路構造がカーブである場合、論理視線分布は、カーブの方向に偏る傾向を示す。
 また、実施の形態2における第1ロジックおよび上記の第2ロジックは、視点集中エリアが新規視点集中エリアか否かを判断する他に、視点集中エリアが新規視点集中エリアである確度を判断する処理を含むものであってもよい。
 (実施の形態2の変形例3)
 走行環境分析装置101は、図2または図3に示された処理回路を、個別注視エリア認識部140および視線情報出力部150として機能させるための視線情報分析プログラムを更新する。走行環境分析装置101は、更新後のプロブラムを複数の車両201の各々に配信する。各車両201は、走行環境分析装置101からダウンロードしたプログラムで、既存のプログラムを更新する。
 また、走行環境分析システム301は、個々の車両201が有するシステムの機能に応じて、互いに異なるロジックで個別注視エリアの認識処理を実行させてもよい。また、走行環境分析システム301は、個々の車両201から走行環境分析装置101に出力される視線情報が互いに異なるものとしてもよい。
 <実施の形態3>
 実施の形態3における走行環境分析装置および走行環境分析方法を説明する。実施の形態3は実施の形態1の下位概念であり、実施の形態3における走行環境分析装置は、実施の形態1における走行環境分析装置100の各構成を含む。なお、実施の形態1または2と同様の構成および動作については説明を省略する。
 実施の形態2における走行環境分析システム301は、車両201にて個別注視エリアを認識する構成であったが、実施の形態3における走行環境分析システムは、走行環境分析装置にて個別注視エリアを認識する構成を有する。
 図17は、実施の形態3における走行環境分析システム302および走行環境分析装置102の構成を示すブロック図である。
 個別注視エリア認識部140は、車両202ではなく、走行環境分析装置102に設けられている。
 視線情報出力部150は、ロケータ120にて検出される車両202の位置データと、視線検出装置110にて検出される個々の乗員の視線データとを取得する。そして、視線情報出力部150は、車両202の位置データと視線データとを、乗員の視線に関する視線情報として、走行環境分析装置102に出力する。
 視線情報収集部40は、各車両202から視線情報を収集する。
 個別注視エリア認識部140は、視線情報に含まれる車両202の位置データと、個々の乗員の視線データとを取得する。個別注視エリア認識部140は、実施の形態2と同様に、車両202の位置データおよび視線分布データの時系列データに基づいて、個別注視エリアを、車両202ごとに認識する。
 図18は、実施の形態3における個別注視エリアの認識動作を示すフローチャートである。
 ステップS15にて、視線情報収集部40は、各車両202から視線情報を収集する。実施の形態3における視線情報は、複数の車両202の各々で検出される情報であり、車両202ごとの位置データと個々の乗員の視線データとを含む。
 ステップS16にて、個別注視エリア認識部140は、車両202の位置データおよび視線分布データの時系列データを、車両202ごとに取得する。このステップは、図6に示されるステップS101と同様である。
 ステップS17にて、個別注視エリア認識部140は、時系列データに基づいて、個別注視エリアを、車両202ごとに認識する。このステップは、図6に示されるステップS102と同様である。
 ステップS18にて、個別注視エリア認識部140は、個別注視エリアが認識されたか否かを判定する。個別注視エリアが認識されている場合、ステップS19が実行される。個別注視エリアが認識されていない場合、ステップS15が再び実行される。このステップは、図6に示されるステップS103と同様である。
 ステップS19にて、個別注視エリア記憶部50は、車両202ごとの個別注視エリアの情報を記憶する。
 新規視点集中エリアの検出方法および事象の推定方法は、図12に示される方法と同様である。また、新規視点集中エリアおよび事象の情報の配信方法は、図13に示される方法と同様である。
 以上をまとめると、実施の形態3における走行環境分析装置102は、個別注視エリア認識部140を含む。個別注視エリア認識部140は、複数の車両202の各々の位置データと、複数の車両202の各々に搭乗する個々の乗員の視線データと、を含む経時的なデータである時系列データに基づいて、個々の乗員が注視する個別注視エリアを、複数の車両202の各々ごとに認識する。視線情報は、複数の車両202の各々で検出される位置データと個々の乗員の視線データとを含む。その視線情報は、複数の車両202の各々から出力される。
 このような走行環境分析装置102は、実施の形態2における走行環境分析システム302と比較して、走行環境分析装置102の負荷は増大するものの、走行環境分析装置102における種々の分析を可能にする。また、新規の分析ロジックを開発した場合、車両202に設けられた個別注視エリア認識部140の分析プログラムの更新を強いることなく、走行環境分析装置102のロジックを変更することにより、分析ロジックの更新が可能である。
 (実施の形態3の変形例)
 走行環境分析システムは、実施の形態2および実施の形態3の構成が組み合わされた構成であってもよい。そのような走行環境分析システムは、実施の形態2のように個別注視エリアを視線情報としてアップロードする車両201、および、実施の形態3の視線データを視線情報としてアップロードする車両202、の双方に対応できる。
 なお、本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略したりすることが可能である。
 本発明は詳細に説明されたが、上記した説明は、全ての局面において、例示であって、本発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。
 10 視点集中エリア検出部、20 視点集中エリア事象推定部、30 情報出力部、40 視線情報収集部、100 走行環境分析装置、110 視線検出装置、120 ロケータ、140 個別注視エリア認識部、150 視線情報出力部、170 通信ネットワーク、200 車両、301 走行環境分析システム、410 個別注視エリア。

Claims (20)

  1.  複数の車両の外部のエリアであって、前記複数の車両の乗員が注視する前記エリアである視点集中エリアを、前記乗員の視線に関する視線情報に基づいて、逐次、検出する視点集中エリア検出部と、
     新たに発生した前記視点集中エリアである新規視点集中エリアが検出された場合に、前記新規視点集中エリアで発生している事象を推定する視点集中エリア事象推定部と、
     前記新規視点集中エリアの情報と前記事象の情報とを出力する情報出力部と、を備える走行環境分析装置。
  2.  前記複数の車両の各々の位置データと、前記複数の車両の各々に搭乗する個々の乗員の視線データと、を含む経時的なデータである時系列データに基づいて、前記個々の乗員が注視する個別注視エリアを、前記複数の車両の各々ごとに認識する個別注視エリア認識部をさらに備え、
     前記視線情報は、前記複数の車両の各々で検出される前記位置データと前記個々の乗員の前記視線データとを含み、かつ、前記複数の車両の各々から出力される、請求項1に記載の走行環境分析装置。
  3.  前記視線情報は、前記複数の車両の各々に搭乗している個々の乗員が注視する個別注視エリアの情報を含み、かつ、前記複数の車両の各々から出力され、
     前記個別注視エリアは、前記複数の車両の各々の位置データと、前記個々の乗員の視線データと、を含む経時的なデータである時系列データに基づいて、前記複数の車両の各々にて認識される、請求項1に記載の走行環境分析装置。
  4.  前記視点集中エリア事象推定部は、前記新規視点集中エリアが存在する地理的属性に基づいて、前記事象を推定する、請求項1に記載の走行環境分析装置。
  5.  前記地理的属性が前記複数の車両のうち一の車両の進行方向の車線上に対応する場合、前記視点集中エリア事象推定部は、前記車線に、予め定められた第1事象群に含まれる前記事象が発生していることを推定し、
     前記予め定められた第1事象群は、要回避事象を含む、請求項4に記載の走行環境分析装置。
  6.  前記地理的属性が前記複数の車両のうち一の車両の進行方向の車線の近傍に対応する場合、前記視点集中エリア事象推定部は、前記車線に、予め定められた第2事象群に含まれる前記事象が発生していることを推定し、
     前記予め定められた第2事象群は、要注意事象を含む、請求項4に記載の走行環境分析装置。
  7.  前記地理的属性が前記複数の車両のうち一の車両の走行道路の上方に対応する場合、前記視点集中エリア事象推定部は、前記走行道路に、予め定められた第3事象群に含まれる前記事象が発生していることを推定し、
     前記予め定められた第3事象群は、要注意事象を含む、請求項4に記載の走行環境分析装置。
  8.  前記地理的属性が前記複数の車両のうち一の車両の進行方向の反対車線に対応する場合、前記視点集中エリア事象推定部は、前記反対車線に、予め定められた第4事象群に含まれる前記事象が発生していることを推定し、
     前記予め定められた第4事象群は、要回避事象を含む、請求項4に記載の走行環境分析装置。
  9.  前記地理的属性が前記複数の車両のうち一の車両の走行道路の施設外に対応する場合、前記視点集中エリア事象推定部は、前記走行道路の前記施設外に、予め定められた第5事象群に含まれる前記事象が発生していることを推定し、
     前記予め定められた第5事象群は、前記一の車両の走行には直接影響がない要注意事象を含む、請求項4に記載の走行環境分析装置。
  10.  前記視点集中エリア事象推定部は、前記新規視点集中エリアの状態の経時的変化を示す時間的属性に基づいて、前記事象を推定する、請求項1に記載の走行環境分析装置。
  11.  前記時間的属性として前記新規視点集中エリアの位置が特定時点を境に変化しない場合、前記視点集中エリア事象推定部は、予め定められた第6事象群に含まれる前記事象が発生していることを推定し、
     前記予め定められた第6事象群は、要注意事象を含む、請求項10に記載の走行環境分析装置。
  12.  前記時間的属性として前記新規視点集中エリアの位置が特定時点を境に変化せず、かつ、前記新規視点集中エリアが特定期間を経過しても解消されない場合、前記視点集中エリア事象推定部は、予め定められた第7事象群に含まれる前記事象が発生していることを推定し、
     前記予め定められた第7事象群は、要注意事象を含む、請求項10に記載の走行環境分析装置。
  13.  前記時間的属性として前記新規視点集中エリアの位置が変化せず、前記複数の車両の各々に搭乗する個々の乗員が注視する個別注視エリアが前記新規視点集中エリアに一致する車両の割合が増加傾向にあり、前記割合が予め定められた評価値以上である場合、前記視点集中エリア事象推定部は、予め定められた第8事象群に含まれる前記事象が発生していることを推定し、
     前記予め定められた第8事象群は、要注意事象を含む、請求項10に記載の走行環境分析装置。
  14.  前記時間的属性として前記新規視点集中エリアの位置が連続的に移動している場合、前記視点集中エリア事象推定部は、予め定められた第9事象群に含まれる前記事象が発生していることを推定し、
     前記予め定められた第9事象群は、前記新規視点集中エリアに移動体が存在する要注意事象を含む、請求項10に記載の走行環境分析装置。
  15.  前記視点集中エリア検出部は、
     前記視線情報に基づいて逐次検出される前記視点集中エリアと、予め定められた第1ロジックとに基づいて、前記乗員が定常的に注視するエリアである定常視点集中エリアを計算し、
     特定時点の前後で、前記定常視点集中エリアとは異なるエリアに前記視点集中エリアが発生した場合、前記新規視点集中エリアが発生したと判断する、請求項1に記載の走行環境分析装置。
  16.  前記視点集中エリア検出部は、
     前記視線情報と予め定められた第2ロジックとに基づいて、前記視点集中エリアを検出するための前記乗員の前記視線の統計である統計視線分布を、予め定められた道路の区間ごとに求め、
     特定時点の前後で、前記統計視線分布が異なる場合に、前記新規視点集中エリアが発生したと判断し、
     前記予め定められた第2ロジックは、前記視線情報を統計的に計算することにより前記統計視線分布を求める、請求項1に記載の走行環境分析装置。
  17.  前記視点集中エリア検出部は、
     前記視線情報と予め定められた第2ロジックとに基づいて、前記視点集中エリアを検出するための前記乗員の前記視線の統計である統計視線分布を、予め定められた道路の区間ごとに求め、
     特定時点の前後で、論理視線分布と前記統計視線分布とが異なる場合に、前記新規視点集中エリアが発生したと判断し、
     前記予め定められた第2ロジックは、前記視線情報を統計的に計算することにより前記統計視線分布を求め、
     前記論理視線分布は、前記予め定められた道路の前記区間ごとの道路構造から推定される前記乗員の前記視線の分布である、請求項1に記載の走行環境分析装置。
  18.  前記複数の車両に対して、前記個別注視エリアを認識するための視線情報分析プログラムの更新を行う、請求項3に記載の走行環境分析装置。
  19.  請求項3に記載の走行環境分析装置と、
     前記複数の車両の各々に設けられ、前記時系列データに基づいて、前記個々の乗員が注視する前記個別注視エリアを認識する個別注視エリア認識部と、
     前記複数の車両の各々に設けられ、前記走行環境分析装置に、前記個別注視エリアの情報を前記視線情報として出力する視線情報出力部と、を備える走行環境分析システム。
  20.  複数の車両の外部のエリアであって、前記複数の車両の乗員が注視する前記エリアである視点集中エリアを、前記乗員の視線に関する視線情報に基づいて、逐次、検出し、
     新たに発生した前記視点集中エリアである新規視点集中エリアが検出された場合に、前記新規視点集中エリアで発生している事象を推定し、
     前記新規視点集中エリアの情報と前記事象の情報とを出力する、走行環境分析方法。
PCT/JP2019/017393 2019-04-24 2019-04-24 走行環境分析装置、走行環境分析システムおよび走行環境分析方法 WO2020217337A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/431,558 US20220139093A1 (en) 2019-04-24 2019-04-24 Travel environment analysis apparatus, travel environment analysis system, and travel environment analysis method
PCT/JP2019/017393 WO2020217337A1 (ja) 2019-04-24 2019-04-24 走行環境分析装置、走行環境分析システムおよび走行環境分析方法
JP2021515372A JP7042974B2 (ja) 2019-04-24 2019-04-24 走行環境分析装置、走行環境分析システムおよび走行環境分析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/017393 WO2020217337A1 (ja) 2019-04-24 2019-04-24 走行環境分析装置、走行環境分析システムおよび走行環境分析方法

Publications (1)

Publication Number Publication Date
WO2020217337A1 true WO2020217337A1 (ja) 2020-10-29

Family

ID=72940637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/017393 WO2020217337A1 (ja) 2019-04-24 2019-04-24 走行環境分析装置、走行環境分析システムおよび走行環境分析方法

Country Status (3)

Country Link
US (1) US20220139093A1 (ja)
JP (1) JP7042974B2 (ja)
WO (1) WO2020217337A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220306122A1 (en) * 2021-03-24 2022-09-29 Toyota Motor Engineering & Manufacturing North America, Inc. Methods and systems for autonomous path planning triggered by freeway rubbernecking

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008157661A (ja) * 2006-12-21 2008-07-10 Denso It Laboratory Inc ナビゲーション装置
JP2009085750A (ja) * 2007-09-28 2009-04-23 Aisin Aw Co Ltd 施設特定システム及び施設特定装置
JP2016071492A (ja) * 2014-09-29 2016-05-09 富士重工業株式会社 要因分析装置および要因分析方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3972366B2 (ja) * 2003-09-26 2007-09-05 マツダ株式会社 車両用情報提供装置
CN101512617B (zh) * 2006-09-04 2012-02-01 松下电器产业株式会社 行驶信息提供装置
JP2016199204A (ja) * 2015-04-14 2016-12-01 トヨタ自動車株式会社 車両制御装置
US20170185146A1 (en) * 2015-12-29 2017-06-29 Ford Global Technologies, Llc Vehicle notification system including transparent and mirrored displays
US20200159366A1 (en) * 2017-07-21 2020-05-21 Mitsubishi Electric Corporation Operation support device and operation support method
WO2020145161A1 (ja) * 2019-01-08 2020-07-16 ソニーセミコンダクタソリューションズ株式会社 情報処理装置、移動装置、および方法、並びにプログラム
US10780897B2 (en) * 2019-01-31 2020-09-22 StradVision, Inc. Method and device for signaling present driving intention of autonomous vehicle to humans by using various V2X-enabled application
US20220161813A1 (en) * 2019-04-18 2022-05-26 Sony Semiconductor Solutions Corporation Information processing apparatus, moving apparatus, method, and program
US11688184B2 (en) * 2020-06-17 2023-06-27 Toyota Motor Engineering & Manufacturing North America, Inc. Driving automation external communication location change

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008157661A (ja) * 2006-12-21 2008-07-10 Denso It Laboratory Inc ナビゲーション装置
JP2009085750A (ja) * 2007-09-28 2009-04-23 Aisin Aw Co Ltd 施設特定システム及び施設特定装置
JP2016071492A (ja) * 2014-09-29 2016-05-09 富士重工業株式会社 要因分析装置および要因分析方法

Also Published As

Publication number Publication date
JPWO2020217337A1 (ja) 2021-10-14
JP7042974B2 (ja) 2022-03-28
US20220139093A1 (en) 2022-05-05

Similar Documents

Publication Publication Date Title
US11257377B1 (en) System for identifying high risk parking lots
US11599113B2 (en) Crowd sourcing data for autonomous vehicle navigation
US20200225681A1 (en) Systems and methods for lane end recognition
US10657811B2 (en) Travel lane identification without road curvature data
KR102226419B1 (ko) 차량용 전자 장치 및 차량용 전자 장치 동작 방법
US7974780B2 (en) Route navigation systems, methods, and programs
JP4752836B2 (ja) 道路環境情報通知装置及び道路環境情報通知プログラム
JP4513740B2 (ja) 経路案内システム及び経路案内方法
US20190108753A1 (en) Method, apparatus, and computer program product for pedestrian behavior profile generation
US10668922B2 (en) Travel lane identification without road curvature data
US20100174474A1 (en) Traffic information processing system, statistical processing device, traffic information processing method, and traffic information processing program
JP4093026B2 (ja) 道路環境情報通知装置、車載報知装置、情報センタ内装置、及び道路環境情報通知プログラム
US20070106459A1 (en) Route navigation systems, methods and programs
KR20170129251A (ko) 오클루전 제어 장치
JP2022522605A (ja) 車両ナビゲーションのためのイベント情報のクラスタ化
JP7042974B2 (ja) 走行環境分析装置、走行環境分析システムおよび走行環境分析方法
CN114348015A (zh) 车辆控制装置和车辆控制方法
WO2020241815A1 (en) On-board apparatus, driving assistance method, and driving assistance system
JP4572823B2 (ja) 経路案内システム及び経路案内方法
KR102317311B1 (ko) 영상을 이용한 정보 분석 시스템 및 그에 관한 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19926582

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021515372

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19926582

Country of ref document: EP

Kind code of ref document: A1