WO2020217323A1 - 粒状物の冷却装置及びスクレーパ - Google Patents

粒状物の冷却装置及びスクレーパ Download PDF

Info

Publication number
WO2020217323A1
WO2020217323A1 PCT/JP2019/017299 JP2019017299W WO2020217323A1 WO 2020217323 A1 WO2020217323 A1 WO 2020217323A1 JP 2019017299 W JP2019017299 W JP 2019017299W WO 2020217323 A1 WO2020217323 A1 WO 2020217323A1
Authority
WO
WIPO (PCT)
Prior art keywords
scraper
outer peripheral
annular
peripheral wall
region
Prior art date
Application number
PCT/JP2019/017299
Other languages
English (en)
French (fr)
Inventor
孝典 永井
Original Assignee
Primetals Technologies Japan株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Primetals Technologies Japan株式会社 filed Critical Primetals Technologies Japan株式会社
Priority to PCT/JP2019/017299 priority Critical patent/WO2020217323A1/ja
Priority to KR1020217030731A priority patent/KR102605771B1/ko
Priority to JP2021515359A priority patent/JP7346558B2/ja
Priority to CN201980095485.8A priority patent/CN113748304B/zh
Publication of WO2020217323A1 publication Critical patent/WO2020217323A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/26Cooling of roasted, sintered, or agglomerated ores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B21/00Open or uncovered sintering apparatus; Other heat-treatment apparatus of like construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D15/00Handling or treating discharged material; Supports or receiving chambers therefor
    • F27D15/02Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28CHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACT WITHOUT CHEMICAL INTERACTION
    • F28C3/00Other direct-contact heat-exchange apparatus
    • F28C3/10Other direct-contact heat-exchange apparatus one heat-exchange medium at least being a fluent solid, e.g. a particulate material
    • F28C3/12Other direct-contact heat-exchange apparatus one heat-exchange medium at least being a fluent solid, e.g. a particulate material the heat-exchange medium being a particulate material and a gas, vapour, or liquid
    • F28C3/16Other direct-contact heat-exchange apparatus one heat-exchange medium at least being a fluent solid, e.g. a particulate material the heat-exchange medium being a particulate material and a gas, vapour, or liquid the particulate material forming a bed, e.g. fluidised, on vibratory sieves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present disclosure relates to a granular material cooling device and a scraper.
  • a cooling device equipped with an annular hopper may be used to cool high temperature granules.
  • Patent Document 1 includes a ring-shaped table, a ring-shaped hopper provided above the table, and a louver and a suction fan for supplying cooling air to the internal space (circular space) of the ring-shaped hopper.
  • a cooling device for the ore is described.
  • the annular hopper is configured to rotate around a rotation axis along the vertical direction together with the table. While the annular hopper is rotating, hot sintered ore is supplied to the annular hopper from above and deposited on the table and in the internal space of the annular hopper.
  • a scraper is installed below the annular hopper. As the annular hopper and the annular table rotate, the sintered ore deposited on the table is guided radially outward by the scraper, and is annular through an open portion formed between the outer peripheral lower end of the annular hopper and the table. It is designed to be continuously discharged from the hopper. As the sinter is discharged from the annular hopper in this way, the sinter accumulated in the annular hopper descends.
  • Cooling air is taken in from the outside into the internal space of the annular hopper via a louver provided at the bottom of the annular hopper.
  • the cooling air is sucked by the suction fan and flows upward in the internal space of the annular hopper on which the sinter is deposited. That is, the high-temperature sinter is cooled by the cooling air flowing in the annular hopper from the time it is supplied to the annular hopper until it descends with the rotation of the annular hopper and is discharged from below. There is.
  • the descending speed (unloading speed) of the granular material on the inner peripheral side and the outer peripheral side in the internal space of the annular hopper. ) May be different.
  • the temperature inside the hopper will be distributed due to the difference in the unloading speed of the granules.
  • insufficient cooling or supercooling of the granules cooled in the hopper may occur, which may cause a problem in product quality.
  • At least one embodiment of the present invention aims to provide a granular material cooling device and a scraper capable of suppressing insufficient cooling or supercooling of the granular material.
  • the granular material cooling device is An annular hopper provided around the central axis and having an inner peripheral wall and an outer peripheral wall defining a receiving space for receiving the supply of granules.
  • An annular table provided around the central axis below the receiving space, A cooling unit for supplying a cooling fluid to the receiving space of the annular hopper, A scraper provided between the annular hopper and the annular table is provided.
  • the scraper is A first portion located radially inside the intermediate position between the inner peripheral wall and the outer peripheral wall, A second portion of the scraper located within the range facing the annular table and radially outside the intermediate position between the inner peripheral wall and the outer peripheral wall. Including The lower surface of the second portion of the scraper is located higher than the lower surface of the first portion.
  • a granular material cooling device and a scraper capable of suppressing insufficient cooling or supercooling of the granular material.
  • FIG. 1 It is the schematic sectional drawing of the cooling apparatus of the sinter (granular matter) which concerns on one Embodiment. It is a schematic view which viewed the cooling apparatus shown in FIG. 1 in a plan view. It is schematic cross-sectional view which shows the periphery of the lower end part of the annular hopper which concerns on one Embodiment. It is schematic cross-sectional view which shows the periphery of the lower end part of the annular hopper which concerns on one Embodiment. It is schematic cross-sectional view which shows the periphery of the lower end part of the annular hopper which concerns on one Embodiment.
  • FIG. 5 is a plan view of the scraper shown in FIG.
  • the sinter is iron ore, which is a raw material for pig iron, that has been sintered as a pretreatment.
  • the particle size of the sinter is generally about 5 mm or more and 200 mm or less.
  • FIG. 1 is a schematic cross-sectional view of a sinter (granular matter) cooling device according to an embodiment
  • FIG. 2 is a schematic view of the cooling device shown in FIG. 1 in a plan view.
  • the cooling device 1 includes an annular hopper 2 and an annular table 12 provided around a central axis O along the vertical direction, a cooling unit 10, and a scraper 30.
  • the annular hopper 2 includes an inner plate 3 and an outer plate 4 provided in a circumferential shape around the central axis O, and includes an inner peripheral wall 3a which is a wall surface of the inner plate 3 and an outer peripheral wall 4a which is a wall surface of the outer plate 4. Defines an annular receiving space 6. Further, above the annular hopper 2, a supply chute 27 for supplying a high-temperature sintered ore 5 (granular matter) from a sintering furnace (not shown) to the receiving space 6 of the annular hopper 2 is provided.
  • the annular table 12 is provided around the central axis O below the receiving space 6 of the annular hopper 2.
  • the annular table 12 has an inner peripheral side end 12a and an outer peripheral side end 12b, and the outer peripheral side end 12b is located radially outside the lower end 4b of the outer peripheral wall 4a of the annular hopper 2.
  • the sinter 5 supplied to the receiving space 6 is deposited on the annular table 12.
  • the lower end 4b of the outer peripheral wall 4a of the annular hopper 2 is located above the lower end 3b of the inner peripheral wall 3a in the vertical direction. That is, the lower end 3b of the inner peripheral wall 3a is in contact with the upper surface of the annular table 12, while the lower end 4b of the outer peripheral wall 4a and the upper surface of the annular table 12 are located apart from each other in the vertical direction. Therefore, on the annular table 12, the sinter 5 is also deposited in the space below the lower end 4b of the outer peripheral wall 4a in the region radially outside the lower end 4b.
  • the annular table 12, the inner plate 3 and the outer plate 4 are supported by the frames 21 and 22 provided on the inner peripheral side thereof.
  • the frames 21 and 22 are rotatably coupled to the central bearing 14 provided at the position of the central axis O on the foundation 13.
  • a plurality of circular rails 15 are fixedly installed on the lower surface of the frame 21 below the annular table 12. Further, on the foundation 13, a plurality of support rollers 16 are arranged in a circular shape corresponding to the plurality of circular rails 15, and the annular table 12 and the annular hopper 2 are supported via the rails 15. It is rotatably supported on the rollers 16.
  • a drive motor 17 is connected to a plurality of the support rollers 16, so that the annular table 12 and the annular hopper 2 rotate around the central axis O due to the rotational friction force of the support rollers 16 by the drive motor 17. It has become.
  • the scraper 30 is provided between the lower end 4b of the outer peripheral wall 4a of the annular hopper 2 and the annular table 12 in the vertical direction. Further, the scraper 30 is configured to guide the sinter 5 (granular matter) deposited on the annular table 12 to the outside in the radial direction of the annular table 12. As a result, the sinter 5 deposited on the annular table 12 and in the receiving space 6 of the annular hopper 2 is gradually discharged to the outside of the cooling device 1.
  • the tip surface 32 of the scraper 30 is provided so as to face the inner peripheral wall 3a of the annular hopper 2. Further, the scraper 30 is arranged so as to be inclined in the rotational direction of the annular hopper 2 and the annular table 12 with respect to the radial direction of the annular hopper 2 (or the annular table 12) in a plan view.
  • the inclination angle ⁇ (see FIG. 2) of the scraper 30 with respect to the radial direction is, for example, 15 degrees or more and 45 degrees or less.
  • the vertical direction is a direction along the vertical direction, which is the same direction as the direction of the central axis O.
  • FIG. 3 is a schematic cross-sectional view showing the periphery of the lower end portion of the annular hopper 2.
  • the cross-sectional view of FIG. 3 is a cross-sectional view including a radial direction and a vertical direction.
  • the sinter 5 supplied to the annular hopper 2 is deposited on the annular table 12 and in the receiving space 6 of the hopper.
  • the sinter 5 is deposited on the annular table 12 by forming an angle of repose ⁇ (see FIG. 3) in a space radially outside the lower end 4b of the outer peripheral wall 4a.
  • the angle of repose ⁇ has a value different depending on the granules, and in the case of sinter, the angle of repose ⁇ is about 35 degrees.
  • the angle ⁇ formed by the straight line L1 connecting the lower end 4b of the outer peripheral wall 4a and the outer peripheral side end 12b of the annular table 12 and the straight line along the upper surface of the annular table 12 (FIG. 3). (See) is set smaller than the rest angle ⁇ of the granules deposited on the annular table 12.
  • the above-mentioned angle ⁇ may be 15 degrees or more and 40 degrees or less. Further, in one embodiment, the above-mentioned angle ⁇ may be 20 degrees or more and 35 degrees or less.
  • the above-mentioned angle ⁇ may be 15 degrees or more and 40 degrees or less. Further, in one embodiment, the above-mentioned angle ⁇ may be 20 degrees or more and 35 degrees or less.
  • the cooling unit 10 is configured to supply a cooling fluid (for example, air) to the receiving space 6 of the annular hopper 2.
  • a cooling fluid for example, air
  • the cooling unit 10 has an inner louver 7, an outer louver 8 and a central louver 9 for taking in air from the outside into the receiving space 6 of the annular hopper 2, and above the annular hopper 2.
  • a suction fan 20 connected to an exhaust duct 19 provided is included.
  • the inner louver 7 and the outer louver 8 are incorporated in the lower portions of the inner plate 3 and the outer plate 4 of the annular hopper 2, respectively, and form a passage for taking in air (cooling fluid) from the outside of the annular hopper 2.
  • the central louver 9 is provided at a position near the center of the inner plate 3 and the outer plate 4 in the radial direction.
  • the central louver 9 is provided from the outside of the annular hopper 2 via a ventilation duct (not shown) provided inside the annular hopper 2 so as to extend along the radial direction between the inner plate 3 and the outer plate 4.
  • the taken-in air (cooling fluid) is supplied.
  • An annular hood 18 is provided on the upper portion of the annular hopper 2 so as to cover the upper portion of the annular hopper 2, and an exhaust duct 19 is connected to the hood 18 so as to communicate with the hood 18.
  • a suction fan 20 is connected to the tip of the exhaust duct 19, and by sucking the air in the hood 18 by the suction fan 20, the outside air is taken in from the inner louver 7, the outer louver 8 and the central louver 9.
  • the taken-in external air is passed through the sintered ore 5 in the annular hopper 2 to cool the sintered ore 5.
  • the high-temperature air (exhaust gas) after cooling the sinter 5 is discharged to the outside of the cooling device 1 via the exhaust duct 19.
  • a dust remover for removing dust contained in the air sucked by the suction fan 20 may be provided on the upstream side of the suction fan 20. Further, the high-temperature exhaust gas from the exhaust duct 19 may be supplied to a boiler for recovering exhaust heat.
  • a seal portion 23 is provided in order to suppress leakage of cooling air from between the annular hopper 2 that rotates and the hood 18 that is stationary.
  • the seal portion 23 includes a groove portion 24 provided above the inner plate 3 and the outer plate 4 and having an opening at the upper portion, and a sealing plate 26 attached to the hood 18.
  • the sealing plate 26 is inserted into the groove 24 from above, and by supplying a predetermined amount of water 25 to the groove 24 and immersing the sealing plate 26 in the water in the groove 24, the annular hopper 2 The space between the upper part and the hood 18 is sealed.
  • the annular hopper 2 is configured to rotate around the central axis O along the vertical direction together with the annular table 12. While the annular hopper 2 is rotating, the high-temperature sinter 5 is supplied from above to the receiving space 6 of the annular hopper 2 via the supply chute 27. The sintered ore 5 supplied in this way is deposited on the annular table 12 and in the receiving space 6 of the annular hopper 2 while forming a circumferential layer.
  • Cooling air is taken into the receiving space 6 via louvers 7, 8 and 9 provided at the lower part of the annular hopper 2, and the cooling air is sucked into the suction fan 20 connected to the exhaust duct 19. It flows upward in the receiving space 6. Therefore, the sinter 5 deposited in the receiving space 6 is cooled by the cooling air flowing in the receiving space 6.
  • the sintered ore 5 deposited on the annular table 12 is guided outward in the radial direction by the scraper 30 provided below the annular hopper 2 as the annular hopper and the annular table rotate, and the outer peripheral wall 4a of the annular hopper 2 It is discharged from the annular hopper 2 through an open portion formed between the lower end 4b and the annular table 12. As the sinter 5 is discharged from the annular hopper 2 in this way, the sinter 5 accumulated in the annular hopper 2 descends.
  • the high-temperature sintered ore 5 supplied to the receiving space 6 of the annular hopper 2 via the supply chute 27 descends with the rotation of the annular hopper 2 and the annular table 12, and is lowered by the scraper 30 below the annular hopper 2. It is cooled by the cooling air flowing in the annular hopper 2 until it is discharged from the water.
  • the annular hopper 2 and the annular table 12 are operated several times (for example, from 5 to 5) until the sinter 5 supplied from the supply chute 27 to the annular hopper 2 is discharged from below the annular hopper 2 by the scraper 30. 15 times) Rotate.
  • FIGS. 4 to 7 are schematic cross-sectional views showing the periphery (including the annular table 12) of the lower end portion of the annular hopper 2 according to the embodiment, respectively.
  • the cross-sectional views of FIGS. 4 to 7 are cross-sectional views including the extending direction (direction of the center line of the scraper 30) and the vertical direction of the scraper 30, and correspond to the cross-sectional view taken along the line AA of FIG. It is a thing.
  • FIG. 8 is a plan view of the scraper 30 shown in FIG.
  • the scraper 30 has a tip surface 32 facing the inner peripheral wall 3a of the annular hopper 2, an upper surface 34 located upward in the vertical direction, and a lower surface 36 located below.
  • the upper surface 34 and the lower surface 36 are connected to the tip surface 32, respectively.
  • the shape of the cross section of the scraper 30 is approximately rectangular.
  • the scraper 30 is radially inside (in the figure) of the intermediate position Pc in the radial direction between the inner peripheral wall 3a and the outer peripheral wall 4a of the annular hopper 2.
  • the first portion 101 located in the region indicated by R 1 is included, and is within the range of the scraper 30 facing the annular table 12 and radially outside the above-mentioned intermediate position Pc (that is, R 2 in the drawing). and located in the region) indicated by R 3, the position of the lower surface 36 and a second portion 102 is higher than the first portion 101.
  • the second portion 102 in which the distance between the annular table 12 and the lower surface 36 is larger than the distance between the annular table 12 and the lower surface 36 in the first portion 101, is within the above-mentioned facing range and radially outside the intermediate position Pc.
  • the range of the scraper 30 facing the annular table 12 means a portion of the scraper 30 whose lower surface 36 faces the annular table 12.
  • R 1 is a region radially inside the above-mentioned intermediate position Pc and radially outside the connection portion between the lower surface 36 and the tip surface 32.
  • R 2 is a region radially outside the above-mentioned intermediate position Pc and radially inside the lower end 4b of the outer peripheral wall 4a.
  • R 3 is a region radially outside the lower end 4b of the outer peripheral wall 4a and radially inside the outer peripheral side end 12b of the annular table 12.
  • the scraper 30 extends radially outward from the outer peripheral end 12b of the annular table 12 in the radial direction.
  • the portion of the opposing range to the annular table 12, i.e., (in the extending direction or the scraper 30) in the radial direction portion located in the region R 1, R 2, R 3 is a cyclic table 12 above It is a portion located within the contact range (within the range where contact is possible) with the sintered ore 5 deposited in.
  • the portion radially outer of the outer peripheral side end 12b of the annular table 12 is a portion located outside the contact range with the sinter 5 deposited on the annular table 12.
  • the unloading speed tends to be high in the outer peripheral region in the annular hopper and decreased in the inner peripheral region.
  • the residence time of the granular material in the annular hopper is relatively short in the outer peripheral region and relatively long in the inner peripheral region, so that the temperature in the annular hopper (or the temperature of the sinter in the annular hopper). Is relatively high in the outer peripheral region and relatively low in the inner peripheral region.
  • there may be a problem in the quality of the sinter obtained from the cooling device such as insufficient cooling of the sinter in the outer peripheral region or supercooling of the sinter in the inner peripheral region.
  • the temperature difference in the annular hopper may increase, resulting in insufficient cooling of the sinter in the outer peripheral region and further supercooling of the sinter in the inner peripheral region.
  • the second portion 102 having the lower surface 36 at a position higher than the lower surface 36 of the first portion 101 is provided on the outer side in the radial direction from the intermediate position Pc between the inner peripheral wall 3a and the outer peripheral wall 4a. Therefore, it becomes easier to reduce the unloading speed of the outer peripheral side region in the annular hopper 2 as compared with the case where such a second portion 102 is not provided.
  • the scraping amount (that is, the amount of the sinter 5 discharged outward in the radial direction) can be relatively reduced, and the unloading speed of the outer peripheral region in the annular hopper 2 can be relatively reduced.
  • the height of the lower surface 36 in the second portion 102 is made relatively high, so that the sinter 5 in the inner peripheral region between the second portion 102 and the annular table 12 is radial.
  • a path (gap) to the outside is secured, and the sinter 5 in the inner peripheral region can be smoothly discharged outward in the radial direction through this path, and the sinter 5 that has come to the gap from the inner peripheral region.
  • the sinter 5 in the inner peripheral region can be smoothly discharged outward in the radial direction through this path, and the sinter 5 that has come to the gap from the inner peripheral region.
  • the vertical dimension H 2 of the second portion 102 which is provided radially outside the intermediate position Pc and the position of the lower surface 36 is relatively high, is the vertical dimension H 1 of the first portion 101. Smaller than Therefore, since the amount of scraping by the scraper 30 at a position radially outside the intermediate position Pc can be reduced, the unloading speed of the outer peripheral region in the annular hopper 2 can be reduced more reliably. Therefore, the unloading speed in the annular hopper 2 can be equalized between the outer peripheral side region and the inner peripheral side region, and insufficient cooling and / or supercooling of the sinter 5 can be suppressed.
  • the scraper 30 the average value of the vertical dimension in the region between the lower end 3b of the intermediate position Pc and the inner circumferential wall 3a (region of R 1 in the figure) and H In_ave in the radial direction ,
  • H in_ave > H 2 is satisfied.
  • it in the region between the lower end 3b of the intermediate position Pc and the inner circumferential wall 3a (region of R 1 in the figure) in the radial direction, it includes a first portion 101 described above.
  • the vertical dimension of H 2 position is relatively high second portion 102 of the lower surface 36, and the lower end 3b of the intermediate position Pc and the inner wall 3a in the radial direction Having smaller than the average value H In_ave the vertical dimension in the region R 1 between the can a load falling speed of the outer circumferential region of the annular hopper 2, is reduced more reliably. Therefore, the unloading speed in the annular hopper 2 can be equalized between the outer peripheral side region and the inner peripheral side region, and insufficient cooling and / or supercooling of the sinter 5 can be suppressed.
  • the above-mentioned second portion 102 is included in the region between the intermediate position Pc in the radial direction and the lower end 4b of the outer peripheral wall 4a (the region of R 2 in the drawing).
  • the average value H Out_ave the vertical dimension in the region R 2 between the lower end 4b of the intermediate position Pc and the outer peripheral wall 4a in the radial direction, the lower end 3b of the intermediate position Pc and the inner wall 3a in the radial direction Since it is smaller than the average value Hin_ave of the vertical dimensions in the intervening region R 1, the unloading speed of the outer peripheral region in the annular hopper 2 can be more reliably reduced. Therefore, the unloading speed in the annular hopper 2 can be equalized between the outer peripheral side region and the inner peripheral side region, and insufficient cooling and / or supercooling of the sinter 5 can be suppressed.
  • the scraper 30 includes the first portion 101 described above, a tip 103 having a flat lower surface 36A facing the annular table 12, and a second portion 102 described above.
  • the adjacent portion 104 is provided adjacent to the tip portion 103 on the radial outer side of the tip portion 103, and the distance between the annular table 12 and the lower surface 36B is larger than that of the tip portion 103. ..
  • g 3 the distance between the lower surface 36A of the tip portion 103 and the annular table 12
  • g 4 g 3 ⁇ g 4 is established.
  • the scraper 30 described above is adjacent to the tip 103 having a flat lower surface 36A and the tip 103 in the extending direction of the scraper 30 (direction of the center line of the scraper 30), and the flat lower surface 36A of the tip 103. Includes an adjacent portion 104 having a lower surface 36B located higher than the above.
  • the above-mentioned tip portion 103 and adjacent portion 104 are located within the contact range with the sinter 5 in the scraper 30. That is, the tip portion 103 and the adjacent portion 104 of the scraper 30 are installed in the cooling device 1 so that the lower surface 36 faces the annular table 12.
  • the adjacent portion 104 adjacent to the tip portion 103 has a lower surface 36B located higher than the flat lower surface 36A of the tip portion 103, and thus is within a range facing the annular table 12 (that is, that is). , R 1 to R 3 ), the unloading speed of the outer peripheral region in the annular hopper 2 can be easily reduced as compared with the case where the distance from the annular table 12 is substantially the same and the lower surface is flat. .. Further, in the above-described embodiment, since the tip 103 of the scraper 30 has a flat lower surface 36A facing the annular table 12, the scraping amount of the sinter 5 in the inner peripheral region by the tip 103 is secured.
  • the fact that the distance between the lower surface 36 of the scraper 30 and the annular table 12 is substantially equal means that the ratio of the difference between the maximum value and the minimum value of the distance to the maximum value of the distance is 0% or more and 10% or less. Means that.
  • the boundary between the tip portion 103 and the adjacent portion 104 in the radial direction, an intermediate position Pc and the outer It is located between the lower end 4b of the wall 4a.
  • the boundary L B of an adjacent portion 104 and distal portion 103 in the radial direction it is positioned so as to overlap with the intermediate position Pc.
  • the tip portion 103 having the flat lower surface 36A extends to the same as or radially outside the intermediate position Pc in the radial direction, it is possible to secure a sufficient length of the tip portion 103. This makes it easier to scrape the sinter 5 in the inner peripheral region. Therefore, it becomes easier to equalize the unloading speed in the annular hopper 2 between the outer peripheral side region and the inner peripheral side region, and it is possible to suppress insufficient cooling and / or supercooling of the sinter 5.
  • the boundary L B of an adjacent portion 104 and the distal end portion 103 is arranged radially outward from the middle position Pc in the radial direction.
  • the second portion 102 included in the adjacent portion 104 located further radially outward than the aforementioned boundary L B.
  • the first portion 101 included in the tip portion 103 is located radially inside the intermediate position Pc.
  • an upper surface 34 and lower surface 36 of the adjacent portion 104 is annular
  • the table 12 extends substantially parallel to the upper surface of the table 12. That is, in the modified example described above, the boundary L B of an adjacent portion 104 and the distal end portion 103 is arranged radially inward from the intermediate position Pc in the radial direction.
  • the first portion 101 included in the tip portion 103 located further radially inward than the above-described boundary L B.
  • the second portion 102 included in the adjacent portion 104 is located radially outside the intermediate position Pc. Therefore, in the modification described above, the range of positions of the radially outer than the radially inner and boundary L B than the intermediate position Pc, not the first portion 101 part nor the second part 102 there.
  • the distance in the radial direction between the lower end 4b of the intermediate position Pc and the outer peripheral wall 4a and W is 0.2 ⁇ W or more and W or less.
  • the distal end portion 103 and the boundary L B of an adjacent section 104 since the distance W 1 in the radial direction between the lower end 4b of the outer peripheral wall 4a was 0.2 ⁇ W or higher, the adjacent portion comprising a second portion 102 A sufficient length of 104 can be secured, whereby the amount of scraped ore 5 scraped off in the outer peripheral side region can be sufficiently reduced, and it becomes easier to suppress the unloading of the outer peripheral side region in the annular hopper 2. .. Further, since the above-mentioned distance W 1 is set to W or less, the length of the tip portion 103 can be secured, which makes it easy to secure the scraping amount of the sinter 5 in the inner peripheral side region.
  • the unloading speed in the annular hopper 2 can be effectively equalized in the outer peripheral side region and the inner peripheral side region, and the sinter 5 is insufficiently cooled and / or excessively cooled. Cooling can be suppressed.
  • the distance W 1 described above may be 0.2 ⁇ W or more and 0.5 ⁇ W or less.
  • the sintered ore 5 deposited in a region where the distance from the lower end 4b of the outer peripheral wall 4a in the radial direction is about 0.5 ⁇ W is formed on the annular table 12 as an outer region of the hopper (outer circumference in the radial direction). It will be deposited in the region between the lower end 4b of the wall 4a and the outer peripheral end 12b of the annular table 12; the region corresponding to R 3 in the figure).
  • the unloading speed in the annular hopper 2 can be more effectively equalized in the outer peripheral side region and the inner peripheral side region, and insufficient cooling and / or supercooling of the sinter 5 can be suppressed. ..
  • the adjacent portion 104 of the scraper 30 is, at least in the radial direction, (region R 3 i.e. in the drawing) region between the lower end 4b and the outer edge 12b of the annular table 12 of the peripheral wall 4a It extends over a range of 30% or more of them.
  • the adjacent portion 104 of the scraper 30 is a region (that is,) between the lower end 4b of the outer peripheral wall 4a and the outer peripheral side end 12b of the annular table 12 in the radial direction. It extends over the entire (100% coverage) area R 3) in FIG.
  • a neighboring portion 104 of the scraper 3 extends to a portion of the range of the above-described region R 3 in the radial direction (i.e., when extending over a range of less than 100% of the region R3), of the adjacent portion 104
  • the position in the radial direction is not particularly limited.
  • the adjacent section 103, of the regions R 3 may be located in the radially outermost region (position range including the radially outer peripheral end 12b of the annular table 12).
  • the adjacent section 103, of the regions R 3 may be located in the radially innermost region (position range including the lower end 4b of the outer peripheral wall 4a in the radial direction).
  • the adjacent section 103, of the regions R 3, in the radial direction, and the lower end 4b of the outer circumferential wall 4a may be located in the position range between the outer side edge 12b of the annular table 12.
  • the space between the lower end 4b of the outer peripheral wall 4a in the vertical direction and the annular table 12 is a region outside the hopper (a region between the lower end 4b of the outer peripheral wall 4a in the radial direction and the outer peripheral end 12b of the annular table 12; sinter 5 so as to form a angle of repose alpha (see FIG. 3) between the upper surface of the annular table 12 in the region) corresponding to R 3 is deposited.
  • the adjacent portion 104 in which the position of the lower surface 36 is higher than the tip portion 103 extends over a range of 30% or more of the hopper outer region, the sintered ore deposited in the hopper outer region.
  • the scraping amount of 5 can be reduced, and thereby the unloading speed in the outer peripheral side region in the annular hopper 2 can be effectively reduced. Therefore, the unloading speed in the annular hopper 2 can be more effectively equalized in the outer peripheral side region and the inner peripheral side region, and insufficient cooling and / or supercooling of the granules can be suppressed.
  • the adjacent portion 104 of the scraper 30 has a vertical distance g 4 between the lower surface 36 of the scraper 30 and the upper surface of the annular table 12 radially outward. It has a part that grows as it goes toward it.
  • the vertical distance g 4 between the lower surface 36B of the adjacent portion 104 and the upper surface of the annular table 12 has a portion that increases toward the outer side in the radial direction. That is, in the adjacent portion 104 of the scraper 30, it becomes easier to reduce the scraping amount of the sinter 5 as it goes outward in the radial direction, and thus the unloading speed in the outer peripheral side region in the annular hopper 2 is effective. Can be reduced. Therefore, the unloading speed in the annular hopper 2 can be more effectively equalized in the outer peripheral side region and the inner peripheral side region, and insufficient cooling and / or supercooling of the sinter 5 can be suppressed. ..
  • the portion where the above-mentioned distance g 4 increases toward the outer side in the radial direction is at least a region outward in the radial direction from the lower end 4b of the outer peripheral wall 4a (in the figure). present in the region R 3) within.
  • the portion where the above-mentioned distance g 4 increases toward the outside in the radial direction includes the region R 2 between the intermediate position Pc in the radial direction and the lower end 4b of the outer peripheral wall 4a and the above-mentioned. It exists over a region R 3.
  • the cross-sectional area of the sinter 5 deposited in the hopper outer region radially outside the lower end 4b of the outer peripheral wall 4a becomes smaller as it goes upward in the vertical direction.
  • the hopper The amount of scraped ore 5 scraped off in the outer region can be effectively reduced.
  • the unloading speed in the outer peripheral region in the annular hopper 2 can be reduced more effectively, and the unloading speed in the annular hopper 2 can be more effectively equalized in the outer peripheral region and the inner peripheral region. Can be transformed into.
  • the upper surface 34 of the scraper 30 at the radial position (the position indicated by U 2 in the figure) of the lower end 4b of the outer peripheral wall 4a is the intermediate position Pc. located above the upper surface 34 of the scraper 30 in the (position indicated by U 1 in the figure).
  • the width D 2 of the second portion 102 in the circumferential direction of the annular hopper 2 is larger than the width D 1 of the first portion 101 in the circumferential direction.
  • the width D 2 in the circumferential direction of the second portion 102 is relatively large. Therefore, for example, when the vertical dimension H 2 in the second portion 102 is narrowed as shown in FIGS. 5 to 7. Even if there is, the strength of the second portion 102 can be ensured.
  • the cross-sectional area A in of the region of the scraper 30 that is radially inside the intermediate position Pc is 2/3 or more and 3/2 or less.
  • the portion radially inside the intermediate position Pc Since the ratio A in / A out of the cross-sectional area A in and the cross-sectional area A out of the portion radially outside the intermediate position Pc was set to 2/3 or more, sintering in the inner peripheral side region in the annular hopper 2 It becomes easier to secure the scraping amount of the ore 5.
  • the ratio A in / A out was set to 3/2 or less, the amount of sinter 5 scraped off in the outer peripheral region in the annular hopper 2 was reduced, and the load in the outer peripheral region in the annular hopper 2 was reduced. It becomes easier to suppress the fall. Therefore, the unloading speed in the annular hopper 2 can be effectively equalized in the outer peripheral side region and the inner peripheral side region, and insufficient cooling and / or supercooling of the sinter 5 can be suppressed.
  • the tip 103 of the scraper 30 is a tip along an oblique direction with respect to the extending direction of the scraper 30 (direction of the center line of the scraper 30) in a plan view. It has a surface 32. Further, in the tip portion 103 of the scraper 30, the tip surface 32 is connected to the flat lower surface 36A.
  • the tip surface 32 of the tip 103 extends diagonally along the extending direction of the scraper 30 in a plan view and is connected to the flat lower surface 36A.
  • the angle ⁇ (see FIG. 8) formed by the direction orthogonal to the tip surface 32 of the scraper 30 (the direction corresponding to the radial direction) and the extending direction of the scraper 30 (the direction of the center line of the scraper 30). ) May be 15 degrees or more and 45 degrees or less.
  • the granular material cooling device is An annular hopper provided around the central axis and having an inner peripheral wall and an outer peripheral wall that define a receiving space for receiving the supply of granules.
  • An annular table provided around the central axis below the receiving space, A cooling unit for supplying a cooling fluid to the receiving space of the annular hopper, A scraper provided between the annular hopper and the annular table is provided.
  • the scraper is A first portion located radially inside the intermediate position between the inner peripheral wall and the outer peripheral wall, A second portion of the scraper located within the range facing the annular table and radially outside the intermediate position between the inner peripheral wall and the outer peripheral wall. Including The lower surface of the second portion of the scraper is located higher than the lower surface of the first portion.
  • the unloading speed tends to be high in the outer peripheral region in the annular hopper and decreased in the inner peripheral region.
  • the residence time of the granular material in the annular hopper is relatively short in the outer peripheral region and relatively long in the inner peripheral region, so that the temperature in the annular hopper (or the temperature of the granular material in the annular hopper) is set. , It is relatively high in the outer peripheral region and relatively low in the inner peripheral region.
  • the second portion having the lower surface at a position higher than the lower surface of the first portion is provided on the outer side in the radial direction from the intermediate position between the inner peripheral wall and the outer peripheral wall. Compared with the case where the second portion is not provided, it becomes easier to reduce the unloading speed of the outer peripheral side region in the annular hopper.
  • the amount of granular material scraped off in the radial direction from the intermediate position (that is, the granular material) as compared with the conventional scraper in which the position of the lower surface in the vertical direction is constant.
  • the amount of discharge to the outside in the radial direction) can be relatively reduced, and the unloading speed of the outer peripheral region in the annular hopper can be reduced.
  • the second portion having a lower surface at a relatively high place causes a path (gap) of the granular material in the inner peripheral region to the outside in the radial direction between the second portion and the annular table.
  • the scraper satisfies H 1 > H 2 when the vertical dimension of the first portion is H 1 and the vertical dimension of the second portion is H 2 .
  • the vertical dimension H 2 of the second portion which is provided radially outside the intermediate position and has a relatively high lower surface position, is the vertical dimension H 1 of the first portion. Since it is made smaller than the above, the unloading speed of the outer peripheral region in the annular hopper can be reduced more reliably. Therefore, the unloading speed in the annular hopper can be equalized between the outer peripheral side region and the inner peripheral side region, and insufficient cooling and / or supercooling of the granular material can be suppressed.
  • the vertical dimension H 2 the lower end of the intermediate position and the inner peripheral wall in the radial direction of the lower surface position is relatively high second portion Since it is made smaller than the average value Hin_ave of the vertical dimension in the region between and, the unloading speed of the outer peripheral region in the annular hopper can be reduced more reliably. Therefore, the unloading speed in the annular hopper can be equalized between the outer peripheral side region and the inner peripheral side region, and insufficient cooling and / or supercooling of the granular material can be suppressed.
  • the scraper has a vertical dimension average value in the region between the intermediate position in the radial direction and the lower end of the inner peripheral wall as Hin_ave , and is between the intermediate position in the radial direction and the lower end of the outer peripheral wall.
  • the average value H out_ave of the vertical dimension in the region between the intermediate position in the radial direction and the lower end of the outer peripheral wall is set between the intermediate position in the radial direction and the lower end of the inner peripheral wall. Since it is made smaller than the average value Hin_ave of the vertical dimension in the region of, the unloading speed of the outer peripheral region in the annular hopper can be reduced more reliably. Therefore, the unloading speed in the annular hopper can be equalized between the outer peripheral side region and the inner peripheral side region, and insufficient cooling and / or supercooling of the granular material can be suppressed.
  • the scraper is A tip portion including the first portion and having a flat lower surface facing the annular table, and An adjacent portion including the second portion, provided adjacent to the tip portion on the radial outer side of the tip portion, and having a larger distance between the annular table and the lower surface than the tip portion.
  • the tip portion of the scraper including the first portion has a flat lower surface facing the annular table, the amount of granular matter scraped off from the inner peripheral side region by the tip portion is secured. Since it becomes easy, it is easy to promote the unloading of the inner peripheral side region. Therefore, it becomes easier to equalize the unloading speed in the annular hopper between the outer peripheral side region and the inner peripheral side region, and it is possible to suppress insufficient cooling and / or supercooling of the granular material.
  • the boundary between the tip portion and the adjacent portion is located between the intermediate position and the lower end of the outer peripheral wall in the radial direction.
  • the tip portion having a flat lower surface extends to the same diameter as the intermediate position or to the outside in the radial direction in the radial direction, so that the length of the tip portion is sufficiently secured. This makes it easier to scrape off the particles in the inner peripheral region. Therefore, it becomes easier to equalize the unloading speed in the annular hopper between the outer peripheral side region and the inner peripheral side region, and it is possible to suppress insufficient cooling and / or supercooling of the granular material.
  • the radial distance between the intermediate position and the lower end of the outer peripheral wall is W
  • the radial distance between the boundary and the lower end of the outer peripheral wall is 0.2 ⁇ W or more and W or less. Is.
  • the distance between the boundary between the tip portion and the adjacent portion and the lower end of the outer peripheral wall in the radial direction is 0.2 ⁇ W or more, so that the length of the adjacent portion including the second portion is set. This makes it possible to sufficiently reduce the amount of particles scraped off in the outer peripheral side region, and it becomes easy to suppress the unloading of the outer peripheral side region in the annular hopper. Further, since the above-mentioned distance is set to W or less, the length of the tip portion can be secured, which makes it easy to secure the scraping amount of the granular material in the inner peripheral side region.
  • the unloading speed in the annular hopper can be effectively equalized in the outer peripheral side region and the inner peripheral side region, and the granular material is insufficiently cooled and / or supercooled. Can be suppressed.
  • the adjacent portion of the scraper extends at least in the radial direction over a range of 30% or more of the region between the lower end of the outer peripheral wall and the outer peripheral end of the annular table.
  • the space between the lower end of the outer peripheral wall and the annular table in the vertical direction is a region between the lower end of the outer peripheral wall and the outer peripheral side end of the annular table in the radial direction (hereinafter, also referred to as "hopper outer region").
  • Granules are deposited so as to form a rest angle with the upper surface of the annular table.
  • the adjacent portion whose lower surface is higher than the tip portion extends over a range of 30% or more of the outer hopper region, so that the granules deposited in the outer hopper region.
  • the amount of scraping can be reduced, whereby the loading speed in the outer peripheral region in the annular hopper can be effectively reduced. Therefore, the unloading speed in the annular hopper can be more effectively equalized in the outer peripheral side region and the inner peripheral side region, and insufficient cooling and / or supercooling of the granules can be suppressed.
  • the adjacent portion of the scraper has a portion in which the vertical distance between the lower surface of the scraper and the upper surface of the annular table increases toward the outer side in the radial direction.
  • the upper surface of the scraper at the radial position of the lower end of the outer peripheral wall is located above the upper surface of the scraper at the intermediate position.
  • the upper surface of the scraper in the radial direction at the lower end of the outer peripheral wall is located above the upper surface of the scraper at the intermediate position, so that the amount of accumulated granules scraped off in the outer region of the hopper. Is easy to reduce. Therefore, the unloading speed of the outer peripheral region inside the annular hopper can be effectively reduced.
  • the width of the second portion in the circumferential direction of the annular hopper is larger than the width of the first portion in the circumferential direction.
  • the cross-sectional area A in of the region of the scraper that is radially inner of the intermediate position and the area of the scraper that is radially outer of the intermediate position is 2/3 or more and 3/2 or less. Is.
  • the cross-sectional area of the portion radially inside the intermediate position since the ratio a in / a out of the sectional area a out of a in the radial direction outside portion of the intermediate position less than 2/3, it becomes easy to secure the scraping amount of particulates in the inner circumferential side area .. Further, since the ratio A in / A out is set to 3/2 or less, the amount of scraped particles in the outer peripheral side region can be reduced, and it becomes easy to suppress the unloading of the outer peripheral side region in the annular hopper. Therefore, according to the configuration of (12) above, the loading speed in the annular hopper can be effectively equalized in the outer peripheral side region and the inner peripheral side region, and the granular material is insufficiently cooled and / or supercooled. Can be suppressed.
  • the angle formed by the straight line connecting the lower end of the outer peripheral wall and the outer peripheral side end of the annular table and the straight line along the upper surface of the annular table is 15 degrees or more and 40 degrees or less. Is.
  • the scraper described above can effectively reduce the unloading speed of the outer peripheral region in the annular hopper by relatively reducing the amount of scraped particles in the radial direction outside the intermediate position. .. Therefore, the unloading speed in the annular hopper can be easily equalized in the outer peripheral side region and the inner peripheral side region, and insufficient cooling and / or supercooling of the granules can be easily suppressed.
  • the scraper according to at least one embodiment of the present invention is A scraper for guiding the granules deposited on the annular table of the granular material cooling device to the radial outside of the annular table.
  • a tip that has a flat bottom surface
  • An adjacent portion having a lower surface adjacent to the tip portion in the extending direction of the scraper and located higher than the flat lower surface of the tip portion.
  • the adjacent portion adjacent to the tip portion since the adjacent portion adjacent to the tip portion has a lower surface located higher than the flat lower surface of the tip portion, the lower surface is flat over the range facing the annular table. It becomes easier to reduce the unloading speed of the outer peripheral side region in the annular hopper as compared with the case of having. Therefore, it becomes easier to equalize the unloading speed in the annular hopper between the outer peripheral side region and the inner peripheral side region, and it is possible to suppress insufficient cooling and / or supercooling of the granular material.
  • the tip portion and the adjacent portion are located within the contact range of the scraper with the granules.
  • the tip portion and the adjacent portion are located within the contact range of the scraper with the granular material, it is possible to more reliably reduce the unloading speed of the outer peripheral side region in the annular hopper. it can. Therefore, the unloading speed in the annular hopper can be made more uniform in the outer peripheral side region and the inner peripheral side region, and insufficient cooling and / or supercooling of the granular material can be suppressed.
  • the tip portion has a tip surface along an oblique direction with respect to the extending direction of the scraper in a plan view. At the tip, the tip surface is connected to the flat lower surface.
  • the tip surface of the tip portion extends diagonally along the extending direction of the scraper in a plan view and is connected to a flat lower surface.
  • the present invention is not limited to the above-described embodiments, and includes a modified form of the above-described embodiments and a combination of these embodiments as appropriate.
  • the expression representing a shape such as a quadrangular shape or a cylindrical shape not only represents a shape such as a quadrangular shape or a cylindrical shape in a geometrically strict sense, but also within a range in which the same effect can be obtained.
  • the shape including the uneven portion, the chamfered portion, etc. shall also be represented.
  • the expression “comprising”, “including”, or “having” one component is not an exclusive expression excluding the existence of another component.
  • Cooling device 2 Circular hopper 3 Inner plate 3a Inner peripheral wall 3b Lower end 4 Outer plate 4a Outer wall 4b Lower end 5 Sintered ore 6 Receiving space 7 Inner louver 8 Outer louver 9 Central louver 10 Cooling part 12 Circular table 12a Inner peripheral side end 12b Outer peripheral end 13 Foundation 14 Center bearing 15 Rail 16 Support roller 17 Drive motor 18 Hood 19 Exhaust duct 20 Suction fan 21 Frame 22 Frame 23 Seal part 24 Groove 25 Water 26 Sealing plate 27 Supply chute 29 Conveyor 30 Scraper 32 Tip surface 34 Upper surface 36, 36A, 36B Lower surface 101 First part 102 Second part 103 Tip part 104 Adjacent part LB Boundary O Central axis Pc Intermediate position

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Furnace Details (AREA)

Abstract

粒状物の冷却装置は、中心軸周りに設けられ、粒状物の供給を受けるための受入れ空間を画定する内周壁及び外周壁を有する環状ホッパと、前記受入れ空間の下方において前記中心軸周りに設けられた環状テーブルと、前記環状ホッパの前記受入れ空間に冷却流体を供給するための冷却部と、前記環状ホッパと前記環状テーブルとの間に設けられたスクレーパと、を備え、前記スクレーパは、前記内周壁と前記外周壁との中間位置よりも径方向内側に位置する第1部分と、前記スクレーパのうち前記環状テーブルとの対向範囲内、且つ、前記内周壁と前記外周壁との前記中間位置よりも径方向外側に位置する第2部分と、を含み、前記スクレーパの前記第2部分の下面は、前記第1部分の下面よりも高所に位置する。

Description

粒状物の冷却装置及びスクレーパ
 本開示は、粒状物の冷却装置及びスクレーパに関する。
 高温の粒状物を冷却するために環状ホッパを備えた冷却装置が用いられることがある。
 例えば特許文献1には、環状のテーブルと、該テーブルの上方に設けられる環状ホッパと、環状ホッパの内部空間(環状空間)に冷却空気を供給するためのルーバ及び吸引ファンと、を備えた焼結鉱の冷却装置が記載されている。
 環状ホッパは、テーブルとともに鉛直方向に沿った回転軸の周りを回転するように構成されている。環状ホッパが回転している間、高温の焼結鉱が上方から環状ホッパに供給され、テーブル上及び環状ホッパの内部空間に堆積されるようになっている。
 環状ホッパの下方にはスクレーパが設置されている。環状ホッパ及び環状テーブルの回転に伴い、テーブル上に堆積した焼結鉱がスクレーパによって径方向外側に導かれ、環状ホッパの外周側下端とテーブルとの間に形成される開放部を介して、環状ホッパから連続的に排出されるようになっている。このように環状ホッパから焼結鉱が排出されるのに伴い、環状ホッパ内に蓄積された焼結鉱が下降する。
 環状ホッパの内部空間には、環状ホッパの下部に設けられたルーバを介して、外部から冷却空気が取り込まれるようになっている。冷却空気は、吸引ファンに吸引されて、焼結鉱が堆積された環状ホッパの内部空間を上方に向かって流れる。すなわち、高温の焼結鉱は、環状ホッパに供給されてから、環状ホッパの回転に伴い下降して下方から排出されるまでの間、環状ホッパ内を流れる冷却空気によって冷却されるようになっている。
特許第5138245号公報
 ところで、例えば特許文献1に記載されるような、環状ホッパ及びスクレーパを用いた粒状物の冷却装置では、環状ホッパの内部空間における内周側と外周側とで粒状物の下降速度(荷下がり速度)に差が生じることがある。この場合、粒状物の荷下がり速度の差に起因して、ホッパの内部の温度に分布が生じることになる。このように、ホッパ内にて温度分布が生じると、ホッパ内で冷却される粒状物の冷却不足や過冷却が生じ、製品の品質上問題となる場合がある。
 上述の事情に鑑みて、本発明の少なくとも一実施形態は、粒状物の冷却不足又は過冷却を抑制可能な粒状物の冷却装置及びスクレーパを提供することを目的とする。
(1)本発明の少なくとも一実施形態に係る粒状物の冷却装置は、
 中心軸周りに設けられ、粒状物の供給を受けるための受入れ空間を画定する内周壁及び外周壁を有する環状ホッパと、
 前記受入れ空間の下方において前記中心軸周りに設けられた環状テーブルと、
 前記環状ホッパの前記受入れ空間に冷却流体を供給するための冷却部と、
 前記環状ホッパと前記環状テーブルとの間に設けられたスクレーパと、を備え、
 前記スクレーパは、
  前記内周壁と前記外周壁との中間位置よりも径方向内側に位置する第1部分と、
  前記スクレーパのうち前記環状テーブルとの対向範囲内、且つ、前記内周壁と前記外周壁との前記中間位置よりも径方向外側に位置する第2部分と、
を含み、
 前記スクレーパの前記第2部分の下面は、前記第1部分の下面よりも高所に位置する。
 本発明の少なくとも一実施形態によれば、粒状物の冷却不足又は過冷却を抑制可能な粒状物の冷却装置及びスクレーパが提供される。
一実施形態に係る焼結鉱(粒状物)の冷却装置の概略断面図である。 図1に示す冷却装置を平面視した模式図である。 一実施形態に係る環状ホッパの下端部の周辺を示す概略断面図である。 一実施形態に係る環状ホッパの下端部の周辺を示す概略断面図である。 一実施形態に係る環状ホッパの下端部の周辺を示す概略断面図である。 一実施形態に係る環状ホッパの下端部の周辺を示す概略断面図である。 一実施形態に係る環状ホッパの下端部の周辺を示す概略断面図である。 図5に示すスクレーパを平面視した図である。
 以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
 以下、本発明に係る粒状物の冷却装置の一実施形態として、焼結鉱の冷却装置について説明するが、本発明はこれに限定されない。なお、焼結鉱は、銑鉄の原料である鉄鉱石に、前処理として焼結処理を施したものである。焼結鉱の粒径は、一般的に5mm以上200mm以下程度である。
 図1は、一実施形態に係る焼結鉱(粒状物)の冷却装置の概略断面図であり、図2は、図1に示す冷却装置を平面視した模式図である。図1に示すように、冷却装置1は、鉛直方向に沿った中心軸Oの周りに設けられる環状ホッパ2及び環状テーブル12と、冷却部10と、スクレーパ30と、を備えている。
 環状ホッパ2は、中心軸Oの周りに円周状に設けられる内側板3及び外側板4を含み、内側板3の壁面である内周壁3aと、外側板4の壁面である外周壁4aとによって、環状の受入れ空間6が画定される。また、環状ホッパ2の上方には、図示しない焼結炉からの高温の焼結鉱5(粒状物)を、環状ホッパ2の受入れ空間6に供給するための供給シュート27が設けられている。
 環状テーブル12は、環状ホッパ2の受入れ空間6の下方において中心軸O周りに設けられている。環状テーブル12は、内周側端12a及び外周側端12bを有し、外周側端12bは、環状ホッパ2の外周壁4aの下端4bよりも、径方向外側に位置している。環状テーブル12の上には、受入れ空間6に供給された焼結鉱5が堆積するようになっている。
 ここで、環状ホッパ2の外周壁4aの下端4bは、内周壁3aの下端3bよりも上下方向において上方に位置している。すなわち、内周壁3aの下端3bは環状テーブル12の上面に接しているのに対し、外周壁4aの下端4bと、環状テーブル12の上面とは上下方向において離れて位置している。したがって、環状テーブル12上において、焼結鉱5は、外周壁4aの下端4bの下方の空間にて、該下端4bよりも径方向外側の領域にも堆積している。
 環状テーブル12、内側板3及び外側板4は、これらの内周側に設けられた架構21,22によって支持されている。架構21,22は、基礎13上において中心軸Oの位置に設けられた中心軸受14と回転自在に結合されている。
 環状テーブル12の下方の架構21の下面には、複数の円形状のレール15が固設されている。また、基礎13上には、円形状の複数のレール15に対応して、複数の支持ローラ16が円形状に配置されており、環状テーブル12及び環状ホッパ2が、レール15を介して、支持ローラ16上に回転自在に支持されている。支持ローラ16のうち複数個には、駆動モータ17が接続されており、駆動モータ17による支持ローラ16の回転摩擦力により、環状テーブル12及び環状ホッパ2が、中心軸Oの周りを回転するようになっている。
 スクレーパ30は、上下方向において、環状ホッパ2の外周壁4aの下端4bと環状テーブル12との間に設けられている。また、スクレーパ30は、環状テーブル12上に堆積した焼結鉱5(粒状物)を環状テーブル12の径方向外側に導くように構成されている。これにより、環状テーブル12上及び環状ホッパ2の受入れ空間6に堆積された焼結鉱5が冷却装置1の外部に徐々に排出されるようになっている。
 図2に示すように、スクレーパ30の先端面32は、環状ホッパ2の内周壁3aに対向するように設けられる。また、スクレーパ30は、平面視において、環状ホッパ2(又は環状テーブル12)の径方向に対して、環状ホッパ2及び環状テーブル12の回転方向に傾斜して配置されている。平面視において、径方向に対するスクレーパ30の傾斜角度φ(図2参照)は、例えば、15度以上45度以下である。
 なお、本明細書において上下方向とは、鉛直方向に沿った方向であり、中心軸Oの方向と同じ方向である。
 図3は、環状ホッパ2の下端部の周辺を示す概略断面図である。なお、図3の断面図は、径方向及び上下方向を含む断面図である。環状ホッパ2に供給された焼結鉱5は、環状テーブル12上及びホッパの受入れ空間6に堆積する。焼結鉱5は、環状テーブル12上において、外周壁4aの下端4bよりも径方向外側の空間において、安息角α(図3参照)を形成して堆積する。安息角αは、粒状物によって異なる値を有しており、焼結鉱の場合、安息角αは35度程度である。
 径方向と上下方向とを含む断面内において、外周壁4aの下端4bと環状テーブル12の外周側端12bを結ぶ直線L1と、環状テーブル12の上面に沿った直線とのなす角度θ(図3参照)は、環状テーブル12上に堆積される粒状物の安息角αよりも小さく設定される。
 一実施形態では、上述の角度θは15度以上40度以下であってもよい。また、一実施形態では、上述の角度θは20度以上35度以下であってもよい。上述の角度θを40度以下又は35度以下とすることで、環状テーブル12上にて粒状物が安息角αを形成して堆積する空間を十分に確保することができる。また、上述の角度θを15度以上又は20度以上とすることで、環状テーブル12の外径が大きくなりすぎないので、環状テーブル12上でスクレーパ30によりかき取られた粒状物を、ベルトコンベヤ等の移送手段に適切に移動させやすい。
 冷却部10は、環状ホッパ2の受入れ空間6に冷却流体(例えば空気)を供給するように構成される。図1に示す例示的な実施形態では、冷却部10は、環状ホッパ2の受入れ空間6に外部から空気を取り入れるための内側ルーバ7、外側ルーバ8及び中央ルーバ9と、環状ホッパ2の上方に設けられる排気ダクト19に接続される吸引ファン20と、を含む。
 内側ルーバ7及び外側ルーバ8は、環状ホッパ2の内側板3及び外側板4の下部にそれぞれ組み込まれており、環状ホッパ2の外部から空気(冷却流体)を取り込む通路を形成している。中央ルーバ9は、径方向において内側板3と外側板4との中央付近の位置に設けられている。中央ルーバ9には、環状ホッパ2の内部において内側板3と外側板4との間に径方向に沿って延びるように設けられた通風ダクト(不図示)を介して、環状ホッパ2の外部から取り込んだ空気(冷却流体)が供給されるようになっている。
 環状ホッパ2の上部には、環状ホッパ2の上部を覆うように、環状のフード18が設けられており、フード18には、フード18と連通するように、排気ダクト19が接続されている。排気ダクト19の先には、吸引ファン20が接続されており、吸引ファン20によりフード18内の空気を吸引することにより、外部の空気を内側ルーバ7、外側ルーバ8及び中央ルーバ9から取り込み、取り込んだ外部の空気を環状ホッパ2内の焼結鉱5に通過させて、焼結鉱5を冷却するようにしている。焼結鉱5を冷却した後の高温の空気(排ガス)は、排気ダクト19を介して、冷却装置1の外部に排出される。
 吸引ファン20の上流側には、吸引ファン20に吸引される空気に含まれる塵を除塵する除塵機が設けられていてもよい。また、排気ダクト19からの高温の排ガスは、排熱回収をするためのボイラに供給されるようになっていてもよい。
 回転運動をする環状ホッパ2と、静止しているフード18との間からの冷却空気の漏れを抑制するため、シール部23が設けられている。シール部23は、内側板3と外側板4の上部に設けられ、上部に開口を有する溝部24と、フード18に取り付けられた封止板26と、を含む。封止板26は、上方から溝部24に挿入されており、溝部24に所定量の水25を供給し、封止板26が溝部24内の水に浸る状態とすることで、環状ホッパ2の上部とフード18との間が密封されるようになっている。
 上述したように、環状ホッパ2は、環状テーブル12とともに鉛直方向に沿った中心軸Oの周りを回転するように構成されている。環状ホッパ2が回転している間、供給シュート27を介して高温の焼結鉱5が上方から環状ホッパ2の受入れ空間6に供給されるようになっている。このように供給された焼結鉱5は、円周状の層を形成しながら、環状テーブル12上及び環状ホッパ2の受入れ空間6に堆積されるようになっている。
 受入れ空間6には、環状ホッパ2の下部に設けられたルーバ7,8,9を介して冷却空気が取り込まれ、この冷却空気は、排気ダクト19に接続される吸引ファン20に吸引されて、受入れ空間6内を上方に向けて流れる。したがって、受入れ空間6内に堆積された焼結鉱5は、受入れ空間6内を流れる冷却空気によって冷却される。
 環状テーブル12上に堆積した焼結鉱5は、環状ホッパ及び環状テーブルの回転に伴い、環状ホッパ2の下方に設けられたスクレーパ30によって径方向外側に導かれ、環状ホッパ2の外周壁4aの下端4bと環状テーブル12との間に形成される開放部を介して、環状ホッパ2から排出されるようになっている。このように環状ホッパ2から焼結鉱5が排出されるのに伴い、環状ホッパ2内に蓄積された焼結鉱5が下降する。
 すなわち、供給シュート27を介して環状ホッパ2の受入れ空間6に供給された高温の焼結鉱5は、環状ホッパ2及び環状テーブル12の回転に伴い下降して、スクレーパ30によって環状ホッパ2の下方から排出されるまでの間、環状ホッパ2内を流れる冷却空気によって冷却されるようになっている。なお、供給シュート27から環状ホッパ2に供給された焼結鉱5が、スクレーパ30によって環状ホッパ2の下方から排出されるまでの間、環状ホッパ2及び環状テーブル12は数回(例えば、5~15回)回転する。
 次に、幾つかの実施形態に係る冷却装置1及びスクレーパ30について、より具体的に説明する。図4~図7は、それぞれ、一実施形態に係る環状ホッパ2の下端部の周辺(環状テーブル12を含む)を示す概略断面図である。なお、図4~図7の断面図は、スクレーパ30の延在方向(スクレーパ30の中心線の方向)及び上下方向を含む断面図であり、図2のA-A矢視断面図に相当するものである。また、図8は、図5に示すスクレーパ30を平面視した図である。
 図4~図8に示すように、スクレーパ30は、環状ホッパ2の内周壁3aに対向する先端面32と、上下方向において上方に位置する上面34及び下方に位置する下面36と、を有する。上面34及び下面36は、それぞれ、先端面32に接続されている。スクレーパ30の横断面の形状はおよそ矩形である。
 幾つかの実施形態では、例えば図4~図7に示すように、スクレーパ30は、環状ホッパ2の内周壁3aと外周壁4aとの径方向における中間位置Pcよりも径方向内側(図中のRで示す領域)に位置する第1部分101を含むとともに、スクレーパ30のうち環状テーブル12との対向範囲内、且つ、上述の中間位置Pcよりも径方向外側(即ち、図中のR及びRで示す領域)に位置し、下面36の位置が第1部分101よりも高い第2部分102とを含む。すなわち、第1部分101における環状テーブル12と下面36との距離よりも、環状テーブル12と下面36との距離が大きい第2部分102が、上述の対向範囲内且つ中間位置Pcよりも径方向外側に存在する。
 なお、スクレーパ30のうち環状テーブル12との対向範囲内とは、スクレーパ30のうち、下面36が環状テーブル12と対向している部分を意味する。
 図4~図7において、Rは、上述の中間位置Pcよりも径方向内側、かつ、下面36と先端面32との接続部よりも径方向外側の領域である。Rは、上述の中間位置Pcよりも径方向外側、かつ、外周壁4aの下端4bよりも径方向内側の領域である。Rは、外周壁4aの下端4bよりも径方向外側、かつ、環状テーブル12の外周側端12bよりも径方向内側の領域である。
 なお、典型的には、スクレーパ30は、径方向において環状テーブル12の外周側端12bよりも径方向外側まで延びている。スクレーパ30のうち、環状テーブル12との対向範囲内の部分、すなわち、径方向において(又はスクレーパ30の延在方向において)領域R,R,Rに位置する部分は、環状テーブル12上に堆積した焼結鉱5との接触範囲内(接触し得る範囲内)に位置する部分である。一方、スクレーパ30のうち、環状テーブル12の外周側端12bよりも径方向外側の部分は、環状テーブル12上に堆積した焼結鉱5との接触範囲外に位置する部分である。
 従来のスクレーパ、すなわち、上下方向における下面の位置が一定のスクレーパを用いた場合、環状ホッパ内の外周側領域で荷下がり速度が大きく、内周側領域で荷下がり速度が小さくなる傾向がある。この場合、粒状物の環状ホッパ内滞留時間は、外周側領域で比較的短くなり、内周側領域で比較的長くなるので、環状ホッパ内の温度(あるいは環状ホッパ内の焼結鉱の温度)は、外周側領域で比較的高く、内周側領域で比較的低くなる。その結果、外周側領域の焼結鉱が冷却不足となり、あるいは、内周側領域の焼結鉱が過冷却となる等、冷却装置から得られる焼結鉱の品質に問題が生じる場合がある。
 また、環状ホッパ内において、低温であるほど圧力損失が小さくなるため、低温の領域に冷却空気がより流れやすく、高温の領域には冷却空気が流れにくくなる。このため、環状ホッパ内の温度差が拡大してしまい、外周側領域における焼結鉱の冷却不足、及び、内周側領域における焼結鉱の過冷却がさらに進んでしまう場合がある。
 この点、上述の実施形態では、内周壁3aと外周壁4aとの中間位置Pcよりも径方向外側に、第1部分101の下面36よりも高所に下面36を有する第2部分102を設けたので、このような第2部分102を設けない場合に比べて環状ホッパ2内における外周側領域の荷下がり速度を低減しやすくなる。
 より具体的には、上述の実施形態では、第2部分102における下面36の高さを比較的高くすることで、中間位置Pcよりも径方向外側において環状テーブル12上に堆積した焼結鉱5のかき取り量(即ち、焼結鉱5の径方向外側への排出量)を相対的に低減して、環状ホッパ2内における外周側領域の荷下がり速度を相対的に低減することができる。あるいは、上述の実施形態では、第2部分102における下面36の高さを比較的高くすることで、第2部分102と環状テーブル12との間に内周側領域の焼結鉱5の径方向外側への経路(隙間)が確保され、この経路を介して内周側領域の焼結鉱5を径方向外側にスムーズに排出できるとともに、内周側領域から該隙間にやってきた焼結鉱5により、外周側領域における荷下がりを妨げることができるので、環状ホッパ2内における外周側領域の荷下がり速度を相対的に低減することができる。
 したがって、上述の実施形態によれば、環状ホッパ2内の荷下がり速度を外周側領域と内周側領域とで均等化しやすくなり、焼結鉱5の冷却不足及び/又は過冷却を抑制しやすくすることができる。
 図4~図6に示す例示的な実施形態では、上述の第1部分101の上下方向の寸法をHとし、上述の第2部分102の上下方向の寸法をHとしたとき、スクレーパ30は、H>Hを満たす。
 上述の実施形態では、中間位置Pcよりも径方向外側に設けられ、下面36の位置が比較的高い第2部分102の上下方向の寸法Hが、第1部分101の上下方向の寸法Hよりも小さい。したがって、中間位置Pcよりも径方向外側の位置におけるスクレーパ30によるかき取り量を低減することができるため、環状ホッパ2内における外周側領域の荷下がり速度をより確実に低減することができる。よって、環状ホッパ2内の荷下がり速度を外周側領域と内周側領域とで均等化することができ、焼結鉱5の冷却不足及び/又は過冷却を抑制することができる。
 幾つかの実施形態では、スクレーパ30は、径方向における中間位置Pcと内周壁3aの下端3bとの間の領域(図中のRの領域)における上下方向の寸法の平均値をHin_aveとし、第2部分102の上下方向の寸法をHとしたとき、Hin_ave>Hを満たす。なお、径方向における中間位置Pcと内周壁3aの下端3bとの間の領域(図中のRの領域)には、上述の第1部分101が含まれる。
 この場合、中間位置Pcよりも径方向外側に設けられ、下面36の位置が比較的高い第2部分102の上下方向の寸法Hを、径方向における中間位置Pcと内周壁3aの下端3bとの間の領域Rにおける上下方向の寸法の平均値Hin_aveよりも小さくしたので、環状ホッパ2内における外周側領域の荷下がり速度を、より確実に低減することができる。よって、環状ホッパ2内の荷下がり速度を外周側領域と内周側領域とで均等化することができ、焼結鉱5の冷却不足及び/又は過冷却を抑制することができる。
 幾つかの実施形態では、スクレーパ30は、径方向における中間位置Pcと内周壁3aの下端3bとの間の領域(図中のRの領域)における上下方向の寸法の平均値をHin_aveとし、径方向における中間位置Pcと外周壁4aの下端4bとの間の領域(図中のRの領域)における上下方向の寸法の平均値をHout_aveとしたとき、Hin_ave>Hout_aveを満たす。なお、径方向における中間位置Pcと外周壁4aの下端4bとの間の領域(図中のRの領域)には、上述の第2部分102が含まれる。
 この場合、径方向における中間位置Pcと外周壁4aの下端4bとの間の領域Rにおける上下方向の寸法の平均値Hout_aveを、径方向における中間位置Pcと内周壁3aの下端3bとの間の領域Rにおける上下方向の寸法の平均値Hin_aveよりも小さくしたので、環状ホッパ2内における外周側領域の荷下がり速度をより確実に低減することができる。よって、環状ホッパ2内の荷下がり速度を外周側領域と内周側領域とで均等化することができ、焼結鉱5の冷却不足及び/又は過冷却を抑制することができる。
 図4~図6に示す例示的な実施形態では、スクレーパ30は、上述の第1部分101を含み、環状テーブル12に面した平坦な下面36Aを有する先端部103と、上述の第2部分102を含み、先端部103の径方向外側にて該先端部103に隣接して設けられ、該先端部103よりも、環状テーブル12と下面36Bとの間の距離が大きい隣接部104と、を含む。ここで、先端部103の下面36Aと環状テーブル12との距離をgとし、隣接部104の下面36Bと環状テーブル12との距離をgとしたとき、g<gが成立する。
 あるいは、上述のスクレーパ30は、平坦な下面36Aを有する先端部103と、スクレーパ30の延在方向(スクレーパ30の中心線の方向)において先端部103に隣接し、先端部103の平坦な下面36Aよりも高所に位置する下面36Bを有する隣接部104と、を含む。
 上述の先端部103および隣接部104は、スクレーパ30のうち焼結鉱5との接触範囲内に位置する。すなわち、スクレーパ30の先端部103及び隣接部104は、冷却装置1において、下面36が環状テーブル12に対向するように設置される。
 上述の実施形態によれば、先端部103に隣接する隣接部104は、先端部103の平坦な下面36Aよりも高所に位置する下面36Bを有するので、環状テーブル12との対向範囲内(即ち、R~Rの領域)に亘って、環状テーブル12との距離がほぼ等しく且つ平坦な下面を有する場合に比べて、環状ホッパ2内における外周側領域の荷下がり速度を低減しやすくなる。また、上述の実施形態では、スクレーパ30の先端部103が環状テーブル12に面した平坦な下面36Aを有するので、該先端部103による内周側領域の焼結鉱5のかき取り量を確保しやすくなるため、内周側領域の荷下がりを促進しやすい。よって、環状ホッパ2内の荷下がり速度を外周側領域と内周側領域とでより均等化しやすくなり、焼結鉱5の冷却不足及び/又は過冷却を抑制することができる。
 なお、スクレーパ30の下面36と環状テーブル12との距離がほぼ等しいとは、当該距離の最大値と最小値との差の、当該距離の最大値に対する比が、0%以上10%以下であることを意味する。
 幾つかの実施形態では、例えば図4及び図5に示すように、先端部103と隣接部104との境界(図中にて鎖線Lで示す)は、径方向において、中間位置Pcと外周壁4aの下端4bとの間に位置する。なお、図4に示す実施形態では、先端部103と隣接部104との境界Lは、径方向において、中間位置Pcと重なるように位置している。
 この場合、平坦な下面36Aを有する先端部103は、径方向において中間位置Pcと同じかそれよりも径方向外側に至るまで延びているので、先端部103の長さを十分に確保することができ、これにより内周側領域の焼結鉱5をよりかき取りやすくなる。よって、環状ホッパ2内の荷下がり速度を外周側領域と内周側領域とでより均等化しやすくなり、焼結鉱5の冷却不足及び/又は過冷却を抑制することができる。
 なお、図5に示す実施形態では、先端部103と隣接部104との境界Lは、径方向において中間位置Pcよりも径方向外側に位置する。そして、隣接部104に含まれる第2部分102は、上述の境界Lよりもさらに径方向外側に位置する。また、既に述べたように、先端部103に含まれる第1部分101は、中間位置Pcよりも径方向内側に位置する。したがって、図5に示す実施形態では、中間位置Pcよりも径方向外側かつ境界Lよりも径方向内側の位置範囲内には、第1部分101部分も第2部分102も存在しない。
 また、特に図示しないが、図5の変形例として、先端部103と隣接部104との境界Lが中間位置Pcよりも径方向内側に位置し、隣接部104の上面34及び下面36が環状テーブル12の上面とほぼ平行に延在している場合にも、同様の説明が適用される。
 すなわち、上述の変形例では、先端部103と隣接部104との境界Lは、径方向において中間位置Pcよりも径方向内側に位置する。そして、先端部103に含まれる第1部分101は、上述の境界Lよりもさらに径方向内側に位置する。また、既に述べたように、隣接部104に含まれる第2部分102は、中間位置Pcよりも径方向外側に位置する。したがって、上述の変形例では、中間位置Pcよりも径方向内側かつ境界Lよりも径方向外側の位置範囲内には、第1部分101部分も第2部分102も存在しない。
 幾つかの実施形態では、中間位置Pcと外周壁4aの下端4bとの間の径方向における距離をW(図8参照)としたとき、先端部103と隣接部104との境界Lと、外周壁4aの下端4bとの径方向における距離W(図8参照)が、0.2×W以上W以下である。
 この場合、先端部103と隣接部104との境界Lと、外周壁4aの下端4bとの径方向における距離Wを0.2×W以上としたので、第2部分102を含む隣接部104の長さを十分確保することができ、これにより外周側領域での焼結鉱5のかき取り量を十分に少なくして、環状ホッパ2内における外周側領域の荷下がりを抑制しやすくなる。また、上述の距離WをW以下としたので、先端部103の長さを確保することができ、これにより内周側領域での焼結鉱5のかき取り量を確保しやすくなる。よって、上述の実施形態によれば、環状ホッパ2内の荷下がり速度を外周側領域と内周側領域とで効果的に均等化することができ、焼結鉱5の冷却不足及び/又は過冷却を抑制することができる。
 幾つかの実施形態では、上述の距離Wが、0.2×W以上0.5×W以下であってもよい。
 環状ホッパ2内においては、径方向における外周壁4aの下端4bからの距離が0.5×W程度の領域に堆積した焼結鉱5が、環状テーブル12上におけるホッパ外領域(径方向における外周壁4aの下端4bと環状テーブル12の外周側端12bとの間の領域;図中のRに相当する領域)に堆積することになる。この点、上述の距離Wを0.5×W以下とすることで、ホッパ外領域に堆積することになる焼結鉱5の荷下がりを抑制しやすくなる。よって、環状ホッパ2内の荷下がり速度を外周側領域と内周側領域とでより効果的に均等化することができ、焼結鉱5の冷却不足及び/又は過冷却を抑制することができる。
 なお、幾つかの実施形態では、例えば図7に示すように、先端部103と隣接部104との境界Lは、径方向において、中間位置Pcと内周壁3aの下端3bとの間に位置していてもよい。
 幾つかの実施形態では、スクレーパ30の隣接部104は、少なくとも、径方向において、外周壁4aの下端4bと環状テーブル12の外周側端12bとの間の領域(即ち図中の領域R)のうち30%以上の範囲にわたって延在する。
 なお、図4~図6に示す例示的な実施形態では、スクレーパ30の隣接部104は、径方向において、外周壁4aの下端4bと環状テーブル12の外周側端12bとの間の領域(即ち図中の領域R)の全域(100%の範囲)にわたって延在している。
 スクレーパ3の隣接部104が径方向において上述の領域Rの一部の範囲に延在する場合(すなわち、領域R3のうち100%未満の範囲に亘って延在する場合)、隣接部104の径方向における位置は特に限定されない。例えば、隣接部103は、領域Rのうち、最も径方向外側の領域(径方向において環状テーブル12の外周側端12bを含む位置範囲)に位置していてもよい。あるいは、隣接部103は、領域Rのうち、最も径方向内側の領域(径方向において外周壁4aの下端4bを含む位置範囲)に位置していてもよい。あるいは、隣接部103は、領域Rのうち、径方向において、外周壁4aの下端4bと、環状テーブル12の外周側端12bとの間の位置範囲に位置していてもよい。
 上下方向における外周壁4aの下端4bと環状テーブル12との間の空間には、ホッパ外領域(径方向における外周壁4aの下端4bと環状テーブル12の外周側端12bとの間の領域;領域Rに対応する領域)にて環状テーブル12の上面との間に安息角α(図3参照)を形成するように焼結鉱5が堆積する。この点、上述の実施形態では、下面36の位置が先端部103よりも高い隣接部104が、ホッパ外領域のうち30%以上の範囲にわたって延在するので、ホッパ外領域に堆積した焼結鉱5のかき取り量を低減することができ、これにより、環状ホッパ2内の外周側領域における荷下がり速度を効果的に低減することができる。よって、環状ホッパ2内の荷下がり速度を外周側領域と内周側領域とでより効果的に均等化することができ、粒状物の冷却不足及び/又は過冷却を抑制することができる。
 幾つかの実施形態では、例えば図6に示すように、スクレーパ30の隣接部104は、スクレーパ30の下面36と環状テーブル12の上面との間の上下方向における距離gが、径方向外側に向かうに従い大きくなる部分を有する。
 上述の実施形態では、隣接部104の下面36Bと環状テーブル12の上面との間の上下方向の距離gが、径方向外側に向かうに従い大きくなる部分を有する。すなわち、スクレーパ30の隣接部104において、径方向外側に向かうにしたがい、焼結鉱5のかき取り量を減少させやすくなるので、これにより、環状ホッパ2内の外周側領域における荷下がり速度を効果的に低減することができる。よって、環状ホッパ2内の荷下がり速度を外周側領域と内周側領域とでより効果的に均等化することができ、焼結鉱5の冷却不足及び/又は過冷却を抑制することができる。
 幾つかの実施形態では、例えば図6に示すように、径方向外側に向かうに従い上述の距離gが大きくなる部分は、少なくとも、外周壁4aの下端4bよりも径方向外側の領域(図中の領域R)内に存在する。なお、図6に示す実施形態では、径方向外側に向かうに従い上述の距離gが大きくなる部分は、径方向における中間位置Pcと外周壁4aの下端4bとの間の領域R及び上述の領域Rにわたって存在している。
 外周壁4aの下端4bよりも径方向外側のホッパ外領域に堆積する焼結鉱5の断面積は、上下方向において上方に向かうにつれて小さくなる。この点、上述の実施形態では、スクレーパ30のうち、ホッパ外領域に存在する部分において、径方向外側に向かうにしたがい下面36Bと環状テーブル12との距離gが大きくなる部分を有するので、ホッパ外領域における焼結鉱5のかき取り量を効果的に低減することができる。これにより、環状ホッパ2内の外周側領域における荷下がり速度をより効果的に低減することができ、環状ホッパ2内の荷下がり速度を外周側領域と内周側領域とでより効果的に均等化することができる。
 幾つかの実施形態では、例えば図6又は図7に示すように、外周壁4aの下端4bの径方向位置(図中にてUで示す位置)におけるスクレーパ30の上面34は、中間位置Pc(図中にてUで示す位置)におけるスクレーパ30の上面34よりも上方に位置する。
 この場合、外周壁4aの下端4bの径方向におけるスクレーパ30の上面34は、中間位置Pcにおけるスクレーパ30の上面34よりも上方に位置するので、ホッパ外領域において、堆積した焼結鉱5のかき取り量を低減しやすくなる。よって、環状ホッパ2の内部における外周側領域の荷下がり速度を効果的に低減することができる。
 幾つかの実施形態では、例えば図8に示すように、環状ホッパ2の周方向における第2部分102の幅Dは、第1部分101の周方向における幅Dよりも大きい。
 上述の実施形態では、第2部分102の周方向における幅Dを比較的大きくしたので、例えば図5~図7に示すように第2部分102における上下方向の寸法Hを狭くした場合であっても、第2部分102の強度を確保することができる。
 幾つかの実施形態では、スクレーパ30の延在方向と上下方向とを含む断面内において、スクレーパ30のうち中間位置Pcよりも径方向内側の領域の断面積Ain(図5~図7参照)と、スクレーパ30のうち中間位置Pcよりも径方向外側の領域のうち、外周壁4aの下端4bと環状テーブル12の外周側端12bを結ぶ直線Lよりも径方向内側の部分の断面積Aout(図5~図7参照)との比Ain/Aoutは、2/3以上3/2以下である。
 上述の実施形態では、環状ホッパ2の下方にて環状テーブル12上に堆積した焼結鉱5と、スクレーパ30とが接触し得る部分の断面積のうち、中間位置Pcよりも径方向内側の部分の断面積Ainと中間位置Pcよりも径方向外側の部分の断面積Aoutとの比Ain/Aoutを2/3以上としたので、環状ホッパ2内の内周側領域における焼結鉱5のかき取り量を確保しやすくなる。また、上記比Ain/Aoutを3/2以下としたので、環状ホッパ2内の外周側領域における焼結鉱5のかき取り量を少なくして、環状ホッパ2内における外周側領域の荷下がりを抑制しやすくなる。よって、環状ホッパ2内の荷下がり速度を外周側領域と内周側領域とで効果的に均等化することができ、焼結鉱5の冷却不足及び/又は過冷却を抑制することができる。
 幾つかの実施形態では、例えば図8に示すように、スクレーパ30の先端部103は、平面視においてスクレーパ30の延在方向(スクレーパ30の中心線の方向)に対して斜め方向に沿った先端面32を有している。また、スクレーパ30の先端部103において、先端面32が平坦な下面36Aに接続されている。
 この場合、先端部103の先端面32は、平面視においてスクレーパ30の延在方向に対して斜め方向に沿って延在するとともに、平坦な下面36Aに接続されているので、この先端面32を環状ホッパ2の内周壁3aに沿うように設置することで、環状テーブル12に堆積した粒状物を径方向外側に効果的に導くとともに、環状ホッパ2の内周側領域に堆積した焼結鉱5を確実にかき取ることができる。よって、環状ホッパ2内の荷下がり速度を外周側領域と内周側領域とで効果的に均等化することができ、焼結鉱5の冷却不足及び/又は過冷却を抑制することができる。
 なお、平面視において、スクレーパ30の先端面32に直交する方向(径方向に相当する方向)と、スクレーパ30の延在方向(スクレーパ30の中心線の方向)とがなす角度φ(図8参照)が、15度以上45度以下であってもよい。角度φをこの範囲内とすることで、スクレーパ30を冷却装置1に設置したときに、環状テーブル12に堆積した粒状物を径方向外側に効果的に導くことができる。
 以下、幾つかの実施形態に係る粒状物の冷却装置及びスクレーパについて概要を記載する。
(1)本発明の少なくとも一実施形態に係る粒状物の冷却装置は、
 中心軸周りに設けられ、粒状物の供給を受けるための受入れ空間を画定する内周壁及び外周壁を有する環状ホッパと、
 前記受入れ空間の下方において前記中心軸周りに設けられた環状テーブルと、
 前記環状ホッパの前記受入れ空間に冷却流体を供給するための冷却部と、
 前記環状ホッパと前記環状テーブルとの間に設けられたスクレーパと、を備え、
 前記スクレーパは、
  前記内周壁と前記外周壁との中間位置よりも径方向内側に位置する第1部分と、
  前記スクレーパのうち前記環状テーブルとの対向範囲内、且つ、前記内周壁と前記外周壁との前記中間位置よりも径方向外側に位置する第2部分と、
を含み、
 前記スクレーパの前記第2部分の下面は、前記第1部分の下面よりも高所に位置する。
 従来のスクレーパ、すなわち、上下方向における下面の位置が一定のスクレーパを用いた場合、環状ホッパ内の外周側領域で荷下がり速度が大きく、内周側領域で荷下がり速度が小さくなる傾向がある。この場合、粒状物の環状ホッパ内滞留時間は、外周側領域で比較的短くなり、内周側領域で比較的長くなるので、環状ホッパ内の温度(あるいは環状ホッパ内の粒状物の温度)は、外周側領域で比較的高く、内周側領域で比較的低くなる。
 この点、上記(1)の構成によれば、内周壁と外周壁との中間位置よりも径方向外側に、第1部分の下面よりも高所に下面を有する第2部分を設けたので、第2部分を設けない場合に比べて環状ホッパ内における外周側領域の荷下がり速度を低減しやすくなる。
 より具体的には、上記(1)の構成により、上下方向における下面の位置が一定の従来のスクレーパに比べて、中間位置よりも径方向外側における粒状物のかき取り量(即ち、粒状物の径方向外側への排出量)を相対的に低減して、環状ホッパ内における外周側領域の荷下がり速度を低減することができる。あるいは、上記(1)の構成により、比較的高所に下面を有する第2部分によって、第2部分と環状テーブルとの間に内周側領域の粒状物の径方向外側への経路(隙間)が確保され、この経路を介して内周側領域の粒状物を径方向外側にスムーズに排出できるとともに、内周側領域から該隙間にやってきた粒状物により、外周側領域における荷下がりを妨げることができるので、外周側領域の荷下がり速度を相対的に低減することができる。
 したがって、上記(1)の構成によれば、環状ホッパ内の荷下がり速度を外周側領域と内周側領域とで均等化しやすくなり、粒状物の冷却不足及び/又は過冷却を抑制しやすくすることができる。
(2)幾つかの実施形態では、上記(1)の構成において、
 前記スクレーパは、前記第1部分の上下方向の寸法をHとし、前記第2部分の上下方向の寸法をHとしたとき、H>Hを満たす。
 上記(2)の構成によれば、中間位置よりも径方向外側に設けられ、下面の位置が比較的高い第2部分の上下方向の寸法Hを、第1部分の上下方向の寸法Hよりも小さくしたので、環状ホッパ内における外周側領域の荷下がり速度をより確実に低減することができる。よって、環状ホッパ内の荷下がり速度を外周側領域と内周側領域とで均等化することができ、粒状物の冷却不足及び/又は過冷却を抑制することができる。
(3)幾つかの実施形態では、上記(1)又は(2)の構成において、
 前記スクレーパは、径方向における前記中間位置と前記内周壁の下端との間の領域における上下方向の寸法の平均値をHin_aveとし、前記第2部分の上下方向の寸法をHとしたとき、Hin_ave>Hを満たす。
 上記(3)の構成によれば、中間位置よりも径方向外側に設けられ、下面の位置が比較的高い第2部分の上下方向の寸法Hを、径方向における中間位置と内周壁の下端との間の領域における上下方向の寸法の平均値Hin_aveよりも小さくしたので、環状ホッパ内における外周側領域の荷下がり速度をより確実に低減することができる。よって、環状ホッパ内の荷下がり速度を外周側領域と内周側領域とで均等化することができ、粒状物の冷却不足及び/又は過冷却を抑制することができる。
(4)幾つかの実施形態では、上記(1)乃至(3)の何れかの構成において、
 前記スクレーパは、径方向における前記中間位置と前記内周壁の下端との間の領域における上下方向の寸法の平均値をHin_aveとし、径方向における前記中間位置と前記外周壁の下端との間の領域における上下方向の寸法の平均値をHout_aveとしたとき、Hin_ave>Hout_aveを満たす。
 上記(4)の構成によれば、径方向における中間位置と外周壁の下端との間の領域における上下方向の寸法の平均値Hout_aveを、径方向における中間位置と内周壁の下端との間の領域における上下方向の寸法の平均値Hin_aveよりも小さくしたので、環状ホッパ内における外周側領域の荷下がり速度をより確実に低減することができる。よって、環状ホッパ内の荷下がり速度を外周側領域と内周側領域とで均等化することができ、粒状物の冷却不足及び/又は過冷却を抑制することができる。
(5)幾つかの実施形態では、上記(1)乃至(4)の何れかの構成において、
 前記スクレーパは、
  前記第1部分を含み、前記環状テーブルに面した平坦な下面を有する先端部と、
  前記第2部分を含み、前記先端部の径方向外側にて該先端部に隣接して設けられ、該先端部よりも、前記環状テーブルと前記下面との間の距離が大きい隣接部と、を含む。
 上記(5)の構成によれば、第1部分を含むスクレーパの先端部が環状テーブルに面した平坦な下面を有するので、該先端部による内周側領域の粒状物のかき取り量を確保しやすくなるため、内周側領域の荷下がりを促進しやすい。よって、環状ホッパ内の荷下がり速度を外周側領域と内周側領域とでより均等化しやすくなり、粒状物の冷却不足及び/又は過冷却を抑制することができる。
(6)幾つかの実施形態では、上記(5)の構成において、
 前記先端部と前記隣接部との境界は、径方向において、前記中間位置と前記外周壁の下端との間に位置する。
 上記(6)の構成によれば、平坦な下面を有する先端部は、径方向において中間位置と同じかそれよりも径方向外側に至るまで延びているので、先端部の長さを十分に確保することができ、これにより内周側領域の粒状物をよりかき取りやすくなる。よって、環状ホッパ内の荷下がり速度を外周側領域と内周側領域とでより均等化しやすくなり、粒状物の冷却不足及び/又は過冷却を抑制することができる。
(7)幾つかの実施形態では、上記(6)の構成において、
 前記中間位置と前記外周壁の前記下端との間の径方向における距離をWとしたとき、前記境界と、前記外周壁の前記下端との径方向における距離が、0.2×W以上W以下である。
 上記(7)の構成によれば、先端部と隣接部との境界と、外周壁の下端との径方向における距離を0.2×W以上としたので、第2部分を含む隣接部の長さを十分確保することができ、これにより外周側領域での粒状物のかき取り量を十分に少なくして、環状ホッパ内における外周側領域の荷下がりを抑制しやすくなる。また、上述の距離をW以下としたので、先端部の長さを確保することができ、これにより内周側領域での粒状物のかき取り量を確保しやすくなる。よって、上記(7)の構成によれば、環状ホッパ内の荷下がり速度を外周側領域と内周側領域とで効果的に均等化することができ、粒状物の冷却不足及び/又は過冷却を抑制することができる。
(8)幾つかの実施形態では、上記(5)乃至(7)の何れかの構成において、
 前記スクレーパの前記隣接部は、少なくとも、径方向において、前記外周壁の前記下端と前記環状テーブルの外周側端との間の領域のうち30%以上の範囲にわたって延在する。
 上下方向における外周壁下端と環状テーブルとの間の空間には、径方向における外周壁の下端と環状テーブルの外周側端との間の領域(以下、「ホッパ外領域」ともいう。)にて環状テーブルの上面との間に安息角を形成するように粒状物が堆積する。
 この点、上記(8)の構成によれば、下面の位置が先端部よりも高い隣接部が、ホッパ外領域のうち30%以上の範囲にわたって延在するので、ホッパ外領域に堆積した粒状物のかき取り量を低減することができ、これにより、環状ホッパ内の外周側領域における荷下がり速度を効果的に低減することができる。よって、環状ホッパ内の荷下がり速度を外周側領域と内周側領域とでより効果的に均等化することができ、粒状物の冷却不足及び/又は過冷却を抑制することができる。
(9)幾つかの実施形態では、上記(5)乃至(8)の何れかの構成において、
 前記スクレーパの前記隣接部は、前記スクレーパの下面と前記環状テーブルの上面との間の上下方向における距離が、径方向外側に向かうに従い大きくなる部分を有する。
 上記(9)の構成によれば、隣接部の下面と環状テーブルの上面との間の上下方向の距離が、径方向外側に向かうに従い大きくなる部分を有する。すなわち、スクレーパの隣接部において、径方向外側に向かうにしたがい、粒状物のかき取り量を減少させやすくなるので、これにより、環状ホッパ内の外周側領域における荷下がり速度を効果的に低減することができる。よって、環状ホッパ内の荷下がり速度を外周側領域と内周側領域とでより効果的に均等化することができ、粒状物の冷却不足及び/又は過冷却を抑制することができる。
(10)幾つかの実施形態では、上記(1)乃至(9)の何れかの構成において、
 前記外周壁の下端の径方向位置における前記スクレーパの上面は、前記中間位置における前記スクレーパの前記上面よりも上方に位置する。
 上記(10)の構成によれば、外周壁の下端の径方向におけるスクレーパの上面は、中間位置におけるスクレーパの上面よりも上方に位置するので、ホッパ外領域において、堆積した粒状物のかき取り量を低減しやすくなる。よって、環状ホッパ内部における外周側領域の荷下がり速度を効果的に低減することができる。
(11)幾つかの実施形態では、上記(1)乃至(10)の何れかの構成において、
 前記環状ホッパの周方向における前記第2部分の幅は、前記第1部分の前記周方向における幅よりも大きい。
 上記(11)の構成によれば、第2部分の周方向における幅を比較的大きくしたので、第2部分の上下方向の寸法を比較的狭くしながら、第2部分の強度を確保することができる。
(12)幾つかの実施形態では、上記(1)乃至(11)の何れかの構成において、
 前記スクレーパの延在方向と上下方向とを含む断面内において、前記スクレーパのうち前記中間位置よりも径方向内側の領域の断面積Ainと、前記スクレーパのうち前記中間位置よりも径方向外側の領域のうち、前記外周壁の下端と前記環状テーブルの外周側端を結ぶ直線よりも径方向内側の部分の断面積Aoutとの比Ain/Aoutは、2/3以上3/2以下である。
 上記(12)の構成によれば、環状ホッパの下方にてテーブル上に堆積した粒状物と、スクレーパとが接触し得る部分の断面積のうち、中間位置よりも径方向内側の部分の断面積Ainと中間位置よりも径方向外側の部分の断面積Aoutとの比Ain/Aoutを2/3以上としたので、内周側領域における粒状物のかき取り量を確保しやすくなる。また、上記比Ain/Aoutを3/2以下としたので、外周側領域における粒状物のかき取り量を少なくして、環状ホッパ内における外周側領域の荷下がりを抑制しやすくなる。よって、上記(12)の構成によれば、環状ホッパ内の荷下がり速度を外周側領域と内周側領域とで効果的に均等化することができ、粒状物の冷却不足及び/又は過冷却を抑制することができる。
(13)幾つかの実施形態では、上記(1)乃至(12)の何れかの構成において、
 径方向と上下方向とを含む断面内において、前記外周壁の下端と前記環状テーブルの外周側端を結ぶ直線と、前記環状テーブルの上面に沿った直線とのなす角度が15度以上40度以下である。
 上記(13)の構成によれば、ホッパ外領域において、環状テーブル上に、安息角を形成するように粒状物が堆積される。よって、上述のスクレーパにより、中間位置よりも径方向外側における粒状物のかき取り量を相対的に低減することで、環状ホッパ内における外周側領域の荷下がり速度を効果的に低減することができる。したがって、環状ホッパ内の荷下がり速度を外周側領域と内周側領域とで均等化しやすくなり、粒状物の冷却不足及び/又は過冷却を抑制しやすくすることができる。
(14)本発明の少なくとも一実施形態に係るスクレーパは、
 粒状物の冷却装置の環状テーブル上に堆積した粒状物を前記環状テーブルの径方向外側に導くためのスクレーパであって、
 平坦な下面を有する先端部と、
 前記スクレーパの延在方向において前記先端部に隣接し、前記先端部の前記平坦な下面よりも高所に位置する下面を有する隣接部と、
を備える。
 上記(14)の構成によれば、先端部に隣接する隣接部は、先端部の平坦な下面よりも高所に位置する下面を有するので、環状テーブルとの対向範囲内に亘って平坦な下面を有する場合に比べて、環状ホッパ内における外周側領域の荷下がり速度を低減しやすくなる。よって、環状ホッパ内の荷下がり速度を外周側領域と内周側領域とでより均等化しやすくなり、粒状物の冷却不足及び/又は過冷却を抑制することができる。
(15)幾つかの実施形態では、上記(14)の構成において、
 前記先端部および前記隣接部は、前記スクレーパのうち前記粒状物との接触範囲内に位置する。
 上記(15)の構成によれば、先端部及び隣接部がスクレーパのうち粒状物との接触範囲内に位置するので、環状ホッパ内における外周側領域の荷下がり速度をより確実に低減することができる。よって、環状ホッパ内の荷下がり速度を外周側領域と内周側領域とでより均等化することができ、粒状物の冷却不足及び/又は過冷却を抑制することができる。
(16)幾つかの実施形態では、上記(14)又は(15)の構成において、
 前記先端部は、平面視において前記スクレーパの前記延在方向に対して斜め方向に沿った先端面を有し、
 前記先端部において、前記先端面が前記平坦な下面に接続されている。
 上記(16)の構成によれば、先端部の先端面は、平面視においてスクレーパの延在方向に対して斜め方向に沿って延在するとともに、平坦な下面に接続されているので、この先端面を環状ホッパの内周壁に沿うように設置することで、環状テーブルに堆積した粒状物を径方向外側に効果的に導くとともに、環状ホッパの内周側に堆積した粒状物を確実にかき取ることができる。よって、環状ホッパ内の荷下がり速度を外周側領域と内周側領域とで効果的に均等化することができ、粒状物の冷却不足及び/又は過冷却を抑制することができる。
 以上、本発明の実施形態について説明したが、本発明は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。
 本明細書において、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
 例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
 また、本明細書において、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
 また、本明細書において、一の構成要素を「備える」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
1        冷却装置
2        環状ホッパ
3        内側板
3a       内周壁
3b       下端
4        外側板
4a       外周壁
4b       下端
5        焼結鉱
6        受入れ空間
7        内側ルーバ
8        外側ルーバ
9        中央ルーバ
10       冷却部
12       環状テーブル
12a      内周側端
12b      外周側端
13       基礎
14       中心軸受
15       レール
16       支持ローラ
17       駆動モータ
18       フード
19       排気ダクト
20       吸引ファン
21       架構
22       架構
23       シール部
24       溝部
25       水
26       封止板
27       供給シュート
29       コンベヤ
30       スクレーパ
32       先端面
34       上面
36,36A,36B 下面
101      第1部分
102      第2部分
103      先端部
104      隣接部
LB       境界
O        中心軸
Pc       中間位置

Claims (16)

  1.  中心軸周りに設けられ、粒状物の供給を受けるための受入れ空間を画定する内周壁及び外周壁を有する環状ホッパと、
     前記受入れ空間の下方において前記中心軸周りに設けられた環状テーブルと、
     前記環状ホッパの前記受入れ空間に冷却流体を供給するための冷却部と、
     前記環状ホッパと前記環状テーブルとの間に設けられたスクレーパと、を備え、
     前記スクレーパは、
      前記内周壁と前記外周壁との中間位置よりも径方向内側に位置する第1部分と、
      前記スクレーパのうち前記環状テーブルとの対向範囲内、且つ、前記内周壁と前記外周壁との前記中間位置よりも径方向外側に位置する第2部分と、
    を含み、
     前記スクレーパの前記第2部分の下面は、前記第1部分の下面よりも高所に位置する
    粒状物の冷却装置。
  2.  前記スクレーパは、前記第1部分の上下方向の寸法をHとし、前記第2部分の上下方向の寸法をHとしたとき、H>Hを満たす
    請求項1に記載の粒状物の冷却装置。
  3.  前記スクレーパは、径方向における前記中間位置と前記内周壁の下端との間の領域における上下方向の寸法の平均値をHin_aveとし、前記第2部分の上下方向の寸法をHとしたとき、Hin_ave>Hを満たす
    請求項1又は2に記載の粒状物の冷却装置。
  4.  前記スクレーパは、径方向における前記中間位置と前記内周壁の下端との間の領域における上下方向の寸法の平均値をHin_aveとし、径方向における前記中間位置と前記外周壁の下端との間の領域における上下方向の寸法の平均値をHout_aveとしたとき、Hin_ave>Hout_aveを満たす
    請求項1乃至3の何れか一項に記載の粒状物の冷却装置。
  5.  前記スクレーパは、
      前記第1部分を含み、前記環状テーブルに面した平坦な下面を有する先端部と、
      前記第2部分を含み、前記先端部の径方向外側にて該先端部に隣接して設けられ、該先端部よりも、前記環状テーブルと前記下面との間の距離が大きい隣接部と、を含む
    請求項1乃至4の何れか一項に記載の粒状物の冷却装置。
  6.  前記先端部と前記隣接部との境界は、径方向において、前記中間位置と前記外周壁の下端との間に位置する
    請求項5に記載の粒状物の冷却装置。
  7.  前記中間位置と前記外周壁の前記下端との間の径方向における距離をWとしたとき、前記境界と、前記外周壁の前記下端との径方向における距離が、0.2×W以上W以下である
    請求項6に記載の粒状物の冷却装置。
  8.  前記スクレーパの前記隣接部は、少なくとも、径方向において、前記外周壁の前記下端と前記環状テーブルの外周側端との間の領域のうち30%以上の範囲にわたって延在する
    請求項5乃至7の何れか一項に記載の粒状物の冷却装置。
  9.  前記スクレーパの前記隣接部は、前記スクレーパの下面と前記環状テーブルの上面との間の上下方向における距離が、径方向外側に向かうに従い大きくなる部分を有する
    請求項5乃至8の何れか一項に記載の粒状物の冷却装置。
  10.  前記外周壁の下端の径方向位置における前記スクレーパの上面は、前記中間位置における前記スクレーパの前記上面よりも上方に位置する
    請求項1乃至9の何れか一項に記載の粒状物の冷却装置。
  11.  前記環状ホッパの周方向における前記第2部分の幅は、前記第1部分の前記周方向における幅よりも大きい
    請求項1乃至10の何れか一項に記載の粒状物の冷却装置。
  12.  前記スクレーパの延在方向と上下方向とを含む断面内において、前記スクレーパのうち前記中間位置よりも径方向内側の領域の断面積Ainと、前記スクレーパのうち前記中間位置よりも径方向外側の領域のうち、前記外周壁の下端と前記環状テーブルの外周側端を結ぶ直線よりも径方向内側の部分の断面積Aoutとの比Ain/Aoutは、2/3以上3/2以下である
    請求項1乃至11の何れか一項に記載の粒状物の冷却装置。
  13.  径方向と上下方向とを含む断面内において、前記外周壁の下端と前記環状テーブルの外周側端を結ぶ直線と、前記環状テーブルの上面に沿った直線とのなす角度が15度以上40度以下である
    請求項1乃至12の何れか一項に記載の粒状物の冷却装置。
  14.  粒状物の冷却装置の環状テーブル上に堆積した粒状物を前記環状テーブルの径方向外側に導くためのスクレーパであって、
     平坦な下面を有する先端部と、
     前記スクレーパの延在方向において前記先端部に隣接し、前記先端部の前記平坦な下面よりも高所に位置する下面を有する隣接部と、
    を備えるスクレーパ。
  15.  前記先端部および前記隣接部は、前記スクレーパのうち前記粒状物との接触範囲内に位置する
    請求項14に記載のスクレーパ。
  16.  前記先端部は、平面視において前記スクレーパの前記延在方向に対して斜め方向に沿った先端面を有し、
     前記先端部において、前記先端面が前記平坦な下面に接続されている
    請求項14又は15に記載のスクレーパ。
PCT/JP2019/017299 2019-04-23 2019-04-23 粒状物の冷却装置及びスクレーパ WO2020217323A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2019/017299 WO2020217323A1 (ja) 2019-04-23 2019-04-23 粒状物の冷却装置及びスクレーパ
KR1020217030731A KR102605771B1 (ko) 2019-04-23 2019-04-23 입상물의 냉각 장치 및 스크레이퍼
JP2021515359A JP7346558B2 (ja) 2019-04-23 2019-04-23 粒状物の冷却装置及びスクレーパ
CN201980095485.8A CN113748304B (zh) 2019-04-23 2019-04-23 粒状物的冷却装置以及刮板

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/017299 WO2020217323A1 (ja) 2019-04-23 2019-04-23 粒状物の冷却装置及びスクレーパ

Publications (1)

Publication Number Publication Date
WO2020217323A1 true WO2020217323A1 (ja) 2020-10-29

Family

ID=72941122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/017299 WO2020217323A1 (ja) 2019-04-23 2019-04-23 粒状物の冷却装置及びスクレーパ

Country Status (4)

Country Link
JP (1) JP7346558B2 (ja)
KR (1) KR102605771B1 (ja)
CN (1) CN113748304B (ja)
WO (1) WO2020217323A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117419574B (zh) * 2023-12-15 2024-03-19 中冶华天工程技术有限公司 一种对流式环形冷却机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61136300U (ja) * 1985-02-13 1986-08-25
JPS62112736A (ja) * 1985-11-11 1987-05-23 Nippon Steel Corp 粒状物質の冷却装置
JPH07243769A (ja) * 1994-03-01 1995-09-19 Nisshin Steel Co Ltd 焼結機用クーラーの在庫レベルの制御方法
JP2016001100A (ja) * 2014-05-21 2016-01-07 スチールプランテック株式会社 焼結鉱の冷却機
KR101859639B1 (ko) * 2016-12-09 2018-05-18 주식회사 포스코 소결 쿨러 온도 제어 시스템 및 그 방법

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1926753B2 (de) * 1969-05-24 1978-02-09 Metallgesellschaft Ag, 6000 Frankfurt Abstreifvorrichtung zum entleeren von kuehlern
JP5138245B2 (ja) 2007-03-20 2013-02-06 三菱日立製鉄機械株式会社 焼結鉱冷却装置
JP6638665B2 (ja) * 2017-02-09 2020-01-29 東芝三菱電機産業システム株式会社 クーラ設備の風量制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61136300U (ja) * 1985-02-13 1986-08-25
JPS62112736A (ja) * 1985-11-11 1987-05-23 Nippon Steel Corp 粒状物質の冷却装置
JPH07243769A (ja) * 1994-03-01 1995-09-19 Nisshin Steel Co Ltd 焼結機用クーラーの在庫レベルの制御方法
JP2016001100A (ja) * 2014-05-21 2016-01-07 スチールプランテック株式会社 焼結鉱の冷却機
KR101859639B1 (ko) * 2016-12-09 2018-05-18 주식회사 포스코 소결 쿨러 온도 제어 시스템 및 그 방법

Also Published As

Publication number Publication date
KR20210129704A (ko) 2021-10-28
CN113748304B (zh) 2023-06-09
CN113748304A (zh) 2021-12-03
JPWO2020217323A1 (ja) 2020-10-29
JP7346558B2 (ja) 2023-09-19
KR102605771B1 (ko) 2023-11-23

Similar Documents

Publication Publication Date Title
TWI648509B (zh) 燒結礦冷卻機
EP3563108B1 (en) Device, comprising a shaft cooler and an input device, and method for cooling hot sinter
WO2020217323A1 (ja) 粒状物の冷却装置及びスクレーパ
JP5686678B2 (ja) 焼結設備及びその操業方法
JP5708279B2 (ja) ダスト排出二重弁
JP7225471B2 (ja) 焼結鉱の冷却装置
JP7062625B2 (ja) 焼結鉱冷却装置
CN107429974B (zh) 用于降低用来冷却热粒状物料的冷却器的灰尘排放的限定部
CN109207177B (zh) 热解装置和热解系统
JP2001064710A (ja) 粒状還元鉄原料の均し方法及びその均し装置
JP7280164B2 (ja) 焼結鉱冷却装置
JP2007163046A (ja) 多段乾燥装置
JP7498712B2 (ja) 焼結冷却器の取り付けまたは後付け方法
CN112747605B (zh) 一种刮板式环冷机
TWI634301B (zh) 用於治金反應器的充塡裝置的變速箱總成
JP6511827B2 (ja) 竪型粉砕機のローラ軸カバー
KR101059543B1 (ko) 보울 미분기에서 이송공기 덕트를 위한 미분탄 유입 방지 장치
US12018890B2 (en) Kiln comprising a protective segment at the kiln outlet
JP2000297987A (ja) 回転ドラムのシール構造
CN107014214A (zh) 烧结矿用槽式液密封鼓风冷却装置及方法
CN113932596A (zh) 块矿干燥装置及干燥方法
TW201839340A (zh) 用於散裝材料的運輸裝置
TW201900889A (zh) 燒結體冷卻系統
JP2013103212A (ja) 竪型粉砕装置およびそれを備えた石炭焚きボイラプラント
PL104246B1 (pl) Pierscieniowo-kulowy mlyn

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19926385

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217030731

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021515359

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19926385

Country of ref document: EP

Kind code of ref document: A1