WO2020216178A1 - 功率检测电路及终端 - Google Patents

功率检测电路及终端 Download PDF

Info

Publication number
WO2020216178A1
WO2020216178A1 PCT/CN2020/085639 CN2020085639W WO2020216178A1 WO 2020216178 A1 WO2020216178 A1 WO 2020216178A1 CN 2020085639 W CN2020085639 W CN 2020085639W WO 2020216178 A1 WO2020216178 A1 WO 2020216178A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
radio frequency
directional coupler
switch module
power detection
Prior art date
Application number
PCT/CN2020/085639
Other languages
English (en)
French (fr)
Inventor
韦仁杰
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2020216178A1 publication Critical patent/WO2020216178A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/401Circuits for selecting or indicating operating mode
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/101Monitoring; Testing of transmitters for measurement of specific parameters of the transmitter or components thereof
    • H04B17/102Power radiated at antenna
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0404Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas the mobile station comprising multiple antennas, e.g. to provide uplink diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems

Definitions

  • the embodiments of the present disclosure relate to the field of communication technologies, and in particular, to a power detection circuit and a terminal.
  • MIMO Multiple-Input Multiple-Output
  • the terminal in order to ensure the normal use of users, the terminal needs to perform power detection on the transmission power.
  • the main implementation is to connect to each antenna
  • a signal detection module is set on the channel to measure the signal transmission power on each channel, which can support free switching between multiple antennas, and can measure the transmission power on each channel.
  • the embodiments of the present disclosure provide a power detection circuit and terminal, which can reduce the area of the power detection circuit layout to a certain extent while supporting free switching between multiple antennas.
  • embodiments of the present disclosure provide a power detection circuit applied to a terminal, and the circuit includes:
  • a radio frequency transceiver module a radio frequency front-end module connected to the radio frequency transceiver module, a first switch module, a second switch module, and a directional coupler;
  • the radio frequency front-end module includes at least one receiving sub-module and at least one transmitting sub-module;
  • At least one receiving submodule is switchably connected to at least two antennas of the terminal through the first switch module;
  • the first switch module is connected to the second switch module through a directional coupler
  • At least one transmitting sub-module is switchably connected to the first end of the directional coupler through the second switch module, and the second end of the directional coupler is switchably connected to at least two antennas; wherein, the third end of the directional coupler Connect with radio frequency transceiver module.
  • embodiments of the present disclosure provide a terminal, which includes the power detection circuit as shown in the first aspect.
  • Figure 1 is a power detection circuit based on NSA mode
  • Figure 2 shows another power detection circuit based on NSA mode
  • FIG. 3 is a circuit structure diagram of a power detection circuit provided by an embodiment of the disclosure.
  • FIG. 4 is a first circuit structure diagram of a power detection circuit provided by an embodiment of the disclosure.
  • FIG. 5 is a second circuit structure diagram of a power detection circuit provided by an embodiment of the disclosure.
  • FIG. 6 is a third circuit structure diagram of a power detection circuit provided by an embodiment of the disclosure.
  • FIG. 7 is a schematic diagram of the hardware structure of a terminal provided by an embodiment of the disclosure.
  • SA standalone
  • NSA non-standalone
  • LTE and 5G New Radio communicate based on dual connectivity, that is, the LTE frequency band and the NR frequency band can work simultaneously.
  • LTE when LTE works independently, it can also support dual-antenna or multi-antenna switching and 4*4 MIMO capabilities for downlink reception.
  • the 5G NR frequency band needs to support one-transmit and four-receive (1T4R) channel sounding reference signal (Sounding Reference Signal, SRS) antenna alternate transmission technology.
  • (1T4R) channel sounding reference signal Sounding Reference Signal, SRS
  • TRx is the main set of transmitting and receiving signals, and the other three Rxs are auxiliary receiving signals.
  • the terminal In actual use, the terminal must adjust the transmission power to ensure the best performance of the TRx antenna to ensure the best for the user. Experience.
  • it is a current power detection circuit based on NSA mode.
  • it specifically includes: RF transceiver module (for example: RF transceiver), LTE RF front-end module 10, NR RF front-end module 11, first 4P4T switch module (for example: P1-P4 ports and T1 to T4 ports), the second 4P4T switch module and signal detection module.
  • RF transceiver module for example: RF transceiver
  • LTE RF front-end module 10 for example: LTE RF front-end module
  • NR RF front-end module 11 for example: P1-P4 ports and T1 to T4 ports
  • the second 4P4T switch module for example: P1-P4 ports and T1 to T4 ports
  • signal detection module for example: P1-P4 ports and T1 to T4 ports
  • the LTE radio frequency front-end module 10 and the NR radio frequency front-end module 11 respectively adopt a 4-antenna design.
  • the radio frequency transceiver module is connected in a one-to-one correspondence with the four first ports in the first 4P4T switch module through the four sub-modules in the LTE radio frequency front-end module 10, and the four second ports in the first 4P4T switch module
  • the port is used for one-to-one connection with the four first antennas in the terminal; a signal detection module is provided on the connection path between each second port and the antenna.
  • the radio frequency transceiver module is connected in a one-to-one correspondence with the four first ports in the second 4P4T switch module through the 4 sub-modules in the NR radio frequency front-end module 11, and the four second ports in the second 4P4T switch module It is used to connect with the four second antennas in the terminal in a one-to-one correspondence; a signal detection module is set on the connection path between each second port and the antenna.
  • the signal detection module includes a directional coupler.
  • the directional coupler is also used to connect to the SP8T radio frequency switch, and the SP8T radio frequency switch is connected to the radio frequency transceiver module, so as to send the transmission signal from each antenna to the radio frequency transceiver module 10.
  • the switch module can also be used to realize free switching of LTE transmission (Tx) signals between the 4 LTE antennas.
  • the NR frequency band can realize 1T4R through 4 antennas, and can also realize NR Tx signal switching between 4 NR antennas through 4P4T switch module, that is, SRS antenna rotation technology.
  • another power detection circuit based on NSA mode specifically includes: RF transceiver module, LTE RF front-end module 20, NR RF front-end module 21, first 4P4T switch module, second 4P4T switch module Group and signal detection module.
  • the signal detection module includes a combiner and a directional coupler. Among them, the combiner can connect a sub-module in the LTE radio frequency front-end module 20 and a sub-module in the NR radio frequency front-end module 21 to one antenna.
  • each of the 4 antennas corresponds to a directional coupler, and the 4 couplers are also used to connect to the SP4T RF switch, and the SP4T RF switch is connected to the RF transceiver module so that the RF transceiver module can determine the transmit a signal.
  • LTE can also realize LTE multi-antenna switching technology through 4P4T switch module
  • NR can realize SRS through 4P4T switch module.
  • this circuit structure also requires four directional couplers to complete power detection.
  • the embodiments of the present disclosure provide a power detection circuit to realize free switching between multiple antennas and ensure the accuracy of power calling, while reducing the area of the power detection circuit layout and reducing the cost.
  • the power detection circuit includes: a radio frequency transceiver module, a radio frequency front-end module connected to the radio frequency transceiver module, a first switch module, a second switch module, and a directional coupler.
  • the radio frequency front-end module includes at least one receiving sub-module and at least one transmitting sub-module.
  • At least one receiving submodule in the embodiment of the present disclosure is switchably connected to at least two antennas of the terminal through the first switch module.
  • the first switch module in the embodiment of the present disclosure is connected to the second switch module through a directional coupler.
  • At least one transmitting submodule in the embodiment of the present disclosure is switchably connected to the first end of the directional coupler through the second switch module, and the second end of the directional coupler is switchably connected to at least two antennas; The third end of the coupler is connected with the radio frequency transceiver module.
  • the power detection circuit in the embodiments of the present disclosure is based on the NSA mode, and realizes LTE or NR downlink 4*4 MIMO by improving the switch module.
  • the design of the directional coupler can be reduced. Count and reduce costs.
  • the radio frequency front end module includes an NR radio frequency front end module and/or an LTE radio frequency front end module. Further, at least one transmitting sub-module is an NR radio frequency front-end module or an LTE radio frequency front-end module; at least one receiving sub-module is an NR radio frequency front-end module or an LTE radio frequency front-end module.
  • the signal on each antenna is coupled to the RF transceiver module through a directional coupler.
  • the RF transceiver module converts different powers into different digital-to-analog converters (Analog-to -Digital Converter, ADC) corresponding to the power detection value, and then store the corresponding relationship between the power and the power detection value in the terminal, so that the terminal can implement different power levels (rgi) calls, which is the so-called power detection.
  • rgi is the power level of the radio frequency transceiver module
  • the power detection value is the value of the current power fed back to the power of the radio frequency transceiver module into the corresponding ADC value.
  • the radio frequency transceiver module determines that the transmitted rgi is a power level of 71 . This process is the process of power detection.
  • this embodiment provides three specific embodiments for detailed description.
  • FIG. 4 is a first circuit structure diagram of a power detection circuit provided by an embodiment of the disclosure.
  • the RX of LTE and NR is connected to the first switch module, and the TRX of LTE and NR is connected to the second switch module.
  • the TRX can be switched freely between the four antennas and the power detection is completed at the same time.
  • the power detection circuit in the embodiment of the present disclosure includes: a radio frequency transceiver module, a radio frequency front-end module connected to the radio frequency transceiver module, a first switch module, a second switch module, and a directional coupler;
  • the RF front-end module includes 6 receiving sub-modules (that is, 3 NR Rx modules and 3 LTE Rx modules) and 4 transceiver sub-modules (that is, 3 NR TRx modules and 1 LTE TRx module).
  • TRx module is a transceiver module in the application, which can receive signals or transmit signals. Since the embodiment of the present disclosure only needs to measure the power of the transmitted signal, when using the transmitting function in the transceiver module, the TRx module can be named only as the transmitting sub-module.
  • the TRx module is regarded as a receiving sub-module, and the TRx module can be classified as a receiving sub-module.
  • the connection mode of the TRx module refers to the connection mode of the receiving sub-module and the antenna.
  • the 6 receiving sub-modules are switchably connected to the 4 antennas of the terminal through the first switch module.
  • the first switch module is connected with the second switch module through a directional coupler.
  • the four transceiver sub-modules are switchably connected to the first end of the directional coupler through the second switch module, and the second end of the directional coupler is switchably connected to the four antennas; among them, the third end of the directional coupler is switchably connected to RF transceiver module connection.
  • the implementation of the power detection circuit is as follows:
  • the terminal controls the port 4 of the second switch module to connect to one end of the directional coupler, and controls the first switch module to connect the other end of the directional coupler to port 11
  • the connection can realize TX power detection when the LTE TRx module transmits signals through antenna 1.
  • the terminal controls the port 4 of the second switch module to be connected to one end of the directional coupler, and controls the first switch module to connect the other end of the directional coupler to the port 10
  • the connection can realize TX power detection when the LTE TRx module transmits signals through antenna 2.
  • the terminal controls the port 4 of the second switch module to connect to one end of the directional coupler, and controls the first switch module to connect the other end of the directional coupler to port 9
  • the connection can realize the TX power detection when the LTE TRx module transmits signals through the antenna 3.
  • the terminal controls the port 4 of the second switch module to connect to one end of the directional coupler, and controls the first switch module to connect the other end of the directional coupler to port 8
  • the connection can realize TX power detection when the LTE TRx module transmits signals through antenna 4.
  • the receiving module can be switchably connected to the antenna other than the antenna connected to the directional coupler, so as to detect the transmission power. At the same time, the signal is received through the receiving module.
  • the transceiver sub-module can achieve power detection no matter which antenna is used.
  • this structure reduces the number of directional coupler designs, reduces the area of the power detection circuit, and reduces the manufacturing cost.
  • the terminal controls the port 1 of the second switch module to connect to one end of the directional coupler , And control the first switch module to connect the other end of the directional coupler to port 11, which can realize the TX power detection when the NR TRx1 module transmits signals through the antenna 1.
  • the terminal controls the port 1 of the second switch module to connect to one end of the directional coupler, and controls the first switch module to connect the other end of the directional coupler to port 10.
  • the connection can realize TX power detection when the NR TRx1 module transmits signals through antenna 2.
  • the terminal controls the port 1 of the second switch module to connect to one end of the directional coupler, and controls the first switch module to connect the other end of the directional coupler to port 9
  • the connection can realize TX power detection when the NR TRx1 module transmits signals through antenna 3.
  • the terminal controls the port 1 of the second switch module to connect to one end of the directional coupler, and controls the first switch module to connect the other end of the directional coupler to the port 8 connection, can realize NR TRx1 module transmit signal through antenna 4, TX power detection.
  • NRTRx2 module and NRTRx3 module can also achieve power detection regardless of which antenna is used according to the above method.
  • this structure reduces the number of directional coupler designs, reduces the area of the power detection circuit, and reduces cost of production.
  • FIG. 5 shows a second circuit structure diagram of a power detection circuit provided by an embodiment of the present disclosure.
  • Embodiment 1 lies in the position of the directional router.
  • the position of the directional coupler is integrated in the first switch module.
  • the position of the directional coupler can also be integrated in the second switch module.
  • FIG. 6 shows a third circuit structure diagram of a power detection circuit provided by an embodiment of the present disclosure.
  • Embodiment 1 The difference from Embodiment 1 is that the positions of the transmitting sub-module, the second switch module and the directional router in the radio frequency front-end module are changed. Specifically, at least one transmitting sub-module, the second switch module and the directional router in the radio frequency front-end module are integrated in the first switch module, which reduces the area of the power detection circuit and reduces the manufacturing cost.
  • the position of the directional coupler can be adjusted according to actual application scenarios.
  • FIG. 7 shows a schematic diagram of a hardware structure of a terminal provided by an embodiment of the present disclosure.
  • the mobile terminal 700 includes but is not limited to: a radio frequency unit 701, a network module 702, an audio output unit 703, an input unit 704, a sensor 705, a display unit 706, a user input unit 707, an interface unit 708, a memory 709, a processor 710, and Power 711 and other components.
  • a radio frequency unit 701 for example, a radio frequency unit
  • the mobile terminal may include more or less components than those shown in the figure, or combine certain components, or different components. Layout.
  • mobile terminals include, but are not limited to, mobile phones, tablet computers, notebook computers, palmtop computers, vehicle-mounted terminals, wearable devices, and pedometers.
  • the radio frequency unit 701 includes any power detection circuit provided by the embodiments of the present disclosure to solve the problem of reducing the area of the power detection circuit layout and reducing the cost while supporting free switching between multiple antennas.
  • the radio frequency unit 701 can be used for receiving and sending signals in the process of sending and receiving information or talking. Specifically, the downlink resources from the base station are received and processed by the processor 710; in addition, The uplink resources are sent to the base station.
  • the radio frequency unit 701 includes but is not limited to an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio frequency unit 701 can also communicate with the network and other devices through a wireless communication system.
  • the mobile terminal provides users with wireless broadband Internet access through the network module 702, such as helping users to send and receive emails, browse web pages, and access streaming media.
  • the audio output unit 703 may convert the audio resources received by the radio frequency unit 701 or the network module 702 or stored in the memory 709 into audio signals and output them as sounds. Moreover, the audio output unit 703 may also provide audio output related to a specific function performed by the mobile terminal 700 (for example, call signal reception sound, message reception sound, etc.).
  • the audio output unit 703 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 704 is used to receive audio or video signals.
  • the input unit 704 may include a graphics processing unit (GPU) 7041 and a microphone 7042.
  • the graphics processor 7041 is used for the image of a still picture or video obtained by an image capture device (such as a camera) in the video capture mode or the image capture mode. Resources are processed.
  • the processed image frame may be displayed on the display unit 707.
  • the image frame processed by the graphics processor 7041 may be stored in the memory 709 (or other storage medium) or sent via the radio frequency unit 701 or the network module 702.
  • the microphone 7042 can receive sounds and can process such sounds as audio resources.
  • the processed audio resource can be converted into a format that can be sent to the mobile communication base station via the radio frequency unit 701 in the case of a telephone call mode.
  • the mobile terminal 700 also includes at least one sensor 705, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor.
  • the ambient light sensor can adjust the brightness of the display panel 7061 according to the brightness of the ambient light.
  • the proximity sensor can close the display panel 7061 and the display panel 7061 when the mobile terminal 700 is moved to the ear. / Or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in various directions (usually three-axis), and can detect the magnitude and direction of gravity when stationary, and can be used to identify the posture of the mobile terminal (such as horizontal and vertical screen switching, related games , Magnetometer attitude calibration), vibration recognition related functions (such as pedometer, percussion), etc.; sensor 705 can also include fingerprint sensors, pressure sensors, iris sensors, molecular sensors, gyroscopes, barometers, hygrometers, thermometers, Infrared sensors, etc., will not be repeated here.
  • the display unit 706 is used to display information input by the user or information provided to the user.
  • the display unit 706 may include a display panel 7061, and the display panel 7061 may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), etc.
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • the user input unit 707 may be used to receive inputted numeric or character information, and generate key signal input related to user settings and function control of the mobile terminal.
  • the user input unit 707 includes a touch panel 7071 and other input devices 7072.
  • the touch panel 7071 also called a touch screen, can collect user touch operations on or near it (for example, the user uses any suitable objects or accessories such as fingers, stylus, etc.) on the touch panel 7071 or near the touch panel 7071. operating).
  • the touch panel 7071 may include two parts: a touch detection device and a touch controller.
  • the touch detection device detects the user's touch position, detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts it into contact coordinates, and then sends it To the processor 710, the command sent by the processor 710 is received and executed.
  • the touch panel 7071 can be implemented in multiple types such as resistive, capacitive, infrared, and surface acoustic wave.
  • the user input unit 707 may also include other input devices 7072.
  • other input devices 7072 may include, but are not limited to, a physical keyboard, function keys (such as volume control buttons, switch buttons, etc.), trackball, mouse, and joystick, which will not be repeated here.
  • the touch panel 7071 can be overlaid on the display panel 7061.
  • the touch panel 6071 detects a touch operation on or near it, it will be transmitted to the processor 710 to determine the type of the touch event.
  • the type of event provides corresponding visual output on the display panel 7061.
  • the touch panel 7071 and the display panel 7061 are used as two independent components to implement the input and output functions of the mobile terminal, in some embodiments, the touch panel 7071 and the display panel 7061 can be integrated
  • the implementation of the input and output functions of the mobile terminal is not specifically limited here.
  • the interface unit 708 is an interface for connecting an external device with the mobile terminal 700.
  • the external device may include a wired or wireless headset port, an external power source (or battery charger) port, a wired or wireless resource port, a memory card port, a port for connecting a device with an identification module, audio input/output (I/O) port, video I/O port, headphone port, etc.
  • the interface unit 708 can be used to receive input from an external device (for example, resource information, power, etc.) and transmit the received input to one or more elements in the mobile terminal 700 or can be used to connect to the mobile terminal 700 and external Transfer resources between devices.
  • the memory 709 can be used to store software programs and various resources.
  • the memory 709 may mainly include a storage program area and a storage resource area.
  • the storage program area may store an operating system, an application program required by at least one function (such as a sound playback function, an image playback function, etc.), etc.;
  • the storage resource area may store Resources (such as audio resources, phone books, etc.) created by the use of mobile phones.
  • the memory 709 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the processor 710 is the control center of the mobile terminal. It uses various interfaces and lines to connect various parts of the entire mobile terminal. It runs or executes software programs and/or modules stored in the memory 709, and calls resources stored in the memory 709. , To perform various functions and processing resources of the mobile terminal to monitor the mobile terminal as a whole.
  • the processor 710 may include one or more processing units; the processor 710 may integrate an application processor and a modem processor, where the application processor mainly processes the operating system, user interface, and application programs, and the modem processor mainly Handle wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 710.
  • the mobile terminal 700 may further include a power source 711 (such as a battery) for supplying power to various components.
  • the power source 711 may be logically connected to the processor 710 through a power management system, so that functions such as charging, discharging, and power management are realized through the power management system.
  • the mobile terminal 700 includes some functional modules not shown, which will not be repeated here.
  • the technical solution of the present disclosure essentially or the part that contributes to the existing technology can be embodied in the form of a software product, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, The optical disc) includes several instructions to make a terminal (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the methods of the various embodiments of the present disclosure.
  • a terminal which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.

Abstract

本公开实施例公开了一种功率检测电路及终端,该功率检测电路包括:射频收发模块、与射频收发模块连接的射频前端模块、第一开关模组、第二开关模组和定向耦合器;射频前端模块包括至少一个接收子模块和至少一个发射子模块;至少一个接收子模块通过第一开关模组与终端的至少两个天线可切换地连接;第一开关模组通过定向耦合器与第二开关模组连接;至少一个发射子模块通过第二开关模组与定向耦合器的第一端可切换地连接,定向耦合器的第二端与至少两个天线可切换地连接;其中,定向耦合器的第三端与射频收发模块连接。

Description

功率检测电路及终端
相关申请的交叉引用
本公开要求享有于2019年4月25日提交的名称为“一种功率检测电路及终端”的中国专利申请201910339966.0的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本公开实施例涉及通信技术领域,尤其涉及一种功率检测电路及终端。
相关技术
近年来,多输入多输出系统(Multiple-Input Multiple-Output,MIMO)已经成为无线通信系统性能的重要保障手段之一,广泛应用于各类无线通信系统及通信标准中,特别是第五代移动通信技术(5th-Generation,5G)及各类型通信终端中。
目前,在5G网络的非独立组网(non-standalone,NSA)中进行功率检测场景下,为了保证用户正常的使用,终端需要对发送功率进行功率检测,主要实现方式是在与每一个天线连接的通路上设置一个信号检测模块,以便测量每一个通路上的信号发送功率,可以支持在多个天线之间的自由切换,同时可测量每一个通路上的发射功率。
但是,伴随着终端尺寸越来越小的趋势,使得对信号检测、功率检测等的布局设计要求越来越高,已有的设计已不能满足应用需求。
发明内容
本公开实施例提供一种功率检测电路及终端,在支持多个天线之间自由切换的同时,能够在一定程度上减少功率检测电路布局的面积。
为了解决上述技术问题,本公开是这样实现的:
第一方面,本公开实施例提供了一种功率检测电路,应用于终端,该电路包括:
射频收发模块、与射频收发模块连接的射频前端模块、第一开关模组、第二开关模组和定向耦合器;
射频前端模块包括至少一个接收子模块和至少一个发射子模块;
至少一个接收子模块通过第一开关模组与终端的至少两个天线可切换地连接;
第一开关模组通过定向耦合器与第二开关模组连接;
至少一个发射子模块通过第二开关模组与定向耦合器的第一端可切换地连接,定向耦合器的第二端与至少两个天线可切换地连接;其中,定向耦合器的第三端与射频收发模块连接。
第二方面,本公开实施例提供了一种终端,该终端包括如第一方面所示的功率检测电路。
在本公开实施例中,保证终端实际使用时,支持多个天线之间的自由切换且保证功率调用准确性,另外,解决了在支持在多个天线之间的自由切换的同时,减少功率检测电路布局的面积以及降低成本的问题。
附图说明
从下面结合附图对本公开的具体实施方式的描述中可以更好地理解本公开其中,相同或相似的附图标记表示相同或相似的特征。
图1为一种基于NSA模式下的功率检测电路;
图2为另一种基于NSA模式下的功率检测电路;
图3为本公开实施例提供的一种功率检测电路的电路结构图;
图4为本公开实施例提供的一种功率检测电路的第一电路结构图;
图5为本公开实施例提供的一种功率检测电路的第二电路结构图;
图6为本公开实施例提供的一种功率检测电路的第三电路结构图;
图7为本公开实施例提供的一种终端的硬件结构示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
目前,在5G网络中会采用两种组网方式:独立组网(Standalone,SA)和非独立组网(Non-standalone,NSA)。两者对技术要求和实现方式有不同的需求,以NSA模式为例,需满足如下技术条件:
1、长期演进(Long Term Evolution,LTE)与5G新空口(New Radio,NR)基于双连接的方式进行通信,即LTE频段与NR频段能够同时工作。
这里,在LTE独立工作时,也可以支持双天线或多天线切换以及支持下行接收的4*4 MIMO的能力。
2、5G NR频段需要支持1发4收(1T4R)的信道探测参考信号(Sounding Reference Signal,SRS)天线轮流发射技术。
这里,在支持1T4R的天线中,TRx为主集收发信号,其他三路Rx为辅助接收信号,在实际使用中,终端要调控发射功率,以保证TRx天线性能最好,才能保证用户的最佳体验。
如图1和图2所示,为目前一种基于NSA模式下的功率检测电路。如图1所示,具体包括:射频收发模块(例如:射频收发器)、LTE射频前端模块10、NR射频前端模块11、第一4P4T的开关模组(例如:图1中P1-P4端口和T1到T4端口)、第二4P4T的开关模组和信号检测模块。其中,LTE射频前端模块10和NR射频前端模块11分别采用4天线设计。
具体地,射频收发模块通过LTE射频前端模块10中的4个子模块与第一4P4T的开关模组中的4个第一端口一一对应连接,第一4P4T的开关模组中的4个第二端口用于与终端中的4个第一天线一一对应相连;在每一个第二端口与天线的连接通路上设置一个信号检测模块。
其中,射频收发模块通过NR射频前端模块11中的4个子模块与第二 4P4T的开关模组中的4个第一端口一一对应连接,第二4P4T的开关模组中的4个第二端口用于与终端中的4个第二天线一一对应相连;在每一个第二端口与天线的连接通路上设置一个信号检测模块。
其中,信号检测模块中包括定向耦合器。另外,定向耦合器还用于与SP8T射频开关连接,SP8T射频开关与射频收发模块连接,以便向射频收发模块10发送每个天线上的发射信号。
基于该结构,才能保证LTE频段可通过4天线实现下行接收的4*4 MIMO,还可以通过开关模组,实现LTE发送(Tx)信号在4个LTE天线之间进行自由切换。
同理,NR频段可以通过4天线实现1T4R,还可以通过4P4T的开关模组,实现NR Tx信号在4个NR天线之间进行切换,即SRS天线轮发技术。
由于,对TX功率进行功率检测的同时,也要实现在四个天线之间自由切换。所以,在每一路通路上都需要一个定向耦合器,才能实现功率检测,保证功率调用的准确性,这里,如图1所示的8个天线需要对应八个定向耦合器才能满足需求。
如图2所示,另一种基于NSA模式下的功率检测电路具体包括:射频收发模块、LTE射频前端模块20、NR射频前端模块21、第一4P4T的开关模组、第二4P4T的开关模组和信号检测模块。该电路的连接关系与图1不同的是,信号检测模块包括合路器和定向耦合器。其中,合路器可以将LTE射频前端模块20中的一个子模块与NR射频前端模块21中的一个子模块连接至1个天线。由此,在4个天线中的每一个天线对应一个定向耦合器,4个耦合器还用于与SP4T射频开关连接,SP4T射频开关与射频收发模块连接,以便射频收发模块确定每个天线上的发射信号。
基于该电路结构,可以实现LTE频段和NR频段的四路接收,与此同时,LTE通过4P4T的开关模组还可以实现LTE的多天线切换技术,以及NR通过4P4T的开关模组以实现SRS。但是,该电路结构也需要四个定向耦合器,才能完成功率检测。
图1和图2中的结构,虽然可以实现功率检测。但是,伴随着终端尺 寸越来越小的趋势,使得对功率检测电路布局面积的要求也就越来越高。上述结构复杂且成本较高,不能适应终端发展的需要。
由此,本公开实施例提供一种功率检测电路,以实现在支持多个天线之间的自由切换且保证功率调用准确性的同时,减少功率检测电路布局的面积以及降低成本。
如图3所示,该功率检测电路包括:射频收发模块、与射频收发模块连接的射频前端模块、第一开关模组、第二开关模组和定向耦合器。
其中,射频前端模块包括至少一个接收子模块和至少一个发射子模块。
本公开实施例中的至少一个接收子模块通过第一开关模组与终端的至少两个天线可切换地连接。
本公开实施例中的第一开关模组通过定向耦合器与第二开关模组连接。
本公开实施例中的至少一个发射子模块通过第二开关模组与定向耦合器的第一端可切换地连接,定向耦合器的第二端与至少两个天线可切换地连接;其中,定向耦合器的第三端与射频收发模块连接。
本公开实施例中的功率检测电路,基于NSA模式下,通过改善开关模组,实现LTE或者NR的下行链路4*4 MIMO,在多天线切换的情况下,可以减少定向耦合器设计的个数,降低成本。
其中,射频前端模块中包括NR射频前端模块和/或LTE射频前端模块。进一步地,至少一个发射子模块为NR射频前端模块或LTE射频前端模块;至少一个接收子模块为NR射频前端模块或LTE射频前端模块。
基于图3所示的结构,将每一个天线上的信号通过定向耦合器耦合到射频收发模块内部,如表1所示,射频收发模块将不同的功率转化为不同数模转换器(Analog-to-Digital Converter,ADC)对应的功率检测值,再把功率与功率检测值的对应关系存储到终端中,以便终端实现不同功率等级(rgi)的调用,这就是所谓的功率检测。其中,rgi为射频收发模块的功率等级;功率检测值为当前功率反馈到射频收发模块的功率大小转变为对应的ADC的值。举例说明,如表1中第二行所示,假设终端当前发射 27.7dbm的功率,经过ADC转化对应的功率检测值在45011~47253中间的值,射频收发模块确定发射的rgi为71的功率等级,此过程为功率检测的过程。
表1
信道 rgi 功率 功率检测值
19575 71 27.8 74253
19575 70 27.6 45011
19575 69 27.3 42944
19575 68 26.8 40944
19575 67 26.2 38316
由此,基于如图3所示的功率检测结构,本实施例提供了3个具体地实施例进行详细说明。
实施例1:
图4为本公开实施例提供的一种功率检测电路的第一电路结构图。
如图4所示,将LTE、NR的RX与第一开关模组连接,以及将LTE、NR的TRX与第二开关模组连接。第一开关模组和第二开关模组,通过控制port 7口的定向耦合器与4个天线可切换地连接后,实现TRX的在四个天线之间自由切换,同时完成功率检测。
本公开实施例中的功率检测电路包括:射频收发模块、与射频收发模块连接的射频前端模块、第一开关模组、第二开关模组和定向耦合器;
射频前端模块包括6接收子模块(即3个NR Rx module和3个LTE Rx module)和4个收发子模块(即3个NR TRx module和1个LTE TRx module)。这里,在对TRx module的命名上说明如下:TRx module在应用中为收发模块,即可接收信号也可以发射信号。由于,本公开实施例仅需测量发射信号的功率,所以在利用收发模块中的发射功能时,可以将TRx module命名仅归类为发射子模块。反之,若终端不对发射信号进行功率检测时,则将TRx module当做一个接收子模块,可以将TRx module归类为接收子模块,这里,TRx module的连接方式参照接收子模块和天线的连接方式一致。
进一步地,6个接收子模块通过第一开关模组与终端的4个天线可切换地连接。
第一开关模组通过定向耦合器与第二开关模组连接。
4个收发子模块通过第二开关模组与定向耦合器的第一端可切换地连接,定向耦合器的第二端与4个天线可切换地连接;其中,定向耦合器的第三端与射频收发模块连接。
基于图4示出的结构,该功率检测电路的实现方式如下所示:
(1)LTE实现方式:
当收发子模块LTE TRx module通过天线1发射信号时,终端控制第二开关模组的port 4连接到定向耦合器的一端,以及控制第一开关模组的将定向耦合器的另一端与port 11连接,可实现LTE TRx module通过天线1发射信号时,TX的功率检测。
当收发子模块LTE TRx module通过天线2发射信号时,终端控制第二开关模组的port 4连接到定向耦合器的一端,以及控制第一开关模组的将定向耦合器的另一端与port 10连接,可实现LTE TRx module通过天线2发射信号时,TX的功率检测。
当收发子模块LTE TRx module通过天线3发射信号时,终端控制第二开关模组的port 4连接到定向耦合器的一端,以及控制第一开关模组的将定向耦合器的另一端与port 9连接,可实现LTE TRx module通过天线3发射信号时,TX的功率检测。
当收发子模块LTE TRx module通过天线4发射信号时,终端控制第二开关模组的port 4连接到定向耦合器的一端,以及控制第一开关模组的将定向耦合器的另一端与port 8连接,可实现LTE TRx module通过天线4发射信号时,TX的功率检测。
可以理解的是,当收发子模块通过定向耦合器与多个天线中的一个天线连接时,接收模块可以与除了定向耦合器连接的天线之外的天线可切换的连接,以便在检测发射功率的同时,通过接收模块对信号进行接收。
由此,收发子模块无论通过哪一个天线都能实现功率检测,同时该结构,减少了定向耦合器设计的个数,减小功率检测电路的面积以及降低了 制作成本。
(2)NR实现方式:
当在3个收发子模块中选择任意一个收发子模块(例如:NR TRx1 module),且NR TRx1 module通过天线1发射信号时,终端控制第二开关模组的port 1连接到定向耦合器的一端,以及控制第一开关模组的将定向耦合器的另一端与port 11连接,可实现NR TRx1 module通过天线1发射信号时,TX的功率检测。
当收发子模块NR TRx1 module通过天线2发射信号时,终端控制第二开关模组的port 1连接到定向耦合器的一端,以及控制第一开关模组的将定向耦合器的另一端与port 10连接,可实现NR TRx1 module通过天线2发射信号时,TX的功率检测。
当收发子模块NR TRx1 module通过天线3发射信号时,终端控制第二开关模组的port 1连接到定向耦合器的一端,以及控制第一开关模组的将定向耦合器的另一端与port 9连接,可实现NR TRx1 module通过天线3发射信号时,TX的功率检测。
当收发子模块LTE NR TRx1 module通过天线4发射信号时,终端控制第二开关模组的port 1连接到定向耦合器的一端,以及控制第一开关模组的将定向耦合器的另一端与port 8连接,可实现NR TRx1 module通过天线4发射信号时,TX的功率检测。
同理,NRTRx2 module和NR TRx3 module根据如上方式也可以实现无论通过哪一个天线都能实现功率检测,同时该结构,减少了定向耦合器设计的个数,减小功率检测电路的面积以及降低了制作成本。
实施例2:
图5示出了本公开实施例提供的一种功率检测电路的第二电路结构图。
与实施例1中的区别在于,定向路由器的位置,在一种实例中,如图4所示,将定向耦合器的位置集成在第一开关模组中。当然,在另一种实例中(并未在图中示出),也可以将定向耦合器的位置集成在第二开关模组中。
实施例3:
图6示出了本公开实施例提供的一种功率检测电路的第三电路结构图。
与实施例1中的区别在于,射频前端模块中的发射子模块、第二开关模组和定向路由器的位置发生变化。具体地,射频前端模块中的至少一个发射子模块、第二开关模组和定向路由器集成在第一开关模组中,减少功率检测电路的面积以及降低制作成本。
由此,基于图3-图6可知,可以根据实际的应用场景,调整定向耦合器的位置。
由此,在本公开实施例中,保证终端实际使用时,支持多个天线之间的自由切换且保证功率调用准确性,另外,解决了在支持在多个天线之间的自由切换的同时,减少功率检测电路布局的面积以及降低成本的问题。
图7示出了本公开实施例提供的一种终端的硬件结构示意图。
该移动终端700包括但不限于:射频单元701、网络模块702、音频输出单元703、输入单元704、传感器705、显示单元706、用户输入单元707、接口单元708、存储器709、处理器710、以及电源711等部件。本领域技术人员可以理解,图7中示出的移动终端结构并不构成对移动终端的限定,移动终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本公开实施例中,移动终端包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载终端、可穿戴设备、以及计步器等。
其中,射频单元701,包括本公开实施例提供的任意一种功率检测电路,以解决在支持在多个天线之间的自由切换的同时,减少功率检测电路布局的面积以及降低成本的问题。
应理解的是,本公开实施例中,射频单元701可用于收发信息或通话过程中,信号的接收和发送,具体的,将来自基站的下行资源接收后,给处理器710处理;另外,将上行的资源发送给基站。通常,射频单元701包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元701还可以通过无线通信系统与网络和其 他设备通信。
移动终端通过网络模块702为用户提供了无线的宽带互联网访问,如帮助用户收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元703可以将射频单元701或网络模块702接收的或者在存储器709中存储的音频资源转换成音频信号并且输出为声音。而且,音频输出单元703还可以提供与移动终端700执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元703包括扬声器、蜂鸣器以及受话器等。
输入单元704用于接收音频或视频信号。输入单元704可以包括图形处理器(Graphics Processing Unit,GPU)7041和麦克风7042,图形处理器7041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像资源进行处理。处理后的图像帧可以显示在显示单元707上。经图形处理器7041处理后的图像帧可以存储在存储器709(或其它存储介质)中或者经由射频单元701或网络模块702进行发送。麦克风7042可以接收声音,并且能够将这样的声音处理为音频资源。处理后的音频资源可以在电话通话模式的情况下转换为可经由射频单元701发送到移动通信基站的格式输出。
移动终端700还包括至少一种传感器705,比如光传感器、运动传感器以及其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板7061的亮度,接近传感器可在移动终端700移动到耳边时,关闭显示面板7061和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别移动终端姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器705还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再赘述。
显示单元706用于显示由用户输入的信息或提供给用户的信息。显示单元706可包括显示面板7061,可以采用液晶显示器(Liquid Crystal  Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板7061。
用户输入单元707可用于接收输入的数字或字符信息,以及产生与移动终端的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元707包括触控面板7071以及其他输入设备7072。触控面板7071,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板7071上或在触控面板7071附近的操作)。触控面板7071可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器710,接收处理器710发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板7071。除了触控面板7071,用户输入单元707还可以包括其他输入设备7072。具体地,其他输入设备7072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步的,触控面板7071可覆盖在显示面板7061上,当触控面板6071检测到在其上或附近的触摸操作后,传送给处理器710以确定触摸事件的类型,随后处理器710根据触摸事件的类型在显示面板7061上提供相应的视觉输出。虽然在图7中,触控面板7071与显示面板7061是作为两个独立的部件来实现移动终端的输入和输出功能,但是在某些实施例中,可以将触控面板7071与显示面板7061集成而实现移动终端的输入和输出功能,具体此处不做限定。
接口单元708为外部装置与移动终端700连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线资源端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。接口单元708可以用于接收来自外部装置的输入(例如,资源信息、电力等等)并且将接收到的输入传输到移动终端700内的一个或多个元件或者可以用于在移 动终端700和外部装置之间传输资源。
存储器709可用于存储软件程序以及各种资源。存储器709可主要包括存储程序区和存储资源区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储资源区可存储根据手机的使用所创建的资源(比如音频资源、电话本等)等。此外,存储器709可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器710是移动终端的控制中心,利用各种接口和线路连接整个移动终端的各个部分,通过运行或执行存储在存储器709内的软件程序和/或模块,以及调用存储在存储器709内的资源,执行移动终端的各种功能和处理资源,从而对移动终端进行整体监控。处理器710可包括一个或多个处理单元;处理器710可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器710中。
移动终端700还可以包括给各个部件供电的电源711(比如电池),电源711可以通过电源管理系统与处理器710逻辑连接,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
另外,移动终端700包括一些未示出的功能模块,在此不再赘述。
在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本 公开的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本公开各个实施例的方法。
上面结合附图对本公开的实施例进行了描述,但是本公开并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本公开的启示下,在不脱离本公开宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本公开的保护之内。

Claims (9)

  1. 一种功率检测电路,应用于终端,其中,包括:射频收发模块、与所述射频收发模块连接的射频前端模块、第一开关模组、第二开关模组和定向耦合器;
    所述射频前端模块包括至少一个接收子模块和至少一个发射子模块;
    所述至少一个接收子模块通过所述第一开关模组与所述终端的至少两个天线可切换地连接;
    所述第一开关模组通过所述定向耦合器与所述第二开关模组连接;
    所述至少一个发射子模块通过所述第二开关模组与所述定向耦合器的第一端可切换地连接,所述定向耦合器的第二端与所述至少两个天线可切换地连接;其中,所述定向耦合器的第三端与所述射频收发模块连接。
  2. 根据权利要求1所述的电路,其中,所述定向耦合器集成在所述第一开关模组中或者集成在所述第二开关模组中。
  3. 根据权利要求1所述的电路,其中,所述定向耦合器设置在所述第一开关模组与所述第二开关模组之间。
  4. 根据权利要求1所述的电路,其中,所述至少一个发射子模块、所述第二开关模组和所述定向路由器集成在所述第一开关模组中。
  5. 根据权利要求1所述的电路,其中,所述至少一个发射子模块中的第一发射子模块通过所述至少两个天线中的第一天线发送信号时,所述第一发射子模块通过所述定向耦合器与所述第一天线连接。
  6. 根据权利要求1所述的电路,其中,所述发射子模块的数量为至少4个,所述接收子模块的数量为至少6个。
  7. 根据权利要求6所述的电路,其中,所述天线的数量为至少4个。
  8. 根据权利要求1-7中任一项所述电路,其中,所述射频前端模块包括新空口NR射频前端模块和/或长期演进LTE射频前端模块。
  9. 一种终端,其中,包括:如权利要求1-8中任一项所述的功率检测电路。
PCT/CN2020/085639 2019-04-25 2020-04-20 功率检测电路及终端 WO2020216178A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910339966.0A CN110190916B (zh) 2019-04-25 2019-04-25 一种功率检测电路及终端
CN201910339966.0 2019-04-25

Publications (1)

Publication Number Publication Date
WO2020216178A1 true WO2020216178A1 (zh) 2020-10-29

Family

ID=67715095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/085639 WO2020216178A1 (zh) 2019-04-25 2020-04-20 功率检测电路及终端

Country Status (2)

Country Link
CN (1) CN110190916B (zh)
WO (1) WO2020216178A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110190916B (zh) * 2019-04-25 2021-03-23 维沃移动通信有限公司 一种功率检测电路及终端
CN110166146B (zh) * 2019-04-25 2021-05-07 维沃移动通信有限公司 一种功率检测电路及终端
CN111669199A (zh) * 2020-06-08 2020-09-15 维沃移动通信有限公司 功率检测电路及电子设备
CN111600616B (zh) * 2020-07-10 2020-12-04 锐石创芯(深圳)科技有限公司 一种射频前端架构、天线装置及通信终端
CN112187297B (zh) * 2020-09-27 2022-08-09 Oppo广东移动通信有限公司 射频收发系统和通信设备
CN112689311B (zh) * 2020-12-17 2023-06-16 维沃移动通信有限公司 小区切换方法、5g射频装置和电子设备
CN113890639B (zh) * 2021-11-11 2023-03-14 中国电子科技集团公司第二十九研究所 一种辐射单元功率检测的装置及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150249916A1 (en) * 2010-04-13 2015-09-03 Apple Inc. Adjustable Wireless Circuitry with Antenna-Based Proximity Detector
CN109041190A (zh) * 2018-09-17 2018-12-18 维沃移动通信有限公司 一种功率控制方法和终端
CN109347508A (zh) * 2018-10-31 2019-02-15 维沃移动通信有限公司 一种移动终端及功率检测方法
CN110190916A (zh) * 2019-04-25 2019-08-30 维沃移动通信有限公司 一种功率检测电路及终端

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8526890B1 (en) * 2012-03-11 2013-09-03 Mediatek Inc. Radio frequency modules capable of self-calibration
US10009058B2 (en) * 2012-06-18 2018-06-26 Qorvo Us, Inc. RF front-end circuitry for receive MIMO signals
CN203630795U (zh) * 2013-12-13 2014-06-04 深圳市远望谷信息技术股份有限公司 用于rfid设备的射频模块及其rfid设备
CN106130570B (zh) * 2016-06-15 2019-03-08 联想(北京)有限公司 一种载波聚合电路
CN109120353B (zh) * 2018-07-18 2021-03-12 Oppo广东移动通信有限公司 射频电路仿真方法、射频电路仿真装置及存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150249916A1 (en) * 2010-04-13 2015-09-03 Apple Inc. Adjustable Wireless Circuitry with Antenna-Based Proximity Detector
CN109041190A (zh) * 2018-09-17 2018-12-18 维沃移动通信有限公司 一种功率控制方法和终端
CN109347508A (zh) * 2018-10-31 2019-02-15 维沃移动通信有限公司 一种移动终端及功率检测方法
CN110190916A (zh) * 2019-04-25 2019-08-30 维沃移动通信有限公司 一种功率检测电路及终端

Also Published As

Publication number Publication date
CN110190916A (zh) 2019-08-30
CN110190916B (zh) 2021-03-23

Similar Documents

Publication Publication Date Title
WO2020216178A1 (zh) 功率检测电路及终端
US11942979B2 (en) Network radio frequency structure, radio frequency control method, and electronic device
WO2021004350A1 (zh) 发射天线的切换方法及终端设备
WO2020238450A1 (zh) 天线控制方法和折叠屏终端
CN109361444B (zh) 一种发射天线的切换方法及终端设备
WO2020151744A1 (zh) 信号收发装置及终端设备
WO2020215965A1 (zh) 终端控制方法及终端
WO2020216180A1 (zh) 功率检测电路及终端
WO2021129525A1 (zh) 天线电路、电子设备及天线性能的调整方法
WO2021115250A1 (zh) 功率控制装置、方法及电子设备
US11936474B2 (en) Transmission antenna switching method and terminal device
WO2020259296A1 (zh) 射频电路及终端
WO2020238350A1 (zh) 天线控制方法及移动终端
WO2021129750A1 (zh) 射频电路、电子设备及srs发送方法
WO2020216209A1 (zh) 指示空间关系信息的方法及装置、通信设备
WO2020215930A1 (zh) 干扰处理方法及移动终端
WO2020238446A1 (zh) Srs的发送方法及移动终端
US11800431B2 (en) Access control method, message broadcasting method, and related devices
WO2021008613A1 (zh) 信息处理方法、终端及网络侧设备
CN110336623B (zh) 功率检测方法、装置及移动终端
CN111313915B (zh) 一种电子设备
WO2022166877A1 (zh) Wi-Fi上行数据发送方法、装置、电子设备及存储介质
US20210204294A1 (en) Communication method for mobile terminal and mobile terminal
CN108540659B (zh) 降低tdd噪声影响的方法、终端及计算机可读存储介质
WO2020216258A1 (zh) 天线调节方法、装置及终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20795505

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20795505

Country of ref document: EP

Kind code of ref document: A1