WO2020216258A1 - 天线调节方法、装置及终端 - Google Patents

天线调节方法、装置及终端 Download PDF

Info

Publication number
WO2020216258A1
WO2020216258A1 PCT/CN2020/086182 CN2020086182W WO2020216258A1 WO 2020216258 A1 WO2020216258 A1 WO 2020216258A1 CN 2020086182 W CN2020086182 W CN 2020086182W WO 2020216258 A1 WO2020216258 A1 WO 2020216258A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
mode
radiation efficiency
multiple antennas
terminal
Prior art date
Application number
PCT/CN2020/086182
Other languages
English (en)
French (fr)
Inventor
赵登
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to EP20794214.5A priority Critical patent/EP3961941A4/en
Publication of WO2020216258A1 publication Critical patent/WO2020216258A1/zh
Priority to US17/508,859 priority patent/US11979204B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/401Circuits for selecting or indicating operating mode
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/101Monitoring; Testing of transmitters for measurement of specific parameters of the transmitter or components thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/101Monitoring; Testing of transmitters for measurement of specific parameters of the transmitter or components thereof
    • H04B17/102Power radiated at antenna
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/101Monitoring; Testing of transmitters for measurement of specific parameters of the transmitter or components thereof
    • H04B17/103Reflected power, e.g. return loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0404Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas the mobile station comprising multiple antennas, e.g. to provide uplink diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0689Hybrid systems, i.e. switching and simultaneous transmission using different transmission schemes, at least one of them being a diversity transmission scheme
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/0871Hybrid systems, i.e. switching and combining using different reception schemes, at least one of them being a diversity reception scheme

Definitions

  • This application belongs to the field of wireless communication technology, and in particular relates to an antenna adjustment method, device and terminal.
  • Wireless Fidelity generally uses Multiple Input Multiple Output (MIMO) mode for communication, which can increase the communication rate under a better antenna environment; however, under a deteriorating antenna environment , WiFi is reverted to Single Input and Single Output (SISO) mode communication to improve the reliability and quality of communication.
  • MIMO Multiple Input Multiple Output
  • SISO Single Input and Single Output
  • the embodiments of the present application provide an antenna adjustment method, device, and terminal, so as to solve the problem of switching the transmission mode after the data packet is found to be lost.
  • an embodiment of the present application provides an antenna adjustment method, which is applied to a terminal, and the method includes: when multiple antennas are in the SISO mode, sending a first broadcast message, and obtaining information about the multiple antennas Radiation efficiency; if the radiation efficiency of at least one of the multiple antennas is less than the preset threshold, the SISO mode is maintained.
  • the method further includes: if the radiation efficiency of each of the multiple antennas is greater than or equal to a preset threshold, switching the SISO mode to the MIMO mode.
  • the number of preset thresholds is multiple, and the multiple preset thresholds correspond to the radiation efficiencies of the multiple antennas one-to-one.
  • the multiple antennas include a first antenna and a second antenna
  • obtaining the radiation efficiency of the multiple antennas includes: according to the spatial loss isolation between the first antenna and the second antenna, the first antenna The transmit power of one antenna and the reflected power of the first antenna determine the radiation efficiency of the first antenna; according to the spatial loss isolation between the first antenna and the second antenna, the transmit power of the second antenna and the reflected power of the second antenna , To determine the radiation efficiency of the second antenna.
  • the method further includes: in the SISO mode, sending a second broadcast message to the external device, the second broadcast message including the first indication information and the first indication information Used to instruct the external device to switch the working mode of its own antenna to SISO mode.
  • the method further includes: in the SISO mode, sending a data packet to an external device, the data packet includes second indication information, and the second indication information is used to indicate the external The device switches the working mode of its own antenna to SISO mode.
  • an embodiment of the present application provides an antenna adjustment device, which is applied to a terminal, and the device includes: a transceiver management module, configured to send a first broadcast message when multiple antennas are in the SISO mode;
  • the radiation efficiency acquisition module is used to acquire the radiation efficiency of multiple antennas;
  • the mode adjustment module is used to maintain the SISO mode when the radiation efficiency of at least one of the multiple antennas is less than a preset threshold.
  • an embodiment of the present application provides a terminal, including a processor, a memory, and a computer program stored on the memory and capable of running on the processor.
  • the computer program is executed by the processor to implement the method described in the first aspect. Steps of antenna adjustment method.
  • the first broadcast message is sent and the antenna environment of the terminal is obtained, that is, the radiation efficiency of multiple antennas, and the judgment is made based on the radiation efficiency and a preset threshold, so that the terminal can understand before transmitting data To the current antenna environment, and correct the working state of the antenna before transmitting data, so there is no problem of data packet error or packet loss due to the deterioration of the antenna environment; in addition, the first broadcast message is sent between two adjacent data transmissions. The gap between the two does not occupy data transmission time, and the appropriate transmission mode can be adjusted for the data packet according to the current antenna environment to improve transmission efficiency.
  • FIG. 1 is a flowchart of an antenna adjustment method provided by an embodiment of the application
  • Figure 2 is a comparison diagram between the application and related technologies
  • FIG. 3 is a schematic diagram of data transmission in related technologies
  • FIG. 4 is a schematic diagram of a data transmission process provided by an embodiment of this application.
  • FIG. 5 is a schematic diagram of another data transmission process provided by an embodiment of this application.
  • FIG. 6 is a schematic diagram of a 2*2 MIMO system provided by an embodiment of this application.
  • FIG. 7 is a schematic diagram of an antenna adjustment device provided by an embodiment of the application.
  • FIG. 8 is a schematic diagram of the hardware structure of a terminal implementing each embodiment of the present application.
  • Fig. 1 is an antenna adjustment method according to an embodiment of the application. As shown in Fig. 1, the antenna adjustment method may include:
  • the antenna environment where the terminal is located that is, the radiation efficiency of multiple antennas
  • the antenna environment where the terminal is located is obtained by sending the first broadcast message, and the judgment is made based on the radiation efficiency and a preset threshold, so that the terminal can understand before transmitting data
  • the first broadcast message is sent between two adjacent data transmissions.
  • the time slot in between does not occupy the data transmission time, and can adjust the appropriate transmission mode for the data packet according to the current antenna environment to improve the transmission efficiency.
  • Figure 2 is a comparison diagram between the application and related technologies.
  • the processing procedure on the left is the antenna adjustment method of the related art
  • the processing procedure on the right is the antenna adjustment method of the embodiment of the application.
  • the link is detected at the data link layer, such as detecting data rate and bit error rate and other data, and performing control judgments based on the detected data. If problems such as packet errors and packet loss are found, the physical Layer control solves problems such as packet errors and packet loss.
  • the hardware link environment of the antenna is directly detected at the physical layer, and when the antenna environment deteriorates, the appropriate transmission mode is adjusted for each data packet, which can monitor the link hardware environment in real time without It takes time to detect the data rate.
  • the transmission mode is the working mode of multiple antennas of the terminal.
  • FIG. 3 is a schematic diagram of data transmission in related technologies.
  • the WiFi MIMO communication system includes C0 and C1 antennas.
  • the MIMO mode is used to transmit data
  • the SISO mode is used to transmit Acknowledge Character (ACK); in the process of transmitting data in MIMO mode, if the communication quality is not good, there will be cases where ACK cannot be received. Confirm that the packet is lost.
  • the MIMO mode is adopted.
  • the lowest level transmission protocol namely the SISO mode, is adopted to ensure the stability of the link quality.
  • Fig. 4 is a schematic diagram of a data transmission process provided by an embodiment of the application.
  • the SISO mode can be used for the next data transmission.
  • the first broadcast message can be sent to detect the physical layer communication quality (that is, the antenna status) on the link, and adjust the transmission mode of the data packet to be transmitted according to the communication quality, and then give the communication quality
  • the data packet adjusts the appropriate transmission mode to improve the transmission efficiency.
  • the antenna status is detected by sending the first broadcast message, the data transmission time is not occupied, and the detection is performed every time a broadcast message is sent, so that every data packet has a chance Choose a suitable transmission mode, so you can avoid the problem of packet loss due to the deterioration of the antenna state.
  • the SISO mode is maintained if the radiation efficiency of at least one of the multiple antennas described in S102 is less than a preset threshold.
  • the antenna adjustment method further includes:
  • the SISO mode is switched to the MIMO mode.
  • the first broadcast message can be sent and the current radiation efficiency of multiple antennas can be obtained; if the radiation efficiency of each of the multiple antennas is greater than or equal to the preset threshold, the SISO mode is switched to MIMO mode.
  • the first broadcast message may be sent in the data transmission time slot (that is, the time interval between two data transmissions), and the first broadcast message may also be sent before the data is sent.
  • FIG. 5 is a schematic diagram of another data transmission process provided by an embodiment of the application.
  • the first broadcast message is sent in SISO mode, and the current radiation efficiency of multiple antennas is obtained. If the radiation efficiency of each of the multiple antennas is greater than or equal to the preset threshold, before the next data packet transmission , Switch the antenna mode from SISO mode to MIMO mode.
  • the MIMO communication system includes C0 and C1 antennas.
  • the terminal will use the SISO mode to transmit data for a period of time, and then retry to use the MIMO mode to transmit data. If it still fails, continue to use the SISO mode to transmit data; or the terminal will monitor the signal strength during data transmission. To determine whether to use MIMO mode; if the attempt to use MIMO mode to transmit data fails, continue to use SISO mode to transmit data.
  • the number of preset thresholds in S102 is multiple, and each preset threshold corresponds to the radiation efficiency of one of the multiple antennas.
  • the preset threshold may be set based on whether there is packet loss in the current antenna environment, or may be set based on whether the user experience is affected.
  • obtaining the radiation efficiency of multiple antennas may specifically include:
  • the radiation efficiency of the second antenna is determined according to the spatial loss isolation between any two antennas in the multiple antennas, the transmit power of the second antenna in any two antennas, and the reflected power of the second antenna.
  • the multiple antennas include a first antenna and a second antenna.
  • obtaining the radiation efficiency of multiple antennas may specifically include:
  • the multiple antennas may include 2*2 MIMO and 4*4 MIMO.
  • 2*2 MIMO and 4*4 MIMO.
  • the following uses a 2*2 MIMO antenna as an example for description.
  • the radiation efficiency of multiple antennas includes the radiation efficiency between any two antennas, so 2*2 MIMO may include 4 radiation efficiencies, and each preset threshold corresponds to one radiation efficiency.
  • Fig. 6 is a schematic diagram of a 2*2 MIMO system provided by an embodiment of the application.
  • the 2*2 MIMO system has two antennas, A0 and A1, which are connected to their matching circuits M0 and M1, and the total efficiency of the radiating unit composed of the antenna and the matching circuit is E0.
  • the antenna A0 is connected to the matching circuit M0
  • the total efficiency of the radiation unit composed of the antenna A0 and the matching circuit M0 is E0
  • the antenna A1 is connected to the matching circuit M1
  • the total efficiency of the radiation unit composed of the antenna A1 and the matching circuit M1 is E1.
  • the spatial loss isolation from the antenna A0 space to the antenna A1 space is I.
  • the reflection coefficients of the matching circuit MO and the matching circuit M1 are R0 and R1, respectively. Set the directional coupler C0 and C1 on each link.
  • the data power sent by the C0 channel that is, the link corresponding to the antenna A0
  • the data power sent by the C0 channel is P0
  • part of it will be reflected at the matching circuit M0
  • the reflected power can be obtained by the directional coupler as R0
  • the power radiated to the space is P0*E0, because the isolation between the two antennas has been determined after the product design is completed, so the space loss isolation I is also known.
  • the detectable power on the C1 path ie the link corresponding to antenna A1, as R1
  • the following formula can be obtained:
  • the second antenna radiation efficiency E1 R1/(P0-R0-I)
  • the MIMO mode can be switched to the SISO mode transmission of the antenna A0 before the next data transmission. Conversely, if the antenna environment of the antenna A0 deteriorates severely, that is, the radiation efficiency of the antenna A0 is less than the preset threshold, the MIMO mode can be switched to the SISO mode transmission of the antenna A1 before the next data transmission. In this way, the antenna environment is known in advance and the transmission mode is switched in advance when the antenna environment deteriorates, avoiding the problem of poor user experience caused by lost data packets.
  • the main antenna is in working state by default.
  • the C0 road in Fig. 3, Fig. 4 and Fig. 5 is the link where the main antenna A0 is located. At this time, there will be SISO time slots on the C0 road.
  • the external device when the working mode of the terminal is changed, the external device is also notified in the following manner to also switch the working mode to the same working mode as the terminal.
  • the first case in the SISO mode, a second broadcast message is sent to the external device; where the second broadcast message includes the first indication information, and the first indication information is used to instruct the external device to switch the operating modes of its multiple antennas It is SISO mode.
  • the second case In SISO mode, a data packet is sent to an external device; among them, the data packet (this data packet is the next data packet sent after the first broadcast message is transmitted) includes the second indication information, the second indication information Used to instruct the external device to switch the working mode of its own multiple antennas to SISO mode.
  • the terminal After the terminal sends the first broadcast message to the external device and receives the response message sent by the external device, it can directly send the data.
  • the second indication information can be added to the data packet, which can be carried in the header part of the data packet The second instruction information.
  • the broadcast message may be an ACK, and the response message of the external device at this time is also an ACK; the broadcast message may also be a beacon.
  • the external device may be a router, a terminal, a base station, and other devices including multiple antennas.
  • the broadcast message will also carry the ID of the external device. After the external device corresponding to the ID receives the broadcast message, it will send a response message; if the external device corresponding to the ID does not receive the broadcast message, it can be discarded.
  • FIG. 7 is a schematic diagram of an antenna adjustment device provided by an embodiment of the application. As shown in Fig. 7, the antenna adjusting device includes:
  • the transceiver management module 601 is configured to send the first broadcast message when multiple antennas are in the SISO mode;
  • the radiation efficiency obtaining module 602 is used to obtain the radiation efficiency of multiple antennas
  • the mode adjustment module 603 is configured to maintain the SISO mode when the radiation efficiency of at least one of the multiple antennas is less than a preset threshold.
  • the antenna environment where the terminal is located that is, the radiation efficiency of multiple antennas
  • the antenna environment where the terminal is located is obtained by sending the first broadcast message, and the judgment is made based on the radiation efficiency and a preset threshold, so that the terminal can understand before transmitting data
  • the first broadcast message is sent between two adjacent data transmissions.
  • the time slot in between does not occupy the data transmission time, and can adjust the appropriate transmission mode for the data packet according to the current antenna environment to improve the transmission efficiency.
  • the mode adjustment module 603 is further configured to switch the SISO mode to the MIMO mode if the radiation efficiency of each antenna in the multiple antennas is greater than or equal to a preset threshold.
  • the number of preset thresholds is multiple, and the multiple preset thresholds have a one-to-one correspondence with the radiation efficiencies of multiple antennas.
  • the multiple antennas include a first antenna and a second antenna
  • the radiation efficiency obtaining module 602 is specifically configured to:
  • R0 is the feedback coefficient of the matching circuit of the first antenna
  • P0 is the transmission power of the directional coupler of the first antenna
  • R1 is the feedback coefficient of the matching circuit of the second antenna
  • I is the spatial loss isolation.
  • the transceiver management module 601 is further configured to send a second broadcast message to the external device in the SISO mode, and the second broadcast message is used to instruct other terminals to switch the working mode of their own antenna to the SISO mode.
  • the transceiver management module 601 is further configured to: in SISO mode, send a data packet to an external device, the data packet includes instruction information, and the instruction information is used to instruct the external device to switch the working mode of its own antenna to SISO mode.
  • the terminal provided by the embodiment of the present application can implement the various processes implemented by the terminal in the method embodiment of FIG. 1. To avoid repetition, details are not described herein again.
  • the antenna environment where the terminal is located that is, the radiation efficiency of multiple antennas
  • the antenna environment where the terminal is located is obtained by sending the first broadcast message, and the judgment is made based on the radiation efficiency and a preset threshold, so that the terminal can understand before transmitting data
  • the first broadcast message is sent between two adjacent data transmissions.
  • the time slot in between does not occupy the data transmission time, and can adjust the appropriate transmission mode for the data packet according to the current antenna environment to improve the transmission efficiency.
  • FIG. 8 is a schematic diagram of the hardware structure of a terminal implementing each embodiment of the present application.
  • the terminal 10 includes but is not limited to: a radio frequency unit 101, a network module 102, an audio output unit 103, an input unit 104, a sensor 105, a display unit 106, a user input unit 107, an interface unit 108, a memory 109, a processor 110, and a power supply 111 and other components.
  • a radio frequency unit 101 includes but is not limited to: a radio frequency unit 101, a network module 102, an audio output unit 103, an input unit 104, a sensor 105, a display unit 106, a user input unit 107, an interface unit 108, a memory 109, a processor 110, and a power supply 111 and other components.
  • terminal structure shown in FIG. 8 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than shown in the figure, or combine some components, or arrange different components.
  • terminals include, but are not limited to, mobile phones, tablet computers, notebook computers, palmtop computers, vehicle-mounted terminals, wear
  • the processor 110 is configured to: when the multiple antennas are in the SISO mode, send a first broadcast message and obtain the radiation efficiency of the multiple antennas; if the radiation efficiency of at least one of the multiple antennas is less than a preset threshold , The SISO mode is maintained.
  • the antenna environment where the terminal is located that is, the radiation efficiency of multiple antennas
  • the antenna environment where the terminal is located that is, the radiation efficiency of multiple antennas
  • the current antenna environment, and the working status of the antenna is corrected before the data is transmitted, so there is no problem of data packet error or packet loss due to the deterioration of the antenna environment; in addition, the first broadcast message is sent between two adjacent data transmissions
  • the time slot does not occupy the data transmission time, and can adjust the appropriate transmission mode for the data packet according to the current antenna environment to improve the transmission efficiency.
  • the radio frequency unit 101 can be used for receiving and sending signals in the process of sending and receiving information or talking. Specifically, the downlink data from the base station is received and processed by the processor 110; in addition, Uplink data is sent to the base station.
  • the radio frequency unit 101 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio frequency unit 101 can also communicate with the network and other devices through a wireless communication system.
  • the terminal provides users with wireless broadband Internet access through the network module 102, such as helping users to send and receive emails, browse web pages, and access streaming media.
  • the audio output unit 103 can convert the audio data received by the radio frequency unit 101 or the network module 102 or stored in the memory 109 into audio signals and output them as sounds. Moreover, the audio output unit 103 may also provide audio output related to a specific function performed by the terminal 10 (for example, call signal reception sound, message reception sound, etc.).
  • the audio output unit 103 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 104 is used to receive audio or video signals.
  • the input unit 104 may include a graphics processing unit (GPU) 1041 and a microphone 1042.
  • the graphics processor 1041 is configured to monitor images of still pictures or videos obtained by an image capture device (such as a camera) in a video capture mode or an image capture mode. Data is processed.
  • the processed image frame can be displayed on the display unit 106.
  • the image frame processed by the graphics processor 1041 may be stored in the memory 109 (or other storage medium) or sent via the radio frequency unit 101 or the network module 102.
  • the microphone 1042 can receive sound, and can process such sound into audio data.
  • the processed audio data can be converted into a format that can be sent to a mobile communication base station via the radio frequency unit 101 for output in the case of a telephone call mode.
  • the terminal 10 also includes at least one sensor 105, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor.
  • the ambient light sensor can adjust the brightness of the display panel 1061 according to the brightness of the ambient light.
  • the proximity sensor can close the display panel 1061 and/or when the terminal 10 is moved to the ear. Or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in various directions (usually three-axis), and can detect the magnitude and direction of gravity when stationary, and can be used to identify terminal posture (such as horizontal and vertical screen switching, related games, Magnetometer attitude calibration), vibration recognition related functions (such as pedometer, percussion), etc.; sensor 105 can also include fingerprint sensors, pressure sensors, iris sensors, molecular sensors, gyroscopes, barometers, hygrometers, thermometers, infrared Sensors, etc., will not be repeated here.
  • the display unit 106 is used to display information input by the user or information provided to the user.
  • the display unit 106 may include a display panel 1061, and the display panel 1061 may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), etc.
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • the user input unit 107 may be used to receive inputted numeric or character information, and generate key signal input related to user settings and function control of the terminal.
  • the user input unit 107 includes a touch panel 1071 and other input devices 1072.
  • the touch panel 1071 also called a touch screen, can collect user touch operations on or near it (for example, the user uses any suitable objects or accessories such as fingers, stylus, etc.) on the touch panel 1071 or near the touch panel 1071. operating).
  • the touch panel 1071 may include two parts: a touch detection device and a touch controller.
  • the touch detection device detects the user's touch position, detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts it into contact coordinates, and then sends it To the processor 110, the command sent by the processor 110 is received and executed.
  • the touch panel 1071 can be realized by various types such as resistive, capacitive, infrared, and surface acoustic wave.
  • the user input unit 107 may also include other input devices 1072.
  • other input devices 1072 may include, but are not limited to, a physical keyboard, function keys (such as volume control buttons, switch buttons, etc.), trackball, mouse, and joystick, which will not be repeated here.
  • the touch panel 1071 can be overlaid on the display panel 1061.
  • the touch panel 1071 detects a touch operation on or near it, it is transmitted to the processor 110 to determine the type of the touch event.
  • the type of event provides corresponding visual output on the display panel 1061.
  • the touch panel 1071 and the display panel 1061 are used as two independent components to realize the input and output functions of the terminal, in some embodiments, the touch panel 1071 and the display panel 1061 can be integrated. Realize the input and output functions of the terminal, which are not specifically limited here.
  • the interface unit 108 is an interface for connecting an external device with the terminal 10.
  • the external device may include a wired or wireless headset port, an external power source (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device with an identification module, audio input/output (I/O) port, video I/O port, headphone port, etc.
  • the interface unit 108 may be used to receive input (for example, data information, power, etc.) from an external device and transmit the received input to one or more elements in the terminal 10 or may be used to communicate between the terminal 10 and the external device. Transfer data between.
  • the memory 109 can be used to store software programs and various data.
  • the memory 109 may mainly include a program storage area and a data storage area.
  • the program storage area may store an operating system, an application program required by at least one function (such as a sound playback function, an image playback function, etc.), etc.; Data (such as audio data, phone book, etc.) created by the use of mobile phones.
  • the memory 109 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the processor 110 is the control center of the terminal. It uses various interfaces and lines to connect the various parts of the entire terminal. It executes by running or executing software programs and/or modules stored in the memory 109, and calling data stored in the memory 109. Various functions of the terminal and processing data, so as to monitor the terminal as a whole.
  • the processor 110 may include one or more processing units; the processor 110 may integrate an application processor and a modem processor, where the application processor mainly processes the operating system, user interface, and application programs, and the modem processor mainly Handle wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 110.
  • the terminal 10 may also include a power source 111 (such as a battery) for supplying power to various components.
  • the power source 111 may be logically connected to the processor 110 through a power management system, so that functions such as charging, discharging, and power consumption management can be managed through the power management system.
  • the terminal 10 includes some functional modules not shown, which will not be repeated here.
  • An embodiment of the present application also provides a terminal, including a processor 110, a memory 109, and a computer program stored on the memory 109 and capable of running on the processor 110.
  • a terminal including a processor 110, a memory 109, and a computer program stored on the memory 109 and capable of running on the processor 110.
  • the computer program is executed by the processor 110, the aforementioned antenna adjustment is implemented.
  • Each process of the method embodiment can achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • the embodiments of the present application also provide a computer-readable storage medium, and a computer program is stored on the computer-readable storage medium.
  • a computer program is stored on the computer-readable storage medium.
  • the computer program is executed by a processor, each process of the above antenna adjustment method embodiment is realized, and the same technology can be achieved The effect, to avoid repetition, will not be repeated here.
  • the computer-readable storage medium such as read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk, etc.
  • the method of the above embodiments can be implemented by means of software plus the necessary general hardware platform. Of course, it can also be implemented by hardware, but in many cases the former is better. ⁇
  • the technical solution of this application essentially or the part that contributes to the existing technology can be embodied in the form of a software product, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, The optical disc) includes several instructions to make a terminal (which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the methods described in the various embodiments of the present application.

Abstract

本申请实施例公开了一种天线调节方法、装置及终端。其中,天线调节方法应用于终端,天线调节方法包括:在多个天线处于单输入单输出SISO模式的情况下,发送第一广播消息,并获取多个天线的辐射效率;若多个天线中的至少一个天线的辐射效率小于预设阈值,则保持SISO模式。利用本申请实施例能够解决相关技术在发现数据包丢失后才切换传输模式的问题。

Description

天线调节方法、装置及终端
相关申请的交叉引用
本申请要求享有于2019年4月24日提交的名称为“天线调节方法、装置及终端”的中国专利申请201910334978.4的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请属于无线通信技术领域,尤其涉及一种天线调节方法、装置及终端。
背景技术
目前,无线保真(Wireless Fidelity,WiFi)一般采用多输入多输出(Multiple Input Multiple Output,MIMO)模式通讯,其在较优的天线环境下可以提升通讯速率;但是,在比较恶化的天线环境下,WiFi就被回退至单输入单输出(Single Input and Single Output,SISO)模式通讯,以改善通讯的可靠性和质量。
当前,为了检测天线环境是否发生恶化,普遍的做法是在确认误包、丢包等情况发生之后,开始监测当前天线环境,一旦发现天线环境恶化,就由MIMO模式切换至SISO模式。上述方法虽然能发现天线环境恶化,但是需要损失一定量的数据;因此,上述方法并不适用于对丢包率比较敏感的使用场景,例如WiFi通话(Voice over WiFi,VoWiFi)中的应用场景,会明显降低用户体验。
申请内容
本申请实施例提供一种天线调节方法、装置及终端,以解决在发现数据包丢失后才切换传输模式的问题。
第一方面,本申请实施例提供了一种天线调节方法,该天线调节方法应用于终端,方法包括:在多个天线处于SISO模式的情况下,发送第一广播消息,并获取多个天线的辐射效率;若多个天线中的至少一个天线的辐射效率小于预设阈值,则保持SISO模式。
根据本申请第一方面的实施方式,方法还包括:若多个天线中的每一个天线的辐射效率均大于或等于预设阈值,则将SISO模式切换为MIMO模式。
根据本申请第一方面前述任一实施方式,预设阈值的数目为多个,多个预设阈值与多个天线的辐射效率一一对应。
根据本申请第一方面前述任一实施方式,多个天线包括第一天线和第二天线,获取多个天线的辐射效率包括:根据第一天线和第二天线之间的空间损耗隔离度、第一天线的发射功率以及第一天线的反射功率,确定第一天线的辐射效率;根据第一天线和第二天线之间的空间损耗隔离度、第二天线的发射功率以及第二天线的反射功率,确定第二天线的辐射效率。
根据本申请第一方面前述任一实施方式,在保持SISO模式之后,方法还包括:在SISO模式下,向外部设备发送第二广播消息,第二广播消息包括第一指示信息,第一指示信息用于指示外部设备将自身的天线的工作模式切换为SISO模式。
根据本申请第一方面前述任一实施方式,在保持SISO模式之后,方法还包括:在SISO模式下,向外部设备发送数据封包,数据封包包括第二指示信息,第二指示信息用于指示外部设备将自身的天线的工作模式切换为SISO模式。
第二方面,本申请实施例提供了一种天线调节装置,该天线调节装置应用于终端,装置包括:收发管理模块,用于在多个天线处于SISO模式的情况下,发送第一广播消息;辐射效率获取模块,用于获取多个天线的辐射效率;模式调节模块,用于在多个天线中的至少一个天线的辐射效率小于预设阈值,保持SISO模式。
第三方面,本申请实施例提供了一种终端,包括处理器、存储器及存储在存储器上并可在处理器上运行的计算机程序,计算机程序被处理器执 行时实现如第一方面所述的天线调节方法的步骤。
在本申请实施例中,通过发送第一广播消息并获取终端所处的天线环境,即多个天线的辐射效率,并基于辐射效率和预设阈值进行判断,进而能在终端传输数据之前就了解到当前的天线环境,并在传输数据之前修正天线的工作状态,故不存在因天线环境恶化导致数据误包、丢包的问题;另外,发送第一广播消息是在相邻两次数据传输之间的间隙,不占用传输数据时间,且能针对当前的天线环境给数据封包调整合适的传输模式,提高传输效率。
附图说明
下面将通过参考附图来描述本申请示例性实施例的特征、优点和技术效果。
图1为本申请实施例提供的一种天线调节方法的流程图;
图2为本申请与相关技术的对比图;
图3为相关技术的数据传输示意图;
图4为本申请实施例提供的一种数据传输过程的示意图;
图5为本申请实施例提供的另一种传输数据过程的示意图;
图6为本申请实施例提供的一种2*2MIMO系统的示意图;
图7为本申请实施例提供的一种天线调节装置的示意图;
图8为实现本申请各个实施例的一种终端的硬件结构示意图。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
图1为本申请实施例的一种天线调节方法。如图1所示,该天线调节方法可以包括:
S101:在多个天线处于SISO模式的情况下,发送第一广播消息,并获取多个天线的辐射效率;
S102:若多个天线中的至少一个天线的辐射效率小于预设阈值,则保持SISO模式。
在本申请实施例中,通过发送第一广播消息,获取终端所处的天线环境,即多个天线的辐射效率,并基于辐射效率和预设阈值进行判断,进而能在终端传输数据之前就了解到当前的天线环境,并在传输数据之前修正天线的工作状态,故不存在因天线环境恶化导致数据误包、丢包的问题;另外,发送第一广播消息是在相邻两次数据传输之间的时隙,不占用传输数据时间,且能针对当前的天线环境给数据封包调整合适的传输模式,提高传输效率。
图2为本申请与相关技术的对比图。在图2中,左侧的处理过程为相关技术的天线调节方法,右侧的处理过程为本申请实施例的天线调节方法。在相关技术中,在数据链路层侦测链路,例如侦测数据速率和误码率等数据,并基于侦测的数据进行控制判断,如果发现误包、丢包等问题,则由物理层控制解决误包、丢包等问题。而本申请实施例中,直接在物理层侦测天线的硬件链路环境,并在天线环境恶化时,针对每一数据封包调整合适的传输模式,能实时的监测链路硬件环境,且也不需要花时间侦测数据速率。其中,传输模式为终端的多个天线的工作模式。
下面以WiFi MIMO通讯系统为一个示例,来说明天线调节的步骤。图3为相关技术的数据传输示意图。其中,WiFi MIMO通讯系统包括C0路和C1路天线。
如图3所示,采用MIMO模式传输数据,采用SISO模式传输确认字符(Acknowledge character,ACK);在通过MIMO模式传输数据过程中,如果通讯质量不佳,则会存在收不到ACK的情况,即确认丢包了。传输数据时采用MIMO模式,在传输第一广播消息时,会采用最低等级的传输协议,即SISO模式,以确保链路质量的稳定性。
图4为本申请实施例提供的一种数据传输过程的示意图。
如图4所示,在传输第一广播消息时,若侦测到链路上的物理层通讯质量不好,即天线环境恶化,可以采用SISO模式进行下一次传输数据。
在本申请实施例中,能够通过发送第一广播消息,侦测链路上的物理 层通讯质量(即天线状态),并根据通讯质量调整待传输的数据封包的传输模式,进而针对通讯质量给数据封包调整合适的传输模式,提高传输效率。
另外,在本申请实施例中,由于通过发送第一广播消息,对天线状态进行侦测,不占用传输数据时间,且每一次发送广播消息都会进行侦测,使得每一个数据封包都能有机会选择合适的传输模式,因此,可以避免因天线状态恶化而导致丢包的问题。
在本申请一些实施例中,S102所述的若多个天线中的至少一个天线的辐射效率小于预设阈值,则保持SISO模式。
参照图4,当多个天线中的至少一个天线的辐射效率小于预设阈值时,表明天线环境恶化,那么在使用SISO模式发送第一广播消息,且接收到外部设备发送的回应消息之后,继续使用SISO模式向外部设备发送数据封包。
在本申请一些实施例中,在S102之后,天线调节方法还包括:
若多个天线中的每一个天线的辐射效率均大于或等于预设阈值,则将SISO模式切换为MIMO模式。
具体包括:在上次传输数据之后,可以接着发送第一广播消息,并获取当前多个天线的辐射效率;如果多个天线中的每一个天线的辐射效率均大于或等于预设阈值,则将SISO模式切换为MIMO模式。另外,可以在数据传输时隙(即在两次传输数据之间的时间间隔)发送第一广播消息,还可以在发送数据之前,先发送第一广播消息。
图5为本申请实施例提供的另一种传输数据过程的示意图。
参照图5,采用SISO模式发送第一广播消息,并获取当前多个天线的辐射效率,如果多个天线中的每一个天线的辐射效率均大于或等于预设阈值,则在下一次传输数据封包之前,将天线的模式从SISO模式切换为MIMO模式。其中,MIMO通讯系统包括C0路和C1路天线。
另外,在相关技术中,终端会使用SISO模式传输数据一段时间之后,重新尝试使用MIMO模式传输数据,如果仍然失败,则继续使用SISO模式传输数据;或者,终端会监测传输数据过程中信号的强度来确定是否要 采用MIMO模式;如果尝试使用MIMO模式传输数据失败了,那么继续使用SISO模式传输数据。
在本申请一些实施例中,S102中的预设阈值的数目为多个,且每个预设阈值对应多个天线中的一个天线的辐射效率。其中,预设阈值可以基于当前天线环境是否存在丢包的现象而设置,或者可以基于是否影响用户体验度而设置。
在本申请一些实施例中,获取多个天线的辐射效率可以具体包括:
根据多个天线中的任意两个天线间的空间损耗隔离度、任两个天线中的第一天线的发射功率、第一天线的反射功率,确定第一天线的辐射效率;
根据多个天线中的任意两个天线间的空间损耗隔离度、任两个天线中的第二天线的发射功率、第二天线的反射功率,确定第二天线的辐射效率。在一些实施例中,多个天线包括第一天线和第二天线。相应地,获取多个天线的辐射效率可以具体包括:
根据第一天线和第二天线之间的空间损耗隔离度、第一天线的发射功率以及第一天线的反射功率,确定第一天线的辐射效率;根据第一天线和第二天线之间的空间损耗隔离度、第二天线的发射功率以及第二天线的反射功率,确定第二天线的辐射效率。
在本申请一些实施例中,多个天线可以包括2*2MIMO和4*4MIMO。为了方便描述,下文中以2*2MIMO天线为示例进行说明。
多个天线的辐射效率包括任意两个天线之间的辐射效率,则2*2MIMO可以包括4个辐射效率,每个预设阈值对应一个辐射效率。
图6为本申请实施例提供的一种2*2MIMO系统的示意图。
在图6中,2*2MIMO系统拥有A0和A1两个天线,其连接各自的匹配电路M0和M1,且天线和匹配电路组成的辐射单元总效率为E0。具体地,天线A0连接匹配电路M0,天线A0和匹配电路M0组成的辐射单元总效率为E0,天线A1连接匹配电路M1,天线A1和匹配电路M1组成的辐射单元总效率为E1。从天线A0空间至天线A1空间的空间损耗隔离度为I。 匹配电路MO和匹配电路M1的反射系数分别为R0和R1。在每一个链路上设置定向耦合器C0和C1,具体地,在天线A0对应的链路上设置定向耦合器C0,在天线A1对应的链路上设置定向耦合器C1,其检测由匹配电路反射的功率大小以及该链路所接收到的信号能量大小。
在收发管理模块发送第一广播消息时,C0路即天线A0对应的链路发出的数据功率为P0,其在匹配电路M0处一部分会进行反射,通过定向耦合器可以得到反射功率为R0,一部分通过天线A0发射至对应的空间,辐射至空间的功率为P0*E0,因为产品设计完成后两天线之间的隔离度已经确定,因此空间损耗隔离度I也是已知。将C1通路即天线A1对应的链路上能检测到的功率表示为R1,可以得到如下公式:
R0=P0*(1-E0)
R1=(P0*E0-I)*E1
则由以上公式可以得到:
第一天线辐射效率E0=1-R0/P0
第二天线辐射效率E1=R1/(P0-R0-I)
然后根据两个天线的辐射效率和终端内设置的预设阈值,就可以判断是否需要调整当前天线的传输模式。
如果天线A1的天线环境恶化,即天线A1的辐射效率小于预设阈值,可以在下一次数据发送之前就将MIMO模式切换为天线A0的SISO模式传输。反之,如果当天线A0的天线环境恶化严重,即天线A0的辐射效率小于预设阈值,可以在下一次数据发送之前就将MIMO模式切换为天线A1的SISO模式传输。从而提前获知天线环境,并在天线环境恶化时提前切换传输模式,避免了因丢失数据封包带来的用户体验不佳的问题。
当前多个天线中一般会有一个主天线,当天线环境恶化时,默认主天线处于工作状态。其中,图3、图4和图5中的C0路为主天线A0所在的链路,此时在C0路上才会有SISO时隙。
在本申请一些实施例中,在终端的工作模式改变的情况下,还会通过以下方式告知外部设备,使其也将工作模式切换到与终端相同的工作模式。
以下有几种情况告知外部设备切换工作模式:
第一种情况:在SISO模式下,向外部设备发送第二广播消息;其中,第二广播消息包括第一指示信息,第一指示信息用于指示外部设备将自身的多个天线的工作模式切换为SISO模式。
在终端和外部设备传输数据的过程中,可能会存在传输多个广播消息的情况,此时可以在发送第二广播消息(为发送第一广播消息之后连续发送的消息)的时候,通过第二广播消息中的第一指示信息,告知外部设备,终端的工作状态变化,外部设备在收到第二广播消息之后,就切换到与终端相同的工作模式即可,以便后续进行数据传输。
第二种情况:在SISO模式下,向外部设备发送数据封包;其中,数据封包(此数据包为传输第一广播消息之后,下一次发送的数据包)包括第二指示信息,第二指示信息用于指示外部设备将自身的多个天线的工作模式切换为SISO模式。
在终端给外部设备发送第一广播消息,且接收到外部设备发送的回应消息之后,可以直接发送数据,此时可以在数据封包中增加第二指示信息,其中,可以为数据封包的包头部分携带第二指示信息。
本申请实施例中,广播消息可以为ACK,此时外部设备的回应消息也为ACK;广播消息还可以为信标(Beacon)。
本申请一些实施例中的,外部设备可以为路由器、终端、基站等包括多个天线的设备。
另外,广播消息中还会携带外部设备的ID,在ID对应的外部设备接收到广播消息之后,会发送回应消息;如果不是ID对应的外部设备接收到广播消息,则丢弃即可。
图7为本申请实施例提供的一种天线调节装置的示意图。如图7所示,该天线调节装置包括:
收发管理模块601,用于在多个天线处于SISO模式的情况下,发送第一广播消息;
辐射效率获取模块602,用于获取多个天线的辐射效率;
模式调节模块603,用于在多个天线中的至少一个天线的辐射效率小于预设阈值,保持SISO模式。
在本申请实施例中,通过发送第一广播消息,获取终端所处的天线环境,即多个天线的辐射效率,并基于辐射效率和预设阈值进行判断,进而能在终端传输数据之前就了解到当前的天线环境,并在传输数据之前修正天线的工作状态,故不存在因天线环境恶化导致数据误包、丢包的问题;另外,发送第一广播消息是在相邻两次数据传输之间的时隙,不占用传输数据时间,且能针对当前的天线环境给数据封包调整合适的传输模式,提高传输效率。
在本申请一些实施例中,模式调节模块603还用于:若多个天线中的每一个天线的辐射效率均大于或等于预设阈值,则将SISO模式切换为MIMO模式。
在本申请一些实施例中,预设阈值的数目为多个,多个预设阈值与多个天线的辐射效率一一对应。
在本申请一些实施例中,多个天线包括第一天线和第二天线,辐射效率获取模块602具体用于:
根据第一天线和第二天线之间的空间损耗隔离度、第一天线的发射功率以及第一天线的反射功率,确定第一天线的辐射效率;根据第一天线和第二天线之间的空间损耗隔离度、第二天线的发射功率以及第二天线的反射功率,确定第二天线的辐射效率。
在本申请一些实施例中,第一天线的辐射效率为:E0=I-R0/P0,第二天线的辐射效率为:E1=R1/(P0-R0-I)。
其中,R0为第一天线的匹配电路的反馈系数,P0为第一天线的定向耦合器的发射功率;R1为第二天线的匹配电路的反馈系数,I为空间损耗隔离度。
在本申请一些实施例中,收发管理模块601还用于:在SISO模式下,向外部设备发送第二广播消息,第二广播消息用于指示其他终端将自身天线的工作模式切换为SISO模式。
在本申请一些实施例中,收发管理模块601还用于:在SISO模式下,向外部设备发送数据封包,数据封包包括指示信息,指示信息用于指示外部设备将自身天线的工作模式切换为SISO模式。
本申请实施例提供的终端能够实现图1的方法实施例中终端实现的各个过程,为避免重复,这里不再赘述。
在本申请实施例中,通过发送第一广播消息,获取终端所处的天线环境,即多个天线的辐射效率,并基于辐射效率和预设阈值进行判断,进而能在终端传输数据之前就了解到当前的天线环境,并在传输数据之前修正天线的工作状态,故不存在因天线环境恶化导致数据误包、丢包的问题;另外,发送第一广播消息是在相邻两次数据传输之间的时隙,不占用传输数据时间,且能针对当前的天线环境给数据封包调整合适的传输模式,提高传输效率。
图8为实现本申请各个实施例的一种终端的硬件结构示意图。
该终端10包括但不限于:射频单元101、网络模块102、音频输出单元103、输入单元104、传感器105、显示单元106、用户输入单元107、接口单元108、存储器109、处理器110、以及电源111等部件。本领域技术人员可以理解,图8中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本申请实施例中,终端包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载终端、可穿戴设备、以及计步器等。
其中,处理器110用于:在多个天线处于SISO模式的情况下,发送第一广播消息,并获取多个天线的辐射效率;若多个天线中的至少一个天线的辐射效率小于预设阈值,则保持SISO模式。
在本申请实施例中,通过发送第一广播消息,获取终端所处的天线环境,即多个天线的辐射效率,并基于辐射效率和预设阈值进行判断,进而能在传输数据之前就了解到当前的天线环境,并在传输数据之前修正天线的工作状态,故不存在因天线环境恶化导致数据误包、丢包的问题;另外,发送第一广播消息是在相邻两次数据传输之间的时隙,不占用传输数据时间,且能针对当前的天线环境给数据封包调整合适的传输模式,提高传输效率。
应理解的是,本申请实施例中,射频单元101可用于收发信息或通话过程中,信号的接收和发送,具体的,将来自基站的下行数据接收后,给 处理器110处理;另外,将上行的数据发送给基站。通常,射频单元101包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元101还可以通过无线通信系统与网络和其他设备通信。
终端通过网络模块102为用户提供了无线的宽带互联网访问,如帮助用户收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元103可以将射频单元101或网络模块102接收的或者在存储器109中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元103还可以提供与终端10执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元103包括扬声器、蜂鸣器以及受话器等。
输入单元104用于接收音频或视频信号。输入单元104可以包括图形处理器(Graphics Processing Unit,GPU)1041和麦克风1042,图形处理器1041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元106上。经图形处理器1041处理后的图像帧可以存储在存储器109(或其它存储介质)中或者经由射频单元101或网络模块102进行发送。麦克风1042可以接收声音,并且能够将这样的声音处理为音频数据。处理后的音频数据可以在电话通话模式的情况下转换为可经由射频单元101发送到移动通信基站的格式输出。
终端10还包括至少一种传感器105,比如光传感器、运动传感器以及其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板1061的亮度,接近传感器可在终端10移动到耳边时,关闭显示面板1061和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别终端姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器105还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器 等,在此不再赘述。
显示单元106用于显示由用户输入的信息或提供给用户的信息。显示单元106可包括显示面板1061,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板1061。
用户输入单元107可用于接收输入的数字或字符信息,以及产生与终端的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元107包括触控面板1071以及其他输入设备1072。触控面板1071,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板1071上或在触控面板1071附近的操作)。触控面板1071可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器110,接收处理器110发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板1071。除了触控面板1071,用户输入单元107还可以包括其他输入设备1072。具体地,其他输入设备1072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步的,触控面板1071可覆盖在显示面板1061上,当触控面板1071检测到在其上或附近的触摸操作后,传送给处理器110以确定触摸事件的类型,随后处理器110根据触摸事件的类型在显示面板1061上提供相应的视觉输出。虽然在图8中,触控面板1071与显示面板1061是作为两个独立的部件来实现终端的输入和输出功能,但是在某些实施例中,可以将触控面板1071与显示面板1061集成而实现终端的输入和输出功能,具体此处不做限定。
接口单元108为外部装置与终端10连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音 频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。接口单元108可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到终端10内的一个或多个元件或者可以用于在终端10和外部装置之间传输数据。
存储器109可用于存储软件程序以及各种数据。存储器109可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器109可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器110是终端的控制中心,利用各种接口和线路连接整个终端的各个部分,通过运行或执行存储在存储器109内的软件程序和/或模块,以及调用存储在存储器109内的数据,执行终端的各种功能和处理数据,从而对终端进行整体监控。处理器110可包括一个或多个处理单元;处理器110可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器110中。
终端10还可以包括给各个部件供电的电源111(比如电池),电源111可以通过电源管理系统与处理器110逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
另外,终端10包括一些未示出的功能模块,在此不再赘述。
本申请实施例还提供一种终端,包括处理器110,存储器109,存储在存储器109上并可在所述处理器110上运行的计算机程序,该计算机程序被处理器110执行时实现上述天线调节方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述天线调节方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再 赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (9)

  1. 一种天线调节方法,应用于终端,所述方法包括:
    在多个天线处于单输入单输出SISO模式的情况下,发送第一广播消息,并获取所述多个天线的辐射效率;
    若所述多个天线中的至少一个天线的辐射效率小于预设阈值,则保持所述SISO模式。
  2. 根据权利要求1所述的方法,其中,所述方法还包括:
    若所述多个天线中的每一个天线的辐射效率均大于或等于所述预设阈值,则将所述SISO模式切换为多输入多输出MIMO模式。
  3. 根据权利要求1或2所述的方法,其中,所述预设阈值的数目为多个,多个预设阈值与所述多个天线的辐射效率一一对应。
  4. 根据权利要求3所述的方法,其中,所述多个天线包括第一天线和第二天线,所述获取所述多个天线的辐射效率,包括:
    根据所述第一天线和所述第二天线之间的空间损耗隔离度、所述第一天线的发射功率以及所述第一天线的反射功率,确定所述第一天线的辐射效率;
    根据所述第一天线和所述第二天线之间的空间损耗隔离度、所述第二天线的发射功率以及所述第二天线的反射功率,确定所述第二天线的辐射效率。
  5. 根据权利要求1所述的方法,其中,在保持所述SISO模式之后,所述方法还包括:
    在所述SISO模式下,向外部设备发送第二广播消息,所述第二广播消息包括第一指示信息,所述第一指示信息用于指示所述外部设备将自身的天线的工作模式切换为所述SISO模式。
  6. 根据权利要求1所述的方法,其中,在保持所述SISO模式之后,所述方法还包括:
    在所述SISO模式下,向外部设备发送数据封包,所述数据封包包括第二指示信息,所述第二指示信息用于指示所述外部设备将自身的天线的 工作模式切换为所述SISO模式。
  7. 一种天线调节装置,应用于终端,所述装置包括:
    收发管理模块,用于在多个天线处于单输入单输出SISO模式的情况下,发送第一广播消息;
    辐射效率获取模块,用于获取所述多个天线的辐射效率;
    模式调节模块,用于在所述多个天线中的至少一个天线的辐射效率小于预设阈值,保持所述SISO模式。
  8. 根据权利要求7所述的装置,其中,所述模式调节模块还用于:
    若所述多个天线中的每一个天线的辐射效率均大于或等于所述预设阈值,则将所述SISO模式切换为多输入多输出MIMO模式。
  9. 一种终端,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至6中任一项所述的天线调节方法的步骤。
PCT/CN2020/086182 2019-04-24 2020-04-22 天线调节方法、装置及终端 WO2020216258A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20794214.5A EP3961941A4 (en) 2019-04-24 2020-04-22 ANTENNA MATCHING METHOD AND DEVICE AND TERMINAL
US17/508,859 US11979204B2 (en) 2019-04-24 2021-10-22 Antenna adjusting method and device, and terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910334978.4A CN110190915B (zh) 2019-04-24 2019-04-24 天线调节方法、装置及终端
CN201910334978.4 2019-04-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/508,859 Continuation US11979204B2 (en) 2019-04-24 2021-10-22 Antenna adjusting method and device, and terminal

Publications (1)

Publication Number Publication Date
WO2020216258A1 true WO2020216258A1 (zh) 2020-10-29

Family

ID=67715083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/086182 WO2020216258A1 (zh) 2019-04-24 2020-04-22 天线调节方法、装置及终端

Country Status (4)

Country Link
US (1) US11979204B2 (zh)
EP (1) EP3961941A4 (zh)
CN (1) CN110190915B (zh)
WO (1) WO2020216258A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110190915B (zh) 2019-04-24 2021-01-29 维沃移动通信有限公司 天线调节方法、装置及终端
CN112566086A (zh) * 2020-12-07 2021-03-26 维沃移动通信有限公司 数据传输方法、装置、电子设备及可读存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103347293A (zh) * 2013-07-11 2013-10-09 北京大学 一种移动通信基站系统中天线自适应节能方法
CN103384162A (zh) * 2012-05-03 2013-11-06 启碁科技股份有限公司 用于无线通信装置中设定多个天线的方法及无线通信装置
CN103414507A (zh) * 2013-07-26 2013-11-27 北京小米科技有限责任公司 一种移动终端及其天线的切换方法和装置
CN105656528A (zh) * 2015-12-28 2016-06-08 联想(北京)有限公司 一种信息处理方法及电子设备
US9553640B1 (en) * 2015-12-22 2017-01-24 Microsoft Technology Licensing, Llc Using multi-feed antennas
CN110190915A (zh) * 2019-04-24 2019-08-30 维沃移动通信有限公司 天线调节方法、装置及终端

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7301924B1 (en) * 2002-07-15 2007-11-27 Cisco Technology, Inc. Media access control for MIMO wireless network
US8284721B2 (en) * 2008-06-26 2012-10-09 Apple Inc. Methods and apparatus for antenna isolation-dependent coexistence in wireless systems
US20110250926A1 (en) * 2009-12-21 2011-10-13 Qualcomm Incorporated Dynamic antenna selection in a wireless device
DE102013110801A1 (de) * 2013-09-30 2015-04-02 Intel IP Corporation Vorrichtung und Verfahren zur Bestimmung von Informationen über eine Strahlungsleistung eines Sendesignals
CN109039397B (zh) * 2018-08-01 2021-03-19 维沃移动通信有限公司 一种移动终端的天线电路、控制方法及装置
CN109150327B (zh) * 2018-08-28 2021-04-02 维沃移动通信有限公司 一种天线检测方法、天线检测装置及移动终端
CN109617587B (zh) * 2018-11-28 2021-09-03 维沃移动通信有限公司 天线选择方法、终端及存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103384162A (zh) * 2012-05-03 2013-11-06 启碁科技股份有限公司 用于无线通信装置中设定多个天线的方法及无线通信装置
CN103347293A (zh) * 2013-07-11 2013-10-09 北京大学 一种移动通信基站系统中天线自适应节能方法
CN103414507A (zh) * 2013-07-26 2013-11-27 北京小米科技有限责任公司 一种移动终端及其天线的切换方法和装置
US9553640B1 (en) * 2015-12-22 2017-01-24 Microsoft Technology Licensing, Llc Using multi-feed antennas
CN105656528A (zh) * 2015-12-28 2016-06-08 联想(北京)有限公司 一种信息处理方法及电子设备
CN110190915A (zh) * 2019-04-24 2019-08-30 维沃移动通信有限公司 天线调节方法、装置及终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3961941A4 *

Also Published As

Publication number Publication date
US20220045723A1 (en) 2022-02-10
EP3961941A4 (en) 2022-06-15
CN110190915B (zh) 2021-01-29
US11979204B2 (en) 2024-05-07
CN110190915A (zh) 2019-08-30
EP3961941A1 (en) 2022-03-02

Similar Documents

Publication Publication Date Title
WO2021004350A1 (zh) 发射天线的切换方法及终端设备
WO2020238450A1 (zh) 天线控制方法和折叠屏终端
WO2020215965A1 (zh) 终端控制方法及终端
US11729680B2 (en) Cell management method, trigger condition configuration method, terminal device, and network-side device
US20220061069A1 (en) Method for transmitting indication information and communications device
US11936474B2 (en) Transmission antenna switching method and terminal device
WO2020216178A1 (zh) 功率检测电路及终端
WO2020238350A1 (zh) 天线控制方法及移动终端
WO2020216209A1 (zh) 指示空间关系信息的方法及装置、通信设备
WO2020216180A1 (zh) 功率检测电路及终端
WO2021004522A1 (zh) 调度请求发送方法、调度请求接收方法、终端和网络设备
WO2021008613A1 (zh) 信息处理方法、终端及网络侧设备
WO2020238446A1 (zh) Srs的发送方法及移动终端
US11910235B2 (en) Data processing method, information configuration method, terminal, and network device
WO2021175178A1 (zh) 功率余量报告上报方法及终端
US11979204B2 (en) Antenna adjusting method and device, and terminal
US20230006711A1 (en) Audio transmission method and electronic device
US20220015184A1 (en) Method for data transmission, method for information configuration, terminal, and network device
US20210204294A1 (en) Communication method for mobile terminal and mobile terminal
US20210092766A1 (en) Random Access Resource Selection Method And Terminal Device
US20210153246A1 (en) Random access method, terminal device and network device
WO2020216331A1 (zh) 随机接入方法及终端
WO2019137425A1 (zh) 重配置方法、终端及基站
WO2021160026A1 (zh) 波束报告方法、网络节点及终端
WO2021139627A1 (zh) 参数上报方法及上行调度方法、设备及介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20794214

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020794214

Country of ref document: EP

Effective date: 20211124